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Theoretical Part



Linear Combination of Atomic
Orbitals(LCAQO)

Originally proposed as ab initio technique for computing
electronic properties from atomic wave functions*

But very demanding in terms of calculations
=> relatively little success

! F.Bloch, Z. Phys. 52, 555 (1928 )



Atomic orbitals (n=3)

From www.chemcomp.com/journal/molorbs.htm

— l=0




Construction of LCAO Hamiltonian

We consider a set of atomic-like orbitals located on
atomic positions R;

The LCAO idea is to express one-electron wave functions
as a combination of atomic orbitals

V() =) caixa(F — Ri)

N\

Orbital Atom
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Construction of LCAO Hamiltonian

Considering two orbitals o and [} located on atomic sites
at R; and ﬁ;

The Hamiltonian matrix elements are

—

Huop5(R;, R;) = /.ffrm(r— R)Hxs(7 — R;)

The overlap matrix elements are

—

5&___5{17?1'. ﬁj\) p— /f'fF‘\&.(F— E?;)\g(s"'— Rj)
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Construction of LCAO Hamiltonian

We use the definition of Hamiltonian and overlapping
matrices to Schrodinger equation

Hp(r) = E(r)

The equation we have to solve is

Z[Hﬁe.ﬁ(ﬁi‘ ﬁj} _ Eﬁjﬂﬁ(ﬁz — ﬁj)]f'ﬂ__j =
5.7

(generalized eigenvalue problem)



Using periodicity

Considering a periodic crystal, on can define a new set
of orbitals

Atom

CHJ'T'G _j — ELT"\E’:(" o f ))

\ / Atom pos1t10n in unit cell

Orbital

Translation vector ( to other unit-cells )
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Using periodicity

Considering a periodic crystal, on can define a new set
of orbitals

i) = —= > _ o= (T +7))

1
VN =
't-""_n_g('f_") — Z Cnai(R)X

v, 1

The Hamiltonian becomes

—_

Hagpig(F) = 5 32 A TB o (T 4 7,77+ 7
TT
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Tight-Binding approximation

The interaction between nearest neighbors is large
and decrease quickly with the distance

Atomic sites
Large
v g
o o o o o
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Tight-Binding approximation

The interaction between nearest neighbors is large
and decrease quickly with the distance
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onstruction of the Tight-Binding

Hamiltonian

The Tight-Binding Hamiltonian becomes a truncation of
the sum in Hamiltonian expression

— 1 Tl (T oy = = R -
Hcr,..'i'?_,i,j('l") S {:_.__-EIC(IZT—FTL}—I:T _Tj}jHﬂ'ﬂ'ﬂ (T 7 T + T_j')

o

Limited by the tight-binding approximation
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Common approximations
in Tight-Binding



Common approximations in TB

Nearest-neighbors

'Two centers approximation
Orthogonal tight-binding

Semi-empirical Tight-Binding ( SETB )

L5



Nearest-Neighbors (N-N)

One has to choose the extension of the interactions
between neighbors

In general
first nearest-neighbors (1N-N)
or third nearest-neighbors (3N-N)
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Nearest-Neighbors (N-N)

One has to choose the extension of the interactions
between neighbors

In general

first nearest-neighbors (1N-N)
or third nearest-neighbors (3N-N)

2nd neighbors
1st neighbors
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Nearest-Neighbors (N-N)

One has to choose the extension of the interactions
between neighbors

In general

first nearest-neighbors (1N-N)
or third nearest-neighbors (3N-N)

3rd neighbors

2nd neighbors
1st neighbors
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Common approximations in TB

Nearest-neighbors
'Two centers approximation
Orthogonal tight-binding

Semi-empirical Tight-Binding ( SETB )
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Two centers approximation

All overlap terms and Hamiltonian matrix elements
involve only orbitals and potentials on two atomic sites

Sometime called Slater-Koster two-centers
approximation' or Two centers tight-binding model

1Phys. Rev 94, 1498 (1956)



Two centers approximation

H,(RR,)=(o,(r-R,)[Ho,(r-R,))
{

(‘.1’.; (r—-R;) _ﬁ_ﬂ"r +Z"*}|I1'_Rs;j
k

2m,

_ |
':-r‘:'fs{r_R;])
/

!

@, {P_R_,- ']I}+Z<¢;;:ra {P_thk{r_ﬂ_#.ﬂ@,ﬂ I{P_R_._'>
£

/

Keeping only k=i or k=j give the two-center
approximation otherwise it’s a three center tight-
binding model

(o, (r-R,)|-—a,

2m,
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Common approximations in TB

Nearest-neighbors
'Two centers approximation
Orthogonal tight-binding

Semi-empirical Tight-Binding ( SETB )



Orthogonal Tight-Binding

The overlapping is given, on the same atomic site
Sa;{i‘ (Rz’ R, ) - <§Oa {l‘ -R, )l P (r—R, )> - (S‘aﬁ
But for two different sites, we only have

SRR, )=(0,(r~R)|g;(r R, )}~ 5,5,



Orthogonal Tight-Binding

The Orthogonal Tight-Binding Approximation is an
approximation where your basis is chosen to have the

property

‘Sqa;d? (Rz 2 Rj ) - <§O&' (l‘ o R:)

%('_R;')>:"5aﬁ

This is not an Orthogonalized Tight-Binding where you
transform your orbitals to be orthogonal ( Lowdin
theorem' )

1P.O Lowdin, J. Chem. Phys. 18, 365 (1950)
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Orthogonal Tight-Binding

The equation we have to solve is now an eigenvalue
problem

—_

> [Hapj(k) = En(k)da,30]cn,, (k) =0
B.j

HW = ESWU » HUV = EW



Common approximations in TB

Nearest-neighbors

'Two centers approximation
Orthogonal tight-binding

Semi-empirical Tight-Binding ( SETB )
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Semi-empirical Tight-Binding
Proposed by Slater and Koster Phys. Rev 94, 1498 (1956)
The idea was to parameterize the matrix elements

H, (R, ') that become the tight-binding parameters

Advantage : orbitals are never defined !

Parameters are obtained by fitting or adjusting band
structures



Fitting from experiment or Hatree-Fock, DFT, GW, ...
calculations

ab initio

" — TBsp InAs

’; Exp. 1B
L ’ CB effective mass
* S m* 0023 0.023 mo
g _ 5 VB Luttinger paremeters
(L] % 19.70 19.50
s 7s 840 842
| s 928 920
I X W L I K X
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Ways for obtaining parameters

Fitting ( e.g. least square minimization ) : Minimization of
the discrepancy between the band structures

Adjusting on band structure : The band structure have
some points fixed

Analytic expression of values of the band structure at some
high symmetry point

30
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Practical case :
Band Structure

Graphene



Abplication to Graphene |

We start from the most general problem for p, orbital
only

=0.
Hig(k)—E(k)S5g(k) Hy,(k)—E(k)S k)

al m
From PRB 66 035412 (2002) % :

Tight-binding description of
graphene



Application to Graphene

The general solution is

—(—2Ey+E{)x\(—2E,+E{)*—4E,E,;
2E,

E(k)"=

with
Eoyv=H, 45,44, E;= S.&BHjE + H.-iﬂ‘gjﬁ

Ey=Hi,—H,pHjz E3=S3,—SisSiz.
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Gfgphene : Simple TB

We limit the sums to the first nearest-neighbors

1 o
HAH:E PRI RD(@,(r—Ry)|H|¢p(r—Rp))
‘¥ Ry Rp
with

TD:{‘PA(F_RA}|H| eplr—R4y—Ry;)) (i=1.2.3),

34



Gfgphene : Simple TB

We limit the sums to the first nearest-neighbors

-

The Tight-Binding
approximation

1 |
HAH:E RE RE e’ R~ Ri( o ,(r—R,)|H|¢z(r—R3))
- A B

with \ The parameter

TD:{‘PA(F_RA}|H| eplr—R4y—Ry;)) (i=1.2.3),

35



We limit the sums to the first nearest-neighbors
We apply the same to overlap matrix

S ;z=5o(eFR114 R4 TRR3)

with \ Second parameter

so=(e4(r—Ry|es(r—Ry—Ry;)) (i=1.23)

36
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On-site energy

raphene : Simple TB /

. €2, Yo \f k)
E‘{k}z@h_
].I.E'G‘-._f{k}

The solution becomes

PRB 66 035412 (2002) 37



On-site energy

Grﬂaqphene : Simple TB /

. . (Yo f(k)
The solution becomes L~(k) :Q
]. —+ .5'|:| ‘-._L}{Il.r k}
— abinitio -
%‘ - - tight binding
£
{g Yo = —2.7eV
5
/ &p = OeV
g No overlapping
y = Orthogonal TB

K M
Wave vector

No fitting, only adjustment at K point
PRB 66 035412 (2002)

38




Non orthogonal 3N-N TB

With a better choice of parameters (fitting) and
considering overlapping and third-neighbors interaction

o 10 F-a) single-¢, rf=l.13lfk + b) single-C, }*r=l 86 A c) dnub]e-;,.polarized- 10
5 ] 1’
E O < 0
-5 - 4-5
04 F__ F . 104
g f ~—— | I I -
‘ﬁ 0.0 F.:Y:'_':'.m‘g;“;“-l- _________ - St Lt =:!,‘*"" 0.0
r K MT K MT K M
Wave vector

PRB 66 035412 (2002) 39



a) ab initio

b) nearest nb. TB

c) third nb. TB

Energy (eV)

Wave vector kz

FIG. 4. Band structure of a (10.10) armchair nanotube. (a) 4b
initio calculation. (b) Nearest-neighbor tight-binding calculation
with yp=—2.7 eV. (c¢) Third-nearest-neighbor tight-binding calcu-
lation with parameters obtained from a fit to the optical energy
range: see Table I. The dashed lines denote ab inifio calculated
energies of the singularities in the density of states.

PRB 66 035412 (2002)

Application to Nanotubes

a) ab initio

b) nearestnb. TB

¢) third nb. TB

Energy (eV)

Wave vector kx

FIG. 5. Band structure of a (19.0) zigzag nanotube. (a) 4b initio
calculation. (b) Nearest-neighbor tight-binding calculation with 7,
=—2.7 V. (c¢) Third-nearest-neighbor tight-binding calculation
with parameters obtained from a fit to the optical energy range; see
Table I. The dashed lines denote ab inifio calculated energies of the
singularities in the density of states.

40
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Practical case :
Optical Spectrum

Silicon



Approximation :

-Two center approximation
-Orthogonal TB




From Y. M. Niquet presentation :

semiconductor nanostructures

Mostly 3s, 3p antibonding
+ some 3d, 4s contributions

Mostly 3s, 3p bonding

| s 15 band " S,

sp? bonding
Introduction of tight-binding description of

43
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Basis choice for Silicon

Depending on the number of parameters, one can
describe correctly more or less bands

sp3 basis :
Nearest-Neighbours First Third
Number of parameters 6 20

sp3dss™® basis First Nearest-Neighbors :

Nearest-Neighbours First

Number of parameters 18

44



Basis choice for Silicon

sp3 : quite accurate for the valence bands,
somewhat less for the conduction band, especially
at high energy

sp3s™ : s* orbital to mimic d orbitals

sp3dss™ : accurate valence and first conduction

bands

45
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Band Structure

Energy (eV)
Energy (eV)

i

]

!-llll
X Z Qo L A

'
! | |
1 1 |
i ! L i i !
Z W @ L M r b K X

Y. M. Niquet et al | Phys. Rev. B 62, 5109 (2000) J. M. Jancu et al| Phys. Rev. B 57, 6493 (1998)
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Density of States

Comparison between TB and ab initio (ABINIT) density

of states ¢

50
40
30
20

10

|

|
— ab 'n;it

I
io ‘\r — sp3d5d*

40
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Computing momentum matrix
elements

From k.p theory
. i L .L
HEJF(T = Hp + qu — 5 (7. 0] + O[(q)?]
.1 . 3

Momentum matrix elements are obtained from
Hamiltonien matrix elements directly

qu = VrHzrq

48



mputing momentum matrix

elements

Hamiltonian matrix elements

<N R|H ()| ke >= Hy (k) = ™ty (T)
7

Momentum matrix elements

< N E|V-H(k)|p, b >= Z (iT)e* Tty (T
and (T’FI VEHE(T

49,



mputing momentum matrix
elements

Hamiltonian matrix elements

<N K| H (k)| b >= Hy (k) =) e“?"

T
Tight-Binding Parameters

Momentum matrix elements /

< NE|VH(F)p F >= Z(-@f)eﬁﬁ-
7

and {T’F = VEHE(T

50
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r pectrum

50 |
TB Parameters PRB 79 245201 (2012) ;~

i

[ GW - RPA : PRB 69 155112 (2004)

40—

30—
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r Spectrum

50

[ GW - RPA : PRB 69 155112 (2004)

40—

10—

TB Parameters PRB 79 245201 (2012) -~

i

.f.
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Conclusion from linear spectrum

Tight-Binding is good for ground state properties :
Good for band structures (e.g. Silicon or Graphene)

Not really accurate for computing spectra

53



Inclusion of Local-Fieldand —
excitonic effects

Possible in (semi-empirical) tight-binding

Local Field effects with a Semi-Empirical Tight-
Binding
C. Delerue, M. Lannoo, and G. Allan, Phys. Rev. B 56, 15306 (1997)

Excitonic effects via BSE
J.Jiang et al., Phys. Rev. B 75, 035407 (2007)

54
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Ab initio tight-binding



AD initio tight-binding
One can define the orbitals rather than using
parameterization - Large

Orbitals can be
analytic functions, e.g. gaussian-type orbitals

from DFT calculation, e.g. from atomic Kohn-
Sham calculations with PBE exchange-
correlation functional JCP 33, 1165 (2012)

56



mproving the tight-binding model
New Tight-Binding schemes

Linear-muffin-tin orbitals tight-binding (LMTO-TB) *
Hartree-Fock-based TB 2

ab initio multicenter TB 3

DF-based TB (DFTB) 4

Self-consistent charge DFTB 5

1 - Phys. Rev. Lett. 53, 2571 (1984) 2 - Phys. Rev. B 44, 6169 (1991)

3 - Phys. Rev. B 40, 3979 (1989) 4 - Phys. Rev. B 51, 12 947 (1995)
5 — Phys. Rev. B 58, 7260 (1998)

27



nsity Functiona
Binding (DFTB)

1IgNt-

DFT equations + tight-binding approximation

Interest : quite accurate and really quicker than DFT

DFT-LSD Expt.
Formamide DFTB SCC-DFTB (Ref. 39) (Ref. 39)
C=0 1.296 1.224 1.223 1.193
C—N 1.296 1.382 1.358 1.376
N—H 1.003 0.996 1.022 1.002
C—H 1.130 1.131 1.122 1.102
OCN 127.0 125.5 124.5 123.8

From Phys. Rev. B 58, 7260 (1998)

58
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Going further

Deformation potentials in SETB
Spin-orbit coupling in SETB
Examples of applications



Deformation potentials in SETB

Generalized Harrison’s law :

Vsscf((] )= Vssa(do { _Ol L —»

[ , = A
Harrison’s law® : a, = 2

This is the value for a free electron

! Phys. Rev. B 10, 1516 (1974)



Deformation potentials in SETB

Examples of applications :
Strained crystal
Atomic displacements

Surface reconstruction



Spin-orbit coupling in SETB

Spin orbit coupling can be introduce (on p orbitals for
instance, under approximations)

H? =~ AL,"S

0 —i 0 0 0 1]pT)

i 0 0 0 0 -i|p,T)

g0 0 0 —L i 0|p T_:}

20 0 -1 0 i 0]p

/ 0 —i —i 0 | p, l:ﬁ

Spin-orbit coupling L7 0 0 0 0]p l

parameter

Sol. State Comm. 62, 399 (1987)
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Examples of applications

Comparison between TB and LDA

-+ v :
O TBsp
% B
A Ne O PP
3"’ 25 B
=L
O‘;']N 4
B
= B . .
o AE] =E_(d)- E,(bulk Si)
where E, (bulk Si)=1.17 eV

0 i A 4 2 4 2 2 2
0.5 | 1.5 2 2.5 3 35 4 4.5 5
Diameter d (nm)

From Y. M. Niquet presentation : Introduction of tight-binding description of
semiconductor nanostructures 63



Examples of applications

Coallescence of nanotubes

M. Terrones, H. Terrones, F. Banhart, J.-C. Charlier, and P. M. Ajayan
Science May 19 2000 : 1226-1229.



- Examples of applications

Highly defective graphene ( 2 millions of atoms )

Nano Research
May 2013, Volume 6, Issue 5, pp 326-334
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Thank you for your
attention !



Sp3 3N-N

E,4(000)
E,.(000)
A

E,,(220)
E,.(220)
E,.(022)
E,.(220)
E,.(022)
E,,(220)
E,,(022)

—6.17334
2.39585
0.04500

0.23010
—0.21608
—-0.02496

0.02286
—0.24379
—0.05462
—0.12754

eV
eV
eV

eV
eV
eV
eV
eV
eV
eV

E,(111)
E,.(111)
E,.(111)
E,,(111)
E,,(311)
E,.(311)
E,.(113)
E..(311)
E,.(113)
Exy(gll)
E,,(113)

—1.78516
0.78088
0.35657
1.47649

—0.06857
0.25209

—0.17098
0.13968

—0.04580

—0.03625
0.06921

eV
eV
eV
eV
eV
eV
eV
eV
eV
eV
eV

Y. M. Niquet et al.. Phys. Rev. B 62. 5109 (2000)




sp3d5s* basis

PRB 69, 115201 (2004)

Parameter Si Ge
E. —2.15168 —1.95617
E, 4.22925 5.30970
E & 19.11650 19.29600
E, 13.78950 13.58060
A 0.01989 0.10132
Ssa —1.95933 —1.39456
s*s*a —4.24135 — 3.56630
ss*o —1.52230 —2.01830
spo 3.02562 2.73135
s*¥pa 3.15565 2.68638
sdo —2.28485 —2.64779
s*do —0.80993 —1.12312
ppo 4.10364 4.28921
ppw —1.51801 —1.73707
pdo —1.35554 —2.00115
pdm 2.38479 2.10053
ddo —1.68136 —1.32941
ddw 2.58880 2.56261
ddé —1.81400 —1.95120
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ddo
dd
dds
pdo
pd
ppo
ppm

CMS 47, 237 (2009)




