Local field effects for optical linear and nonlinear properties of surfaces

Nicolas Tancogne-Dejean, Christine Giorgetti and Valérie Véniard

Laboratoire des Solides Irradiés and ETSF France
Ecole Polytechnique, CNRS and CEA
91128 Palaiseau, France
Response to a perturbation

Linear optics

The response depends linearly on the electric field

\[P^a = \chi^{(1)}_{ab} E^b \]

Nonlinear optics

for higher light intensities, higher order terms can be important

\[P^a = \chi^{(1)}_{ab} E^b + \chi^{(2)}_{abc} E^b E^c + \chi^{(3)}_{abcd} E^b E^c E^d + \ldots \]
Second Harmonic Generation

Amplitude

\[\chi^{(3)} E^3 \ll \chi^{(2)} E^2 \ll \chi^{(1)} E \]

but...

Symmetry

Centro-symmetric materials

\[\chi^{(2)} = 0 \]

in the dipole approximation (Long wavelength limit)
What can we learn from linear optics?
(in condensed matter)

- Absorption and refraction
- Birefringence
- Luminescence
- Photoconductivity
- Photocatalysis ...
What can we learn from Second Harmonic Generation? (in condensed matter)

• Probe for materials:
 Sensitivity to local symmetries and selection rules for electronic transitions in $\chi^{(2)}$
 \Rightarrow gives access to states with different symmetries, compared to linear optics

• Development and characterisation of new materials

New optical devices

• Surfaces
 • Thin films
 • Interfaces
 • Nanowires
 • defects
What about surfaces?

How optical properties of materials are modified by the presence of a surface?

- Nano-scaled objects
- Photo-catalysis
- Molecules deposited on a surface
• Introduction: linear and nonlinear optics in solids
• How do we compute an optical spectrum for a solid?
• Response of the surface
Starting point: band theory

Independent particle approximation:
All the electrons make independent transitions (IPA)

Fermi golden rule
Starting point: band theory

Linear response

Independent Particle Approximation

\[\varepsilon_{ab}(\omega) = \delta_{ab} + \frac{8\pi e^2}{\hbar m^2 \omega^2 V} \sum_{nm} \int d\vec{k} f_{nm}(\vec{k}) \left(\frac{p^a_{nm}(\vec{k}) p^b_{mn}(\vec{k})}{E_m - E_n - \omega - i\eta} \right) \]

(Reciprocal space)
Starting point: band theory

Second-order response

Independent Particle Approximation

\[
\chi_{abc}^{(2)}(-2\omega, \omega, \omega) = \frac{-ie^3}{\hbar^2 m^3 \omega^3 V} \sum_{nml} \int d\vec{k} \frac{1}{E_m - E_n - 2\omega - 2i\eta} \\
\times \left[f_{nl}(\vec{k}) \frac{p_{nm}^a(\vec{k}) \left\{ p_{ml}^b(\vec{k}) p_{ln}^c(\vec{k}) \right\}}{E_l - E_n - \omega - i\eta} + f_{ml}(\vec{k}) \frac{p_{nm}^a(\vec{k}) \left\{ p_{ml}^b(\vec{k}) p_{ln}^c(\vec{k}) \right\}}{E_m - E_l - \omega - i\eta} \right]
\]

(Reciprocal space)
Additional effects
Additional effects

• Screening

GW approximation: *Hedin’s equations (1965)*

⇒ Shift of the conduction bands

⇒ Opening of the gap
Additional effects

- Screening
- Excitonic effects

Bethe Salpeter Equation
(2-particles)

or

Time-Dependent Density-Functional Theory (TDDFT)
Additional effects

- Screening
- Excitonic effects

- Local fields (macroscopic response)

 Expected to be very important for surfaces
Additional effects: local fields (1)

From Microscopic to Macroscopic polarization …

Perturbation = external macroscopic field

Induces a microscopic response (polarisation of the atoms)

Perturbation = external macroscopic + induced microscopic

has to be taken into account in a self consistent way
Additional effects : local fields (2)

From Microscopic to Macroscopic polarization …

How to obtain a macroscopic measurable quantity?

- Large compared to the cell dimension
- Small compared to the wavelength of the external perturbation

average over distances

Local fields = difference between micro and macro

Macroscopic response
Macroscopic response (local fields)

Linear and Second-order Response Function in the framework of TDDFT

Dyson equation:

1st order

\[\left[1 - \chi_0^{(1)} \nu \right] \chi^{(1)} = \chi_0^{(1)} \]

2nd order

\[[1 - \chi_0^{(1)}(2\omega)\nu] \chi^{(2)}(2\omega, \omega) = \chi_0^{(2)}(2\omega, \omega) [1 + \nu \chi^{(1)}(\omega)]^2 \]

\(\chi_0^{(1)}, \chi_0^{(2)} \) Independent particle response functions

DP code: \(\chi^{(1)} \)

linear response

2light \(\chi^{(2)} \)

Second harmonic generation
Macroscopic response (local fields)

Crystal \Rightarrow 3D periodicity \Rightarrow reciprocal space (plane waves)

1st order

$$
\left[1 - \chi_0^{(1)} v \right] \chi^{(1)} = \chi_0^{(1)}
$$

$$
\sum_{G''} \left[\delta_{G,G''} - \chi_0^{(1)} \left(\vec{q} + \vec{G}, \vec{q} + \vec{G}'', \omega \right) v(\vec{q} + \vec{G}'') \right] \chi^{(1)}(\vec{q} + \vec{G}'', \vec{q} + \vec{G}', \omega) = \\
\chi_0^{(1)}(\vec{q} + \vec{G}, \vec{q} + \vec{G}', \omega)
$$

$$
\epsilon_M(\vec{q}) = \frac{1}{1 + v(\vec{q}) \chi^{(1)}(\vec{q}, \vec{q})}
$$
• Introduction: linear and nonlinear optics in solids
• How do we get a spectrum for a solid?
• Response of the surface
Crystalline Solid

3D periodicity

Unit Cell

Surface

2D periodicity

Super-cell
(atoms + vacuum)

Si(001) 2x1

Requirement: Results should not depend on the amount of vacuum introduced in the cell
Effect of the vacuum on the spectra

Silicon surface (001)2×1

Void 1

Void 2

Void 3

Vacuum
Optical Response of Surfaces - IPA

\[\varepsilon_{ab}(\omega) = \delta_{ab} + \frac{8\pi e^2}{\hbar m^2 \omega^2 V} \sum_{nm} \int d\vec{k} f_{nm}(\vec{k}) \frac{p_{nm}(\vec{k}) p_{mn}(\vec{k})}{E_m - E_n - \omega - i\eta} \]

V: volume of the super-cell

In-plane

Out-of-plane
Optical Response of Surfaces – local fields

In-plane

Including local field effects (LFE)
Optical Response of Surfaces – local fields

Out-of-plane

- Position of the peak
- Change of scale

- Strong LFE
- Position of the peak depends on the size of the vacuum
Optical Response of Surfaces – local fields

Out-of-plane

- Strong LFE
- Position of the peak depends on the size of the vacuum
Optical properties in Real Space

\[\chi^{(0)}(\mathbf{r}, \mathbf{r}', \omega) = 2 \sum_{i,j} (f_i - f_j) \frac{\phi_i(\mathbf{r}) \phi_j^*(\mathbf{r}) \phi_i^*(\mathbf{r}') \phi_j(\mathbf{r}')}{{E_i - E_j - \omega - i\eta}} \]

Independent Particles (IPA)

\[\epsilon(\mathbf{r}, \mathbf{r}') = \delta(\mathbf{r}, \mathbf{r}') - \int d\mathbf{r}'' V(\mathbf{r}, \mathbf{r}'') \chi_0(\mathbf{r}'', \mathbf{r}') \]

(No Local Field Effects)

Local Field Effects included

\[\chi(\mathbf{r}, \mathbf{r}') = \chi^{(0)}(\mathbf{r}, \mathbf{r}') + \int \int \chi^{(0)}(\mathbf{r}, \mathbf{r}_1) v(\mathbf{r}_1 - \mathbf{r}_2) \chi(\mathbf{r}_2, \mathbf{r}') + \int d\mathbf{r}'' V(\mathbf{r}, \mathbf{r}'') \chi(\mathbf{r}'', \mathbf{r}') \]

\[\epsilon^{-1}(\mathbf{r}, \mathbf{r}') = \delta(\mathbf{r}, \mathbf{r}') + \int d\mathbf{r}'' V(\mathbf{r}, \mathbf{r}'') \chi(\mathbf{r}'', \mathbf{r}') \]

\[\epsilon_M \text{ from Macroscopic average} \]

Tiago, et al. PRB 73, 205334 (2006)
The system is periodic in x and y-directions.

We define a mixed space

\[(x, y, z) \rightarrow (q_x + G_x, q_y + G_y, z) \rightarrow (q_{//} + G_{//}, z)\]

Approximation: we neglect in-plane local field effects

\[G_{//} = 0 \quad (x, y, z) \rightarrow (q_{//}, z)\]
Local Field effects from real space

Out-of-plane IPA/LFE comparison
Local Field effects from real space

Question: Why is the real space approach different from the reciprocal space approach?

Answer: The density is localized on the material.

Real space: Contribution to the integrals in the Dyson equation comes only from the region where the density spreads (independent of the vacuum size).

Reciprocal space: Integrals are replaced by sums over G-vectors, defined according to the size of the super-cell (depends on the vacuum size).
Alternative approach in reciprocal space

One must solve the Dyson equation with:

- The subset of G-vectors corresponding to the matter

Super-cell: $G_n^{cell} = \frac{2\pi}{L_{cell}} n$

Material slab: $G_n^{slab} = \frac{2\pi}{L_{slab}} n$

- Normalize to the volume of matter

No approximation for the in-plane Local Fields
Selected G approach

![Graph showing selected G approach]
Results: Linear Spectrum

\[\text{Im}\{\epsilon(\omega)\} \]

- \(\epsilon_{\parallel} \)
- \(\epsilon_{\perp} \)
- Bulk
Results: Second harmonic generation
Real-space calculation

Reciprocal space: based on the super-cell approach (takes advantage of the 2-D periodicity of the system)

Linear spectroscopy:
- In-plane local fields are negligible (Reflectance anisotropy spectroscopy “RAS”)
- Out-of-plane local fields are important (non-grazing light incidence)

SHG for surfaces: all components seem to be affected (work in progress)
Acknowledgment

Theoretical spectroscopy group
Laboratoire des Solides Irradiés, Ecole Polytechnique

Thank you for your attention
Macroscopic response (local fields)

Dyson equation for the density response function

1st order

\[
\left(1 - \chi^{(1)}_0 (v + f_{xc})\right) \chi^{(1)}_{\rho\rho} = \chi^{(1)}_0
\]

\[
f_{xc} = \frac{\partial V_{xc}}{\partial \rho}
\]

2nd order

\[
\left[1 - \chi^{(1)}_0 (2\omega) f_{xc}(2\omega)\right] \chi^{(2)}_{\rho\rho}(2\omega,\omega) = \chi^{(2)}_0 (2\omega,\omega) \left[1 + f_{xc}(\omega) \chi^{(1)}_{\rho\rho}(\omega)\right]^2
\]

\[
+ \chi^{(1)}_0 (\omega) g_{xc}(\omega) \chi^{(1)}_{\rho\rho}(\omega) \chi^{(1)}_{\rho\rho}(\omega)
\]

New kernel

\[
g_{xc} = \frac{\partial^2 V_{xc}}{\partial \rho \partial \rho}
\]

DP code
Roadmap for computing ε_M

- DP code: $\chi^{(0)}_{G,G'}(q, \omega)$
- Real Space code: $\chi^{(0)}(z, z'; q_\parallel)$
- 1D Dyson-like equation: $\chi(z, z'; q_\parallel)$
- Macroscopic Average: $\varepsilon_{IPA}^M(q, \omega)$, $\varepsilon_{RPA}^M(q, \omega)$