R. Hambach

Graphene

Carbon Nanotubes

DF1

Other

APS March Meeting 2008

R. Hambach

28.03.2008

R. Hambach

Graphene

Carbon Nanotubes

DF1

Other

Outline

Graphene
 Carbon Nanotubes
 DFT
 Other

R. Hambach

Graphene

Carbon Nanotubes

DF1

Other

Graphene-Tutorial

Topic: Will Carbon Replace Silicon? The Future of Graphitic Electronics? (presentations will become available online)

R. Hambach

Graphene

Carbon Nanotubes DFT

Other

Graphene-Tutorial I

James Meindl (Georgia Tech)

Beyond the silicon roadmap, what is needed: can carbon-based electronics do the job

- Si chip performance + productivity improved mainly by scaling down
- driving technique: optical nanolithography
- ITRS Roadmap 2007-2022
 - main problems (challenges for graphene)
 - maximum battery power
 - size of input/output pads
 - heat transfer
- CNT as wires, but problems with positioning
- graphene ribbons

R. Hambach

Graphene

Carbon Nanotubes DFT

Graphene-Tutorial II

Millie Dresselhaus:

Graphite, from fullerenes to nanotubes to graphene nice historical overview (see slides)

- characterization of CNT and graphene by Raman (strong radial breathing mode: 1 CNT \approx Si bulk)
- excitons in small CNTs

Nanoribbons

- again Raman spectroscopy (also RBMs?, chirality?)
- speculation about excitonic effects in small ribbons

Outlook

- CN-tubes is expanding field, towards applications
- GN-ribbon become expanding, learn from tubes!

R. Hambach

Graphene

Carbon Nanotubes

Graphene-Tutorial III Phillip Kim (Columbia) Transport in Graphitic Carbon Nanostructures ballistic transport

- but practically very impure samples (graphene)
- low temp.: GaAs has much larger mean-free-path
- BUT at room temp.: Graphene is better

type of Defects

no point defects in graphene itself but adsorbates from air, electric traps from substrate, ripples

challenges for CNT-ribbons

- better growing conditions
- controlling edges (they mainly determine transport)

R. Hambach

Graphene

Carbon Nanotubes

Other

Graphene-Tutorial IV

Walt de Heer (GIT)

Graphene based electronics: epitaxial Graphene

- special technique for growing graphene on SiC (few layer graphite on Si-face)
- the few layers are decoupled from each other (due to small rotation angle)
- substrate induced gap (devices, tuning by gate-volt.)
- toy systems: quantum interference in rings, pseudo-spin experiments, ...
- Carbon oxide (semicond., shottky barrier)

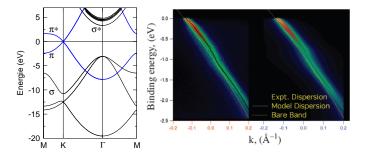
Graphene electronics is NOT only single layer electronics!

- few layers can be still like isolated graphene
- even 50 layer graphene is NOT equal to graphite

R. Hambach

Graphene

Carbon Nanotubes


Kink in Band-Structure

Aaron Bostwick *B28.00013* : Symmetry breaking in epitaxial graphene probed by ARPES

Controversy: kink in linear band dispersion

1 kink-model (MB-effects)

2 gap-model (due to substrate influence)

R. Hambach

Graphene

Carbon Nanotubes

Kink in Band-Structure

Aaron Bostwick *B28.00013 : Symmetry breaking in epitaxial graphene probed by ARPES* Evidence for model (1)

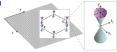
- photoemission experiments, shape of Fermi contours [A. Bostwick et al, New J. Phys. 9, 385 (2007)]
- kink shifts with doping (=¿ model with plasmon)

Reason for observed gap in (2)

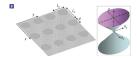
- different samples with small flakes of graphene
- gap openening due to finite size effects ?

see also [Nature 412, 510 (2001)]

R. Hambach


Graphene

Carbon Nanotubes DFT


Graphene

Steven Louie: A28.00002 : Photophysics of Nanostructures: Tubes, Sheets, and Ribbons

Kronig-Penney superlattice on Graphene

[S. Louie, Nature Physics 4, 213 (2008)]

R. Hambach

Graphene

Carbon Nanotubes

DFT

Other

Graphene

Steven Louie: *A28.00002 : Photophysics of Nanostructures: Tubes, Sheets, and Ribbons* **Kronig-Penney superlattice on Graphene**

- renormalization of band-dispersion by periodic potential
- linear, but direction dependent slope (unchanged in direction of periodicity, up to 0 velocity perpendicular)

[S. Louie, Nature Physics 4, 213 (2008)]

R. Hambach

Graphene

Carbon Nanotubes

DF1

Other

Outline

Graphene
 Carbon Nanotubes
 DFT
 Other

R. Hambach

Graphene

Carbon Nanotubes

Other

Excitonic effects I

Jack Deslippe, Steven Louie, Tony Heinz: A28.00003: Effective One-Dimensional Electron-Hole Interaction in Single-Walled Carbon Nanotubes semiconducting SWCNT [J. Deslippe, Nature]

- · very large excit. binding energies, high intensities
- 1D quantum model for e-h interaction (ring charges)
- Antiscreening in SWCNT

metallic SWCNT

- excitons! small binding energies
- from line-shape analysis

BN tubes, Si nanowires, and graphene ribbons

excitonic effects in ribbons, charge transfer exciton

R. Hambach

Graphene

Carbon Nanotubes

Excitonic effects II

J. Kas, M. Prange, F.D. Vila, Y. Takimoto, J.J. Rehr: *X37.00002 : First principles calculations of optical and x-ray spectra from atomic coordinates alone*

Inelastic losses in x-ray absorption with self energy correction + vibrational properties

- *ϵ*⁻¹ calculated at *q* = 0 and extrapolated to finite momenum transfer (multipole model)
 [Phys. Rev. B **76**, 195116 (2007)]
- vibrational properties from DFT (Debye-Waller-Factors)
- \Rightarrow slightly better in XANES
- ⇒ improved EXAF quantitatively

"Combined BSE and TDDFT approach for x-ray absorption calculations" [Phys. Rev. B **71**, 165110 (2005)]

R. Hambach

Graphene

Carbon Nanotubes

DFT

Other

double wall CNT

Morinobu Endo: *B30.00001 : Novel Functions in Double Walled Carbon Nanotubes*

Double wall CNT remain interesting

- much lower degradation
- chemical modification of outer tube
- intercalation (storage, linear atom chains)
- doping into special sites may be interesting for applications

R. Hambach

Graphene

Carbon Nanotubes

DFT

Other

Outline

Graphene
 Carbon Nanotubes
 DFT
 Other

R. Hambach

Graphene

Carbon Nanotubes

DFT

Other

DFT

Walter Kohn: D1.00001: Nearsightedness in Density Functional Theory [PNAS, vol. 102, 11635 (2005)]

John P. Perdew:

D1.00005: Restoring the Density-Gradient Expansion for Exchange in a GGA for Solid and Surfaces PBEsol improves equilibrium properties of densely-packed solids and their surfaces

[J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov,

G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke]

R. Hambach

Graphene

Carbon Nanotubes

DF

Other

Outline

Graphene
 Carbon Nanotubes
 DFT
 Other

R. Hambach

Graphene Carbon Nanotut DFT Other

Strongly Correlated Sys. I

Sergey Savrasov: A3.00002 : Computational Approaches for Strongly Correlated Materials: an Electronic Structure Theory Perspective. new techniques, a spectral density functional theory, which considers total free energy as a functional of a local electronic Green function

R. Hambach

Graphene Carbon Nanotub DFT Other

Strongly Correlated Sys. II

Hamann, Vanderbilt: D13.00001: Maximally-localized Wannier functions for GW quasiparticles combined the WANNIER90 code for MLWF with the self-consistent GW capabilities of the ABINIT code until now for Si and perovskite SrZrS₃

R. Hambach

Graphene Carbon Nanotu DFT Other

Strongly Correlated Sys. III

Rei Sakuma, Miyake, Aryasetiawan: *D13.00003: All-electron GW calculation of vanadium dioxide* GW calculation of metallic and insulating vanadium dioxide using a full-potential LMTO basis set. The calculations show that it is crucial to take into account both the frequency dependence and the off-diagonal elements of the self-energy...

R. Hambach

Graphene

Carbon Nanotubes

DFT

Other

Other

Ann E. Mattsson:

S13.00003: Accurate and fast DFT calculations with the AM05 functional

- AM05 functional is on a regular semi-local GGA form
- performs exceptionally well for solids and surfaces.
 [R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005).]

R. Hambach

Graphene

Carbon Nanotubes

DFT

Other

- H35.00003 : Novel acoustic surface plasmons on Cu(111) (Karsten Pohl) [Nature 448, 57 (2007)]
- H35.00004 : Thickness dependent plasmon excitation and damping in metallic thin films (Zhe Yuan) [Phys. Rev. B 73, 155411 (2006)]
- H24.00007 : Anisotropic plasmon excitation and dispersion of Ag nanowires on Cu(110) (I. Senevirathne)

R. Hambach

Graphene

Carbon Nanotubes

DFT

Other

- H35.00007 : Controlling surface plasmons and local field by two-dimensional arrays of metallic nano-bottles (Hei Iu)
- X28.00004 : Study of the absorption spectra of periodic hole arrays (Dimitrios Koukis) surface plasmon-wave manipulation (diffraction, focussing, switching) [Appl. Phys. Lett. 91, 083115 (2007)]
- U29.00007 : Electronic screening in graphite (James Reed) [Phys. Rev. Lett. 92, 237401 (2004)]