Microscopic-Macroscopic connection relating experiment and theory

Silvana Botti

European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France

Temporary Address:

Centre for Computational Physics University of Coimbra - Portugal

June 27, 2007 - Queen's University, Belfast

How to relate macroscopic and microscopic world?

Outline

- 1 Starting point: Maxwell's equations
- 2 Averaging procedure
- 3 Macroscopic dielectric function in cubic crystals
- 4 Dielectric tensor for non-cubic symmetries
- Summary

Outline

- Starting point: Maxwell's equations
- 2 Averaging procedure
- 3 Macroscopic dielectric function in cubic crystals
- 4 Dielectric tensor for non-cubic symmetries
- 5 Summary

- The propagation of electromagnetic waves in materials is described by the Maxwell's equations, supplemented by appropriate constitutive equations.
- The optical phenomena (reflection, propagation, transmission) can be quantified by a number of parameters that determine the properties of the medium at the macroscopic level.
- Microscopic (semiclassical) models and averaging procedures yield these macroscopic parameters.

is characterized by three macroscopic vectors:

- the electric field strength E,
- the polarization P,
- the electric displacement **D**.

The response of a dielectric material to an external magnetic field is characterized by three macroscopic vectors:

- the electric field strength H,
- the magnetization M,
- the magnetic flux density **B**.

The *macroscopic* vectors have *microscopic* counterparts.

Maxwell's equations in presence of a medium

$$abla \cdot \mathbf{B}(\mathbf{r},t) = 0$$

$$abla \times \mathbf{E}(\mathbf{r},t) = -\frac{1}{c} \frac{\partial \mathbf{B}(\mathbf{r},t)}{\partial t}$$

$$abla \times \mathbf{B}(\mathbf{r},t) = \frac{4\pi}{c} \left(\mathbf{j}_{\mathrm{ind}}(\mathbf{r},t) + \mathbf{j}_{\mathrm{ext}}(\mathbf{r},t) \right) + \frac{1}{c} \frac{\partial \mathbf{E}(\mathbf{r},t)}{\partial t}$$

 $\nabla \cdot \mathbf{E}(\mathbf{r},t) = 4\pi \rho_{\text{ind}}(\mathbf{r},t) + 4\pi \rho_{\text{ext}}(\mathbf{r},t)$

- ρ_{ext} , \mathbf{i}_{ext} = external (or *free*) charges and currents
- ρ_{ind} , \mathbf{j}_{ind} = induced (or bound) charges and currents

Summary

Maxwell's equations in presence of a medium

$$\nabla \cdot \mathbf{D}(\mathbf{r}, t) = 4\pi \rho_{\text{ext}}(\mathbf{r}, t)$$

$$\nabla \cdot \mathbf{B}(\mathbf{r}, t) = 0$$

$$\nabla \times \mathbf{E}(\mathbf{r}, t) = -\frac{1}{c} \frac{\partial \mathbf{B}(\mathbf{r}, t)}{\partial t}$$

$$\nabla \times \mathbf{H}(\mathbf{r}, t) = \frac{4\pi}{c} \mathbf{j}_{\text{ext}}(\mathbf{r}, t) + \frac{1}{c} \frac{\partial \mathbf{D}(\mathbf{r}, t)}{\partial t}$$

- ρ_{ext} , \mathbf{j}_{ext} = external charges and currents
- Continuity equation: $\nabla \cdot \mathbf{j}_{\text{ext}} + \frac{\partial \rho_{\text{ext}}}{\partial t} = 0$

Summary

$$P = \chi_e E$$

$$D = E + 4\pi P = \epsilon E$$

$$\mathbf{M} = \chi_{\mathrm{m}} \mathbf{H}$$

$$B = H + 4\pi M = \mu H$$

- electric permittivity $\chi_{\rm e}$
- dielectric function ϵ
- ullet magnetic susceptibility $\chi_{
 m m}$
- ullet magnetic permeability μ

Non-cubic symmetries

Linear response

Perturbation theory

- For a sufficiently small perturbation, the response of the system can be expanded into a Taylor series, with respect to the perturbation.
- We will consider only the first order (linear) response, proportional to the perturbation.
- $\bullet \neq$ strong field interaction (intense lasers for instance).
- The linear coefficient linking the response to the perturbation is called a response function. It is independent of the perturbation and depends only on the system.
- We will consider non-magnetic materials.

Example

Density-density response function: $\delta \rho(\mathbf{r},t) = \int dt' \int d\mathbf{r}' \chi(\mathbf{r},t,\mathbf{r}',t') v_{\rm ext}(\mathbf{r}',t')$

Which quantities are measured?

Absorption coefficient

The general solution of Maxwell's eqs in vacuum is $\mathbf{E}(\mathbf{r},t) = \mathbf{E}_0 e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}$. Defining the complex refractive index as $\mathcal{N}=\sqrt{\epsilon}=\nu+i\kappa$, the electric field inside a medium is the damped wave:

$$\mathbf{E}(\mathbf{x},t) = \mathbf{E}_0 e^{\frac{i\omega}{c} \times \mathcal{N}} e^{-i\omega t} = \mathbf{E}_0 e^{\frac{i\omega}{c} \nu x} e^{-\frac{\omega}{c} \kappa x} e^{-i\omega t}$$

u and κ are the refraction index and the extinction coefficient and they are related to the dielectric constant as

$$\epsilon_1 = \nu^2 - \kappa^2$$
 $\epsilon_2 = 2\nu\kappa$

The absorption coefficient α is the inverse distance where the intensity of the field is reduced by 1/e:

$$\alpha = \frac{\omega \epsilon_2}{\nu c}$$

(related to the optical skin depth δ).

Which quantities are measured?

Schematic diagram

Reflectivity

Normal incidence reflectivity:

$$R = |\frac{\mathbf{E}_T}{\mathbf{E}_i}|^2 < 1$$

$$R = \left| \frac{(1 - \nu)^2 + \kappa^2}{(1 + \nu)^2 + \kappa^2} \right|$$

The knowledge of the optical constant implies the knowledge of the reflectivity, which can be compared with the experiment.

Example: Photoabsorption cross section

Rem:
$$\delta \rho(\mathbf{r}, \omega) = \int d\mathbf{r}' \chi(\mathbf{r}, \mathbf{r}', \omega) v_{\text{ext}}(\mathbf{r}', \omega)$$

$$\sigma_{
m ph}(\omega) = -rac{4\pi\omega}{c}\;{
m Im}\int{
m d}{f r}\int{
m d}{f r}'\,{
m z}\,\chi({f r},{f r}',\omega)\,{
m z}'$$

with
$$v_{\rm ext}(\mathbf{r}',\omega) = -\kappa_0 z'$$

$$\sigma_{\rm ph}(\omega) = \frac{4\pi\omega}{c\kappa_0} \operatorname{Im} \int \mathrm{d}\mathbf{r} \, \mathrm{z} \, \delta\rho(\mathbf{r},\omega)$$

Example: Energy loss by a fast charged particle

Given an external charge density $ho_{
m ext}$, one can obtained the external potential $\emph{v}_{
m ext}$

$$k^2 v_{\text{ext,ind}}(\mathbf{k}, \omega) = 4\pi \rho_{\text{ext,ind}}(\mathbf{k}, \omega)$$
 (Poisson equation)

The response of the system is an induced density, defined by the response function $\boldsymbol{\gamma}$

$$\rho_{\mathrm{ind}}(\mathbf{k},\omega) = \chi(\mathbf{k},\omega) v_{\mathrm{ext}}(\mathbf{k},\omega)$$

and the total (induced + external) potential acting on the system is

$$v_{\rm tot}(\mathbf{k},\omega) = \left[1 + \frac{4\pi}{k^2}\chi(\mathbf{k},\omega)\right]v_{\rm ext}(\mathbf{k},\omega) = \epsilon^{-1}(\mathbf{k},\omega)v_{\rm ext}(\mathbf{k},\omega)$$

Which quantities are measured?

Energy loss by a fast charged particle: "classical" electron

Particle (e^-) with velocity \mathbf{v} : $\rho_{\mathrm{ext}}(\mathbf{r},t) = e\delta(\mathbf{r} - \mathbf{v}t)$; $\rho_{\mathrm{ext}}(\mathbf{k},\omega) = \frac{e}{(2\pi)^3}\delta(\omega - \mathbf{k} \cdot \mathbf{v})$

The total electric field is $\mathbf{E}_{tot}(\mathbf{r},t) = -\nabla_{\mathbf{r}}V_{tot}(\mathbf{r},t)$ and the energy lost by the electron in unit time is

$$\frac{dW}{dt} = \int d\mathbf{r} \mathbf{j} \cdot \mathbf{E}_{tot}$$

with the current density $\mathbf{j} = -e\mathbf{v}\delta(\mathbf{r} - \mathbf{v}t)$. We get

$$\frac{dW}{dt} = -\frac{e^2}{\pi^2} \int \frac{d\mathbf{r}}{k^2} Im \left\{ \frac{\omega}{\epsilon(\mathbf{k}, \omega)} \right\}$$

 $-Im\left\{\frac{1}{\epsilon(\mathbf{k},\omega)}\right\}$ is called the loss function.

Outline

- Starting point: Maxwell's equations
- 2 Averaging procedure
- 3 Macroscopic dielectric function in cubic crystals
- 4 Dielectric tensor for non-cubic symmetries
- 5 Summary

From Maxwell's equations

Macroscopic quantities

At long wavelength, external fields are slowly varying over the unit cells.

$$\lambda = \frac{2\pi}{q} >> V^{1/3}$$

where V is the volume per unit cell of the cystal.

Example

 $\mathbf{E}_{ext}(\mathbf{r},t)$, $\mathbf{A}_{ext}(\mathbf{r},t)$, $V_{ext}(\mathbf{r},t)$,

Microscopic quantities

Total and induced fields are rapidly varying: they include the contribution from electrons in all regions of the cell.

⇒ Large and irregular fluctuations over the atomic scale.

Example

$$\mathsf{E}_{\mathrm{tot}}(\mathsf{r},t)$$
, $\mathsf{j}_{\mathrm{ind}}(\mathsf{r},t)$, $\rho_{\mathrm{ind}}(\mathsf{r},t)$,...

Measurable quantities

One usually measures quantities that vary on a macroscopic scale. We have to average over distances

- large compared to the cell diameter,
- small compared to the wavelength of the external perturbation.

Procedure

- Average over a unit cell whose origin is at point R;
- Regard R as the continuous coordinate appearing in the Maxwell's equations.

The differences between the *microscopic* fields and the averaged (*macroscopic*) fields are called the <u>crystal local fields</u>.

Procedure

In presence of a periodic medium, every function can be represented by the Fourier series

$$V(\mathbf{r},\omega) = \sum_{\mathbf{q}\mathbf{G}} V(\mathbf{q}+\mathbf{G},\omega) e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}$$

where R is any vector of the Bravais lattice, q is in the first Brillouin zone and G is a reciprocal lattice vector.

It is equivalent to write

$$V(\mathbf{r},\omega) = \sum_{\mathbf{q}} V(\mathbf{r};\mathbf{q},\omega) e^{i\mathbf{q}\cdot\mathbf{r}}$$

where $V(\mathbf{r}; \mathbf{q}, \omega) = \sum_{\mathbf{G}} V(\mathbf{q} + \mathbf{G}, \omega) e^{i \cdot G \mathbf{r}}$ is a periodic function, with respect to the Bravais lattice.

For a monocromatic field with wavevector **q**

Spatial average over a unit cell:

$$V(\mathbf{R}, \omega) = \langle V(\mathbf{r}; \mathbf{q}, \omega) \rangle_{R} e^{i\mathbf{q} \cdot \mathbf{R}}$$

$$= e^{i\mathbf{q} \cdot \mathbf{R}} \frac{1}{\Omega} \int d\mathbf{r} \sum_{\mathbf{G}} V(\mathbf{q} + \mathbf{G}, \omega) e^{i \cdot G\mathbf{r}}$$

$$= e^{i\mathbf{q} \cdot \mathbf{R}} V(\mathbf{q} + \mathbf{0}, \omega)$$

The macroscopic average corresponds to the $\mathbf{G}=\mathbf{0}$ component. Macroscopic quantities have all their \mathbf{G} components equal to 0, except the $\mathbf{G}=\mathbf{0}$ component.

A simple example

From Maxwell's equations

$$v_{\mathrm{ext}}(\mathbf{q} + \mathbf{G}, \omega) = \sum_{\mathbf{G}'} \epsilon_{\mathbf{GG}'}(\mathbf{q}, \omega) v_{\mathrm{tot}}(\mathbf{q} + \mathbf{G}', \omega)$$

 $v_{\rm ext}$ is a macroscopic quantity : $v_{\rm ext}(\mathbf{q} + \mathbf{G}, \omega) = v_{\rm ext}(\mathbf{q}, \omega) \, \delta_{\mathbf{G0}}$ This not the case for $v_{\rm tot}(\mathbf{q} + \mathbf{G}, \omega)$

Macroscopic average of v_{ext}

$$v_{\text{ext}}(\mathbf{q}, \omega) = \sum_{\mathbf{G}'} \epsilon_{\mathbf{0G}'}(\mathbf{q}, \omega) v_{\text{tot}}(\mathbf{q} + \mathbf{G}', \omega)$$

$$\neq \epsilon_{\mathbf{00}}(\mathbf{q}, \omega) v_{\text{tot}}(\mathbf{q}, \omega)$$

The average of the product is not the product of the averages

A simple example

From Maxwell's equations

We have also the relation

$$v_{
m tot}(\mathbf{q}+\mathbf{G},\omega) = \sum_{\mathbf{G}'} \epsilon_{\mathbf{GG}'}^{-1}(\mathbf{q},\omega) v_{
m ext}(\mathbf{q}+\mathbf{G}',\omega)$$

where $\sum_{\mathbf{G}''} \epsilon_{\mathbf{G}\mathbf{G}''}(\mathbf{q},\omega) \epsilon_{\mathbf{G}''\mathbf{G}'}^{-1}(\mathbf{q},\omega) = \delta_{\mathbf{G}\mathbf{G}'}$

Macroscopic average of v_{tot}

$$v_{\mathrm{ext}}$$
 is macroscopic $\Rightarrow v_{\mathrm{tot}}(\mathbf{q} + \mathbf{G}, \omega) = \epsilon_{\mathbf{G0}}^{-1}(\mathbf{q}, \omega) v_{\mathrm{ext}}(\mathbf{q}, \omega)$

$$v_{\mathrm{tot}}(\mathbf{q},\omega) = \epsilon_{\mathbf{00}}^{-1}(\mathbf{q},\omega)v_{\mathrm{ext}}(\mathbf{q},\omega)$$

$$v_{\mathrm{ext}}(\mathbf{q},\omega) = \epsilon_M(\mathbf{q},\omega)v_{\mathrm{tot}}(\mathbf{q},\omega) \Rightarrow \epsilon_M(\mathbf{q},\omega) = \frac{1}{\epsilon_{00}^{-1}(\mathbf{q},\omega)}$$

Summary

From Maxwell's equations

- We have defined microscopic and macroscopic fields
- Microscopic quantities have to be averaged to be compared to experiments
- The dielectric function also has a microscopic expression and its macroscopic counterpart

$$\epsilon_M(\mathbf{q}) = rac{1}{\epsilon_{00}^{-1}(\mathbf{q})}$$

• Absorption \leftrightarrow Im $\{\epsilon_M\}$ and EELS \leftrightarrow -Im $\{\frac{1}{\epsilon_M}\}$

Macroscopic dielectric function

Question

 ε_{00} is **not** the macroscopic dielectric function What is it then ?

Answer

 ε_{00} is the macroscopic dielectric function without crystal local fields.

Microscopic dielectric Function

Question

How can we calculate the microscopic dielectric functions?

Answer

They are determined by the elementary excitations of the medium: interband and intraband transitions, as well as collective excitations.

This issue will be addressed in the next lectures!!!

Outline

- Starting point: Maxwell's equations
- 2 Averaging procedure
- 3 Macroscopic dielectric function in cubic crystals
- 4 Dielectric tensor for non-cubic symmetries
- 5 Summary

Dielectric tensor for cubic symmetries

Macroscopic fields

q defines the direction for the propagation: we assume $\mathbf{q} \parallel x$

Longitudinal fields

Coulomb gauge: $\nabla \cdot A = 0 \Rightarrow$

Poisson equation: $\nabla^2 v_{\rm ext} = 4\pi \rho_{\rm ext}$

Transverse fields

$$\mathsf{E} \perp \mathsf{q}$$

EELS

Electrostatic interaction

Optical spectroscopy

Photons

Summary

Cubic symmetry

Dielectric tensor for cubic symmetries

Properties - Macroscopic quantities

Electric displacement $\mathbf{D}(\mathbf{q},\omega) = \stackrel{\longleftrightarrow}{\epsilon}_{M}(\mathbf{q},\omega)\mathbf{E}^{tot}(\mathbf{q},\omega)$

No symmetry

$$\overleftrightarrow{\epsilon}_{M}(\mathbf{q},\omega) = \begin{pmatrix}
\epsilon^{LL} & \epsilon^{xy} & \epsilon^{xz} \\
\hline
\epsilon^{yx} & \epsilon^{yy} & \epsilon^{yz} \\
\epsilon^{zx} & \epsilon^{zy} & \epsilon^{zz}
\end{pmatrix}$$

Cubic symmetry

$$\stackrel{\longleftrightarrow}{\epsilon}_{M}(\mathbf{q},\omega) = \begin{pmatrix}
\frac{\epsilon^{LL}}{\epsilon^{yx}} & \epsilon^{xy} & \epsilon^{xz} \\
\frac{\epsilon^{yx}}{\epsilon^{zx}} & \epsilon^{yy} & \epsilon^{zz}
\end{pmatrix} \qquad \stackrel{\longleftrightarrow}{\epsilon}_{M}(\mathbf{q},\omega) = \begin{pmatrix}
\frac{\epsilon^{LL}}{M} & 0 \\
0 & \epsilon^{TT}_{M}
\end{pmatrix}$$

Macroscopic quantities only:

A longitudinal pertubation induces a longitudinal response

A transverse pertubation induces a transverse response

Dielectric tensor for cubic symmetries

Longitudinal and transverse components

$$arepsilon_{M}^{LL} = rac{1}{1 + rac{4\pi}{a^{2}}\chi_{
ho
ho}(\mathbf{q},\omega)}$$

$$\varepsilon_{M}^{TT} = \dots$$
 more complicated* ...

* H. Ehrenreich, *Electromagnetic Transport in Solids*, in "The Optical Properties of Solids", Varenna Course XXXIV, edited by J. Tauc (Academic Press, New York, 1966) p 106.

R. Del Sole and E. Fiorino, Phys. Rev. B 29, 4631 (1984).

In the limit $\mathbf{q} \to 0$

From Maxwell's equations

$$\lim_{\mathbf{q} \to 0} \varepsilon_M^{TT} = \varepsilon_M^{LL} = \frac{1}{1 + \frac{4\pi}{a^2} \chi_{\rho\rho}(\mathbf{q}, \omega)}$$

We finally reach a familiar result!

Outline

- Starting point: Maxwell's equations
- 2 Averaging procedure
- 3 Macroscopic dielectric function in cubic crystals
- 4 Dielectric tensor for non-cubic symmetries
- 5 Summary

Non-Cubic symmetries

Properties - Macroscopic quantities

$$\mathbf{D}(\mathbf{q},\omega) = \stackrel{\longleftrightarrow}{\epsilon}_{M}(\mathbf{q},\omega)\mathbf{E}^{tot}(\mathbf{q},\omega)$$

$$\stackrel{\longleftrightarrow}{\epsilon}_{M}(\mathbf{q},\omega) = \begin{pmatrix} \epsilon_{M}^{LL} & \epsilon_{M}^{LT} \\ \hline \epsilon_{M}^{TL} & \epsilon_{M}^{TT} \end{pmatrix}$$

Microscopic and macroscopic quantities

A longitudinal pertubation induces a longitudinal and a transverse response A transverse pertubation induces a longitudinal and a transverse response

Dielectric tensor - General case

$$\stackrel{\longleftrightarrow}{\epsilon}_{M}(\mathbf{q},\omega) = 1 + 4\pi \stackrel{\longleftrightarrow}{lpha}(\mathbf{q},\mathbf{q},\omega) \left[1 + 4\pi \frac{\mathbf{q}}{q} \frac{\frac{\mathbf{q}}{q} \cdot \stackrel{\longleftrightarrow}{lpha}(\mathbf{q},\mathbf{q},\omega)}{1 - 4\pi \stackrel{\longleftrightarrow}{lpha}^{LL}(\mathbf{q},\mathbf{q},\omega)} \right]$$

COMPLICATED! But one can show that the relation

Averages

$$arepsilon_M^{LL} = rac{1}{1 + rac{4\pi}{q^2} \chi_{
ho
ho}(\mathbf{q},\omega)}$$

holds also for the non-cubic symmetries.

R. Del Sole and E. Fiorino, Phys. Rev. B 29 4631 (1984).

Non-cubic symmetries - Principal axis

Principal axis

In the limit $\mathbf{q} \to 0$, one can find 3 axis $\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3$, defining a frame in which ϵ_M is diagonal.

Applying a longitudinal field $\mathbf{E}^{tot}(\mathbf{q},\omega)$, parallel to one of these axis $(\mathbf{q} \parallel \mathbf{n}_i)$ leads to

$$\stackrel{\longleftrightarrow}{\epsilon}_{M}(\mathbf{n}_{i},\omega)$$
: $\mathbf{E}^{tot}(\mathbf{n}_{i},\omega) = \epsilon_{M}^{LL}(\mathbf{n}_{i},\omega)\mathbf{E}^{tot}(\mathbf{n}_{i},\omega)$

Along these directions, a longitudinal perturbation induces a longitudinal response through the usual relation

$$\lim_{\mathbf{q} \to 0} \epsilon_M^{LL}(\mathbf{q}, \omega) = \lim_{\mathbf{q} \to 0} \frac{1}{1 + \frac{4\pi}{a^2} \chi_{\rho\rho}(\mathbf{q}, \omega)}$$

Non-cubic symmetries

Non-cubic symmetries - Principal axis

Longitudinal and transverse dielectric functions

For $\mathbf{q} \to 0$, we have defined three quantities:

$$\epsilon_{M}^{LL}(\mathbf{n}_{1},\omega)$$
, $\epsilon_{M}^{LL}(\mathbf{n}_{2},\omega)$ and $\epsilon_{M}^{LL}(\mathbf{n}_{3},\omega)$

Using the crystal symmetries, they can be used to define also the transverse dielectric functions (depending on the symmetry)

The full dielectric tensor for $q \neq 0$ will not be adressed here!

In conclusion, in the limit $\mathbf{q} \to 0$

From Maxwell's equations

$$\lim_{\mathbf{q}\to 0}\varepsilon_{M}^{TT}=\varepsilon_{M}^{LL}=\frac{1}{1+\frac{4\pi}{a^{2}}\chi_{\rho\rho}(\mathbf{q},\omega)}$$

can also be true for non-cubic symmetries, provided that the correct reference frame is chosen and symmetries are used.

Outline

- Starting point: Maxwell's equations
- 2 Averaging procedure
- 3 Macroscopic dielectric function in cubic crystals
- 4 Dielectric tensor for non-cubic symmetries
- Summary

Summary

- The key quantity is the (*microscopic* and *macroscopic*) dielectric tensor.
- Relation between microscopic and macroscopic fields through averages.
- For cubic crystals, the longitudinal dielectric function defines entirely the optical response in the long wavelength limit.
- The situation is not so simple for non-cubic crystals.

