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Abstract

The electronic structure of solids can be probed by different types of spectro-
scopies. Here we focus our discussion on photoemission spectroscopy and how
it can be understood theoretically. Direct or inverse photoemission, which
removes or adds one electron to the system, respectively, can be described
by the one-particle Green’s function. Thereby, we avoid the full solution of
the many-electron problem. Approximate methods for the calculation of the
Green’s function have been studied for many years, and many different the-
oretical approaches have been proposed. The GW approximation, developed
by L. Hedin in 1965, is a well established approach for describing the quasi-
particle peaks in the spectral function. The cumulant expansion, derived
from model systems, is a promising approach for describing the photoemis-
sion satellites. However, approximations for describing the satellite structure
are still under investigation.

Other researchers in our group have already combined the cumulant expan-
sion with the GW quasiparticle correction when modeling bulk silicon. They
obtained very good agreement with experimental results for both the quasi-
particle peaks and the satellite structure. However, the derivation of this
approach uses some rough approximations whose validity has to be investi-
gated.

As a test bed, we study the Hubbard model, which is widely used to deal
with the physics of strongly correlated materials. Specifically, we choose the
Hubbard molecule (the one-electron, two-site Hubbard model) to investigate
the performance of this approach in a finite system. This model is very useful
for evaluating the validity of different flavors of the cumulant expansion and
the GW approximation, since the exact Green’s function, and therefore also
the spectral function, for this model molecule is known.
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Chapter 1

Introduction

In this chapter, we start from the motivation of this work. Next we introduce direct
(inverse) photoemission spectroscopy ((I)PES) focusing on the physical processes and
terminology. The following section addresses the definition of the one-particle Green’s
function, explained in relation to (I)PES processes. In the fourth section, the cumulant
expansion approximation is introduced. We also present one past work related to bulk
silicon, a result which motivated our work on the cumulant expansion. In the last sec-
tion, we introduce the two-site Hubbard model from its origin and its Hamiltonian in
second quantization. We will use this model to evaluate the performance of the cumulant
expansion approximation as well as combined with the GW quasiparticle correction.

1.1 Motivation

Spectroscopy owes its origin to the discovery of the photoelectric effect by Hertz and its
explanation by Einstein, which earned him the Nobel prize. The interaction between
matter and radiation (including electrons, light, x-rays, lasers, and other modern photon
sources) is the key to study a vast number of materials, ranging from solids to atomic
and nanoscale systems. In spectroscopy experiments, we perturb the sample with a
beam of particles (photons or electrons) and measure the energy (or other properties) of
the outgoing particles (again photons or electrons) (Table 1.1). From these processes we
can determine the elementary excitations that the perturbation induces in the system.
Therefore, spectroscopy can help us to obtain a lot of information about the properties
of the materials, which allows us to predict the possible applications for these materials
in industry. In this work, we focus our discussion on direct or inverse photoemission,
which can be described directly by the one-particle Green’s function.1

A typical photoemission experiment is performed at a synchrotron. Fig. (1.1) shows
the scheme of the synchrotron SOLEIL. I have been there once for visiting before I
started my work. From this visit, I got a lot of information about PES experiments.
I also learned that the cost of doing these experiments is several millions of euros per

1The definition of the one-particle Green’s function will be introduced later and can be found in any
textbook on many-body physics such as ”Many-particle theory” written by E. K. U. Gross.
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Table 1.1: Classification of different kinds of spectroscopies.

Spectroscopy class IN OUT Number of electrons in the sample

Direct photoemission photon electron N→ N − 1
Inverse photoemission electron photon N→ N + 1

Reflection photon photon N→ N
Electron energy loss electron electron N→ N

window1 per year. How great would it be if we could get all the information that results
from PES experiments just by a theoretical spectroscopy calculation?

h"p://www.synchrotron-­‐soleil.fr/ 

Figure 1.1: Schematic of the synchrotron SOLEIL in France

Nowadays theoretical spectroscopy2 has become one of the most active research fields
in condensed matter physics. It also has a lot of achievements on material science. For
example, theoretical spectroscopy has explained the stability of optical absorption in
CIGS solar-cells [1], or suggested ways to optimize phase change materials in optical
data storage [2]. Also, the band gap of InN was predicted by theoretical spectroscopy

1Ligne de lumière in Fig. (1.1) where we get the x-ray from synchrotron and do our experiment.
2See http://www.etsf.eu/
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before it could be measured experimentally because the sample quality was too poor [3].
In addition, theoretical spectroscopy can help us interpret experimental data and

analyze the information from experimental results. For example, Fig. (1.2) depicts the
data produced by a synchrotron experiment. It shows the measured electron counts in
function of photon energy and photoelectron kinetic energy. In this figure, there is a lot
of information to be analyzed.
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Figure 1.2: Experimental spectrum of bulk iron taken at the LURE synchrotron by F.
Sirotti (unpublished).

Last but not least, because the experimental results for some materials are still miss-
ing, reliable theoretical simulations can help us predict the properties of new materials,
which can optimize the process (time and money) for finding proper materials for the
corresponding application. In addition, it is possible to achieve remarkable technological
and fundamental breakthroughs via theoretical spectroscopy, such as new functionality
(optoelectronics) or biological applications.

1.2 Direct and inverse photoemission spectroscopy

In a PES experiment, we irradiate the sample with photons (e.g. x-rays) of energy hν
to excite and emit electrons. By measuring the kinetic energy of the outgoing electrons,
one has access to the electronic properties of the system.

If the electrons in the sample were independent particles, each emitted electron would
contribute just to a delta peak in the spectrum, in correspondence to the one-particle
energy level it was occupying in the system. However, the world is not so easy to
understand because of the many-body effects. In real materials, electrons can never be
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treated as independent particles, due to the Coulomb interaction. The emitted electron
leaves a hole (i.e., a positive charge in correspondence to a depletion of negative charge)
in the system. The presence of the hole induces a relaxation of the other electrons that
screen this new positive charge (Fig. (1.3)). Therefore, the measured kinetic energy of
the emitted electron is different from the independent particle situation. This in turn will
lead to a shift and a renormalization of the independent particle peak, which broadens
and loses part of its weight. When in the spectrum a main structure is still identifiable as

Figure 1.3: The diagram represents the excitation of plasmon satellites in PES in the
electronic system. After the incoming photon (hν) induces one emitted electron, one
positively charged hole will be left in the sample which induces relaxations of other
electrons in the sample as well as other collective charge excitations (plasmons). The
one-particle Green’s function (see section 1.3) describes the propagation of particles, and
the dynamically screened Coulomb interaction W represents the effective interaction
between particles.

deriving from the independent particle peak, it can be still associated to a one-particle-
like excitation, and we call this a quasiparticle peak. One can describe quasiparticle
excitations by means of a one-particle Schrödinger equation with a complex, non-local,
and frequency dependent effective potential.

The photon energy, besides creating and screening the hole, can be used also to
simultaneously induce other excitations (mostly plasmon excitations) in the system. The
excitations are observable in the spectrum, appearing as satellites at lower energies. In
fact, the electron is emitted with a smaller kinetic energy compared with the independent
particle situation.

In IPES, an electron is absorbed instead of a photon, and the emitted particle is a
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photon. However the physics inside remains the same as PES. The electron is surrounded
by a positively charged polarization cloud. The positive screening charge and the bare
electron form a quasiparticle which weakly interacts with other quasiparticles via a
screened, rather than the bare, Coulomb potential. In IPES the quasiparticle excitation
will give part of its energy to the satellites at higher energies in the spectrum.

1.3 Green’s function in many-body physics and the spec-
tral function

The (I)PES process can be described by the one-particle Green’s function. The definition
of the zero-temperature, equilibrium, time-ordered, one-particle Green’s function for a
fermion reads [4]

G(12) = −i〈ΨN
0 |T [ψH(1)ψ†H(2)]|ΨN

0 〉 (1.1)

Here and throughout the thesis, we always use atomic units (~ = e2 = me = 1). In
Eq. (1.1) the index (1), for the sake of compactness, includes the space, spin, and
time variables: (1) = (x1t1) = (r1σ1t1). The N-particle ground-state wavefunction
of the system is denoted by |ΨN

0 〉. The field operator in the Heisenberg picture1 that

annihilates (adds) one particle at space, time and spin (xt) is given by ψH(xt) (ψ†H(xt)).
T is the time-ordering operator.

If we write out the time-ordering operator using the step function we can express the
Green’s function as follows:

G(12) = −iθ(t1 − t2)〈ΨN
0 |ψH(1)ψ†H(2)|ΨN

0 〉+ iθ(t2 − t1)〈ΨN
0 |ψ†H(2)ψH(1)|ΨN

0 〉
= G>(e)(12)θ(t1 − t2) +G<(h)(12)θ(t2 − t1) (1.2)

in which θ(t) is the step function

θ(t) =

{
1 if t > 0

0 if t < 0

and G>(e)(12) and G<(h)(12) are the so-called greater (electron) and lesser (hole)
Green’s functions.

The one-particle Green’s function expresses the probability amplitude for an electron
(a hole) which at time t2(t1) is added to the system (in its ground state) in r2(r1) with
spin σ2(σ1) to be found at r1(r2) with spin σ1(σ2) at a time t1 > t2 (t2 > t1). For
this reason, in literature the greater Green’s function is sometimes called the electron
Green’s function Ge, and the lesser Green’s function is called the hole Green’s function
Gh. The electron Green’s function describes the IPES process and the hole Green’s
function describes the PES process (see Fig. (1.4)).

1There are three pictures, namely the Heisenberg, Schrödinger and interaction picture, which can be
transformed into each other.
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Figure 1.4: Schematic representation of PES (IPES) and the connection with the Green’s
function (see Eq. (1.2)). Here, Ekin is the kinetic energy of the electron and hν is the
photon energy. In an IPES process, we add one electron to our system. It means the
electron propagates from one state to the other state as described by the electron Green’s
function. In PES, we remove one electron from our system, which corresponds to adding
one hole to our system, and can be described by the hole Green’s function.

In this thesis, we mainly work with the Lehmann representation of the one-particle
time-ordered Green’s function in frequency space:1

G(x1x2, ω) =
∑

n

〈ΨN
0 |ψS(x1)|ΨN+1

n 〉〈ΨN+1
n |ψ†S(x2)|ΨN

0 〉
ω − (EN+1

n − EN0 ) + iη

+
∑

n

〈ΨN
0 |ψ†S(x2)|ΨN−1

n 〉〈ΨN−1
n |ψS(x1)|ΨN

0 〉
ω − (EN0 − EN−1n )− iη

(1.3)

1We use the Fourier transform in this work as

f(ω) =

∫ +∞

−∞
dtf(t)eiwt

f(t) =
1

2π

∫ +∞

−∞
dωf(ω)e−iωt,

and the differential representations of the step function are

θ(τ) = lim
η→0+

− 1

2πi

∫ +∞

−∞
dω

e−iωτ

ω + iη

θ(−τ) = lim
η→0+

1

2πi

∫ +∞

−∞
dω

e−iωτ

ω − iη ,

where the infinitesimally small η is needed for the convergence of the integral.
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where n labels the many-body states and ψS and ψ†S are the field operators in the
Schrödinger picture, |ΨN

0 〉 and EN=1
0 are the ground-state wavefunction and energy,

respectively, |ΨN+1
n 〉 and EN+1

n are the wavefunctions and energies after adding one
electron in our system, and |ΨN−1

n 〉 and EN−1n are the wavefunctions and energies after
removing one electron from our system. Here η → 0+ comes from the differential form
of the step function, whose sign distinguishes between the hole propagation (−iη) and
electron propagation (+iη).

This representation of the Green’s function is in real space. For our purpose, we need
to transform it into a discrete basis set (e.g. the site basis in section 1.5). We can write
the Green’s function in the site basis using:

Gij = 〈i|G(x1x2)|j〉 =

∫
dx1dx2φ

∗
i (x1)G(x1x2)φj(x2). (1.4)

The field operator can be written as:

ψS(x) =
∑

i

ciφi(x) (1.5)

ψ†S(x) =
∑

i

c†iφ
∗
i (x). (1.6)

Therefore, we have

Gij(ω) =
∑

n

〈ΨN
0 |ci|ΨN+1

n 〉〈ΨN+1
n |c†j |ΨN

0 〉
ω − (EN+1

n − EN0 ) + iη
+
∑

n

〈ΨN
0 |c†j |ΨN−1

n 〉〈ΨN−1
n |ci|ΨN

0 〉
ω − (EN0 − EN−1n )− iη

, (1.7)

where ci and c†j are the so called creation and annihilation operators in the new basis
set. The spin index is included in the index i and j here.

Finally, the imaginary part of the Green’s function determines the spectral function
A in frequency domain:

A(x1x2, ω) =
1

π
|=G(x1x2, ω)| (1.8)

Since

lim
η→0+

1

ω − ε± iη = P
1

ω − ε ∓ iπδ(ω − ε), (1.9)

where P is the Cauchy principle value, the spectral function has δ peaks at the excitation
energies ε. The intensity of those peaks is determined by the matrix elements in the
numerator of the Green’s function. We can see that, the spectral function reflects the
excitation energies of the system that occur in direct and inverse photoemission.

1.4 Cumulant expansion approximation

The name cumulant expansion approximation was introduced by Langreth in 1970 [5],
building up on earlier works of Hedin et al.[6]. In [5], an exact expression for the core
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(hole) one-particle Green’s function of a model Hamiltonian is derived, which has an
exponential form (See Eq. (3.33) in chapter 3) and yields a spectrum containing a quasi-
particle δ peak and a series of satellites, representing the different plasmon excitations.
Each of the satellites has a different intensity, which depends on the probability for the
corresponding plasmon excitation to happen.

In early works [7], researchers used the cumulant expansion approximation to repro-
duce satellites, while the GW approximation performs well for quasiparticle peaks [8].
The researchers in [9] developed a theory that combines the cumulant expansion with
GW for solids. It yields excellent results for bulk silicon as shown in Fig. (1.5).
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Figure 1.5: The performance of the combined approach (GW for the quasiparticles
and cumulant expansion for the satellites) in comparison to a pure GW approach and
experimental data for bulk Si.

Inspired by this result, the idea of my work is to investigate the performance of
this approach in a finite system, and to understand the effects of the approximations
involved. The main scheme of this work is shown in Fig. (1.6).

1.5 Two-site Hubbard model

The Hubbard model [10; 11] is named after John Hubbard who introduced a Hamiltonian
in order to model electronic correlations in narrow energy bands and proposed a number
of approximations to treat the associated many-body problem. In this work, we study
the Hubbard molecule, namely the two-site Hubbard model, with only two sites and one
orbital per site at quarter filling, i.e., with one electron. To obtain the Hamiltonian for
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Figure 1.6: The main idea of this work: the state-of-the-art GW approximation is very
successful in describing the quasiparticle peaks in the PES spectrum and the cumulant
expansion is a very promising approach for describing the satellite structure. It has been
shown that combining GW and the cumulant expansion has a very good agreement with
the PES experiment for bulk Si who has infinite number of electrons. In this work we
investigate this approach in a finite model system (two-site Hubbard model) and try to
understand all the physics behind this approach.

our two-site Hubbard model, we need to start from the general form of the Hamiltonian
in many-body physics (Eq. (1.10)).

A solid consists of ions and electrons condensed in a three-dimensional crystalline
structure. Since the ions are much heavier than the electrons, it is often a good phe-
nomenological starting point for the exploration of the electronic properties of solids to
think the ions as forming a static lattice. In this approximation, the dynamics of the
electrons is governed by the Hamiltonian as following in the first quantization:

H =

N∑

i=1

(
p2i
2m

+ V (ri)

)
+

∑

1≤i<j≤N
v(ri, rj), (1.10)

where m is the mass of the electron and N the number of electrons in the system.
V (ri) is the potential of the ions and we name it as external potential in this work.
v(ri, rj) = 1

|ri−rj | is the Coulomb repulsion between electrons.1 In our two-site Hubbard

model, we only need to consider the case N = 0, 1, and 2 to describe electron removal

1The Coulomb interaction is spin-independent. Consequently this holds also for the Hartree potential
and the screened Coulomb interaction.
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and addition with respect to the one-electron system.
The general formula relating the first and second quantization is

H =
∑

σ

∫
drψ†σ(r)h(r)ψσ(r)+

1

2

∑

σσ′

∫ ∫
drdr′ψ†σ(r)ψ†σ′(r

′)v(r, r′)ψσ′(r
′)ψσ(r), (1.11)

where h = p2 + V is the one particle part of the Hamiltonian (1.10). The coefficient
1/2 in the second term comes from the fact that i and j can be exchanged in second
quantization form and both situations are equivalent, corresponding to i < j in Eq.
(1.10).

The central assumption of the Hubbard model is that all orbitals are strongly local-
ized. That means the orbitals centered at different sites do not overlap, which allows us
to write (using Eq. (1.4), (1.5), and (1.6))

vijkl =

∫
drdr′ϕ∗iσ(r)ϕlσ(r)v(r, r′)ϕ∗jσ′(r

′)ϕkσ′(r
′) = vijjiδilδjk (1.12)

for the matrix elements of the Coulomb interaction in the site basis. The second ap-
proximation involved in this model is that the Coulomb interaction is dominated by the
on-site interaction, which allows us to write

vijkl = uδijδilδik. (1.13)

Here the on-site Coulomb interaction for the two-site Hubbard model is u. With these
two approximations, we can write the Hamiltonian (1.10) for the two-site Hubbard model
in site basis:

H = −t
∑

i 6=j
i,j=1,2

∑

σ

c†iσcjσ +
u

2

∑

i=1,2

∑

σσ′
c†iσc

†
iσ′ciσ′ciσ + ε0

∑

σ,i=1,2

niσ, (1.14)

where t is the hopping kinetic energy of electrons which represents the possibility for
one electron to go from one site to the other. It comes from the off-diagonal elements
of the kinetic energy in Eq. (1.10). εi is the orbital energy which comes from the
diagonal elements of the kinetic energy and the ionic potential. Because in this model
both sites are equivalent, we have ε1 = ε2 = ε0. niσ = c†iσciσ is the number operator.
The eigenstates of the system will be linear combinations of Slater determinants, which
are denoted by the kets |1; 2〉. The occupation of the sites 1 and 2 can be 0, ↑, ↓ or
↑↓. At the beginning there is only one electron in our system, so the eigenstates can be
|0; ↑〉, |0; ↓〉, | ↑; 0〉, and | ↓; 0〉. In this model, the vacuum state |ΨN=0〉 = |00〉 has zero
energy EN=0 = 0.
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Chapter 2

Exact Green’s function for the
two-site Hubbard model

In this chapter, we calculate the exact Green’s function for the two-site Hubbard molecule
in both the site basis and the bonding-antibonding basis. We explain what information
we can obtain from the one-particle Green’s function via the energy-level diagrams and
the spectral function. Finally, we discuss the IPES spectrum of adding one spin-down
electron to show what is the quasiparticle peak and what is the satellite.

2.1 Exact Green’s function in site basis

(This part of work has been done by [12] and [13] separately, but I have redone all
the calculations independently to try to have a good understanding of all the involved
theories.)

We already introduced the Lehmann representation of the Green’s function in Eq.
(1.7). Now we write this representation for the two-site Hubbard model in the site basis:

GN=1
ijσ (ω) =

∑

n

〈ΨN=1
0 |ciσ|ΨN=2

n 〉〈ΨN=2
n |c†jσ|ΨN=1

0 〉
ω − (EN=2

n − EN=1
0 ) + iη

+
∑

n

〈ΨN=1
0 |c†jσ|ΨN=0〉〈ΨN=0|ciσ|ΨN=1

0 〉
ω − (EN=1

0 − EN=0)− iη , (2.1)

where |ΨN=1
0 〉 and EN=1

0 are the ground-state wavefunction and energy, respectively.
|ΨN=2

n 〉 and EN=2
n are the wavefunctions and energies when there are two electrons in

our system. |ΨN=0〉 and EN=0 are the wavefunction and energy when there is no electron
in our system.

From Eq. (2.1) we know that if we want to construct the one-particle Green’s function
for the one-electron system (GN=1

ijσ ) we need to know all the wavefunctions and energies
for the one-electron (ground state), two-electron (adding one electron), and zero-electron
(remove one electron) systems. Here we set the vacuum state |ΨN=0〉 = |0; 0〉 to zero
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energy EN=0 = 0. In the following section, we derive the energies and wavefunctions for
the one-electron and two-electron systems.

2.1.1 Wavefunctions and energies for one- and two-electron systems

We have already introduced the two-site Hubbard model Hamiltonian in Eq. (1.14).
When there is only one electron in our system, this electron has four possibilities to
be on one site or the other site, to be spin up or spin down. Therefore the possible
one-electron states in the site basis are:

| ↑; 0〉, | ↓; 0〉, |0; ↑〉, |0; ↓〉. (2.2)

Then we write the Hamiltonian (1.14) in this basis,1 which results in a 4× 4 matrix
as shown below:

HN=1 =




ε0 0 −t 0
0 ε0 0 −t
−t 0 ε0 0
0 −t 0 ε0


 . (2.3)

We can calculate all the eigenvectors (wavefunctions) and eigenvalues (energies) of this
matrix and the results are shown in the following table:

Table 2.1: Eigenvalues and eigenvectors of one-electron system

EN=1
n /|ΨN=1

n 〉 | ↑; 0〉 | ↓; 0〉 |0; ↑〉 |0; ↓〉
ε0 − t 0 1/

√
2 0 1/

√
2

ε0 − t 1/
√

2 0 1/
√

2 0

ε0 + t 0 1/
√

2 0 −1/
√

2

ε0 + t 1/
√

2 0 −1/
√

2 0

Here, we choose our ground state such that there is one spin-up electron in our system.
Therefore the ground-state wavefunction and energy are |ΨN=1

0 〉 = 1/
√

2(| ↑; 0〉+ |0; ↑〉)
and EN=1

0 = ε0 − t, respectively. Actually we could have also chosen to have one spin-
down electron in the ground state. Both situations are equivalent.

When we have two electrons in our system, there are six possibilities to build up
two-particle states:

| ↑; ↓〉, | ↓; ↑〉, | ↑; ↑〉, | ↓; ↓〉, | ↑↓; 0〉, |0; ↑↓〉
If we write the Hamiltonian (1.14) in the two-particle basis, we obtain a 6× 6 matrix:

HN=2 =




2ε0 0 0 0 −t −t
0 2ε0 0 0 t t
0 0 2ε0 0 0 0
0 0 0 2ε0 0 0
−t t 0 0 2ε0 + u 0
−t t 0 0 0 2ε0 + u



. (2.4)

1Here, we follow the convention c†|↑;0〉c
†
|↓;0〉c

†
|0;↑〉c

†
|0;↓〉|0; 0〉 = | ↑↓; ↑↓〉.

12



The eigenvalues and eigenvectors of this matrix are shown in Table 2.2, where we have
introduced the abbreviations c =

√
16t2 + u2, a =

√
2((16t2/(c− u)2) + 1), and b =√

2((16t2/(c+ u)2) + 1).

Table 2.2: Eigenvalues and eigenvectors of two-electron system

EN=2
n /|ΨN=2

n 〉 | ↑; ↓〉 | ↓; ↑〉 | ↑; ↑〉 | ↓; ↓〉 | ↑↓; 0〉 |0; ↑↓〉
2ε0 + u−c

2
4t

a(c−u)
−4t

a(c−u) 0 0 1/a 1/a

2ε0 + u+c
2

−4t
b(c+u)

4t
b(c+u) 0 0 1/b 1/b

2ε0 + u 0 0 0 0 −1/
√

2 1/
√

2
2ε0 0 0 0 1 0 0
2ε0 0 0 1 0 0 0

2ε0 1/
√

2 1/
√

2 0 0 0 0

2.1.2 Construct the Green’s function in site basis

Now, we have everything we need to construct the one-particle Green’s function. In-
serting all the wavefunctions and energies and calculating the matrix elements (e.g.
〈ΨN=1

0 |ciσ|ΨN=2
n 〉) in Eq. (2.1), we get all the elements of the Green’s function matrix:

G(ω) =




G11↑ G12↑ 0 0
G21↑ G22↑ 0 0

0 0 G11↓ G12↓
0 0 G21↓ G22↓


 , (2.5)

where

Gij↑(ω) =
(−1)i−j

2

[
1

ω − (ε0 + t) + iη
+

(−1)i−j

ω − (ε0 − t)− iη

]
, (2.6)

Gij↓(ω) =
1

2




(
4t

a(c−u) + 1
a

)2

ω − (ε0 + (u− c)/2 + t) + iη
+

(
4t

b(c+u) − 1
b

)2

ω − (ε0 + (u+ c)/2 + t) + iη




+
(−1)i−j

4

[
1

ω − (ε0 + u+ t) + iη
+

1

ω − (ε0 + t) + iη

]
. (2.7)

Here we can see the one-particle Green’s function is spin diagonal, which is a direct
consequence of having a spin-independent external potential and a spin-independent
Coulomb interaction. The spin-up block has both electron and hole parts and the spin-
down block has only the electron part, which is consistent with the fact that there is
only one spin-up electron in our system (That is why we can only create a spin-up hole.).
From Eq. (2.6) and (2.7), we obtain the relation G11 = G22 and G12 = G21 for both
spin-up and spin-down blocks because the sites in this Hubbard model are equivalent.
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If we put u = 0 in Eq. (2.6) and (2.7), we can get the so-called non-interacting
Green’s function G0:

G0
ij↑(ω) =

(−1)i−j

2

[
1

ω − (ε0 + t) + iη
+

(−1)i−j

ω − (ε0 − t)− iη

]
, (2.8)

G0
ij↓(ω) =

(−1)i−j

2

[
1

ω − (ε0 + t) + iη
+

(−1)i−j

ω − (ε0 − t) + iη

]
. (2.9)

We can see G0
ij↑ = Gij↑ (Eq. (2.8) and (2.6)). This is because whenever we remove

or add one spin-up electron, there can never be Coulomb interaction due to the purely
on-site Coulomb interaction in this two-site Hubbard model.

2.2 Basis transformation from site basis to bonding-anti-
bonding basis

Up to now, all our calculations have been carried out in the site basis which can be
considered as an atomic-like basis set. Here, we introduce the bonding-antibonding
basis which is conceptually similar to a molecular-orbital basis. The advantage of this
new basis set is that the Green’s function becomes diagonal (see Eq. (2.15)) which
simplifies both the calculation and the interpretation of the results.

The bonding-antibonding basis functions are

|Ψb↑〉 = 1/
√

2(| ↑; 0〉+ |0; ↑〉)
|Ψb↓〉 = 1/

√
2(| ↓; 0〉+ |0; ↓〉)

|Ψa↓〉 = 1/
√

2(| ↑; 0〉 − |0; ↑〉)
|Ψa↓〉 = 1/

√
2(| ↓; 0〉 − |0; ↓〉),

in which a and b represent the antibonding and bonding orbital, respectively.
Now we use the basis transformation to get the new Green’s function matrix. The

transformation equation is1

〈Ψlσ|G(ω)|Ψmσ〉 =
∑

σ′

∑

i,j

〈Ψlσ|iσ′〉〈iσ′|G(ω)|jσ′〉〈jσ′|Ψmσ〉, (2.10)

where l and m are the state indices representing the bonding (b) or the antibonding (a)
orbital.

1With this transformation equation, we can transform all the one-particle quantities from site basis
to bonding-antibonding basis.
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The non-vanishing matrix elements of the Green’s function in this basis are:

Gbb↑(ω) =
1

ω − (ε0 − t)− iη
(2.11)

Gbb↓(ω) =

(
4t

a(c−u) + 1
a

)2

ω − (ε0 + (u− c)/2 + t) + iη
+

(
4t

b(c+u) − 1
b

)2

ω − (ε0 + (u+ c)/2 + t) + iη
(2.12)

Gaa↑(ω) =
1

ω − (ε0 + t) + iη
(2.13)

Gaa↓(ω) =
1

2

(
1

ω − (ε0 + u+ t) + iη
+

1

ω − (ε0 + t) + iη

)
. (2.14)

We only write these four elements because all other elements are zero. The Green’s
function matrix in bonding-antibonding basis is a diagonal matrix reading as follows:

G(ω) =




Gbb↑ 0 0 0
0 Gbb↓ 0 0
0 0 Gaa↑ 0
0 0 0 Gaa↓


 (2.15)

2.3 Energy-level diagrams

Before we introduce the spectral function and the interpretation of each Green’s func-
tion element, we first construct the energy-level diagrams for the one- and two-electron
systems.

To draw the energy-level diagrams for the Hubbard molecule with one and two elec-
trons, we first consider the atomic limit, i.e., when the two sites are infinitely far away
from each other. In this case, it is impossible for the electron to go from one site to the
other. That means t → 0. In this situation, there will be only one energy level left for
the one-electron system, which is ε0 as shown in Table 2.1. While for the two-electron
system, there are two energy levels left in atomic limit which are 2ε0 and 2ε0 + u as
shown in Table 2.2. When the two sites come closer to each other (t is not zero any
more) the energy levels will split into two for the one-electron system and four for the
two-electron system as shown in Fig. (2.1).

We give a brief discussion about the Green’s function with the energy-level diagrams.1

If we remove the ground-state electron (spin-up electron) from our system, our system
will lose the energy ε0− t. Because we know from the one-electron energy-level diagram
(Fig. (2.1)) that, this spin-up electron is in the bonding orbital whose energy is ε0 − t.
It means that at the beginning, our system has the energy ε0 − t. But if we remove
this electron, the energy of our system will be zero. We can imagine this process as a
photoemission process, where one peak would appear at ε0 − t in the spectrum. If we
calculate the spectral function (via Eq. (1.8)) for electron removal, the only contribution

1This discussion is my own interpretation of each Green’s function matrix element in the two-site
Hubbard model. It expands on previous explanations.
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Figure 2.1: Energy-level diagrams for one-electron and two-electron systems. The bond-
ing orbital has the energy ε0 − t and the antibonding orbital has the energy ε0 + t.

arises from Gbb↑(ω). So Gbb↑(ω) describes the process when we remove this ground-state
electron from our system.

Then we consider another situation: We add one electron to our system corresponding
to an inverse photoemission process. From the energy-level diagram (Fig. (2.1)), we can
guess there should be four peaks appearing at 2ε0−(ε0−t) = ε0+t (peak 1 in Fig. (2.2)),
2ε0+u−(ε0−t) = ε0+u+t (peak 2 in Fig. (2.2)), 2ε0+(u−c)/2−(ε0−t) = ε0+t+(u−c)/2
(peak 3 in Fig. (2.2)), and 2ε0+(u+c)/2−(ε0−t) = ε0+t+(u+c)/2 (peak 4 in Fig. (2.2)).
The four electron addition peaks in the spectral function are due to the contributions
from Gbb↓, Gaa↑, and Gaa↓. Here, we can discuss the situations with different spins
separately.

First, if we add one spin-up electron to our system, this electron can only go to
the site which is empty at the beginning and finally stay in the antibonding orbital
according to the Pauli exclusion principle. In this case the total energy of our system
will be (ε0 − t) + (ε0 + t) = 2ε0 as show in Fig. (2.1). There will be one peak appearing
at 2ε0− (ε0− t) = ε0 + t (peak 1 in Fig. (2.2)) in the spectrum, which is calculated from
Gaa↑.

In the case we add one spin-down electron in our system, this electron can stay in
the bonding orbital or the antibonding orbital. When it stays in the antibonding orbital
(Gaa↓) there are two possibilities (two poles). The first possibility is that this electron
stays on the same site as the ground-state electron, where the total energy of our system
will be (ε0−t)+(ε0+t+u) = 2ε0+u and the peak will appear at 2ε0+u−(ε0−t) = ε0+u+t.
Another possibility is that this spin-down electron is on the other site which is empty at
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First we need to introduce all the new quantities that will be used in these chapter.
VH is the Hartree potential at vanishing the external potential, which means VH(3) =
�i

R
d4v(3+, 4)G(4, 4+; ['])|'=0. In fact the diagonal of Green function is nothing else

than the density operator ⇢. This can be readily seen from the definition of the Green
function: �iG(1, 1) = h 0|T [ †(1) (1)]| 0i = hn(1)i. Then it is very easy to interpret
the physic meaning of the Hartree potential: If we consider there is one electron at space
and time 3. The Hartree potential for this electron comes from the coulomb interaction
between this electron and the charge density at space and time 4.

GH(12) = G0(12) +
R

d3G0(13)VH(3)GH(32) is the Hartree Green function we want to
calculate, in which G0 is the non-interacting Green function.

Now we need to write all the quantities that in real space into the discrete form in our
model. For VH it is very easy to write it into side basis. From the definition v(3+, 4)
is the Coulomb interaction between electrons and in our Hamiltonian the bare Coulomb
interaction is not zero only when the two electrons are on the same site. So v(3+, 4) =
vij�ij = u. G(4, 4+) = Gjj . The integral on 4 is equivalent with the sum over j. We know
that VH should be spin independent and so as the bare Coulomb interaction. But the
Green function is spin dependent so we also need to sum over spin for the Green function.
Then we can get the final expression of the Hartree potential in side basis for our model:

V H
ii = �i

Z
dt4

X

j

vij�ij
X

�

Gjj�(t4, t4+) = �i

Z
dt4u
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Figure 2.2: The spectral function for electron propagation. This corresponds to
the IPES process where we add one electron to the system. We plot Ae(ω) =
|=(Gbb↓ +Gaa↑ +Gaa↓)|. Here we set ε0 = t = 1 and u = 2.

the beginning. In this situation, the total energy of our system will be 2ε0 and the peak
will appear at ε0 + t. We can get these two peaks in the spectral function calculated
from Gaa↓ (peak 1 and peak 2 in Fig. (2.2)). The possibility for this spin-down electron
to be on each site is the same (the numerators are the same in Eq. (2.14)).

When this spin-down electron stays in the bonding orbitals, the situation becomes
very interesting. Because we first need to find the effective Coulomb interaction between
two electrons on the same orbital (on the same site or on the different sites), which is not
the bare Coulomb interaction u anymore. When the sites and orbitals combine together
we need to define a new effective Coulomb interaction to describe the interaction between
electrons on the same orbital. Let’s say u′ is the on-site and on-orbital effective Coulomb
interaction and we have u′ = 2t + (c − u)/2.1 u′′ is the off-site and on-orbital effective
Coulomb interaction and we have u′′ = 2t + (u − c)/2.2 With these two newly defined
interactions, we can interpret Gbb↓ as: When the incoming spin-down electron arrives at
the same site as the ground-state spin-up electron and both of them stay in the bonding
orbital, the total energy of our system will be 2ε0 + (u + c)/2, which yields a peak at
ε0 + t + (u + c)/2. While if the incoming electron arrives at the empty site and the
bonding orbital, the total energy of our system is 2ε0 + (u− c)/2 and there will be one
peak appearing at ε0 + t+(u− c)/2 (peak 3 and peak 4 in Fig. (2.2)). Apparently, when
both electrons are in the bonding orbital, they prefer to be off-site (From the intensity

1In this case, the total energy of our system should be 2(ε0 − t) + u+ u′ = 2ε0 + (u+ c)/2.
2Now, the total energy of our system is 2(ε0 − t) + u′′ = 2ε0 + (u− c)/2
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of these two peaks we can say this.)

2.4 Spectral function calculated from the exact Green’s
function

In this section, we take the process of adding one spin-down electron to our system as
an example to show the different properties of quasiparticle peaks and satellites.

For the spectral function the two important properties are the positions of the peaks
and their intensities. The peak position results from the denominator of the Green’s
function and it tells us the excitation energy. The intensity comes from the numerator,
which describes the probability for this excitation to occur. In this work, when u/t = 2 is
corresponding to the system with normal interaction and u/t = 4 is the strong interaction
system.

1 2 3 4 uêt
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Figure 2.3: IPES peak positions (left) and intensities (right) for adding a spin-down
electron in dependence on u/t.

From the left plot in Fig. (2.3), we know all the peaks except peak 1 will have a
blue shift when the Coulomb interaction becomes stronger and stronger. This means we
need more energy to excite the system with stronger correlation. From the right plot we
know that in the absence of interaction u = 0, the intensity of peak 4 will be zero. Its
intensity becomes bigger with increasing Coulomb interaction, which is consistent with
the definition of a satellite peak in section (1.2). In the non-interacting limit, peak 1 and
peak 2 are degenerate and only one peak is visible (left plot when u = 0). That is why
we can only see two peaks (peak 1 and 2 are in the same position and peak 4 has zero
intensity) in the spectral function (green plot in Fig. (2.4)) for u = 0. The peaks 1, 2,
and 3 are the so-called quasiparticle peaks, because they have non-vanishing intensity
in the absence of interaction. Satellites can only be excited in the presence of interaction
because they are collective many-body excitations. That is why peak 4 is identified as a
satellite.
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Figure 2.4: The spectral function for adding a spin-down electron in different interac-
tions. Here we set ε0 = t = 1. When u = 0 (non-interacting case), there are only two
peaks. When the Coulomb interaction u becomes bigger and bigger, all the peaks have
a blue shift except peak 1. In our model u/t = 2 describes a material with normal
interaction and u/t = 4 is a system with strong interaction.
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Chapter 3

Cumulant expansion

In this chapter, we calculate the cumulant Green’s function for the two-site Hubbard
model. We start from the equation of motion (EOM) of the one-particle Green’s function
to introduce the so-called cumulant expansion approximation. In the second section, we
derive the cumulant expansion for the two-site Hubbard model. To calculate the cumulant
Green’s function, we first need to calculate the Hartree Green’s function and the screened
Coulomb interaction in both the site basis and the bonding-antibonding basis. The scheme
of this chapter is show in Fig. (3.1).

3.1 General cumulant expansion

When we calculated the exact Green’s function for the Hubbard molecule, we already
knew the exact ground state of our system. However, in a real system, it is impossible
to find the exact ground state due to the infinite number of electrons. What can we
do if we do not know the exact ground state, but we still want to calculate the Green’s
function?

The main idea is this: First, we determine the time evolution of the one-particle
Green’s function from the time evolution of the field operators. In this equation, a two-
particle Green’s function appears. Second, we use an external perturbation potential ϕ
to perturb our system, which allows us to express the two-particle Green’s function as a
functional derivative of the one-particle Green’s function. Then we can write the EOM
of the one-particle Green’s function, from which we will be able to get the information
of our system. After we get the Green’s function containing the external perturbation,
we can set the external perturbation to zero to get the equilibrium Green’s function. So
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Figure 3.1: This scheme represents the idea of the cumulant expansion and the combina-
tion with GW quasiparticle corrections. We start from the very beginning of the equation
of motion of the one-particle Green’s function (EOM) (Eq. (3.1)). Then we add approx-
imations until we find an equation which we can solve exactly (Eq. (3.3)). The solution
of Eq. (3.3) has an exponential form which we Taylor-expand to get our cumulant result.
We next calculate the Hartree Green’s function and the screened Coulomb interaction
(RPA and exact) in different basis sets, so we can get the cumulant Green’s functions
with several different ingredients. Finally, we add GW quasiparticle corrections for all
conditions to see the performance of our approach (in chapter 4).

we start from the EOM (Eq. (3.1)) [14].

G(12; [ϕ]) = G0(12) +

∫
d3G0(13)VH(3; [ϕ])G(32; [ϕ])

+

∫
d3G0(13)ϕ(3)G(32; [ϕ])

+ i

∫
d3d4G0(13)v(3+4)

δG(32; [ϕ])

δϕ(4)
, (3.1)

where ϕ is the external perturbation, G0 is the non-interacting Green’s function (Eq.
(2.8) and (2.9)), v(12) = v(r1r2)δ(t1 − t2) is the Coulomb potential between electrons,
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and VH(3) = −i
∫
d4v(3+4)G(44+; [ϕ]) is the Hartree potential, which I will explain later

in this chapter.1 Notice that since the Hartree potential contains the Green’s function,
Eq. (3.1) is non-linear. Once this equation is solved, we can calculate the exact Green’s
function for any system (material). However, there is no exact way to solve this equation,
at least until now.

Therefore, we need to find an approximate way to solve it. For the cumulant expan-
sion, the approximations involved are what we called the linearization approximation
and diagonalization approximation.

Using the linearization approximation,2 Eq. (3.1) can be written as [15]:

G(12; [ϕ̄]) = G0
H(12) +

∫
d3G0

H(13)ϕ̄(3)G(32; [ϕ̄])

+ i

∫
d3d4G0

H(13)W (3+4)
δG(32; [ϕ̄)]

δϕ̄(4)
, (3.2)

where W = ε−1v is the screened Coulomb potential at vanishing ϕ with ε the dielec-
tric function. G0

H is the Hartree Green’s function containing the Hartree potential at
vanishing ϕ, ϕ̄ = ε−1ϕ is the renormalized external perturbation.

Through this linearization, the screened interaction W becomes the central quantity
of Eq. (3.2), which can be calculated in random-phase approximation (RPA).3 For Eq.
(3.2), we still do not know the exact solution, so we need to use a further approximation,
i.e., the diagonalization approximation, which allows us to write Eq. (3.2) as [9]:

G(t1t2; [ϕ̄]) = G0
H(t1t2) +

∫
dt3G

0
H(t1t3)ϕ̄(t3)G(t3t2; [ϕ̄])

+ i

∫
dt3dt4G

0
H(t1t3)W (t+3 t4)

δ

δϕ̄(t4)
G(t3t2; [ϕ̄]). (3.3)

In the diagonalization, there is no longer a space index because we treat both G and
G0
H as diagonal matrices in space on the same basis.4 Now there is a problem because

the results will depend on the basis set. Which basis is better and how can we choose
the better basis? We will discuss this later in chapter 4.

13+ means that the time is t3 + η. The small parameter η → 0+ is needed for this time ordering.
2VH = V 0

H +
∫
ϕvχ, where χ = δρ

δϕ
is the response function and V 0

H is the Hartree potential without

the external potential. In the linearization, we write VH = V 0
H to linearize Eq. (3.1). But in this work

to avoid more indices, we use VH to represent V 0
H .

3In RPA, the screening is due to the non-interacting electron-hole pairs.
4It means the decoupling of the quantities for all space and spin or orbital coordinates, i.e.,

G(12) =
∑
kk′

Gkk′(t1, t2)φk(r1)φ∗k′(r2) ≈
∑
k

Gkk(t1, t2)φk(r1)φ∗k(r2)

G0
H(12) =

∑
kk′

G0
H;kk′(t1, t2)φk(r1)φ∗k′(r2) ≈

∑
k

G0
H;kk(t1, t2)φk(r1)φ∗k(r2)
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The exact solution of Eq. (3.3) is:

GC(t1t2)|ϕ=0 = GhH(t1t2)e
−i

∫ t2
t1
dt3

∫ t2
t3
dt4W (t+3 t4)

+ GeH(t1t2)e
−i

∫ t1
t2
dt3

∫ t3
t2
dt4W (t+3 t4) (3.4)

We call this Green’s function, which includes linearization and diagonalization approxi-
mations, the cumulant Green’s function GC [9]. From here on, we write GH instead of
G0
H to avoid more indices.

3.2 Cumulant expansion for the two-site Hubbard model

To calculate the cumulant Green’s function (Eq. (3.4)), we first need to calculate the
Hartree Green’s function GH as well as the screened Coulomb interaction W in some
approximation (traditionally RPA).

3.2.1 Hartree Green’s function for the two-site Hubbard model

The Hartree Green’s function is calculated from the non-interacting Hamiltonian and
the Hartree potential, which means in the two-site Hubbard model Hamiltonian (1.14),
we put u = 0 and then add VH , the spin-independent Hartree potential at vanishing
external perturbation (ϕ = 0):

H = −t
∑

i 6=j
i,j=1,2

∑

σ

c†iσcjσ + ε0
∑

σ,i=1,2

niσ + V H
ij , (3.5)

and

VH(3) = −i
∫
d4v(3+, 4)G(4, 4+; [ϕ])|ϕ=0 (3.6)

The diagonal of the Green’s function matrix G(4, 4+; [ϕ])|ϕ=0 is simply the den-
sity ρ. This can be readily seen from the definition of the Green’s function, which is
−iG(1, 1+) = 〈ΨN

0 |T [ψ(1)ψ†(1+)]|ΨN
0 〉 = 〈n(1)〉. From this, we can interpret the phys-

ical meaning of the Hartree potential: If we consider there is one electron at space and
time (x3t3), this electron feels instantaneously the electrostatic potential at r4 that arises
from all electrons at all space points. In fact, in the two-site Hubbard model, the charge
density is known. We already gave the ground state with only one spin-up electron on
one site. Therefore the electron density at any site is 1/2, so that V H

ij = (u/2)δij . We
can also calculate VH from its definition, in which case we need to write all the quantities
into the discrete form in our model:

V H
ij (t3) = −i

∫
dt4
∑

kl

vijklδ(t3 − t4)
∑

σ

Gklσ(t4, t
+
4 )

= −iuδij
∑

σ

Giiσ(t3, t
+
3 ) =

u

2
δij (3.7)
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Next, by replacing V H
ij in the Hamiltonian of Eq. (3.5), we can get our new Hamil-

tonian for calculating the Hartree Green’s function. The process is the same as the
calculation of the exact Green’s function in chapter 1.1 Here we show the results of this
Hartree Green’s function at vanishing external perturbation:

In site basis, we obtain:

GH(ω) =




GH11↑ GH12↑ 0 0

GH21↑ GH22↑ 0 0

0 0 GH11↓ GH12↓
0 0 GH21↓ GH22↓


 , (3.8)

where

GHij↑(ω) =
(−1)i−j

2

[
1

ω − (ε0 + t+ u/2) + iη
+

(−1)i−j

ω − (ε0 − t+ u/2)− iη

]
(3.9)

GHij↓(ω) =
(−1)i−j

2

[
1

ω − (ε0 + t+ u/2) + iη
+

(−1)i−j

ω − (ε0 − t+ u/2) + iη

]
. (3.10)

In bonding-antibonding basis, we get:

GH(ω) =




GHbb↑ 0 0 0

0 GHbb↓ 0 0

0 0 GHaa↑ 0

0 0 0 GHaa↓


 , (3.11)

where

GHbb↑(ω) =
1

ω − (ε0 − t+ u/2)− iη (3.12)

GHbb↓(ω) =
1

ω − (ε0 − t+ u/2) + iη
(3.13)

GHaa↑(ω) =
1

ω − (ε0 + t+ u/2) + iη
(3.14)

GHaa↓(ω) =
1

ω − (ε0 + t+ u/2) + iη
. (3.15)

The spectral function calculated from the Hartree Green’s function is shown in Fig.
(3.2).

3.2.2 Random-phase approximation of the screened Coulomb interac-
tion

The physical meaning of the screened Coulomb interaction is related the polarizability,
i.e., the possibility for our system to be polarized. In real space, the expression for the

1Write the Hamiltonian in the site basis, and then calculate all the wavefunctions and energies. After
that, we construct the Hartree Green’s function in the site basis.
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Figure 3.2: The comparison between the spectral function for electron addition calcu-
lated from the Hartree Green’s function and the exact Green’s function. Here u = 2,
ε0 = t = 1. In the Hartree spectrum, we only get two peaks appearing at ω = 1 (red
peak 3) and ω = 3 (peak 5). Because in the non-interacting Green’s function, we got
two peaks at ω = 0 and ω = 2 (see Fig. (2.4)), and for the Hartree Green’s function, all
the peaks shift by VH = u/2.

RPA polarizability is
P (xx′, t) = −iG(xx′, t)G(x′x,−t). (3.16)

This describes the creation of electron-hole pairs. i.e., if t is positive, −t will be
negative and vice versa, so that we have always one electron and one hole Green’s
function (see Eq. (1.2)).

In the two-site Hubbard model, we only have one spin-up electron in our system. The
only possibility for our system to be polarized is this spin-up electron. Even when we
put the external potential, there are no other electrons which can modify the Coulomb
interaction in our system. So to calculate the polarizability for our model, the only
thing we need is the non-interacting spin-up block of the Green’s function (Eq. (2.8)).
Therefore, we can predict that the result of the polarizability matrix will only contain
the spin-up block.

In chapter 2, we already calculated the Green’s function Gijσ(ω) in the site basis and
in the frequency domain (Eq. (2.5)). So we need to transform the polarizability into
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frequency domain:

Pijσ(ω) = F [Pijσ(t)] = −iF [Gijσ(t)Gjiσ(−t)]

=
−i
2π
Gijσ(ω) ∗Gjiσ(−ω) =

−i
2π

∫ +∞

−∞
dzGijσ(z)Gjiσ(ω + z) (3.17)

where ∗ means the convolution of two functions and z can be any complex number.
From this equation, we can get the polarizability matrix reading as:

PRPA(ω) =




P11↑ P12↑ 0 0
P21↑ P22↑ 0 0

0 0 0 0
0 0 0 0


 , (3.18)

where

Pij↑(ω) =
(−1)(i−j)

4

(
1

ω − 2t+ iη
− 1

ω + 2t− iη

)
. (3.19)

The definition of the RPA screened Coulomb interaction is

WRPA = v + vPWRPA. (3.20)

We can understand this equation from the physical meaning of WRPA. Originally,
W = v+vPv+vPvPv+ ... which means the bare Coulomb interaction v is first screened
by another electron-hole pair and the screened interaction becomes W = v + vPv.
Then our system can be screened again by another electron-hole pair, which induces
W = v+ vPv+ vPvPv. We can excite as many electron-hole pairs as we have electrons
in our system. Therefore we can say the screening propagates with the number of
electrons,1 which allows us to write Eq. (3.20).

In our two-site Hubbard model, we can write this equation in the site basis as:

WRPA
ij (ω) = [1− uPRPAij (ω)]−1u, (3.21)

where
PRPAij (ω) =

∑

σ

PRPAijσ (ω). (3.22)

Then we have the result for WRPA(ω) matrix

WRPA(ω) =
u

1− 2uP

(
1− uP uP
uP 1− uP

)
, (3.23)

where P = P11↑(ω) = 1
4

(
1

ω−2t+iη − 1
ω+2t−iη

)
.

1Actually in this two-site Hubbard model, we can calculate the exact screened Coulomb interaction
Wexact due to the one electron in our system. When there is only one electron, Wexact = v + vPv. We
will introduce and discuss this quantity later in chapter 4.
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Therefore, we have all the WRPA matrix elements in the site basis:

WRPA
12 (ω) =

−u2t
ω2 − 2ut− (2t− iη)2

= W21(ω) (3.24)

WRPA
11 (ω) = u+

u2t

ω2 − 2ut− (2t− iη)2
= W22(ω). (3.25)

Then we transform WRPA into the bonding-antibonding basis via the basis transfor-
mation equation (Eq. (2.10)), we obtain:

WRPA
bb (ω) =

u

2
(3.26)

WRPA
aa (ω) =

u

2
+

u2t

ω2 − 2ut− (2t− iη)2
(3.27)

WRPA
ba (ω) = WRPA

ab (ω) = 0. (3.28)

3.2.3 Cumulant expansion in site basis and bonding-antibonding basis

As we mentioned before, the cumulant expansion involves a decoupling of the matrix
elements of the Green’s function. Model calculations designed for strongly correlated
systems, namely dynamical mean field theory (DMFT) [16] that involve similar ideas,
are always done in site basis. But in silicon, Bloch functions were chosen. How important
is this? This has never been studied before. We will discuss the basis effects in this
chapter.

Now, we have everything to calculate the cumulant Green’s function in Eq. (3.4) for
the two-site Hubbard model. First, we work in the bonding-antibonding basis because
both GH(ω) and WRPA(ω) are exactly diagonal in this basis.

We need to write WRPA(ω) in the time domain via Fourier transform:

WRPA
bb (τ) =

u

2
δ(τ) (3.29)

WRPA
aa (τ) =

u

2
δ(τ)− iu

2t

2h
(θ(τ)e−ihτ + θ(−τ)eihτ ), (3.30)

where we define h2 = 4t2 + 2ut. Here and hereafter, τ is always defined as t1 − t2.
Here we choose the calculation of Gaa↑(ω) as one example to demonstrate how to

get the whole Green’s function matrix, and therefore also the spectral function. Gaa↑(ω)
describes the situation when we add one spin-up electron to our system, i.e., it is the
electron propagation. So we know the time ordering should be t1 > t2 and we should
use Waa and GHaa↑.

First we need to calculate the integral in Eq. (3.4)

∫ t1

t2

dt3

∫ t3

t2

dt4Waa(t
+
3 t4) = −iA+ iAe−ih(t1−t2) −Ah(t1 − t2), (3.31)
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where we define A = u2t
2h3

.

GCaa↑(τ)|ϕ=0 = GHaa↑(τ)e−AeiAhτeAe
−ihτ

. (3.32)

Expanding the last term into a Taylor series1

eAe
−ihτ

= 1 +Ae−ihτ +
A2

2
e−i2hτ +

A3

6
e−i3hτ + ..., (3.33)

we can Fourier transform GCaa↑(τ)|ϕ=0 into the frequency domain:2

GCaa↑(ω)|ϕ=0 =
e−A

ω − (ε0 + t+ u/2−Ah) + iη
+

Ae−A

ω − (ε0 + t+ u/2−Ah+ h) + iη

+
A2e−A/2

ω − (ε0 + t+ u/2−Ah+ 2h) + iη
+

A3e−A/6
ω − (ε0 + t+ u/2−Ah+ 3h) + iη

+ ... (3.34)

Similarly we can get all other elements in the bonding-antibonding basis (paying
attention to the time-ordering). Here and hereafter, we only write out the cumulant
expansion to the first order:3

GCbb↑(ω)|ϕ=0 =
1

ω − (ε0 − t)− iη
(3.35)

GCbb↓(ω)|ϕ=0 =
1

ω − (ε0 − t+ u/2) + iη
(3.36)

GCaa↑(ω)|ϕ=0 =
e−A

ω − (ε0 + t+ u/2−Ah) + iη

+
Ae−A

ω − (ε0 + t+ u/2−Ah+ h) + iη
(3.37)

GCaa↓(ω)|ϕ=0 =
e−A

ω − (ε0 + t+ u/2−Ah) + iη

+
Ae−A

ω − (ε0 + t+ u/2−Ah+ h) + iη
. (3.38)

When we derived Eq. (3.3), we knew that we would only need the diagonal elements
of the screened interaction, but W is not necessarily diagonal. In the site basis, we used
only the diagonal elements W11 and W22 to calculate GCiiσ. The problem is that the
Hartree Green’s function matrix in the site basis is not diagonal (Eq. 3.8), in which case

1That is where the name cumulant expansion comes from.
2Here we use the Fourier transform equations and the differential form of the step function as defined

in chapter 1
3Actually we can follow a rule to write out the higher order terms. In addition, we should pay

attention on the + sign on the time index in W during the integral.
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we will only take into account the diagonal elements of GH to calculate the diagonal
elements of GC :1

GCii↑(ω) =
e−A/2

ω − (ε0 + t+ u/2−Ah) + iη
+

e−A/2
ω − (ε0 + t+ u/2−Ah+ h) + iη

+
e−A/2

ω − (ε0 − t− u/2 +Ah)− iη +
e−A/2

ω − (ε0 − t− u/2 +Ah− h)− iη

GCii↓(ω) =
e−A/2

ω − (ε0 + t+ u/2−Ah) + iη
+

e−A/2
ω − (ε0 + t+ u/2−Ah− h) + iη

+
e−A/2

ω − (ε0 − t+ u/2−Ah) + iη
+

e−A/2
ω − (ε0 − t+ u/2−Ah+ h) + iη

.

Comparing the results in different basis sets, we find that for the hole Green’s func-
tion, the cumulant expansion in the bonding-antibonding basis is the same as the exact
result (see Eq. (2.11) and (3.35)). In the site basis, on the other hand, there are a shift
and also satellites because of the so-called self-screening problem [13].2 Because there is
only one quasiparticle peak and no satellites for the exact hole Green’s function, we will
mainly deal with the electron Green’s function.

The performance of the cumulant Green’s function in different basis sets is shown in
Fig. (3.3).

From the comparison between different basis sets, we can get the conclusion: For
the hole Green’s function, the bonding-antibonding basis will give us the exact result,
but in the site basis, we encounter the self-screening problem. Therefore the bonding-
antibonding basis is better than the site basis for the hole Green’s function. For the
electron Green’s function, the different basis sets give different results, but it is not clear
which basis is better. We only get two quasiparticle peaks (instead of three in Fig. (2.2))
in the cumulant expansion because we start from the two-peak Hartree Green’s function.
This is consistent with the literature [7], the cumulant expansion does not work well for
quasiparticle peaks.

1Actually the diagonal elements of GH in the site basis already contain all the information needed
for the calculation of the spectral function, because

GH11↑ +GH22↑ +GH11↓ +GH22↓ = GHbb↑ +GHbb↓ +GHaa↑ +GHaa↓.

2When we remove the only electron from our system, there is nothing left to be screened, so there
should not be any satellite. If there is still a satellite left, that means the hole is screened by itself.
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Figure 3.3: Spectral function for electron propagation in the site basis and the bonding-
antibonding basis when ε0 = t = 1 and u = 2 (u = 4 in the inset plot). For peak 1 and
2 in the exact spectrum, both basis sets give us the same result (peak 5). This peak
creates the cumulant satellite series 5s (the intensity of other satellites is too small to be
seen). For peak 3 in the exact spectrum, the site basis gives us the cumulant satellites
(peak 3s) with a small shift for the quasiparticle peak. But peak 3 in the bonding-
antibonding basis just gets a shift without creating any cumulant satellite. Therefore
form this comparison, we cannot say which basis is better. We expect the blue peak
3 give some intensity to the satellite at the same position as the original satellite peak
(peak 4). But the satellite 3s will always be at the smaller energy scale. The red peak
3 does give any satellite, which means all the red satellites come from the red peak 5
instead of red 3. When u = 4, both red and blue curves become worse.
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Chapter 4

Performance of the cumulant
expansion and the combination
with GW quasiparticle correction

In this chapter, we present the spectral functions by comparing the approximate results
with the exact one. For each comparison, we give a brief discussion as well as the
conclusion. In the first section, we compare the cumulant spectrum calculated from the
RPA W with the spectrum calculated from the exact W . In the second section, we induce
the GW quasiparticle correction.

4.1 Cumulant expansion with the exact screened Coulomb
interaction

As we mentioned before, in a real system (e.g. bulk silicon) we cannot calculate the
exact ground state. You may ask in that case, how can we calculate the Hartree Green’s
function?1 Actually in the real system, the researchers use the density functional theory
(DFT), which has a very good performance in calculating the density of electrons and
therefore the Hartree Green’s function. In the real system, it is also impossible to
calculate the exact screened Coulomb interaction Wexact. This is the reason why we use
WRPA as people did in real materials. But for the two-site Hubbard model with only
one electron in our system, it is possible to calculate Wexact from Eq. (4.1), because
there is no induced potential when we excite the only one electron in our system, hence

Wexact = v + vPv. (4.1)

Compared with the RPA case, we just replace WRPA in the right hand of Eq. (3.20)

1If we do not know the ground state, we cannot calculate the density and hence the Hartree Green’s
function as we did in chapter 2.
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with the bare Coulomb interaction v. The result is:

Wexact(ω) =

(
u+ u2P −P
−P u+ u2P

)
, (4.2)

where P = P11↑(ω) = 1
4

(
1

ω−2t+iη − 1
ω+2t−iη

)
.

In the bonding-antibonding basis we obtain:

W exact
bb (ω) =

u

2
(4.3)

W exact
aa (ω) =

u

2
+
u2

4

(
1

ω − 2t+ iη
− 1

ω + 2t− iη

)
(4.4)

W exact
ba (ω) = W exact

ab (ω) = 0. (4.5)

With this exact screened Coulomb interaction, we can calculate the new cumulant
Green’s function with Wexact instead of WRPA, which can be used to investigate the
performance of the random-phase approximation as shown in Fig. (4.1). Actually the
only thing which is different from the case of RPA (in both basis sites) is the pole of W
and the corresponding oscillation strength: In the RPA case, the pole of W is at h (see
Eq. (3.23)), but in Wexact the pole is at 2t (see Eq. (4.2)). What we need to do here is
just to replace all the h quantities in the RPA W by 2t, then WRPA becomes Wexact. The
pole of W determines the plasmon energy in our system (the energy difference between
two cumulant satellites) and the oscillation strength determines the probability for this
plasmon excitation to happen. Here, we show the cumulant expansion spectrum with
Wexact in Fig. (4.1).

4.2 GW corrections for the quasiparticle peaks

First, we give the spectral function calculated from GW with WRPA and Wexact (Fig.
(4.2)). From this figure, we can see the splitting of peak 5 into three peaks. Moreover,
one peak goes to peak 2 another two peaks go to around peak 1.

4.2.1 GW corrections with RPA screened Coulomb interaction

In this part, we use the RPA screened Coulomb interaction WRPA for the calculation
of both the cumulant expansion and GW correction. Then we combine the cumulant
expansion and the GW correction to get the spectrum shown in Fig. (4.3). In the solids
(e.g. silicon), we have the assumption that the quasiparticle shift in the cumulant expan-
sion (Ah term in Eq. (3.32)) is equal to the energy difference between GW quasiparticle
energy and Hartree quasiparticle energy (i.e., Ah = εGW − εHartree). Here, we use the
same assumption to correct our quasiparticle peaks in the cumulant expansion.

4.2.2 GW corrections with the exact screened Coulomb interaction

In this section we use Wexact everywhere instead of WRPA to plot Fig. (4.4).
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Figure 4.1: The spectral function calculated for electron addition from the cumulant
Green’s function with the exact screened interaction under the condition that ε0 = t = 1
and u = 2 (u = 4 for the inset plot). First: Compared with Fig. (3.3) in the site
basis (blue curve), peak 3 has a bigger shift, also it gives more intensity to the satellite
3s. The same thing happens to peak 5 which gives a lot of intensity to the satellite
5s. Even the second-order satellite 5s’ gets enough intensity to be identified. Second:
In the bonding-antibonding basis (red curve), peak 3 does not create any cumulant
satellite and peak 5 gives a lot of intensity to its first-order satellite 5s and second-order
satellite 5s’. Third: When the Coulomb interaction becomes stronger (the inset plot),
the performance become worse. In site basis (blue curve in the inset), peak 3 shifts to
ω = 0 and its satellite (3s) is at ω = 2 (degenerate with peak 5). The other quasiparticle
peak in site basis (red peak at ω = 2) gives a remarkable strength to its first order
satellite at ω = 4, as well as the second order satellite at ω = 6, and even the third-
order satellite at ω = 8. Here we can see the energy difference between different order
satellites is 2t when we use Wexact. In the bonding-antibonding basis (red curve in the
inset plot), we can only recognize one quasiparticle peak which is at ω = 2 and its two
satellites at ω = 4 and ω = 6, respectively. Fourth: We do see some differences between
the performance of different basis sets but it is not enough to tell which basis is better.
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Figure 4.2: Comparison between the exact spectrum and the GW result (Wexact and
WRPA). First: Compared to the cumulant expansion (Fig. (3.3)), the quasiparticle peaks
become better. However, it gives a very bad description of the satellite (non-physical
satellite appears), which is consistent with the literature on the GW approximation [8].
Second: For the quasiparticle peaks when u = 2, peak 3 is very similar to the exact
peak. Peak 1 in the exact spectrum here becomes peak 6 in GW spectrum. Actually
peak 6 is splitted into two peaks. For peak 2, WRPA performs better than Wexact. Third:
We can see there is a non-physical satellite for both WRPA and Wexact. We say it to
be non-physical because in the case of adding one electron to our system, the satellite
should appear at a higher energy level than the quasiparticle energy. Fourth: In the
case of strong interaction (inset figure), the performance becomes worse because there
are more satellites identifiable and peak 6 splits into two separate peaks.
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Figure 4.3: The spectral function for electron addition calculated from the cumu-
lant+GW approach with the RPA screened Coulomb interaction. Here we set ε0 = t = 1
and u = 2 (u = 4 for the inset plot). We can see the improvement compared with the pure
cumulant (Fig. (3.3)) and the pure GW (green curve in Fig. (4.3)). Both quasiparticle
peaks and satellites are quite similar to the exact spectrum. In the strong interaction sys-
tem (the inset plot), the performance becomes worse, especially in site basis that shows
one more satellite than in bonding-antibonding basis. Here, the bonding-antibonding
basis performs a little bit better than the site basis.
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Figure 4.4: Cumulant+GW approach with Wexact in site basis and bonding-antibonding
basis. First: In bonding-antibonding basis, Wexact (red curve in Fig. (4.4)) performs as
well as WRPA (red curve in Fig. (4.3)), and we cannot tell which one is better. But
in site basis, RPA W performs better (comparison between blue curve in Fig. (4.4))
and (4.3)). At the beginning, we expected a better performance of Wexact compared
to WRPA, but here Wexact performs not very well, or at least, not better than RPA
W . We think that this happens because in the cumulant expansion approximation, we
put approximations on all the quantities involved (including GH and W ) consistently.
If we only introduce one exact quantity in this system, the results can become worse
because the approximation is less consistent. We can also say that RPA performs well
enough, which is why the researchers work with RPA traditionally. Second: From the
inset figure, we can clearly see how bad the performance for Wexact in both basis when
the interaction is strong (u = 4). GW calculations with different W did not give such a
bad result (see Fig. (4.2)), so the bad performance here should come from the cumulant
expansion. When we calculate the cumulant expansion with the Wexact the quasiparticle
will always give more intensity to the satellites compared to WRPA case, due to different
poles in W . Here, the only peak which is similar to the exact quasiparticle peak is peak
3 in bonding-antibonding basis, because this peak does not give any intensity to the
satellite (see Eq. (3.36)). Third: From the comparison between different basis sets, we
find that the bonding-antibonding basis performs better than the site basis, because the
site basis always gives more satellites than the bonding-antibonding basis.
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Chapter 5

Conclusion

The main idea of this work is to investigate the performance of the combination of the
cumulant expansion and GW quasiparticle corrections in a finite system (the two-site
Hubbard model). That is to say, we use the good performance of GW for the description
of quasiparticle peaks and drop its bad performance for satellites. Instead, we use the
cumulant expansion to describe the satellite structure. Unfortunately, the performance
of this approach for the two-site Hubbard model is not as good as for bulk silicon, since
in such a finite system (one electron in the ground sate), the plasmon excitation cannot
propagate as in the case of an infinite system.

The cumulant expansion approximation is basis-set dependent, and from our study,
the basis does affect the spectrum, especially for hole propagation. In bonding-antibonding
basis, the cumulant spectrum for the hole Green’s function is always the same as the
exact spectrum, but in site basis, there is a self-screening problem similar to what GW
suffers. For the electron Green’s function, when working with the pure cumulant ex-
pansion, we cannot tell which basis is better. But when we work with the combined
approximation of cumulant satellites and GW quasiparticles, the bonding-antibonding
basis performs better than the site basis.

From the comparison between the cumulant expansion calculated with the exact
screened Coulomb interaction and the RPA W , the conclusion is that RPA W performs
very well, even better than the exact W in some cases when compared to the exact
spectrum. We think that this is a matter of consistency. If we use only one of the
quantities involved in this approach in its exact version, the final performance can be
worse.

The combination of the cumulant expansion with GW quasiparticles performs better
than the individual approach. We can clearly see the improvement of both quasiparticle
peaks and satellites in the spectrum. But because GW itself does not perform very well
for the two-site Hubbard model for the quasiparticle peaks at strong interaction [13], we
cannot expect any better performance in our work for the quasiparticle peaks. For the
satellite structure, we expected a better performance relative to the work of Romaniello
et al.. Although we avoid the problem of non-physical satellites, the position of some
satellite peaks could still be improved.
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Now, I am thinking about how to improve our approach based on the performance
we already discussed:

First, we can study the approximations involved in the cumulant expansion. As I
have explained, the main approximations involved are the so-called linearization (Eq.
(3.2)) and diagonalization (Eq. (3.3)) approximations. We have the exact solution of
Eq. (3.3), which already includes both approximations. The result is not good enough
for the two-site Hubbard model. How good would it be if we were able to avoid some
approximations? A promising step for future investigation could be to use the solution
including linearization and diagonalization to iterate the equation with only linearization
(Eq. (3.2)). Namely, we use the solution of (3.3) and put it in the right hand side of
(3.2) to recalculate the Green’s function. If this iteration would converge, it would be
better than the cumulant Green’s function GC (Eq. (3.4)). If we successfully found a
better solution, we could even iterate the equation of motion of the one-particle Green’s
function (Eq. (3.1)) without using any other approximations. However, as P. A. M.
Dirac stated in 1929: the difficulty is that the application of the laws (in physics) always
leads to equations much too complicated to be soluble. Another possible method is to
change the model a little bit, which may allow us to understand the performance of our
approach better. In the two-site Hubbard model we used in this work, there is only one
satellite peak for the electron propagation (as measured in inverse photoemission). For
the hole propagation, there is only one quasiparticle peak without any satellite. The
system is too small to investigate the satellite performance in our approach. We could
instead, use the two-site Hubbard model with two electrons in the future or two sites
with more orbitals. In these cases, we would be able to see the propagation of the
plasmon excitations and therefore more satellites. We expect better performance for our
approach in a larger system. However, in this work we intentionally studied a system
where the approach is supposed to perform badly to analyze its failures and get insights
for constructing even better method in the future.

In this thesis, I have studied a lot of theories in many-body physics. From the
very beginning of the second quantization to the many-body Green’s function and a
series of approximate theories (Hartree-Fock approximation, GW approximation, and the
cumulant expansion), as well as the Hubbard model for solving the many-body problem.
I have considered a possible explanation for the one-particle Green’s function matrix
elements in the two-site Hubbard model via energy-level diagrams. By studying the
performance of combining the cumulant expansion with GW quasiparticle corrections in
the two-site Hubbard model, I learned a lot of mathematical strategies to solve different
types of equations and how to analyze the mathematical results from the physics point
of view. A particularly important investigation we have done in this work is the analysis
the basis-set effects in the cumulant expansion approximation, which has not yet been
done by others before.

This is what I have started to learn in this thesis and I would like to continue my
work in this field (theoretical spectroscopy) during my PhD period.
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