(Ab initio) Theoretical approaches for photovoltaics

Francesco Sottile

Theoretical Spectroscopy Group, LSI, Ecole Polytechnique

4 July 2024 - Ecole Polytechnique

Space Photovoltaics for Energy Conversion in extra-terrestrial environment Workshop

Material Properties

electrical (conductivity, piezo, resistivity, ...)

magnetic (permeability, remanence, ...)

mechanical (tensile, elasticity, fatigue, toughness, ...)

thermal (expansion, specific heat, melting, stability,...)

optical (refraction, absorption, skin depth, ...)

chemical (corrosion, reaction, ph, ...)

hygroscopy, flammability, porosity

Material Properties

electrical (conductivity, piezo, resistivity, ...)

magnetic (permeability, remanence, ...)

mechanical (tensile, elasticity, fatigue, toughness, ...)

thermal (expansion, specific heat, melting, stability,...)

optical (refraction, absorption, skin depth, ...)

chemical (corrosion, reaction, ph, ...)

hygroscopy, flammability, porosity

 $\frac{d^2\sigma}{d\Omega_2 d\omega_e} \propto \text{Im }\sum_{\substack{\sigma\in\mathcal{V}_\text{trm}\\\text{trm}\\\text{trm}}} \left[\widetilde{\rho}_{\mu\nu}^*\right] \chi_{\text{tr}}^{\text{tr}} \chi$

Material Properties

electrical (conductivity, piezo, resistivity, ...)

magnetic (permeability, remanence, ...)

mechanical (tensile, elasticity, fatigue, toughness, ...)

thermal (expansion, specific heat, melting, stability,...)

optical (refraction, absorption, skin depth, ...)

chemical (corrosion, reaction, ph, ...)

hygroscopy, flammability, porosity

 $\hbar\Sigma^{\star}(1,2)=i\int d34~W(1,3)\frac{\delta G(1,4)}{\delta V(3)}G^{-1}(4,2)$ $=-i\int d34 W(1,3)G(1,4)\frac{\delta G^{-1}(4,2)}{\delta V(3)}$

 $\widehat{\widetilde{\chi}}_{\widetilde{\chi}=-iGGT}$

 $\frac{d^2\sigma}{d\Omega_2 d\omega_e} \propto Im \sum_{\substack{\sigma \in \mathcal{C}' \\ \sigma \in \mathcal{C}'_{\mu}} \mathbb{P}^{(m)} \\ \text{where } \mathcal{C} \text{ is a constant, and } \mathcal{C} \text{ is a constant, and } \mathcal{C} \text{ is a constant.}}$

Material Properties

electrical (conductivity, piezo, resistivity, ...)

magnetic (permeability, remanence, ...)

mechanical (tensile, elasticity, fatigue, toughness, ...)

thermal (expansion, specific heat, melting, stability,...)

optical (refraction, absorption, skin depth, ...)

chemical (corrosion, reaction, ph, ...)

hygroscopy, flammability, porosity

 $\hbar\Sigma^{\star}(1,2) = i \int d34 W(1,3) \frac{\delta G(1,4)}{\delta V(3)} G^{-1}(4,2)$ $=-i\int d34 W(1,3)G(1,4)\frac{\delta G^{-1}(4,2)}{\delta V(3)}$

 $= -iGG\Gamma$

Computer Simulations $\frac{d^2\sigma}{d\Omega_2 d\omega_c} \propto Im \sum_{\substack{\sigma\in\mathcal{C}_\mu\\ \sigma\in\mathcal{C}_\mu\\ \sigma\in\mathcal{C}_\mu}} \left[\tilde{\rho}_{\mu\nu}^*\cdot \chi_{c\mu}^{c'\mu'}(\omega_i) \right] \tilde{\rho}_{c'\mu'}^{\sigma'\nu'}(\omega_i) \left[\tilde{\rho}_{c'\mu'}^{\sigma'''}(\omega_i) \right] \chi_{c'\nu}^{c'\nu'}(\omega_i)$

Material Properties

electrical (conductivity, piezo, resistivity, ...)

magnetic (permeability, remanence, ...)

mechanical (tensile, elasticity, fatigue, toughness, ...)

thermal (expansion, specific heat, melting, stability,...)

optical (refraction, absorption, skin depth, ...)

chemical (corrosion, reaction, ph, ...)

hygroscopy, flammability, porosity

 $\hbar\Sigma^{\star}(1,2) = i \int d34 W(1,3) \frac{\delta G(1,4)}{\delta V(3)} G^{-1}(4,2)$ $=-i\int d34 W(1,3)G(1,4)\frac{\delta G^{-1}(4,2)}{\delta V(3)}$

Machine Learning

Computer Simulations

Theoretical Spectroscopy Group

0 + X **for electronic properties** P + **theoretical developments** $\begin{split} \text{Im}\sum_{\omega\in\mathbb{Z}}\quad & \left[\tilde{\rho}^*_{\mu v} \cdot \chi^{c'\mu'}_{c\mu}(\omega_i)\cdot \tilde{\rho}_{c'\mu'}\right]^*\chi^{c''\,v'}_{cv}(\omega)\left[\tilde{\rho}^*_{\mu''v'}\cdot \chi^{c''\mu''}_{c''\mu''}(\omega_i)\cdot \tilde{\rho}_{c'''\mu''}\right] \end{split}$

develop theory and formula

- **devise new approximations**
- **propose new algorithm**
- **implement in computer codes**

excitons (electron-hole pairs) collective modes beyond one-particle beyond mean-field

Outline

(our) Approach to electronic excitations

Results for absorption spectroscopy

Advantages, limitations, opportunities

model the system/Hamiltonian model the interaction model the space topology

$$
H\Psi({\bf r}_1,{\bf r}_2,..,{\bf r}_N,t)=i\hbar\frac{\partial\Psi}{\partial t}
$$

$$
V_{e-e} = \sum_{i
$$

exponentially hard !!

model the system/Hamiltonian model the interaction model the space topology

$$
H \mathbf{\Psi} (\mathbf{r_1}, \mathbf{r_2},..,\mathbf{r_N},t) = i \hbar \frac{\partial \mathbf{\Psi}}{\partial t}
$$

$$
V_{e-e} = \sum_{i < j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} \qquad V_{e-Z} = \sum_{i,j} \frac{Ze^2}{|\mathbf{r}_i - \mathbf{R}_j|}
$$

exponentially hard !!

ab initio functional approach (DFT, GFT)

 $A(\omega)$

 $\varepsilon(\omega)$

 $\chi^{(n)}(\omega_1,..,\omega_n)$

Outline

(our) Approach to electronic excitations

Results for absorption spectroscopy

Advantages, limitations, opportunities

Phys. Rev. B 76 161103 (2007) 譶

• it captures the physics of the electron-hole interaction

• it captures the physics of the electron-hole interaction

• it captures the physics of the electron-hole interaction

• it can (automatically) profit from extensions

• it captures the physics of the electron-hole interaction

• it can (automatically) profit from extensions

 \bullet ab initio \rightarrow predictions

PCCP

PAPER

View Article Online View Journal | View Issue

Non-resonant inelastic X-ray scattering for discrimination of pigments†

Cite this: Phys. Chem. Chem. Phys., 2024, 26, 4363

Lauren Dalecky,^a Francesco Sottile, D^b Linda Hung, D^e Laure Cazals,^a Agnès Desolneux,^d Aurélia Chevalier,^e Jean-Pascal Rueff^D^{fg} and Loïc Bertrand^{D*a}

Preliminar RIXS of Al_2O_3 at $\text{L}_{2,3}$ edge of Al

M.L.Urquiza, M.Gatti, F.Sottile Phys. Rev. B **109**, 115157 (2024)計

Beamtime for Abs and RIXS in L₁ and L₂,3 edge of Al at SOLEIL (A.Nicolau)

Beamtime for time-dependent RIXS in hBN at FERMI (M.Malvestuto)

• it captures the physics of the electron-hole interaction

• it can (automatically) profit from extensions

- *ab initio* \longrightarrow predictions
- analysis tools (why? how? who is responsable?)

Why V_2O_5 ?

- \star layered, complex material
- applications in photovoltaics \star
- \star optical properties not understood

Gorelov et al. npj Comput. Mat. 8, 94 (2022)

Why V_2O_5 ?

- \star layered, complex material
- applications in photovoltaics \star
- \star optical properties not understood

Gorelov et al. npj Comput. Mat. 8, 94 (2022)

 $25 -$

expt

Why V_2O_5 ?

- \star layered, complex material
- applications in photovoltaics \star
- \star optical properties not understood

origin of the excitons (bright and dark)

from band-structure analysis

Gorelov *et al.* npj Comput. Mat. **8**, 94 (2022)

• it captures the physics of the electron-hole interaction

• it can (automatically) profit from extensions

- *ab initio* \longrightarrow predictions
- analysis tools (why? how? who is responsable?)

Outline

(our) Approach to electronic excitations

Results for absorption spectroscopy

Advantages, limitations, opportunities

exciton creation and separation (and migration) of charges

exciton creation and separation (and migration) of charges avoid recombination

interface (structure, matching, band alignment) exciton creation and separation (and migration) of charges avoid recombination

transparent and conducting material

interface (structure, matching, band alignment) exciton creation and separation (and migration) of charges avoid recombination

temperature, strain, hygrometry

temperature, strain, hygrometry

Opportunities and challenges

- Stronger synergy between theory and experiment benchmarking and devise better approximations
- Reinforce connection with math and computer scientists better algorithms
- new architectures (GPU, TPU, vector engines) high throughput procedures machine learning • Exploit next generation tools