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Laboratoire des Solides Irradiés
Ecole Polytechnique, Palaiseau - France

European Theoretical Spectroscopy Facility (ETSF)

April 11, 2008

Influence of a nonlocal potential on the induced current Valérie Véniard
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Motivations

Problems

Second harmonic generation: the calculation of the
susceptibility shows some differences when comparing χjjj or
χρρρ

Sumrules
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Intro Def Coupling Conclu

Back to basics

Continuity equation - Charge conservation equation

div j(r, t) +
∂ρ(r, t)

∂t
= 0

and in momentum space

k.j(k, t) +
∂ρ(k, t)

∂t
= 0 (1)

To fulfill the continuity equation, it is enough that Eq.(1) is fulfilled
by current and density operators in the Heisenberg representation.

Heisenberg representation

ÔH(t) = U†(t)ÔS(t)U(t)

where U(t) is the time evolution operator.
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Intro Def Coupling Conclu

Expectation value of the density and current operators

Current

j(r, t) =
−i

2

∑
i

< ψ(t)| [r,H(t)] δ(r−ri )+δ(r−ri ) [r,H(t)] |ψ(t) >

In the independent-particle approximation

j(r, t) =
−i

2

∑
i

fi {ψ∗
i (r, t) [r,H(t)]ψi (r, t)

− [r,H(t)]ψ∗
i (r, t)ψi (r, t)}

ρ(r, t) =
∑

i

fi |ψi (r, t)|2
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Intro Def Coupling Conclu

The simplest case

Particle moving in a local potential

Hamiltonian:

H =
1

2
p2 + V (r)

Commutator
[r,H] = ip

with p = −i∇.
The current is defined by

j(r, t) =
1

2
{ψ∗(r, t)pψ(r, t) + pψ∗(r, t)ψ(r, t)}
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Intro Def Coupling Conclu

Electromagnetic field

Free electron submitted to an
electromagnetic field

Hamiltonian (minimal coupling
convention) :

H =
1

2

[
p − 1

c
A(r, t)

]2

+ φ(r, t)

where φ and A are the scalar and
vector potentials.
The commutator is

[r,H] = i(p− 1

c
A(r, t))

Current

The current is defined by

j(r, t) =
1

2

{
ψ∗(p− 1

c
A(r, t))ψ

+(p− 1

c
A(r, t))ψ∗ψ

}
Note:the momentum p is
replaced by Π = p− 1

c A(r, t)
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Intro Def Coupling Conclu

Nonlocal potential

Particle moving in a nonlocal pseudopotential

Hamiltonian :

H =
1

2
p2 + Vnl(r)

where Vnl is defined by < r|Vnl |ψ >=
∫

dr′Vnl(r, r
′)ψ(r′)

The commutator is

[r,H] = i(p− i [r,Vnl ])

The velocity operator is defined by v = p− i [r,Vnl ] and we get

j(r, t) =
1

2
{ψ∗vψ + vψ∗ψ}
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Intro Def Coupling Conclu

Question

Electromagnetic field

the momentum p is replaced by
Π = p− 1

c A(r, t)

j(r, t) =
1

2

{
ψ∗(p− 1

c
A(r, t))ψ

+(p− 1

c
A(r, t))ψ∗ψ

}

Non-local potential

the momentum p is replaced by
the velocity operator v

j(r, t) =
1

2
{ψ∗vψ + vψ∗ψ}

Particle moving in a electromagnetic field and a nonlocal
pseudopotential

Can we replace the momentum p by the operator v − 1
c A(r, t) ?
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Intro Def Coupling Conclu

Minimal coupling prescription

Definition

The hamiltonian H(r̂, p̂) has to be changed, according to the
substitution

p̂ −→ Π̂ = p̂− 1

c
A(r̂, t)

For instance

1

2
p̂2 −→ 1

2
p̂2 − 1

2c
{A(r̂, t)p̂ + p̂A(r̂, t)}+

1

2c2
A2(r̂, t)
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Intro Def Coupling Conclu

Minimal coupling prescription

Particle moving in a nonlocal potential

The nonlocal potential Vnl(r, r
′) can be considered as a local

operator depending on r and p

< r|Vnl |Ψ >=

∫
dr′Vnl(r, r

′)Ψ(r′) = Vnl(r,p)Ψ(r)

where Vnl(r,p) =
∫

dr′Vnl(r, r
′)e i(r′−r)p

The minimal coupling substitution has to be done also in Vnl

The coupled hamiltonian is HA = 1
2 Π̂2 + V (r̂) + φ(r̂, t) + V A

nl ,
where V A

nl is defined by

< r|V A
nl |r′ >= Vnl(r, r

′)e
i
c

R r
r′ A(x,t)dx

S. Ismail-Beigi, E.K. Chang and S. G. Louie, Phys. Rev. Lett. 87 087402

(2001).
Influence of a nonlocal potential on the induced current Valérie Véniard



Intro Def Coupling Conclu

Perturbation theory

Interaction hamiltonian

We expand the hamiltonian in terms of A :

HA = H0 + H int
1 + H int

2 + . . .

To first order, a new term appears

H int
1 = − 1

2c
{Ap + pA}+ φ(r̂, t) +

i

c
Vnl(r, r

′)

∫ r

r′
A(x, t)dx

In the long wavelength approximation (A(x, t) = A(t)), one gets

H int
1 = −1

c
Ap + φ(r̂, t) +

i

c
[A(t)r,Vnl ] = −1

c
Av + φ(r̂, t)

To second order : H int
2 = − i

2c2 [Ar, [Av]]
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Intro Def Coupling Conclu

Reminder

Current

Current:

j(r, t) =
−i

2

∑
i

fi {ψ∗
i (r, t) [r,H(t)]ψi (r, t)

− [r,H(t)]ψ∗
i (r, t)ψi (r, t)}
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Intro Def Coupling Conclu

coupling between a nonlocal potential and a
electromagnetic field

Long wavelength limit

We have two terms in the hamiltonian :

H0 =
1

2
p2 + Vnl(r) and H int

1 = −1

c
Av

leading to the following (usual) current

j(0)(r, t) =
1

2
{ψ∗(r, t)vψi (r) + vψ∗

i (r)ψi (r, t)}

and a new expression for the induced current

j(1)(r, t) =
i

2c
{ψ∗(r, t) [r,A.v]ψ(r)− [r,A.v]ψ∗(r)ψ(r, t)}
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Intro Def Coupling Conclu

Influence of the nonlocality

induced current for a local
potential

j(1)(r, t) = −1

c
A(r, t))ρ(r, t)

induced current for a nonlocal
potential

j(1)(r, t) = −1

c
A(r, t))ρ(r, t)

+
1

2c
{ψ∗(r, t) [r, [A.r,Vnl ]]ψ(r)

+ [r, [A.r,Vnl ]]ψ
∗(r)ψ(r, t)}

p → v − 1

c
A +

1

c
[r, [A.r,Vnl ]]
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Intro Def Coupling Conclu

Long wavelength limit

In the limit q → 0

Density-density response function in the IPA:

χρρ(q,q, ω) =
2

V

∑
nn′k

(fnk − fn′k)
< φnk |qr|φn′k >< φn′k |qr|φnk >

(Enk − En′k + ω + iη)

Current-current response function in the IPA:

χjj(q,q, ω) =
2

V

∑
nn′k

(fnk − fn′k)
< φnk|v|φn′k+q >< φn′k+q|v|φnk >

(Enk − En′k+q + ω)

− 2

V

∑
nk

fnk < φnk| [r, [r,Vnl ]] |φnk >

in terms of the Bloch functions.
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Intro Def Coupling Conclu

Relation between the response functions

continuity equation

Taking into account

div j(r, t) +
∂ρ(r, t)

∂t
= 0

one gets

ω2χρρ(k, k
′, ω) = k

{
< ˆρ(k− k′) > +χjj(k, k

′, ω)
}

k′
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Intro Def Coupling Conclu

Relation between the response functions
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Intro Def Coupling Conclu

Conclusion

In most cases χρρ is used

Even if χjj is calculated, the relation between the matrix
elements of v and r is used to transform χjj into χρρ.

The missing term is small

The direct calculation of
∑

nk fnk < φnk| [q.r, [q.r,Vnl ]] |φnk >
turns out to be difficult.
Stong anisotropy as a finction of q for cubic symmetry
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