(Ab initio) Theoretical approaches for photovoltaics

Francesco Sottile

Theoretical Spectroscopy Group, LSI, Ecole Polytechnique

4 July 2024 - Ecole Polytechnique

Space Photovoltaics for Energy Conversion in extra-terrestrial environment Workshop

Material Properties

electrical (conductivity, piezo, resistivity, ...)

magnetic (permeability, remanence, ...)

mechanical (tensile, elasticity, fatigue, toughness, ...)

thermal (expansion, specific heat, melting, stability,...)

optical (refraction, absorption, skin depth, ...)

chemical (corrosion, reaction, ph, ...)

hygroscopy, flammability, porosity

Material Properties

electrical (conductivity, piezo, resistivity, ...)

magnetic (permeability, remanence, ...)

mechanical (tensile, elasticity, fatigue, toughness, ...)

thermal (expansion, specific heat, melting, stability,...)

optical (refraction, absorption, skin depth, ...)

chemical (corrosion, reaction, ph, ...)

hygroscopy, flammability, porosity

Experiments

Material Properties

 $rac{\mathrm{d}^2\sigma}{\mathrm{d}\Omega_2\mathrm{d}\omega_e}\circ$

 $\chi^{c'\mu'}_{c\mu}(\omega_i)$

electrical (conductivity, piezo, resistivity, ...)

magnetic (permeability, remanence, ...)

mechanical (tensile, elasticity, fatigue, toughness, ...)

thermal (expansion, specific heat, melting, stability,...)

optical (refraction, absorption, skin depth, ...)

chemical (corrosion, reaction, ph, ...)

hygroscopy, flammability, porosity

$$\begin{split} \hbar \Sigma^{\star}(1,2) &= i \int d34 \ W(1,3) \frac{\delta G(1,4)}{\delta V(3)} G^{-1}(4,2) \\ &= -i \int d34 \ W(1,3) G(1,4) \frac{\delta G^{-1}(4,2)}{\delta V(3)} \end{split}$$

 $\widetilde{\chi}_{\widetilde{\chi}=-iGGF}$

Theo

Experiments

Material Properties

 $rac{\mathrm{d}^2\sigma}{\mathrm{d}\Omega_2\mathrm{d}\omega_e}$

electrical (conductivity, piezo, resistivity, ...)

magnetic (permeability, remanence, ...)

mechanical (tensile, elasticity, fatigue, toughness, ...)

thermal (expansion, specific heat, melting, stability,...)

optical (refraction, absorption, skin depth, ...)

chemical (corrosion, reaction, ph, ...)

hygroscopy, flammability, porosity

$$\begin{split} \hbar\Sigma^{\star}(1,2) &= i \int d34 \ W(1,3) \frac{\delta G(1,4)}{\delta V(3)} G^{-1}(4,2) \\ &= -i \int d34 \ W(1,3) G(1,4) \frac{\delta G^{-1}(4,2)}{\delta V(3)} \end{split}$$

The co

 $(\mu'(\omega_i))$

Training Concernence of the second se

Computer Simulations Experiments

Material Properties

 $rac{\mathrm{d}^2\sigma}{\mathrm{d}\Omega_2\mathrm{d}\omega_e}\circ$

electrical (conductivity, piezo, resistivity, ...)

magnetic (permeability, remanence, ...)

mechanical (tensile, elasticity, fatigue, toughness, ...)

thermal (expansion, specific heat, melting, stability,...)

optical (refraction, absorption, skin depth, ...)

chemical (corrosion, reaction, ph, ...)

hygroscopy, flammability, porosity

$$\begin{split} \hbar\Sigma^{\star}(1,2) &= i \int d34 \ W(1,3) \frac{\delta G(1,4)}{\delta V(3)} G^{-1}(4,2) \\ &= -i \int d34 \ W(1,3) G(1,4) \frac{\delta G^{-1}(4,2)}{\delta V(3)} \end{split}$$

 $\mathbf{h}_{\mathbf{h}_{\mathbf{c}_{i}}}^{\mathbf{c}_{i}} \cdot \boldsymbol{\chi}_{\mathbf{c}_{i}''\mu''}^{\mathbf{c}_{i}} (\omega_{i})$

 (ω_i)

Machine Learning

Computer che Simulations

Theoretical Spectroscopy Group

 $\frac{d^{2}\sigma}{d\Omega_{2}d\omega_{e}} \propto \operatorname{Im} \sum_{\substack{c_{i}}^{\nu''} c_{i}^{\nu''}} \left[\tilde{\rho}_{\mu\nu}^{*} \cdot \chi_{c\mu}^{c_{i}'\mu'}(\omega_{i}) \cdot \tilde{\rho}_{c'\mu'} \right]^{*} \chi_{c\nu}^{c''\nu'}(\omega) \left[\tilde{\rho}_{\mu''\nu'}^{*} \cdot \chi_{c''\mu''}^{c''\mu''}(\omega_{i}) \cdot \tilde{\rho}_{c''\mu''} \right]^{*} theoretical developments for electronic properties$

develop theory and formula

- devise new approximations
- → propose new algorithm
- → implement in computer codes

Outline

• (our) Approach to electronic excitations

Results for absorption spectroscopy

• Advantages, limitations, opportunities

model the system/Hamiltonian model the interaction model the space topology

$$H\Psi(\mathbf{r}_1,\mathbf{r}_2,..,\mathbf{r}_N,t) = i\hbar\frac{\partial\Psi}{\partial t}$$

$$V_{e-e} = \sum_{i < j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} \qquad \qquad V_{e-Z} = \sum_{i,j} \frac{Ze^2}{|\mathbf{r}_i - \mathbf{R}_j|}$$

exponentially hard !!

model the system/Hamiltonian model the interaction model the space topology

$$H\Psi(\mathbf{r_1},\mathbf{r_2},..,\mathbf{r_N},t) = i\hbar\frac{\partial\Psi}{\partial t}$$

$$V_{e-e} = \sum_{i < j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} \qquad \qquad V_{e-Z} = \sum_{i,j} \frac{Ze^2}{|\mathbf{r}_i - \mathbf{R}_j|}$$

exponentially hard !!

ab initio functional approach (DFT, GFT)

approximated potentials

polinomially scaling

 $A(\omega)$

 $\varepsilon(\omega)$

 $\chi^{(n)}(\omega_1,..,\omega_n)$

Outline

• (our) Approach to electronic excitations

Results for absorption spectroscopy

• Advantages, limitations, opportunities

Phys. Rev. B **76** 161103 (2007)

• it captures the physics of the electron-hole interaction

• it captures the physics of the electron-hole interaction

• it captures the physics of the electron-hole interaction

• it can (automatically) profit from extensions

• it captures the physics of the electron-hole interaction

• it can (automatically) profit from extensions

• *ab initio* — predictions

PCCP

PAPER

View Article Online View Journal | View Issue

Non-resonant inelastic X-ray scattering for discrimination of pigments†

Cite this: Phys. Chem. Chem. Phys., 2024, 26, 4363

Lauren Dalecky,^a Francesco Sottile, ^b Linda Hung, ^c Laure Cazals,^a Agnès Desolneux,^d Aurélia Chevalier,^e Jean-Pascal Rueff ^{fg} and Loïc Bertrand ^b *^a

Preliminar RIXS of Al_2O_3 at $L_{2,3}$ edge of Al

M.L.Urquiza, M.Gatti, F.Sottile Phys. Rev. B **109**, 115157 (2024)

Beamtime for Abs and RIXS in L₁ and L_{2,3} edge of Al at SOLEIL (A.Nicolau)

Beamtime for time-dependent RIXS in hBN at FERMI (M.Malvestuto)

- it captures the physics of the electron-hole interaction
- it can (automatically) profit from extensions

- *ab initio* \longrightarrow predictions
- analysis tools (why? how? who is responsable?)

Excitons in V_2O_5

Why V₂O₅?

- ★ layered, complex material
- \star applications in photovoltaics
- ★ optical properties not understood

Excitons in V_2O_5

Why V_2O_5 ?

- ★ layered, complex material
- \star applications in photovoltaics
- ★ optical properties not understood

Gorelov *et al.* npj Comput. Mat. **8**, 94 (2022)

Excitons in V_2O_5

25-

expt

Excitons in V_2O_5

Why V_2O_5 ?

- ★ layered, complex material
- \star applications in photovoltaics
- ★ optical properties not understood

origin of the excitons (bright and dark)

from band-structure analysis

Gorelov et al. npj Comput. Mat. 8, 94 (2022)

DFT/GFT approach to electronic excitations :: successful

- it captures the physics of the electron-hole interaction
- it can (automatically) profit from extensions

- *ab initio* \longrightarrow predictions
- analysis tools (why? how? who is responsable?)

Outline

• (our) Approach to electronic excitations

Results for absorption spectroscopy

• Advantages, limitations, opportunities

exciton creation and separation (and migration) of charges

exciton creation and separation (and migration) of charges avoid recombination

exciton creation and separation (and migration) of charges
avoid recombinationinterface (structure, matching, band alignment)

transparent and conducting material

exciton creation and separation (and migration) of chargesavoid recombinationinterface (structure, matching, band alignment)

temperature, strain, hygrometry

temperature, strain, hygrometry

Opportunities and challenges

- Stronger synergy between theory and experiment benchmarking and devise better approximations
- Reinforce connection with math and computer scientists better algorithms
- Exploit next generation tools new architectures (GPU, TPU, vector engines) high throughput procedures machine learning