
Ralf Hambach¹, C. Giorgetti¹, X. Lopez¹, F. Sottile¹, F. Bechstedt², C. Kramberger³, T. Pichler³, N. Hiraoka⁴, Y.Q. Cai⁴, L. Reining¹.

¹ LSI, Ecole Polytechnique, CNRS-CEA/DSM, Palaiseau, France
² IFTO, Friedrich-Schiller-Universität Jena, Germany
³ University of Vienna, Faculty of Physics, Vienna, Austria
⁴ National Synchrotron Radiation Research Center, Hsinchu, Taiwan

20. 11. 2008 — MORE08 Vienna/Austria
What do we want to describe?

Collective excitations

- Coulomb interaction
- Probed by EELS, IXS

Contributions to the spectra

- **Elastic scattering** → crystal structure
- **Inelastic scattering** → collective excitations

Key quantity: \(S(q, \omega) \propto -q^2 \Im\{\epsilon^{-1}(q, \omega)\} \)
How do we calculate ϵ^{-1}?

ab initio calculations

1. ground state calculation gives ϕ_{i}^{KS}
2. independent-particle polarisability χ^0
3. RPA full polarisability $\chi = \chi^0 + \chi^0 v \chi$
4. dielectric function $\epsilon^{-1} = 1 + v \chi$

(ϵ^{-1}: no retardation, no multiple scattering, no Bragg reflection of the incident electron)

Codes:
ABINIT: X. Gonze et al., Comp. Mat. Sci. 25, 478 (2002)
Self-Consistent Hartree Potentials

long range v_0

- difference between EELS and absorption
- vanishes for large q
- vanishes for localised systems

short range \bar{v}

- crystal local field effects in solids
- depolarisation in finite systems
Outlook

dimensionality

1. induced Hartree potentials in low dimensional systems
 ⇒ linear plasmon dispersion in SWCNT + Graphene

2. assembling nanoobjects
 ⇒ role of interaction

inhomogenity

3. crystal local field effects in solids
 ⇒ enhanced anisotropy in Graphite
Single-Wall CNT experiments
EEL spectra

specimen

- oriented SWCNT
- diameter: 2 nm
- nearly isolated

spectroscopy

- angular-res. EELS
- resolution:
 \[\Delta E = 0.2 \text{ eV} \]
 \[\Delta q = 0.05 \text{ Å}^{-1} \]

[C. Kramberger, M. Rümmeli, M. Knupfer, J. Fink, B. Büchner, T. Pichler, IFW Dresden, Germany]
Vertical Aligned SWNT

EEL spectra

π plasmon at 9eV in Graphite

[C. Kramberger, M. Rümmeli, M. Knupfer, J. Fink, B. Büchner, T. Pichler, IFW Dresden, Germany]
[C. Kramberger, M. Rümmeli, M. Knupfer, J. Fink, B. Büchner, T. Pichler, IFW Dresden, Germany]
Vertical Aligned SWNT

- linear π plasmon dispersion
- SWNT \leftrightarrow graphene

[C. Kramberger, M. Rümmeli, M. Knupfer, J. Fink, B. Büchner, T. Pichler, IFW Dresden, Germany]

(a) Experiment

<table>
<thead>
<tr>
<th>q (1/Å)</th>
<th>Energy loss (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0.2</td>
<td>5</td>
</tr>
<tr>
<td>0.4</td>
<td>6</td>
</tr>
<tr>
<td>0.6</td>
<td>7</td>
</tr>
<tr>
<td>0.8</td>
<td>8</td>
</tr>
<tr>
<td>1.0</td>
<td>9</td>
</tr>
</tbody>
</table>

Energy loss versus momentum transfer q (1/Å)
Graphene calculations
\(\frac{1}{\epsilon - 1}\) in isolated nanosystems

IPA: \(\Im \{\frac{1}{\epsilon - 1}\} \propto \Im \{\chi^0\}\)

\(\rightarrow\) sum of interband transitions

RPA: \(\Im \{\frac{1}{\epsilon - 1}\} \propto \Im \{\chi\}\)

Full susceptibility \(\chi = \chi^0(1 - \nu\chi^0)^{-1}\)

contains self-consistent response

\(\rightarrow\) mixing of interband transitions
IPA: independent particles

energy loss in graphene (in-plane, \(q = 0.41 \, \text{Å}^{-1} \))

\[\text{IPA} \]

\[\implies \text{given by } \Im \{ \chi^0 \} : \]
interpretation in terms of band-transitions

R. Hambach
Collective Excitations in Carbon Systems
ipa: independent particles

energy loss in graphene
(in-plane, \(q = 0.41 \, \text{Å}^{-1} \))

- \(\text{Im} \, \epsilon^{-1} \) (arb. u.)

energy loss (eV)

bandstructure

- \(\pi^* \)
- \(\pi \)
- \(\sigma^* \)
- \(\sigma \)

Energie (eV)

-20 -15 -10 -5 0 5
RPA: random phase approximation

energy loss in graphene
(in-plane, \(q = 0.41 \, \text{Å}^{-1} \))

\[\text{IPA}\]
\[\pi-\pi^* \text{ at K} \]
\[\text{RPA} \]

- \(\text{Im} \varepsilon^{-1} \) (arb. u.)
- energy loss (eV)

- given by \(\Im\{\chi\} \): no interpretation by band-transitions
- contributions from K
- mixing of dispersion

R. Hambach
Collective Excitations in Carbon Systems
RPA: random phase approximation

diagram showing energy loss in graphene (in-plane, $q = 0.41 \text{ Å}^{-1}$).

- Im ε^{-1} (arb. u.)

- Energy loss (eV)

- IPA
- $\pi-\pi^*$ at K
- RPA
- without "K"

- Contributions from K
- Mixing of dispersion

Given by $\Im\{\chi\}$:
no interpretation by band-transitions.
Plasmon dispersion

SWNT vs. Graphene

comparison
SWCNT vs. Graphene

(a) Experiment
(b) Calculation

energy loss (eV)
momentum transfer q (1/Å)

VASWCNT

R. Hambach
Collective Excitations in Carbon Systems
SWCNT vs. Graphene

(a) Experiment
(b) Calculation

R. Hambach
Collective Excitations in Carbon Systems
Role of Interactions

(a) Experiment

(b) Calculation

R. Hambach
Collective Excitations in Carbon Systems
Role of Interactions

(a) Experiment

(b) Calculation

- VASWCNT
- bulk-SWCNT
- graphite
- graphene-1L
- graphite

momentum transfer q (1/Å)

energy loss (eV)

R. Hambach
Collective Excitations in Carbon Systems
Role of Interactions

(a) Experiment
(b) Calculation

R. Hambach
Collective Excitations in Carbon Systems
Conclusions

SWCNT ⇔ graphene

- isolated SWCNT ⇔ graphene-1L
- bundled SWCNT ⇔ graphene-2L

graphene

- induced Hartree potentials important
- picture of independent transitions
- mixing of transitions/dispersions → leads to linear dispersion
Single-Wall CNT calculations [Xochitl Lopez]
(3,3) Single Wall Carbon nanotube

Experiment: oriented SWCNT (Diameter 20 Å, nearly isolated)

Calculation: (3,3) SWCNT (Diameter 4 Å, low interaction)
Graphite

calculation: revealing an angular anomaly
explication: in terms of crystal local field effects
experiment: verification by inelastic x-ray scattering
On-axis: continuous

- Inelastic
- Elastic

Energy loss (eV)

$S(q, \omega)$ (1/keV)

$q_1 = 0$

q_3

c-axis

- Energy loss $S(q, \omega)$ in graphite (AB)
- q along c-axis
- Weak dispersion
- and off-axis?

On-axis: continuous

- inelastic
 - $q_1=0$
 - q_3

- elastic

Energy loss $S(q,\omega)$ in graphite (AB)

- q along c-axis
- weak dispersion
- and off-axis?

Off-axis: discontinuous!

Inelastic

$q_1 = 0$

Elastic

$q_1 = 1/8 (~0.37 \ 1/\AA)$

$S(q, \omega) \ (1/\text{keV})$

- 3
- $8/3$
- $7/3$
- 2
- $5/3$
- $4/3$
- 1
- $2/3$
- $1/3$
- 0

Energy loss (eV)

0

1

2

3

4

5
What is the origin?

RPA with full ν

RPA with $\bar{\nu} = 0$

$q_1=1/8$ (with LFE)

q_3

$q_1=1/8$ (without LFE)

$S(q, \omega) (1/\text{keV})$

energy loss (eV)

energy loss (eV)
dielectric function in crystals

- recall: $\epsilon^{-1} = 1 + \nu \chi$, $\chi = \chi^0 + \chi^0 \nu \chi$
- RPA: $\epsilon = 1 - \nu \chi^0$
- ϵ is a matrix: $\epsilon(q, q'; \omega) = (\epsilon_{GG'}(q_r, \omega))$
- energy loss function (EELS, IXS)
 $S(q, \omega) \propto -\Im\{\epsilon^{-1}_{GG}(q_r, \omega)\}$, $q = q_r + G$

⇒ mixing of all transitions in χ^0
⇒ crystal local field effects (LFE)
Two ways of understanding crystal local field effects:

dipole picture
- perturbation → induced dipoles
- induced local fields
- crystal structure important
Physical picture of LFE: Coupled modes

- **Plane wave picture**
- **Perturbing mode** induces **induced mode**

\[e^{i\mathbf{q} \cdot \mathbf{r}} \xrightarrow{\text{sc}} e^{i(\mathbf{q} + \mathbf{G}) \cdot \mathbf{r}} \]

- Bragg-reflection inside the crystal
- Couples modes with same \(q_r \)
- \(\epsilon_{GG'}(q_r) \) describes coupling \(\frac{\delta \varphi^i(G)}{\delta \varphi^t(G')} \)

\[\Rightarrow \text{key for understanding the discontinuity} \]
Simple 2×2 model for LFE

- dominant coupling between the two modes 0 and $G = (0, 0, 2)$

$$
\begin{pmatrix}
\epsilon_{00} & \ldots & \epsilon_{0G} & \ldots \\
\vdots & & \vdots & \\
\epsilon_{G0} & \ldots & \epsilon_{GG} & \ldots \\
\vdots & & \vdots & \\
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
\epsilon_{00} & \epsilon_{0G} \\
\epsilon_{G0} & \epsilon_{GG} \\
\end{pmatrix}
$$

we introduce an effective 2×2-matrix $\tilde{\epsilon}$

- Remember: the loss function was

$$
S(q, \omega) \propto -\Im\{\epsilon_{GG}^{-1}(q_r, \omega)\}
$$
Simple 2×2 model for LFE

inverting the effective 2×2-matrix $\tilde{\epsilon}$

$$\epsilon_{GG}^{-1}(q_r, \omega) = \frac{1}{\tilde{\epsilon}_{GG}} + \frac{\tilde{\epsilon}_{G0} \tilde{\epsilon}_{0G}}{(\tilde{\epsilon}_{GG})^2} \epsilon_{00}^{-1}(q_r, \omega)$$

without LF correction ...

(known as *two plasmon-band model*\(^2\))

1. Recurring excitations

$$\epsilon^{-1}_{GG}(q_r, \omega) = \frac{1}{\tilde{\epsilon}_{GG}} + \frac{\tilde{\epsilon}_{0G} \tilde{\epsilon}_{0G}}{(\tilde{\epsilon}_{GG})^2} \epsilon^{-1}_{00}(q_r, \omega)$$

$$S(q_r + G) = S^{NLF}(q_r + G) + f \cdot S(q_r)$$

coupling of excitations of momentum

q_r 1. Brillouin zone

$q_r + G$ higher Brillouin zone

\Rightarrow reappearance3 of the anisotropic spectra from $q \rightarrow 0$

1. Recurring excitations

\[\epsilon^{-1}_{GG}(q_r, \omega) = \frac{1}{\epsilon_{GG}} + \frac{\epsilon_{0G} \epsilon_{0G}}{\epsilon_{GG}} \epsilon^{-1}_{00}(q_r, \omega) \]

\[S(q_r + G) = S^{\text{NLF}}(q_r + G) + f \cdot S(q_r) \]

coupling of excitations of momentum

\[q_r \quad 1. \text{Brillouin zone} \]

\[q_r + G \quad \text{higher Brillouin zone} \]

\[\Rightarrow \text{reappearance}3 \] of the anisotropic spectra from \(q \to 0 \)

\[^3\text{K. Sturm, W. Schülke, J. R. Schmitz, Phys. Rev. Lett. 68, 228 (1992).} \]
1. Recurring excitations

$$\epsilon^{-1}_{GG}(q_r, \omega) = \frac{1}{\tilde{\epsilon}_{GG}} + \frac{\tilde{\epsilon}_{G0} \tilde{\epsilon}_{0G}}{\left(\tilde{\epsilon}_{GG}\right)^2} \epsilon^{-1}_{00}(q_r, \omega)$$

$$S(q_r + G) = S^{NLF}(q_r + G) + f \cdot S(q_r)$$

coupling of excitations of momentum

q_r 1. Brillouin zone

$q_r + G$ higher Brillouin zone

\Rightarrow reappearance of the anisotropic spectra from $q \rightarrow 0$

2. Strength of coupling

\[\epsilon_{GG}^{-1}(q_r, \omega) = \frac{1}{\tilde{\epsilon}_{GG}} + \frac{\tilde{\epsilon}_{G0}\tilde{\epsilon}_{0G}}{(\tilde{\epsilon}_{GG})^2} \epsilon_{00}^{-1}(q_r, \omega) \]

strength of coupling \(\epsilon_{G0} \) depends on:

- angle \(\angle(q_r, q_r + G) \) and
- structure factor \(\propto \) density \(n_G \)

\(\Rightarrow \) enhances the angular anomaly

\[S(q, \omega) (1/ \text{keV}) \]

\[q_1 = \frac{1}{8} \sim (0.37 \text{ Å}) \]

\[q_3 \]

\[\text{energy loss (eV)} \]

\[2 \quad 4 \quad 6 \quad 8 \quad 10 \]

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \]

\[3 \quad \frac{8}{3} \quad \frac{7}{3} \quad 2 \quad \frac{5}{3} \quad \frac{4}{3} \quad 1 \quad \frac{2}{3} \quad \frac{1}{3} \quad 0 \]

R. Hambach

Collective Excitations in Carbon Systems
Experimental verification
by inelastic x-ray scattering
IXS experiments

N. Hiraoka (Spring8, Taiwan)

- elastic tail removed
- uniform scaling
IXS experiments

- IXS experiments
 - N. Hiraoka (Spring8, Taiwan)
- elastic tail removed
- uniform scaling
Conclusions

graphite

- angular anomaly close to Bragg reflections
- originates from local field effects (coupling to 1. BZ):
 1. spectrum from $q \rightarrow 0$ reappears (direction of q_r)
 2. coupling $\epsilon_{g0}(q_r)$ enforces anisotropy

other systems

- *all* systems with strong local field effects
 e. g. layered systems, 1D structures
- ⇒ caution with loss experiments close to Bragg reflections
Summary

dimensionality

1. strong mixing of transitions (large energy range) in low dimensional systems (→ linear plasmon dispersion)
2. interactions important for small q

inhomogenity

3. discontinuity in $S(q, \omega)$ close to Bragg reflections (result of plasmon bands)
Thank you for your attention!

publications:

Linear Plasmon Dispersion in Single-Wall Carbon Nanotubes and the Collective Excitation Spectrum of Graphene

Anomalous Angular Dependence of the Dynamic Structure Factor near Bragg Reflections: Graphite
[accepted by Phys. Rev. Lett. (2008)]

codes:
ABINIT: X. Gonze et al., Comp. Mat. Sci. 25, 478 (2002)