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Why do we have to study more than DFT?

We have detected two problems with DFT:

1) Kohn-Sham bandgaps are much too small
2) Fermi’s golden rule in the independent particle picture is not reliable

to calculate absorption spectra
How can we understand this?
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Beyond the ground state

Ground state calculations:

ρ(1)(r) → ρ(2)(r)

=⇒ ∆E tot = E
tot,(2)
N − E

tot,(1)
N

These differences are described in ground state DFT.

Spectroscopy?
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Spectroscopy

Spectroscopy is exciting!!!
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Spectroscopy

Excitation: E tot
N =⇒ (E tot

N )∗

or E tot
N =⇒ (E tot

N∓1)
∗.

This is not described in ground state DFT.
No interaction - no problem!
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Back to particles?

Vxc(r) −→
Non-locality Σ(r, r′) for exchange
Time Σ(r, r′, t − t ′) for response
between ρ(r) and the full many-body
wavefunction: ρ(r, r′, t − t ′)
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You can make it!

Who invented Green’s functions?

George Green, “An Essay on the Application of Mathematical
Analysis to the Theory of Electricity and Magnetism”
Printed for the author by T. Wheelhouse, London. Sold by
Hamilton, Adams & Co., Nottingham (1828)

The basis.....

....after 1 year of school (from age 8 to 9) and 26 years of hard
work!
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Green’s functions in mathematics

Where we met G for the first time....

Suppose we want to solve

D̂x f (x) = F (x).

D̂x is a differential operator (for example, D̂x = d2/dx2 + c). F (x) is a
function, for example, a force. The solution of

D̂xG (x , y) = δ(x − y)

allows us to calculate

f (x) =

∫
dyG (x , y)F (y).

Green’s functions Lucia Reining
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Harmonic oscillator in viscous medium

One oscillator......

d2x

dt2
+ ω2

0x = F (t)

Green’s function

d2G0(t − t0)

dt2
+ ω2

0G0(t − t0) = δ(t − t0)

and solution

G0(t − t0) =
sinω0(t − t0)

ω0
Θ(t − t0)
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Harmonic oscillator in viscous medium

Fourier Transform
use

Θ(t) =
i

2π
limη→0+

∫ ∞

∞
dω

e−iωt

ω + iη
.

and obtain

G+
0 (ω) = limη→0+

[
1

ω0 − iη − ω
+

1

ω0 + iη + ω

]
1

2ω0

“Spectral Function” A(ω) = −limη→0
1

2πi [G−(ω)− G+(ω)]:

A(ω) =
1

2ω0
[δ(ω − ω0)− δ(ω + ω0)]
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Harmonic oscillator in viscous medium

One oscillator...in medium

The problem:

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x = F (t).

Fourier Transform of Green’s function equation:[
−ω2 − 2iγω + ω2

0

]
G (ω) = 1

Poles at ω = −iγ ±
√
−γ2 + ω2

0 . Spectral function:

A(ω) = − 1

2πi
[G∗(ω)− G (ω)] =

1

π

Γ(ω)

(ω2 − ω2
0)

2 + Γ2(ω)

with Γ(ω) = 2γω.
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Harmonic oscillator in viscous medium

Self-energy and Dyson equation

Unperturbed oscillator:[
−ω2 + ω2

0

]
G0(ω) = 1

...in medium:[
−ω2 − 2iγω + ω2

0

]
G (ω) = 1

G−1(ω) = G−1
0 (ω)− 2iγω

Dyson equation:

G (ω) = G0(ω) + G0(ω)Σ(ω)G (ω)

with Σ(ω) = 2iωγ: “Self-energy”.
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One-particle Green’s function in Quantum mechanics

We want to arrive at the following problem:

[
i
∂

∂t
− Ĥ

]
G (t − t0) = δ(t − t0)1.

or[
ω − Ĥ(ω)

]
G (ω) = 1.

hence

G (ω) = (ω − Ĥ(ω))−1.

and with Ĥ =
∫ ∑

α Eα|α >< α| (if hermitian)

G (ω) =

∫ ∑
α

|α >< α|
ω − Eα

.

Green’s functions Lucia Reining
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One-particle Green’s function in Quantum mechanics

Complex plane

Complex plane. G (z) has
discrete poles and a branchcut on the real axis, and it is analytic

elsewhere.

Green’s functions Lucia Reining
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One-particle Green’s function in Quantum mechanics

Dyson equation

G (z) = (z − Ĥ(z))−1.

If we know

G0(z) = (z − Ĥ0(z))−1

with H(z) = H0(z) + Σ(z):

G (z) = G0(z) + G0(z)Σ(z)G (z).

This can be a good starting point:

G (z) = G0(z) + G0(z)Σ(z)G0(z) + G0(z)Σ(z)G0(z)Σ(z)G0(z) + ...

Green’s functions Lucia Reining
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The one-particle Green’s function in detail

What is G and what is Σ?

Definition and meaning of G (at 0 K, ground state):

G (x, t; x′, t ′) = −i < Ψ0|T
[
ψ(x, t)ψ†(x′, t ′)

]
|Ψ0 >

Insert a complete set of N + 1 or N − 1-particle states. This yields

G (x, t; x′, t ′) = −i
∑

j

fj(x)f
∗
j (x′)e−iεj (t−t′) ×

× [Θ(t − t ′)Θ(εj − µ)−Θ(t ′ − t)Θ(µ− εj)];

εj = E (N + 1, j)− E (N, 0) or E (N, 0)− E (N − 1, j) for εj > µ(< µ), and

fj(x) =

{
〈N, 0 |ψ (x)|N + 1, j〉 , εj > µ
〈N − 1, j |ψ (x)|N, 0〉 , εj < µ

Green’s functions Lucia Reining
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Definition and meaning of G (at 0 K, ground state):

G (x, t; x′, t ′) = −i < Ψ0|T
[
ψ(x, t)ψ†(x′, t ′)

]
|Ψ0 >

Insert a complete set of N + 1 or N − 1-particle states. This yields

G (x, t; x′, t ′) = −i
∑

j

fj(x)f
∗
j (x′)e−iεj (t−t′) ×

× [Θ(t − t ′)Θ(εj − µ)−Θ(t ′ − t)Θ(µ− εj)];

εj = E (N + 1, j)− E (N, 0) or E (N, 0)− E (N − 1, j) for εj > µ(< µ), and

fj(x) =

{
〈N, 0 |ψ (x)|N + 1, j〉 , εj > µ
〈N − 1, j |ψ (x)|N, 0〉 , εj < µ
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The one-particle Green’s function in detail

What is G? - Fourier tansform

Fourier Transform as before:

G (x, x′, ω) =
∑

j

fj(x)f ∗j (x′)

ω − εj + iηsgn(εj − µ)
.

Spectral function:

A(x, x′;ω) =
∑

j

fj(x)f
∗
j (x′)δ(ω − εj).
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The one-particle Green’s function in detail

The spectral function

Spectral function. Effects of
interaction and the QP
approximation. Picture copied from
M. Bonitz, Quantum Kinetic Theory.

Other quantities

Also: Charge density, density matrix, total energy,.......
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Only one things is missing......

We know (in principle) G , but what is Σ?

G is all we want..... ...(although we might want G (2) etc....)

.......but we need Σ!

Green’s functions Lucia Reining



Motivation Encouragement Maths Physics Quantum mechanics 1 particle Conclusions

Only one things is missing......

We know (in principle) G , but what is Σ?

G is all we want..... ...(although we might want G (2) etc....)

.......but we need Σ!

Green’s functions Lucia Reining



Motivation Encouragement Maths Physics Quantum mechanics 1 particle Conclusions

Only one things is missing......

We know (in principle) G , but what is Σ?

G is all we want..... ...(although we might want G (2) etc....)

.......but we need Σ!

Green’s functions Lucia Reining



Motivation Encouragement Maths Physics Quantum mechanics 1 particle Conclusions

Only one things is missing......

We know (in principle) G , but what is Σ?

G is all we want..... ...(although we might want G (2) etc....)

.......but we need Σ!

Green’s functions Lucia Reining


	Main Part
	Motivation
	Encouragement
	Mathematics
	Physics: the harmonic oscillator
	Green's functions in quantum mechanics
	The one-particle Green's function in detail
	Conclusions


