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From Maxwell's equations Averages Cubic symmetry Non-cubic symmetries Summary

How to study optical processes?

@ The propagation of electromagnetic waves in materials is described by the
Maxwell's equations, supplemented by appropriate constitutive equations.

@ The optical phenomena (reflection, propagation, transmission) can be
quantified by a number of parameters that determine the properties of the
medium at the macroscopic level.

@ Microscopic (semiclassical) models and averaging procedures yield these
macroscopic parameters.

[AV)V"
ETSF

Microscopic-Macroscopic connection Silvana Botti



From Maxwell’s equations Averages Cubic symmetry Non-cubic symmetries Summary

The response of a dielectric material to an external electric field
is characterized by three macroscopic vectors:

o the electric field strength E,

@ the polarization P,

@ the electric displacement D.

The response of a dielectric material to an external magnetic field
is characterized by three macroscopic vectors:
@ the electric field strength H,

@ the magnetization M,

@ the magnetic flux density B.

The macroscopic vectors have microscopic counterparts.
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Maxwell's equations in presence of a medium
V - E(r, t) = 47 pind(r, t) + 47 pext(r, t)
V-B(r,t) =0
10B(r, t)
V x E(r,t) = ———2~
(rt)=-———2
47 1 0E(r, t)
V x B(r,t) = — (jina(r, t) + jext(r, t)) + ———
( ) ) - (Jlnd( ) ) Jext( ) )) c ot )
@ pext, Joxt = external (or free) charges and currents
@ pind, Jind = induced (or bound) charges and currents
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Maxwell's equations in presence of a medium
V- D(I’, t) - 47Tpext(r7 t)
V- -B(r,t) =0
10B(r, t)
V x E(r,t) = ———1+~
(r,1) -
At 19D(r, t)
V x H(r, t) = 7Jext(r, t)+— T |
@ pext, Jext = external charges and currents
o Continuity equation: V - jext + 8pext —0
[A%)Y.E
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From Maxwell's equations Averages Cubic symmetry Non-cubic symmetries Summary
In the linear response regime, for an isotropic medium:
P = x.E
D=E+47nP =¢E
M= ynH
B=H+47M = uH
y
@ electric permittivity X,
@ dielectric function €
@ magnetic susceptibility xm
@ magnetic permeability
(A
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Linear response

Perturbation theory

@ For a sufficiently small perturbation, the response of the system can be
expanded into a Taylor series, with respect to the perturbation.

@ We will consider only the first order (linear) response, proportional to the
perturbation.

@ +# strong field interaction (intense lasers for instance).

@ The linear coefficient linking the response to the perturbation is called a
response function. It is independent of the perturbation and depends only
on the system.

@ We will consider non-magnetic materials.

Density-density response function: dp(r,t) = [dt’ [ dv'x(r,t, ¥, t')exe (¥, t')
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Which quantities are measured?

Absorption coefficient

The general solution of Maxwell’s eqs in vacuum is E(r, t) = Ege/(kr=«t)

Defining the complex refractive index as N' = /e = v + ik, the electric field
inside a medium is the damped wave:

E(X, ) _ E()e < X./\/ _ E e—z/x H,xe—iwt

v and k are the refraction index and the extinction coefficient and they are
related to the dielectric constant as

6111/271{2 € = 2UK

The absorption coefficient « is the inverse distance where the intensity of the
field is reduced by 1/e:
WeE)

ve
(related to the optical skin depth §).
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Reflected beam

Transmitted beam
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Incident beam

Normal incidence reflectivity:

E
R:|FT|2<1
I

R_ I(l—l/)z—i-nzl
(1+v)?+ k2

The knowledge of the optical constant
implies the knowledge of the
reflectivity, which can be compared
with the experiment.
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Which quantities are measured?

Rem: dp(r,w) = [ dr'x(r, ¥, w)vex (', w)

o) = =2 m [ dr [ aax(er )

with Vext(r,w) = —ko 2’

4
oph(w) = C:: Im/drzép rw)
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Which quantities are measured?

Given an external charge density poxs, one can obtained the external potential Vext

k? Vext,ind (K, W) = 47 Pext,ind (K, w) (Poisson equation)

The response of the system is an induced density, defined by the response
function x
pind(ka w) = X(ka w)vext(ka w)

and the total (induced + external) potential acting on the system is

A7
Viot (K, w) = [1 4 ﬁx(k,w)] Vext (K, w) = e_l(k,w)vext(k, w)

v
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Which quantities are measured?

Particle (e7) with velocity v: pext(r, t) = ed(r — vt); poxt(k,w) = ﬁ;é(w— k-v)
The total electric field is Eor(r, t) = —V, Vior(r, t) and the energy lost by the

electron in unit time is dW
? = /drj . Etot

with the current density j = —evd(r — vt). We get

dW e? / dr w
—=—— [ =Im
dt w2 ] k2 e(k,w)

—Im {E(k—lw)} is called the loss function.

EveE
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Macroscopic average

Macroscopic quantities Microscopic quantities
At long wavelength, external fields
are slowly varying over the unit

cells.

Total and induced fields are rapidly
varying: they include the
contribution from electrons in all
)= 2m oo YU/3 regions of the cell.

g = Large and irregular fluctuations
over the atomic scale.

where V' is the volume per unit cell
of the cystal.

Etot(r7 t)r jind(r7 t), Pind(ﬂ t),

EeXt(r7 t)r Aext(r: t)r VeXf(ra t),

EveE
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Macroscopic average

Measurable quantities

One usually measures quantities that vary on a macroscopic scale.
We have to average over distances

@ large compared to the cell diameter,

@ small compared to the wavelength of the external perturbation.
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Macroscopic average

Procedure
@ Average over a unit cell whose origin is at point R;

@ Regard R as the continuous coordinate appearing in the Maxwell's
equations.

The differences between the microscopic fields and the averaged
(macroscopic) fields are called the crystal local fields.
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Macroscopic average

Procedure

In presence of a periodic medium, every function can be represented by the
Fourier series

V(r,w) = Z V(q+ G,w)e/(@+0)r
qG

where R is any vector of the Bravais lattice, q is in the first Brillouin zone and G
is a reciprocal lattice vector.
It is equivalent to write

V(rw)=>_ V(rqw)e""

q

where V(r;q,w) = > ¢ V(q+ G,w)e " is a periodic function, with respect to
the Bravais lattice.

=1>F
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Macroscopic average

For a monocromatic field with wavevector q

Spatial average over a unit cell:
V(R,w) = < V(r;qw)>geR
— .
_ iq-R = i-Gr
_ . Q/drEGJV(HG,w)e

= V(g +0,w)

The macroscopic average corresponds to the G = 0 component.
Macroscopic quantities have all their G components equal to 0, except the
G = 0 component.

v
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Macroscopic average

A simple example

Vext(q + Ga w) = Z 6GG/(q7 w)Vtot(q + G/, w)
G/

Vext IS @ macroscopic quantity : Vext(q + G,w) = vext(q, w) dgo
This not the case for vt (q + G,w)

Vext(q7 w) — Z 6OG’((L w)vtot (q = Glu LU)
G’

# €00(q, W) Viot (q, w)

The average of the product is not the product of the averages

>
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Macroscopic average

A simple example

We have also the relation

Vtot(q + Ga w) = Z E(E(]j/(q7 w)vext(q + G,a w)
G/

where > ¢, ecer (9, w)egre (4, w) = dear

Vext IS MACroscopic = Vot (q + G, w) = ego (4, ) vext (q, w)
VtOt(q) w) = eaol(qa w)VEXt(q7 w)

1

€00 (a,w)

Vext (@ w) = em(q, w)veot (a4, w) = em(q,w) =

v
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Macroscopic average

Summary
@ We have defined microscopic and macroscopic fields
@ Microscopic quantities have to be averaged to be compared to
experiments
@ The dielectric function also has a microscopic expression and its
macroscopic counterpart

1
em(@) = —,—
6ool(q)
e Absorption < Im{ep} and EELS < —Im {%}
[AV)V"
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Macroscopic dielectric function

€po is not the macroscopic dielectric function
What is it then ?

€00 is the macroscopic dielectric function without crystal local fields. I

EveE
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Microscopic dielectric Function

How can we calculate the microscopic dielectric functions? l

They are determined by the elementary excitations of the medium:
interband and intraband transitions, as well as collective excitations.

This issue will be addressed in the next lectures!!!

EveE
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Dielectric tensor for cubic symmetries

Macroscopic fields

q defines the direction for the propagation: we assume q || x

Longitudinal fields

Elq

Transverse fields

Elgq

Coulomb gauge: V-A=0=
Poisson equation: V2ert = AT Pext

.. ) Photons I
Electrostatic interaction

Silvana Botti
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Dielectric tensor for cubic symmetries

Properties - Macroscopic quantities
Electric displacement D(q,w) = € m(q,w)E*(q,w)

No symmetry Cubic symmetry

ek 0
€ M(q7w) - € M(q7w) - 0 ETT
M

Macroscopic quantities only:
A longitudinal pertubation induces a longitudinal response

A transverse pertubation induces a transverse response

Microscopic-Macroscopic connection Silvana Botti
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Dielectric tensor for cubic symmetries

Longitudinal and transverse components

T p—
= 4
1+ ?gpr(qvw)
eff = ... more complicated® ...

@ * H. Ehrenreich, Electromagnetic Transport in Solids, in " The Optical Properties

of Solids”, Varenna Course XXXIV, edited by J. Tauc (Academic Press, New York,
1966) p 106.

(4 R. Del Sole and E. Fiorino, Phys. Rev. B 29, 4631 (1984).
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a—0 B 1+ %pr(%w)

We finally reach a familiar result!
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Non-Cubic symmetries

Properties - Macroscopic quantities

D(q,w) = € m(q,w)EP (q,w)

LL LT

< _

cm@w)= | 5 T
em m

A longitudinal pertubation induces a longitudinal and a transverse response
A transverse pertubation induces a longitudinal and a transverse response

ETSF
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Non-Cubic symmetries
Dielectric tensor - General case
g S
PN Apnd q E (6% (qa qv W)
€ yw)=14+4r & (q,q,w) |1+ 4n p
I\/l(q ) + (q q ) + q1—47raLL(q,q,w)
COMPLICATED! But one can show that the relation
N p—
1+ %pr(% W)
holds also for the non-cubic symmetries.
[d R. Del Sole and E. Fiorino, Phys. Rev. B 29 4631 (1984).
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Non-cubic symmetries - Principal axis

Principal axis

In the limit ¢ — 0, one can find 3 axis ny,ny,n3, defining a frame in which
€n is diagonal.

Applying a longitudinal field E™*(q,w), parallel to one of these axis

(q || n;) leads to

?M(n,-,w) f Et"t(n,-,w) = GILWL(I‘I,',LU)EtOt(I‘I,',w)

Along these directions, a longitudinal perturbation induces a longitudinal
response through the usual relation

1
lim eif(q,w) = lim
@0 90 14+ Fxpp(0, )

W
VA

ETSE
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Non-cubic symmetries - Principal axis

Longitudinal and transverse dielectric functions

For g — 0, we have defined three quantities:

ebb(ny,w), ebb(na,w) and ekk(n3, w)

Using the crystal symmetries, they can be used to define also the
transverse dielectric functions (depending on the symmetry)

The full dielectric tensor for g # 0 will not be adressed here!
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TT LL 1

lim EM —E&Em —
q—0 1+ %Xﬂp(qaw)

can also be true for non-cubic symmetries, provided that the correct
reference frame is chosen and symmetries are used.
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Summary

@ The key quantity is the (microscopic and macroscopic) dielectric
tensor.

@ Relation between microscopic and macroscopic fields through
averages.

@ For cubic crystals, the longitudinal dielectric function defines entirely
the optical response in the long wavelength limit.

@ The situation is not so simple for non-cubic crystals.
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