Electron Energy Loss Spectra of Graphite, Graphene and Carbon Nanotubes: Plasmon Dispersion and Crystal Local Field Effects.

<u>Ralf Hambach</u>¹, C. Giorgetti¹, X. Lopez¹, F. Sottile¹, F. Bechstedt², C. Kramberger³, T. Pichler³, N. Hiraoka⁴, Y.Q. Cai⁴, L. Reining¹.

¹ LSI, Ecole Polytechnique, CNRS-CEA/DSM, Palaiseau, France
 ² IFTO, Friedrich-Schiller-Universität Jena, Germany
 ³ University of Vienna, Faculty of Physics, Vienna, Austria
 ⁴ National Synchrotron Radiation Research Center, Hsinchu, Taiwan

What do we want to describe?

- Coulomb interaction
- probed by EELS, IXS

contributions to the spectra

- elastic scattering \rightarrow crystal structure
- $\blacktriangleright \ inelastic \ scattering \rightarrow \ collective \ excitations$

Key quantity: $S(\boldsymbol{q},\omega) \propto -q^2 \Im \{\epsilon^{-1}(\boldsymbol{q},\omega)\}$

How do we calculate ϵ^{-1} ?

ab initio calculations

- 1. ground state calculation gives ϕ_i^{KS}
- 2. independent-particle polarisability χ^0
- 3. RPA full polarisability $\chi = \chi^0 + \chi^0 \nu \chi$
- 4. dielectric function $\epsilon^{-1} = 1 + v\chi$

 $(\epsilon^{-1}$: no retardation, no multiple scattering, no Bragg reflection of the incident electron)

Codes: ABINIT: X. Gonze *et al.*, Comp. Mat. Sci. **25**, 478 (2002) DP-code: www.dp-code.org; V. Olevano, *et al.*, unpublished.

R. Hambach

Self-Consistent Hartree Potentials

long range v₀

- difference between EELS and absorption
- vanishes for large q
- vanishes for localised systems

short range \bar{v}

- crystal local field effects in solids
- depolarisation in finite systems

Outlook

dimensionality

- 1. induced Hartree potentials in low dimensional systems \Rightarrow linear plasmon dispersion in SWCNT + Graphene
- assembling nanoobjects ⇒ role of interaction

inhomogenitiy

3. crystal local field effects in solids \Rightarrow enhanced anisotropy in Graphite

Single-Wall CNT experiments

specimen

- oriented SWCNT
- diameter: 2 nm
- nearly isolated

spectroscopy

- angular-res. EELS
- resolution: $\Delta E = 0.2 \text{ eV}$ $\Delta q = 0.05 \text{ Å}^{-1}$

[C. Kramberger, M.Rümmeli, M. Knupfer, J. Fink, B.Büchner, T. Pichler, IFW Dresden, Germany]

 π plasmon at 9eV in Graphite

[C. Kramberger, M.Rümmeli, M. Knupfer, J. Fink, B.Büchner, T. Pichler, IFW Dresden, Germany]

[C. Kramberger, M.Rümmeli, M. Knupfer, J. Fink, B.Büchner, T. Pichler, IFW Dresden, Germany]

[C. Kramberger, M.Rümmeli, M. Knupfer, J. Fink, B.Büchner, T. Pichler, IFW Dresden, Germany]

Graphene calculations

ϵ^{-1} in isolated nanosystems

IPA: $\Im{\epsilon^{-1}} \propto \Im{\chi^{0}}$

 \rightarrow sum of interband transitions

RPA: $\Im{\epsilon^{-1}} \propto \Im{\chi}$

full susceptibility $\chi = \chi^0 (1 - v\chi^0)^{-1}$ contains self-consistent response \rightarrow mixing of interband transitions

IPA: independent particles

energy loss in graphene (in-plane, $q = 0.41 \text{ Å}^{-1}$) \implies given by $\Im{\chi^0}$: – IPA interpretation in terms of band-transitions (arb. u.) - Im e_1 χ^0 2 6 8 10 0 energy loss (eV)

IPA: independent particles

RPA: random phase approximation

RPA: random phase approximation

energy loss in graphene (in-plane, $q = 0.41 \text{ Å}^{-1}$) • given by $\Im{\chi}$: — IPA no interpretation by $\pi - \pi *$ at K (arb. u.) **RPA** band-transitions without "K" - Im ε^{-1} contributions from K mixing of dispersion 2 8 10 0 6 energy loss (eV)

Plasmon dispersion

¹P. Longe, and S. M. Bose, Phys. Rev. B **48**, 18239 (1993) ²F. L. Shyu and M. F. Lin, Phys. Rev. B **62**,8508 (2000)

SWNT vs. Graphene

SWCNT vs. Graphene

SWCNT vs. Graphene

Role of Interactions

Role of Interactions

Role of Interactions

Conclusions

$SWCNT \iff graphene$

- ▶ isolated SWCNT ⇐⇒ graphene-1L
- ▶ bundled SWCNT ⇐⇒ graphene-2L

graphene

- induced Hartree potentials important
- picture of independent transitions
- ► mixing of transitions/dispersions → leads to linear dispersion

Single-Wall CNT calculations [Xochitl Lopez]

(3,3) Single Wall Carbon nanotube

Experiment: oriented SWCNT (Diameter 20 Å, nearly isolated)

Calculation: (3,3) SWCNT (Diameter 4 Å, low interaction)

Graphite

calculation: revealing an angular anomaly explication: in terms of crystal local field effects experiment: verification by inelastic x-ray scattering

On-axis: continuous

- energy loss S(q, ω) in graphite (AB)
- q along c-axis
- weak dispersion¹

▶ and off-axis?

¹Y. Q. Cai et. al., Phys. Rev. Lett. 97, 176402 (2006)

On-axis: continuous

- energy loss S(q, ω)
 in graphite (AB)
- q along c-axis
- weak dispersion¹
- and off-axis?

¹Y. Q. Cai et. al., Phys. Rev. Lett. 97, 176402 (2006)

Off-axis: discontinuous!

a²7²7²7²7³ L²7²L²7²

What is the origin?

dielectric function in crystals

► recall: $\epsilon^{-1} = 1 + \nu \chi$, $\chi = \chi^0 + \chi^0 \nu \chi$

• RPA:
$$\epsilon = 1 - v\chi^0$$

- ► ϵ is a matrix: $\epsilon(\boldsymbol{q}, \boldsymbol{q}'; \omega) = \left(\epsilon_{\boldsymbol{G}\boldsymbol{G}'}(\boldsymbol{q}_r, \omega)\right)$
- ▶ energy loss function (EELS, IXS) $S(\boldsymbol{q}, \omega) \propto -\Im\{\epsilon_{\boldsymbol{G}\boldsymbol{G}}^{-1}(\boldsymbol{q}_r, \omega)\}, \quad \boldsymbol{q} = \boldsymbol{q}_r + \boldsymbol{G}$

⇒ mixing of all transitions in χ^0 ⇒ crystal local field effects (LFE)

Physical picture of LFE: Dipoles

}*Z;*Z;*Z;* L;*Z;*Z;*

Two ways of understanding crystal local field effects:

- induced local fields
- crystal structure important

Physical picture of LFE: Coupled modes

plane wave picture

perturbing mode induced mode

 $e^{i\boldsymbol{q}\cdot\boldsymbol{r}}$

- Bragg-reflection inside the crystal
- couples modes with same *q_r*
- $\epsilon_{\mathbf{GG}'}(\mathbf{q}_r)$ describes coupling $\frac{\delta \varphi^i(\mathbf{G})}{\delta \varphi^t(\mathbf{G}')}$
- \Rightarrow key for understanding the discontinuity

Simple 2×2 model for LFE

dominant coupling between the two modes 0 and G = (0,0,2)

$$\begin{pmatrix} \epsilon_{00} & \dots & \epsilon_{0G} & \dots \\ \vdots & & \vdots \\ \epsilon_{G0} & \dots & \epsilon_{GG} & \dots \\ \vdots & & \vdots \end{pmatrix} \longrightarrow \begin{pmatrix} \epsilon_{00} & \epsilon_{0G} \\ \epsilon_{G0} & \epsilon_{GG} \end{pmatrix}$$

we introduce an effective 2×2-matrix $\tilde{\epsilon}$

Remember: the loss function was

$$S(\boldsymbol{q},\omega) \propto -\Im\{\epsilon_{\boldsymbol{G}\boldsymbol{G}}^{-1}(\boldsymbol{q}_{r},\omega)\}$$

Simple 2×2 model for LFE

(known as *two plasmon-band model*²)

²L. E. Oliveira, K. Sturm, Phys. Rev. B **22**, 6283 (1980).

R. Hambach Collective Excitations in Carbon Systems

1. Recurring excitations

$$\boxed{\epsilon_{\boldsymbol{G}\boldsymbol{G}}^{-1}(\boldsymbol{q}_r,\omega) = \frac{1}{\tilde{\epsilon}_{\boldsymbol{G}\boldsymbol{G}}} + \frac{\tilde{\epsilon}_{\boldsymbol{G}\boldsymbol{0}}\tilde{\epsilon}_{\boldsymbol{0}\boldsymbol{G}}}{(\tilde{\epsilon}_{\boldsymbol{G}\boldsymbol{G}})^2} \ \epsilon_{\boldsymbol{0}\boldsymbol{0}}^{-1}(\boldsymbol{q}_r,\omega)}$$

$$S(\boldsymbol{q}_r + \boldsymbol{G}) = S^{\mathsf{NLF}}(\boldsymbol{q}_r + \boldsymbol{G}) + f \cdot S(\boldsymbol{q}_r)$$

coupling of excitations of momentum \boldsymbol{q}_r 1. Brillouin zone $\boldsymbol{q}_r + \boldsymbol{G}$ higher Brillouin zone

 \Rightarrow reappearance³ of the anisotropic spectra from $\boldsymbol{q} \rightarrow \boldsymbol{0}$

³K. Sturm, W. Schülke, J. R. Schmitz, Phys. Rev. Lett. 68, 228 (1992).

1. Recurring excitations

$$\epsilon_{\boldsymbol{G}\boldsymbol{G}}^{-1}(\boldsymbol{q}_{r},\omega) = \frac{1}{\tilde{\epsilon}_{\boldsymbol{G}\boldsymbol{G}}} + \frac{\tilde{\epsilon}_{\boldsymbol{G}\boldsymbol{0}}\tilde{\epsilon}_{\boldsymbol{0}\boldsymbol{G}}}{(\tilde{\epsilon}_{\boldsymbol{G}\boldsymbol{G}})^{2}} \epsilon_{\boldsymbol{0}\boldsymbol{0}}^{-1}(\boldsymbol{q}_{r},\omega)$$

$$S(\boldsymbol{q}_r+\boldsymbol{G})=S^{\mathsf{NLF}}(\boldsymbol{q}_r+\boldsymbol{G})+f\cdot S(\boldsymbol{q}_r)$$

coupling of excitations of momentum \boldsymbol{q}_r 1. Brillouin zone $\boldsymbol{q}_r + \boldsymbol{G}$ higher Brillouin zone

 \Rightarrow reappearance³ of the anisotropic spectra from $\boldsymbol{q} \rightarrow \boldsymbol{0}$

³K. Sturm, W. Schülke, J. R. Schmitz, Phys. Rev. Lett. 68, 228 (1992).

1. Recurring excitations

$$\epsilon_{\boldsymbol{G}\boldsymbol{G}}^{-1}(\boldsymbol{q}_{r},\omega) = \frac{1}{\tilde{\epsilon}_{\boldsymbol{G}\boldsymbol{G}}} + \frac{\tilde{\epsilon}_{\boldsymbol{G}\boldsymbol{0}}\tilde{\epsilon}_{\boldsymbol{0}\boldsymbol{G}}}{(\tilde{\epsilon}_{\boldsymbol{G}\boldsymbol{G}})^{2}} \epsilon_{\boldsymbol{0}\boldsymbol{0}}^{-1}(\boldsymbol{q}_{r},\omega)$$

$$S(\boldsymbol{q}_r + \boldsymbol{G}) = S^{\mathsf{NLF}}(\boldsymbol{q}_r + \boldsymbol{G}) + f \cdot S(\boldsymbol{q}_r)$$

coupling of excitations of momentum \boldsymbol{q}_r 1. Brillouin zone $\boldsymbol{q}_r + \boldsymbol{G}$ higher Brillouin zone

 \Rightarrow reappearance³ of the anisotropic spectra from $\boldsymbol{q} \rightarrow \boldsymbol{0}$

³K. Sturm, W. Schülke, J. R. Schmitz, Phys. Rev. Lett. 68, 228 (1992).

2. Strength of coupling

$$\epsilon_{\mathbf{GG}}^{-1}(\mathbf{q}_{r},\omega) = \frac{1}{\tilde{\epsilon}_{\mathbf{GG}}} + \frac{\tilde{\epsilon}_{\mathbf{G0}}\tilde{\epsilon}_{\mathbf{0}\mathbf{G}}}{(\tilde{\epsilon}_{\mathbf{GG}})^{2}} \epsilon_{\mathbf{00}}^{-1}(\mathbf{q}_{r},\omega)$$

strength of coupling ϵ_{G0} depends on:

- ▶ angle $\angle(\boldsymbol{q}_r, \boldsymbol{q}_r + \boldsymbol{G})$ and
- structure factor \propto density n_{G}
- \Rightarrow enhances the angular anomaly

Experimental verification by inelastic x-ray scattering

IXS experiments

- IXS experiments
 N. Hiraoka
 (Spring8, Taiwan)
- elastic tail removed
- uniform scaling

IXS experiments

- IXS experiments
 N. Hiraoka
 (Spring8, Taiwan)
- elastic tail removed
- uniform scaling

graphite

- angular anomaly close to Bragg reflections
- originates from local field effects (coupling to 1. BZ):
 - 1. spectrum from $\boldsymbol{q} \rightarrow 0$ reappears (direction of \boldsymbol{q}_r)
 - 2. coupling $\epsilon_{G0}(\boldsymbol{q}_r)$ enforces anisotropy

other systems

- all systems with strong local field effects
 e.g. layered systems, 1D structures
- \Rightarrow caution with loss experiments close to Bragg reflections

dimensionality

- strong mixing of transitions (large energy range) in low dimensional systems (→ linear plasmon dispersion)
- 2. interactions important for small q

inhomogenity

3. discontinouity in $S(\mathbf{q}, \omega)$ close to Bragg reflections (result of plasmon bands)

publications:

Linear Plasmon Dispersion in Single-Wall Carbon Nanotubes and the Collective Excitation Spectrum of Graphene

C. Kramberger, R. H., C. Giorgetti, M. Rümmeli, M. Knupfer, J. Fink, B. Büchner, Lucia Reining, E. Einarsson, S. Maruyama, F. Sottile, K. Hannewald, V. Olevano, A. G. Marinopoulos, and T. Pichler [Phys. Rev. Lett. **100**, 196803 (2008)]

Anomalous Angular Dependence of the Dynamic Structure Factor near Bragg Reflections: Graphite

R. H., C. Giorgetti, N. Hiraoka, Y. Q. Cai, F. Sottile, A. G. Marinopoulos, F. Bechstedt, and Lucia Reining [accepted by Phys. Rev. Lett. (2008)]

codes:

ABINIT: X. Gonze *et al.*, Comp. Mat. Sci. **25**, 478 (2002) DP-code: www.dp-code.org; V. Olevano, *et al.*, unpublished.