
626

N
N

T
:

2
0

2
1

IP
P

A
X

1
3

1

Second Harmonic Generation from

silicon surfaces functionalized with DNA

nucleobases: an ab initio description
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Maı̂tresse de conférences, LCT, UPMC Examinateur

Christine Giorgetti
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Chapter 1

Introduction

1.1 Biofunctionalised surfaces

The chemistry of living systems exhibits an extremely rich phenomenology. At every mo-
ment, inside each living system, even the simplest, a huge number of reactions happen,
resulting in the simultaneous synthesis of complex macromolecules. Genetic engineering
techniques allow nowadays to insert specific genic sequences inside of target cells, allowing
to exploit in vitro farmed bacteria as microscopic factories for the production of drug and
proteins of commercial interest (see e.g. [1]). At the same times, during last 70 years, the
microelectronics industry has made giant strides in the miniaturisation of electronic com-
ponents. Nowadays, the transistors inside mass-produced microprocessors have reached
the size of ∼ 5 nm (see e.g. [2],[3]), and a great effort is made in order to go beyond this
limit, experimenting novel materials and manufacturing techniques (see e.g. [4] and [5]
for a review of 2D-materials based transistors). The possibility to integrate the chemistry
of living systems inside microelectronic components open the way to a wide range of ex-
citing applications, from the possibility to design miniaturised bio-sensors (with possible
applications to DNA and RNA sequencing1 (see e.g. Ref.s [6] and [7], see also Fig. (1.1))
Also, integration of biomolecules with well-known semiconductors technology, could allow
to manufacture devices with novel properties. For exemple DNA has been proposed as
base for design of new-generation memories [8]. DNA, as it is well known, is a molecule
which encodes in itself all the information necessary to make a perfect copy of a given
living being. Nucleic-acid-based memories, may in principle exhibit unreached retention
time, information density, and low energy consumption properties (for a comparison with
memories manufactured with current technology, see Tab. (1.1)) By the way, in order
to achieve the ambitious goal of integrating microelectronics technology with biochem-

1In the moment this thesis is being written, the second year of COVID-19 pandemic is coming at the end
and words like ”RT-PCR”, ”antigenes”, and ”antibodies”, are now part of the every-day-life vocabulary.
The need for developing novel effective and cost-contained methods for detection of specific genetic sequences
is just self-explanatory

9
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DNA array sensors

(a) (b)

(c)

Figure 1.1: Working principle of a DNA-array sensor (reproduced from Ref. [7]). This
technology allows the manufacturing of devices with capability to detect in a given sample
the presence of specific genic sequences. As shown in (a), on the surface of the sensor,
a single-strained filament of DNA (called probe) is adsorbed. After that, the sensor is
exposed to the sample to analyse. If the sample contain the genic sequence compatible with
the probe filament, the two filaments will hybridise (left column of panel (a)), otherwise,
after the washing step, the sensor will just contain the unhybridised probe filament (right
column of panel (a)). In this specific design, the analyte is labelled with the alkaline-
phosphatase enzyme (see panel (b)). After the hybridisation and washing phase, a layer
of para-aminophenylphosphate is applied on the sensor surface. This induces a redox
reaction in correspondence of the sites where the labelled analyte hybridised with the probe,
generating a current flow into the electrodes, and allowing the detection of the hybridisation
sites. In panel (c), a microphotograph of the sensor manufactured by Schienle et. al in
Ref. [7] is reported (the picture covers a area of 6.4× 4mm2 )
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Nucleic Acid memories: comparison with current
technologies

Metrics Hard disk Flash memory DRAM cellular DNA

Read/Write latency 3÷ 5 ms per bit 100 µs/bit < 10 ns/bit < 100 µs/bit

Retention > 10 years ∼ 10 years ∼ 64 ms > 100 years

ON power 0.04 W/GB 0.01÷ 0.04 W/GB 0.4 W/GB < 10−10 W/GB

Volumetric density 1013 bit cm−3 1016 bit cm−3 1013 bit cm−3 1019 bit cm−3

Table 1.1: Theoretical limits of DNA-based memories compared with characteristic quan-
tities of memories based on current technologies (adapted from Ref. [8]) . As we can see,
nucleic acid memories may in principle outperform current ones on retention time, energy
consumption, and information density.

istry, a deep understanding of the adsorption of biomolecules on semiconductors surfaces
is mandatory. This thesis aim to study, by mean of ab initio methods, how the optical
response of silicon surfaces is influenced by the adsorption of small molecules of biological
interests, taking nucleobasis (a particular class of biomolecules formed by the fondamental
constituents of DNA) as case study. The study of the optical response of this kind of
systems is an interesting and useful subject: in no matter which manufacturing process
of functionalised surfaces, one needs for reliable techniques to characterise the adhesion
of the molecules on the substrate. Optical spectroscopy technique constitute a very well
suited tool for this task, because they allow one to perform such investigation in real time
and in a non-destructive way (also, they are generally cheaper compared to other surface
characterisation techniques). A special focus in the present work will be devoted to the
study of the second-order optical response, due to its unique surface sensitivity.

1.2 Second Harmonic Generation (SHG)

Optical properties of a material, depend on the way its electrons react to an external
electromagnetic field. When the material is perturbed, the charge carriers rearrange, giving
arise to induced charge and current densities, which can be represented via the polarisation
field P. If the applied perturbation is not too intense, then the relationship between P and
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the electric field E (including the external and the induced field) will be linear:

P =
↔
χ
(1)

E (1.1)

The quantity
↔
χ
(1)

is a rank 2 tensor, and it takes the name of first order susceptibility.
The relation (1.1) implies that if the external field is monochromatic of frequency ω, so the
polarisation P (and as a consequence also the emitted field) will be. By the way, the more
the external perturbation is intense, the more deviations from law (1.1) will be observed.
In order to describe these deviations, we can expand P as a Taylor series of the electric
field E:

P =
↔
χ
(1)

E+
↔
χ
(2)

EE+
↔
χ
(3)

EEE+ . . . (1.2)

The terms evidenced in (1.2) constitute the nonlinear part of P, in the following called
PNL. The need for coherent and intense light sources in order to access the nonlinear
regime, made almost impossible to explore these properties before the invention of lasers,
which happened in the 50’s. After that, the nonlinear optics knew a rapid development: in
1961 the Second Harmonic Generation was discovered by Franken [9], and six years later,
experimental evidence of Third Harmonic Generation [10] and of Electric Field Induced
Second Harmonic generation (EFISH) [11] were reported. Under usual experimental con-
ditions, when the perturbation is not too intense, the nonlinear term of the Polarisation
has magnitude much lower than the linear contribution, and the expansion (1.2) converges
quite quickly. Analogously, the third order term will be much smaller than the second
order one, and so on. This property is no more satisfied in the case of perturbations which
have the form of very strong, ultra-short, laser pulses. In that case phenomena of Higher
Harmonic Generation take place, and many harmonics of comparable intensity can be cre-
ated [12]. This kind of phenomena is way beyond the scope of the present work, and in the
following we will always assume that the condition of weak enough perturbation is always
satisfied. In this thesis, we will limit ourself to the study of non-linear phenomena of second
order. The quantity which describes the second order response of a given material to an

electric field E, as we have shown in Eq. (1.2) is the second order susceptibility
↔
χ
(2)

:

P(2) =
↔
χ
(2)

EE (1.3)

The second order susceptibility
↔
χ
(2)

is a three index tensor of rank 3, containing in principle
27 indipendent component. The k-th cartesian component of P(2) can be written as:

P
(2)
k =

∑

i,j

χ
(2)
kijEiEj (1.4)

Because of the interchangeability of the index referring to the electric field, we have that

χ
(2)
kij = χ

(2)
kji, reducing to 18 the number of independent component of the tensor. The



1.2. SECOND HARMONIC GENERATION (SHG) 13

number of non-zero or independent component can be further reduced exploiting the sym-
metries of the material (see e.g. Ref. [13]). At this purpose, we will limit for the moment to
show a very important symmetry property: if the material is invariant under inversion (i.e.

it has central symmetry), then the second order susceptibility is identically zero
↔
χ
(2)

= 0.
Indeed, for materials invariant under inversion of the cartesian axis, we will have:

ÎP(2) =
↔
χ
(2)

(ÎE)(ÎE) (1.5)

where Î represent the inversion operator:

ÎP(2) = −P(2)

ÎE = −E
(1.6)

Substituting the quantities (1.6) in Eq. (1.5), we have:

ÎP(2) =

= −P(2)

=
↔
χ
(2)

(ÎE)(ÎE)

=
↔
χ
(2)

(−E)(−E)

= P(2)

(1.7)

implying P(2) = −P(2), which is satisfied only for P(2) = 0. As we will see later, this
property plays an important role in making the second harmonic generation a well adapted
tool to study surfaces. The second order susceptibility contains in itself all the necessary
information to describe a wide range of nonlinear phenomena (briefly resumed in Tab.
(1.2)) In the present work, we will limit to the study of the second harmonic generation.
In this process, two photon at frequency ω are absorbed, and one photon having frequency
2ω is emitted (see Fig. (1.2)) The main application of the SHG, as it is easy to imagine, is
the frequency conversion. Using a non-linear crystal, and a pump laser as primary source,
it is possible to obtain coherent light in a range of frequency where no lasers are currently
available, making a matter of extreme interest the quest for more and more effective non-
linear materials (see e.g. Ref [14]). Due to its unique sensitivity to the symmetry of the
material, moreover, Second Harmonic Generation has been intensively studied for imaging
of biological tissues [15][16] and for the characterisation of microstructures [17] (see Fig.
(1.3)) Finally, another important application of the SHG is the characterisation of surfaces

and interfaces, which also relies on the symmetry sensitivity of the
↔
χ
(2)

tensor.

1.2.1 Surface Second Harmonic Generation (SSHG)

As we explained in the previous section, the second order susceptibility
↔
χ
(2)

is equal to
zero for materials having central symmetry. On the other side, the inversion symmetry is
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Second order phenomena

Second Harmonic Generation χ(−2ω, ω, ω)
Optical rectification χ(0,−ω, ω)

Sum frequency χ(−(ω1 + ω2), ω1, ω2)
Frequency difference χ(−(ω2 − ω1),−ω1, ω2)

Table 1.2: Some second order optical phenomena. In addition to Second Harmonic Gener-
ation, we report the Sum frequency (in which two photon of different frequency ω1 and ω2

are absorbed and one photon of frequency ω1+ω2 is emitted), the Frequency difference (in
which one photon of frequency ω2 is absorbed, and two photons are emitted, one having
frequency ω1 and the other one having frequency ω2 − ω1), and the optical rectification
( in which one photon of frequency ω is absorbed, one photon of frequency ω is emitted,
and a static field is created in the material. Notice that in this table we used the con-
vention which describes with positive frequencies the absorbed photons, and with negative
frequencies the emitted ones. However, this convention is not used in this thesis.

Figure 1.2: Schematic sketch of second harmonic generation. Two photons of frequency
ω are absorbed by the material, promoting an electron in an an unoccupied state. The
system then decays to the ground state with the emission of a photon of energy 2ω.
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(a) (b)

(c)

Figure 1.3: Selection of the possible applications of SHG as imaging technique. In panel
(a), a SHG image of the collagen fibres contained in a rat foot flexor tendon cryosection
is reported (reproduced from Ref. [15]). Collagen is formed by two type of fibers, one
of which is centrosymmetric, corresponding to the bright filaments in panel (a), and the
other not, corresponding to the darker filaments. In panel (b) (reproduced from Ref. [16],
a SHG image of a neuron is shown. In panel (c) (reproduced from Ref. [17]), a SHG
imaging technique has been used in order to characterise the shape of MoS2 flakes over a
SiO2 substrate. MoS2 is a non centro-symmetric material, and therefore it can generate a
second harmonic signal (orange regions). SiO2, on the other side, has inversion symmetry,
and therefore it cannot produce any second order response (blue part), resulting in a high-
contrast picture of the MoS2 structures. The scale bar is set to 20 µm in all the three
pictures
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d
h
a
rmP(2ω) 6= 0

P(2ω) = 0

Figure 1.4: Schematic sketch of the second order response of a surface of centro-symmetric
material undergoing an external perturbation of frequency ω. The polarisation density
P(2ω) is confined in a thin surface layer of thickness dharm (we will come back on this
parameter in Chapter 8), while in the inner region of the material we recover the bulk
response P(2ω) = 0

an exact symmetry of the system just if we consider a perfect crystal, which is infinitely
extended an translationally invariant in all directions. This is clearly no more the case for
a finite crystal, which has finite extension and presents surfaces. Let’s consider for exemple
the case of Silicon, one of the materials studied in the present work. As it is well known,
Silicon exhibits inversion symmetry, and therefore, an infinitely extended Silicon crystal
undergoing to an external perturbation will have second order response equal to zero. On
the other side, if the crystal is cut and a surface is created, the inversion symmetry is
broken, and a thin layer of harmonically active material is created nearby the cut (see
Fig. (1.4)). All the second order response come from this layer: if we go deep inside into
the material, the electronic wave-functions will become more and more bulk-like and the
symmetry of the infinite crystal will be recovered, resulting in a zero second order response
from the inner region of the material.

1.3 Conclusion and summary of the thesis

In this chapter we tried to give an overview of the motivations which justify a research to
better understand optical properties of functionalised surfaces. We also briefly illustrated
how materials react to an external electromagnetic field, with a special focus on non-linear
response. We then discussed more in detail why SHG is a good quantity to measure in
order to investigate surface properties of material presenting inversion summetry, like the
silicon (functionalised) surfaces which are the systems studied in this work. In this section,
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we present the structure of the present thesis: in Chapter 2 I briefly introduce the Density
Functional Theory and the Time-Dependent Density Functional Theory, which constitute
the theoretical framework in which our calculations have been performed. In Chapter 3 I
present in detail the surfaces which have been object of the present thesis, illustrating their
atomic reconstruction and adsorption configuration. In Chapter 4, I present the so-called
vacuum problem. This problem affect macroscopic response functions calculated within
the supercell formalism, and it typically manifests when local field effects are included in
the calculation. Treated in detail for the first time by Tancogne-Dejean et al. in 2015,
this problem has been solved with the introduction of the Selected-G method (see Ref.s
[18], [19], [20]). In the same chapter, I will present the result of the first SHG calculation
for the surface of silicon functionalised with Thymine with the inclusion of Local Field
Effects, and I will briefly describe the main features of these spectra. As it will be seen,
Local Field Effects strongly suppress the response of the silicon surface upon thymine
adsorption: understanding the origin of this effect will be the aim of Chapter 5. In this
chapter, in order to better understand the effect of functionalisation , I isolate the system
from its replicas, in order to eliminate any spurious interaction coming from the adoption
of the supercell formalism. In a first moment I will derive the main features of the response
of an isolated slab, using a simple Lorentz model. Then, I will present the calculations
of the optical quantities of interest performed within the mixed-space approach, which
allows to obtain the response of the isolated system in a fully ab initio way. Chapter 7
will be then devoted to analyse in detail the link between the calculated quantities and the
quantities which are actually experimentally measured in a spectroscopy experiment (i.e.
reflectance, transmittance and adsorbance). The most important result of this Chapter
(and one of the most important of the present thesis) is that the ambiguity affecting the
calculation of the macroscopic optical response functions (which has been described in
Chapter 4), actually does not affect the quantities which are experimentally measured,
adding a further block to the understanding of the so-called vacuum problem, and ideally
closing the circle opened by Tancogne-Dejean in his thesis [20]. In Chapter 8 I present
the result of the SHG calculations from functionalised silicon surfaces, and I will try to
estimate the sensitivity of this spectroscopic technique to the adsorbed specimen and to
the adsorption configuration.
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Chapter 2

DFT and TD-DFT: an
introduction

In this chapter we want to give a brief description of the many-body problem and of
ab initio methods which have been used during this work. This chapter is articulated
in three parts: we start with describing the many-electrons hamiltonian and explaining
difficulties coming from the two-body interaction between particles. In the second part,
we will expose the foundation of the Density Functional Theory (DFT), which, by mean
of the Kohn-Sham equations, is an efficient -and in principle exact- instrument to inquire
the ground state properties of many electrons systems, and we will continue with its time-
dependent extension. We will summarise the quantity used to calculate the first and second
order response functions, and how they are modified to get surface properties.

2.1 The full many electron hamiltonian

Systems like molecules, clusters, or solids, are basically aggregated of nuclei and electrons
interacting via Coulomb potential. This kind of system can be therefore described by an
Hamiltonian of the following form:

Ĥ =

Ne
∑

i

p2i
2me

+

NI
∑

I

p2I
2MI

+

Ne
∑

i

V̂ne(ri) + V̂ee + V̂nn (2.1)

where V̂ee is the electron-electron interaction term:

V̂ee =
1

2

∑

i 6=j

e2

|ri − rj |
(2.2)

19
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and

V̂ne(r) = −
∑

I

ZIe
2

|r−RI |
(2.3)

is the potential given by nuclei. In principle, to solve the Schroedinger equation associ-
ated with this hamiltonian, we should account for nuclear degree of freedom as well as
the electronic ones. Ionic and electronic degrees of freedom, in fact, are coupled via the
electron-nuclei interaction term, giving arise sometimes to important effects: in molecule,
for example, electronic transitions could allow conformational changing, and in crystals,
collective oscillations of the lattice, could allow transitions otherwise forbidden. Neverthe-
less, treating on the same footing electronic and nuclear degrees of freedom would make
unapproachable the problem. Considering that the ion masses are much bigger than the
electronic mass, we can adopt the following approximation, known as Born-Oppenheimer
approximation: we will consider the ions as fixed in their equilibrium positions. The wave-
function will contain therefore only the electronic degrees of freedom. Moreover, being
fixed the nuclear coordinates, we remove the nucleus-nucleus interaction term from the
hamiltonian, since in this approximation just act as an additive constant. The problem to
solve is now an eigenvalues problem of this kind:

HeΨ(x1, . . . ,xN ) = EiΨ(x1, . . . ,xN ) (2.4)

where He has the following form:

He =
∑

i

p2i
2mi

+
∑

i

V̂ne(ri) +
1

2

∑

i 6=j

e2

|ri − rj |
(2.5)

The problem of electronic correlation

Due to the presence of two-body interaction term (2.2), the Schroedinger equation (2.4) is
extremely difficult to approach. The simplest way to search an approximate solution is to
exploit the well known variational theorem of quantum mechanics:

Theorem 1 (Variational theorem). Let H be an hamiltonian, and let Ψ0 and E0 be re-
spectively the ground state wavefunction and the ground state energy of this hamiltonian
(we assume for sake of simplicity that the ground state is not degenerate). For each trial
wavefunction Ψ̃,

〈Ψ̃|H|Ψ̃〉 ≥ 〈Ψ0|H|Ψ0〉 = E0 (2.6)

In the relation above, the equality holds if, and only if, Ψ̃ = Ψ0
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The way to proceed now, is to choose a certain functional form for the trial wave-
function, depending on some parameters, and then finding the parameters who minimise
the expectation value 〈Ψ̃|H|Ψ̃〉. The simplest functional form we can choose for the trial
wavefunction is an antisymmetrised 1 product of N single particle spin-orbital functions:

Ψ̃ =
1√
N !

det{ψ1, . . . , ψN} (2.7)

where the spin-orbital ψi

ψi(ri, σ(i)) = ϕi(ri)χ(i) (2.8)

is simply the product of a spatial wavefunction and a spin wavefunction. At this point, one
could minimise the expectation value of the hamiltonian on the wavefunction (2.7), and
finding a set of one-particle equation for the spin orbitals.
This approach the Hartree-Fock method [21]. It is well known that it fails to reproduce
correlation effects. To illustrate this point, let’s consider now a very simple model of
interacting system: the Helium atom. This system is formed by two electrons subject to a
central potential given by a point charge of charge 2e.

Vne = − 2e2

|r1|
− 2e2

|r2|
(2.9)

and interacting between them via a potential:

Vee =
e2

|r1 − r2|
(2.10)

In the Hartree-Fock approximation, the ground state wavefunction will have the form of
(2.7):

Ψ̃ =
1√
2
ϕ1s(r1)ϕ1s(r2)

[

α(1)β(2)− β(1)α(2)
]

(2.11)

where α(i) and β(i) stands respectively for spin up and down. Let’s consider now the
square modulus of this wavefunction:

|Ψ̃|2 = |ϕ1s(r1)|2|ϕ1s(r2)|2 (2.12)

The physical meaning of |Ψ̃|2dr1dr2 is the probability to find one electron in the volume
dr1 centred in r1, and one electron in the volume dr2 centred in r2. Therefore, the ex-
pression (2.12), states that the probability to find both the electron in the point r is given by:

|Ψ̃|2dr1dr2 = |ϕ1s(r)|2|ϕ1s(r)|2dr1dr2 (2.13)

1The determinantal form has been required in order to assure the antisymmetry of the wavefunction
under exchange of coordinates of different particles, i.e. the Pauli exclusion principle
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This is the point which makes wavefunctions of kind (2.7) intrinsically not adapted to de-
scribe the wavefunction of an interacting electron system. Due to the repulsive coulombian
divergence the probability to find one electron in r1 and one electron in r2 , should goes
to zero as r1 approaches to r2, forming the so called correlation hole. Fixing the position
of one particle, I’m also modifying the position of all other ones: this explains why we
refer to interacting particles system saying that ”they are correlated”, in opposition to
”independent particle systems”, where the position of one particle is not related to the
position of other ones, and that are exactly described by wavefunction like the (2.7). The
correlation hole, therefore, is the cause of complicated dependence of wavefunctions on
the electronic coordinates; moreover, the absence of the correlation hole in wavefunctions
of the form (2.7), leads to an overestimation of coulombian interaction energy (since this
wavefunction allows electron to get closer than they actually could). This excess of energy,
is called correlation energy.

2.2 Density Functional Theory

The Hohenberg-Kohn’s theorems

As we saw in the previous section, what makes the many-electrons problem so difficult to
approach, is the presence of coulombian interelectronic interaction. This term induces a
complicated dependence of the wavefunction on the electronic coordinates ri, and makes
extremely hard to directly solve the Schrödinger equation. Moreover, methods to directly
solve the Schrödinger equations, like full-CI (see [21] for instance), which are largely used in
quantum chemistry, are simply not applicable in solids, due to their disadvantageous com-
putational scaling. The Density Functional Theory (DFT), in a way, allow us to bypass
the problem to solve the Schroedinger equation to find the ground states wavefunction.
DFT relies on the osservation that it’s not strictly necessary to find the ground state wave-
function, in order to find the ground state energy of an interacting electrons system. This
important result, is contained in [22]:

Theorem 2 (First Hohenberg-Kohn’s theorem). Let n(r) be the ground state density of
an electron system subject to an external potential vext(r). Then, the potential inducing
that density is unique.

If it’s true, as stated by this theorem, that fixed the one-particle density, it’s also
fixed the external potential that induces that density, then the one-particle density also
univocally determines the whole hamiltonian and, as a consequence the ground state wave
function Ψ0. In other words, we can say that the external potential (and the hamiltonian,
and the ground state wavefunction) are functional of the ground state density n(r). We
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will write:

n(r) −→ vext[n] (2.14)

n(r) −→ H[n] (2.15)

n(r) −→ Ψ0[n] (2.16)

(2.17)

Since the ground state wavefunction is a functional of density, also the expectation value
of an operator on the ground state will be a density functional:

n(r) −→ T [n] = 〈Ψ0[n]|T̂ |Ψ0[n]〉
n(r) −→ Eee[n] = 〈Ψ0[n]|V̂ee|Ψ0[n]〉

we can therefore express the ground state energy as a density functional:

Ev[n] = T [n] + Eee[n] +

∫

drvext(r)n(r) (2.18)

The result expressed in eq. (2.18) is astonishing. As we’ve seen in the previous section,
the electronic interaction energy is a quantity which depends on the probability to find
two electron at a certain distances the one from the other. For this reason, it can be easily
expressed as function of the two-particle density. Nevertheless, the first Hohenberg-Kohn
theorem, assure us that it can be also express as funtion of the one body density. This means
that, in some non trivial way, all the information about electronic correlation is encoded
inside the one particle density, an object intrinsecally simpler than the complicated N-body
wavefunction. This simplification is only apparent: the way the correlation is encoded in
n(r) -i.e. the functional form of Vee[n] - is not known, and we have to develop approximation
for it.
The following theorem [22] is the variational principle of the theory:

Theorem 3 (Second Hohenberg-Kohn’s theorem). Let v(r) be the external potential acting
on a N electrons system, let n0(r) be the ground state one-particle density of this system,
and let Ev[n] be the functional (2.18). For each ñ(r) such that:

ñ(r) ≥ 0 ∀ r
∫

ñ(r)dr = N

then:

Ev[n0] ≤ Ev[ñ]
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2.2.1 Kohn-Sham equations

The Hohenberg-Kohn’s theorems represent a milestone from a theoretical point of view,
since they rigorously justify that the ground state one particle density can be chosen as
fundamental variable of the many body problem. Nevertheless, from a practical point of
view, they are a pretty poor instrument: even if we had the exact form of the functional
Ev[n], they don’t suggest any way to efficiently calculate n(r). What made the DFT a
useful tool for real calculation, have been the Kohn-Sham equations[23].

The Kohn-Sham method is based on the following consideration: the formulation of the
first Hohenberg-Kohn theorem, doesn’t require as hypothesis that electrons are interacting.
The theorem could be in principle applied to any system of fermions, regardless they’re
interacting or not. Therefore, the first Hohenberg-Kohn’s theorem tell us that, for each
density n(r), it exists one, and only one external potential vext(r), such that a system of
interacting electron subject to vext(r) reproduces the ground state density n(r). But it also
guarantee that, for the same n(r), it exists one and only one external potential vs(r), such
that a fictitious system of non-interacting electrons subjected to this potential, reproduces
exactly n(r).
In a system of non-interacting electrons, the wavefunction will be exactly given by:2

Ψs =
1√
N !

det{ψ1, . . . , ψN} (2.19)

where the ψi are the N eigenstates of lowest energy of the one particle hamiltonian:

hs =

[

− 1

2
∇2 + vs(r)

]

(2.20)

The kinetic Energy of this system will be exactly given by:

Ts[n] =
N
∑

i

〈ψi| −
1

2
∇2|ψi〉 (2.21)

and the ground state density will be given by:

n(r) =

N
∑

i

|ψi(r)|2 (2.22)

Now, let’s consider again the functional (2.18). It can be written as:

Ev[n] =Ts[n] +

∫

vext(r)n(r)dr+ J [n] + T [n]− Ts[n]− J [n] + Eee[n]

= Ts[n] +

∫

vext(r)n(r)dr+ J [n] + Exc[n]

(2.23)

2In previous sections, we have explicitly written electronic masses and charges in the equations. From
now on, we will adopt the Hartree atomic units, in which ~ = e = me = 1
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where we have introduced J [n], the Hartree’s interaction energy:

J [n] =
1

2

∫

n(r′)n(r′′)

|r′ − r′′| dr
′dr′′ (2.24)

and the so called exchange-correlation functional:

Exc[n] = T [n]− Ts[n] + Eee[n]− J [n] (2.25)

This functional is made of two terms: the first is the difference between the kinetic energy
of the interacting system and the kinetic energy of non-interacting one (typically a small
difference). The second term, is the difference between the interelectronic interaction en-
ergy, and J [n], which is the interaction energy of a classical density of charge distribution
n(r). This last difference, therefore, will contain the non-classical part of the coulombian
interaction, which means, the correlation effects.
We’re now able to express the functional (2.18) as function sum of Exc[n], which is an
unknown functional, and quantities like Ts[n], J [n], and

∫

vext(r)n(r)dr, which we can ex-
press as functions of orbitals of non-interacting system. Variating respect to the orbitals
ψi, we obtain the following important result: the one-particle ground state density of a
system of interacting electrons, subject to an external potential vext(r), can be reproduced
by a fictitious system of non-interacting electrons subject to the effective potential:

vs[n] = vext(r) + vH [n](r) + vxc[n](r) (2.26)

where vxc[n] is:

vxc(r) =
δExc[n]

δn(r)
(2.27)

and is called exchange-correlation potential, and

vH [n](r) =
δJ [n]

δn(r)

=

∫

dr′
n(r′)

|r− r′|

(2.28)

is called Hartree’s potential.
To find the ground state one-particle density, we will need, as a consequence, solve the
following one particle equations:

[

− 1

2
∇2 + vs[n](r)

]

ψi(r) = εiψi(r) (2.29)

which are the celebrated Kohn-Sham equations.
This result is truly remarkable: the Kohn-Sham equations allow us to find the ground
state energy of the true N-electron system -in principle in an exact way - just solving N
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one-particle equation with a rigorously local potential, instead to solve the complicated
full many-body Schroedinger equation. In particular, the system described by the hamil-
tonian (2.5) can be viewed as an N electrons system subject to an external potential
vext(r) = Vne(r). The complication is now to find a reasonable approximation of the ex-
change correlation potential, which is unknown. In the next section we will briefly describe
the idea of the popular Local Density Approximation (LDA), which has been the approx-
imation of vxc used throughout the thesis work.
Before to conclude, a last remark has to be done. In this section, we have seen that it
is possible to calculate, in principle in an exact way, the ground state energy and the
ground state density of a many electrons system, by mean of the Kohn-Sham equations.
These two are the only physically meaningful quantities we can get via the Kohn-Sham ap-
proach: no physical meaning, on the contrary, can be related to the eigenvalues εi and the
orbitals ψi, which are quantities living only in the fictitious non-interacting Kohn-Sham
system. The eigenvalues of the non-occupied Kohn-Sham orbitals, in particular, should
not be interpreted as the excitation energies of the true many electron system. Regardless
of the goodness of the exchange correlation potential vxc, in fact, the DFT underestimate
systematically the energy separation between HOMO and LUMO. Therefore, in solids,
bandgap values predicted by DFT are typically significantly lower of real values. Anyway,
the dispersion of bands is often quite accurate; for this reason, and also for its reason-
able computational cost, the DFT is widely used for band structure calculations, as first
estimate, or as starting point for more sophisticated approaches.

Local Density Approximation (LDA)

The Local Density Approximation is the simplest approximation to the exchange-correlation
functional. In this family of functionals, the exchange correlation functional is approxi-
mated by:

E(LDA)
xc [n] =

∫

εxc(n(r))n(r)dr (2.30)

where εxc(r) is the exchange correlation energy (per number of electrons) of an homogenous
electron gas of density n(r). In other words, in this approximation we assume that the
contribution of the exchange correlation energy given by the n(r)dr electrons which are
around r, is the same of an homogenous electron gas with the same density. Given a
certain value of n (which is obviously constant in the case of an homogenous electron
gas), the exchange correlation energy can be calculated almost exactly via Montecarlo

techniques. Values of ε
(HEG)
xc [n] for several values of n, can be then fitted in order to

obtain analytic expressions. The functional we used during this work is reported in [24],and
reproduces Ceperley-Alder Montecarlo calculation. As it’s easy to imagine, the goodness of
this approximation depends on the degree of homogeneousness of the system. Due to this
reason, the great success of LDA in solids, where often the wavefunctions are delocalised



2.2. DENSITY FUNCTIONAL THEORY 27

2.2.2 Solving the Kohn-Sham equation in periodic systems

The Density Functional Theory, is a tool that, in principle, allow us to approach every kind
of many electron system. Ground state properties of atoms and molecules, as well as solids
(regardless to their periodicity), can be enquired by mean of the Kohn-Sham equations.
Anyway, since in this work only crystal structures have been studied, we will limit our
discussion to the methods to solve the Kohn-Sham equations in periodic systems.

A crystalline solid is made of an array of repeated units. The smallest one is called prim-
itive cell. If the primitive cell of the crystal contains only one atom, we’ll say that the
lattice is a simple lattice. In this case, the position of each atom of the crystal, can be
expressed as the sum of integer multiples of three vectors, called primitive vectors :

tn = n1t1 + n2t2 + n3t3 (2.31)

In the case there are, let’s say, Nat atoms for unit cell, we will say that the lattice is a
composite lattice. In this case, in addition to the primitive vectors ti, to describe the po-
sition of every atom of the crystal, we need Nat vectors dν , called basis vectors. Now: it’s
reasonable to assume that, if ions are distributed periodically in the space, also the one
particle density will have the same periodicity:

n(r+ tn) = n(r) (2.32)

Then the effective Kohn-Sham potential will be periodic as well:

vs[n](r+ tn) = vs[n](r) (2.33)

Let’s introduce now, together the direct lattice, the so called reciprocal lattice. This lattice
is defined as the sum of integer multiples of the following three vectors, called reciprocal
primitive vectors:

g1 =
2π

Ω
t2 × t3

g2 =
2π

Ω
t3 × t1

g3 =
2π

Ω
t1 × t2

(2.34)
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with Ω:
Ω = t1 · (t2 × t3) (2.35)

the volume of the primitive cell. It is possible to proof that, if a certain function is periodic
with the same periodicity of the direct lattice, then it can be expressed as a Fourier sum
of plane waves having wave vectors equal to the reciprocal lattice vectors:

f(r+ tn) = f(r) =⇒ f(r) =
∑

n

fne
ignr (2.36)

In a crystal, as a consequence, the Kohn-Sham potential could be expressed as:

vs[n](r) =
∑

j

vje
igjr (2.37)

We now observe that, if I let the Kohn-Sham potential act on a plane wave eiqr, I obtain:

vs[n](r)e
iqr =

∑

j

vje
i(gj+q)r (2.38)

if now we project this quantity on another plane wave eikr, it’s easy to show that we obtain:

〈eikr|vs[n](r)eiqr〉 =
∑

j

vjδ(k− q− gj) (2.39)

It’s evident that eikr and vs[n](r)e
iqr will be orthogonal if, and only if

k− q 6= gj ∀ gj (2.40)

In other words, the two functions will be orthogonal only if k cannot be obtained summing
to q a reciprocal lattice vector.
Let’s introduce the concept of first Brillouin zone. The first Brillouin zone can be op-
eratively defined as the locus of points of reciprocal space, who are closer to the origin
than to any else vector of reciprocal lattice. Evidently, the points of first Brillouin zone,
automatically satisfy the property (2.40). The observation that two plane waves having as
wave vectors two different points of the first Brillouin zone, are mapped by the periodical
potential vs[n](r) in orthogonal functions, can be formalised in the following

Theorem 4 (Bloch theorem). The wavefunctions of a single particle hamiltonian with
periodic potential have the following form:

ψ(k, r) = eikru(k, r) (2.41)

where k is a vector in the first Brillouin zone, and u(k, r) is a function with periodicity of
lattice
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The Bloch theorem can be also reformulated in the following useful form:

Theorem 5. In the basis set of plane waves {ei(k+gj)r}k,gj
(where k are vectors in the

first Brillouin zone, and gj are the vectors of reciprocal lattice), the matrix representation
of a one-particle hamiltonian with periodic potential, is block diagonal:

H =













Hk2

Hk2

0

0

. . .
. . .













(2.42)

each block Hkj
corresponds to a point in the first Brillouin zone, and it’s the matrix repre-

sentation of the hamiltonian on the subspace:

Wkj
= span{ei(kj+g1)r, ei(kj+g2)r, . . . }

Plane waves expansion and pseudopotentials

The Bloch theorem implicitly suggest that the most natural basis set to represent the
Kohn-Sham hamiltonian is the set of plane waves {ei(k+Gn)r}Gn . The use of such a basis
set presents anyway a serious drawback. The lowest energy crystal states (the so called
core states), in fact, result to be extremely localised in real space. An accurate descrip-
tion of these states would require therefore plane waves of very large wave vectors, and
consequently basis set so large to make unfeasible the diagonalisation of the single particle
hamiltonian. In order to overcome this difficulty (known as ”the variational collapse prob-
lem”), a possible solution is given by the pseudopotentials methods. The basic idea behind
this approach is very simple: the core electrons, which due to their localisation are the
source of the variational collapse problem, do not mix with valence states, and practically
do not feel the influence of other atoms of the crystal. As a consequence, we can substitute
the true crystal potential which some sort of effective potential incorporating the effect
of core electrons, and then solve the secular problem for just the valence and conduction
states. Such effective potential, as one can easily argue, is called pseudopotential. During
this work, Troullier-Martins pseudopotentials [25] have been used. We will not give here a
detailed discussion about the different kind of pseudopotentials. We will just say that the
ones we used belong to a larger class, the so called norm conserving pseudopotentials. Pseu-
dopotentials of this kind are design in order to make the pseudo-wavefunction reproduce
as accurately as possible the true crystal wavefunction outside the core radius.The price
to pay to obtain this result is the nonlocality of the pseudopotential, which, in general,
acts differently on the different components of angular momentum. Compared to the huge
basis sets which would be necessary for an all-electron calculation, this is anyway a minor
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disadvantage, and the ability to correctly calculate the crystal wavefunctions outside the
core region allows us to get the conduction and the valence energies in an efficient and
accurate way.

2.3 Excited states beyond DFT: the TD-DFT

As we have seen in previous part, the DFT is a theory which allows one to obtain, in
principle in an exact way, the ground state energy of a many electron system under the
effect of an external static potential. Here we will introduce an extension of DFT, the
Time Dependent-Density Functional Theory (TD-DFT). This development of DFT allows
to obtain the response of a many electron system under the effect of a time dependent
potential, and it will be our starting point for the calculation of optical absorption spectra.

2.3.1 Existence theorems

The starting point is the time dependent Schroedinger equation, in the Born-Oppenheimer
approximation, where the external potential (given by the nuclei-electrons potential plus
an external scalar potential) varies with time:

i
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ〉 (2.43)

The hamiltonian is defined as:

Ĥ = T̂ + V̂ee + V̂ext(t) (2.44)

where:

V̂ee =
1

2

∑

i 6=j

1

|ri − rj|
(2.45)

and

Vext(t) =

∫

drvext(r, t)n(r, t) (2.46)

Runge and Gross demonstrated that it’s possible find a one-to-one connection between the
time dependent electronic density n(r, t) and the external potential Vext(r, t). This result
is contained in the following theorem [26]:

Theorem 6 (Runge-Gross theorem). Two densities n(r, t) and n′(r, t), evolving from a
common initial state |Ψ0〉 under the influence of two Taylor expandable potential v(r, t)
and v′(r, t), are different if and only if vext and v

′
ext differ for more than a time dependent

constant c(t)
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As a consequence, the Hamiltonian is univocally determined, unless an irrelevant addi-
tive constant, from the one-particle time dependent density n(r, t). This means that also
the temporal evolved of the states |ψ0〉 (the time dependent wavefunction |ψ(r, t)〉), is uni-
vocally determined from n(r, t). In other words, the evolved wavefunction is a functional
of the time dependent density:

Ψ[n(r, t)] −→ Ψ(r, t) (2.47)

For this reason, the expectation values of observables on the temporal evolved of the initial
states are functionals of n(r, t) too:

Ô[n(r, t)] = 〈Ψ[n(r, t)]|Ô|Ψ[n(r, t)]〉 (2.48)

Therefore, every quantity necessary to calculate optical properties of materials (like tran-
sitions amplitudes, or excited states energies) can be derived from n(r, t). The role of
the Runge-Gross theorem is analogous to the role of first Hohenberg-Kohn theorem of the
static DFT: it gives us a formal justification to use n(r, t) as fundamental variable of the
theory, since it proofs that the total hamiltonian is univocally determined by n(r, t), but
it doesn’t give us any suggestion about how n(r, t) can be calculated. An hint arrives from
the [27]:

Theorem 7 (Van Leeuwen’s theorem). Let n(r, t) be the time-dependent density of a
system of electrons interacting via a two-particle potential W (r1, r2), and evolving from an
initial state |Ψ0〉 under the influence of a scalar external potential vext(r, t). For each two-
particle potential W ′(r1, r2), there are a state |Φo〉 and a scalar external potential v′ext(r, t),
such that the one-electron time-dependent density of a system of electrons interacting via
W ′, evolving from the state |Φ0〉 under the effect of v′ext, is exactly n(r, t)

The formulation of Van-Leeuwen’s theorem is extremely general, and it holds for every
kind of interactionW ′(r1, r2). In particular, it guarantees that for every system of electrons
interacting via the two-body coulombian potential , and subjected to the effect of an
external potential vext(r, t), it exists a non-interacting electron system (W ′ = 0) which,
under the effect of an appropriate effective potential vs(r, t), reproduces exactly the same
density n(r, t) of the interacting system.

2.3.2 Kohn-Sham time dependent equations

Let’s consider the case in which the external time dependent potential is zero for t < t0,
and it’s turned on at the time t0. This is not such a big limitation: in fact, it corresponds
to the experimental situation, where the perturbation is turned on at a finite time t0. For
t < t0 the external potential will not depend on time, and the electronic density will be
static:

n(r, t) = n0(r) for t < t0
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As we know from DFT, the effective potential who will reproduce this static density in a
non-interacting electron system, is given by:

vs[n](r) = v0(r) +

∫

dr′
n(r′)

|r− r′| + vxc[n](r) (2.49)

At the time t0, the perturbation is turned on, and as a consequence also the effective
potential who acts of the electrons in the non-interacting system will start to depend on
time. In analogy with the effective potential of static DFT, we separate the electron-
electron interaction in a classical Hartree’s term, and in another term including the effects
of quantum nature:

vs[n](r, t) = vext(r, t) +

∫

dr′
n(r′, t)

|r′ − r| + vxc(r, t) (2.50)

Time dependent orbitals in the non interacting system are obtained solving the following
time-dependent Schroedinger equations, the so called time-dependent Kohn-Sham equa-
tions:

i
∂

∂t
ϕ
(KS)
i (r, t) =

[

− ∇2

2
+ vs[n](r, t)

]

ϕ
(KS)
i (r, t) (2.51)

with initial conditions:

ϕ
(KS)
i (r, t)

∣

∣

∣

∣

t=t0

= ϕ
(KS)
i (r) (2.52)

Once we have found the time-dependent orbitals, the time-dependent density is obtained
as:

n(r, t) =
∑

i

∣

∣ϕ
(KS)
i (r, t)

∣

∣

2
(2.53)

In principle, in order to find the time dependent orbitals, we should (and we could) solve
(2.51). Anyway, in the great majority of cases we are interested to study, the difference
between time-evolved of single-particle orbitals and unperturbed orbitals is very small.
For this reason, it’s more practical to adopt a perturbative approach. Before showing how
perturbation theory can be applied to the TD-DFT in order to obtain the time-dependent
density, let’s recall some general results.

2.4 Response theory and Dyson equation(s) of TD-DFT

2.4.1 Perturbation theory

Let’s consider a system described from the following Hamiltonian:

Ĥ = Ĥ0 + Ĥint(t) (2.54)
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where Ĥ0 is the hamiltonian of the unperturbed system, with known eigenstate {Ψi}i and
eigenvalues {Ei}i , and Ĥint(t) is a time dependent perturbation. Under the effect of the
perturbation, the wavefunction of the system (which we assume to be in the state Ψ0 at
time t = t0 )will depend on time. Since the set of eigenstates of unperturbed hamiltonian is
a complete set, we can expand the time evolved of Ψ0 as sum of eigenstates of unperturbed
hamiltonian:

|Ψ(t)〉 =
∑

j

e−iEjtcj(t)|Ψj〉 (2.55)

As well known from perturbation theory, if the perturbation is weak, we can perturbatively
expand the coefficient of the last expansion: at the zero order, we obtain:

c
(0)
i =

{

1 for i = 0
0 for i 6= 0

(2.56)

and at first order in perturbation theory we have:

c
(1)
j (t) = −i

∫ t

t0

dt′eiωj0t
′〈Ψj |Ĥint(t

′)|Ψ0〉 (2.57)

where we introduced:
ωmn = Em − En (2.58)

Density response

Let’s suppose we want calculate the time evolution of one particle density. The one particle
density is an observable, and its time evolution can be calculated evaluating the expectation
value of the one particle density operator n̂(r) on the time evolved wavefunction |Ψ(t)〉:

n(r, t) = 〈Ψ(t)|n̂(r)|Ψ(t)〉 (2.59)

If we substitute with its perturbative expansion

|Ψ(t)〉 = e−iE0t|Ψ0〉+
∑

j

e−iEjt(c
(1)
j (t) + c

(2)
j (t) + . . . )|Ψj〉

it’s immediate to find that:

n(r, t) = 〈Ψ0|n̂(r)|Ψ0〉
+
∑

l

eiE0te−iElt〈Ψ0|n̂|Ψl〉c(1)l (t)

+
∑

l

e−iE0teiElt〈Ψl|n̂|Ψ0〉c∗(1)l (t)

+O(2)

(2.60)
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We see that, by mean of perturbative expansion of the wavefunction, also the time evolu-
tion of one particle density can be perturbatively expanded: the first term of the expression
above is the order zero of this expansion, and it’s the density of the initial state (in this
case, the ground state). The second and the third term of the expression, are the variation
of density at first order. After some simple algebraic manipulation, the first order variation
of density can be recasted in this more explicit form:

δn(1)(r, t) = i
∑

k 6=0

〈Ψ0|n̂(r)|Ψk〉〈Ψk|Ĥint(r, t)|Ψ0〉
ω − ωk0 + iη

(2.61)

Let’s now assume that the interaction hamiltonian has the following form:

Hint(r, t) =
∑

i

v(ri)e
−iωt (2.62)

The first order variation of density can be rewritten as:

δn(r, t) =

∫

dr′
∑

k

〈Ψ0|n̂(r)|Ψk〉〈Ψk|n̂(r′)|Ψ0〉
ω − ωk0 + iη

v(r′)e−iωt (2.63)

The quantity

χ(r, r′, ω) =
∑

k

〈Ψ0|n̂(r)|Ψk〉〈Ψk|n̂(r′)|Ψ0〉
ω − ωk0 + iη

(2.64)

is the so called polarizability (also called density-density response function). We see that,
with the definition of the polarizability, the first order variation of density can be rewritten
in the more compact form

δn(r, ω) =

∫

dr′χ(r, r′, ω)vext(r
′, ω) (2.65)

The physical meaning of the polarizability is therefore the following: χ(r, r′, ω) is the
contribution to the variation of density in the point r, given by the δ-like potential centered
in the point r′. Integrating on r′ (which means, summing the contribution by the potential
in every point of space), we obtain the density variation in the point r, at first order in
perturbation theory.
We notice that to obtain the expression of χ(r, r′, ω), we didn’t make any approximation
(except assuming to be in regime of linear response). Therefore, our expression for the
linear susceptibility, is an exact result: if I had the wavefunctions of ground and excited
states of the system, I could use the (2.64) to evaluate χ(r, r′, ω), and using it to derive
optical quantities of interest. Unfortunately, this is not the case: even if the (2.64) is
exact, having the unperturbed states {Ψi}i of the system would require to solve the time-
independent many electrons problem, which we’re not able to do.
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Independent particle polarizability

As we saw before, we are not able to directly calculate the susceptibility of the interacting
electrons system, because of our ignorance of the wavefunctions. On the other side, we
are able to calculate both eigenfunctions and eigenvalues of the non-interacting Kohn-
Sham system: we can therefore use the (2.64) in order to derive the susceptibility of the
Kohn-Sham system.The ground state of Kohn-Sham system will be given by the N ψi(r, t)
spin-orbitals of lowest energy. Such orbitals, which in the ground state have occupation
number equal to 1, are called real orbitals, while higher energies orbitals, which in the
ground states have occupation number equal to 0, are called virtual orbitals. The excited
states of the Kohn-Sham system are built adding the to the real orbitals |ϕn〉 a certain
number of virtual orbital |ϕν〉. The susceptibility of a non-interacting Kohn-Sham system
can therefore written as:

χs(r, r
′, ω) =

real
∑

n

virt.
∑

ν

ϕ∗
n(r)ϕν(r)ϕ

∗
ν(r

′)ϕn(r
′)

ω − ωνn + iη
(2.66)

which can be rewritten in the following more readable form:

χs(r, r
′, ω) =

∑

i

∑

j

(fi − fj)
ϕ∗
i (r)ϕj(r)ϕ

∗
j (r

′)ϕi(r
′)

ω − ωji + iη
(2.67)

where fi and fj are the Fermi occupation numbers of ϕi and ϕj orbitals.
In analogous way we can obtain the second order density response function. Retaining the
terms of second order in Eq. (2.60), we obtain second order contribution to the density.
This term will be quadratic in the external perturbation:

δn(2)(r, t) =

∫

dr1dr2χ
(2)
ρρρ(r, r1, r2, 2ω, ω, ω)v

ext(r1, ω)v
ext(r2, ω) (2.68)

where χ
(2)
ρρρ is the second order density response function. The second order response

function of the independent particle system will be given by:

χ0,(2)
ρρρ (r, r1, r2, 2ω, ω, ω) =

=
∑

n,n′,n′′

ϕ∗
n(r)ϕn′(r)

En − En′ + 2ω + 2iη
×

×
[

(fn − fn′′)
ϕ∗
n′(r1)ϕn′′(r1)ϕ

∗
n′′(r2)ϕn(r2)

En − En′′ + ω + iη

+ (fn − fn′′)
ϕ∗
n′(r2)ϕn′′(r2)ϕ

∗
n′′(r1)ϕn(r1)

En − En′′ + ω + iη

+ (fn′ − fn′′)
ϕ∗
n′(r2)ϕn′′(r2)ϕ

∗
n′′(r1)ϕn(r1)

En′′ − En′ + ω + iη

+ (fn′ − fn′′)
ϕ∗
n′(r1)ϕn′′(r1)ϕ

∗
n′′(r2)ϕn(r2)

En′′ − En′ + ω + iη

]

(2.69)
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2.4.2 Dyson equation of TD-DFT

The Van Leeuwen theorems assure us that the time-dependent density n(r, t) of a system
of interacting electrons subjects to an external potential v(r, t), can be reproduced by a
fictitious non-interacting electron system moving inside a proper effective potential. The
time dependent single particle potential who has to act on the non-interacting electrons is
given by:

vs[n](r, t) = v(r, t) +

∫

dr′
n(r′, t)

|r′ − r| + vxc[n](r, t) (2.70)

As we saw in the previous section, the time dependent density can be expanded around
the ground state density:

n(r, t) = n0(r) + δn(1)(r, t) + . . .

The Kohn-Sham effective potential is a functional of density: since we are assuming that
the density variation is small, we can expand it around the ground state density n0(r),
dropping all term of order higher than first order:

vs[n](r, t) ≈v(r, t) +
∫

dr′
n0(r

′) + δn(1)(r′, t)

|r− r′| + vxc[n0](r) + v1,xc[δn
(1)](r, t)

=vs[n0](r) + v1,s[δn
(1)](r, t)

(2.71)

where:

v1,s[δn
(1)](r, t) = v1(r, t) +

∫

dr′
δn(1)(r, t)

|r− r′| +

∫

dr′
δvxc[n](r, t)

δn(1)(r′, t)

∣

∣

∣

∣

n0

δn(1)(r′, t) (2.72)

The quantity:

fxc(r, r
′, t, t′) =

δvxc[n](r, t)

δn(r′, t)

∣

∣

∣

∣

n0

(2.73)

is the so called exchange-correlation kernel. On the other hand, also the density is a
functional of potential, and it can therefore expanded around the ”zero order potential”,
which means, the static Kohn-Sham potential vs[n0](r). The first order response of density,
will be given by:

δn(1)(r, t) =

∫

dr′χs(r, r
′, t)v1,s(r

′, t′) (2.74)

This allows me to make the following identification:

∫

dr′χ(r, r′, ω)vext(r
′, ω) =

∫

dr′χs(r, r
′, t)v1,s(r

′, t′) (2.75)
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By this equality, we obtain the following relation between the polarizability of an interacting
electron system and the independent particle susceptibility:

χ(r, r′, ω) =

= χs(r, r
′, ω) +

∫

dr′′χs(r, r
′′, ω)×

×
∫

dr′′′
[

1

|r′′ − r′′′|+fxc(r
′′, r′′′, ω)

]

χ(r′′′, r′, ω)

(2.76)

This equation is the so called Dyson equation of TD-DFT.
After some algebra, one finally gets the Dyson equation at second order:

∫

dr4

[

δ(r1 − r4)−
∫

dr5χ
0(1)
ρρ (r1, r5, ω) fuxc(r5, r4, ω)

]

χ(2)
ρρρ(r4, r2, r3, 2ω, ω, ω)

=

∫

dr5 dr7 χ
0(2)
ρρρ (r1, r5, r7, 2ω, ω, ω)

[

δ(r5, r2) +

∫

dr4 fuxc(r5, r4) χ
(1)
ρρ (r4, r2, ω)

]

×
[

δ(r7, r3) +

∫

dr6 fuxc(r7, r6, ω) χ
(1)
ρρ (r6, r3, ω)

]

+

∫

dr4 dr5 dr6 χ
0(1)
ρρ (r1, r4) gxc(r4, r5, r6, ω, ω) χ

(1)
ρρ (r5, r2) χ

(1)
ρρ (r6, r3)

where with fuxc we denoted:

fuxc(r, r
′, ω) =

1

|r− r′| + fxc(r, r
′, ω) (2.77)

and where we have defined:

gxc(r, r
′, r′′, t, t′) =

δ2vxc[n](r, t)

δn(r′, t)δn(r′′, t)

∣

∣

∣

∣

n0

(2.78)

as the second order exchange-correlation kernel. The Dyson equation can be easily solved
by mean of a matrix inversion. We obtain that the response function of the interacting
system is given by:

χ =
(

1− χs(fH + fxc)
)−1

χs (2.79)

This is a truly remarkable result: it allows us - in principle in an exact way - to find
the response function of the true interacting many electron system, starting from the
much easier response function of non-interacting Kohn-Sham system. The fundamental
ingredient of this equation is the exchange correlation kernel fxc. Inside the xc-kernel are
incorporated both the effects of hole-electron interaction - which are responsible for the
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arise of excitons- and the opening of the bandgap effects.
Unfortunately, exactly as in the case of static DFT, the exact fxc is not known, and we’ve
forced to develop some approximation for it. Building approximation for the fxc kernel is
a not trivial problem, and it’s still matter of research. In the following, we will limit to
mention the RPA approximation, which has been used throughout this work.

Random Phase Approximation (RPA)

The simplest approximation to attempt to solve the Dyson equation is to impose fxc = 0
and gxc = 0. Within this approximation, the first order Dyson equation becomes (we
temporarily suppress the dependence in r and ω in order to make the expressions more
readable):

χρρ =
(

1− χ0
ρρfH

)−1
χ0
ρρ (2.80)

while the solution of the second order one will be:

χ(2)
ρρρ = (1− χ0,1v)χ0,2

ρρρ(1 + vχρρ)(1 + vχρρ) (2.81)

This easy approximation is the first step on the way going from the independent particle
susceptibility χs to the real interacting system susceptibiility χ. In this approximation,
the variation of density, is not given just by the transition of Kohn-Sham electrons under
the effect of external perturbing field Hint(r, t). It will be given, insted, by the transi-
tion of electron between Kohn-Sham states under the effect of the external perturbing
field Hint(r, t), plus the Hartree potential, representing the classical coulombian potential
given by the variation of density δn(1)(r, t). This is the most elementary way to go beyond
mimic inside the non-interacting electrons, the complicated two-body coulombian interac-
tion. This approximation leave outsides all non-classical effects due to correlations, like for
example the excitonic effects

2.5 From response functions to optical properties

The TDDFT, as we already have seen, is a theory who allows us to calculate (in principle,
in an exact way) the one electron time dependent density induced by an external scalar
perturbation. This density can be expressed as a perturbative expansion of the external
potential, and the exact response functions, order by order, can be derived from the re-
sponse function of the noninteracting Kohn Sham system by mean of the Dyson equation.
Now we want to deal with the following problems: once we obtained the response functions
of the system, how can we connect them with the macroscopic optical quantities of the
system, kind of the dielectric function?
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2.5.1 Dielectric function from TD-DFT

Before to explain how we can use TDDFT to inquire the optical properties of materials,
a special remark has to be done. The radiation beam used in spectroscopy experiments
are, as it’s well known from the classical electrodynamics, transverse waves (which means
that electric field of the perturbation will be orthogonal to the propagation direction).
The TDDFT, on the other hand, allows one to find the time-dependent density of a many
electron system under the action of a scalar time-dependent potential. For this reason,
in principle, TD-DFT allow us to study just the longitudinal response of the system, de-
scribed by the longitudinal dielectric function εLL(q, ω). This problem can be bypassed
by mean of the following consideration: the frequencies of the perturbations we are going
to study, are in a range from 0 to about 10 eV. This means wavelength of about 102 nm,
about three orders of magnitude bigger of the characteristic length of our systems, the
lattice constant: λ/acell ∼ 103 ≫ 1. For perturbation of such big wavelength, it is no more
meaningful distinguish between longitudinal and transverse perturbations: in both case,
each atom of the lattice will just ”feel” an oscillating uniform electric field. For this reason,
in the limit q → 0, the response of a material to an electromagnetic perturbation can be
studied by mean of the longitudinal dielectric function. Having said that, let’s see how it
can be calculated.

We start with recalling the physical meaning of the longitudinal dielectric function. As we
already have seen in the previous section, the charge carriers inside the system displace
under the effect of the electric field, determining in this way induced density of current and
density of charge Jind and ρind. From this displacement of charge, an induced electric field
Eind arises. Therefore, the potential ”felt” by an external test charge inside the material
will not be equal to the external potential vext: it will be given by the sum of external
potential plus the potential induced by charge displacement.
In other words, in homogenous medium approximation (induced density of charge has
the same wave vector of perturbing field), and linear response (induced density of charge
oscillates at the same frequency of external perturbation), the total potential will be:

vtot(r, ω) = vext(r, ω) +

∫

dr′
ρind(r, ω)

|r− r′|

= vext(r, ω) +

∫

dr′
1

|r− r′|

∫

dr′′χρρ(r
′, r′′, ω)vext(r

′′, ω)

(2.82)

or, in reciprocal space:

vtot(q, ω) = vext(q, ω) + v(q)χρρ(q, ω)vext(q, ω)

=
[

1 + v(q)χρρ(q, ω)
]

vext(q, ω)

(2.83)
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The factor between square bracket in the last equation, is the so called inverse dielectric
function:

ε−1(q, ω) = 1 + v(q)χρρ(q, ω) (2.84)

From this expression is now clear the physical meaning of inverse dielectric function: it
is the screening factor containing information about how much the external potential is
screened by induced polarization.
Introducing the inverse dielectric function, we made two important assumptions: the as-
sumption of homogenous material, and the assumption of linear response. We will not be
concerned here by the non-linear response. In the next section, we will rather try to go
beyond the linear response assumption.

Local field effects

It’s evident that no real material is homogenous: every real system contains discontinuities
on the atomic length, due to the discrete nature of his microscopic constituents. This is
evident if we look for a moment at the expression of induced density in term of response
function:

δρ(1)(q+G, ω) =
∑

G′

χρρ(q+G,q+G′, ω)vext(q+G′, ω)

Even if (as usually happens) the external potential contains only the macroscopic Fourier
component of wave vector q (which means, in the notation of the expression above, the
(q+G′)G′=0 component), the induced density of charge at frequency ω will contain many
others Fourier components of higher wave vector. In other words, the induced density
of charge, will be not simply an oscillation of wave vector q: it will be more like an
oscillation of 2π/|q| wavelength (the (q+ 0) term), modulated in amplidude by several
oscillation term of atomic scale (the (q+G)s terms). Therefore, the quantity we obtain
from response theory, will be the microscopic inverse dielectric matrix:

ε−1
GG′(q, ω) = δGG′ + vGχGG′(q, ω) (2.85)

The problem we now want to address is how to pass from this quantity (which is, as we
have just seen, intrinsically microscopic ) to the macroscopic dielectric function. From the
expression above, it follows that also the total potential will contain microscopic oscillations
term:

vtot(q+G, ω) =
∑

G′

ε−1
GG′(q, ω)vext(q+G, ω) (2.86)

The difference between the total potential and his macroscopic average are the so called
local field effects. Let’s find the macroscopic average of microscopic total potential following
the average procedure of Ehrenreich [28]. The total potential can be written as sum of plane
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waves:

vtot(r, ω) =
∑

G

vtot(q+G, ω)ei(q+G)r

= eiqr
∑

G

vtot(q+G, ω)eiGr

Let’s suppose now to perform an average of the total potential inside the space occupied
by the unit cell in position R:

〈vtot(r, ω)〉R =
1

Ω

∑

G

∫

R

drvtot(q+G, ω)eiGreiqr

=
eiqR

Ω
vtot(q, ω)

(2.87)

where the term eiqr has been extracted out of the integral, since 1/q ≫ acell, and where we
exploited the definition of Dirac δ-function. Moreover, we notice that, being the external
potential macroscopic, the macroscopic average of total potential will be:

vtot,M (q, ω) = ε−1
00 (q, ω)vext(q, ω) (2.88)

Therefore, the macroscopic dielectric function, will be:

εM (q, ω) =
1

ε−1
00 (q, ω)

(2.89)

2.5.2 Second order susceptibility from TD-DFT

In 2.4.2, we have shown how the second order response function of a system of interacting
electrons can be obtained, via the second order Dyson equation Eq. (2.77). In the present
section, we will present a procedure to link second order macroscopic susceptibility with
second order response function of density. Such a procedure has been introduced for the
first time by Luppi et al. [29], and Hübener et al. [30][31], which extended to the second
order the linear formalism developed by Del Sole in Ref. [32]. The first step of this
procedure consists to define a perturbing field

EP = E−Ei,L (2.90)

where E is the total electric field, and Ei,L is the longitudinal part of the induced field.
Then, two quasi-polarisabilities α̃ linking the first and second order polarisations with the
perturbing field are introduced:

P
(1)
G (q, ω) =

∑

G1

[
↔
α̃
(1)

(q1, ω)]GG1
EP

G1
(q, ω) (2.91)
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P
(2)
G (q, ω) =

BZ
∑

q1q2

∑

G1G2

∫

dω1dω2δq,q1+q2
δ(ω − ω1 − ω2)×

×[
↔
α̃
(2)

(q,q1,q2, ω1, ω2)]GG1G2
EP

G1
(q1, ω1)E

P
G2

(q2, ω2)

(2.92)

where q,q1,q2 are vectors in the first brillouin zone while G,G1,G2 label reciprocal lattice
vectors. With a bit of algebra, we can express both the macroscopic dielectric function and
the second order susceptibility as function of quasi-polarisability:

↔
εM (q1, ω) =

↔
✶ +4π[

↔
α̃
(1)

(q1, ω)]00

[

↔
✶ +4π

q

q

q

q

[
↔
α̃
(1)

(q1, ω)]00

1− 4π[α̃(1),LL(q1, ω)]00

]

(2.93)

↔
χ
(2)

M (q,q1,q2, ω1, ω2) =

[

↔
✶ +4π

[
↔
α̃
(1)

(q, ω)]00

1− 4π[α̃(1),LL(q, ω)]00

q

q

q

q

]

[
↔
α̃
(2)

(q,q1,q2, ω1, ω2)]000

×
[

↔
✶ +4π

q1

q 1

q1

q1
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↔
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]

×
[

↔
✶ +4π
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q2

[
↔
α̃
(1)

(q2, ω)]00

1− 4π[α̃(1),LL(q2, ω)]00

]

(2.94)

Taking the longitudinal longitudinal contraction of the latter equation, we finally obtain:

χLLL
M (q,q1,q2, ω1, ω2) = εLLM (q, ω)[χ(2)

ρρρ(q,q1,q2, ω1, ω2)]000ε
LL
M (q1, ω1)ε

LL
M (q2, ω2)

(2.95)
The link between the components of χM and its longitudinal part is not trivial. In the
following we give the relations for some of these components:

χ
(2)
M,iii = χ

(2),LLL
M (2q,q,q) (2.96)

2χ
(2)
M,iij = χ

(2),LLL
M (q̂i+ q̂j, q̂i, q̂j) + χ

(2),LLL
M (−q̂i+ q̂j,−q̂i, q̂j) (2.97)

1

2

(

χ
(2)
M,iij + χ

(2)
M,ijj + (1 +

√
2)(χ

(2)
M,jji + χ

(2)
M,jjj)

)

= χ
(2),LLL
M (q̂i+ q̂j, q̂i, q̂j) (2.98)
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2.5.3 Second order surface susceptibility

2.5.3.1 Independent particles surface susceptibility

Second order susceptibility is written (in velocity gauge and independent particle approx-
imation ) as [33]:

χ
(2)
0,αβγ =

=
i

2Ωω3

∑

n,n′,n′′

BZ
∑

k

〈nk|pα|n′k〉
(

〈n′k|pβ |n′′k〉〈n′′k|pγ |nk〉+ 〈n′k|pγ |n′′k〉〈n′′k|pβ |nk〉
)

Enk − En′k + 2ω + 2iη

×
[

fnn′′

Enk − En′′k + ω + iη
+

fn′n′′

En′′k − En′k + ω + iη

]

(2.99)

where the three greek letters stand for the cartesian indexes, n,n′,n′′ are indexes of bands,
and fij is the difference between Fermi occupation numbers of band i and j. When one
wants to calculate the second harmonic generation of a surface, a special care must be done
to the symmetry of the studied system. As we have seen in chapter one, in materials having
inversion symmetry, the macroscopic second order susceptibility is identically equal to zero.
This may not seem a concern, since an ideal surface, being a semi-infinite system, is clearly
not invariant under inversion. However, due to the impossibility to treat a truly semi-
infinite object, through this thesis we sill adopt the supercell approach, which consists in
modelling the surface with an array of periodically repeated slabs. This approach, which
has the advantage to allowing to exploit the computational effectiveness of plane-waves
codes, presents on the other hand several drawbacks when we come to the calculation
of optical properties. Many of these difficulties will be examined in detail during next
chapters; in this section, we focus on an issue which is specifically related to the calculation
of second order polarisability. When we model a surface with a slab, an artificial centro-
symmetry is introduced in the system, and the signals produced by the two faces of the
slab interfere destructively. As a consequence, a straightforward application of Eq. (2.99),
would lead to an identically zero second harmonic signal. In order to overcome this problem,
one needs to find the way to isolate the contribution of a single interface. The technique to
accomplish this goal has been presented for the first time by L. Reining et al. [34], which
replaced, in the expression for SHG probability, the matrix element of momentum with
matrix element of a modified momentum operator:

P =
pC(z) + C(z)p

2
(2.100)

Here C(z) stands for a cut function which is equal to 1 on one surface and equal to zero on
the other one. Performing the substitution of the matrix elements, we obtain the surface
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second order independent particle susceptibility:

χ
(2)
0,αβγ =

=
i

2Ωω3

∑

n,n′,n′′

BZ
∑

k

〈nk|Pα|n′k〉
(

〈n′k|pβ |n′′k〉〈n′′k|pγ |nk〉+ 〈n′k|pγ |n′′k〉〈n′′k|pβ |nk〉
)

Enk − En′k + 2ω + 2iη

×
[

fnn′′

Enk − En′′k + ω + iη
+

fn′n′′

En′′k − En′k + ω + iη

]

(2.101)

2.5.3.2 Second order surface susceptibility with Local Field Effects

The formalism previously illustrated, which allows to calculate the second order suscepti-
bility with local field effects, has been extended to the case of surfaces by Tancogne-Dejean
[19][20]. The first step consists in introducing two auxiliary response functions called χ̄(1)

and χ̄(2), where only the short range of the Coulomb potential appears. For this, one
separate the Coulomb interaction in a macroscopic and a microscopic part: v = v0 + v̄. It
comes:

V tot(1) = V ext(1) + v0 ρ
(1)
ind + v̄ ρ

(1)
ind = V mac(1) + v̄ ρ

(1)
ind (2.102)

V tot(2) = v0 ρ
(2)
ind + v̄ ρ

(2)
ind = V mac(2) + v̄ ρ

(2)
ind (2.103)

where we have defined:

V mac(1) = V ext(1) + v0 ρ
(1)
ind (2.104)

V mac(2) = v0 ρ
(2)
ind (2.105)

Proceding as in the previous part, it now comes two coupled Dyson equations:

χ(1)
ρρ = χ̄(1)

ρρ + χ̄(1)
ρρ v0 χ

(1)
ρρ (2.106)

χ̄(1)
ρρ = χ0(1)

ρρ + χ0(1)
ρρ v̄ χ̄(1)

ρρ (2.107)

and

χ(2)
ρρρ = χ̄(2)

ρρρ

[

1 + v0 χ
(1)
ρρ

][

1 + v0 χ
(1)
ρρ

]

+ χ̄(1)
ρρ v0 χ

(2)
ρρρ (2.108)

χ̄(2)
ρρρ = χ0(2)

ρρρ

[

1 + v̄ χ̄(1)
ρρ

] [

1 + v̄ χ̄(1)
ρρ

]

+ χ0(1)
ρρ v̄ χ̄(2)

ρρρ (2.109)

By definition, one has:

χ̄S
00 = 1

Lz

∑

Gz
C(−Gz) χ̄Gz0 (2.110)
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and:

χ̄
(2)S
000 =

1

Lz

∑

Gz

C(−Gz) χ̄Gz00 (2.111)

where C(−Gz) is the Fourier transform of the cut function introduced in Eq. (2.100).
Finally, one can obtain the surface second order susceptibility as:

χ
(2)S,LLL
M (q,q1,q2;ω, ω1, ω2) =

−i
2|q||q1||q2|

χ̄
(2)S
000 (q,q1,q2;ω, ω1, ω2) (2.112)
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Chapter 3

Bare and functionalised Silicon
(001) surfaces

3.1 Bare Si(001) surface

In this section, we want to discuss of the properties of silicon (001) surface, which is the
one chosen in this thesis. In general, when a crystal is cut, the atoms located in the most
external layers do not stand in their equilibrium bulk positions, but tend to displace in
order to create a configuration which minimise the total energy of the system. Because of
the cut, the most external ions experience an abrupt change in the atomic forces acting
on them, and therefore start to move, giving arise to a surface reconstruction. These
surface reconstructions can have quite an important effect on the electronic properties
of the crystal. When silicon is cut in the (001) direction, the atoms constituting the
most external layer tend to get closer the one to the other, resulting in formation of
surface dimers accommodated in adjacent rows [35]. It is nowadays a commonly accepted
fact that these dimers are not symmetric (i.e. they are not parallel to the surface), but
slightly buckled. As shown for the first time by Chadi [36], by mean of tight-binding
calculations, a reconstruction with symmetric dimers would result in the formation of
metallic surface states, in disagreement with experimental observation. On the other side,
if one allows dimer to relax breaking the symmetry, it is found that the surface with buckled
dimers is lower in energy of ∼ 0.1 eV per primitive cell compared to the symmetric dimers
reconstruction, and the surface states recover their semiconductor character. The same
findings were then obtained by Rohlfing et al. [37], which confirmed the metallic behaviour
of the symmetric dimers reconstruction by mean of GW calculations. At temperature close
to 0K, the most favorable reconstruction is the c(4x2) [38] (see Fig. (3.1)). As we have
already mentioned, the dimers forming on the top of the Si(001) surfaces are organised
in parallel rows, which extend in the crystallographic direction (110) (the y-axis in Fig.
(3.1)). In the reconstruction c4x2, consecutive dimers in the same row are buckled in

47
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Figure 3.1: Silicon (001) surface with c4x2 reconstruction. Adjacent dimers in the same
row have opposite buckling orientation.

opposite directions. Moreover, the buckling orientation, also change when displacing from
a dimer row to the immediately adjacent one. At around 200 K, as reported in Ref. [39], the
most favorable reconstruction become the p(2x1) (see Fig. (3.2)). In this reconstruction,
all the dimers are buckled in the same direction. Since it is the most stable structure at
room temperature, and since it has already been extensively studied from the point of
view of Second Harmonic Generation [20], we have chosen it as model for the bare silicon
surface.

3.2 Silicon(001) surfaces functionalised with nucleobases

In the present section, I will present the main characteristics of the silicon surfaces under-
going the adsorption of small organic molecules. In particular, in the present work, we will
focus on the study of the interaction between nucleobasis and the silicon surfaces. The
DNA, as it is well known, is a polymer formed by several monomers, called nucleotides (see
Fig. (3.3)). Each of these monomers is formed by a phosphate group, a pentose sugar , and
a nucleobase (adenine, thymine, cytosine, guanine for the DNA, while in the case of RNA
thymine is substituted with uracil, see Fig. (3.4)). As demonstrated in the ’50s by Watson
and Crick [40], two filaments of DNA can hybridise, forming a characteristic double helix
structure, which is kept together by the hydrogen bond between the nucleobasis of the two
filament. The nucleobasis have the important properties to selectively bind with just their
complementary base: the adenine with the thymine (with the uracil in the case of RNA),
and the guanine with the cytosine. This means that, given a single filament of the two
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Figure 3.2: Silicon (001) surface with p2x1 reconstruction. All dimers have the same
buckling orientation.

which composes the double helix, it contains all the information necessary to reconstruct
the total molecule. This exceptional property is at the basis of the replication mechanism
of DNA, which allows to obtain two perfectly identical copies of the genetic pool of each
individual. In this thesis we will limit ourselves to the study of absorption of pyrimidines.
The absorption of pyrimidines over silicon surfaces has been extensively studied with both
experimental [41] and theoretical [42],[43],[44],[45],[46],[47] approaches. In 2002 Lopez et
al. Ref. [41] managed for the first time to create a sub-monolayer coverage of uracil on the
Si(001) surface, letting evaporate in controlled way uracil in a Ultra-High-Vacuum (UHV)
chamber. Images taken with Atomic Force Microscope (see Fig. (3.5)) proof that the uracil
sub-monolayer exhibit a short range order, with the molecules presenting an adsorption
pattern along the silicon dimers row. Lopez and coworkers also characterise their sample
using High-Resolution Electron Energy Loss (HREEL). Analysing the low energy part of
the spectrum (which carries information about the vibrational mode of the system), they
identified spectral lines which are attributable to the presence of Si-H and Si-O stretching
modes, suggesting that the adsorption mechanism may feature the dissociation of at least
one hydrogen atom from the uracil molecule and the formation of at least one oxygen-
silicon bond. The experimental findings of Lopez stimulating further theoretical works on
the adsorption of nucleobases on the Si(001) surface. In 2003, Seino et al. [42] calculated
the total energy for several adsorption configuration of Uracil on Si(001), finding that the
most convenient are the ones where the two oxygen atoms bridge two silicon atoms on
adjacent dimers lines1 (see Fig. (3.6)). In particular Seino and coworkers individuate two

1Actually, in Ref. [42], the authors found that the adsorption configurations in which the C=O bond
of Uracil is dissociated and oxygen atoms insert in between silicon dimers is even lower in energy than the
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Figure 3.3: Schematic representation of the structure of the DNA molecule. Double helix
structure of DNA is formed by two filaments, each of them composed by several monomers
called nucleotides. Each of these nucleotides is formed by a phosphate group (yellow), a
pentose sugar (orange), and one nucleobase (pink, violet, blue and green). Image released
by Mad Price Ball under licence CC BY-SA 3.0
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Pyrimidines

Uracil Thymine Cytosine

Only in RNA Only in DNA DNA and RNA

Adenine Guanine

DNA and RNA

Purines

Figure 3.4: Schematic classification of nucleobases. Nucleobases are fondamental con-
stituents of nucleic acids, and are divided between Purines and Pyrimidines. Pyrimidines
are the Uracil (which is present just in RNA), Thymine (which is present just in DNA)
and Cytosine (which is present in both DNA and RNA), while the Purines are Adenine
and Guanine, both present in DNA and RNA. Each pyrimidine couples with only one of
the purines: Uracil and Thymine selectively bond just with Adenine, while Cytosine bonds
only with Guanine. This complementarity principles between nucleobases make possible
the duplication mechnism of DNA double helix.



52 CHAPTER 3. BARE AND FUNCTIONALISED SILICON (001) SURFACES

adsorption configurations, one called dative (see Fig. (3.6b)), in which just one of the N-H
bond is dissociated, and the other one, of around ∼ 0.9 eV lower in total energy, called
covalent, where both the N-H bonds of the Uracil molecule are dissociated and the dan-
gling bonds at the silicon surface are completely saturated (see Fig. (3.6c)). Moreover they
found that, compared to the 4x1 configuration (in which molecules are all adsorbed with
the same orientation), a 4x2 reconstruction (in which adjacent molecules at the surface are
flipped of 180 degrees) is energetically more convenient. In [43], same authors performed
band structure calculations for both the 4x1 and 4x2 covalent and dative adsorption. They
found that, when the reconstruction is constrained to be 4x1, the dative configuration
gives rise to a metallic band structures, while the covalent one results in a band gap of ∼
1 eV. On the other side, they reported that when one allows molecules to adsorb with a
4x2 reconstruction, the configuration in which molecules are flipped of 180 degrees open a
small band gap even in the dative structure. After the first studies of Seino and coworkers,
other theoretical works on the adsorption of nucleobases on silicon surfaces followed. In
particular, we cite the works of Molteni et al. [45],[46], which studied the adsorption of
Thymine ,Uracil, and 5-Fluorouracil on the Si(001) surfaces and calculated linear optical
response at the independent particles level of the theory, and the work of Kyung [47], which
confirmed the possibility of dimer-bridge adsorption also for Cytosine.
To conclude this section, we spend some words about the reconstructions that we used to
model the functionalises surfaces. The code that we use in order to calculate the second
order optical response (2light) only allows us to perform calculation on semiconducting
systems, limiting our choice to both the 4x1 and 4x2 covalent adsorption configurations
and the 4x2 dative one. At the same time, due to the high computational cost of second
harmonic calculation, we cannot afford to describe a system having 4x2 reconstruction,
because it would require to double the number of atoms per unit cell, leading to unfeasible
SHG calculations. Because of this reasons, in order to describe the silicon surfaces func-
tionalised with nucleobases, we chose the covalent 4x1 reconstruction. During this thesis,
four of these surfaces have been studied, each of them functionalised with a different purine:
in Fig. (3.7) we report their unit cells.

dimer bridge reconstruction. However, as pointed out by the authors, the total energy alone is not enough
to establish the adsorption configuration: in particular, Seino et al. found that the insertion of oxygen
atoms in the silicon dimers would require to overcome the relatively high energy barrier of ∼ 1.2 eV, and in
addition to that Lopez and coworkers did not find any indication of structures attributable to Si-C modes in
the HREEL spectra. For these reason, in this thesis we will limit ourselves to the study of the dimer-bridge
configuration
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(a) (b)

Figure 3.5: Atomic force microscopy images of sub-monolayer adsorption of Uracil on
Si(001) (reproduced from Ref. [41]) are reported. In panel (a), the picture corresponds to
an area of 35x30 nm . The three regions A,B,C identify three silicon terraces, and brighter
spots correspond to adsorbed molecules. As we can clearly see from this image, molecules
tend to order themselves in lines, following the dimers row at the silicon surface. In panel
(b), an area of 5x7 nm is reproduced. The black lines correspond to a dimer row formed
by seven dimers, with four uncovered dimers (corresponding to the darker spots) and three
adsorbed molecules (corresponding to the three brighter spots).
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Figure 3.6: In this figure we report in panel (a) the structural formula of the Uracil molecule,
while in panel (b) and (c) we report a sketch of the dimer bridge adsorption configuration.
In panel (b) is reported the configuration which, according the lexicon of Ref. [42] and [43],
is called partially dative configuration. In this case, just the hydrogen atom on the 3-N is
dissociated, and one dangling bond per unit cell remain at silicon surface. In panel (3.6c),
the covalent adsorption configuration is shown: here all the N-H bonds are dissociated,
and all dangling bonds at silicon surface can be saturated.
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(a) Silicon+Thymine

(b) Silicon+Cytosine

(c) Silicon+Uracil

Figure 3.7: Surfaces studied in this thesis
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Chapter 4

Vacuum problem and first results

The vacuum problem has been approached in detail for the first time by Nicolas Tancogne-
Dejean in its PhD thesis [20], and the Selected-G method [18] has been developed in this
previous work to cure this spurious effect. Nevertheless, how I will explain during the
present chapter, the behaviour of spectra of functionalised surfaces lead me to further
investigate the presence of vacuum. This brought me to investigate the definition of the
thickness of the slab to enlight the differences between the properties of a 2D object and
a surface (a semi-infinite object). For these reasons it is useful to summarise here the
fundamentals of vacuum problem.

4.1 The vacuum problem

What we will call ”The vacuum problem” is a problematic which affects the calculation of
optical response functions within the supercell formalism, and that therefore concerns us
very closely, since, as we have explained, the functionalised surfaces that we want to study
are modelled as slab in a supercell. Let’s start to expose a practical example: we consider
bare silicon slab ( 2x1 reconstruction, 16 atomic layer of thickness, see Fig. (4.1)), and we
want to get its dielectric function.

The slab will be contained inside a supercell, which will contain a certain amount of
vacuum, in order to isolate the slab from its replicas. When one wants to obtain the
dielectric function of a crystal, one has to proceed in the following way: first of all, solving
the Dyson equation of TD-DFT:

χGG′ = χ0
GG′ +

∑

G1,G2

χ0
GG1

vG1G2
χG2G′ (4.1)

we obtain the interacting-particle density response function of the system (the χGG′(q, ω)).
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Then, using this quantity, one can obtain the microscopic inverse dielectric function:

ε−1
GG′(q, ω) = δGG′ +

∑

G1

vGG1
(q)χG1G′(q, ω) (4.2)

And finally, the macroscopic dielectric function is obtained as (in the optical limit):

εM (q, ω) =
1

ε−1
00 (q, ω)

(4.3)

. . . . . .

Figure 4.1: Silicon slab made of 16 atomic
layers (corresponding to ∼ 40 Bohr of thick-
ness), used in the calculation to model the
bare silicon surface. Both the faces are p(2x1)
reconstructed.

Following this procedure, which also al-
low us to include local field effects, we cal-
culated the macroscopic dielectric function
for the slab reported in Fig. (4.1) (intro-
duced in a supercell of size ∼ 80 Bohr. The
result of this calculation is reported in Fig.
(4.2). In the figure, we reported in red the
in-plane component, and in black, the out-
of-plane component of the dielectric func-
tion of the slab, while in blue we report
the dielectric function of bulk silicon. As
we can see, the in-plane component of the
slab’s spectrum present a peak at 4 eV, in
the same position of the bulk spectrum, but
with an amplitude smaller of a factor ∼ 2. The out-of-plane component of the spectrum
is more problematic: this component (black line in Fig. (4.2)), is not only quenched, but
also displaced at higher energy (∼ 12 eV).
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Figure 4.2: Dielectric function of bulk silicon compared with the dielectric function of
a p(2x1) silicon slab calculated within the standard supercell formalism, with local field
effects. The in-plane component is reported in red, the out-of-plane in black.
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ratio 2 ratio 3 ratio 4

Figure 4.3: Supercells used to study the effect of vacuum on the calculation of the optical
properties. The parameter ratio refers to the ratio Lsupercell/Lmat, where Lsupercell is the
vertical length of the supercell, and Lmat is the thickness of the slab.

In Fig. (4.4), we present the spectra of the same silicon slab, calculated in supercells
containing different amount of vacuum (see Fig. (4.3)). With ”ratio 2” we label the
calculation performed in a supercell with the ratio Lmat/Lsupercell = 2. This means that in
this supercell it will be Lmat = Lvacuum ∼ 40 Bohr, corresponding to the system already
shown in Fig. (4.1). Analogously, ”ratio 3” and ”ratio 4” label the supercells where
Lmat/Lsupercell = 3 and Lmat/Lsupercell = 4 respectively. As we can see in Fig. (4.4), when
the vacuum in the supercell increases, the in-plane component of the dielectric function
is more and more quenched. The out-of-plane component of the spectrum, instead, when
vacuum is augmented is not only more suppressed, but also shifts at higher and higher
energies. Actually the spectrum converges to the plasmon of bulk silicon (which is at ∼ 17
eV), as it will be explained in the following. Nevertheless it cannot be the absorption
spectrum of the silicon surface.

As pointed out by Tancogne-Dejean et al. [18], the behaviour of the slab’s dielectric
function shown in Fig.s (4.2) and (4.4), is due to an effective medium theory with vacuum.
The dielectric functions reported in Fig. (4.4), should be considered not as the slab dielec-
tric function, but as the dielectric functions of effective media, each of them containing a
different vacuum/matter proportion.
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(a)

(b)

Figure 4.4: Panel (a) (reproduced from [20]): effect of vacuum on the in-plane component of
the dielectric function. Panel (b)(reproduced from Ref. [18]): effect of vacuum on the out-
of-plane component of the dielectric function (void1, void2, void3 correspond respectively
to ratio 1, ratio 2 and ratio 3 of Fig. (4.3))
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In order to show this, we calculate the dielectric function of an effective medium formed
by vacuum and Silicon in variable proportion. The dielectric function of the system will
be given by:

εeff|| = fSiεSi + fvacεvac (4.4a)

1

εeff⊥

=
fSi
εSi

+
fvac
εvac

(4.4b)

where fSi and fvac stand for the volumic fraction of respectively Silicon and vacuum.
Making the substitution εvac = 1 in Eq. (4.4b), and fvac = 1− fSi , we obtain:

εeff⊥ =
1

1− fSi +
fSi
εSi

(4.5)

In the high diluition limit (corresponding to a supercell with much more vacuum than
matter, i.e. fSi ≪ 1), we have:

εeff⊥ ≈ 1 +
fSi
εSi

(4.6)

which explains why the effective medium theory with vacuum converges to the plasmon,
as the vacuum in the supercell is increased. Using Eq.s (4.4) we calculate the dielectric
functions of effective media containing respectively 50% of Silicon and 50% of vacuum,
33.33% of Silicon and 66.66% of vacuum, and 25% of Silicon and 75% of vacuum, corre-
sponding respectively to the three supercell reported in Fig. (4.3). Results are reported in
Fig. (4.5). In this figure, we compare the spectra obtained from effective medium theory
with variable relative concentrations of vacuum and matter. These results show that when
vacuum concentration is increased in formulas (4.4), the in-plane component of the result-
ing dielectric function is scaled. Concerning the out-of-plane component of the effective
medium spectrum, it displaces towards the plasma frequency. This allow us to explain the
behaviour of the spectra presented in Fig. (4.4): when we calculate the dielectric function
using Eq. (4.3), strictly speaking, we are calculating the ratio between the external field
and the total field averaged on the whole supercell. Therefore, the dielectric function ob-
tained with this procedure, should be not considered as the dielectric function of the slab:
this is the dielectric function of an effective medium containing the slab plus a certain
amount of vacuum, and the properties of this effective medium of course will depends on
the relative concentrations of its two constituents. In the following section, I will present
the ”Selected-G” method, developed by Tancogne-Dejean et al. [18].
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Effective medium theory: Silicon + Vacuum
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Figure 4.5: Effect of mixing the dielectric function of silicon with vacuum. As model
dielectric function of silicon, we used the dielectric function of bulk silicon (here represented
by the black line). The dielectric function of effective media containing respectively 50%,
66%, and 75% of vacuum correspond respectively to the red, the blue, and the magenta
lines. Top panels show the effect of vacuum on the in-plane component of the dielectric
function, which results just in a scaling of the spectra. On the other hand, augmentation
of vacuum has a much more dramatic effect on the out-of-plane component (shown in the
bottom panels), changing abruptly both amplitude and shape of the spectrum.
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4.2 The selected-G method

In order to eliminate the spurious vacuum effect, the selected-G method has been developed
[18]. This method consists in retain in the calculation of the response function χGG′ just
those G-vectors corresponding to oscillations of period Lmat. In other words, one has to
keep just those G̃ such to satisfy the following condition:

G̃z =
2π

Lmat
m , m ∈ Z (4.7)

(see Fig. (4.6))

Figure 4.6: Selected-G method consist in just retaining
the G-vectors having the same periodicity of the slab.

After having evaluated the
χ0
G̃G̃′ on the set of G̃ vectors, one

has to solve the Dyson equation:

χ̃
G̃G̃′ = χ0

G̃G̃′+
∑

G̃1,G̃2

χ0
G̃G̃1

v
G̃1G̃2

χ̃
G̃2G̃′

(4.8)
with:

v
G̃1G̃2

= δ
G̃1G̃2

4π

|q+ G̃1|2
(4.9)

The response function χGG′ ob-
tained solving Eq. (4.1), and the
response function χ̃

G̃G̃′ obtained
solving Eq. (4.8), differs in a fun-
damental aspect. The first one describes the density response of an array of slabs infinitely
repeated in the z direction, spaced out by a layer of vacuum of thickness Lvac. The latter
describes instead the response of an analogous array of infinitely repeated slab, where the
vacuum layers have been suppressed (see Fig. (4.7)). The system described by the function
χ̃
G̃G̃′ , therefore, does not contain vacuum. The dielectric function can be calculated as

ε̃−1

G̃G̃′
= δ

G̃G̃′ +
∑

G̃1

v
G̃G̃1

χ̃
G̃1G̃′ (4.10)

εM =
1

ε̃−1
00

(4.11)
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Standard supercell selected-G

. . . . . .

Figure 4.7: Selected-G method replaces the original supercell with a new one, having half
of the periodicity of the original system. Vacuum between replicas is filled with a copy of
the slab, and therefore the vacuum problem is eliminated.
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In Fig. (4.8) the application of the selected-G method to the calculation of the dielectric
function of the bare silicon surface is shown. As we can see in the figure, the spurious effect
of vacuum is eliminated, and the peak of the out-of-plane component is pushed back at ∼
4 eV.
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Figure 4.8: Dielectric function of the silicon slab calculated within the selected-G approach
(blue lines) compared with the bulk silicon spectrum (black lines). The selected-G method
eliminates the effect of vacuum from the calculation: the in-plane component is now cor-
rectly rescaled, and the out-of-plane component is pushed-back at ∼ 4 eV.
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4.3 Silicon(001)+Thymine: Optical response
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Figure 4.9: Supercell used to model the
Si(001)+Thymine surface. Lsupercell labels the
length of the supercell in the out-of-plane direction.
Lmat labels the thickness of the slab, and here it has
been defined as the distance between the top-most
hydrogen atom and the bottom most one, resulting
in Lmat ∼ 38.2 Bohr. Lvac is the size of vacuum,
and it is defined as Lvac = Lsupercell − Lmat.

In this section I present the calcula-
tion that I have performed on the sili-
con slab functionalised with Thymine.
This system (shown in Fig. (4.9)) is
composed by 8 atomic plane of silicon,
and it has a reconstruction 4x1 (see
Chapter 3 and Fig. (3.7)). Lsupercell

is the length of the supercell in the
out-of-plane direction, and it has been
chosen as Lsupercell = 2Lmat in or-
der to apply the selected-G method.
Lmat is the thickness of the slab, and
here it has been defined as the dis-
tance between the top-most hydrogen
atom and the bottom most one, re-
sulting in Lmat ∼ 38.2 Bohr. Lvac is
the size of vacuum, and it is defined
as Lvac = Lsupercell − Lmat.

The spectra which I will present in
this section, have been all calculated
within the selected-G formalism. As
we have explained in section 4.2, the
selected-G method consists basically
in retaining inside the evaluation of χ
just those G̃ vectors having period-
icity Lmat in the out-of-plane direc-
tion. In order to apply this method,
we have firstly to choose the value of
Lmat, and then to choose the length
of the supercell in the out-of-plane di-
rection (the parameter Lsupercell) such
that it is an integer multiple of Lmat.
In the calculations that I will present
in this section, I have chosen as Lmat

value the distance between the top-
most atom of the top thymine molecule, and the bottom-most atom of the bottom thymine
molecule, resulting in Lmat ≈ 39 Bohr (see Fig. (4.9)).
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4.3.1 Si(001)+Thymine: linear response

In this section, I present the calculation of the dielectric function that I have performed for
the silicon slab functionalised with Thymine within the selected-G formalism. In Fig. (4.10)
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Figure 4.10: Dielectric function of the Si(001)+Thymine slab. In-plane component (in red),
out-of-plane component (in black), dashed and solid lines stand respectively for IPA and
LFE spectra. The inclusion of local field effects have been performed via the selected-G
approach

I report as dashed lines the spectra calculated in Independent Particle Approximation
(IPA), while the solid lines represent the spectra with Local Field Effects (LFE). As we can
see from the solid lines in Fig. (4.10), the local field effects have quite a reduced influence on
the in-plane component of the dielectric function (represented in red),in agreement with
the fact that electronic density is quite homogeneous in the in-plane direction. On the
contrary, the effect is much more important on the out-of-plane component (represented in
black). Local field effects are expected to be stronger for the out-of-plane component, due
to the abrupt change in electron density perpendicular to the surface. Nevertheless, if we
compare to results obtained for the bare silicon surface (see Fig. (4.8)), the effect appears
extremely large: the spectrum is almost totally quenched around 4 eV, and spreads over a
range of energy up to 14 eV.
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4.3.2 Si(001)+Thymine: second order response
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Figure 4.11: In this figure, we report the calculation of the zzz component of the χ(2) tensor,
with and without local field effects (represented respectively by the blue and the black
lines). Inclusion of local field effects has been performed within the selected-G formalism.
Despite of that, when local field effects are added, the spectrum results to be almost
completely suppressed.

In this section I present the calculations that I have performed on the second order
response of the silicon slab functionalised with Thymine. In Fig. (4.11) I report the
zzz component of the second order susceptibility tensor. The black line corresponds to
the calculation performed in the Independent Particle Approximation, the blue line to
the inclusion of local field effects. As we can see, the zzz component of the spectrum
is dramatically quenched once local field effects are added. So, to recap: when local
field effects are included, the out-of-plane component of the functionalised slab’s spectra -
both at first and second order - appears to be dramatically quenched, contrarily to what
happens in the case of the bare silicon surface. What is the origin of this stunning feature
? Is it a real physical effect associated with functionalisation, or this suppression is just
another spurious effect related to the presence of vacuum inside the supercell, as it has
been illustrated before (Sec. 4.1)?.
Indeed, the selected-G method, which has been developed in order to get rid of the vacuum
introduced between replicas, requires to define in some way the thickness of the slab (see
Section 4.2). For the case of the bare silicon surface, which is roughly uniform, it has been
naturally defined as the distance between the top most and bottom most atomic layers.
But in the case of the functionalised surface, the thickness is not uniform anymore, and this
task is less trivial: in the point where the adsorbed molecule is present, the slab is thicker,
while in the point where no molecule is present the slab is thinner. Is the vacuum between
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lines of molecules at the origin of the quenching ? Should it be considered as spurious
vacuum? In other words: should the thickness of the adsorbed overlayer be included in the
definition of Lmat? Next section will be devoted to answer these questions.

4.4 Intermolecular vacuum

In order to establish if the intermolecular vacuum is responsible for the quenching of the
spectra reported in Fig.s (4.10) and (4.11), we have studied two new systems: the silicon
slab completely covered with Thymine (Fig. (4.13)), and the silicon stepped surface (Fig.
(4.15)).

Figure 4.12: Illustration of intermolecular vacuum
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4.4.1 Completely covered surface

. . .. . . . . . . . .

Single molecule Complete coverage

Figure 4.13: In order to question if the suppression of the spectra is due to the intermolec-
ular vacuum, we investigate the completely covered surface. If the quenching come from
the space between molecules, spectra of the completely covered slab should not be affected
by that.

0 2 4 6 8 10 12 14

Energy (eV)

0

5

10

15

20

25

30

35

Im
(ε

⊥
)

single mol (IPA)

single molecule (LFE)

complete coverage (LFE)

(a)

0 1 2 3 4 5 6 7

Energy (eV)

0

5

10

15

20

25

30

|χ
(2
) |
(z
zz
)

single molecule (IPA)

single molecule (times 2)

complete coverage

(b)

Figure 4.14: Out-of-plane component of the dielectric function (panel (a)) and χ
(2)
zzz (panel

(b)) of single molecule (blue lines) and the completely covered surface (orange).

This new system (that we report in Fig. (4.13)), is obtained from the slab reported in
Fig. (4.9) adding an additional molecule in between two contiguous adsorbate rows. This
new system, even if it does not represent the most favourable adsorption configuration, does
not contain vacuum between molecules anymore. In Fig. (4.14) we show the calculation
of the out-of-plane component of the dielectric function and of the zzz component of the
second order susceptibility of the completely covered surface, and we compare it with the
spectra of the previously studied slab (which contains just a single molecule per unit cell
on each side). As we can see in figure, in both cases the out-of-plane component of the
spectra results to be greatly quenched. This proofs that the suppression of optical response
observed in Fig.s (4.10) and (4.11) cannot be attributed to the spacing between molecules.
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4.4.2 Si(001) stepped surface

In order to corroborate this finding, we studied another system which presents non uniform
thickness: the silicon stepped surface (see Fig. (4.15)). As the surfaces functionalised with
nucleobases, also this system contains vacuum between one step and the other ones, so, if
vacuum between molecules is at the origin of the suppression of the spectrum, the same
effect should be expected for the stepped surface. The out-of-plane component of the
spectrum of the stepped surface, with the inclusion of local field effects, is reported in Fig.
(4.16) (black line). As we can see, the main peak of the spectrum is still located at around
∼ 4 eV, exactly as it happens for the bare surface (blue line), and the effect of vacuum
between steps results just in a scaling of the spectrum. The study of the stepped surface
confirms that the quenching and blueshift observed in the spectra of the functionalised
surface is not due to vacuum between molecules: understanding the origin of this effect
will be one of the main goals of next chapter.

Silicon (001) stepped surface
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Figure 4.15: Unit cell used to model the silicon (001) stepped surface. Dangling bonds
have been passivated with hydrogen atoms.
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Figure 4.16: Comparison of dielectric functions of the stepped surface (in black) and of the
bare silicon surface (in blue).

4.5 Conclusions

Through this chapter we illustrated the so called vacuum problem. When calculations of
optical properties are performed within the standard supercell formalism, the inclusion of
local field effects produces an important effect on the dielectric function, resulting in a
rescaling of the spectrum in the in-plane direction, and in a strong quenching and blue-
shift for the out-of-plane component. As we have shown, this does not reflect a physical
property of the studied system, but it is just a spurious effect coming from the presence
of vacuum inside the cell: the more the size of the supercell (and the amount of empty
space in it) is increased, the more this effect become important. Subsequently, we have
shown how this behaviour can be cured using the selected-G technique [18], and showing
an application of this method to the bare silicon surface. Finally, we presented the first
calculations that we have performed on the silicon surfaces functionalised with Thymine,
and we have shown how, despite having applied the selected-G technique, the out-of-plane
component of these spectra still exhibit an important quenching. In order to clarify if this
effect could be attributed to the presence of vacuum between adsorbed molecules, we also
performed a study of the fully covered surface and the bare silicon surface, which allowed
us to exclude the role of intermolecular vacuum in the suppression of the spectra. In
parallel to these calculations done within the reciprocal space formalism, in order to clarify
the optical response of the functionalised surfaces I developed a mixed space approach, in
which the direction perpendicular to the slab is treated in real space, and the parallel one
in reciprocal space. This formalism enabled me to study a truly isolated thin slab, and it
gave me also the opportunity to further question the definition of Lmat, as well as the role
of the interaction between replicas.



Chapter 5

Response of a (thin) isolated slab:
the mixed space approach

As we have seen in the previous chapter, the spectra of the out-of-plane dielectric function
as well as the zzz component of the second order susceptibility, are strongly quenched
compared to the bare silicon surfaces. This feature remains also in the case of full covered
surface, excluding the role of vacuum in between lines of molecules. In order to understand
the influence of the adsorbed molecules on the Si(001) surface, I decided to study this
system in the real space. Working in reciprocal space as we usually do, we are forced to
adopt the supercell formalism, and therefore we are obliged to model the system of interest
(i.e. the surface) with an array of periodically repeated slabs. Approaching the problem
in the real space domain, allows us to describe an object which is really isolated (i.e. we
are sure that we have eliminated the spurious interaction between replicas). Moreover, a
calculation in the real space, allows us to obtain all the physical quantities of interest (the
density variation, the induced electric field, etc...) expressed as function of the position.
This should permit a layer-by-layer analysis of the system, leading to a better understanding
of the contribution of the adsorbed layer. Since the system used to model the surface is
limited to a quite thin object (due to the computational constraints), the mixed space
framework will also allow us to inquire the difference between the optical and electronic
properties of 2D and 3D objects.

5.1 Mixed space approach

The goal of this section is to show how it’s possible to obtain the response function of an
isolated slab. This can be done using the so called mixed space approach [18]. In this
approach, the in-plane directions -where the system is actually infinite and periodic - are
treated in the reciprocal space, while the out-of-plane direction (here taken along z ) -
where the system is finite and the periodicity is broken - is treated in the real space. In

73
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practice, switching from the reciprocal space description to the mixed space one, consists
just in change of the basis set. In the reciprocal space representation, the basis set in which
we expand the physical quantities of interest is the plane waves basis set:

Bpw =

{

ei(q+G)r

√
V

}

q∈BZ
G∈RL

(5.1)

while in the mixed space representation, the basis set will be:

Bm =

{

ei(q||+G||)r||
√
S

δ(z − z0)

}

q||∈2dBZ
G||∈2dRL
z0∈R

(5.2)

In the reciprocal space representation, a given function f(r) will be expressed as fG(q),
where:

f(r) =
∑

G

∫

BZ
dqfG(q)

ei(q+G)r

√
V

(5.3)

while in the mixed space, it will represented as fG||
(q||, z),where:

f(r) =
∑

G||

∫

2dBZ
dq||

∫

dz′fG||
(q||, z

′)
ei(q||+G||)r||

√
S

δ(z − z′) (5.4)

If we know the plane waves representation of the function f(r), we can obtain the mixed
space representation via a Fourier transform in the variable z:

fG||
(q||, z) =

∑

Gz

1√
Lz

∫

dqzfG(q)ei(qz+Gz)z (5.5)

In an analogous way, if I have an operator OGG′(q)(for example a response function)
expressed in the base of plane waves, I can obtain its mixed space representation in the
following way:

OG||G||
′(q||, z, z

′) =
1

Lz

∑

G,G′

e−i(Gz+qz)zOGG′(q)ei(qz+G′
z)z

′
(5.6)

The starting point of our calculation is the Kohn-Sham independent particle response
function, which is obtained in reciprocal space via DP-CODE[48]. The independent par-
ticle response function is then obtained in the mixed space representation via a Fourier
transform:

χ0
GG′(q, ω) −→ χ0

G||G||
′(q||, z, z

′, ω)

χ0
G||G||

′(q||, z, z
′, ω) =

1

Lz

∑

G,G′

e−i(Gz+qz)zχ0
GG′(q, ω)ei(qz+G′

z)z
′ (5.7)
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The Dyson equation of TD-DFT (in RPA), which in reciprocal space reads:

χGG′(q, ω) = χ0
GG′(q, ω) +

∑

G1G2

χ0
GG1

(q, ω)vcoulG1G2
(q)χG1G2

(q, ω) (5.8)

in the mixed space becomes:

χG||G
′
||
(q||, z, z

′, ω) = χ0
G||G

′
||
(q||, z, z

′, ω)+

+
∑

G1||G2||

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2χ

0
G||G1||

(q||, z, z1, ω)v
coul
G1||G2||

(q||, z1, z2)χG2||G
′
||
(q||, z2, z

′, ω)

(5.9)

We want to stress out that Eq. (5.8) and Eq. (5.9) are strictly equivalent. As we stated in
the beginning of this section, switching from the plane waves representation to the mixed
space one, constitutes just a change of the basis set. Eq. (5.8) and Eq. (5.9), therefore,
contain exactly the same physics, which is the physics of a system infinite and periodic in
all directions. As we can see in Eq. (5.9), the integration in z1 and z2 is performed from
−∞ to +∞, meaning that the Hartree potential felt by the electrons will be not just the
potential induced by the isolated slab, but the potential induced by all the replicas. In
order to get the response of the isolated slab, we have to eliminate in some way the potential
induced by the replicas. This can be achieved applying a cut-off in the z direction to the
Coulomb potential operator:

vcoul(q||, z, z
′) −→ṽcoul(q||, z, z

′) =

= Θ(z′ +
L

2
)Θ(−z′ + L

2
)vcoul(q||, z, z

′)Θ(z +
L

2
)Θ(−z + L

2
)

(5.10)

The cut Coulomb operator ṽcoul(q||, z, z
′), acting on a periodic distribution of charge, does

not produce the potential induced by the whole distribution, but just the potential induced
by the charges inside the region z ∈ [−L/2, L/2]. If the distribution of charge is the density
variation induced by an external perturbation in an array of slab infinitely repeated in the
z direction, in other words, the operator ṽcoul(q||, z, z

′) will produce the potential induced
by just one isolated slab. Substituting (5.10) in Eq. (5.9), we obtain therefore the Dyson
equation for the response function of an isolated slab:

χG||G
′
||
(q||, z, z

′, ω) = χ0
G||G

′
||
(q||, z, z

′, ω)+

+
∑

G1||G2||

∫ L/2

−L/2
dz1

∫ L/2

−L/2
dz2χ

0
G||G1||

(q||, z, z1, ω)v
coul
G1||G2||

(q||, z1, z2)χG2||G
′
||
(q||, z2, z

′, ω)

(5.11)
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5.1.1 Mixed-space representation of the Coulomb potential operator

The coulomb potential operator v is defined as the Green function of the Poisson equation:

∇2φ(r) = −4πρ(r) (5.12)

In other words, v(r, r′), must be that operator which acting on a density of charge dis-
tribution, produces the induced potential associated with that charge distribution. In the
mixed space representation, the Coulomb potential operator will be given by:

vcoulG||G
′
||
(q||, z, z

′) = δG||G
′
||

2π

|q|| +G|||
e−|q||+G|||·|z−z′| (5.13)

This expression has the following physical meaning: it’s the electrostatic potential in-
duced by a planar charge distribution modulated in the in-plane direction by an oscillation
of wavevector q|| +G||. This expression by the way has a problem: it’s divergent for
q|| +G|| = 0. In our calculation, we would like to describe the response of the system to
an external perturbation having no long wavelength component in the in-plane direction
(i.e. an external perturbation having the electric field along z ). In order to find the ex-
pression of vcoul for q|| = 0 we propose the following argument. vcoul

G||G
′
||
(q|| = 0) must be

that potential associated to a distribution of planar charge modulated by a wavevector G||.
The case G|| = 0 corresponds to the potential induced by an infinite charged plane. It’s
well known that an infinite positively (negatively) charged plane induces an electric field
constant and uniform diverging from (converging to) the plane. Therefore the Coulomb
potential operator in the mixed space representation will be given, for q|| = 0, by:

vcoulG||G
′
||
(q|| = 0, z, z′) = δG||G

′
||
×



















−2π|z − z′| for G|| = 0

2π

|G|||
e−|G|||·|z−z′| for G|| 6= 0

(5.14)

5.2 Numerical implementation

The independent particle response function of the system has been evaluated in the re-
ciprocal space via DP-CODE [48]. After that, a Discrete Fourier Transform has been
performed in order to evaluate the mixed space representation of the χ0 on a discretised
spacial domain:

χ0
G||G||

′(q||, zi, zj , ω) =
1

Lz

∑

G,G′

e−i(Gz+qz)ziχ0
GG′(q, ω)ei(qz+G′

z)zj (5.15)

In order to simplify the problem (and since local field effects are expected to be smaller in
the in-plane direction, see e.g. [49]), in all the calculations we have performed the χ0

GG′



5.3. IN-PLANE RESPONSE 77

matrix has been evaluated over a set of npwmat G-vectors of the form:

G = (0, 0, Gz) (5.16)

For this reason, from now on we will omit to write G|| in our notations. The real space
grid on which we evaluated the χ0 consists in npwmat points uniformly distributed in the
interval z ∈ [−Lsupercell/2, Lsupercell/2]:

zi ∈
{

− Lsupercell

2
,−Lsupercell

2
+ ∆z, . . . ,

Lsupercell

2

}

with ∆z =
Lsupercell

npwmat
(5.17)

The Dyson equation for an isolated slab, in its discretised form (and in the approximation
(5.16)), will be1:

χ(q||, zi, zj) = χ0(q||, zi, zj)+

+
∑

l,m

χ0(q||, zi, zl)v
coul(q||, zl, zm)χ(q||, zm, zj)∆

2
z

(5.18)

The solution of this matrix equation will be given by:

χ(q||, zi, zj) =
1

∆z

∑

l

[A−1]ilχ
0(q||, zl, zj) (5.19)

where A is the matrix defined by:

Aij =
δij
∆z

−
∑

l

χ0(q||, zi, zl)v
coul(q||, zl, zj)∆z (5.20)

5.3 In-plane response

In this section we present the calculation that I have performed within the mixed space
approach for a slab undergoing an external perturbation parallel to the plane. In order to
test my mixed-space approach, I firstly applied it on the bare silicon slab (see Fig. (5.1)).
The slab we used has been a 2x1 silicon slab formed of 16 atomic layers. After having
relaxed atomic positions and having obtained the asymmetric dimer reconstruction, we
carried out the calculation of the Kohn-Sham wavefunctions, which has been performed
with ABINIT code [50], using the PBE approximation [51] for the exchange correlation
part of the potential. Following the procedure outlined in the previous section, I have
first computed the independent particle response function in the reciprocal space, using
DP-CODE (parameters of the calculation are reported in Tab. (5.1)). This calculation
has been performed for q = qx̂, which is equivalent to set the direction of the perturbing

1we omit here the frequency ω to simplify the notation
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. . . . . .

Figure 5.1: In this picture we report the silicon slab that we used, in the calculation
presented in this chapter, to model the bare silicon surface. This slab is made of 16
atomic layers (corresponding to ∼ 40 Bohr of thickness), and both the faces are p(2x1)
reconstructed.

Parameters of the calculation of χ0 for the bare silicon slab:

Nkpt NG Npw Nbands

128 165 18997 400

Table 5.1: Parameters used for the calculations of the response function of the bare silicon
surface.

electric field parallel to the plane. Moreover, this calculation has been performed in the
optical limit, i.e. for q → 0. In practice, this limit is achieved by choosing a value of
|q| much smaller than the typical dimension of the Brillouin zone. In this particular
calculation, |q| = 10−5Bohr−1 . According Eq. (5.15), I have then calculated the mixed
space representation of the independent particle response function (see Fig. (5.2)). As we
can see, the χ0(z, z′) presents structures in the (z,z’) region corresponding to the matter,
and is zero in the rest of the box.

Then, I solved Eq. (5.18) (with the potential defined in Eq. (5.13) ) in order to find the
interacting response function of the isolated slab. At this point, I want to use this quantity
in order to extract the macroscopic dielectric function. When the same problem is treated
in the case of a infinite and periodic material, the standard procedure is to calculate the
inverse dielectric function:

εGG′ = δGG′ +
∑

G1

vGG1
χGG1

(5.21)

and then obtain the macroscopic dielectric function as:

εM =
1

ε−1
00

=
vext0

vtot0

(5.22)

In analogy with Eq.s (5.21) and (5.22), I first evaluated the microscopic inverse dielectric
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Figure 5.2: Independent particle response function of the bare silicon slab in the mixed
space representation: real part is reported to the left, imaginary part to the right. Horizon-
tal axis corresponds to the z variable. The different curves correspond to different values
of z′.

function:

ε−1(q||, zi, zj ;ω) =
δij
∆z

+
∑

l

vcoul(zi, zl)χ(q||, zl, zj ;ω)∆z (5.23)

and then we performed a Fourier transform, in order to extract its macroscopic average:

〈ε−1〉(q, ω) =
∑

ij

e−iqzziε−1(q||, zi, zj ;ω)e
iqzzj∆2

z (5.24)

Finally, we evaluated the quantity:

1

〈ε−1〉(q, ω) (5.25)

The result of this calculation is shown in Fig. (5.3) The quantity calculated according eq.
(5.25) has a peak at around 4 eV (more or less where the absorption peak of bulk silicon
is located), but, compared to the dielectric function of bulk silicon is suppressed of about
four order of magnitude. As we can see, the real part of the function is ≈ 1, while the
imaginary part is almost zero.
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Figure 5.3: In-plane dielectric function of the bare silicon slab calculated according Eq.s
(5.24) and (5.25), a procedure which consists basically in evaluating the ratio between the
averages of the external and induced potential.
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Figure 5.4: In-plane dielectric function calculated with Eq. (5.26) and Eq. (5.27).
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Figure 5.5: Calculation of the in-plane components of the dielectric function for several in-
tegration domains for 〈χ〉 (see Eq. (5.26) and (5.27). Panel (a): xx component (orthogonal
to the dimer lines). Panel (b): yy component (parallel to the dimer lines)
.

In next chapter, using the Lorentz model, we will explain the physical meaning of this
behaviour, and we will demonstrate that the in-plane dielectric function is:

εM,|| = 1− 4π

|q|2 〈χ〉 (5.26)

where:

〈χ〉 = 1

Lmat

∫ Lsupercell/2

−Lsupercell/2
dz

∫ Lsupercell/2

−Lsupercell/2
dz′χ(q||, z, z

′) (5.27)

The spectrum calculated with Eq. (5.26) and Eq. (5.27) is reported in Fig. (5.4). The
peak is located at 4 eV, as we expect for the absorption of silicon. Here the response
function χ has been averaged over a region of size Lmat = 40 Bohr, corresponding to
the distance between the top-most and the bottom-most atomic plane of the slab. From
comparison with Fig. (5.3), we see that the correct amplitude is recovered. In Fig. (5.5),
I report several calculation of the in-plane component of the dielectric function, each of
them performed averaging the χ over a space region of different length. As we can see
in the figure, it results from these mixed space calculations that the interacting response
function has one peak at ω0 = 4eV for the in-plane component. If I increase the size of the
interval [−Lmat/2, Lmat/2], pushing the integration extrema out of the slab, the absorption
peak decreases its amplitude. This is due to the fact that the χ(z, z′) goes rapidly to zero
out of the region occupied by atoms (see Fig. (5.6)). Therefore, extending the size of the
integration interval outside the atoms, will not change the result of the integral in Eq.
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Figure 5.6: Panel (a): interacting response function χ(z, z′) evaluated as function of z for
fixed values of z′. Panel (b): heat map of the χ(z, z′).
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(5.27), but will reduce anyway the value of 〈χ〉 because of the prefactor 1
Lmat

. As I will
explain more in detail in the remaining part of this chapter, there is not an evident way to
establish the space-region where one should perform the average. However, this may not
seem a big problem: after all, the spectra shown in Fig. (5.5) just differ for a scale factor.
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5.4 Mixed space: out-of-plane response

In this section I calculate, within the mixed space approach, the response of an isolated slab
undergoing an external perturbation orthogonal to its surface. The independent particle
response function has been calculated via DP-CODE, in the optical limit (q = 10−5Bohr−1,
with q = qẑ ). Then I proceeded to the calculation of the interacting response function,
which has been obtained solving the Discretised Dyson equation (5.18). In Fig. (5.7) we
report the macroscopic average of the response function of density, calculated within the
mixed space approach for a bare silicon slab:

〈χ〉 = 1

Lsupercell

∫

dzdz′e−iqzzχ(z, z′)eiqzz
′

(5.28)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Energy (eV)

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

〈χ
(z
,z

′ )
〉

×10−11 Slab - out-of-plane

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Energy (eV)

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

χ
0
0

×10−11 Bulk

(b)

Figure 5.7: Panel (a): macroscopic average of density response function of the slab, for an
out-of-plane perturbation. Panel (b): macroscopic average of density response function of
bulk silicon.

As we can see in this figure, the peak of the density response function is located at
∼ 17 eV, exactly as it happens for the bulk silicon. This leads us to calculate the dielectric
function using a similar procedure as for the bulk:

εM,⊥ =
〈Eext

⊥ 〉
〈Eext

⊥ 〉+ 〈Eind
⊥ 〉 =

1

1 +
〈Eind

⊥ 〉

〈Eext
⊥ 〉

(5.29)

where 〈Eext
⊥ 〉 and 〈Eind

⊥ 〉 are respectively the macroscopic averages of the external and
the induced electric field. The induced field can be derived from the interacting response
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function in the following way. Let’s suppose that the slab is perturbed by an external field
directed orthogonally to the surface, of infinite wavelength, oscillating in time at frequency
ω:

vext(z, t) = vext(z, ω)eiωt (5.30)

with:
vext(z, ω) = z (5.31a)

Eext
⊥ (z, ω) = − ∂

∂z
vext(z, ω) = −1 (5.31b)

The response function of density allow us to obtain the density variation induced by such
an external field:

δρ(z, ω) =

∫

dz′χ(z, z′, ω)vext(z′, ω) (5.32)

In Fig. (5.8), I show the profile of the density variation, calculated for the bare silicon
slab. As we can see, when a slab is undergoing an external perturbation orthogonal to
the surface, the electrons moves in the direction of the external field, determining a charge
accumulation of opposite sign on the two surfaces. The density variation is reported in Fig.
(5.8). Once we have calculated the density variation, we can use this quantity in order to
obtain the induced potential:

vind(z, ω) =

∫

dz′vcoul(z, z′)δρ(z′, ω) (5.33)

And, as a consequence, the induced field:

Eind
⊥ (z, ω) = − ∂

∂z
vind(z, ω) (5.34)

I report the calculation of the induced field for the bare silicon slab in Fig. (5.9). As we can
see the induced field is roughly uniform and constant inside the slab, while is identically
zero outside. At this point we have all the ingredient to evaluate the expression (5.29)
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Induced density of charge (Bare Silicon):
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Figure 5.8: Calculation of the variation of density induced in the bare silicon slab by an
out-of-plane perturbation of infinite wave-length. Left: real part, right: imaginary part,
for different frequencies. First line: static perturbation (ω = 0 eV), second line ω = 5 eV,
third line ω = 10 eV
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Induced Electric field (Bare Silicon):
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Figure 5.9: Calculation of the electric field induced in a bare silicon slab by a long-
wavelength out-of-plane perturbation. Left: real part, right: imaginary part, for different
frequencies. First line: static perturbation (ω = 0 eV), second line ω = 5 eV, third line
ω = 10 eV
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Figure 5.10: Panel (a): average of Eind
⊥ . Panel (b): Calculation of the out-of-plane com-

ponent of the dielectric function for several integration domains for Eind
⊥ (see Eq. (5.36)).

5.4.1 The out-of-plane component of εM and the Lmat problem

In the previous section I have presented the calculation of the induced electric field inside a
slab perturbed by an external field orthogonal to the surface. In order to evaluate expression
(5.29), and to obtain the dielectric function, we need to calculate the macroscopic average
of the external and the induced field. The first quantity is easy to average: the external
field is purely macroscopic, and therefore its macroscopic average will be simply a constant:

〈Eext
⊥ 〉 = −1 (5.35)

The second quantity, instead, requires a bit more effort to be worked out. The induced
field, in fact, as it’s possible to see in Fig. (5.9), it’s not uniform in space. In order to
obtain its macroscopic average, therefore, one needs to integrate it on a given space region
and divide by the size of the integration range:

〈Eind
⊥ 〉 = 1

Lmat

∫ Lmat/2

−Lmat/2
dz′Eind

⊥ (z′, ω) (5.36)

As we can see in Eq. (5.36), in order to accomplish the average operation, the interval
where the integration is performed has to be established.

If we represent first the denominator of Eq. (5.29) 1 + 〈Eind〉
〈Eext〉 = 1 + vχ we get that

spectra are all located at the frequency of the bulk plasmon (see Fig. (5.10a)), scaled
by Lmat/Lsupercell, as it results from the EMT with vacuum for 1/ε⊥. It results from
these mixed space calculations that the interacting response function has one peak at
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ωpl ∼ 17 eV for the out-of-plane component. In Fig. (5.10b), I report several calculations
of the dielectric functions, each of them corresponding to a different choice of the integration
interval used to average the induced field. As we can see in Fig. (5.10b), when we take
as integration interval the whole supercell (corresponding to taking Lmat = 104 Bohr,
represented in Figure as the orange curve), we obtain the same result already obtained via
the standard supercell approach (see Fig.(5.11)), which corresponds to an effective medium
theory with vacuum.
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Figure 5.11: Imaginary part of the out-of-plane component of the dielectric function of the
bare silicon slab. Violet line: mixed space calculation performed averaging the induced
field over the whole simulation box (corresponding to the orange line of Fig. (5.10b)).
Black dashed line: standard RPA calculation.

As the size of the integration interval is reduced (see Fig. (5.10b)), the absorption
peak increases its amplitude and displaces at lower energies. We see that when we take
Lmat = 40 Bohr, corresponding to choose the integration extremes as the atomic positions
of the top most and bottom most layer (represented in Fig. (5.10b) as the black curve) the
absorption peak is situated at 4 eV , just like in the bulk silicon spectrum.
Nevertheless, if we can be sure that it is meaningless to integrate up to 104 Bohr, since it
is obvious that we are including vacuum, the problem appears to be critical in the region
between 52 and 40 Bohr (Fig. (5.10b)). The question which naturally arises is: how to
chose the right interval where to integrate the induced field? Quite a natural choice could
seem to take the region where

δρ(z, ω) 6= 0 (5.37)

Unfortunately one find that the region where the induced density is different than zero
(and the induced field as well) is quite larger than the region defined by the coordinates
of surface atomic layers (see Fig.s (5.8) and (5.9)). A similar finding has been reported
in literature for jellium [52],[53], for graphene [54], and for PbPdO2 [55].More specifically,
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Figure 5.12: In this figure we report the out-of-plane component of the dielectric function
calculated within the mixed-space approach (solid lines), and we compare it with the
selected-G result (dashed lines). As we can see, if the same value of Lmat is chosen, the
same result is obtained.

one finds that the density variation is non-zero on a region of around 52 Bohr, while the
region defined by the atomic coordinates of surface layers is large around ∼ 40 Bohr.
When we choose to average the induced field in the region corresponding to a thickness
Lmat ∼ 52 Bohr, represented in Fig. (5.10b) as the blue curve, we see that the peak is
located at ∼ 8 eV. This is what we call ”the Lmat problem”: there is not a clear way
to define the slab thickness, and this uncertainty affects in a dramatic way the calculation
of the dielectric function, making in practice ambiguous the calculation of the absorption
spectrum. We want to underline that this ambiguity is not due to the specific formalism in
which the spectrum is calculated, in this case via the mixed space approach, but it is truly
intrinsic to the nature of the system. As we have explained in Chapter 4, when we perform
a calculation in the selected-G formalism, we implicitly define the thickness of the matter.
Until this moment, each time we performed a selected-G calculation, it seemed a natural
choice to chose as value of Lmat the distance between the most external atomic planes.
But if we observe the plot of the density variation along z reported in Fig. (5.8), such a
choice is much less evident, since that, as we have discussed, the density variation and the
induced field extend over a significantly larger region. In Fig. (5.12), I report a calculation
of the dielectric function of the bare silicon slab performed with the selected-G method
using Lmat = 52 Bohr and Lmat = 52 Bohr (respectively magenta and red dashed lines),
and I compare it with the calculation performed within the mixed space approach using
the same value of Lmat (respectively blue and black solid lines). As we can see, the two
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spectra, calculated with two different procedures, overlay almost perfectly, sign that the
ambiguity in the definition of Lmat is intrinsic in the nature of a slab, and it is not due to
the specific way the calculation is carried out. The calculations reported in Fig.(5.12), in
other words, show that the mixed space and the selected-G approaches produce the same
result, provided that the calculations are performed under the same conditions (i.e. the
same choice of Lmat), corroborating the validity of the mixed space approach developed in
this Chapter.



92CHAPTER 5. RESPONSE OF A (THIN) ISOLATED SLAB: THEMIXED SPACE APPROACH

0 2 4 6 8 10 12 14

Energy (eV)

0

5

10

15

20

25

30

Im
[ε
(q
ẑ,
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Figure 5.13: In this figure, we report a calculation of
the dielectric function of the Si(001)+Thymine slab.
Each of these calculations has been performed averag-
ing the induced field over a space region of different
size.

In Fig. (5.13) I report the ab-
sorption spectra of the silicon slab
functionalised with Thymine, each
of them performed averaging the
induced field over a different re-
gion of space. Also in the case of
the functionalised slab, as we can
see in Fig.s (5.15) and (5.16), the
region where the induced density
and the induced field go zero and
the region delimited by the most
external atomic planes have signif-
icantly different largeness, being
the first one large ∼ 46 Bohr and
the second one ∼ 36 Bohr. In
Fig. (5.13), the dielectric function
obtained averaging the field on the
first region is shown as the black
curve, while the spectrum calcu-
lated averaging on the second re-
gion is shown as the blu curve. In
Fig. (5.13) we also report as the
red dashed line the calculation of the dielectric function that we have performed within the
selected-G formalism (with Lmat ∼ 36 Bohr. As we can see in figure, the blue and the
red dashed lines overlay almost perfectly. This is very interesting: in fact, as we have dis-
cussed in the chapter 4, the selected-G method allows one to eliminate the spurious effect
of vacuum, but does not remove the ficticious periodicity of the system in the z direction.
A selected-G calculation, therefore, may a priori still include an interaction between the
slab and its replicas. The mixed space approach, instead, as we have explained, make pos-
sible to cut this unwanted interaction, allowing one to get the response of a truly isolated
slab. One of the reasons that pushed us to develop the mixed space approach, as we have
explained in the beginning of the present chapter, was to understand if the suppression
of the out-of-plane component of the spectrum observed for the functionalised slab could
be attributed to some kind of spurious interaction between the slab and its replicas. The
almost perfect agreement between the selected-G and the mixed space calculation allow
us to exclude this hypothesis. Actually, one key to understand this effect is given by Fig.
(5.9): the induced field is zero outside the matter, and no interaction between replicas
should occur for an external excitation orthogonal to the slab. This will be also clarified
in the next chapter. Moreover, in Fig. (5.13), we notice another interesting fact. If the
dielectric function is calculated averaging the induced field just in the region delimited by
the silicon atoms (see the blue dashed lines in Fig.s (5.15) and (5.16)), corresponding to
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Figure 5.14: Effective medium theory between silicon and thymine (50% each)(blue line).
Panel (a): out-of-plane component, panel (b): in-plane component (parallel to molecule
rows).

a thickness of ∼ 18 Bohr, so the absorption peak is located at ∼ 4 eV (see the orange
curve in Fig. (5.13)), just as in the case of the bare slab. The spectrum of the function-
alised slab appears to be suppressed compared to the spectrum of the bare one. Actually it
can be seen as a sort of effective medium theory between the adsorbed layer and the silicon
substrate (as it can be shown in Fig. (5.14)). Since the spectrum of free molecules (black
line) has small amplitude compared to the spectrum of bare silicon (red line), and peaks
located at higher energies, so the macroscopic dielectric function of the functionalised slab
(magenta line) - being an average between the spectrum of the silicon and the spectrum of
molecules - will be strongly reduced in amplitude and spread over a much larger range of
energies compared to the bare silicon.
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Induced density of charge (Silicon+Thymine):
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Figure 5.15: Density variation induced in the Si(001)+Thymine slab by an out-of-plane
perturbation of infinite wave-length.
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Induced Electric field(Silicon + Thymine):
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Figure 5.16: Electric field induced in the Si(001)+Thymine slab by an out-of-plane pertur-
bation of infinite wave-length.
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5.5 Conclusion

During this chapter, I developed a mixed space formalism, which allowed us to calculate, in
a fully ab initio way, the response of an isolated slab. From the response function of density
of the slab, we then obtained the absorption spectra for the isolated bare silicon slab and
the functionalised slab. In particular, we have found that the out-of-plane component of
the absorption spectrum calculated via the mixed space approach, is in perfect agreement
with the selected-G calculation. This result allowed us to exclude that the quenching in the
absorption spectrum of the functionalised slab is an effect due to the fictitious interaction
between the replicas of the slab. It also demonstrates that there is no interaction for a
perturbation orthogonal to the slab. As we explained, the quenching of the spectrum is
due to the fact, that when one calculates the macroscopic dielectric function of a slab
with an adsorbed overlayer, the result of the macroscopic average operation is similar to
an effective medium theory between the substrate and the adsorbate. With reference to
the system we are focussed on, since the Thymine spectrum has peaks much higher in
energy and much less intense than silicon, it is normal that the dielectric function will have
properties in the middle between the two systems. By the way, even if we can accept that
the dielectric function of a functionalised slab is quenched because of the average between
the properties of the adsorbed layer and the substrate (and this is specially true for the
slab that we have studied, where the thickness of the substrate and the thickness of the
adsorbed layer are almost equivalent) a new problem arises: how to define the thickness
of the slab? Even slight differences in the choice of the Lmat parameter lead to significant
differences in the macroscopic dielectric function. If the mechanism is similar to the one
described in Chapter 4 (effective medium theory with vacuum), here the problem refers to
the thickness of the matter (should it be defined at the extension of atomic positions or to
the distance where the response functions go to zero?). To cure the ambiguity that affect
the definition of Lmat and of the dielectric function will be the second main task of next
two chapters.



Chapter 6

Response of a (thin) isolated slab:
the Lorentz model

In the previous chapter, we calculated the response of an isolated slab to an external
longitudinal perturbation using the mixed space approach. In the present chapter I will
approach the same problem within a simple Lorentz oscillators model. In this model, the
electrons inside the material will be depicted as classical oscillators, bond to the nuclei by
an elastic force of frequency ω0. When the material is perturbed by an exernal electric
field, the electrons start to oscillate around their equilibrium positions, giving rise to an
induced electric field. The equation of motions for the electrons, within such model, can be
exactly solved (or, in some cases, they become solvable at the price of just some meaningful
approximation), allowing us to extract the quantities which characterise the response of
the material, and to give a more significant interpretation to the result of the ab initio
calculations presented in Chapter 5. The chapter is organised in the following way: in
section 1, I will start with deriving the response properties of a bulk material. Even if
this result is already well known, it will be useful to present the derivation in order to
make comparison with the 2D case. In section 2 I will derive the response of a slab to a
longitudinal perturbation directed in the in-plane direction, while in section 3 I will study
the case of out-of-plane perturbation. Finally, I will present the conclusion in section 4.

6.1 Response of the infinite system

Let’s suppose to have a material, infinitely extended in the space, which is constituted of
ne oscillators per unit of volume. Each of these oscillators will have electric charge e, mass
me, and frequency ω0. We want to study the response of such a system to an external
longitudinal perturbation of the form:

Eext(r, t) = Eext
0 eiq·r−iωt (6.1)

97
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λ = 2π/q

External perturbation

Eext(r, t) = Eext
0
eiq||·r−iωt

Eext
0

q

Bulk

. . .. . .
e,me

∆(r, t)

ω0

..
.

..
.

Figure 6.1: Sketch of the Lorentz model to study the response of an infinite system of inter-
acting electrons to an external longitudinal perturbation of wave-vector q and frequency ω.
Electrons are depicted as classical oscillators having each of them characteristic frequency
ω0, mass me, and charge e.
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with Eext
0 ||q (as shown in Fig. (6.1)). The displacement of oscillators from their equilibrium

position will be described via the vector field ∆(r, t), which gives the displacement from
the equilibrium position of the oscillator located in r at time t. Each oscillator, will feel
an harmonic force −meω

2
0∆, a dampening force −(me/τ)∆̇, and the electrostatic force

given by the external perturbation eEext. Moreover, since the oscillator are charged, when
moving they will produce an induced electric field Eind . The oscillator will feel this induced
field as well, and therefore the equation of motion of the oscillators could be written:

me∆̈(r, t) = −meω
2
0∆(r, t)− me

τ
∆̇(r, t) + eEext(r, t) + eEind(r, t) (6.2)

to solve this equation, we need to establish a relation between the induced field Eind and
the vector field ∆(r, t). In order to do that, we remark that the density of polarization
P(r, t) inside the material can be easily expressed as function of ∆(r, t). Each oscillator
in the material, indeed, can be seen as an oscillating dipole:

d(r, t) = e∆(r, t) (6.3)

The density of polarization inside the material could be therefore expressed as:

P(r, t) = nee∆(r, t) (6.4)

Moreover, we know that the induced density of charge can be extracted from the following
relationship:

∇ ·P(r, t) = −ρind(r, t) (6.5)

Combining the latter equality with the Maxwell-Gauss equation

∇ ·Eind(r, t) = 4πρind(r, t) (6.6)

we got:

∇ ·Eind(r, t) = (−)4π∇ ·P(r, t) (6.7)

and therefore:

Eind(r, t) = (−)4πP(r, t) = (−)4πnee∆(r, t) (6.8)

We finally expressed the induced electric field as a function of the displacement of oscillators
from their equilibrium position, and the motion equation of the system could be rewritten
as:

me∆̈(r, t) = −meω
2
0∆(r, t)− me

τ
∆̇(r, t) + eEext(r, t)−meω

2
pl∆(r, t) (6.9)

where we used ω2
pl = (4πnee

2/me). In order to find a solution of the motion equation, let’s
make a guess on the functional form of ∆(r, t):

∆(r, t) = ∆0e
iq·r−iωt (6.10)
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We find that the expression in Eq. (6.10) is a solution of Eq. (6.9) if, and only if:

∆0 =
e

me

1

−ω2 + ω2
0 − iωτ + ω2

pl

Eext
0 (6.11)

This relation, which express the displacement of oscillators as a function of the external
electric field, is strictly linked to the response function of density, which gives the density
variation as a function of the external potential. Expressing the induced density as a
function of ∆(r, t), and using Eq. (6.11), we obtain:

ρind(r, t) = (−)i|q|ne
e2

me

1

−ω2 + ω2
0 − iωτ + ω2

pl

Eext(r, t) (6.12)

and expressing the external fieldEext(r, t) as a function of the external potential (Eext(r, t) =
−∇φext(r, t)) we have:

ρind(r, t) =
|q|2
4π

ω2
pl

ω2 − ω2
0 + iωτ − ω2

pl

φext(r, t) (6.13)

leading therefore to:

χρρ =
|q|2
4π

ω2
pl

ω2 − ω2
0 + iωτ − ω2

pl

(6.14)

As we can see this function (reported in Fig. (6.2a)) presents a peak at ≈
√

ω2
0 + ω2

pl: this

resonance correspond to a collective excitation of the system, called plasmon.
As a consequence, we will obtain that the solution of the motion equation is given by:

∆(r, t) =
e

me

1

−ω2 + ω2
0 − iωτ + ω2

pl

Eext(r, t) (6.15)

Recasting this solution as a function of the total field, we obtain:

∆(r, t) =
e

me

1

−ω2 + ω2
0 − iωτ

Etot(r, t) (6.16)

which allows us to express the density of current as :

J(r, t) =
e

me

−ieneω
−ω2 + ω2

0 − iωτ
Etot(r, t)

=
1

4π

iωω2
pl

ω2 − ω2
0 + iωτ

Etot(r, t)

(6.17)

So we can extract the following expression for the conductivity:

σ(ω) =
1

4π

iωω2
pl

ω2 − ω2
0 + iωτ

(6.18)
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Figure 6.2: Response of the infinite system to an external perturbation. In panel (a) the
response function of the density is shown. In panel (b), the dielectric function is reported.
Here we have chosen as parameters ω0 = 4 eV , ωpl = 17 eV, τ = 10 eV−1. The perturbation
wavevector has been set to q = 10−5Bohr−1, corresponding to the perturbation wavelength
which we adopted in our ab initio calculations.

from the conductivity, it is trivial to extract the dielectric function, via the well known
expression ε(ω) = 1 + 4πiσ(ω)

ω :

ε(ω) = 1−
ω2
pl

ω2 − ω2
0 + iωτ

(6.19)

As we can see, we recover the well known Drude-Lorentz dielectric function, which is
resonant at ω0, and verify the plasmon condition at ωpl. This function is plotted in Fig.
(6.2b).
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λ = 2π/q

External perturbation
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0
eiq||·r−iωt

Eext
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q||
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z

z = L/2

z = −L/2

. . .. . .
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ω0

Figure 6.3: Sketch of a slab undergoing an external longitudinal perturbation of wave-
vector q and frequency ω, with the electric field parallel to the surface of the slab (i.e.
in-plane perturbation).

6.2 Response of the slab - in-plane perturbation

Let’s now consider the system sketched in Fig. (6.3), which is always made of ne oscillators
per unit of volume, but, instead to be infinite in all directions, it has been cut in form of
slab of thickness L with the interfacial planes lay in correspondence of the planes z = ±L

2 .
We want to calculate the response of this system to an external, longitudinal perturbation
of the form:

Eext = E0e
iq||·r−iωt (6.20)

with q|| ∝ x̂ (see Fig. (6.3)).
Also in this case, the displacement of oscillators from their equilibrium position can be
described via a vector field ∆(r, t), and the equation of motion of our system will be
written as:

me∆̈(r, t) = −meω
2
0∆(r, t)− me

τ
∆̇(r, t) + eEext(r, t) + eEind(r, t) (6.21)
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Again, we have to find a relationship between the induced electric field Eind(r, t) and the
displacement of the oscillators ∆(r, t). The polarisation density will be given by:

P(r, t) = nee∆(r, t) (6.22)

and the induced density will be defined as:

ρind(r, t) = −∇ ·P(r, t) (6.23)

The induced electrostatic potential can be deduced from the induced density of charge

φind(r, t) =

∫

dr′vcoul(r, r
′)ρind(r′, t) (6.24)

and from the induced electrostatic potential we can deduce the induced electric field:

Eind(r, t) = −∇φind(r, t) (6.25)

In order to make some progress, we have to do some assumption on the form of the
displacement field ∆. In order to evaluate the form of the induced field, we still do the
guess that the displacement of oscillators is proportional to the external field and confined
in the slab. We will verify a posteriori that it is also a solution of the equation of motion.
Let’s assume that ∆(r, t) has the following form:

∆(r, t) = Θ(z +
L

2
)Θ(−z + L

2
)∆0e

iq||·r−iωt (6.26)

with ∆0||q||. As a consequence, we can write the polarization as:

P(r, t) = eneΘ(z +
L

2
)Θ(−z + L

2
)∆0e

iq||·r−iωt (6.27)

and the induced density of charge as:

ρind(r, t) = −∇ ·P(r, t)

= −iq||eneΘ(z +
L

2
)Θ(−z + L

2
)∆0e

iq||·r−iωt
(6.28)
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After tedious algebra (see App B) we find the following expression for the induced
potential:

φind(r, t) =
2π

|q|||
(−)ieneq||∆0e

iq||r||−iωt×

×



































2

|q|||
e−|q|||z sinh(|q|||L/2) for z > L/2

1

|q|||

[

2− 2e−|q|||
L
2 cosh(|q|||z)

]

for− L/2 < z < L/2

2

|q|||
e|q|||z sinh(|q|||L/2) for z < −L/2

(6.29)

For sake of clarity, we define the function F (z) (see Fig. (6.4)):

F (z) =



















e−|q|||z sinh(|q|||L/2) for z > L/2
[

1− e−|q|||
L
2 cosh(|q|||z)

]

for− L/2 < z < L/2

e|q|||z sinh(|q|||L/2) for z < −L/2

(6.30)

so that the induced potential can be easily rewritten as:

φind =
4π

|q|||2
(−)ieneq||F (z)∆0e

iq||r||−iωt (6.31)

The in-plane component of the induced electric field, therefore, will be given by:

Eind
x (r, t) = − ∂

∂x
φind(r, t)

= (−)4πene∆0e
iq||r||−iωt×

×



















e−|q|||z sinh(|q|||L/2) for z > L/2
[

1− e−|q|||
L
2 cosh(|q|||z)

]

for− L/2 < z < L/2

e|q|||z sinh(|q|||L/2) for z < −L/2

(6.32)
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and the component of the induced electric field orthogonal to the surface:

Eind
z (r, t) = − ∂

∂z
φind(r, t)

= (−)2
1

|q|||
4πinee

(

∂

∂z
F (z)

)

∆0e
iq||r||−iωt

= (−)24πinee∆0e
iq||r||−iωt×

×















−e−|q|||z sinh(|q|||L/2) for z > L/2

−e−|q|||
L
2 sinh(|q|||z) for− L/2 < z < L/2

e|q|||z sinh(|q|||L/2) for z < −L/2

(6.33)

6.2.1 Induced electric field: differences between bulk and slab

Let’s now try to understand the differences between the induced electric field arising from
the perturbation of the slab and the one generated from the perturbation of the bulk. We
recall that the expression of the induced electric field induced inside of a bulk material is
given by:

Eind(r, t) = (−)4πnee∆0e
iq·r−iωt (Bulk) (6.34)

which shows that for a bulk subjected to a longitudinal perturbation of wave vector q, the
induced electric field is entirely directed along q: on the contrary, in a slab, even subject
to a longitudinal perturbation parallel to the surface, the presence of the interfaces leads
to an induced electric field orthogonal to the surface.
Let’s now try to understand something more on the differences between the intensity of the
induced electric field in the case of a slab and in the case of the bulk. Let’s put ourselves in
the middle of the slab (i.e. in the plane z = 0), and let’s see how strong is the x component
of the induced electric field:

Eind
x (r, t)

∣

∣

∣

∣

z=0

= (−)4πnee∆0e
iq||·r−iωt ×

(

1− e−|q|||
L
2

)

(Slab) (6.35)

It is particularly interesting to study the behaviour of the latter expression in two limits:

1. |q|||L2 ≫ 1 (i.e. , the limit where the thickness of the slab is much greater than

the perturbation wave length). In this limit, we have

(

1− e−|q|||
L
2

)

−→ 1, and

therefore we have that the induced electric field of the slab is given by:

Eind
x (r, t)

∣

∣

∣

∣

z=0

|q|||
L
2
≫1

−−−−−→ (−)4πnee∆0e
iq||·r−iωt (6.36)
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Induced electric field - out-of-plane behaviour
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Figure 6.4: Sketch of the function F (z) (Eq. (6.30)) and of its derivative along z, which,
as shown in Eq.s (6.32) and (6.33), determines the behaviour of the field Eind in the out-
of-plane direction.Panel (a): in proximity of the slab, denoted as the gray region. Panel
(b): the long range behaviour.
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So, in the limit where the thickness of the slab is much greater of the perturbation
wave length, the induced electric field far from the surfaces (i.e., in the middle of the
slab) becomes equal to the bulk value (Eq. (6.34)) .

2. |q|||L2 ≪ 1 (i.e. the limit where the wave length of the perturbation is much

greater than the thickness of the slab1). In this limit we have that

(

1 −

e−|q|||
L
2

)

≈ |q|||L2 . So, in this limit, the induced electric field in the middle of the slab

becomes:

Eind
x (r, t)

∣

∣

∣

∣

z=0

|q|||
L
2
≪1

−−−−−→ (−)4πneeq||
L

2
∆0e

iq||·r−iωt (6.37)

Therefore, in the case where the thickness of the slab is much lesser than the pertur-
bation wave length, the electric field induced inside the slab is, respect to the case of
the bulk, smaller of a factor |q|||(L/2)

We remark that in the limit of very thin slab, the induced electric field result to be much
smaller than the field induced in the infinite material by the same perturbation. This is
due to the long-range and non-local nature of the Coulomb interaction. The electric field
induced in no matter which point r inside the slab depends not only on the charge density
in r, but also on the charge in the rest of the space. More specifically, a slab can be seen
as a bulk from which two parallel half spaces have been cutted away. If the slab is very
thin compared to the perturbation wavelength, so even most of charges contributing to
the coulomb potential inside the slab have been cut away, leading therefore to a dramatic
reduction of the induced field. Moreover, in the very thin slab limit, one can also see that:

Eind
z → −i4πnee|q|||z∆0e

iq||x−iωt (6.38)

which implies that

Eind
z , Eind

x ∼ |q|||L/2 ≪ |Eext| (6.39)

Eq. (6.39), together with Eext||q (longitudinal perturbation), justifies the guess ∆(r, t)||q.

6.2.2 Solution of the equation of motion in the limit |q|||L2 ≪ 1

In the following, we will focus on the limit |q|||L2 ≪ 1, corresponding to the case of a
slab much thinner than the perturbation wave-length. All the ab initio calculations of the
optical response that we have done have been performed in the optical limit, and therefore
they always verify this condition. Using the expression that we have found for the induced

1notice that this is the limit in which we performed all our ab initio calculation, since we have slab of
thickness ∼ 40 Bohr and perturbation with q|| ∼ 10−5Bohr−1
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We can then express the electronic displacement as a function of the total electric field:

∆(r, t) =
e

me

Θ(z + L
2 )Θ(−z + L

2 )

−ω2 + ω2
0 − iωτ

E(r, t) (6.42)

and use this relation in order to find an expression for the conductivity of the slab σ(ω) as:

σ(ω) =
1

4π

iωω2
pl

ω2 − ω2
0 + iωτ

(6.43)

and for the dielectric function:

ε(ω) = 1−
ω2
pl

ω2 − ω2
0 + iωτ

≈ 1− 4π

q2
χρρ (6.44)

This result is indeed remarkable. Despite the density response function corresponding
to the thin slab (Fig. (6.5)) is radically different from the bulk one (Fig. (6.2a)), both
the systems has the same dielectric function. This result also validates the calculation of
absorption spectrum with Eq. (5.26) within the mixed space approach.

6.2.3 Some considerations on the in-plane component of the dielectric
function

In the previous section, we derived the in-plane component of the dielectric function of
a thin slab constituted by charged classical oscillators. We solved in a first moment the
equation of motions of the oscillators, finding a relation between the displacement of the
oscillators and the external perturbation. This relation (which allowed us to extract the
density response function of the system, see Fig. (6.5) ) has been then employed to obtain a
relation between the displacement of electrons and the total electric field, giving us access
to the conductivity, and therefore to the dielectric function of the system. Despite the
significant differences in the induced field and the response function, the dielectric function
of slab and bulk turned out to be the same. However, this is not the procedure that we
usually follow in our ab initio calculations. When we calculate optical properties from
TD-DFT, the fundamental quantity we access to is the response function of density, which
is obtained solving the Dyson equation (2.76). Once we have the interacting response
function χGG′ , the microscopic inverse dielectric function can be calculated:

ε−1
GG′ = δGG′ +

∑

G1

vcoulGG1
χG1G

′ (6.45)

and finally, we get the macroscopic dielectric function as:

εM =
1

ε−1
00

(6.46)
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From the definition of inverse dielectric function (6.45), it is easy to see that the latter
equation is equivalent to the ratio between cell-averaged external and total potential:

εM =
1

ε−1
00

=
vext0

vtot0

(6.47)

This equation is written in reciprocal space, and therefore refers to systems which are
intrinsically periodic. This is clearly not the case for the slab of oscillators that we are
studying in this chapter: our system is finite and isolated in the out-of-plane direction, and
in this context, definition of cell-averaged quantities makes no sense. By the way, having
calculated the field induced in the slab by an external perturbation, we may try to calculate
the dielectric function in analogy with Eq. (6.47), replacing the cell averaged quantities
with the fields averaged over the slab2:

εM =
〈Eext

|| 〉slab
〈Eext

|| 〉slab + 〈Eind
|| 〉slab

(6.49)

which in the limit q||L/2 ≪ 1 reduces to:

〈Eext
|| 〉slab

〈Eext
|| 〉slab + 〈Eind

|| 〉slab
≈ 1−

|q|||L
2

ω2
pl

ω2 − ω2
0 + iωτ

(6.50)

The result of this calculation is shown in Fig. (6.6). As we can see in the figure, the
dielectric function calculated according formula (6.49) has real part ≈ 1 and imaginary
part ≈ 0, coherently with spectra that we have calculated with Eq. (5.25) within our
mixed space approach (compare Fig. (6.6) with Fig. (5.3) ). The study performed within
the Lorentz model allows us to identify the origin of this behaviour: this is a consequence
of the strong reduction of the induced field occurring in the limit of thin slab q||L/2 ≪ 1.
We stress out that, since the induced field has been averaged over the slab, this result
cannot be interpreted as an effective medium theory with vacuum, but it’s a real physical
effect due to the suppression of induced field in the case of very thin film. The situation is
quite confusing: the dielectric function calculated passing by the the conductivity (see Eq.s
(6.43) and (6.44)) and the one calculated by mean of formula (6.49) are radically different.
However, this ambiguity has been already pointed out by several authors in literature. In
Ref. [57], Hüser and coworkers, calculated the static dielectric function of a MoS2 sheet
following a procedure very similar to the one reported in Eq.(6.49). Using a truncated
Coulombian interaction (see e.g. Ref. [58]), they calculated the potential induced by an

2here 〈·〉slab stand for:

〈f(z)〉slab =
1

L

∫ L/2

L/2

f(z)dz (6.48)
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Figure 6.6: Longitudinal-longitudinal part of the dielectric function, calculated as the ratio
between the external and the total field (in the limit |q|||L ≪ 1, see Eq. (6.50)). As we
can see, real part is ≈ 1 while imaginary part is ≈ 0.

isolated sheet, and then they obtained the static dielectric function of the 2D system as:

ε2DM (q) =
〈V ext(q)〉d
〈V tot(q)〉d

(6.51)

(where 〈·〉d stands for the average over a region of thickness d). Following this procedure,
authors of Ref. [57] reported that in the long-wavelength limit ε2DM (q → 0) ≈ 1, in
agreement with the result that we have shown in Fig. (6.6). We want to underline that
this result has a truly physical meaning: the quantity calculated according (6.49) (or
equivalently according Eq. (6.51)) reflects an actual phenomenon occurring in very thin
films, which is the reduction of the screening. As we have seen, when the thickness of
the system is much smaller than the perturbation wavelength, the induced field is strongly
reduced, and the total electric field inside the slab approaches the external field. This is
the reason because of the dielectric function calculated according approaches such as the
one reported in Ref. [57] has been successfully applied to model the screening in GW
calculations on 2D materials (see Ref.s [59],[60]). However, even if the quantity defined
by Eq. (6.51) succeeds in describing the screening of the material, there is quite a wide
agreement in literature that should not be looked at when describing optical properties. As
pointed out by several authors [61][62], the quantity which should be link to the absorption
is not the 2D-dielectric function but the 2D-polarisability:

α2D ∝ 4π

|q|2χ (6.52)
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and if we define (as done by Molina-Sanchez et al. in Ref. [62]) the dielectric function as:

εMolina = 1 +
4π

d
α2D (6.53)

we obtain:

εMolina = 1 +
4π

d
α2D

= 1−
4πω2

pl

ω2 − ω2
0 + i(ω/τ)

(6.54)

which is exactly the same result that we obtained deriving the dielectric function from
conductivity. However, even if most of the authors agree that formula (6.52) is the one
that should be used to describe absorption of an isolated 2d sheet (such as the thin slabs
that we are studying), Eq. (6.47) is routinely used when calculating optical properties
of bulk systems, and it seems to us that a clear explanation of the link between the two
formulas is still lacking. The last part of the present section will be devoted to elucidate
this point. The macroscopic dielectric function is formally defined as the quantity which
relates the electric displacement D with the electric field E:

D =
↔
εM E (6.55)

where the electric displacement D is defined by the constitutive relation:

D = E+ 4πP (6.56)

In the beginning of this chapter, within the Lorentz oscillator model, we have seen that,
when an infinite material undergoes to a longitudinal external perturbation, the induced
electric field ans the polarisation of the system are linked by the following relation (see Eq.
(6.8)):

Eind = −4πP (6.57)

From the latter equation and the constitutive relationship (6.56), it follows that:

D = Eext (6.58)

Putting Eq. (6.58) in (6.55), we immediately obtain:

εM =
Eext

Eext + Eind
(6.59)

In this chapter, we also calculated the response of a thin slab to an external longitudinal
perturbation in the in-plane direction, and we derived the induced electric field and polar-
isation density. From a quick comparison between Eq.s (6.32) and (6.27), we see that in
the case of a slab:

− 4πP 6= Eind (6.60)
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Indeed, one can show that P is no more purely longitudinal, contrarily to the induced field
Eind. This can be seen calculating the curl of the fields Eind and P, which for a purely
longitudinal field must be equal to zero. For the induced field we have:

∇×Eind =





0
∂zE

ind
x − ∂xE

ind
z

0



 (6.61)

with:

∂zE
ind
x − ∂xE

ind
z = (−)4πnee∆0e

iq||r||−iωt×

×















−|q|||e−|q|||z sinh(|q|||L/2) for z > L/2

−|q|||e−|q|||
L
2 sinh(|q|||z) for− L/2 < z < L/2

|q|||e|q|||z sinh(|q|||L/2) for z < −L/2
−
(−)4πnee∆0e

iq||r||−iωt×

×















−|q|||e−|q|||z sinh(|q|||L/2) for z > L/2

−|q|||e−|q|||
L
2 sinh(|q|||z) for− L/2 < z < L/2

|q|||e|q|||z sinh(|q|||L/2) for z < −L/2
= 0

(6.62)

For the polarisation (Eq. (6.27)) we have:

∇×P =





0
∂zPx

0





=





0

∂z
[

Θ(z + L
2 )Θ(−z + L

2 )
]

enee
iq||r||−iωt

0





=





0
[

δ(z + L
2 )− δ(−z + L

2 )
]

enee
iq||r||−iωt

0





6= 0

(6.63)

Since the polarisation contains a transverse part, while the induced electric field is purely
longitudinal (and so it is, by construction, also the external one), we will have:

DL +DT = Eext
L +Eind

L + 4πPL + 4πPT (6.64)



114CHAPTER 6. RESPONSE OF A (THIN) ISOLATED SLAB: THE LORENTZMODEL

DL = Eext
L +Eind

L + 4πPL

DT = 4πPT

(6.65)

Therefore, it is clear that:
D 6= Eext (6.66)

The fact that a purely longitudinal perturbation induces also a transverse polarisation may
be source of perplexity. However, it has been already reported in literature by Del Sole
et al. [32] that for infinite materials having cubic symmetry, a longitudinal perturbation
always produce a purely longitudinal response, but this is no more the case when the case
of non-cubic symmetry is considered, or when surfaces are to take in account (as it can
be seen from Eq. (6.63)). However, the constitutive equation (6.55) is still valid, and
(assuming the diagonality of the tensor) the in-plane component may be obtained as:

εM,|| =
〈Eext

|| 〉slab + 〈Eind
|| 〉slab + 4π〈P||〉slab

〈Eext
|| 〉slab + 〈Eind

|| 〉slab
(6.67)

Previously in this chapter we calculated the induced field in a slab in both the thin and
thick film limits: let’s study the behaviour of Eq. (6.67) in these two cases. In the limit
of very thick slab (see Eq. (6.36)), the induced field approaches the bulk result, so that
condition (6.57) is recovered, and equation (6.67) becomes:

εM,||

|q|||
L
2
≫1

−−−−−→
〈Eext

|| 〉slab +
✘
✘
✘
✘
✘❳

❳
❳
❳
❳

〈Eind
|| 〉slab +

✘
✘
✘
✘
✘✘❳

❳
❳
❳
❳❳

4π〈P||〉slab
〈Eext

|| 〉slab + 〈Eind
|| 〉slab

=
〈Eext

|| 〉slab
〈Eext

|| 〉slab + 〈Eind
|| 〉slab

(6.68)

i.e. we re-obtain the expression valid for the infinite material. In the limit of very thin
slab, on the other hand, the induced field becomes negligible compared to the external one,
and we have:

εM,||

|q|||
L
2
≪1

−−−−−→
〈Eext

|| 〉slab +
✘
✘
✘
✘
✘❳

❳
❳
❳
❳

〈Eind
|| 〉slab + 4π〈P||〉slab

〈Eext
|| 〉slab +

✘
✘
✘
✘
✘❳

❳
❳
❳
❳

〈Eind
|| 〉slab

= 1 + 4π
〈P||〉slab
〈Eext

|| 〉slab

(6.69)

Exploiting the relation between polarisation and induced charge density we can express P||

as a function of the external field:

iq||P|| = −δρind

= −χφext

=
1

iq||
χEext

(6.70)



6.3. RESPONSE OF THE SLAB: OUT-OF-PLANE RESPONSE 115

so that we obtain:

εM,||

|q|||
L
2
≪1

−−−−−→ 1− 4π

q2||
〈χ〉 (6.71)

which is the same of Eq. (6.53).
In conclusion, through this section, we elucidated the differences between the response of
the slab and a bulk system to an external longitudinal perturbation. The true relationship
for the calculation of the dielectric function is Eq. (6.67). In the case of a bulk, it is
equivalent to Eq. (6.49), and one recovers the well known result that for bulk cubic
materials, in the optical limit, the longitudinal-longitudinal component of the dielectric
function can be used to calculate the transverse-transverse one, leading to absorption. For
the slab, the presence of a transverse polarisation implies that one should apply (6.67).
Even if it is not trivial to identify the components of the dielectric tensor, in the limit
of thin slab Eq. (6.67) reproduces the same expression that most of the authors adopt
to describe absorption of 2D systems (and that we have demonstrated in Eq.s (6.67) and
(6.71)). We believe that a key role in reproducing such result is played by the inclusion of
the transverse part of the polarisation.

6.3 Response of the slab: out-of-plane response

Let’s consider the same system as in previous section, but now we try to answer the
following question: what is the response of this system to a perturbation orthogonal to the
surface? Let’s suppose moreover that the external electric field, oscillating in time with
frequency ω has infinite wave length (see Fig. (6.7a)):

Eext(r, t) = Eext
0 e−iωt Eext

0 ||ẑ (6.72)

We remember again that the displacement of the oscillator located in r is described by the
vector field ∆(r, t). The equation of motion of the oscillators could be written has:

me∆̈(r, t) = −meω
2
0∆(r, t)− me

τ
∆̇(r, t) + eEext(r, t) + eEind(r, t) (6.73)

In order to solve this equation, we need to express the induced electric field as function of
∆(r, t). Now, we know that the polarisation of the system can be expressed as a function
of ∆(r, t):

P(r, t) = nee∆(r, t) (6.74)

Once we have the polarisation of the system, moreover, we can obtain the induced density:

ρind(r, t) = −∇ ·P(r, t) (6.75)

I make a guess on the functional form of ∆(r, t) (we will verify a posteriori that it is
correct):

∆(r, t) = Θ(z +
L

2
)Θ(−z + L

2
)∆0e

−iωt ∆0||ẑ (6.76)
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Figure 6.7: Panel (a): sketch of a slab undergoing an external perturbation of infinite
wave-length orthogonal to the surface. Panel (b): the perturbation induces on the two
surfaces an accumulation of charge of opposite sign, resulting in an induced electric field
uniform and constant inside the slab, and identically zero outside.



6.3. RESPONSE OF THE SLAB: OUT-OF-PLANE RESPONSE 117

where Θ stands for the Heaviside function. In other words, I assume that the displacement
of oscillators from their equilibrium position is independent on z in the region occupied by
the slab, and zero outside. Such a guess for ∆(r, t) implies that polarisation density will
be given by:

P(r, t) = neeΘ(z +
L

2
)Θ(−z + L

2
)∆0e

−iωt (6.77)

Therefore the induced density will be given by:

ρind(r, t) =−∇ ·P(r, t)

=− ∂

∂z
Pz

=− nee∆0e
−iωt×

×
(

Θ(−z + L

2
)δ(z +

L

2
)−Θ(z +

L

2
)δ(−z + L

2
)

)

=− nee∆0e
−iωt

(

δ(z +
L

2
)− δ(−z + L

2
)

)

(6.78)

We notice that, as it was expected, when we put the slab in an external field of infinite wave
length orthogonal to the surface, the density of charge induced in the system is constituted
by two planar distribution having opposite sign and located on the faces of the slab (see
Fig.(6.7b)). The electric field induced by such a charge distrubution will be given by:

Eind(r, t) =(−)4πnee∆(r, t)

=(−)4πneeΘ(z +
L

2
)Θ(−z + L

2
)∆0e

−iωt
(6.79)

Contrarily to the case of in-plane perturbation the induced field is no suppressed, and
inside the slab it has the same amplitude than in the infinite material (see Eq. (6.8)).
Now that we have an expression for the induced electric field as function of ∆(r, t), we can
rewrite the equation of motion of the oscillators in the following way:

me∆̈(r, t) = −meω
2
0∆(r, t)− me

τ
∆̇(r, t) + eEext(r, t)− 4πnee∆(r, t) (6.80)

Solving this equation, we find a relation between the displacement of the oscillators and
the external field:

∆0 =
e

me

1

−ω2 + ω2
0 − iωτ + ω2

pl

Eext
0 (6.81)

We remark that in the case of slab perturbed in the out-of-plane direction (and contrarily
to the case of in-plane perturbation), the relation between displacement of oscillators and
the external electric field is the same than in bulk (see Eq. (6.11)). This has important con-
sequences on the EELS spectrum (the case of electrons travelling orthogonally to the slab
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is described in Appendix (B) ,section (B.2.3)). Let’s now try to express the displacement
of oscillators as function of the total electric field. We need this relationship in order to
calculate the conductivity, which is a quantity that we can directly link to the absorption.
The external field can be written as:

Eext(r, t) =











me

e
(−ω2 + ω2

0 − i
ω

τ
+ ω2

pl)∆(r, t) for |z| < L

2

Eext(r, t) for |z| ≥ L

2

(6.82)

While the induced electric field can be written as:

Eind(r, t) =











−me

e
ω2
pl∆(r, t) for |z| < L

2

0 for |z| ≥ L

2

(6.83)

Therefore, the total electric field will be written as:

Etot(r, t) =











me

e
(−ω2 + ω2

0 − i
ω

τ
)∆(r, t) for |z| < L

2

Eext(r, t) for |z| ≥ L

2

(6.84)

As a consequence, the displacement of the electrons will be written:

∆(r, t) =
e

me
Θ(z +

L

2
)Θ(−z + L

2
)

1

−ω2 + ω2
0 − iωτ

Etot(r, t) (6.85)

and the conductivity will be given by:

σ(ω) =
1

4π
Θ(z +

L

2
)Θ(−z + L

2
)

iωω2
pl

ω2 − ω2
0 + iωτ

(6.86)

leading to:

ε(ω) = 1−Θ(z +
L

2
)Θ(−z + L

2
)

ω2
pl

ω2 − ω2
0 + iωτ

(6.87)

Contrarily to the case of in-plane perturbation, both induced electric field and polarisation
are purely longitudinal (as it can be easily demonstrated showing that ∇×Eind = ∇×P =
0). As a consequence, we have that:

Eind = −4πP (6.88)

and therefore:
D = Eext +Eind + 4πP (6.89)
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Contrarily to the case of in-plane perturbation, application of formula (6.49) leads exactly
to the same result obtained deriving the dielectric function from conductivity:

εM =
〈Eext

|| 〉slab
〈Eext

|| 〉slab + 〈Eind
|| 〉slab

=
1

1 +
〈Eind

||
〉slab

〈Eind
||

〉slab

= 1−
ω2
pl

ω2 − ω2
0 + iωτ

(6.90)

This justifies a posteriori the fact that in previous chapter, in section (5.4), we calculated
the out-of-plane component of the dielectric function as the ratio between the average of
the external and total field.

6.4 Conclusions

We briefly resume in this section the results that we have presented in this chapter. Ini-
tially, we explored the differences between the response of a bulk and of a slab to an external
longitudinal perturbation. Using a simple oscillators model to describe the electrons dy-
namics we found that the response of a slab is somewhat halfway between the response of
a bulk and the one of a finite system. This is a meaningful result from a physical point
of view: a slab is by definition a system which is finite in one direction and infinite in
the other two, and therefore it seems reasonable that it has at the same times behaviours
typical of finite and infinite systems.

In particular, we found that, when a slab is perturbed in the in-plane direction (provided
that the slab is much thinner than the perturbation wave-length), the electric field is much
less intense than the field that an identical external perturbation would induce in the bulk
system. As a consequence, the system is no more able to sustain collective excitation at the
plasma frequency, and the density response function of the system tends to the absorption
spectrum, as typically it happens for finite systems.

On the other side, if the slab is perturbed in the out-of-plane direction, the induced
field has the same intensity than in the bulk, and as a consequence the slab is able to
sustain collective charge oscillation in the direction orthogonal to the surface. Collective
plasma excitations are a signature typical of extended systems, and the fact that in a slab
they are present or absent according the direction of the perturbation, is the way in which
the dual nature of this kind of system reveals.

Nevertheless, it is interesting to note that the behaviour of the bulk object is recovered
for the out-of-plane excitation corresponding to the direction where the object is isolated,
while the behaviour of the isolated object is found for the in-plane direction where the
system is still infinite.
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Chapter 7

Optical properties of a thin film:
link with the experiment

7.1 The measured quantity

As we have explained in Sec. 5.4.1, the calculation of the macroscopic dielectric function
of a slab appears quite ambiguous. The difficulty is in the trickery to define in a clear
way what the thickness of the slab is. By mean of the macroscopic average procedure, this
uncertainty, impacts quite in a dramatic way the calculation of the out-of-plane macroscopic
dielectric function : according the value of Lmat chosen, the amplitude and the energy of the
absorption peaks may change very abruptly (see Fig. (5.10b)). This is a very problematic
result: the dielectric function, is supposed to describe the interaction between light and
the electronic system, and it should contains all the informations necessary to describe an
optics experiment. But, of course, the result of the experiment cannot depend on the way
the macroscopic average is carried out. In this section we will focus on those quantities
which are actually measured in an optical spectroscopy experiment, and in which way they
are linked with the dielectric function that we have calculated.

In Fig. (7.1), we show a schematic representation of a typical optical spectroscopy
experiment. In a reflectance measurement, an incident beam impinges on the surface of
the samples. Under the effect of the electric field of the incident wave, the charge carriers
inside the material will move, forming induced density of charge and currents. These
currents and charges , will act as source terms. As a result, they will appear also a reflected
beam (propagating backward respect to the incident one) and a transmitted beams (which
is typically suppressed in a characteristic length called skin depth). All the information
concerning the relation between electric field and the induced source terms (and therefore
all the information about the relationship between incident and reflected beam) is contained
inside the macroscopic dielectric function. The quantity to be measured in an experiment
like the one reproduced in Fig. (7.1) is the complex amplitude of the reflected field. The
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ratio between this quantity and the amplitude of the incident field (which is supposed to
be known), is called reflection coefficient. Its phase express the phase difference between
the incident wave and the reflected wave, while its squared modulus - called reflectance -
express the fraction of incident photons which are backscattered by the surface. Therefore,
the reflection coefficient can be expressed as a function of the dielectric function of the
material. In the hypothesises that the two half-spaces are sharply terminated, perfectly
homogenous and isotropes, the reflection coefficients can be expressed as:

rs12 =
ε

1

2

1 cos θi −
√

ε2 − ε1 sin
2 θi

ε
1

2

1 cos θi +
√

ε2 − ε1 sin
2 θi

(7.1a)

rp12 =
ε2 cos θi − ε

1

2

1

√

ε2 − ε1 sin
2 θi

ε2 cos θi + ε
1

2

1

√

ε2 − ε1 sin
2 θi

(7.1b)

and transmission coefficients as:

ts12 =
2
√
ε1 cosθ√

ε1 cosθ +
√
ε2 − ε1sin2θ

(7.2a)

tp12 =
2
√
ε1

√
ε2 cosθ

ε2 cosθ +
√
ε1
√
ε2 − ε1sin2θ

(7.2b)

The relationships reported in Eq. (7.1) are the well known Fresnel’s formulas. Their
derivation (which basically consists in solving the Maxwell equation with the appropriate
boundary conditions) can be found in the most of classical electrodynamics textbooks
[63],[64]. The overscripts s and p which appears respectively in Eq.s (7.1a) and (7.1b),
stand for the light polarisation. The polarisation s corresponds to case where the electric
field is orthogonal to the incidence plane (which is the plane defined by the line normal to
the surface and by the wave vector of the incident beam): the component of the electric
field orthogonal to the surface is by definition equal to zero, at no matter which incidence
angle. If the incident beam is p-polarised, the electric field lays in the incidence plane,
and for non-normal incidence the electric field of the impinging beam will have a non-
zero component orthogonal to the surface. As we remember from previous chapter, the
ambiguity in the calculation of the dielectric function, affects mainly the response to a
perturbation out-of-plane. Since our main goal is to solve this ambiguity, in the rest of the
chapter we will focus mainly on the case of p-polarised light.

The Fresnel Formulas reported in Eq. (7.1), allows one to calculate the reflection
coefficients of an infinite half-space of material having a given dielectric function. On the
other hand, the systems for which we have calculated the dielectric functions in the previous
chapter, are finite in the out-of-plane direction: they are slabs, and not semi-infinite blocks.
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Figure 7.1: Sketch of a typical reflectance experiment: when a light beam impinges on the
interface between two semi-infinites materials, part of the beam is reflected, and part of
the beam is transmitted. In the upper part of the figure the case of p-polarised radiation
(electric field laying in the incidence plane) is shown, while in the lower part the s-polarised
case (electric field orthogonal to the incidence plane) is depicted. Reflection amplitudes for
both the cases are given in Eq. (7.1)
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Figure 7.2: Sketch of a reflectance experiment performed over a thin film of dielectric
function ε2, encapsulated between an ambient medium of dielectric function ε1 and a
substrate of dielectric function ε3. If the film is thin enough, multiple reflections between
the two interfaces become possible, and reflection coefficients (7.1) must be replaced by
(7.3)
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It makes sense to address the problem to find the reflection coefficients of a slab As we
can see in Fig. (7.2), in the most general case, we have a slab of thickness d and dielectric
function ε2 encapsulated between two semi-infinite half-spaces having respectively dielec-
tric function ε1 and ε3. Respect to the case described in Fig. (7.1) there is an important
difference: there are two interfaces. One between the medium 1 and the medium 2, and
one other between the medium 2 and medium 3. As a consequence, if the slab thickness
is smaller than the characteristic penetration length of the material, multiple reflections
between the two interfaces may occur inside the slab, contributing to the reflection coeffi-
cient of the thin film and producing a change compared to Eq.s (7.1). The problem to find
the reflection coefficients is solved by the so-called Airy’s Formulas [65],[66],[64],[67]:

rs123 =
rs12 + rs23e

2iβ

1 + rs12r
s
23e

2iβ
(7.3a)

rp123 =
rp12 + rp23e

2iβ

1 + rp12r
p
23e

2iβ
(7.3b)

while the transmission coefficients are:

ts123 =
ts12 t

s
23 e

iβ

1 + rs12 r
s
23 e

2iβ
(7.4a)

tp123 =
tp12 t

p
23 e

iβ

1 + rp12 r
p
23 e

2iβ
(7.4b)

where r12,r23,t12,t23 are the Fresnel’s coefficients of the interface 1-2 and 2-3 respectively,
and they can be obtained using Eq.s (7.1a) and (7.1b), while the quantity β, appearing in
the argument of the exponential is given by:

β = k(2)z d =
2π

λ0
d
√

ε2 − ε1 sin
2 θi (7.5)

where λ0 is the wavelength of the impinging light in vacuum.

7.1.1 Anisotropic film

In the previous section we reported the expressions of the reflection coefficients of a semi-
infinite material (the Fresnel coefficients, see Eq. (7.1)) and the reflection coefficients of
a homogeneous film (the Airy’s formulas, see Eq. (7.3)). In both cases we made the

assumption of isotropic material (i.e. dielectric tensor of the form
↔
ε= εδij). Since we

are interested to understand the link between the reflectance and the dielectric functions
calculated in previous chapter (Fig.s (5.5) and (5.10b)), where the in-plane and the out-
of-plane component are different, we will need to calculate the reflection coefficients of a
film of an anisotropic material. In order to get the reflection coefficients of the anisotropic
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slab, we exploited the transfer matrix formalism developed by Schubert in Ref. [68]. This
method allows one to calculate the coefficients of an arbitrarily big stack of arbitrarily
anisotropic films. By the way, in this section, we will limit ourselves to give the expression
for the single anisotropic film (which can be obtained as a particular case of the Schubert’s
formulas, which are reported in Appendix C). Moreover, we will made the assumptions
that the anisotropic film is uniaxial, and with optic axis parallel to the cartesian axis:

↔
ε (ω) =





ε||(ω) 0 0

0 ε||(ω) 0

0 0 ε⊥(ω)



 (7.6)

We also make the assumption that the two halfspaces surrounding the slab are isotropic,
having respectively dielectric function ε1 and ε2. Under these hypothesis, the reflection
coefficients for the slab will be given by:

ranis,p123 =
ranis,p12 + ranis,p23 e2iκp

1 + ranis,p12 ranis,p23 e2iκp
(7.7)

where:

κp = k0d
ε

1

2

||

ε
1

2

⊥

√

ε⊥ − ε1 sin
2 θi (7.8)

and:

ranis,p12 =
ε

1

2

|| ε
1

2

⊥ cos θi − ε
1

2

1

√

ε⊥ − ε1 sin
2 θi

ε
1

2

|| ε
1

2

⊥ cos θi + ε
1

2

1

√

ε⊥ − ε1 sin
2 θi

(7.9)

ranis,p23 =
ε3
√

ε⊥ − ε1 sin
2 θi − ε

1

2

|| ε
1

2

⊥

√

ε3 − ε1 sin
2 θi

ε3
√

ε⊥ − ε1 sin
2 θi + ε

1

2

|| ε
1

2

⊥

√

ε3 − ε1 sin
2 θi

(7.10)

We remark that, if ε|| = ε⊥ ≡ ε2, we recover the result of Eq. (7.1).

7.2 Bulk reflectance vs Slab reflectance

Which is the difference between the reflectance of a slab and the reflectance of a semi-infinite
block of the same material? In order to answer this question, we start with calculating the
reflection coefficients (7.1) and (7.3) modelling our material with a Drude-Lorentz dielectric
function. Later in this chapter we will calculate the reflectance spectra using as ingredients
the dielectric functions obtained via ab initio calculation. Our model dielectric function
will be given by:

ε(ω) = 1−
ω2
pl

ω2 − ω2
0 + iωτ

(7.11)
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Figure 7.3: The Lorentz dielectric function used to study the reflectance of a thin film.
In order to model as accurately as possible the response of silicon, we have chosen as
parameters ω0 = 4 eV, ωpl = 17 eV and τ = 10 eV−1.

In this model, the response of the material depends on the parameters ω0, ωpl, and τ . The
first two parameters are respectively the resonant frequency and the plasma frequency of
the system. In order to make our idealised material as similar as possible to silicon (the
material the slab described in previous chapters are made of ), we have chosen to set:

ω0 = 4 eV

ωpl = 17 eV
(7.12)

while the parameter τ has been set:

τ = 10 eV−1 (7.13)

In Fig. (7.3) we report the dielectric function of Eq. (7.11) evaluated for such parameters.
From now on, we will assume that the slab is incapsulated between two semi-infinite

spaces of vacuum (i.e. ε1 = ε3 = εvac). Under this condition, rp12 = −rp23 ≡ r, and the
expression for the reflection coefficient of the slab simplifies as:

rslab =
r(1− e2iβ)

1− r2e2iβ
(7.14)

with r:

r =
ε cos θi − ε

1

2

vac

√

ε− εvac sin
2 θi

ε cos θi + ε
1

2

vac

√

ε− εvac sin
2 θi

(7.15)

and β:

β = k0d
√

ε− εvac sin
2 θi (7.16)
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Figure 7.4: Thin film encapsulated between two semi-infinite half-spaces having dielectric
constant ε1

As we have explained in section 7.1, when an electromagnetic wave impinges on the surface
of the material, the electric field penetrates in a characteristic length inside the sample,
called skin depth. This characteristic length, here labelled as δ(ω) is frequency dependent
and depends on the dielectric function of the material according the relationship:

δ(ω) =
λ0

2πIm(
√

ε(ω))
(7.17)

where λ0 is the wave-length of the impinging light in vacuum. If the slab thickness is of
the same order of magnitude (or even smaller) of the skin depth, the wave will penetrate
until the back surface of the film. Part of the field will be transmitted through the second
interface, and part will be back-scattered, giving rise at multiple reflections which will affect
the reflection coefficient of the slab. But if the slab is much thicker than the skin depth
(limit d/δ ≫ 1), the wave will be suppressed before it can arrive to the second interface.
No transmission and no multiple reflections will be possible, and the reflection coefficient
of the slab will tend to the reflection coefficient of the semi-infinite material. This can be
readily understood via a quick comparison between the expressions (7.1) and (7.3).

7.2.1 Very thick slab limit

We will first compare the reflectance spectra of a semi-infinite block of material and of a
very thick slab, both having the dielectric function shown in Fig. (7.3). This calculation
is reported in Fig. (7.5a): as we can see, in the limit of very thick slab, the Fresnel
formulas (7.1) and the Airy formulas (7.3) produce the same result. Both the curves are
characterised by a plateau between the resonant frequency ω0 and the plasma frequency
ωpl. As we can see, in the limit d ≫ δ, the exponential e2iβ tends to zero, and therefore,
the expression (7.3) for the reflection coefficient of the film tend to the one valid for the



128CHAPTER 7. OPTICAL PROPERTIES OF A THIN FILM: LINKWITH THE EXPERIMENT

0 5 10 15 20 25 30

Energy (eV)

0.0

0.2

0.4

0.6

0.8

1.0
R
efl
ec
ta
n
ce

(p
)

Thick film d=10000.0 nm, θi=0 deg

Fresnel
(semi-infinite)

Film (finite)

(a)

0 5 10 15 20 25 30

Energy (eV)

0.0

0.2

0.4

0.6

0.8

1.0

R
efl
ec
ta
n
ce

(p
)

Thin film d=2.0 nm, θi=0 deg

(b)

Figure 7.5: Reflectance at normal incidence of a thick film of thickness d = 10000 nm
(panel (a)), and of a thin film of thickness d = 2 nm (panel (b)), both having the same
dielectric function of Eq. (7.11). Compared to the reflectance of the semi-infinite system,
which present a plateau between ω0 ∼ 4 eV and ωpl ∼ 17, the spectrum of the isolated film
contain just one peak located at ω0.

semi-infinite material:

r
s/p
123 −→ r

s/p
12 for d≫ δ (7.18)

7.2.2 Very thin slab

In order to study the thin slab limit, we choose to calculate the reflectance of a slab having
the dielectric function reported in Fig. (7.3) and thickness d = 2 nm. The choice of this
value for the thickness is not aleatory : 2 nm is in fact more or less the thickness of the bare
silicon slabs studied in the previous chapter. In Fig. (7.5b) we report in blue the reflectance
spectrum of this slab, calculated using formula (7.3), while the red dashed line represent
the reflectance of the semi infinite material (calculated via the reflection coefficients (7.1)).
Both the calculations have been performed at normal incidence (i.e. θi = 0). As we can
see, the reflectance spectra of the thin film and the one of the semi-infinite material present
some remarkable differences. As we can see in Fig. (7.5b), the reflectance spectrum of the
thin film is characterised by a single peak located at the resonant frequency ω0.

In Fig. (7.6) we see that reducing the thickness of the film, the peak of the reflectance
spectrum becomes smaller and smaller. This is a very reasonable result from a physical
point of view: in the limit of very thin slab, the interaction of the electromagnetic wave
with the film will decrease more and more, and in the limit of infinitely thin slab the
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incident beam will be completely transmitted (i.e. the reflectance of the system tends to
zero).

Let’s now go back to our slab of thickness 2 nm. As we already have said, we are
interested to study the optical response of the thin film when a component of the electric
field orthogonal to the surface is present. In Fig. (7.7) we report (in blue) the reflectance
of the slab for several angle of incidence: when the angle of incidence is different from
zero, a second peak appears in the spectrum, at the plasma frequency ωpl. Increasing
the angle of incidence, the out-of-plane component of the incident electric field increases,
and it increases as well the amplitude of the peak at the plasma frequency. On the other
hand, when we increase the angle of incidence, the in-plane component of the electric field
decreases, and the amplitude of the peak at the resonance frequency ω0 decreases. In Fig.
(7.7) we also report the transmittance T (defined as the square modulus of the amplitude
of transmitted field, represented as the orange line), and the absorbance (red line), defined
as:

A = 1−R− T (7.19)

This quantity represents the number of photons per unit of time which haven’t been neither
reflected nor transmitted through the slab, and therefore represents the number of incident
photons per unit of time which have been absorbed by the slab. As we can see in Fig.
(7.7), the absorbance spectra, similarly to the reflectance ones, present two peaks, one at
ω0 and the other one at ωpl. This result may be reason of perplexity. In fact, generally
we identify the absorption spectrum of a material with the imaginary part of the dielectric
function, and the dielectric function of this slab (see Fig. (7.3)) has only one peak at
ω0. By the way, this is just an apparent contradiction. The dielectric function express
an intrinsic property of the material (i.e. its polarisability as function of the total electric
field), and it does not depend on the geometry of the sample. The reason because of we
are used to identify absorption spectrum and imaginary part of the dielectric function, is
that the latter is proportional the power per unit of volume dissipated by the electric field.
A peak of the imaginary part of the dielectric function at ω0, means that the maximum of
dissipated power will be when the field oscillates at such frequency, but this does not mean
that the absorbance spectrum as it is defined in Eq. (7.19) must have the same shape of
the imaginary part of the dielectric function. In the present case, in particular, where the
system is constituted by two plane and parallel interfaces, the peak at ωpl can be ascribed
to the effect of multiple reflections inside the slab. If the internal reflectivity at ωpl is large
enough, the impinging wave, once penetrated inside the slab, will undergo several internal
reflections between the two surfaces of the slab, and even if the imaginary part of ε is low at
ωpl (i.e. weak absorption), if multiple reflections occur, the optical path of the beam inside
the slab will quickly increase, leading to an increase of dissipation. A similar argument
(which also allows us to exclude that the peak at ωpl is due to the optical excitation of
plasmons) has been used by Economou in Ref. [69]. In this seminal paper, dating from
1969, Economou derived the dispersion relation of surface plasma excitations propagating
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Figure 7.6: Reflectance spectra of a thin film having dielectric function (7.11). All the
calculations have been performed at normal incidence ( θi = 0 degrees ), variating each
time the thickness of the film: all the spectra feature a peak at ω0 ∼ 4 eV, which increases
as the size of the system increases. In order to better illustrate the difference with the
semi-infinite system, we also report the Fresnel result (Eq.s (7.1))
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in thin metallic films. Using a Drude dielectric function, he found that contrarily to the
case of semi-infinite surfaces (where the energy of surface excitations has an upper limit at
ωpl/

√
2), in very thin slabs, they do exist surface charge oscillations which approach the

energy of the bulk plasmon ωpl. He also remarked, as we did, that a peak in the reflectance
spectrum of the thin film occurs at the bulk plasma frequency, for p polarisation and non
normal incidence. However this does not mean, as appearances may suggest, that this peak
is due to the excitation of surface (or bulk) plasmons by the impinging light: as shown
in Fig. (7.8) (reproduced from Ref. [69]), the dispersion line of surface plasmon never
intersect the dispersion line of photon, so that conservation of energy and momentum
forbid all processes where just one photon is absorbed and just one plasmon is created
(or vice-versa). Because of that, Economou argued that the peak observed at ωpl in the
spectrum of the thin film cannot be related to the creation of elementary excitations, but
must be ascribed to the total reflection condition which is verified at ωpl. Our results
(Fig. (7.7)) show that actually the condition of total reflection is not fulfilled. Indeed
the transmittance is larger than reflectance, leading to a substantial absorbance. It is
nevertheless clear, by comparing the reflectance resulting from a semi-infinite material
(Fig. (7.5a)) that the inclusion of the reflectance on the second interface is at the origin of
the appearance of the peak at ω = ωpl.

In order to better understand the reflectance spectra of the thin film, we studied Eq.
(7.14) in the limit d/λ0 ≪ 1. In this limit, we can expand the exponential e2iβ as power
series of β. In this limit Eq. (7.14) simplifies as:

rslab ≈
−2ik0d[ε cos

2 θi − 1 + 1/ε sin2 θi)]

4 cos θi − 2ik0d[
√
ε cos θi −

√

1− 1/ε sin2 θi]2

=
−2ik0d[(ε− 1) cos2 θi + (1/ε− 1) sin2 θi)]

4 cos θi − 2ik0d[
√
ε cos2 θi −

√

1− 1/ε sin2 θi]2

=
−2ik0d[(ε− 1) cos2 θi + (1/ε− 1) sin2 θi)]

4 cos θi − 2ik0d[
√

cos2 θi + (ε− 1) cos2 θi −
√

cos2 θi − (1/ε− 1) sin2 θi]2

(7.20)

which, after some manipulations, becomes:

rslab ≈
−2ik0d[(ε− 1) cos2 θi + (1/ε− 1) sin2 θi)]

4 cos θi − 2ik0d[(ε− 1) cos2 θi − (1/ε− 1) sin2 θi]− 4ik0d cos2 θi + 4ik0d cos θi
√

ε− sin2 θi]
(7.21)

This equation shows clearly the reason why the spectrum contains one peak a ω0 (resonance

of ε) and another one at
√

ω2
0 + ω2

pl (resonance of 1/ε). The angular dependence of Fig.

(7.7) is also explained by Eq. (7.21).
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Figure 7.7: Comparison of reflectance, transmittance, and absorbance spectra of a thin
film of thickness d = 2 nm, for p-polarisation, at several angle of incidence. At normal
incidence, the spectra contain a single peak of absorbance and reflectance at ω0 ∼ 4 eV,
while it is almost completely transparent in the remaining part of the spectrum. For non-

normal incidence, a second structure appears at
√

ω2
0 + ω2

pl ∼ 17.5 eV. As the angle of

incidence is increased, the reflectance peak at ω0 decreases, while the peak at ωpl increases
its amplitude.
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(a) (b)

Figure 7.8: Dispersion relation of surface plasmons (reproduced from Ref. [69]). Panel (a):
semi-infinite system. Panel (b): thin metallic film between two dielectric half-spaces.

7.3 Vacuum effect on the reflectance spectrum

As we have seen in Chapter 4, when one performs a calculation of the dielectric function of a
slab within the standard supercell approach, the result of the calculation will be an effective
dielectric function where the response of the slab is averaged with the response of the
vacuum inside the supercell. This has dramatic implications mainly for what concerns the
out-of-plane component of the dielectric function: when the vacuum inside the supercell is
increased, the peak of the out-of-plane component of the dielectric function is quenched and
pushed towards the plasma frequency of the system. In this section , we want to investigate
how this spurious effect of vacuum can affect the calculation of reflection coefficients. In
order to approach this problem, we start with constructing an effective slab constituted by
a layer of matter of thickness d having dielectric function ε of Fig. (7.3), and by a layer of
vacuum of equivalent thickness (see Fig. (7.9a)). The effective medium dielectric function
of the system vacuum+matter will be :

εeff|| =
dvacεvac + dε

d+ dvac
(7.22)

for the in-plane component, and it will be:

1

εeff⊥

=
1

(d+ dvac)

(

d

ε
+
dvac
εvac

)

(7.23)
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for the out-of-plane component. We report this effective dielectric function in Fig. (7.9b),
where we compare it with the Drude-Lorentz dielectric function of the ”original” slab
(which has d = 2 nm and dielectric function ε). So in the end we will have an effective slab
having effective thickness deff = 2d = 4 nm, and effective dielectric function εeff We
stress out that this effective slab is by construction anisotropic (i.e. εeff|| 6= εeff⊥ ). Using

the formalism outlined in Sec. (7.1.1), and making the assumption that the two half-spaces
surrounding the slab are occupied by vacuum, we obtain the following expression for the
reflection coefficients:

reffslab = reff
1− e2iβ

eff

1− (reff )2e2iβeff (7.24)

with reff :

reff =
(εeff⊥ εeff|| )

1

2 cos θi − ε
1

2

vac

√

εeff⊥ − εvac sin
2 θi

(εeff⊥ εeff|| )
1

2 cos θi + ε
1

2

vac

√

εeff⊥ − εvac sin
2 θi

(7.25)

and βeff :

βeff = k0d
eff

(

εeff||

εeff⊥

) 1

2√

εeff⊥ − εvac sin
2 θi (7.26)

In Fig. (7.10) we report the calculation of the reflectance of the effective slab, and we
compare with the reflectance of the ”original” slab (having thickness d = 2 nm and dielectric
function ε). The result is quite remarkable: as we can see in Fig. (7.10), the reflectance
spectra of the effective slab and the original slab overlay almost perfectly. We want to
stress out that these two systems are different in all respects: they have different thickness,
and as we can see in Fig. (7.9b) they also have a very different dielectric function. This
result seems to suggest that the effective medium theory of the slab with vacuum, even if
changing quite dramatically the dielectric function, does not affect the reflectance of the
system, which is the observable which is actually measured in the experiment. In the next
section we will investigate the limit of validity of the latter statement.

7.3.1 Limit of validity of the EMT with vacuum

In the previous section we calculated the reflectance spectrum of an effective system formed
by a layer of matter and a layer of vacuum, and we have seen that they are in almost perfect
agreement with the reflectance spectrum of the thin film of matter alone. On one side, this
seems to suggest that averaging the dielectric function of the slab with vacuum is not that
problematic, because even if εeff and ε are very different , both of them allow to obtain
the same reflection coefficient (which is the quantity which is truly measured in an optic
experiment). On the other hand, this equivalence between the effective slab mixed with
vacuum and the slab alone can be verified only within a certain limit of validity. In order
to show that, let’s consider the relatively simple case of normal incidence. Let’s suppose
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Figure 7.9: Panel (a): effective slab formed by a layer of matter and a layer of vacuum,
both having thickness d. Panel (b): dielectric function of the effective slab (in red and
black respectively the in-plane and out-of-plane component). The blue line represent the
dielectric function of the ”original” (isotropic) film



136CHAPTER 7. OPTICAL PROPERTIES OF A THIN FILM: LINKWITH THE EXPERIMENT

0 5 10 15 20 25 30

Energy (eV)

0.0

0.2

0.4

0.6

0.8

1.0

R
efl
ec
ta
n
ce

(p
)

Thin film d=2.0 nm, θi=0 deg

Film d=2.0nm

Effective film deff=4.0nm

0 5 10 15 20 25 30

Energy (eV)

0.0

0.2

0.4

0.6

0.8

1.0

R
efl
ec
ta
n
ce

(p
)

Thin film d=2.0 nm, θi=30 deg

0 5 10 15 20 25 30

Energy (eV)

0.0

0.2

0.4

0.6

0.8

1.0

R
efl
ec
ta
n
ce

(p
)

Thin film d=2.0 nm, θi=45 deg

0 5 10 15 20 25 30

Energy (eV)

0.0

0.2

0.4

0.6

0.8

1.0

R
efl
ec
ta
n
ce

(p
)

Thin film d=2.0 nm, θi=60 deg

Figure 7.10: Comparison of the reflectance spectrum of a thin film of thickness d = 2 nm,
and the reflectance spectrum of an effective film consisting of vacuum and matter mixed in
equal parts. Despite the differences in the dielectric functions of the two systems (reported
in Fig. (7.9b)) the spectra overlap perfectly.
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to gradually increase the parameter d, which define the thickness of the slab alone, and
also the thickness of the effective slab, via the relationship deff = 2d. We want to compare
again the reflectance spectrum of the effective slab mixed with vacuum, having thickness
deff and dielectric function εeff , with the one of the slab alone, having thickness d and
dielectric function ε (see Fig. (7.10)). Since we are in normal incidence, and the only
component of the electric field is the one parallel to the surface, the reflection coefficient
of the effective slab will be given by:

reffslab = reff
1− e2iβ

eff

1− (reff )2e2iβeff (7.27)

with reff :

reff =
(εeff|| )

1

2 − ε
1

2

vac

(εeff|| )
1

2 + ε
1

2

vac

(7.28)

In the limit of thick slab (d≫ δ), the exponential goes to zero, and the reflection coefficient
of the effective slab become simply:

reffslab −→ reff (7.29)

As we have seen in the previous section, and as we can see in Fig. (7.9), the in-plane
component of the dielectric function of the effective system (red lines) verifies the plasmon

condition Reεeff|| = Imεeff|| = 0 at lower energies compared to the dielectric function of the

slab alone (blue lines). This means that the expression (7.29) (which is nothing but the

Fresnel formula (7.1b) evaluated for ε1 = 1 and ε2 = εeff|| ) will be characterised by a plateau

between ω0 and ωeff
pl , and therefore will be necessarily different from the spectrum of the

true slab, which in the limit d≫ δ is characterised by a plateau between ω0 and ωpl. In Fig.
(7.11), I report the calculation of the reflectance of the effective slab and of the slab alone
in the limit d≫ δ . As we can see in the figure, contrarily to what we have observed in Fig.
(7.10) for the case of very thin film, the two spectra are remarkably different. This proofs
that the effective slab mixed with vacuum produces the same reflection coefficient than the
true slab provided that the slab is not too thick. In the limit of thin slab (deff = 2d≪ δ),
it is possible to proof that the reflection coefficients of the effective and the original slab
converge to the same limit (see Appendix C).
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Figure 7.11: Reflectance of the effective and of the original film in the limit of large
thickness. Increasing the size of the system, the agreement of the two systems is lost.

7.4 Solution of the Lmat problem

At the end of the Chapter 5, we presented what we called the Lmat problem. As we
have shown in Section 5.4.1, the average procedure which has to be performed in order to
obtain the macroscopic dielectric function, requires to define the thickness of the slab. This
quantity, by the way, is not defined in a clear way, and, especially in the case of thin slabs
(constituted by relatively few atomic layers), this uncertainty impacts quite dramatically
the calculation of the absorption spectra, which change abruptly in amplitude and energy
range according the chosen value of Lmat (see Fig. (5.10b)). This is a problem which is
strictly related with the vacuum problem that we have discussed in Chapter 4. As we
have seen in section 5.4.1, if we increase enough the value of Lmat, we obtain again the
effective medium theory with vacuum: in a certain way, the problem to determine the
good value of Lmat could be reformulated as the problem to establish where the matter
finishes and the vacuum starts. On the other hand, in the previous section, we have studied
the response of an effective slab constituted by a layer of matter and a layer of vacuum,
having an effective dielectric function εeff and effective thickness deff , and we have seen
that the reflectance of this system (which is the quantity which is actually measured in
an optics experiment), in the limit of thin slab, is exactly the same of the layer of matter
alone. This suggests the idea that the dielectric functions reported in Fig. (5.10b), may be
interpreted as the effective dielectric functions of several effective slabs, each of them having
a different effective thickness (i.e. each of them mixed with a different amount of vacuum).
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In order to corroborate this hypothesis, I calculated the reflectance spectra of a set of slabs
having each of them, as thickness and dielectric function, respectively the value of Lmat

and ε(Lmat) reported in Fig. (5.10b). The result is reported in Fig. (7.12). As we can see
in the figure, all the reflectance spectra overlay perfectly, despite they have been calculated
using slabs having not only different thicknesses, but also very different dielectric functions.
This solve the so-called ”Lmat-problem” that we presented in the previous chapter, and
that we recalled in the beginning of this section. As we explained, there is not a clear
way to define the thickness of the system (the parameter Lmat ) and therefore even the
macroscopic dielectric function results affected by this uncertainty, being not a clear choice
for the space region where the macroscopic average procedure has to be performed. By the
way, the calculation shown in Fig. (7.12) solves our problem: provided that the thickness
of the slab is much smaller than the wave-length of the impinging light, one finds that the
uncertainty on Lmat does not affect neither the reflectance, nor the transmittance spectra,
which are the quantity that are measured in a spectroscopy experiment. We want to stress
out another time that the microscopic quantities of interest (like for example the response
function χ(r, r′, ω), or the induced densities and fields reported in Fig.s (5.8) and (5.9))
are unambiguous and well defined. The arbitrariness on the choice of Lmat is introduced
only at the moment to perform the macroscopic average procedure. This actually comes
from the fact that for a 2D object, the macroscopic average has no meaning. Only the
integration of the microscopic functions, where the limit of integration can be extended
without consequences, is the quantity of interest. It results to be proportional to the
thickness without requiring its definition. One remarks that in that case no inversion of
the quantities can be done. Nevertheless, to describe a surface, or a semi-infinite object,
we are back to the definition of the size of the unit cell.

Performing the macroscopic average procedure with an arbitrary choice of Lmat is an
operation that in some way consists to replace the true slab (which does not have a well
defined thickness, does not have sharply terminated edges, and is inhomogeneous at the
microscopic scale) with an ideal slab (which is perfectly homogeneous, has sharply termi-
nated edges, and therefore has a well defined thickness). But, because of the arbitrariness
on the choice of Lmat, multiple choices are possible for this ideal slab, all of them having
different thickness and macroscopic dielectric function, but all of them reproducing the
same spectroscopic observables (provided that Lmat ≪ λ0). It is interesting that the same
arbitrariness, in some way, also appears on the experimentalist’s side. As it is well known,
spectroscopic ellipsometry is often exploited in order to measure the thickness and the
optical constants of adsorbed films. But when experimentalists do that, or they assume to
know the dielectric function (and from reflectance measurements they deduce the thickness
of the sample) or they assume to know the thickness of the adsorbed film, and from the
reflectance measurement they deduce the dielectric function. Only making further hypoth-
esis on the nature of the sample (i.e. isotropy, non absorbing film, resonance energies etc...)
it is possible to extract at the same time optical constants and thickness of the film from
the reflectance spectra (see for exemple Hans Arwin in Ref. [70]).
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Figure 7.12: In this figure, the calculation of the reflectance spectrum of the silicon slab is
reported. In panel (a), I report the dielectric function calculated within the mixed-space
approach, performing each time the average procedure over a region of space of different
size. All these dielectric functions can be considered as the dielectric functions of effec-
tive slab having different thickness Lmat, each of them containing a different proportion of
vacuum and matter. In panels (b) and (c), I report the respectively reflectance and trans-
mittance spectra calculated for all these effective slabs. All the spectra overlap perfectly.



7.5. CONCLUSIONS 141

7.5 Conclusions

Through this chapter the link between the dielectric function -which is the quantity that we
calculate in our ab initio formalism - and the reflectance spectrum -which is the quantity
which is measured in a real spectroscopy experiment - has been done. As we have seen
in Chapter 4, when the dielectric function is obtained in the standard supercell approach,
the presence of vacuum in the cell severely affects the result, producing a strong quenching
and blueshift of the spectrum. On the other hand, when calculations are performed within
the mixed space approach - which allows us to eliminate the interaction between replicas
- another problem arises: even if this technique allows one to perform the macroscopic
average over a space region of arbitrary length, it turns out that there is not a clear way
to define the size of the slab. This uncertainty - which through this work we called the
”Lmat problem” - reflects in a dramatic way on the calculation of the dielectric function
(see Fig. (7.12a)). The solution of this problem is the main result of the present chapter:
as shown in Fig. (7.12b), even if the macroscopic average operation is ambiguously defined,
the reflectance spectra - which are the true observable of the system - are not, and all the
macroscopic dielectric functions calculated according different values of Lmat produce the
same result. This comes from the fact that reflectance and transmittance spectra appear
to be a linear combination of ε− 1 and 1/ε− 1 (see Eq. (7.21)), which are the quantities
that are a scaled in the so-called effective medium theory with vacuum. Fig. (7.12) shows
that the scaling factor exactly compensates.

Moreover, these results evidence that the reflectance, transmittance, and absorbance
of a 2D object exhibit a peak at ω0 (associated with the in-plane excitation), and a peak

at
√

ω2
0 + ω2

pl (associated with the out-of-plane excitation). These two features are present

in the χρρ response functions that we have calculated in the mixed space approach and
also in the Lorentz model. These two approaches are based on longitudinal framework. It
seems that they also give the correct spectrum for the absorbance spectrum, which should
refers to a purely transverse phenomenon. Using χρρ to access to absorption spectrum
is currently done for 0D objects [71][72][73][74]; here we show that it is also valid for 2D
systems. This result is remarkable since it allows to calculate a transverse response from a
longitudinal one in extended systems in a geometry completely different to the one used by
Ehrenreich [28]. This finding add an important block to the understanding of the response
of an isolated object, clarifying which are the relevant quantities to describe the optical
properties of a thin film, and ideally closing the circle opened by Tancogne-Dejean during
its thesis [20], which approached for the first time the vacuum problem. Next chapter will
be devoted to the study of nonlinear optical properties of functionalised slabs.
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Chapter 8

Second Harmonic Generation from
functionalised surfaces

During previous chapters we have discussed in detail how to calculate the linear response
of slabs, because we have seen that defining Lmat larger than the extension of atomic
positions has the consequence to shift the εM⊥ off to the silicon absorption resonance. To
calculate surface properties we will adopt Lmat equal to the extension of atomic positions.
This is the solution which allows one to recover the induced electric field of the 3D object,
as well as preserving the surface states. It also confirms the choice made in the previous
thesis [20]. In this chapter, we present the calculation of the second harmonic spectra
for silicon surfaces functionalised with nucleobases. As we have discussed in Chapter 1,
inside a centrosymmetric material, the second harmonic generation can take place just in
the neighbourhood of the surface, where, because of the cut, the electronic wave-functions
loose their symmetry. Contrarily to the case of linear spectroscopies, where the impinging
beam penetrates inside the material in a depth comparable to the wave-length of the
incoming light, in a surface second harmonic generation (SSHG) experiment the second
order signal takes place in a region of just few atomic layer of thickness.

Therefore, the SHG is an extremely well suited tool for the study of surface properties
of material having inversion symmetry, and it has been extensively used to characterise
adsorbed overlayers on silicon surfaces, both experimentally [75],[76],[77],[78], [79] and the-
oretically [80][81]. In this thesis, we will investigate how the adsorption of nucleobasis
change the second order response of the Si(001) surface. We will concentrate on three as-
pects. In particular, we want to quantify the sensitivity of the SSHG upon the adsorption
of nucleobasis, i.e. we want estimate the accuracy of the SHG to discriminate between the
bare and the functionalised surface. The second aspect that we want to quantify, is the
chemical selectivity, i.e. the accuracy of the SHG in distinguishing different adsorbed spec-
imens (in our case, between three different nucleobases). Finally, we will also investigate
the dependence of the second harmonic signal on the adsorption geometry. As we have

143
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seen in Chapter 1, HREELS measurements performed on Uracil-functionalised surfaces
[41] allowed to establish the presence of covalent Si-O bond, but this alone is not enough
to completely clarify the adsorption configuration. Due to its unique sensitivity to the
geometry of the system, SSHG could be a reliable way to discriminate between different
adsorption configurations.

d
h
a
rmP(2ω) 6= 0

P(2ω) = 0

Figure 8.1: Sketch of the second order polar-
isation induced in a centro-symmetric mate-
rial.

Before to the aforementioned goals, in
this chapter we will also study how much
surface sensitive is SHG of silicon surfaces
(i.e. we will try to evaluate the thickness
of the SHG active layer). This result will
be obtained via reciprocal and real space
calculations.

8.1 Numerical details

In this section, we present the numerical de-
tails of the calculations that we have per-
formed on our slabs. For all the studied
slabs, the calculation of the Kohn-Sham
wave functions has been performed in a self-
consistent way via ABINIT code [50]. Core
electrons have been modelled via norm con-
serving Trouillier-Martins pseudopotentials
[25], while for the exchange-correlation po-
tential the PBE approximation has been
chosen [51]. For all the calculations, an energy cut-off Ecut of 20 Hartree has been used
for the plane waves basis set. After having obtained the Kohn-Sham wave-functions, the
second order susceptibility has been obtained via 2light code [29],[19]. In order to con-
verge the second order susceptivity, we proceeded in the following way: first of all, we
calculated the spectra at the independent particle level of the theory, using a relatively
small Monkhorst-Pack grid [82] (8 off-symmetry k-points). Then, we gradually increased
the values of the parameters nbands (which controls the number of bands included in the
calculation), npwwfn (which controls the number of plane-waves included in the calculation
of matrix elements), and npwmat (which controls the size of the χG1G2G3

matrix). Finally,
we carefully converged the spectra in the number of k-points, gradually increasing the
size of the Monkhorst-Pack grid used for the calculation (the details about this standard
convergence procedure can be found in Appendix D).
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8.2 Active SHG layer

8.2.1 Independence of the two surfaces
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Figure 8.2: Second order polarisation induced in a slab of
centrosymmetric material. Left: non-converged thickness,
right: converged thickness.

A point of particular im-
portance, when one tries to
model the response of a sur-
face using a slab, is that the
slab must be thick enough
in order to avoid interaction
between its two faces. In
fact it is true, as we have
previously explained, that
SHG from silicon is a purely
surface phenomenon, in the
sense that the second order
polarisation P(2ω) is con-
fined in a harmonically ac-
tive layer near to the in-
terface between matter and
vacuum. By the way, if the
slab is not thick enough (i.e.
smaller than two times the size of the harmonically active layer, see Fig. (8.2)), the two
faces of the slab cannot be considered truly isolated, and the spectra will be affected by
the spurious interaction between the two surfaces. In order to establish how thick must
be the slab in order to isolate its two surfaces, we performed several calculations of the

χ
(2),S
M , increasing each time the thickness of the slab. As prototypical system, we have

chosen the silicon slab functionalised with Thymine, assuming that the thickness of the
harmonically active layer will be roughly the same for the surfaces functionalised with the
other molecules. Indeed, these molecules are very similar, and both experimental [41] and
theoretical [47],[45],[46] have suggested that they may have similar adsorption geometry.

Five different slabs have been used in this study (see Fig. (8.3)), containing respectively
8 silicon layers (corresponding to ∼ 20 Bohr), 16 silicon layers (∼ 40 Bohr) , 24 silicon
layers (∼ 60 Bohr), 32 silicon layers (∼ 80 Bohr) and 40 silicon layers (∼ 100 Bohr). Due to
the increasing computational cost, the relaxation of atomic positions has been performed
just for the smallest of these slabs. The other fours has been obtained opening the first
one and adding in the middle blocks of silicon in their unrelaxed bulk positions.
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8 Si layers 16 Si layers 24 Si layers 32 Si layers 40 Si layers

Figure 8.3: Silicon+Thymine slabs used to study the dependence of spectra on the thick-
ness.

In Fig. (8.4), I report the zzz component of the χ
(2),S
M , calculated in Independent

Particle Approximation for each of the five aforementioned slabs. We found that, increasing
the thickness of the silicon, produces a shift of the main peak at lower energies. As we can
see in Fig.(8.4) in fact, the main structure of the spectrum is located at ∼ 3 eV for the
thinnest of the studied structures. When we increase number of Silicon layers, the spectrum
is gradually red-shifted, and its main peak moves towards a energy of 2 eV, where it stops
in correspondence of a thickness of 24 Silicon layers. If we further increase the thickness
of the slab, we see that the shape of the spectrum is converged, but the amplitude of the
peaks start to decrease. However, this should not be surprising, since the IPA spectrum
is nothing but the macroscopic average of the second order independent particle response
function. This quantity expresses the second order polarisation averaged on the supercell:

χ
(2)
0,αβγ =

=
i

2Ωω3

∑

n,n′,n′′

BZ
∑

k

〈nk|Pα|n′k〉
(

〈n′k|pβ |n′′k〉〈n′′k|pγ |nk〉+ 〈n′k|pγ |n′′k〉〈n′′k|pβ |nk〉
)

Enk − En′k + 2ω + 2iη

×
[

fnn′′

Enk − En′′k + ω + iη
+

fn′n′′

En′′k − En′k + ω + iη

]

(8.1)

In the case of a slab of centrosymmetric material, as we already have explained, the contri-
bution to the second order polarisation can come just from the harmonically active layer in
proximity of the surface. Once the thickness of the slab is large enough to isolate the two
surfaces (i.e. the slab thickness is larger than twice the extension of the harmonically active
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Figure 8.4: Convergence of the IPA second order susceptibility as a function of silicon
thickness.

layer), adding new blocks of silicon in the middle of the slab will not change the integral of
the second order polarisation, and therefore the shape of the spectrum will be unchanged.
However, increasing the thickness of the slab will lead to an augmentation of the size of
the supercell, and this, due to the prefactor 1/V in Eq. (8.1), will result in the application
of a scaling factor to the spectrum. So, in a sense, the fact that the spectrum changes of
a scale factor when the thickness of the slab is increased, is a clue that the convergence in
the slab’s thickness has been reached, and that the two surfaces are isolated. In order to
conclude, we judge that 24 Silicon layers represent the best compromise between feasibility
of the calculations and convergence of the spectra in the thickness of the slab. A similar
conclusion has been reached by Tancogne-Dejean [20], (which in its thesis studied SHG
from bare and hydrogen covered silicon surfaces).

8.2.2 The thickness of the SSHG active layer

In the previous section, we presented the IPA spectra of slabs functionalised with thymine,
each of them having a different thickness. As we have explained, the spectra converge when
the thickness of the slab is ∼ 2 times larger than the depth of the harmonically active layer
(see Fig. (8.2)) As shown in Fig. (8.4), the shape of the second harmonic spectrum is
converged at LSi ∼ 60 Bohr, which seems to suggest that the size of the harmonically active
layer is dharm ∼ 30 Bohr. By the way, this estimation is somehow indirect, since it has been

obtained via the analysis of a quantity (the χ
0(2)S
M ) which comes from a macroscopic average

procedure. Estimate the extension of the harmonically active layer is a very important task,
since the extension of such layer gives a direct measurement of how surface sensitive are
the second harmonic spectra. In this section, we will give an estimation of dharm based on
the analysis of the microscopic second order induced density δρ(2)(r) (a quantity which is
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Figure 8.5: Panel (a): Silicon di-hydrogenated surface used to calculate the second order
induced density. Panel (b): second order density induced in the slab by an external longi-
tudinal perturbation orthogonal to the surface.

directly linked with the second order polarisation). The extension of the region where the
second order density variation is non zero will constitute a measurement of the thickness
of the harmonically active layer. In order to perform such an extimation, we need a very
thick slab (very thick in the sense that we want to be in the limit Lmat ≫ dharm, so that
we can judge with relative confidence when δρ(2) goes to zero). This cannot be obtained
with the thymine functionalised slabs studied in the previous section. Those slabs in fact,
have 4x1 reconstruction, which means that for each atomic layer of silicon we add we are
adding four more atoms to the system, quickly leading to an unsustainable computational
cost. As case study, therefore, I have chosen the di-hydrogenated silicon surface . This
slab has 1x1 reconstruction, and this allows us to increase the thickness of the slab at a
relatively contained computational cost. The slab used for the calculations is reported in
Fig. (8.5a). This slab has a thickness of 80 silicon atomic layers, roughly equivalent to
∼ 200 Bohr. In order to obtain the second order density variation, we followed a procedure
somewhat similar to the one we have outlined in Chapter 5 for the linear response. First

of all, we obtained the independent particle response function χ
0,(2)
GG1G2

(2q,q,q, 2ω, ω), for
q ∝ ẑ, within the optical limit. In the reciprocal space, the Fourier coefficients of the
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density induced by an external macroscopic potential will be given by1:

δρindG (2q, 2ω) = χ
0,(2)
G00(2q,q,q, 2ω, ω) (8.2)

In order to obtain the profile of the induced density in the real space, we performed a
Fourier transform using these coefficents:

δρind(z, 2ω) =
∑

G

χ
0,(2)
G00(2q,q,q, 2ω, ω)e

i(qz+Gz)z (8.3)

Result of this calculation is reported in Fig. (8.5b). As we can see, coherently with the
estimation of previous section, the second order induced density is mainly concentrated in
a range of ∼ 40÷ 50 bohr within the surface.

8.3 Chemical selectivity

In this section, we will compare the second harmonic generation from surfaces functionalised
with different nucleobases (Fig. (8.6)). In left part of Fig.(8.7) we report the macroscopic
second order susceptibility calculated in independent particle approximation. As we can
see, at independent particle level of the theory, the second order spectra of the three surfaces
look very similar, regardless of the adsorbed specimen. Moreover, the three calculated
components also have the same shape, all of them featuring a main peak at ∼ 2 eV, and two
smaller structures respectively at ∼ 3.7 eV and ∼ 4.6 eV. A small peak at ∼ 1 eV appears
for yyz and zyy for the surfaces functionalised with Cytosine and Uracil. In right part of
Fig. (8.7) we report the spectrum of the three surfaces calculated with the inclusion of local
field effects. As pointed out by Tancogne-Dejean for the bare silicon surfaces [20], local
field effects are more important for those component of the χ2

M tensor which contribute to
the out-of-plane polarisation (here the zzz and the zyy component, reported in Fig. (8.7b)
and (8.7f)). The zzz components present two main structures respectively located at 3.5
eV and 5.6 eV. Concerning the zyy component, inclusion of local field effects produces a
shift of the main peak from ∼ 2 eV to ∼ 4 eV. On the other hand, for the yyz component
of the χ2

M , which contributes to the in-plane polarisation Py, inclusion of local field effects
results just in a slight increase of the spectral width (the main peak is still located at ∼ 2
eV). We can see that the zzz component is the one for which the spectra of the three
surfaces exhibit the largest differences. The two peak constituting the main features of
the spectrum, change their relative amplitudes according the adsorbed molecule. This fact
induces us to think that the displacement of the spectrum at higher energies occurring
with the inclusion of local field effects, can be interpreted as an increase of the spectral

1To be precise, this is the density which would be induced in the Kohn-Sham system by an external
macroscopic perturbation, and not the density that such a perturbation would induce in the real system.
However, the extension of the harmonic layer should depend just on the symmetry of the system, and it
should be similar in both cases.
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Si+Thy Si+Cyt Si+Ura

Figure 8.6: Slab used to study functionalised surfaces. From left to right: thymine, cyto-
sine, uracil. Thickness of silicon: ∼ 60 Bohr. The intermolecular vacuum occurs in the x
direction.

weight of the molecular transitions. As we have seen in Chapter 5, the quenching of
the spectrum occurring at linear order for the Si+Thy slab can be interpreted as a sort
of effective medium theory between silicon and thymine. Since the molecule’s spectrum
is located at higher energies and it is much less intense than silicon one, the resulting
effective medium spectrum will be given by the average of the two spectra, with the silicon
contribution becoming more and more important as the thickness of the slab is increased.
As we have discussed, this effective dielectric function gives a good approximation of the
properties of functionalised slab, but it cannot be considered a reasonable description of
a semi-infinite surface of silicon covered with a molecular monolayer of thymine. When
light impinges on the surface, it penetrates for a length which is usually much greater
than the thickness of our slab, and as a consequence, the contribution of substrate to the
optical response is much more important than we can estimate with our modest slabs. This
problem actually occurs only for the linear order. On the other hand, second harmonic
generation from centrosymmetric materials is a phenomenon which occurs in a region of
space much thinner (∼ 30÷40 Bohr, according the estimation of previous section). Second
order polarisation is concentrated in the neighbourhood of surface (see Fig. (8.5b)). The
quenching of the zzz component of the χ2, therefore, cannot be anymore interpreted as a
consequence of having chosen an inadequate slab thickness, but it’s a truly physical effect
due to the presence of the adsorbed layer. Due to the fact that the active layer is much
smaller for SSHG than for linear response, the presence of adsorbed molecules has a much
more important effect on nonlinear optical properties than on linear ones.
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Figure 8.7: Second order susceptibility for Silicon surfaces functionalised with nucleobases.
Black: thymine, red: cytosine, blue: uracil. Left: IPA, right: LFE.
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Si+Thy

Dimer bridge

Si+Thy

Single bond

Si(001)

Bare surface

Figure 8.8: Slabs used to study the dependence of SHG upon the adsorption configuration.

8.4 Sensitivity adsorption configuration

In this section we compare the second order spectra of two different Si+Thy surfaces. The
first one (reported in left panel of Fig. (8.8)) is the one in which the thymine molecule
is adsorbed in the dimer bridge configuration, while in the second one (central panel of
Fig. (8.8)), the molecule is attached to the silicon substrate with just one Si-O bond. In
order to better understand the role played by the adsorbed molecule, we also studied the
bare silicon surface (right panel of Fig. (8.8)) The SHG spectra for the three surfaces are
reported in Fig. (8.9), respectively depicted in black, magenta, and red. The first step
has been the calculation of the spectra in the independent particle approximation (Fig.s
(8.9a),(8.9c),(8.9e)). Both the dimer bridge and the singly bonded surface present, for each
of the three studied components, a main peak at around ∼ 2eV , but in the case of the
single bond adsorption geometry this peak presents a blueshift of ∼ 0.2 eV (magenta line).
In addition, the spectra of the singly bonded surface also present some sharp features in the
low energy region (0÷ 1 eV), while at the same energies the spectrum of the dimer bridge
configuration appears smooth and suppressed. This feature is probably due to transitions
involving dangling electrons at the silicon dimers. As we can see in central panel of Fig.
(8.8), in the singly bonded configuration, just one of the silicon dimers at the surface
passivated, while the other one remain as it would be in the bare surface. Therefore, we
can expect that the SHG of this surface will be a sort of hybrid between the bare silicon
surface and the dimer bridge functionalised one.

This is confirmed by the analysis of the spectra of the bare silicon surface (red lines
in Fig.s (8.9a),(8.9c),(8.9e)), which exhibit sharp structures in the low energy part of the
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spectrum, exactly as the Silicon+Thymine surface in the singly-bonded adsorption con-
figuration. In Fig.s (8.9b),(8.9d),(8.9f) we report the spectra with the inclusion of local
field effects. Again, we see that local field effects impact in a more important way the
components relative to the out-of-plane polarisation (i.e. yyz in Fig. (8.9b) and zyy in
Fig. (8.9f)). Concerning the zzz component, the spectrum of the singly-bonded surface
is blue-shifted of ∼ 0.3 eV and slightly more quenched compared to the spectrum of the
surface in the dimer bridge configuration. Concerning the zyy component, we see that
in region between 0 and 3 eV the spectrum of the singly bonded surface (magenta) is
significantly larger than the spectrum of the dimer-bridge surface (black), while at higher
energies the spectra overlap. Concerning the yyz component, just minor differences be-
tween the two adsorption configuration are found. Indeed, considered also the discussion
of previous section, it seems that surface second harmonic generation is more sensitive to
the adsorption configuration (probably due to the presence of remaining dangling bonds)
than to the adsorbed specimen (at least when relatively similar adsorbed molecules are
considered, as in the present case). Quite interestingly we remark that, for all the three
studied components of the susceptibility, the adsorption of the molecule tends to suppress
the spectrum, as we can from comparison with the spectrum of the bare surface. This
seems to suggest that second harmonic generation could be effectively be used in order to
monitoring of nucleobases adsorption on silicon, at least for applications where an high
sensitivity to the adsorbed specimen is not needed.
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Figure 8.9: Second order susceptibility for Si+Thy in different adsorption configurations.
Black: dimer bridge (DB), magenta:singly bonded (SB) configuration, red: bare surface.
Left: IPA, right: LFE.
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8.5 Conclusions

In this chapter I presented the calculations that I performed on the surfaces functionalised
with nucleobases. According our results, the thickness of the harmonically active region
has an extension of 40÷ 50 Bohr, resulting in a great sensitivity to the surface properties.
The SHG spectra (that we calculated with inclusion of local field effects) confirmed these
findings: the adsorption of a molecular monolayer revealed to be enough to drastically
change the second order optical response, which turns out to be very different from the one
of the bare surface, confirming that SSHG could be used to monitor nucleobases adsorption
on silicon. Nevertheless, the chemical selectivity between these three nucleobases is less
remarkable since the SHG spectra did not exhibit radical difference upon change of the
adsorbed molecule. On the contrary, they turn out to be very sensitive to the change of
adsorption configuration when dangling bonds are preserved at the surface.
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Conclusions

The goal of this thesis was to calculate linear and non-linear optical properties of silicon
surfaces functionalised with nucleobases. The first results showed an extreme reduction
of the spectra as soon as local field effects are included. The reduction of spectra, after
inclusion of local field effects in the supercell framework, had already been observed and
interpreted as a spurious effect of vacuum inside the cell. The selected-G method had been
introduced in order to cure this problem. However, the spectra of functionalised slabs still
appeared quenched despite being calculated within this framework.

Since the most stable geometry for functionalised surfaces contains line of molecules
separated by empty space, I wondered if this intermolecular vacuum could be at the origin
of this quenching. In order to tackle this problem I decided to follow two different paths.

One direction consisted in studying two toy-systems: the fully covered surface (which
does not contain vacuum between molecules), and the silicon stepped surface (in which the
place of molecules has been taken by silicon steps, and which contains the same amount
of vacuum as the original functionalised surface). The stepped surface exhibit the same
spectrum as the bare flat silicon slab apart from a scaling factor. No shift at higher
energy is observed. On the other hand, the fully covered surface resulted having the same
quenched spectrum as the original functionalised surface, demonstrating that this effect of
the spectrum is really due to the functionalisation. Indeed, the absorption of the molecule
is extremely low in the considered range of energy, and the spectrum results in an effective
medium theory between the eight atomic planes of silicon and the adsorbed molecules.

The other direction consisted in approaching the problem of optical response of func-
tionalised slabs in the mixed space. In this approach, the directions parallel to the surface
are treated in reciprocal space (since periodicity is maintained), while the direction per-
pendicular to the slab (where the periodicity is broken) is treated in real space. This allows
one to study the dependence along z of the microscopic response functions. Moreover, this
technique allowed me to obtain the response of a single slab isolated from its replicas, mak-
ing possible to exclude the effects coming from this spurious interaction. I have evidenced
that the thickness of the slab was ambiguously defined, leading to a not univocally defined
macroscopic dielectric function. This effect is similar to the effective medium theory with
vacuum previously evidenced in the supercell formalism, but in this case it concerns the
more subtle problem to establish where the matter finishes and the vacuum starts.
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Mixed-space calculations also evidenced a puzzling difference in the response of the
slab according to the direction of the perturbation. This brought me to investigate the
fundamental differences between 2D and 3D objects. In order to eliminate unnecessary
complexity, I decided to inquire the response of a slab to an external longitudinal pertur-
bation in the different directions using a simple Lorentz oscillators model. This allowed
me to establish that, for an in-plane perturbation, the induced electric field is (in the limit
of very thin slab) extremely reduced, resulting in a suppression of the screening and in
a redshift of the plasma oscillations. On the contrary, when the slab is perturbed in the
out-of-plane direction, the induced electric field recover the bulk value, and is strictly equal
to zero outside of the slab, leading to an absence of interaction between replicas in that
direction. It results from this model that the density-density response function contains
one peak at the resonant frequency of the dielectric function (usually associated with the
absorption) for the in-plane component, and one peak at the resonant frequency of the
inverse dielectric function (usually associated with the plasmon). These findings are con-
sistent with the results obtained within my ab initio mixed-space approach (based on the
longitudinal formalism of TD-DFT ).

Since I was interested in optical response, I also inquired the link between macroscopic
dielectric functions calculated within mixed space approach with the quantities measured in
a spectroscopic experiment, namely reflectance, transmittance and absorbance. For this, I
used the Fresnel and Airy formulas, which are well established in the framework of classical
electromagnetism. Surprisingly (and happily) we found that despite the ambiguity in the
definition of the thickness of the matter (which results in the impossibility to define a
unique macroscopic dielectric function for a 2D object), the spectroscopic observables are
unaffected by this ambiguity. Moreover, the reflectance, transmittance, and absorbance
spectra exhibit two main features, one at the resonant frequency of the dielectric function,
and the other one at the plasma frequency, coming from the presence of the second interface.
This pushed us to investigate the thin film limit of the slab reflection coefficients. We found
that they can be expressed as a linear combination of term of the form (ε−1) and (ε−1−1),
explaining the shape of the spectra as well as their angular dependence. These spectra
reproduce the feature of the density-density response function, allowing us to calculate
the optical absorption from the longitudinal formalism of TD-DFT for a 2D object. This
result was unexpected since, due to the presence of surface charges, one expects a transverse
component in the polarisation, even when the perturbation is purely longitudinal.

These clarifications of the different properties between 2D and 3D objects brought me to
the conclusion that to describe a surface, one should define the thickness of the matter with
the extension of the atomic positions, since it allows to recover the induced electric field
of the (semi-)infinite material and to preserve the surface states. The selected-G method
has been used to simulate SSHG for silicon surfaces functionalised with three nucleobases
(Thymine, Cytosine, Uracil) adsorbed in the dimer-bridge configuration. To inquire the
sensitivity of SSHG to adsorption configuration, we also studied the SSHG from a surface
with Thymine adsorbed in a singly bonded-configuration. The thickness of the harmoni-
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cally active layer has been estimated to some tenth of Bohr. Even if the sensitivity on the
adsorbed specimen that we have studied is quite low, the SHG signal results to be strongly
influenced by the adsorption of nucleobases, suggesting that SSHG may be a possible tool
to monitor adsorption of nucleobases on silicon. It also appears to be very sensitive to the
adsorption configuration, in particular when saturation of dangling bonds occurs.
Currently, as a result of the present work, one article has been submitted, and two others
are in preparation.
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Appendix A

Fourier transform of the Coulomb
potential operator

Let’s consider the potential:

v(q||, z, z
′) = 2π

e−|q||||z−z′|

|q|||
(A.1)

The Fourier transform of this potential will be given by:

F
[

v(q||, z, z
′)
]

=

∫

dz

∫

dz′e−iqzz2π
e−|q||||z−z′|

|q|||
eiq

′
zz

′
(A.2)

I perform the following change of variables:

ZCM =
z + z′

2
∆z = z − z′ (A.3)

so that:

z = ZCM +
∆z

2
z′ = ZCM − ∆z

2
(A.4)
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Our Fourier integral becomes:

F
[

v(q||, z, z
′)
]

=

=

∫

dZCMe
−iqzZCM eiq

′
zZCM×

×
∫

(d∆z)
2π

|q|||
e−|q||||∆z|e−iqz∆z/2e−iq′z∆z/2

=
2π

|q|||
δ(qz − q′z)

∫

(d∆z)e−|q||||∆z|e−iqz∆z/2e−iq′z∆z/2

=
2π

|q|||
δ(qz − q′z)×

{∫ 0

−∞
d(∆z)e(|q|||−i(qz+q′z)/2)∆z+

+

∫ ∞

0
d(∆z)e−(|q|||+i(qz+q′z)/2)∆z

}

=
2π
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1

|q||| − i(qz + q′z)/2
×
[
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+
(−)

|q|||+ i(qz + q′z)/2
×
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e−(|q|||+i(qz+q′z)/2)∆z

]∞

0

}

=
2π

|q|||
δ(qz − q′z)×
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(
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(

(qz + q′z)/2
)2

=
4π

q2|| + q2z

(A.5)



Appendix B

Lorentz model

B.1 Slab: Electrostatic potential induced by an in-plane per-
turbation

In Section 6.2, we have given the expression of the electrostatic potential induced inside
the slab by an external perturbation parallel to the surface. In this appendix, we report
the derivation of this quantity. We recall that the displacement of the oscillators has the
form:

∆(r, t) = Θ(z +
L

2
)Θ(−z + L

2
)∆0e

iq||·r−iωt (B.1)

with ∆0||q||. As a consequence, we can write the polarization as:

P(r, t) = eneΘ(z +
L

2
)Θ(−z + L

2
)∆0e

iq||·r−iωt (B.2)

and the induced density of charge as:

ρind(r, t) = −∇ ·P(r, t)

= −iq||eneΘ(z +
L

2
)Θ(−z + L

2
)∆0e

iq||·r−iωt
(B.3)
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λ = 2π/q

λ = 2π/q

External perturbation

Eext(r, t) = Eext
0
eiq||·r−iωt

Eext
0

q||

Induced density

z

z = L/2

z = −L/2

. . .. . .

∆(r, t) = Θ(z + L

2
)Θ(−z + L

2
)∆0e

iq||·r−iωt ∆0 ∝ q||

ρind(r, t) = −neeiq||∆0Θ(z + L

2
)Θ(−z + L

2
)eiq||·r−iωt

Let’s focus on the form of this induced density. This density, can be seen as a distribution
of planes orthogonal to the z axis, each of them containing a surface distribution of charge
oscillating in time and spatially modulated by a wave-vector q||. Now, we know the poten-

tial induced by a planar distribution of charge of the form eiq||r|| located in z′: it is given
by

v(q||, z, z
′) =

2π

|q|||
e−|q||||z−z′| (B.4)

The induced density of charge could be written as:

ρind(r, t) = −ineeq||∆0

∫ L/2

−L/2
dz′δ(z − z′)eiq||r||−iωt (B.5)
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The potential induced by such a density of charge will be therefore given by:

φind =

∫

dz′v(q||, z, z
′)ρind(r′, t)

= (−)ieneq||∆0
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(B.6)

Let’s focus for a moment on the integral appearing to the last member,
∫ L/2
−L/2 dz

′e−|q||||z−z′|.

The variable z′ assumes value in the interval −L/2 < z′ < L/2. We have therefore three
possible cases:

z >
L

2

−L
2
<z <

L

2

z < −L
2

for z > L/2, we have z > z′, since by definition −L/2 < z′ < L/2. Therefore, for z > L/2,
the integral become:

∫ L/2

−L/2
dz′e−|q||||z−z′| =

∫ L/2

−L/2
dz′e−|q|||(z−z′)

=
e−|q|||z

|q|||

[

e|q|||z
′

]L/2

−L/2

=
2

|q|||
e−|q|||z sinh(|q|||L/2)

(B.7)

For z < −L/2, instead, we always have z < z′, and so the integral will be equal to:
∫ L/2

−L/2
dz′e−|q||||z−z′| =

∫ L/2

−L/2
dz′e|q|||(z−z′)

= −e
|q|||z

|q|||

[

e−|q|||z
′

]L/2

−L/2

=
2

|q|||
e|q|||z sinh(|q|||L/2)

(B.8)
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For −L/2 < z < L/2, z can be greater or lesser than z′, so we have to split the integral in
order to account correctly both case. For −L/2 < z < L/2 we have:

∫ L/2

−L/2
dz′e−|q||||z−z′| =

∫ z

−L/2
dz′e−|q||||z−z′| +

∫ L/2

z
dz′e−|q||||z−z′|

=

∫ z

−L/2
dz′e−|q|||(z−z′) +

∫ L/2

z
dz′e|q|||(z−z′)

=
1

|q|||
e−|q|||z

[

e|q|||z
′

]z

−L/2

+
(−)

|q|||
e|q|||z

[

e−|q|||z
′

]L/2

z

=
1

|q|||
e−|q|||z

[

e|q|||z − e−|q|||
L
2

]

+
(−)

|q|||
e|q|||z

[

e−|q|||
L
2 − e−|q|||z

]

=
1

|q|||

[

1− e−|q|||(z+
L
2
) − e|q|||(z−

L
2
) + 1

]

=
1

|q|||

[

2− 2e−|q|||
L
2 cosh(|q|||z)

]

(B.9)

So the induced potential will be given by:

φind =
2π

|q|||
(−)ieneq||∆0e

iq||r||−iωt×

×



































2

|q|||
e−|q|||z sinh(|q|||L/2) for z > L/2

1

|q|||

[

2− 2e−|q|||
L
2 cosh(|q|||z)

]

for− L/2 < z < L/2

2

|q|||
e|q|||z sinh(|q|||L/2) for z < −L/2

(B.10)

For sake of clarity, we define the function F (z):

F (z) =



















e−|q|||z sinh(|q|||L/2) for z > L/2
[

1− e−|q|||
L
2 cosh(|q|||z)

]

for− L/2 < z < L/2

e|q|||z sinh(|q|||L/2) for z < −L/2

(B.11)

so that the induced potential can be easily rewritten as:

φind =
4π

|q|||2
(−)ieneq||F (z)∆0e

iq||r||−iωt (B.12)
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B.2 EELS within the Lorentz model

B.2.1 EELS in the case of bulk

In section 6.1 , we studied the response of an infinite material, constituted of ne oscillators
per unit of volume (of mass me, charge e, and frequency ω0) to an external longitudinal
perturbation of the form:

Eext(r, t) = Eext
0 eiq·r−iωt (B.13)

We have seen, solving the equation of motion of our oscillator system, that this external
perturbation induces a reconfiguration of the charges inside of the material, i.e. an induced
density of charges. This induced density of charge can be expressed as a function of the
vector field describing the displacement of the oscillators from their equilibrium position:

∆(r, t) =
e

me

1

−ω2 + ω2
0 − iωτ + ω2

pl

Eext(r, t) (B.14)

∆(r, t) =
e

me

1

−ω2 + ω2
0 − iωτ

Etot(r, t) (B.15)

This reconfiguration of charges is responsible for the creation of an induced electric field

Eind(r, t) = (−)4πnee∆(r, t) (B.16)

Now: the external perturbation, being longitudinal, may be seen as the electric field of
an electron beam travelling in the q direction. We ask therefore: does it make sense to
calculate the work done from the induced electric field on the external electron beam? Of
course it does, and I expect to recover a quantity linked with the energy loss function.
The external electric field will be related to the external density of charge ρext(r, t) via the
relationship:

∇ ·Eext(r, t) = 4πρext(r, t) (B.17)

and the external density of charge is related to the external density of current via the
continuity equation:

∂

∂t
ρext(r, t) = −∇ · Jext(r, t) (B.18)

Putting together these two relationships, we have:

∇ ·Eext(r, t) = 4π
−i
ω
∇ · Jext(r, t) (B.19)

and therefore:

Jext(r, t) =
iω

4π
Eext(r, t) (B.20)
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The power dissipated from the electric field on the external current will be given by [83]:

W =

∫

drReJext(r, t) · ReE(r, t) (B.21)

we define the density of dissipated power per unit of volume:

W = ReJext(r, t) · ReE(r, t)

= ReJext(r, t) · ReEext(r, t) + ReJext(r, t) · ReEind(r, t)

= Re

(

iω

4π
Eext(r, t)

)

· ReEext(r, t) + Re

(

iω

4π
Eext(r, t)

)

· ReEind(r, t)

= − ω

4π
ImEext(r, t) · ReEext(r, t) +− ω

4π
ImEext(r, t) · ReEind(r, t)

(B.22)

Where we used relation Eq. (B.20) to link the external current with the external field, and
we noticed that:

ReJext(r, t) = Re

(

iω

4π
Eext(r, t)

)

= − ω

4π
ImEext(r, t) (B.23)

In order to evaluate (B.22), we write explicitly the real part of Eind(r, t):

ReEind(r, t) =

=− Re

[

ω2
pl

(ω2
0 + ω2

pl)− ω2 − i(ω/τ)
Eext(r, t)

]

=− Re

[

ω2
pl

(ω2
0 + ω2

pl)− ω2 − i(ω/τ)

]

Re[Eext(r, t)] + Im

[

ω2
pl

(ω2
0 + ω2

pl)− ω2 − i(ω/τ)

]

Im[Eext(r, t)]

=−
[

ω2
pl[(ω

2
0 + ω2

pl)− ω2]

[(ω2
0 + ω2

pl)− ω2]2 + [(ω/τ)]2

]

Re[Eext(r, t)] +

[

ω2
pl(ω/τ)

[(ω2
0 + ω2

pl)− ω2]2 + [(ω/τ)]2

]

Im[Eext(r, t)]

Moreover, using the definition of Eext(r), we have:

Eext(r, t) = Eext
0 [cos(q · r− ωt) + i sin(q · r− ωt)]

= Eext
0

[

[cos(q · r) cos(ωt) + sin(q · r) sin(ωt)] + i[sin(q · r) cos(ωt)− cos(q · r) sin(ωt)]
]
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In Eq. (B.22), therefore, there will be terms of two types:

Im[Eext(r, t)] · Re[Eext(r, t)] =

=Eext 2
0

[

[sin(q · r) cos(ωt)− cos(q · r) sin(ωt)]×

× [cos(q · r) cos(ωt) + sin(q · r) sin(ωt)]
]

=Eext 2
0

[

sin(q · r) cos(q · r) cos2(ωt)− cos2(q · r) sin(ωt) cos(ωt)]

+ sin2(q · r) cos(ωt) sin(ωt)− cos(q · r) sin(q · r) sin2(ωt)
]

=Eext 2
0

[

sin(q · r) cos(q · r)[cos2(ωt)− sin2(ωt)]

−[cos2(q · r)− sin2(q · r)] cos(ωt) sin(ωt)
]

=Eext 2
0

[

sin(q · r) cos(q · r) cos(2ωt)− 1/2[cos2(q · r)− sin2(q · r)] sin(2ωt)
]

(B.24)

and:

Im[Eext(r, t)] · Im[Eext(r, t)] =

=Eext 2
0

[

sin(q · r) cos(ωt)− cos(q · r) sin(ωt)
]2

=Eext 2
0

[

sin2(q · r) cos2(ωt)+

+ cos2(q · r) sin2(ωt)− 2 sin(q · r) cos(q · r) cos(ωt) sin(ωt)
]

=Eext 2
0

[

sin2(q · r)1 + cos(2ωt)

2
+ cos2(q · r)1− cos(2ωt)

2

− sin(q · r) cos(q · r) sin(2ωt)
]

=
1

2
Eext 2

0

[

1 + cos(2ωt)[sin2(q · r)− cos2(q · r)]− 2 sin(q · r) cos(q · r) sin(2ωt)
]

(B.25)

The time average of term in Eq. (B.24) is equal to zero over an oscillation period.
Therefore, just the term in Eq. (B.25) contribute to the dissipated power, giving:

〈W〉 = − ω

4π

1

2
|Eext

0 |2
[

ω2
pl(ω/τ)

[(ω2
0 + ω2

pl)− ω2]2 + [(ω/τ)]2

]

=
ω

8π
Im

(

1

ε(ω)

)

|Eext
0 |2

(B.26)
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where ε(ω), as it results from the calculation for the bulk case, is the well-known Lorentz
dielectric function:

ε(ω) = 1−
ω2
pl

ω2 − ω2
0 + iωτ

B.2.2 EELS in slab (in-plane)

In this section, I will derive the expression of the energy loss for electrons travelling parallel
to the slab Even in the case of the slab, the external electric field:

Eext(r, t) = Eext
0 eiq||·r−iωt

can be seen as the field given by an external electron current:

Jext(r, t) =
iω

4π
Eext(r, t)

As we have seen in the previous section, this external current of electrons travelling in the
q|| direction (i.e. in the x̂ direction) perturbs the slab, producing a rearrangement of the
charge carriers. This rearrangement of charges, produces an induced electric field having
x component given by:

Eind
x (r, t) = (−)4πene∆0e

iq||r||−iωt×

×



















e−|q|||z sinh(|q|||L/2) for z > L/2
[

1− e−|q|||
L
2 cosh(|q|||z)

]

for− L/2 < z < L/2

e|q|||z sinh(|q|||L/2) for z < −L/2

= (−)4πeneF (z)∆0e
iq||r||−iωt

It makes sense to ask the following question: what is the work done by the induced
field on the external electric current? The density of power per unit of volume dissipated
by the induced field on the external current will be given by:

W = ReJext · ReEind

= ReJext
x ReEind

x

(B.27)

In the limit of thin slab, for the induced field we have:

Re[Eind
x (r, t)] = −Re[

ω2
plF (z)

ω2
0 + ω2

pl |q||| L
2 − ω2 − i(ω/τ)

]Re[Eext(r, t)]+

+ Im[
ω2
plF (z)

ω2
0 + ω2

pl |q||| L
2 − ω2 − i(ω/τ)

]Im[Eext(r, t)]

(B.28)
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Of the latter expression, just the second term will contribute to the power dissipated in
average over an oscillation period, and therefore we will have:

〈W〉 =− ω

4π

ω2
plF (z)(ω/τ)

[ω2
0 + ω2

pl |q||| L
2 − ω2]2 + [(ω/τ)]2

〈Im[Eext(r, t)]Im[Eext(r, t)]〉

=− ω

4π

ω2
plF (z)(ω/τ)

[ω2
0 + ω2

pl |q||| L
2 − ω2]2 + [(ω/τ)]2

1

2
|Eext

0 |2
(B.29)

In the case of a thin film, |q|||L≪ 1, and therefore one has:

〈W〉 = − ω

4π

ω2
plF (z)(ω/τ)

[ω2
0 − ω2]2 + [(ω/τ)]2

1

2
|Eext

0 |2

= − ω

8π
F (z)Im

(

ε(ω)
)

|Eext
0 |2

(B.30)

In conclusion, we have that, in the case of a thin slab, the density of power (averaged
over a period of oscillation) per unit of volume, dissipated by the induced field over the
external electron current, is proportional to the imaginary part of the dielectric function.
In order to make easier the comparison between the bulk and the slab, we report here the
expression of dissipated power for both the systems:

〈W〉 =











ω

8π
Im

(

1

ε(ω)

)

|Eext
0 |2 (Bulk)

− ω

8π
F (z)Im

(

ε(ω)
)

|Eext
0 |2 (Slab)

(B.31)

As we can see, there are two main differences between these two expressions. First of all,
the density of dissipated power, in the case of bulk is proportional to Im

(

1/ε(ω)
)

, while in
the case of the (thin) slab is proportional to Im

(

ε(ω)
)

. The second difference to be noticed
is that, contrarily to what happens in the bulk, the density of dissipated power in the case
of the slab depend on z. This is due to the fact that the infinite bulk is translationally
invariant in the z direction, while the slab is not. The electric field induced by the slab, in
particular, is not invariant along z, but decreases exponentially with the distance from the
surface. It makes sense to integrate the density of power in z: in this way, I will obtain
the power dissipated by the induced field per unit of surface.

〈W〉slabS = − ω

8π
Im
(

ε(ω)
)

|Eext
0 |2 ×

∫ ∞

−∞
dzF (z) (B.32)

After a bit of algebra, we obtain that:
∫ ∞

−∞
dzF (z) = L (B.33)

and therefore:
〈W〉slabS = − ω

8π
LIm

(

ε(ω)
)

|Eext
0 |2 (B.34)
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An interesting observation

It is interesting to notice that we could have obtained the latter result with another ap-
proach. In the previous section, we have found that the density of power per unit of surface
dissipated by the induced field on the external current is given by:

〈W〉slabS = − ω

8π
LIm

(

ε(ω)
)

|Eext
0 |2

We could have obtained this same result, calculating instead the density of power dissipated
by the external field on the induced current. The induced density of current can be related
t the induced density via the continuity equation:

∇ · Jind = −∂tρind (B.35)

At the same time, the induced density of charge can be expressed via the density response
function:

ρind = χρρφ
ext (B.36)

where the χρρ is the one of Eq. (6.41):

χρρ =
|q|2
4π

ω2
pl

ω2 − ω2
0 + iωτ − |q|2L

2 ω2
pl

(B.37)

and the external potential is related to the external field via:

Eext = −∇φext (B.38)

Putting together Eq.s (B.35),(B.36),(B.37), and (B.38), we obtain the following expression
for the current as a function of the external field:

Jind = i
ω

q2
χρρE

ext (B.39)

At this point, we have all that we need to calculate the work done by the external field on
the induced current: averaging over an oscillation period, we have:

〈ReEext · ReJind〉 = −1

2

ω

q2
Im(χρρ)|Eext

0 |2 (B.40)

and, with some simple algebraic manipulations (see Eq. (6.44)):

〈ReEext · ReJind〉 = ω

8π
Θ(z +

L

2
)Θ(−z + L

2
)Im

(

ε(ω)
)

|Eext
0 |2 (B.41)

And, integrating in z, we obtain:

〈ReEext · ReJind〉S =
ω

8π
LIm

(

ε(ω)
)

|Eext
0 |2 (B.42)
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which is the same result reported in Eq. (B.34) (up to a minus sign). Because of the energy
conservation, the work done by the external field on the induced current must be equal
in modulus (and opposite in sign) to the work done by the induced field on the external
current. In other words, the energy loss by the external electron beam must be equal to
the energy spent to excite the density oscillation inside the slab. The interesting point,
is that in the case of a bulk, this equality is already clear when looking at the density of
power per unit of volume. In the case of the infinite material, in fact, it is immediate to
verify that:

〈ReEext · ReJind〉 = −〈ReEind · ReJext〉 (Bulk) (B.43)

In the case of the slab, the last equality does not hold anymore!

〈ReEext · ReJind〉 6= −〈ReEind · ReJext〉 (Slab) (B.44)

This is due to the fact that the induced electric field and the induced current, in a slab,
have a totally different dependence in z. In order to see the conservation of energy in the
case of a slab we have to compare the integral in z of these two quantities, i.e. the density
of power per unit of surface:

〈ReEext · ReJind〉S =

∫ ∞

−∞
dz〈ReEext · ReJind〉

= −
∫ ∞

−∞
dz〈ReEind · ReJext〉 = −〈ReEind · ReJext〉S

(B.45)

B.2.3 EELS in slab (out-of-plane)

In this section I will derive the expression of the energy loss for electrons travelling orthogo-
nally to the slab. As we have seen in section 6.3, the displacement of oscillators undergoing
an external perturbation orthogonal to the surface will be given by:

∆(r, t) =
e

me

Θ(z + L
2 )Θ(−z + L

2 )

−ω2 + ω2
0 − iωτ + ω2

pl

Eext(r, t) (B.46)

While the induced electric field can be written as:

Eind(r, t) =











−me

e
ω2
pl∆(r, t) for |z| < L

2

0 for |z| ≥ L

2

(B.47)

The current of external electrons will be linked with the external electric field via the
relationship

Jext =
iω

4π
Eext (B.48)



174 APPENDIX B. LORENTZ MODEL

The induced field, on the other hand, will be written:

Eind = Θ(z +
L

2
)Θ(−z + L

2
)

ω2
pl

−ω2 + ω2
0 − iωτ + ω2

pl

Eext(r, t) (B.49)

Therefore, the density of dissipated power (averaged over an oscillation period) will be
given by:

W = ReJext · ReEind

=
ω

8π
Im

1

ε(ω)
Θ(z +

L

2
)Θ(−z + L

2
)|Eext

0 |2
(B.50)

B.2.4 EELS: conclusion

In this section we derived, within the Lorentz model, the expression for the energy loss
of an electron beam crosssing the matter, and we compared the case of an infinite bulk
with the case of a very thin slab (limit qL/2 ≪ 1). For the bulk, we found again the well
known result EELS ∝ Im 1

ε(ω) . For the slab, we found that the expression for the energy
loss depends on the direction of the external beam. In the case of electrons propagating
parallel to the slab, the induced field is strongly suppressed, and as a consequence, the
density of dissipated power is nomore proportional to Im 1

ε(ω) , but to Imε(ω). When the
external electron beam is travelling orthogonally to the slab, we recover the bulk result
EELS ∝ Im 1

ε(ω) .



Appendix C

Transfer matrix formalism

C.1 Schubert’s transfer matrix

In this section we briefly illustrate the formalism of the Schubert’s transfer matrix. As we
have mentioned in Chapter 7, this method allows one to calculate the reflection coefficients
of an arbitrarily big stack of arbitrarily anisotropic films. Even if during this thesis we
limited ourselves to study the case of a single anisotropic film (for which the expression
of reflection coefficients has already been reported in Chapter 7), in the code that we
have written for the calculation of reflectance spectra we implemented the expression for
the reflection coefficients in their most general form. We will not give here the proof of
these formulas (for which we refer to Ref. [68]), but we will limit ourselves to report
the most important results. Let’s suppose to have a stack of N films, having thickness

di and dielectric tensor
↔
ε
(i)

(with i = 1, . . . , N), sandwiched between two infinite and
homogeneous halfspaces , called respectively ambient medium and exit medium, and having
dielectric function εa and εf

1. Let’s suppose that an electromagnetic wave is impinging
from the ambient medium to the sample. The amplitude of the s and p component of the
incident wave will be respectively denoted as As and Ap, while the amplitude of the s and
p component of the reflected and transmitted wave will be respectively Bs,Bp and Cs,Cp.
We will make also the assumption, physically meaningful, that no wave is backpropagating
in the exit medium. The transfer matrix of the system is defined as the matrix which
relates the amplitude of propagating fields in the ambient medium with the amplitude of

1In the following, we will make the assumption that the ambient medium and the exit medium are both
isotropic. Actually, in Ref. [68], it is also considered the more general case in which εf is not a scalar, in
order to allow the description of anisotropic substrate. We will make moreover the assumption that the
crystal axis of the films lay parallel to the cartesian axis, i.e. two axis parallel to the interface and the third
one orthogonal.
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the fields in the exit medium:








As

Bs

Ap

Bp









= T









Cs

0
Cp

0









(C.1)

From Eq. (C.1), one can trivially obtain the expressions of the reflection coefficients of the
system as function of the matrix elements of T :

rss =
T21T33 − T23T31
T11T33 − T13T31

(C.2)

tss =
T33

T11T33 − T13T31
(C.3)

rpp =
T43T11 − T13T41
T33T11 − T31T13

(C.4)

tpp =
T11

T33T11 − T31T13
(C.5)

As reported in Ref. [68], the transfer matrix of the system can be expressed as product of
several partial transfer matrices, each of them describing the reflection and the transmission
of the fields at one of the interfaces of the system:

T = L−1
a

N
∏

i=1

[Ti
p(di)]

−1Lf

= L−1
a

N
∏

i=1

[Ti
p(−di)]Lf

(C.6)

Here L−1
a is called the inverse incident matrix, and it just depends on the properties of the

ambient medium. The Ti
p(di) are the partial transfer matrices, each of them associated

to one of the films which compose the sample, while the Lf is called exit matrix, which
just depend on the properties of the exit material (typically the substrate). If we make
the assumption that the ambient medium is homogenous, non magnetic, and isotropic, the
inverse incident matrix can be written as:

L−1
a =

1

2









0 1 −1/(
√
εa cos θi) 0

0 1 1/(
√
εa cos θi) 0

1/ cos θi 0 0 1/
√
εa

−1/ cos θi 0 0 1/
√
εa









(C.7)

Let’s suppose that the exit medium is isotropic. Assuming that θi is the incidence angle
in the ambient medium, the exit angle will be given by:

cos θf =

√

1− εa
εf

sin2 θi (C.8)
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and the exit matrix will be given by:

Lf =









0 0 cos θf 0
1 0 0 0

−√
εf cos θf 0 0 0

0 0
√
εf 0









(C.9)

Let’s now suppose to have a layer of anisotropic material of thickness d, having optical
axes laying parallel with the cartesian axis (i.e. εxx 6= εyy 6= εzz and εij = 0∀i 6= j). We
introduce the following auxiliary quantities:

Nij = εii

√

1− (εa/εjj) sin
2 θi (C.10)

κp = k0dNxz

κs = k0dNyy
(C.11)

The partial transfer matrix for such a film will be :

Tp(d) =









cosκp 0 0 i(Nxz/εxx) sinκp
0 cosκs −i(1/Nyy) sinκs 0
0 −iNyy sinκs cosκs 0

i(εxx/Nxz) sinκp 0 0 cosκp









(C.12)
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C.2 True film vs effective film

In chapter 7, we calculated the reflectance of a thin film and the reflectance of an effective
slab obtained combining with the original film an additional layer of vacuum. As we have
shown in Fig. (7.10), in the limit of very thin material , the reflectance of the two systems
results to be the same, despite the fact that the dielectric function of the two systems are
very different. In this section, we want to proof analytically this result. In order to do that,
we recall briefly here the properties of the two systems. The first (which we informally
called ”the true film”) is a slab of thickness d and dielectric function

ε(ω) = 1−
ω2
pl

ω2 − ω2
0 + iω/τ

(C.13)

and it is sandwiched between two infinite half-spaces having dielectric function εvac = 1.
The reflection coefficient of this slab will be given by:

rtrueslab =
r(1− e2iβ)

1− r2e−2iβ
(C.14)

with
β = k0d

√

ε− εvac sin
2 θi (C.15)

Here k0 stands for the wave-vector of light in vacuum, while, according the usual notation,
θi is the incidence angle. Instead, r represent the Fresnel coefficient at the vacuum-matter
interface, and it will be given by:

r =
ε cos θi − ε

1

2

vac

√

ε− εvac sin
2 θi

ε cos θi + ε
1

2

vac

√

ε− εvac sin
2 θi

(C.16)

The effective slab instead, will have thickness deff = d+ dvac, and dielectric tensor

↔
ε
eff

(ω) =







εeff|| (ω) 0 0

0 εeff|| (ω) 0

0 0 εeff⊥ (ω)






(C.17)

with:

εeff|| (ω) =
dvacεvac + dε

d+ dvac

εeff⊥ (ω) =
εεvac

dεvac + dvacε
(d+ dvac)

(C.18)

The reflection coefficient will be given by:

reff010 = reff
1− e2iβ

eff

1− (reff )2e2iβeff (C.19)
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where:

βeff = k0d
eff

(

εeff||

εeff⊥

) 1

2√

εeff⊥ − εvac sin
2 θi (C.20)

and reff is the Fresnel coefficient of the interface between the vacuum and the semi-infinite
material having dielectric function (C.18):

reff =
(εeff⊥ εeff|| )

1

2 cos θi − ε
1

2

vac

√

εeff⊥ − εvac sin
2 θi

(εeff⊥ εeff|| )
1

2 cos θi + ε
1

2

vac

√

εeff⊥ − εvac sin
2 θi

(C.21)

In the limit |β| ∼ |(d/λ0)
√
ε| ≪ 1 the exponential appearing in Eq. (C.14) can be expanded

as:

e−2iβ ≈ 1− 2ik0d
√

ε− εvac sin
2 θi (C.22)

Analogously, the exponential appearing in Eq. (C.19), may be approximated as:

e−2iβeff ≈ 1− 2ik0d
eff

(

εeff||

εeff⊥

) 1

2√

εeff⊥ − εvac sin
2 θi (C.23)

Substituting expressions (C.22) and (C.23) respectively in Eq.s (C.14) and (C.19), one
obtain the following expression for the reflection coefficients, valid in the limit (d/λ0 ≪ 1):

r ≈ −2ik0d
ε2 cos2 θi − εvac(ε− εvac sin

2 θi)

4εε
1

2

vac cos θi − 2ik0d
(

ε cos θi − ε
1

2

vac

√

ε− εvac sin
2 θi
)2

(C.24)

reff ≈ −2ik0d
ε2 cos2 θi − εvac(ε− εvac sin

2 θi)

4εε
1

2

vac cos θi − 2ik0deff
(

(

εεeff||

) 1

2 cos θi −
(

εεvac/ε
eff
⊥

) 1

2

√

εeff⊥ − εvac sin
2 θi

)2

(C.25)
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As we can see, the two expression just differ in the denominators. The denominator of the
Eq. (C.24) can be written:

D1 =

= 4εε
1

2

vac cos θi − 2ik0d
(

ε cos θi − ε
1

2

vac

√

ε− εvac sin
2 θi
)2

= 4εε
1

2

vac cos θi − 2ik0d

[

ε2 cos2 θi + εvac(ε− εvac sin
2 θi)+

− 2εε
1

2

vac cos θi
√

ε− εvac sin
2 θi

]

= 4εε
1

2

vac cos θi − 2ik0dε
2 cos2 θi − 2ik0dεvacε+ 2ik0dε

2
vac sin

2 θi

+ 4ik0dεε
1

2

vac cos θi
√

ε− εvac sin
2 θi

(C.26)

The denominator of Eq. (C.25), substituting εeff|| and εeff⊥ with expressions (C.18), and

making the further assumption that dvac = d (implying deff = 2d), can be rewritten as:

D2 =

= 4εε
1

2

vac cos θi+

− 2ik0d
eff

(

(

εεeff||

) 1

2 cos θi −
(

εεvac/ε
eff
⊥

) 1

2

√

εeff⊥ − εvac sin
2 θi

)2

= 4εε
1

2

vac cos θi+

− 2ik0d

[

ε2 cos2 θi + εεvac cos
2 θi + 2εεvac − εεvac sin

2 θi − ε2vac sin
2 θi+

− 2ε
1

2 (ε+ εvac) cos θi

√

2εεvac/(ε+ εvac)− εvac sin
2 θ

]

= 4εε
1

2

vac cos θi − 2ik0dε
2 cos2 θi − 2ik0dεεvac + 2ik0dε

2
vac sin

2 θi+

− 4ik0dεεvac cos
2 θi − 4ik0dε

1

2 (ε+ εvac) cos θi

√

2εεvac/(ε+ εvac)− εvac sin
2 θ

(C.27)

As we can see from direct comparison of Eq.s (C.26) and (C.27), D1 and D2 just differ for
terms which are ∼ (d/λ0)

√
εε or smaller.



Appendix D

Convergence of SHG spectra

In this Appendix we present the convergence test that we have performed for the silicon
slab (made of 24 silicon layers) functionalised with Thymine. The convergence test for
the surfaces functionalised with the other nucleobases have been performed in analogous
way. Chosing the parameters for which the calculation can be considered converged is
a less trivial task than it could appear. In fact, if on one side we want to perform the
calculation with the maximum of the accuracy, on the other side we have to chose them
carefully, in order to keep under control the computational cost of the calculation. The
spectra have been converged in the following way: first of all, we calculated the Kohn-Sham
wave-functions on a relatively small k-points grid (1x4x1 with double shift). After that, we
gradually increased the number of bands included in the calculation. The result of this test
is reported, for all the calculated components, in Fig. (D.1). As we can see in the figure,
the spectrum requires at least 400 bands in order to be considered converged in the energy
region between 0 and 4 eV. If we further increase the number of bands, we see that a new
feature appears in the spectrum in the energy region between 4 and 5 eV. We consider
therefore the spectrum converged for nbands=600. The number of bands included in the
spectra depends also on the parameter lomo, which allows one to set the lowest valence
band to be included in the calculation. This parameter allows one to greatly optimise the
calculation of the second order response: the valence bands which lay at low energy in
fact are expected to give a modest contribution to the spectrum, and therefore they can
be eliminated from the calculation. In Fig. (D.2), we report the calculation of the IPA
spectrum for several value of the lomo parameter, while in Fig. (D.3) we report the number
of transitions per k-point (which is proportional to the computational time) as a function
of the lomo parameter. As we can see in Fig. (D.2), eliminating from the calculation the
50 lowest valence bands does not produce almost any change in the spectra, and as we
can see in Fig. (D.2) reduces of the 30% the number of transitions to be evaluated. In
Fig. (D.4), the convergence test in the number of plane waves is reported. As shown in
figure, npwwfn=3000 is enough to converge all the components of the spectrum. Finally,
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we performed the convergence in the number of k-points. Using the converged values for
the parameters nbands,lomo,and npwwfn, we calculated several times the IPA spectrum,
increasing each time the number of k-points included in the calculation. The result of this
series of calculations is reported in Fig. (D.5)
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Abstract

Understanding the mechanism of interaction between amino acids and peptides with sur-
faces opens new perspectives. Adsorption of DNA molecules on semiconducting surfaces is
regularly evoked for the design of biosensors or the production of bio-materials. The pos-
sibility to functionalize surfaces with bio-molecules, to create organized structures up to
nanometers’ distances depends on our capability to understand precisely the mechanisms
which govern the deposition of molecular films onto different kinds of surfaces.

Non-linear optics and more precisely Second Harmonic Generation (SHG) is particu-
larly adapted to study surfaces. In this spectroscopy, two photons of the same energy are
absorbed and a photon of double energy is emitted. Describing this physical phenomenon
requires the calculation of the second order susceptibility: since it is zero for centrosym-
metric material, the response can only comes from the surface, which is at the origin of
the symmetry breaking.

Through this thesis, functionalised surfaces have been modelled as slabs introduced in
a the supercell, within a reciprocal space formalism. Beyond the elimination of spurious
vacuum effects, that we perform within the selected-G method, we also investigated optical
properties of 2D systems.

A mixed-space formalism - which allows us to treat the direction orthogonal to the
surface in real space, and to decouple the slab from its replicas- has been developed,
and the differences between the in-plane and out-of-plane response of an isolated slab of
silicon have been investigated in detail. The link with experimentally measured quantities
has also be done. More specifically, while the macroscopic dielectric function of a thin
film is intrinsically hard to be defined, experimental quantities such as reflectance and
transmittance are not affected by this ambiguity. The conditions in which the calculation
must be performed in order to model a surface, i.e. a semi-infinite object, have been
clarified.

SHG spectra of a silicon surface (4x1) functionalised with molecules of thymine, uracil,
and cytosine have been calculated in presence of local field effects. The differences between
spectra have been studied, and the possibility to use SHG as a tool to characterise the
chemical nature of the adsorbate has been analysed. The sensitivity of SHG to the adsorp-
tion configuration has been also investigated, by comparison of SHG spectra generated by
surfaces functionalised with thymine in different adsorption geometries.
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Résumé

Comprendre les mécanismes d’interaction entre des acides aminés ou des peptides avec
les surfaces ouvre de nouvelles perspectives. L’adsorption de molécules d’ADN sur des
surfaces semiconductrices est régulièrement évoquée pour la conception de biosenseurs ou
la production de bio-matériaux. La possibilité de fonctionaliser des surfaces à l’aide de
bio-molécules, de créer des structures ordonnées sur des distances de quelques nanomètres
dépend de notre capacité à comprendre les phénomènes gouvernant la déposition de films
moléculaires sur différents types de surfaces.

L’optique non-linéaire et plus précisément la génération de seconde harmonique (SHG)
est particulièrement adaptée à l’étude des surfaces. Dans cette spectrocopie, deux photons
de même énergie sont absorbés et un photon d’énergie double est émis. La description de
ce phénomène physique passe par le calcul de susceptibilité d’ordre 2 : celle-ci étant nulle
pour les matériaux centrosymmétriques, la réponse ne peut provenir que de la surface, qui
est à l’origine de la brisure de symétrie .

Pendant cette thèse, les surfaces fonctionnalisées ont été représentées par des couches
introduites dans une supercellule, dans un formalisme en espace réciproque. Au delà de
la suppression du vide introduit dans la supercellule, que nous traitons par la méthode
Selected-G, nous avons également été amenés à nous interroger sur les propriétés optiques
des systèmes 2D. Un formalisme en espace mixte - qui permet de traiter la direction or-
thogonale à la surface dans l’espace réel, et d’isoler la couche de ses répliques - a été mis au
point, et les différences entre les réponses hors-plan et dans le plan d’une couche de silicium
isolée ont été investiguées en détail. Le lien avec les grandeurs expérimentalement mesurées
a également été fait. En particulier, alors que la fonction diélectrique macroscopique d’une
couche mince est intrinsèquement difficile à définir, les quantités expérimentales telles que
la réflectance et la transmittance ne sont pas affectées par cette ambigüıté. Les conditions
du calcul pour modéliser une surface, c’est-à-dire un espace semi-infini ont été clarifiées.

Les spectres de SHG d’une surface de silicium (4x1) fonctionnalisées avec des molécules
de thymine, uracil et cytosine ont été calculés avec les champs locaux. Les différences entre
les spectres ont été étudiées, et les potentialités de la SHG comme outil pour reconnâıtre la
nature chimique de l’adsorbat ont été analysées. La sensibilité de la SHG à la configuration
d’adsorption a également été évaluée, en comparant les spectres au second ordre générés
par des surfaces fonctionnalisées à la thymine dans différentes géométries d’adsorption.
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Titre : Génération de seconde harmonique de surfaces de silicium fonctionnalisées par des bases d’ADN :

une description ab initio
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Résumé : Comprendre les mécanismes d’interaction entre

des acides aminés ou des peptides avec les surfaces

ouvre de nouvelles perspectives. L’adsorption de molécules

d’ADN sur des surfaces semiconductrices est régulièrement

évoquée pour la conception de biosenseurs ou la produc-

tion de bio-matériaux. La possibilité de fonctionaliser des

surfaces à l’aide de bio-molécules, de créer des struc-

tures ordonnées sur des distances de quelques nanomètres

dépend de notre capacité à comprendre les phénomènes

gouvernant la déposition de films moléculaires sur différents

types de surfaces.

L’optique non-linéaire et plus précisément la génération de

seconde harmonique (SHG) est particulièrement adaptée

à l’étude des surfaces. Dans cette spectrocopie, deux pho-

tons de même énergie sont absorbés et un photon d’énergie

double est émis. La description de ce phénomène physique

passe par le calcul de susceptibilité d’ordre 2 : celle-ci étant

nulle pour les matériaux centrosymmétriques, la réponse ne

peut provenir que de la surface, qui est à l’origine de la bri-

sure de symétrie .

Pendant cette thèse, les surfaces fonctionnalisées ont été

représentées par des couches introduites dans une super-

cellule, dans un formalisme en espace réciproque. Au delà

de la suppression du vide introduit dans la supercellule,

que nous traitons par la méthode Selected-G, nous avons

également été amenés à nous interroger sur les propriétés

optiques des systèmes 2D. Un formalisme en espace mixte

- qui permet de traiter la direction orthogonale à la surface

dans l’espace réel, et d’isoler la couche de ses répliques

- a été mis au point, et les différences entre les réponses

hors-plan et dans le plan d’une couche de silicium isolée

ont été investiguées en détail. Le lien avec les grandeurs

expérimentalement mesurées a également été fait. En par-

ticulier, alors que la fonction diélectrique macroscopique

d’une couche mince est intrinsèquement difficile à définir,

les quantités expérimentales telles que la réflectance et la

transmittance ne sont pas affectées par cette ambiguı̈té.

Les conditions du calcul pour modéliser une surface, c’est-

à-dire un espace semi-infini ont été clarifiées.

Les spectres de SHG d’une surface de silicium (4x1) fonc-

tionnalisées avec des molécules de thymine, uracil et cyto-

sine ont été calculés en présence des champs locaux. Les

différences entre les spectres ont été étudiées, et les po-

tentialités de la SHG comme outil pour reconnaı̂tre la na-

ture chimique de l’adsorbat ont été analysées. La sensibi-

lité de la SHG à la configuration d’adsorption a également

été évaluée, en comparant les spectres au second ordre

générés par des surfaces fonctionnalisées à la thymine

dans différentes géométries d’adsorption.

Title : Second Harmonic Generation from silicon surfaces functionalized with DNA nucleobases: an ab initio

description

Keywords : DFT, TD-DFT, 2D systems, SHG, nucleobases

Abstract : Understanding the mechanism of interaction

between amino acids and peptides with surfaces opens new

perspectives. Adsorption of DNA molecules on semiconduc-

ting surfaces is regularly evoked for the design of biosensors

or the production of bio-materials. The possibility to func-

tionalize surfaces with bio-molecules, to create organized

structures up to nanometers’ distances depends on our ca-

pability to understand precisely the mechanisms which go-

vern the deposition of molecular films onto different kinds of

surfaces.

Non-linear optics and more precisely Second Harmonic Ge-

neration (SHG) is particularly adapted to study surfaces. In

this spectroscopy, two photons of the same energy are ab-

sorbed and a photon of double energy is emitted. Descri-

bing this physical phenomenon requires the calculation of

the second order susceptibility: since it is zero for centro-

symmetric material, the response can only comes from the

surface, which is at the origin of the symmetry breaking.

Through this thesis, functionalised surfaces have been mo-

delled as slabs introduced in a the supercell, within a reci-

procal space formalism. Beyond the elimination of spurious

vacuum effects, that we perform within the selected-G me-

thod, we also investigated optical properties of 2D systems.

A mixed-space formalism - which allows us to treat the di-

rection orthogonal to the surface in real space, and to de-

couple the slab from its replicas- has been developed, and

the differences between the in-plane and out-of-plane res-

ponse of an isolated slab of silicon have been investigated

in detail. The link with experimentally measured quantities

has also be done. More specifically, while the macroscopic

dielectric function of a thin film is intrinsically hard to be defi-

ned, experimental quantities such as reflectance and trans-

mittance are not affected by this ambiguity. The conditions

in which the calculation must be performed in order to model

a surface, i.e. a semi-infinite object, have been clarified.

SHG spectra of a silicon surface (4x1) functionalised with

molecules of thymine, uracil, and cytosine have been cal-

culated in presence of local field effects. The differences

between spectra have been studied, and the possibility to

use SHG as a tool to characterise the chemical nature of

the adsorbate has been analysed. The sensitivity of SHG to

the adsorption configuration has been also investigated, by

comparison of SHG spectra generated by surfaces functio-

nalised with thymine in different adsorption geometries.
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