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Reminder PT

What are we heading for?

Reminder: One oscillator in medium

The problem:
P P = F(y)
— — +wix = .
g2 " Tgr T

Fourier Transform of Green's function equation:
[—w?® — 2iqw + W] G(w) =1

Poles at w = —iy & y/—7? + w3. Spectral function:

Aw) = _% G*(w) - G(W)] = %(wz _ wrg()fl- M(w)

with IN(w) = 2yw.
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Reminder PT

What are we heading for?

Self-energy and Dyson equation

Unperturbed oscillator:
[—w® + wi] Go(w) =1
...in medium:

[—w? = 2w + W] G(w) =1

G Hw) = Gy Y (w) — 2iqw

Dyson equation:
G(w) = Go(w) + Go(w)X(w)G(w)

with X (w) = 2iw~y: “Self-energy”.
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Reminder PT EoM

The one-particle Green's function

In principle we know G

Many-Body Perturbation Theory Lucia Reining



Reminder PT EoM

The one-particle Green's function

In principle we know G

Definition and meaning of G (at 0 K, ground state):
G(x, t;x, t') = —i < Wo|T [9h(x, )y (X, t')] [Wo >
Insert a complete set of N 4+ 1 or N — 1-particle states. This yields

G(x,t;x',t") = —/Zf(x =) 5

X

[@(f —1)8(gj — p) = O(t' = 1)O(uu — &))I;
=E(N+1,j)— E(N,0) or E(N,0)— E(N —1,j) for ¢; > p(< ), and

f'(x):{ (N0 (x)| N +1,j), gj > 1
’ (N-1,j [ (x)|N,0), &<p
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How to get G7

Straightforward?

Many-Body Perturbation Theory Lucia Reining



How to get G7

Straightforward?

G(x, ;X' t') = —i < Wo|T [(x, )p' (x', t')] [Wo >
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How to get G7

Straightforward?

G(x, ;X' t') = —i < Wo|T [(x, )p' (x', t')] [Wo >

[Wo > =777
Interacting ground state!
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How to get G7

Straightforward?

G(x, ;X' t') = —i < Wo|T [(x, )p' (x', t')] [Wo >

[Wo > =777
Interacting ground state!

Perturbation Theory?

Time-independent perturbation theories: messy. .Textbooks:
adiabatically switched on interaction, Gell-Mann-Low theorem, Wick’s
theorem, expansion (diagrams). Lots of diagrams.....
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How to get G7

Learn oscillator?
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How to get G7

Learn from oscillator?

Green's function

dQGo(f = to)

e + wi Go(t — to) = 6(t — to)
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How to get G7

Learn from oscillator?

Green's function
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EoM
How to get G7

Learn from oscillator?

Green's function

d? Go(t = to)
dt?

+ Wi Go(t — to) = O(t — to)

Equation of motion

Equation of Motion

G(x, t;x, t') = —i < Wo|T [¥(x, )y (x, )] |Wo >
(8/0t)G =177
(0/0t)b(x, t) = i[H,1(x, t)]
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EoM

Functional approach to the MB problem

To determine the 1-particle Green’s function

[w— ho]G(w) + i/ vGa(w) =1

where hy = —%V2 4 Vext is the independent particle Hamiltonian.
The 2-particle Green's function describes the motion of 2 particles.
Unfortunately, hierarchy of equations
Gi(1,2) — G2(1,2;3,4)
Gx(1,2;3,4) — G3(1,2,3;4,5,6)
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Self-energy

Perturbation theory starts from what is known to evaluate what is
not known, hoping that the difference is small...

Let's say we know Gp(w) that corresponds to the Hamiltonian hg
Everything that is unknown is put in

F(w) = Gy H(w) ~ 67(w)

This is the definition of the self-energy
Thus,

v — ho] G(w) — / S()G(w) = 1

to be compared with

v — ho]G(w) + i/ VGo(w) = 1
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EoM

Functional derivation of the MB problem

Trick due to Schwinger (1951):
introduce a small external potential U(3), that will be made equal to zero
at the end, and calculate the variations of G; with respect to U

5?}5(13’)2) = —G(1,3:2,3) + Gi(1,2)Gy(3,3).
i/d3v(1,3)Gz(1,3;2,3) = —i/d3v(1,3)G1(373)Gl(1,2)

+i / d3v(1,3)5§1U((13’)2)

i/d3v(1,3)G2(1,3;273) - /d3v(1,3)p(3)Gl(1,2)

+i/ d35(1,3)Gy(3,2)
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EoM

Functional definition of the self-energy

Self-energy
§G71(4,2)

¥(1,2) = —i/d3d4v(1+,3)G(1,4) 5U3)

Vertex function
§G71(1,2)

ri,2;3)=- 5U(3)

Dyson equation
Vertex equation
r,2;3)= 5(1,2)5(1,3)+/ d4d5d6d7 [—iv(1,4)5(1,2)5(4, 5)

5(1,2)
3G(4,5)
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EoM

Functional definition of the self-energy

=il -1
G =G, - X
Y = iGvl

. ox
=1+ |:—IV+E:| GGl

r®—1

W = iGv =%,

— Hartree Fock approximation
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Hartree Fock

Hartree Fock is better than nothing!
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Hartree Fock

Hartree Fock is better than nothing!

2 masses, 1 spring: coordinate transformation = independent
modes
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Hartree Fock

Hartree Fock is better than nothing!

2 masses, 1 spring: coordinate transformation = independent
modes

We are looking for quite good quasiparticles.

Is the HF particle a good quasiparticle?
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Hartree Fock

Hartree Fock is better than nothing!

2 masses, 1 spring: coordinate transformation = independent
modes

We are looking for quite good quasiparticles.

Is the HF particle a good quasiparticle?

Was the Kohn-Sham one a good one?
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Wavefunctions methods

Hartree-Fock method: variationally best Slater determinant

#1(r1) ... on(r1)
p1(r2) ... on(r2)

Sy o(r, ..., ry) x :

bu(tn) .. dulrn)

made of N one-particle wavefunctions ¢;.
£ = (0[H[®) ~ 32 [ arlo(o)f

HF
= W' = el g

e}*F obtained as N Lagrange multipliers
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Hartree-Fock method

Valence Photoemission:

o1(r) .. dimi(n) divi(r) ... on(r)

IN—-1,i) (bl(:b) ¢’*1_("2) div1(r2) ... on(r2)

(251(?-/\/—1) ¢i—1(-l‘N—1) div1(rn-1) .. oOn(rnv-1)

Koopmans theorem:

e = (N,O|H|N,0) — (N — 1, i|H|N — 1, i)

The ¢; do have a physical meaning.
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Reminder

....but gaps in solids are usualy severely overestimated:
Si: measured 3.4 eV, Hartree-Fock 8 eV

VO,: measured 0.6 eV, Hartree-Fock > 5 eV

table taken from Brice Arnaud:
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Hartree-Fock method

Valence Photoemission:

o1(r1) ... ¢i—1(r1) diri(r) ... on(r)

IN—1,7) o ¢1(r2) Qsi—l-(l’z) oiv1(r2) on(ra)

</51(l’;\/—1) ¢i—1('|'N—1) div1(ry—1) .. oOn(rnv—1)

Koopmans theorem:

€ = <N70|H|N70> — <N_ 17’|H‘N_ 17I>

The €; do have a physical meaning.
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Hartree-Fock method

Valence Photoemission:

o1(r1) ... ¢i—1(r1) diri(r) ... on(r)
N1 o p1(r2) ... pic1(r2) pit1(r2) .. on(r2)

</51(l’;\/—1) ¢i—1('|'N—1) div1(ry—1) .. oOn(rnv—1)

Koopmans theorem:

€ = <N70|H|N70> — <N_ 17’|H‘N_ 17I>

The €; do have a physical meaning.
Approximation: No relaxation of the other orbitals
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Kohn-Sham

Band gaps of semiconductors and insulators

T T T T T T T T T T
8 ) 2 = N
(@) (7)) C0Z
o = £ i
L a o N m(né‘:.
€0 < = 5 ‘y
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experimental gap (eV)

adapted from M. van Schilfgaarde et al., PRL 96 226402 (2006)
— underestimated
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Density Functional Theory

DFT well assessed for the structure of solids

BUT

£ = @HS[0) = 3 [ ol

= hS(NofS(r) = 01 >(r)

e,KS obtained as N Lagrange multipliers

Kohn-Sham energies cannot be interpreted as removal/addition
energies:

Koopman's theorem doesn’t hold, not so clear how to fix that!
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Beyond Hartree-Fock?

= —il
Gl=G'-%
Y = iGvl

=1+ [_iv+§_)(:;] GGl

¥ — Gy

rM =1+ ivGGv + ivGvG

y@ =¥, — GvGGv — GvGVG

— 2nd order in v [cf. MP2]
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Screening
What to do when screening is important?

In a solid, screening can be very important and an order-by-order
treatment inadequate.

New fundamental quantity: the screened interaction
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Screening

GW origins

PHYSICAL REVIEW VOLUME 139, NUMBER 3\ 2 AUGUST 1905

New Method for Calculating the One-Particle Green’s Function with
Application to the Electron-Gas Problem*

Lars Hepint
Argonne National Laboratory, Argonne, Tllinois
(Received 8 October 1964; revised manuscript received 2 April 1965)

A set of successively more accurate self-consistent equations for the one-electron Green's function have been
derived. They correspond to an expansion in a screened potential rather than the bare Coulomb potential.
The first equation is adequate for many purposes. Each cquation follows from the demand that a corre-
sponding expression for the total encrgy be stationary with respect to variations in the Green’s function. The
main information to be obtained, besides the total energy, is one-particle-like excitation spectra, i.e., spectra
characterized by the quantum numbers of a single particle. This includes the low-excitation spectra in
metals as well as configurations in atoms, molecules, and solids with one electron outside or one electron
missing from a closed-shell structure. In the latter cases we obtain an approximate description by a modified
Hartree-Fock equation involving a “Coulomb hole” and a static screencd potential in the exchange term. As
an example, spectra of some atoms are discussed, To investigate the convergence of successive approxima-

or the Green's function, extensive calculations have been made for the electron gas at arangeof metallic
es. The results are ex[)lcsserl in terms of quasiparticle energies /2(k) and quasiparticle interactions
J (k). The very first approximation gives a good value for the magnitude of 7%(k). To estimate the deriva-
tive of (k) we need both the first- and the second-order terms. The derivative, and thus the specific heat, is
found to differ from the free-particle value by only a few percent. Our correction to the specific heat keeps
the same sign down to the lowest alkali-metal densities, and is smaller than those obtained recently by
Silverstein and by Rice, Qur results for the paramagnetic susceptibility are unreliable in the alkali-metal-
density region owing to poor convergence of the expansion for f. Besides the proof of a modified Luttinger-

‘Ward-Klein variational principle and a related self-consistency idea, there is not much n principle in
this paper. The emphasis is on the development of a numerically manageable approximation schem
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Screening

Functional definition of the self-energy

Self-energy
§G71(4,2)
Y (1,2) 4v(1%,3)G(1,4)———2
(1, /d3d (1 3)6(1.4)
Vertex function
§G71(1,2)

r(1,23)=— e
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Screening
Need for screening

AlU]

variations of some operator with respect to a local bare

s . 0A
perturbation:

U(r) =e d(r-p)

I
o
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Screening
Need for screening

Purely classical interaction

U(r) =e d(r-p)

1/

— & —

e

V(r) = U(r) + class. screen.

wn:mn+/ﬁmﬂmm

the variations of the charge density p tends to oppose to the
perturbation.
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Screening
Need for screening

better to work with 25 than with 37

561

Y,
5G-L oV
6V oU
5671,

= — e

ov

r= —

where ¢ is the dielectric function of the medium.
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Screening
Towards Hedin's equations

Y = iGve T
irreducible vertex
= §G1
r = —
oV
or -
= 1+ —GGrI
56
screened Coulomb interaction
W =¢etv
dielectric function
e=1—vy
irreducible polarizability
dp .
v — — — — r
X=5y iGG
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Screening

Hedin's equations

Y = iGWT

- N -

= 1+ -Z=GGF
+5GGG

W = 1y

e = 1—vy

¥ = —iGGP

Hedin's wheel e G
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