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How to relate macroscopic
and microscopic world?
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How to study optical processes?

The propagation of electromagnetic waves in materials is described by the
Maxwell’s equations, supplemented by appropriate constitutive equations.

The optical phenomena (reflection, propagation, transmission) can be
quantified by a number of parameters that determine the properties of the
medium at the macroscopic level.

Microscopic (semiclassical) models and averaging procedures yield these
macroscopic parameters.
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The response of a dielectric material to an external electric field

is characterized by three macroscopic vectors:

the electric field strength E,

the polarization P,

the electric displacement D.

The response of a dielectric material to an external magnetic field

is characterized by three macroscopic vectors:

the electric field strength H,

the magnetization M,

the magnetic flux density B.

The macroscopic vectors have microscopic counterparts.
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Maxwell’s equations in presence of a medium

∇ · E(r, t) = 4πρind(r, t) + 4πρext(r, t)

∇ · B(r, t) = 0

∇× E(r, t) = −1

c

∂B(r, t)

∂t

∇× B(r, t) =
4π

c
(jind(r, t) + jext(r, t)) +

1

c

∂E(r, t)

∂t

ρext, jext = external (or free) charges and currents

ρind, jind = induced (or bound) charges and currents
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Maxwell’s equations in presence of a medium

∇ ·D(r, t) = 4πρext(r, t)

∇ · B(r, t) = 0

∇× E(r, t) = −1

c

∂B(r, t)

∂t

∇×H(r, t) =
4π

c
jext(r, t) +

1

c

∂D(r, t)

∂t

ρext, jext = external charges and currents

Continuity equation: ∇ · jext + ∂ρext

∂t = 0
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In the linear response regime, for an isotropic medium:

P = χeE

D = E + 4πP = εE

M = χmH

B = H + 4πM = µH

electric permittivity χe

dielectric function ε

magnetic susceptibility χm

magnetic permeability µ
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Linear response

Perturbation theory

For a sufficiently small perturbation, the response of the system can be
expanded into a Taylor series, with respect to the perturbation.

We will consider only the first order (linear) response, proportional to the
perturbation.

6= strong field interaction (intense lasers for instance).

The linear coefficient linking the response to the perturbation is called a
response function. It is independent of the perturbation and depends only
on the system.

We will consider non-magnetic materials.

Example

Density-density response function: δρ(r, t) =
∫

dt ′
∫

dr′χ(r, t, r′, t ′)vext(r′, t ′)

Microscopic-Macroscopic connection Silvana Botti



From Maxwell’s equations Averages Cubic symmetry Non-cubic symmetries Summary

Which quantities are measured?

Absorption coefficient

The general solution of Maxwell’s eqs in vacuum is E(r, t) = E0e
i(k·r−ωt) .

Defining the complex refractive index as N =
√

ε = ν + iκ, the electric field
inside a medium is the damped wave:

E(x, t) = E0e
iω
c xN e−iωt = E0e

iω
c νxe−

ω
c κxe−iωt

ν and κ are the refraction index and the extinction coefficient and they are
related to the dielectric constant as

ε1 = ν2 − κ2 ε2 = 2νκ

The absorption coefficient α is the inverse distance where the intensity of the
field is reduced by 1/e:

α =
ωε2

νc

(related to the optical skin depth δ).
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Which quantities are measured?

Schematic diagram

x

z

Incident beam

Reflected beam

Transmitted beam

Reflectivity

Normal incidence reflectivity:

R = |ET

Ei
|2 < 1

R = | (1− ν)2 + κ2

(1 + ν)2 + κ2
|

The knowledge of the optical constant

implies the knowledge of the

reflectivity, which can be compared

with the experiment.
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Which quantities are measured?

Example: Photoabsorption cross section

Rem: δρ(r, ω) =
∫

dr′χ(r, r′, ω)vext(r′, ω)

σph(ω) = −4πω

c
Im

∫
dr

∫
dr′ z χ(r, r′, ω) z′

with vext(r′, ω) = −κ0 z ′

σph(ω) =
4πω

cκ0
Im

∫
dr z δρ(r, ω)
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Which quantities are measured?

Example: Energy loss by a fast charged particle

Given an external charge density ρext, one can obtained the external potential vext

k2vext,ind(k, ω) = 4πρext,ind(k, ω) (Poisson equation)

The response of the system is an induced density, defined by the response
function χ

ρind(k, ω) = χ(k, ω)vext(k, ω)

and the total (induced + external) potential acting on the system is

vtot(k, ω) =

[
1 +

4π

k2
χ(k, ω)

]
vext(k, ω) = ε−1(k, ω)vext(k, ω)
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Which quantities are measured?

Energy loss by a fast charged particle: “classical” electron

Particle (e−) with velocity v: ρext(r, t) = eδ(r−vt); ρext(k, ω) = e
(2π)3 δ(ω−k ·v)

The total electric field is Etot(r, t) = −∇rVtot(r, t) and the energy lost by the
electron in unit time is

dW

dt
=

∫
dr j .Etot

with the current density j = −evδ(r − vt). We get

dW

dt
= − e2

π2

∫
dr

k2
Im

{
ω

ε(k, ω)

}

−Im
{

1
ε(k,ω)

}
is called the loss function.
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Macroscopic average

Macroscopic quantities

At long wavelength, external fields
are slowly varying over the unit
cells.

λ =
2π

q
>> V 1/3

where V is the volume per unit cell
of the cystal.

Example

Eext(r, t), Aext(r, t), Vext(r, t),

Microscopic quantities

Total and induced fields are rapidly
varying: they include the
contribution from electrons in all
regions of the cell.
⇒ Large and irregular fluctuations
over the atomic scale.

Example

Etot(r, t), jind(r, t), ρind(r, t),...
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Macroscopic average

Measurable quantities

One usually measures quantities that vary on a macroscopic scale.
We have to average over distances

large compared to the cell diameter,

small compared to the wavelength of the external perturbation.
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Macroscopic average

Procedure

Average over a unit cell whose origin is at point R;

Regard R as the continuous coordinate appearing in the Maxwell’s
equations.

The differences between the microscopic fields and the averaged
(macroscopic) fields are called the crystal local fields.
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Macroscopic average

Procedure
In presence of a periodic medium, every function can be represented by the
Fourier series

V (r, ω) =
∑
qG

V (q + G, ω)e i(q+G)·r

where R is any vector of the Bravais lattice, q is in the first Brillouin zone and G
is a reciprocal lattice vector.
It is equivalent to write

V (r, ω) =
∑

q

V (r;q, ω)e iq·r

where V (r;q, ω) =
∑

G V (q + G, ω)e i·G r is a periodic function, with respect to

the Bravais lattice.
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Macroscopic average

For a monocromatic field with wavevector q

Spatial average over a unit cell:

V (R, ω) = < V (r;q, ω) >R e iq·R

= e iq·R 1

Ω

∫
dr

∑
G

V (q + G, ω)e i ·G r

= e iq·RV (q + 0, ω)

The macroscopic average corresponds to the G = 0 component.
Macroscopic quantities have all their G components equal to 0, except the
G = 0 component.
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Macroscopic average

A simple example

vext(q + G, ω) =
∑
G′

εGG′(q, ω)vtot(q + G′, ω)

vext is a macroscopic quantity : vext(q + G, ω) = vext(q, ω) δG0

This not the case for vtot(q + G, ω)

Macroscopic average of vext

vext(q, ω) =
∑
G′

ε0G′(q, ω)vtot(q + G′, ω)

6= ε00(q, ω)vtot(q, ω)

The average of the product is not the product of the averages
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Macroscopic average

A simple example

We have also the relation

vtot(q + G, ω) =
∑
G′

ε−1
GG′(q, ω)vext(q + G′, ω)

where
∑

G′′ εGG′′(q, ω)ε−1
G′′G′(q, ω) = δGG′

Macroscopic average of vtot

vext is macroscopic ⇒ vtot(q + G, ω) = ε−1
G0 (q, ω)vext(q, ω)

vtot(q, ω) = ε−1
00 (q, ω)vext(q, ω)

vext(q, ω) = εM(q, ω)vtot(q, ω)⇒ εM(q, ω) =
1

ε−1
00 (q, ω)
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Macroscopic average

Summary

We have defined microscopic and macroscopic fields

Microscopic quantities have to be averaged to be compared to
experiments

The dielectric function also has a microscopic expression and its
macroscopic counterpart

εM(q) =
1

ε−1
00 (q)

Absorption ↔ Im {εM} and EELS ↔ −Im
{

1
εM

}
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Macroscopic dielectric function

Question

ε00 is not the macroscopic dielectric function
What is it then ?

Answer

ε00 is the macroscopic dielectric function without crystal local fields.
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Microscopic dielectric Function

Question

How can we calculate the microscopic dielectric functions?

Answer

They are determined by the elementary excitations of the medium:
interband and intraband transitions, as well as collective excitations.

This issue will be addressed in the next lectures!!!
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Dielectric tensor for cubic symmetries

Macroscopic fields

q defines the direction for the propagation: we assume q ‖ x

Longitudinal fields

E ‖ q

Coulomb gauge: ∇ · A = 0 ⇒
Poisson equation: ∇2vext = 4πρext

EELS

Electrostatic interaction

Transverse fields

E ⊥ q

Optical spectroscopy

Photons
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Dielectric tensor for cubic symmetries

Properties - Macroscopic quantities

Electric displacement D(q, ω) =←→ε M(q, ω)Etot(q, ω)

No symmetry

←→ε M(q, ω) =

 εLL εxy εxz

εyx εyy εyz

εzx εzy εzz



Cubic symmetry

←→ε M(q, ω) =


εLL
M 0

0 εTT
M



Macroscopic quantities only:
A longitudinal pertubation induces a longitudinal response

A transverse pertubation induces a transverse response

Microscopic-Macroscopic connection Silvana Botti



From Maxwell’s equations Averages Cubic symmetry Non-cubic symmetries Summary

Dielectric tensor for cubic symmetries

Longitudinal and transverse components

εLL
M =

1

1 + 4π
q2 χρρ(q, ω)

εTT
M = ... more complicated∗ ...

* H. Ehrenreich, Electromagnetic Transport in Solids, in ”The Optical Properties
of Solids”, Varenna Course XXXIV, edited by J. Tauc (Academic Press, New York,
1966) p 106.

R. Del Sole and E. Fiorino, Phys. Rev. B 29, 4631 (1984).

Microscopic-Macroscopic connection Silvana Botti



From Maxwell’s equations Averages Cubic symmetry Non-cubic symmetries Summary

Dielectric tensor for cubic symmetries

In the limit q→ 0

lim
q→0

εTT
M = εLL

M =
1

1 + 4π
q2 χρρ(q, ω)

We finally reach a familiar result!
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Non-Cubic symmetries

Properties - Macroscopic quantities

D(q, ω) =←→ε M(q, ω)Etot(q, ω)

←→ε M(q, ω) =


εLL
M εLTM

εTL
M εTT

M


Microscopic and macroscopic quantities

A longitudinal pertubation induces a longitudinal and a transverse response
A transverse pertubation induces a longitudinal and a transverse response
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Non-Cubic symmetries

Dielectric tensor - General case

←→ε M(q, ω) = 1 + 4π
←→̃
α (q,q, ω)

1 + 4π
q

q

q
q .
←→̃
α (q,q, ω)

1− 4πα̃LL(q,q, ω)


COMPLICATED! But one can show that the relation

εLL
M =

1

1 + 4π
q2 χρρ(q, ω)

holds also for the non-cubic symmetries.

R. Del Sole and E. Fiorino, Phys. Rev. B 29 4631 (1984).
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Non-cubic symmetries - Principal axis

Principal axis

In the limit q→ 0, one can find 3 axis n1,n2,n3, defining a frame in which
εM is diagonal.
Applying a longitudinal field Etot(q, ω), parallel to one of these axis
(q ‖ ni ) leads to

←→ε M(ni , ω) : Etot(ni , ω) = εLL
M (ni , ω)Etot(ni , ω)

Along these directions, a longitudinal perturbation induces a longitudinal
response through the usual relation

lim
q→0

εLL
M (q, ω) = lim

q→0

1

1 + 4π
q2 χρρ(q, ω)
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Non-cubic symmetries - Principal axis

Longitudinal and transverse dielectric functions

For q→ 0, we have defined three quantities:
εLL
M (n1, ω), εLL

M (n2, ω) and εLL
M (n3, ω)

Using the crystal symmetries, they can be used to define also the
transverse dielectric functions (depending on the symmetry)

The full dielectric tensor for q 6= 0 will not be adressed here!
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Dielectric tensor for non-cubic symmetries

In conclusion, in the limit q→ 0

lim
q→0

εTT
M = εLL

M =
1

1 + 4π
q2 χρρ(q, ω)

can also be true for non-cubic symmetries, provided that the correct
reference frame is chosen and symmetries are used.
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Summary

The key quantity is the (microscopic and macroscopic) dielectric
tensor.

Relation between microscopic and macroscopic fields through
averages.

For cubic crystals, the longitudinal dielectric function defines entirely
the optical response in the long wavelength limit.

The situation is not so simple for non-cubic crystals.
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