MBPT vs (TD)DFT

 a fight or a wedding ?
Francesco Sottile

Laboratoire des Solides Irradiés
Ecole Polytechnique, Palaiseau - France
European Theoretical Spectroscopy Facility (ETSF)

Outline

(1) Introduction
(2) BSE and TDDFT up to 2002
(3) The Mapping Theory Kernel

- Theory
- Results

4 Conclusions and Perspectives

Outline

(1) Introduction

(3) The Mapping Theory Kernel

- Theory
- Results

4 Conclusions and Perspectives

A rough Summary

DFT - TDDFT

$\sqrt{ }$ fast (one-particle eqs)
 \times lack of functionals

A rough Summary

DFT - TDDFT
 fast (one-particle eqs)
 \times lack of functionals

MBPT (GW-BSE)

it works!
(physical ingredients)
\times Cumbersome

A rough Summary

DFT - TDDFT

fast (one-particle eqs)
\times lack of functionals

MBPT (GW-BSE)

$\sqrt{ }$ it works!
(physical ingredients)
\times Cumbersome

Fast, efficient and reliable

A possible strategy

Combine the two approaches

A possible strategy

Dyson eq. for G

$$
G=G_{0}+G_{0}\left(\Sigma-V_{x c}\right) G
$$

A possible strategy

Dyson eq. for G

$$
\begin{gathered}
d\left[G=G_{0}+G_{0}\left(\Sigma-V_{x c}\right) G\right] \\
0=G_{0}\left(\Sigma-V_{x c}\right) G
\end{gathered}
$$

$$
d(23) G_{0}(12)\left[\Sigma(23)-V_{x c}(2) \delta(23)\right] G(31)=0
$$

A possible strategy

Dyson eq. for G

$$
\begin{gathered}
d\left[G=G_{0}+G_{0}\left(\Sigma-V_{x c}\right) G\right] \\
0=G_{0}\left(\Sigma-V_{x c}\right) G \\
\int d(23) G_{0}(12)\left[\Sigma(23)-V_{x c}(2) \delta(23)\right] G(31)=0
\end{gathered}
$$

A possible strategy

Dyson eq. for G

$$
\int d(23) G_{0}(12)\left[\Sigma(23)-V_{x c}(2) \delta(23)\right] G(31)=0
$$

A possible strategy

Dyson eq. for G

$$
\int d(23) G_{0}(12)\left[\Sigma(23)-V_{x c}(2) \delta(23)\right] G(31)=0
$$

given a Σ (non-local and dynamic),

Sham-Schlüter equation

A possible strategy

Dyson eq. for G

$$
\int d(23) G_{0}(12)\left[\Sigma(23)-V_{x c}(2) \delta(23)\right] G(31)=0
$$

given a Σ (non-local and dynamic), we obtain a $V_{x c}$ (local and static) which provides the same density
Sham-Schlüter equation

L.J.Sham and M.Schlter, Phys. Rev. Lett. 51, 1888 (1983)

A possible strategy

Dyson eq. for G

$$
\int d(23) G_{0}(12)\left[\Sigma(23)-V_{x c}(2) \delta(23)\right] G(31)=0
$$

given a Σ (non-local and dynamic), we obtain a $V_{x c}$ (local and static) which provides the same density

Sham-Schlüter equation

國 L.J.Sham and M.Schlter, Phys. Rev. Lett. 51, 1888 (1983)

A possible strategy

Sham-Schlüter equation

$$
\int d(23) G_{0}(12)\left[\Sigma(23)-V_{x c}(2) \delta(23)\right] G(31)=0
$$

A possible strategy

Sham-Schlüter equation

$$
\begin{aligned}
& \int d(23) G_{0}(12)\left[\Sigma(23)-V_{x c}(2) \delta(23)\right] G(31)=0 \\
& \int d(23) G_{0}(12)\left[\Sigma_{x}(23)-V_{x c}(2) \delta(23)\right] G_{0}(31)=0
\end{aligned}
$$

Exact-Exchange Approximation

A possible strategy

Sham-Schlüter equation

$$
\begin{aligned}
& \int d(23) G_{0}(12)\left[\Sigma(23)-V_{x c}(2) \delta(23)\right] G(31)=0 \\
& \int d(23) G_{0}(12)\left[\Sigma_{x}(23)-V_{x c}(2) \delta(23)\right] G_{0}(31)=0
\end{aligned}
$$

we obtain $V_{x c}^{\text {EXX }}=G_{0} G_{0} v G_{0}\left(\chi^{0}\right)^{-1}$

A possible strategy

Sham-Schlüter equation

$$
\begin{aligned}
& \int d(23) G_{0}(12)\left[\Sigma(23)-V_{x c}(2) \delta(23)\right] G(31)=0 \\
& \int d(23) G_{0}(12)\left[\Sigma_{x}(23)-V_{x c}(2) \delta(23)\right] G_{0}(31)=0
\end{aligned}
$$

we obtain $V_{x c}^{\mathrm{EXX}}=G_{0} G_{0} v G_{0}\left(\chi^{0}\right)^{-1}$

Exact-Exchange Approximation

A possible strategy

Generalized SSE

$$
G=G_{0}+G_{0}\left(\Sigma-V_{x c}\right) G
$$

(M. Gatti et al, Phys. Rev. Lett. 99, 057401 (2007)

A possible strategy

Generalized SSE

$$
p\left[G=G_{0}+G_{0}\left(\Sigma-V_{x c}\right) G\right]
$$

(in M. Gatti et al, Phys. Rev. Lett. 99, 057401 (2007)

Outline

(1) Introduction
(2) BSE and TDDFT up to 2002
(3) The Mapping Theory Kernel

- Theory
- Results

4 Conclusions and Perspectives

Optical Absorption Spectra of Solids

Semiconductors: Silicon

Optical Absorption Spectra of Solids

Insulators: Argon

Optical Absorption Spectra of Solids

- ALDA bad for any solids!! though quick
- BSE good but cumbersome

Optical Absorption Spectra of Solids

The problem of Abs in solids．Towards a better understanding

（T）Reining et al．Phys．Rev．Lett．88， 66404 （2002） Long－range kernel
（2002）
Polarization density functional．Long－range．
國 Kim and Görling Phys．Rev．Lett．89， 96402 （2002）
Exact－exchange
固 Sottile et al．Phys．Rev．B 68， 205112 （2003）
Long－range and contact exciton．
固 Botti et al．Phys．Rev．B 72， 125203 （2005）
Dynamic long－range component

Optical Absorption Spectra of Solids

The problem of Abs in solids. Towards a better understanding

Reining et al. Phys.Rev.Lett. 88, 66404 (2002) Long-range kernel
(2002)

Polarization density functional. Long-range.
國 Kim and Görling Phys.Rev.Lett. 89, 96402 (2002)
Exact-exchange
固 Sottile et al. Phys.Rev.B 68, 205112 (2003)
Long-range and contact exciton.
E- Botti et al. Phys. Rev. B 72, 125203 (2005)
Dynamic long-range component
Parameters to fit to experiments.

Beyond ALDA approximation

Abs in solids. Insights from MBPT

Parameter-free Ab initio kernels

Sottile et al. Phys.Rev.Lett. 91, 56402 (2003)
Full many-body kernel. Mapping Theory.
目 Marini et al. Phys.Rev.Lett. 91, 256402 (2003)
Full many-body kernel. Perturbation Theory.

$$
f_{x c}=\chi_{0}^{-1} G G W G G \chi_{0}^{-1}
$$

Outline

(2) BSE and TDDFT up to 2002
(3) The Mapping Theory Kernel

- Theory
- Results

Outline

(3) The Mapping Theory Kernel

- Theory
- Results

4 Conclusions and Perspectives

The Mapping Theory

The idea

BSE works $\Rightarrow\left\{\begin{array}{c}\text { we get the ingredients of the BSE } \\ \text { and we put them in TDDFT }\end{array}\right.$

The Mapping Theory

BSE: Excitonic Hamiltonian

4-point

$$
H_{(v c)\left(v^{\prime} c^{\prime}\right)}^{B S E}=\left[\left(E_{c}-E_{v}\right) \delta_{v v^{\prime}} \delta_{c c^{\prime}}+v_{v c}^{v^{\prime} c^{\prime}}-W_{v c}^{v^{\prime} c^{\prime}}\right]
$$

The Mapping Theory

BSE: Excitonic Hamiltonian

$$
H^{\mathrm{BSE}}=\left[\left(E_{c}-E_{v}\right)+\ll v \gg-\ll W \gg\right]
$$

The Mapping Theory

BSE: Excitonic Hamiltonian

$$
H^{\mathrm{BSE}}=\left[\left(\epsilon_{c}+\Delta_{c}^{\mathrm{GW}}-\epsilon_{v}-\Delta_{v}^{\mathrm{GW}}\right)+\ll v \gg-\ll W \gg\right]
$$

The Mapping Theory

BSE: Excitonic Hamiltonian

4-point

$$
H^{\mathrm{BSE}}=\left[\left(\epsilon_{c}+\Delta_{c}^{\mathrm{GW}}-\epsilon_{v}-\Delta_{v}^{\mathrm{GW}}\right)+\ll v \gg-\ll W \gg\right]
$$

TDDFT: Polarizability equation

$$
\chi=\chi_{0}+\chi_{0}\left(v+f_{x c}\right) \chi
$$

The Mapping Theory

BSE: Excitonic Hamiltonian

$$
H^{\mathrm{BSE}}=\left[\left(\epsilon_{c}+\Delta_{c}^{\mathrm{GW}}-\epsilon_{v}-\Delta_{v}^{\mathrm{GW}}\right)+\ll v \gg-\ll W \gg\right]
$$

TDDFT: written in transition space

$$
H^{\mathrm{TDDFT}}=\left[\left(\epsilon_{c}-\epsilon_{v}\right)+\ll v \gg+\ll f_{x c} \gg\right]
$$

The Mapping Theory

BSE: Excitonic Hamiltonian

$$
H^{\mathrm{BSE}}=\left[\left(\epsilon_{c}+\Delta_{c}^{\mathrm{GW}}-\epsilon_{v}-\Delta_{v}^{\mathrm{GW}}\right)+\ll v \gg-\ll W \gg\right.
$$

TDDFT: written in transition space

$$
H^{\text {TDDFT }}=\left[\left(\epsilon_{c}-\epsilon_{v}\right)+\ll v \gg+\ll f_{x c} \gg\right]
$$

The exchange-correlation kernel $f_{x c}$ has to take into account both GW corrections and excitonic effects !!

The Mapping Theory

BSE: Excitonic Hamiltonian

$$
H^{\mathrm{BSE}}=\left[\left(E_{c}-E_{v}\right)+\ll v \gg-\ll W \gg\right]
$$

TDDFT: written in transition space

$$
H^{\text {TDDFT }}=\left[\left(E_{c}-E_{v}\right)+\ll v \gg+\ll f_{x c} \gg\right]
$$

Same starting point for both BSE and TDDFT: the GW band-structure.

The Mapping Theory

BSE: Excitonic Hamiltonian

$$
H^{\mathrm{BSE}}=\left[\left(E_{c}-E_{v}\right)+\ll v \gg-\ll W \gg\right]
$$

TDDFT: written in transition space

$$
H^{\mathrm{TDDFT}}=\left[\left(E_{c}-E_{v}\right)+\ll v \gg+\ll f_{x c} \gg\right]
$$

We concentrate, then, only on the excitonic effects.

The Mapping Theory

BSE: Excitonic Hamiltonian

$$
H^{\mathrm{BSE}}=\left[\left(E_{c}-E_{v}\right)+\ll v \gg-\ll W \gg\right]
$$

TDDFT: written in transition space

$$
H^{\mathrm{TDDFT}}=\left[\left(E_{c}-E_{v}\right)+\ll v \gg-\ll W \gg\right]
$$

We substitute the 'unknown' $\ll f_{x c} \gg$ with $\ll W \gg$.

The Mapping Theory

The idea
We want to use $\ll W \gg$, but in a 2-point equation.

The Mapping Theory

The idea
We want to use $\ll W \gg$, but in a 2-point equation.

$$
\chi(12, \omega)=\chi_{0}(12, \omega)+\chi_{0}(13, \omega)\left(v(34)+f_{x c}(34, \omega)\right) \chi(42, \omega)
$$

The Mapping Theory

$$
\begin{gathered}
\chi=\chi_{0}+\chi_{0}\left(v+f_{x c}\right) \chi \\
\chi=\left(1-\chi_{0} v-\chi_{0} f_{x c}\right)^{-1} \chi_{0}
\end{gathered}
$$

Let's define an invertible matrix $X(12, \omega)=\sum_{v c} \phi_{v}(1) \phi_{c}(1) g_{v c}(2, \omega)$

The Mapping Theory

$$
\begin{gathered}
\chi=\chi_{0}+\chi_{0}\left(v+f_{x c}\right) \chi \\
\chi=\left(1-\chi_{0} v-\chi_{0} f_{x c}\right)^{-1} \chi_{0}
\end{gathered}
$$

Let's define an invertible matrix $X(12, \omega)=\sum_{v c} \phi_{v}(1) \phi_{c}(1) g_{v c}(2, \omega)$

The Mapping Theory

$$
\begin{gathered}
\chi=\chi_{0}+\chi_{0}\left(v+f_{x c}\right) \chi \\
\chi=\left(1-\chi_{0} v-\chi_{0} f_{x c}\right)^{-1} \chi_{0}
\end{gathered}
$$

Let's define an invertible matrix $X(12, \omega)=\sum_{v c} \phi_{v}(1) \phi_{c}(1) g_{v c}(2, \omega)$

The Mapping Theory

$$
\begin{gathered}
\chi=\chi_{0}+\chi_{0}\left(v+f_{x c}\right) \chi \\
\chi=\left(1-\chi_{0} v-\chi_{0} f_{x c}\right)^{-1} \chi_{0}
\end{gathered}
$$

Let's define an invertible matrix $X(12, \omega)=\sum_{v c} \phi_{v}(1) \phi_{c}(1) g_{v c}(2, \omega)$

$$
\chi=X X^{-1}\left(1-\chi_{0} v-\chi_{0} X^{-1} X f_{x c}\right)^{-1} \chi_{0}
$$

The Mapping Theory

$$
\begin{gathered}
\chi=\chi_{0}+\chi_{0}\left(v+f_{x c}\right) \chi \\
\chi=\left(1-\chi_{0} v-\chi_{0} f_{x c}\right)^{-1} \chi_{0}
\end{gathered}
$$

Let's define an invertible matrix $X(12, \omega)=\sum_{v c} \phi_{v}(1) \phi_{c}(1) g_{v c}(2, \omega)$

$$
\begin{aligned}
& \chi=X X^{-1}\left(1-\chi_{0} v-\chi_{0} X^{-1} X f_{x c}\right)^{-1} \chi_{0} \\
& \chi=X\left(X-\chi_{0} v X-\chi_{0} X^{-1} X f_{x c} X\right)^{-1} \chi_{0}
\end{aligned}
$$

The Mapping Theory

$$
\begin{gathered}
\chi=\chi_{0}+\chi_{0}\left(v+f_{x c}\right) \chi \\
\chi=\left(1-\chi_{0} v-\chi_{0} f_{x c}\right)^{-1} \chi_{0}
\end{gathered}
$$

Let's define an invertible matrix $X(12, \omega)=\sum_{v c} \phi_{v}(1) \phi_{c}(1) g_{v c}(2, \omega)$

$$
\begin{gathered}
\chi=X X^{-1}\left(1-\chi_{0} v-\chi_{0} X^{-1} X f_{x c}\right)^{-1} \chi_{0} \\
\chi=X\left(X-\chi_{0} v X-\chi_{0} X^{-1} X f_{x c} X\right)^{-1} \chi_{0} \\
\chi=X\left(X-\chi_{0} v X-\chi_{0} X^{-1} T\right)^{-1} \chi_{0}
\end{gathered}
$$

The Mapping Theory

$$
\chi=X\left(X-\chi_{0} v X-\chi_{0} X^{-1} T\right)^{-1} \chi_{0}
$$

$$
T(12, \omega)=X(13, \omega) f_{x c}(34, \omega) X(42, \omega)=
$$

The Mapping Theory

$$
\chi=X\left(X-\chi_{0} v X-\chi_{0} X^{-1} T\right)^{-1} \chi_{0}
$$

$T(12, \omega)=X(13, \omega) f_{x c}(34, \omega) X(42, \omega)=$

The Mapping Theory

$$
\chi=X\left(X-\chi_{0} v X-\chi_{0} X^{-1} T\right)^{-1} \chi_{0}
$$

$T(12, \omega)=X(13, \omega) f_{x c}(34, \omega) X(42, \omega)=$

$$
\sum_{v c} \int d(34) g_{v c}(1, \omega) \phi_{v}(3) \phi_{c}(3)
$$

The Mapping Theory

$$
\chi=X\left(X-\chi_{0} v X-\chi_{0} X^{-1} T\right)^{-1} \chi_{0}
$$

$$
\begin{aligned}
& T(12, \omega)=X(13, \omega) f_{x c}(34, \omega) X(42, \omega)= \\
& \sum_{v c} \int d(34) g_{v c}(1, \omega) \phi_{v}(3) \phi_{c}(3) f_{x c}(34, \omega)
\end{aligned}
$$

The Mapping Theory

$$
\chi=X\left(X-\chi_{0} v X-\chi_{0} X^{-1} T\right)^{-1} \chi_{0}
$$

$$
\begin{aligned}
& T(12, \omega)=X(13, \omega) f_{x c}(34, \omega) X(42, \omega)= \\
& \sum_{\substack{v c \\
v^{\prime} c^{\prime}}} \int d(34) g_{v c}(1, \omega) \phi_{v}(3) \phi_{c}(3) f_{x c}(34, \omega) \phi_{v^{\prime}}(4) \phi_{c^{\prime}}(4) g_{v^{\prime} c^{\prime}}(2, \omega)
\end{aligned}
$$

The Mapping Theory

$$
\chi=X\left(X-\chi_{0} v X-\chi_{0} X^{-1} T\right)^{-1} \chi_{0}
$$

$$
\begin{aligned}
& T(12, \omega)=X(13, \omega) f_{x c}(34, \omega) X(42, \omega)= \\
& \sum_{\substack{v c \\
v^{\prime} c^{\prime}}} \int d(34) g_{v c}(1, \omega) \phi_{v}(3) \phi_{c}(3) f_{x c}(34, \omega) \phi_{v^{\prime}}(4) \phi_{c^{\prime}}(4) g_{v^{\prime} c^{\prime}}(2, \omega)
\end{aligned}
$$

The Mapping Theory

$$
\chi=X\left(X-\chi_{0} v X-\chi_{0} X^{-1} T\right)^{-1} \chi_{0}
$$

$$
T(12, \omega)=X(13, \omega) f_{x c}(34, \omega) X(42, \omega)=
$$

$$
\sum_{\substack{v c \\ v^{\prime} c^{\prime}}} \int d(34) g_{v c}(1, \omega) \phi_{v}(3) \phi_{c}(3) f_{x c}(34, \omega) \phi_{v^{\prime}}(4) \phi_{c^{\prime}}(4) g_{v^{\prime} c^{\prime}}(2, \omega)
$$

$$
T(12, \omega)=\sum_{\substack{v c \\ v^{\prime} c^{\prime}}} g_{v c}(1, \omega) \ll f_{x c} \gg g_{v^{\prime} c^{\prime}}(2, \omega)
$$

$$
T_{\mathrm{BSE}}(12, \omega)=\sum g_{v c}(1, \omega) \ll W \gg g_{v^{\prime} c^{\prime}}(2, \omega)
$$

The Mapping Theory

$$
\chi=X\left(X-\chi_{0} v X-\chi_{0} X^{-1} T\right)^{-1} \chi_{0}
$$

$$
\begin{aligned}
& T(12, \omega)=X(13, \omega) f_{x c}(34, \omega) X(42, \omega)= \\
& \sum_{\substack{v^{\prime} c \\
v^{\prime}}} \int d(34) g_{v c}(1, \omega) \phi_{v}(3) \phi_{c}(3) f_{x c}(34, \omega) \phi_{v^{\prime}}(4) \phi_{c^{\prime}}(4) g_{v^{\prime} c^{\prime}}(2, \omega) \\
& T(12, \omega)=\sum_{\substack{v c \\
v^{\prime} c^{\prime}}} g_{v c}(1, \omega) \ll f_{x c} \gg g_{v^{\prime} c^{\prime}}(2, \omega) \\
& T_{\mathrm{BSE}}(12, \omega)=\sum_{\substack{v c^{\prime} \\
v^{\prime} c^{\prime}}} g_{v c}(1, \omega) \ll W \gg g_{v^{\prime} c^{\prime}}(2, \omega)
\end{aligned}
$$

The Mapping Theory

TDDFT 2-point equation containing $\ll W$

$$
\chi=X\left(X-\chi_{0} \vee X-\chi_{0} X^{-1} T\right)^{-1} \chi_{0}
$$

What about the application ??

The Mapping Theory

TDDFT 2-point equation containing $\ll W$

$$
\chi=X\left(X-\chi_{0} v X-\chi_{0} X^{-1} T\right)^{-1} \chi_{0}
$$

$$
T_{\mathrm{BSE}}(12, \omega)=\sum_{\substack{v c \\ v^{\prime} c^{\prime}}} g_{v c}(1, \omega) \ll W \gg g_{v^{\prime} c^{\prime}}(2, \omega)
$$

The Mapping Theory

TDDFT 2-point equation containing $\ll W$

$$
\begin{gathered}
\chi=X\left(X-\chi_{0} v X-\chi_{0} X^{-1} T\right)^{-1} \chi_{0} \\
T_{\mathrm{BSE}}(12, \omega)=\sum_{\substack{v c \\
v^{\prime} c^{\prime}}} g_{v c}(1, \omega) \ll W \gg g_{v^{\prime} c^{\prime}}(2, \omega) \\
X(12, \omega)=\sum_{v c} \phi_{v}(1) \phi_{c}(1) g_{v c}(2, \omega)
\end{gathered}
$$

What about the application ??

Outline

(3) The Mapping Theory Kernel - Theory

- Results

The Mapping Theory: Results

Absorption of Silicon

The Mapping Theory: Results

Absorption of Silicon

The Mapping Theory: Results

Absorption of Silicon

F.Sottile et al. Phys.Rev.Lett 91, 56402 (2003)

The Mapping Theory: Results

Absorption of Silicon Carbide and Diamond

last week preliminary results :-)

The Mapping Theory: Results

Absorption of Argon

The Mapping Theory: Results

Absorption of Argon

F. Fottile, M.Marsili et al., PRB(R) 76, 161103 (2007)

The Mapping Theory: Results

Tested also on absorption of SiO_{2}, DNA bases, Ge-nanowires, RAS of diamond surface, and EELS of LiF.

Darini et al. Phys.Rev.Lett. 91, 256402 (2003).
R Bruno et al. Phys.Rev.B 72 153310, (2005).
國 Palummo et al. Phys.Rev.Lett. 94087404 (2005).
困 Varsano et al. J.Phys.Chem.B 1107129 (2006).

Outline

(4) Conclusions and Perspectives

Conclusions

TDDFT is the method of choice
$\sqrt{ }$ Absorption spectra of simple molecules
Electron energy loss spectra
Inelastic X-ray scattering spectroscopy
Absorption of Solids (BSE-like scaling)

Conclusions

DFT-MBPT

\Rightarrow Mapping Theory
 \Rightarrow OEP (EXX, etc.)

Conclusions

DFT-MBPT

\Rightarrow Mapping Theory
\Rightarrow OEP (EXX, etc.)

Functionals [ρ]
\Rightarrow Meta-GGA
\Rightarrow Orbital dependency

Conclusions

DFT-MBPT

\Rightarrow Mapping Theory
\Rightarrow OEP (EXX, etc.)

Functionals $[\rho]$
\Rightarrow Meta-GGA
\Rightarrow Orbital dependency

Extensions of TDDFT
\Rightarrow TD-CDFT
\Rightarrow Deformation Theory

Conclusions

DFT-MBPT
\Rightarrow Mapping Theory
\Rightarrow OEP (EXX, etc.)

Functionals [ρ]
\Rightarrow Meta-GGA
\Rightarrow Orbital dependency

Extensions of TDDFT
\Rightarrow TD-CDFT
\Rightarrow Deformation Theory

Today challenges
\Rightarrow Open shells systems
\Rightarrow Charge transfer excitations
\Rightarrow Efficient calculations of Solids

