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Motivation

m Experiments with free standing nanostructures

Figure:E. M. Weiget al., PRL92 046804, (2004)
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Figure:V. Sazanovat al., Nature431 284, (2004)
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Figure:H. Parket al., Nature407 57, (2000)



Model

Single electron transport through a vibrating Quantum Dot
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Superposition of Hydrogen atom and harmonic oscillator
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Spectrum
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Why two level system?

Eigensystem:
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— coherent tunneling of vibrational states
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— coherent tunneling of vibrational states
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How can we measure this?



Transport
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H = Hpot + Hres+ Hr (7)
Eigenstates dflpot are denoted al®, v) = ), ® V) 4.
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Transport

Master equation

Liouville-von Neumann equation in interaction picture

X(t) = —i[Ar(t), x(V)]. (11)



Transport

Master equation

Liouville-von Neumann equation in interaction picture

X(t) = —i[Ar(t), x(V)]. (11)
Tracing out the reservoirs and expanding the commutatetds/to second order
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Matrix elements, Markov approximatiop(t’) — A(t)) and transform into
Schrddinger picture:
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Transport

Franck-Condon principle

Then; are the Franck-Condon factors

7 = 1(ifi)o = / i () () (14)

0

overlap of the vibrational wavefunctions before and afteekectronic transition
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Franck-Condon principle

Then; are the Franck-Condon factors

7 = 1(ifi)o = / i () () (14)
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overlap of the vibrational wavefunctions before and afteekectronic transition
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Transport

Current

Ratesy. () = I'afa(e) for tunnelling onto the dot angl, (¢) = T'a (1 — fa(e)) for
tunnelling off the dot.
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Transport

Current

Ratesy. () = I'afa(e) for tunnelling onto the dot angl, (¢) = T'a (1 — fa(e)) for
tunnelling off the dot.

(15)
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Shot Noise

Shot Noise

m Current as a series of single electron transistions
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Shot Noise

Shot Noise

m Current as a series of single electron transistions
m stochastical distribution of events

m Poisson if independent
m if not Poisson: something is going on

Genrally: insight to internal dynamics, just as current

m Defined from current-current correlation
Sw)= [ dreT(anm, Al ) (16)
)

whereAl(t) = 1(t) —



Shot Noise

Superoperators

m Master equation as a Liouvillian superoperator

p(t) = Lp(t) = (Lo + La)p(1) (17
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m Master equation as a Liouvillian superoperator

p(t) = Lp(t) = (Lo + La)p(1) (17
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m Current:
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Shot Noise

Superoperators

m Master equation as a Liouvillian superoperator
p(t) = Lp(t) = (Lo + La)p(t) a7

m elements of operator spagg) and|0)) the solution of the master equation
m Current:

() = ({0 £110)) (18)
m Shot noise
S(w) = ((0] L1 10)) — 2RE((0] LsR(w)L, |0))] (19)

whereR (w) is the pseudo inverse ¢iw — L)
Fano factor

Flw) = S5 (20)



Shot Noise
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— coherent tunneling of the vibrational state.



Comparison with a rate equation approach using Fermis GdRige:
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Comparison with a rate equation approach using Fermis GdRige:
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— Keeping the coherences is crucial for this feature.



Shot Noise

Conlusion

m Model for single electron transport through vibrating guwma dot with Image
charge

m Two level system points to coherent oscillations
m Franck-Condon Master equation

m Coherent interaction visible in noise spectrum due to autes in master
equation



Thank you very much!!



Thank you very much!!

Lets go to lunch!!
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