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Reminder PT EoM HF Screening

What are we heading for?

Reminder: One oscillator in medium

The problem:

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x = F (t).

Fourier Transform of Green’s function equation:[
−ω2 − 2iγω + ω2

0

]
G (ω) = 1

Poles at ω = −iγ ±
√
−γ2 + ω2

0 . Spectral function:

A(ω) = − 1

2πi
[G∗(ω)− G (ω)] =

1

π

Γ(ω)

(ω2 − ω2
0)

2 + Γ2(ω)

with Γ(ω) = 2γω.
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Reminder PT EoM HF Screening

What are we heading for?

Self-energy and Dyson equation

Unperturbed oscillator:[
−ω2 + ω2

0

]
G0(ω) = 1

...in medium:[
−ω2 − 2iγω + ω2

0

]
G (ω) = 1

G−1(ω) = G−1
0 (ω)− 2iγω

Dyson equation:

G (ω) = G0(ω) + G0(ω)Σ(ω)G (ω)

with Σ(ω) = 2iωγ: “Self-energy”.
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Reminder PT EoM HF Screening

The one-particle Green’s function

In principle we know G ..........

Definition and meaning of G (at 0 K, ground state):

G (x, t; x′, t ′) = −i < Ψ0|T
[
ψ(x, t)ψ†(x′, t ′)

]
|Ψ0 >

Insert a complete set of N + 1 or N − 1-particle states. This yields

G (x, t; x′, t ′) = −i
∑

j

fj(x)f
∗
j (x′)e−iεj (t−t′) ×

× [Θ(t − t ′)Θ(εj − µ)−Θ(t ′ − t)Θ(µ− εj)];

εj = E (N + 1, j)− E (N, 0) or E (N, 0)− E (N − 1, j) for εj > µ(< µ), and

fj(x) =

{
〈N, 0 |ψ (x)|N + 1, j〉 , εj > µ
〈N − 1, j |ψ (x)|N, 0〉 , εj < µ
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Reminder PT EoM HF Screening

How to get G?

Straightforward?

G (x, t; x′, t ′) = −i < Ψ0|T
[
ψ(x, t)ψ†(x′, t ′)

]
|Ψ0 >

|Ψ0 > = ???
Interacting ground state!

Perturbation Theory?

Time-independent perturbation theories: messy. .Textbooks:
adiabatically switched on interaction, Gell-Mann-Low theorem, Wick’s

theorem, expansion (diagrams). Lots of diagrams.....
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Reminder PT EoM HF Screening

How to get G?

Learn from oscillator?

Green’s function

d2G0(t − t0)

dt2
+ ω2

0G0(t − t0) = δ(t − t0)

Equation of motion

Equation of Motion

G (x, t; x′, t ′) = −i < Ψ0|T
[
ψ(x, t)ψ†(x′, t ′)

]
|Ψ0 >

(∂/∂t)G =???

(∂/∂t)ψ(x, t) = i [Ĥ, ψ(x, t)]
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Reminder PT EoM HF Screening

Functional approach to the MB problem

To determine the 1-particle Green’s function

[ω − h0]G (ω) + i

∫
vG2(ω) = 1

where h0 = −1
2∇

2 + vext is the independent particle Hamiltonian.
The 2-particle Green’s function describes the motion of 2 particles.
Unfortunately, hierarchy of equations

G1(1, 2) ← G2(1, 2; 3, 4)
G2(1, 2; 3, 4) ← G3(1, 2, 3; 4, 5, 6)

...
...

...
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Reminder PT EoM HF Screening

Self-energy

Perturbation theory starts from what is known to evaluate what is
not known, hoping that the difference is small...
Let’s say we know G0(ω) that corresponds to the Hamiltonian h0

Everything that is unknown is put in

Σ(ω) = G−1
0 (ω)− G−1(ω)

This is the definition of the self-energy
Thus,

[ω − h0]G (ω)−
∫

Σ(ω)G (ω) = 1

to be compared with

[ω − h0]G (ω) + i

∫
vG2(ω) = 1
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Reminder PT EoM HF Screening

Functional derivation of the MB problem

Trick due to Schwinger (1951):
introduce a small external potential U(3), that will be made equal to zero
at the end, and calculate the variations of G1 with respect to U

δG1(1, 2)

δU(3)
= −G2(1, 3; 2, 3) + G1(1, 2)G1(3, 3).

i

∫
d3v(1, 3)G2(1, 3; 2, 3) = −i

∫
d3v(1, 3)G1(3, 3)G1(1, 2)

+i

∫
d3v(1, 3)

δG1(1, 2)

δU(3)

i

∫
d3v(1, 3)G2(1, 3; 2, 3) =

∫
d3v(1, 3)ρ(3)G1(1, 2)

+i

∫
d3Σ(1, 3)G1(3, 2)
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Reminder PT EoM HF Screening

Functional definition of the self-energy

Self-energy

Σ(1, 2) = −i

∫
d3d4v(1+, 3)G (1, 4)

δG−1(4, 2)

δU(3)

Vertex function

Γ(1, 2; 3) = −δG
−1(1, 2)

δU(3)

Dyson equation

G−1(1, 2) = G−1
0 (1, 2)− U(1)δ(1, 2)− VH(1)δ(1, 2)− Σ(1, 2)

Vertex equation

Γ(1, 2; 3) = δ(1, 2)δ(1, 3)+

∫
d4d5d6d7

[
−iv(1, 4)δ(1, 2)δ(4, 5)

+
δΣ(1, 2)

δG (4, 5)

]
G (4, 6)G (7, 5)Γ(6, 7; 3)
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Reminder PT EoM HF Screening

Functional definition of the self-energy

Exact equations

G−1 = G−1
0 − Σ

Σ = iGvΓ

Γ = 1 +

[
−iv +

δΣ

δG

]
GGΓ

Γ(0) = 1

Σ(1) = iGv = Σx

→ Hartree Fock approximation

G

v
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Reminder PT EoM HF Screening

Hartree Fock

Hartree Fock is better than nothing!

2 masses, 1 spring: coordinate transformation =⇒ independent
modes
We are looking for quite good quasiparticles.
Is the HF particle a good quasiparticle?
Was the Kohn-Sham one a good one?
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Reminder PT EoM HF Screening

Wavefunctions methods

Hartree-Fock method: variationally best Slater determinant

ΦN,0(r1, ..., rN) ∝

∣∣∣∣∣∣∣∣∣
φ1(r1) . . . φN(r1)
φ1(r2) . . . φN(r2)

...
...

φ1(rN) . . . φN(rN)

∣∣∣∣∣∣∣∣∣
made of N one-particle wavefunctions φi .

L = 〈Φ|H|Φ〉 −
∑

i

εHF
i

∫
dr|φi (r)|2

⇒ hHFφi = εHF
i φi

εHF
i obtained as N Lagrange multipliers
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Reminder PT EoM HF Screening

Hartree-Fock method

Valence Photoemission:

|N−1, i〉 ∝

∣∣∣∣∣∣∣∣∣
φ1(r1) . . . φi−1(r1) φi+1(r1) . . . φN(r1)
φ1(r2) . . . φi−1(r2) φi+1(r2) . . . φN(r2)

...
...

φ1(rN−1) . . . φi−1(rN−1) φi+1(rN−1) . . . φN(rN−1)

∣∣∣∣∣∣∣∣∣
Koopmans theorem:

εi = 〈N, 0|H|N, 0〉 − 〈N − 1, i |H|N − 1, i〉

The εi do have a physical meaning.
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Reminder PT EoM HF Screening

....but gaps in solids are usualy severely overestimated:
Si: measured 3.4 eV, Hartree-Fock 8 eV
VO2: measured 0.6 eV, Hartree-Fock > 5 eV
table taken from Brice Arnaud:
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Hartree-Fock method

Valence Photoemission:
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Reminder PT EoM HF Screening

Kohn-Sham

Band gaps of semiconductors and insulators

experimental gap (eV)

adapted from M. van Schilfgaarde et al., PRL 96 226402 (2006)
→ underestimated
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Reminder PT EoM HF Screening

Density Functional Theory

DFT well assessed for the structure of solids

BUT

L = 〈Φ|HKS|Φ〉 −
∑

i

εKS
i

∫
dr|φKS

i (r)|2

⇒ hKS(r)φKS
i (r) = εKS

i φKS
i (r)

εKS
i obtained as N Lagrange multipliers

Kohn-Sham energies cannot be interpreted as removal/addition
energies:
Koopman’s theorem doesn’t hold, not so clear how to fix that!
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Reminder PT EoM HF Screening

Beyond Hartree-Fock?

Exact equations

G−1 = G−1
0 − Σ

Σ = iGvΓ

Γ = 1 +

[
−iv +

δΣ

δG

]
GGΓ

Σ(1) = iGv

Γ(1) = 1 + ivGGv + ivGvG

Σ(2) = Σx − GvGGv − GvGvG

→ 2nd order in v [cf. MP2]
Many-Body Perturbation Theory Lucia Reining
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Reminder PT EoM HF Screening

What to do when screening is important?

In a solid, screening can be very important and an order-by-order
treatment inadequate.

New fundamental quantity: the screened interaction

Many-Body Perturbation Theory Lucia Reining
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GW origins
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Functional definition of the self-energy

Self-energy

Σ(1, 2) = −i

∫
d3d4v(1+, 3)G (1, 4)

δG−1(4, 2)

δU(3)

Vertex function

Γ(1, 2; 3) = −δG
−1(1, 2)

δU(3)
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Reminder PT EoM HF Screening

Need for screening

A[U]

variations of some operator with respect to a local bare
perturbation: δA

δU

U(r) = e   (r−r )δ 0
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Reminder PT EoM HF Screening

Need for screening

Purely classical interaction

U(r) = e   (r−r )δ 0

V(r) = U(r) + class. screen.

V (1) = U(1) +

∫
d2v(1, 2)ρ(2)

the variations of the charge density δρ tends to oppose to the
perturbation.
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Reminder PT EoM HF Screening

Need for screening

better to work with δA
δV than with δA

δU

Γ = −δG
−1

δU

= −δG
−1

δV

δV

δU

= −δG
−1

δV
ε−1

where ε is the dielectric function of the medium.
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Reminder PT EoM HF Screening

Towards Hedin’s equations

Σ = iGvε−1Γ̃

irreducible vertex

Γ̃ = −δG
−1

δV

= 1 +
δΣ

δG
GG Γ̃

screened Coulomb interaction

W = ε−1v

dielectric function
ε = 1− v χ̃

irreducible polarizability

χ̃ =
δρ

δV
= −iGG Γ̃
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Hedin’s equations

Σ = iGW Γ̃

Γ̃ = 1 +
δΣ

δG
GG Γ̃

W = ε−1v

ε = 1− v χ̃

χ̃ = −iGG Γ̃

Hedin’s wheel

Σ

Γ

W G

χ~ ~
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