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1 IntrodutionNonlinear optis is the �eld of researh where a material is subjeted to so intense lightthat its response to this light yields fundamentally di�erent properties than observed inthe more ommon optis that has been known and explored for enturies and is nowreferred to as linear optis. Sine the light needs to be of high intensity, i.e. yield a highphoton density, it was not until the advent of the laser in 1960 that nonlinear optisould be disovered, although there had been a theoretial predition of two-photonabsorption in 1931 [1℄. In 1961 Franken et al. [2℄ used a laser with a wavelength of 6942Åand observed an outgoing radiation with a wavelength of 3471 Å, i.e. with double thefrequeny. This was interpreted as the generation of the seond harmoni in optial light,a phenomenon previously only known for radio waves.The distintion between nonlinear and linear optis is made with respet to the intensityof the �eld. This means, while in linear optis the response of a material is proportionalto the amplitude of the applied �eld, in nonlinear optis it is related to the square, theube et. of this �eld. Formally one an write down the polarization of the materialexpanded in terms of the �eld as [3, 4℄
P = χ(1)E + χ(2)EE + χ(3)EEE + ... (1.1)where the term χ(1) determines the linear optial response and all e�ets desribed bythe other terms are referred to as nonlinear. Obviously, this one name refers to manye�ets in all orders, whih an be fundamentally di�erent. For example, seond ordere�ets are ompletely absent for materials with inversion symmetry and light that anbe desribed within the dipole approximation, while third order e�ets are in priniplealways present. The suseptibilities χ(i) are thus material dependent and while thee�ieny of the e�ets an be very di�erent for di�erent materials, there is no materialthat does not exhibit any nonlinear properties. But even within one order, say theseond or the third, one has a variety of e�ets of very di�erent quality. Seond orderphenomena omprise not only the doubling of an inoming frequenies as enounteredin seond harmoni generation, but also the response with the sum or di�erene of twodi�erent inoming frequenies (sum/di�erene frequeny generation), the splitting ofone inoming photon into two outgoing ones (optial parametri ampli�ation) or thereation of a DC �eld out of an intense AC �eld (optial reti�ation)[3, 4℄. To thirdorder, there are phenomena suh as two photon absorption, third harmoni generation(or generally four wave mixing phenomena) and a nonlinear refrative index that an leadto the foalization of the laser inside the material by the material itself (self-foalization).A nonlinear optial proess an be thought of as ourring in two steps: the intenselight indues a nonlinear response in the material on a mirosopi level that in turn1



modi�es the optial �elds. The �rst step is related to the mirosopi struture of thematerial and thus governed by quantum mehanis, while the seond step is desribedby Maxwell's equations.1.1 Seond Harmoni GenerationIn this thesis I will almost exlusively onsider the ase of seond harmoni generation.The reason is, beause on the one hand, it is one of the most widely used nonlinearoptial e�ets and on the other hand beause, being of lowest order, it is the simplestnonlinear e�et to desribe. Many onsiderations and the general formalism applyhowever also to other seond order proesses or an be readily generalized to thirdorder. One an think of seond harmoni generation in terms of a simple three levelsystem, .f. Fig. 1.1, where one of the two inoming photons exite an eletron out ofits equilibrium position to a higher lying state from whih it gets exited by the seondphoton to a third and when subsequently relaxing to the groundstate it emits a singlephoton that then has twie the energy of the two inoming ones. The intermediateexited states are virtual states, i.e. they do not need to orrespond to atual energylevels of the system. This is of ourse an oversimpli�ation of what atually happens inthe many-body eletron system, where, for example, interations between the eletronistates have to be aounted for as well.
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Figure 1.1: Model for se-ond harmoni generation
Seond harmoni generation as an experimental tool hastwo main appliations. One is to atually double the fre-queny of laboratory lasers and thus give aess to otherfrequenies than the laser frequeny. For this use it ispartiularly important that the seond harmonis are gen-erated with su�ient e�ieny, whih above all means thatthe phase mathing ondition k(2ω) − k(ω) = 0 betweenthe lightvetors of inoming and outgoing �eld is full�eld.Otherwise, seond harmoni generation will still take plaeinside the material, but due to interferene it would not beobservable on the outside. Apart from phase mathing, it isalso important that the seond harmoni suseptibility χ(2)is as large as possible at the desired frequenies. This againis strongly material and frequeny dependent and the searh for high e�ieny nonlinearrystals is still underway [5, 6℄. The other main area of appliation is to use seondharmoni generation as a probe. For systems with inversion symmetry seond harmonigeneration is dipole forbidden and therefore extremely sensitive to symmetry breaking.This makes it partiularly suitable to probe surfaes or interfaes of entro-symmetrimedia, where the bulk will not ontribute to the seond harmoni light and one thus hasa signal purely from the surfae. The use of seond harmoni generation is not limited to
2



these two �elds and there are a variety of other irumstanes where it is employed [7�18℄.1.2 Ab initio optial exitationsThe theoretial desription of optial properties is based on the interation of light withthe eletrons and nulei of the material. This entails in priniple the simultaneous quan-tum mehanial desription of the light and the atoms that form the material with alltheir respetive interations. It is, however, su�ient to desribe the light as a lassial�eld and to assume that the dynamis of the eletrons is deoupled from the dynam-is of the nulei, so that for the eletroni system one an assume �xed ioni positions(Born-Oppenheimer approximation [19℄). These two approximations leave essentiallythe mutual interation of the eletrons as they are exited by the light �eld as the mostimportant e�et. This an be formulated in terms of the Shrödinger equation
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Ψ(r1, ..., rN ) = EΨ(r1, ..., rN ) (1.2)where Ne is the number of eletrons, that has the order of 1023 for marosopi samplesand v is the Coulomb interation between the eletrons. Solving this equation diretly isnot possible and not even neessarily desirable, beause the sheer size of the solution interms of many-body wavefuntions and energies would be impossible to manage. Thisfundamental problem that we know the equation that determines all properties of thematerial, but its solution is impossible to obtain, is ommonly referred to as the many-body problem. For optial proesses this system is then also subjet to a time dependentexitation, whih adds to the omplexity. To takle exitations of the many-body problemone usually separates it into the groundstate problem and the exited state problem thatbuilds on the groundstate.To desribe eletrons in a solid it is onvenient to make the approximation that theeletrons move independently of eah other in the periodi potential reated by the ionsof the solid and the other eletrons. This assumptions allows one to desribe the many-body system in terms of single partile energies and wavefuntions, the so alled Blohstates [20℄, de�ned as
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ψnk(r) = εnkψnk(r) (1.3)where ψnk(r) = unke
ikr. This formulation gives rise to the band struture of solidsthat gives the k-dependene of the single partile eigenenergies εnk. This redues thegroundstate many-body body problem to two ruial steps, one is to obtain the singlepartile states and the other is to ompensate the fat that one is using a single partilepiture to desribe a many-body problem. The �st step is most ommonly done bydensity funtional theory (DFT), whih passes from a desription of the problem in3



terms of wavefuntions to a framework where the eletron density is the fundamentalquantity. While this is in priniple an exat theory, the many-body interations arehere approximated via an e�etive one partile potential, the exhange and orrelationpotential, that is not known exatly but approximation an be derived from fundamentalmodels without adjustable parameters (i.e. LDA and GGA [21℄). The resulting e�etiveone partile states an be further re�ned with additional shemes (suh as perturbative
GW [22, 23℄) whih add to some extend many-body e�ets but one still has a desriptionof the eletroni system in terms of single partiles. The seond step, to inorporatemany-body-e�ets beyond the single partile piture, is far less standardized than DFTbut a rigorous framework for it exist in the many-body perturbation theory (MBPT) thatrelies on the many-body Green's funtion and a set of self onsistent equations, Hedin'sequations[24℄. The ruial point is that in an ab initio approah one does not rely onfree parameters even when one uses approximations, but rather has to derive expressionand shemes that yield results that an be diretly ompared with experiments withoutfurther adjustment.
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Figure 1.2: Absorption spetrumof bulk Si omparing experiment,BSE and TDDFT, as in [25℄.

For optial exitations one is not interested in singlepartile properties like wavefuntions or energies, butrather in the response of the many-body system, i.e.its time dependent properties. By passing from thesingle partile quantities to the atual physial quan-tities, like for example the dieletri funtion, one hasto aount for the many-body e�ets along the way.It is here where the relevant physial approximationsare made, sine one an in priniple hoose whih kindof many-body e�et one wishes to inlude. One an,for example, onsider the optial response of indepen-dent partiles, whih means that one does not inludeany further interation. Beyond this, there are severalapproximations and di�erent methods that have beenapplied with varying suess. The two most impor-tant approahes for optial exitations are the Bethe-Salpeter equation (BSE) and thetime dependent generalization of the density funtional framework (TDDFT). The maindi�erene between the two is that BSE is formulated in terms of the two-partile orre-lation funtion L(r1, r2, r3, r4, ω), whih is a part of the two-partile Green's funtion,whereas TDDFT in response formulation gives the suseptibility χ(r1, r2, ω). While thedownside of the BSE approah is that one has to deal with a four-point quantity asompared to a two point one in TDDFT, its upside is that its ingredients have a learphysial interpretation, while in TDDFT all many-body e�ets are expressed in the ef-fetive kernel fxc, whose exat expression is unknown.This problem, of �nding working approximations for the TDDFT kernel fxc, has for along time made it unsuitable for optial alulations, sine existing approximation failedto produe viable results. This was assigned to the failure of properly desribing the4



eletron-hole interation (exitons) that is of great importane for optial proesses. TheBSE on the other hand, being a two partile orrelation funtion, is perfetly suitable todesribe this e�et. By systematially omparing the two approahes it has been possi-ble to derive an fxc that does aount for exitoni interation and produes spetra ofomparable quality to BSE [25�29℄, .f. Fig. 1.2.It is in this ontext that the work in this thesis is set and its motivation is to translatethe suess of TDDFT for linear optis into the nonlinear domain.1.3 Calulations of Seond Harmoni generationThe desription of seond harmoni generation based on band struture theory was devel-oped shortly after the disovery of the e�et. In 1962 Armstrong et al. [30℄ and Loudon[31℄ give expressions for the mirosopi seond harmoni suseptibility that are similarto those used today. Their equations allow an analysis of the suseptibility in terms ofthe frequeny struture, i.e. the mirosopi origin of the frequeny doubling. Atualalulations based on this formulation have however been only of limited suess for along time. All early alulations are restrited to the stati seond harmoni oe�ient[32�34℄, i.e. χ(2)(ω = 0), and with the absene of ab initio methods for the eletronistruture strong approximations and assumptions had to be made. Aspnes further an-alyzed the formulation in 1972 [35℄ in terms of di�erent gauges for the applied �elds.His alulations, however, had to rely heavily on empirial data by interpolating matrixelements. Calulations made by Yong and Shen based on empirial pseudo-potentialsmissed the experimental values by orders of magnitude, but they showed that for thedispersion of χ(2)(ω) the k-dependene of the matrix elements is ruial. In a later workin 1987 Moss et al. [36℄ used a semi-empirial tight-binding method to alulate statiand frequeny dependent seond harmoni oe�ients for a range of semi-ondutors.While some of their stati values are omparable to the experimental values their spetraare quite o� the measured values, whih the authors attribute to the de�ienies of thetight-binding approah. Although most works at that time were onerned with bulksemiondutor, the authors used this approah to alulate the seond harmoni gener-ation spetra for superlatties as well [37, 38℄.The evolution of omputational methods allowed the �rst ab initio alulation of seondharmoni generation to be arried out by Levine and Allan in 1991 [39, 40℄ under on-sideration of quasi-partile e�ets. These are desribed by the GW method and havebeen found to open the DFT-LDA bandgap of simple semiondutors while leaving thewavefuntions largely una�eted. Levine and Allan thus inorporated the quasipartilee�et in their alulation by simply shifting the ondution bands (sissors shift). Asresults they give only stati values for the seond harmoni generation, however in veryreasonable agreement with experimental values. They subsequently extended their for-malism to aount for rystal loal �eld e�ets [41℄ and to frequeny dependene [42℄. Atthe same time Huang and Ching presented �rst-priniple alulations of seond harmonispetra [43, 44℄ they relied on the formulas developed by Sipe and o-workers [36, 45℄but used a more aurate sheme to alulate the band strutures. 5



Also in the 1990's Sipe and o-workers further developed their formalism for an ab initioalulation of the independent partile seond harmoni suseptibility [46, 47℄ that �nallyallowed them to perform an ab initio alulation of seond harmoni spetra [48, 49℄.While the agreement of their results with experimental spetra remained rather poor,this work is notable beause in [48℄ they give a formulation of the independent partileresponse in the length gauge and optial limit that has sine been widely used, e.g. in[50�58℄ among others. An alternative to the straightforward �sum over states� approahwas suggested by Dal Corso et al. [59℄ relying on the �2n+1� theorem of perturbationtheory [60℄. This approah has the advantage that it does not need unoupied statesto evaluate the response and thus has advantageous saling properties [61℄. They alsoaount self-onsistently for loal �eld e�ets. Most of the mentioned early ab initioapproahes disuss the quality of the band struture and notie a strong dependene ofthe seond harmoni spetra on the auray of the groundstate values. This togetherwith the developing sophistiation of DFT groundstate methods might be the reason forlarge disrepanies between single results and the overall unfavorable agreement withexperiments might additionally be attributed to the fat that most approahes whereonly within the independent partile response.Nonetheless, the independent partile response formulation of seond harmoni gener-ation was applied to a variety of materials and systems. Sharma and Ambrosh-Draxlapplied a similar formulation to mono-layer InP/GaP (110) superlatties [62℄ and Lithiumunder pressure [56, 57℄. Rashkeev and o-workers presented an e�ient sheme [58℄ toevaluate the formulation given in [48℄ with a self-onsistent linearized mu�n-tin orbitalsband struture method and applied it to III-V semiondutors [50℄, ternary pnitides [51℄,Ag-III-VI2 ompounds [52℄, I-III-VI2 halopyrites [53℄ and Zn-IV-N2 ompounds [54℄ .Gavrilenko and o-workers applied the independent partile response to study group-IIInitrides [55℄ and several surfae and interfae systems [63, 64℄. Carbon nanotubes [65℄ andSiC nanotubes [66℄ have been studied by Guo and oworkers. More reently �uoride- [6℄and borate-based rystals [5℄ have been studied within this approximation. While theseapproahes gradually improved the numerial desription of seond harmoni generation,the alulation remain non-trivial and the same level of auray enountered in linearoptis has not yet been ahieved.Furthermore, there have been only few attempts to go beyond the independent partileapproximation, where quasi-partile e�ets are almost always aounted for by the sis-sors approximation. Behstedt and o-workers investigated the validity of this approahby omparing alulations with atual quasi-partile wavefuntions to results obtainedwith the sissors operator [67℄. But in partiular exitoni e�ets have been onsideredonly by few authors. Chang et al. [68℄ proposed a method to inlude exitoni e�ets viawavefuntions that they represent as superpositions of pair exitations. Their formalismgives in priniple the full frequeny dependene but they only report alulations over avery short range. Leitsmann et al. [69℄ developed this formalism further and they usethe exitoni wavefuntions obtained from a BSE alulation to onstrut the many-body
χ(2). This approah is learly a oneptually improvement over the independent partileformulation, sine here many-body e�ets are inluded in the wavefuntions that are6



no longer of an independent partile system. The results they obtain give a qualitativeagreement with experiments over a large spetral range. This work an be onsideredthe most advaned, as far as sophistiation of the theoretial formulation is onerned.Still, in this approah the rystal loal �eld e�ets are only aounted for within the BSEalulation, whih might be a limiting fator on the quality of the result.Having exposed previous work done within the sope of solid state physis, it is worth tonote that in the ommunity of hemial physis nonlinear optial properties are alulatedroutinely for moleular systems. In this ommunity one speaks of hyperpolarizabilities[70, 71℄ whih is equivalent to the seond order suseptibility of this work. TDDFT hasbeen applied to alulate these quantities sine the early days of this method [72, 73℄.Subsequently the alulation of hyperpolarizabilities has been reeived muh attentionand a large body of work is available, e.g. [74�81℄. This was failitated by the imple-mentation of hyperpolarizability features in widely used quantum hemistry odes, suhas AdF [82℄ and others. There are however important di�erenes between these alu-lations and the orresponding e�orts in solids. First, on a pratial level, for moleularpolarizabilities the exhange-orrelation funtional used for the DFT groundstate is veryimportant and many developments have been made in the hemistry ommunity to gobeyond the rather simple LDA approah, e. g. LB94 [83℄ or SOAP [84℄. For optialproperties solids, on the other hand, using funtionals beyond LDA for the ground statealulation does not substantially improve the results. For the TDDFT exhange andorrelation funtionals the situation appears to be the inverse, where ALDA performsrather well for moleules but fails for solids, whih is arguably the reason for the dif-ferent levels of maturity TDDFT has gained in these two �elds. Another importantdi�erene between solids and moleules for optial response alulations, is the fat thatfor moleules a mirosopi desription of the response is enough to model experiments,while for solids the onnetion between the mirosopi and marosopi world is non-trivial already in the linear ase and one of the main results of this work is that theyare even more involved when one onsiders seond order proesses. Therefore, the earlyand rapid suess of TDDFT in the quantum hemistry ommunity ould not be easilytranslated to the solid state domain but it is nonetheless one of the motivations of thiswork to advane the desription on nonlinear response in solids to a point where it is atleast omparable with linear optis of solids and pave the way for further developmentsthat might rival the auray ahieved in hemistry alulations.1.4 This workWhile the independent partile formulation of seond harmoni generation in solids anbe onsidered to be well established, approahes that go beyond this approximation arenot. Mainly for rystal loal �eld e�ets and exitoni ontributions there is a lak ofsystemati desription for the seond order. On the other hand, for linear optis thesetwo e�ets an be onsidered to be well understood and their treatment fairly standard-ized. Espeially within the TDDFT framework loal �eld e�ets are routinely alulatedand more reently the onnetion to the BSE had been made to aount for exitons.7



The main purpose of this work is to use the known onepts and experienes from linearoptis and apply them to the seond order ase.The desription of the theoretial formulation starts in Chap. 2 with a revision of time-dependent perturbation theory whih obviously is the basis for a response treatment.Then, the known linear TDDFT Dyson equation, where the onnetion between the in-dependent and interating partile response is made, needs to be generalized to seondorder, leading to a seond order Dyson like equation that has been published only one[85℄ and never been applied. The struture of the equation allows to solve it analytiallyprovided the linear response is known and thus an, to a ertain extend, be related tothe linear response, but it ontains a higher order orrelation part that only appearsto seond order. The most important di�ulty lies in the numerial evaluation of thesolution the TDDFT Dyson like equation. It gives the mirosopi seond order responseof the eletron density so that approximations onerning the many-body harater haveto be made at this level.The relation between mirosopi and marosopi response given by Adler and Wiser[86, 87℄ is well known for linear optis, sine it aounts for the rystal loal �eld e�ets.For nonlinear response this onnetion is less studied and to our knowledge the analogueto the Adler and Wiser formulation has never been established for the nonlinear ase.Consequently, suh a relation is derived in Chap. 3 in a fairly general way for longitudinaland transverse �elds. TDDFT, however an only give the response to longitudinal �elds,whih has to be taken into onsideration when passing from mirosopi to marosopiquantities.In the ontext of this thesis seond harmoni generation is onsidered to be an optiale�et, whih means one has to onsider a perturbation in the long wavelength limit.Therefore the theoretial formulation has to be taken in the limit q → 0, whih alls fora rather lengthy expansion of the independent partile density response that is desribedin Chap. 4. To provide an alternative way to this expansion I propose a sheme thatonsiders this limit numerially and thus provides an alternative route to the optialresponse. More spei�ally, I use the fat that for �nite frequeny the light wavevetoris still �nite and thus arry out the alulation with very small but �nite q.This formulation in terms of �nite q allows to investigate the spatial dispersion of theoptial response and thus gives also aess to optial responses beyond the dipole limit.This is partiularly interesting for seond harmoni generation beause it is dipole for-bidden in entro-symmetri media. I explore this possibility in Chap. 5 with the exampleof bulk Si. This onstitutes, to my knowledge, the �rst ab initio alulation of the se-ond harmoni bulk quadrupole response. There are however intrinsi limitations in itsformulation in terms of density response.In Chap. 6 I will show a range of numerial results obtained in the standard formulationof the optial limit and with the various levels of approximation that the theory provides.The auray of the implementation is demonstrated in a benhmark test against theexperimental spetrum of GaAs, where previous formulations have yielded results withonly moderate suess. I show that it is the interplay between loal �eld and exitonie�ets that an give a very good agreement of the alulation with the experiment; an8



agreement that is almost as good as that for silion absorption shown in Fig. 1.2.Finally, to follow the suess of the Bethe-Salpeter equation for linear optis, I derivethe analogous expression for seond order response. The resulting equation aounts forall many-body e�ets that our in seond order proesses of any kind, not only optial.It is, however, far more omplex to solve and eventhough its ingredients are in prini-ple known it its not lear if an atual implementation would be feasible. Nonetheless, inApp. D.1 I sketh how suh an implementation might be realized. Also, by exploiting thesimilar struture between the seond order Bethe-Salpeter equation and the seond orderTDDFT Dyson like equation, I �nd an exat expression for the seond order exhangeand orrelation kernel.
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2 Seond order TDDFTThe theoretial desription of nonlinear optis to seond order neessarily means one hasto use perturbation theory to be able to aount solely for the seond order proess. Thebehaviour of a physial system under the in�uene of an external perturbation is alledits response. More preisely, it is the hange in the expetation values of operators ofthe system when the perturbation is applied.2.1 Seond order Response theoryTo introdue the onept of response funtions, we formally expand an operator Â(t) interms of a small perturbation v in interation piture:
Â(t)[v] = Â(t)0 +

∫

d1
δÂ(t)

δv(1)
v(1) +

1

2!

∫

d1d2
δ2Â(t)

δv(1)δv(2)
v(1)v(2) + ... (2.1)The expansion oe�ients do not expliitly depend on the perturbing quantity, but arevariation of the operator with respet to the perturbation. These quantities are theresponse funtions. Their expliit form depends on the oupling between the system andthe perturbation. We onsider an interation Hamiltonian where the perturbing �eld vouples with an operator Ô in the form

ĤI(t) =

∫

drÔ(r, t)v(r, t) . (2.2)From the Kubo response theory [88℄ the linear response funtion is known to take thegeneral form
χAO(1, 2) = −iθ(t1 − t2)〈[Â(1), Ô(2)]〉 (2.3)The theory an be generalized to higher orders (.f. [89℄) to yield the seond orderresponse funtion
χAOO(1, 2, 3) = −θ(t1 − t2)θ(t1 − t3)T 〈[[Â(1), Ô(2)], Ô(3)]〉 (2.4)where T is the time ordering operator1.1The time ordering operator is de�ned by its ation on a funtion of two time variables:

TF (t2, t3) = Θ(t2 − t3)F (t2, t3) + Θ(t3 − t2)F (t3, t2)10



2.2 Perturbation theoryIt is lear that an expansion suh as Eq. (2.1) an only be justi�ed if the perturbation issmall ompared with the overall energies of the system, e.g. eletron binding energy ofa moleule or bond strength in a solid. That is to say, it is only valid within the sopeof perturbation theory, from whih the response funtions are derived. To give a pitureas omprehensive as possible, we will shortly expose here how this perturbation theoryyields the response funtions for the speial ase of eletro-magneti radiation oupledto a (many-body) eletron system. When dealing with the interation of the eletronsystem of a solid with light one an usually separate the total Hamiltonian in a partdesribing the unperturbed eletroni system and another part desribing the ouplingto the time dependent external perturbation
Ĥ = Ĥ0 + ĤI(t) . (2.5)This separation onveniently allows to de�ne an interation piture where the evolutionof the states |Ψ(t)〉 is desribed by ĤI via the time dependent Shrödinger equation
∂t|Ψ(t)〉 = −iĤI(t)|Ψ(t)〉 (2.6)with gives the integral equation
|Ψ(t)〉 = |Ψ(t0)〉 − i

∫ t

t0

dt1ĤI(t1)|Ψ(t1)〉 . (2.7)Iterating this equation gives the dependene of the states to the orders of the interation.We onsider terms up to seond order, thus
|Ψ(t)〉 = |Ψ(t0)〉 − i

∫ t

t0

dt1ĤI(t1)|Ψ(t0)〉 −
∫ t

t0

dt1

∫ t1

t0

dt2ĤI(t1)ĤI(t2)|Ψ(t0)〉. (2.8)Using this expression for |Ψ(t)〉 in the expetation value of an operator 〈Ψ(t)|Â(t)|Ψ(t)〉and keeping only terms up to seond order in ĤI(t) yields the response of the operatorup to seond order
〈Â(t)〉 = 〈Â(t0)〉 + δ〈Â(t)〉(1) + δ〈Â(t)〉(2) (2.9)

= 〈Â(t0)〉 − i

∫ t

t0

dt1〈Ψ(t0)|[Â(t), ĤI(t1)]|Ψ(t0)〉 −

−
∫ t

t0

dt1

∫ t1

t0

dt2〈Ψ(t0)|[[Â(t), ĤI(t1)], ĤI(t2)]|Ψ(t0)〉 (2.10)This is the general result of seond order time dependent perturbation theory. It anbe generalized to n-th order, yielding inreasingly nested ommutators [90℄. It gives,however, not yet the response funtions, beause the terms in Eq. (2.10) ontain theperturbation itself. 11



To arrive at an expliit expression for the responses we have to use an expliit expressionfor ĤI . Here we onsider the interation Hamiltonian of an eletron system with a generallassial light �eld that an be written as
ĤI(t1) =

∫

dr1

[

ρ̂(1)Vper(1) − ĵ(1)Ãper(1) +
1

2
ρ̂(1)Ã2

per(1)

] (2.11)where 1 is shorthand for r1t1 and Ãper ≡ 1
cAper to keep the notation simple. ThisHamiltonian ontains the diamagneti term ρ̂A2

per that is seond order in the �eld and isthus negleted in �rst order response theory. We are, however, interested in the seondorder and therefore this term has to be inluded when evaluating the δ〈Â(t)〉 part of Eq.(2.10), while it gives third and fourth order ontributions when used for the seond orderresponse δ〈Â(t)〉(2).The quantities of interest here are the responses of eletron- and urrent-density underthe perturbation. We an use Eq. (2.10) together with the Hamiltonian (2.11) to getthe �rst and seond order responses of the total urrent omposed of the para- anddiamagneti urrent Ĵ(1) = ĵ(1)+ ρ̂(1)Ãper(1) and the density ρ̂(1). To �rst order in theurrent we have
δ〈Ĵ(1)〉(1) = 〈ρ̂(1)〉Ãper(1)+i

∫ t1

t0

dt2

∫

dr2〈[̂j(1), ĵ(2)]〉Ãper(2)−i
∫ t1

t0

dt2

∫

dr2〈[̂j(1), ρ̂(1)]〉Vper(2)(2.12)where we an readily identify the response funtions aording to their de�nition Eq.(2.1), so that we an write:
δ〈Ĵ(1)〉(1) =

∫

d2χjρ(1, 2)Vper(2) + [χjj(1, 2) + δ(1, 2)ρ(2)]Ãper(2) (2.13)Similarly, we �nd the �rst order density response as
δ〈ρ̂(1)〉(1) =

∫

d2χρρ(1, 2)Vper(2) + χρj(1, 2)Ãper(2) . (2.14)These are the well known �rst order responses. The seond order responses, albeit morelengthy, are obtained in the same way. They are:
δ〈Ĵ(1)〉(2) =

∫

d2
1

2
χjρ(1, 2)Ã

2
per(2) + [χρj(1, 2)Ãper(2) − χρρ(1, 2)Vper(2)]Ãper(1)+

+
1

2

∫

d2d3
[

χjjjÃper(2)Ãper(3) − χjjρÃper(2)Vper(3)−

− χjρjVper(2)Ãper(3) + χjρρVper(2)Vper(3)
] (2.15)

12



and
δ〈ρ̂(1)〉(2) =

1

2

∫

d2χρρ(1, 2)Ã
2
per(2)+

+
1

2

∫

d2d3
[

χρjjÃper(2)Ãper(3) − χρjρÃper(2)Vper(3)−

− χρρjVper(2)Ãper(3) + χρρρVper(2)Vper(3)
]

.

(2.16)So, the hanges in the eletroni system are desribed by the orrelations of the densityand urrent density operator. These response funtions are the entral quantity of themirosopi desription of the interation of solids with light and their alulation is theentral topi of this thesis.These responses are given in terms of the general eletromagneti potentials Vper and
Ãper for whih we an still hoose a gauge. Here, it is onvenient to take a gauge suhthat Vper = 0, whih leaves only the vetor potential as the perturbing quantity. Theresponse then read
δ〈Ĵ(1)〉(2) =

∫

d2d3

[

1

2
χjρ(1, 3)δ(2, 3) + χρj(3, 2)δ(1, 3) +

1

2
χjjj(1, 2, 3)

]

Ãper(2)Ãper(3)(2.17)
δ〈ρ̂(1)〉(2) =

∫

d2d3
1

2
[χρρ(1, 3)δ(2, 3) + χρjj(1, 2, 3)] Ãper(2)Ãper(3) . (2.18)Additionally we note that due to the ontinuity equation

∇r1 ĵ(1) = ∂t1ρ(1) (2.19)knowledge of the urrent response implies the density response. Therefore we an fouson the urrent quantities without loss of generality. Writing Eq. (2.19) in momentumand frequeny spae (.f. App. B) it reads
q · ĵ(q, ω) = iωρ(q, ω). (2.20)So we see that the density is atually proportional to the projetion of ĵ along thediretion of q, i.e. the longitudinal projetion of ĵ. The density response an thusbe expressed in terms of the urrent response, or vie versa, the longitudinal urrentresponse is proportional to the density response. Moreover, under the onstraint thatthe perturbing �eld is purely longitudinal, this means that the seond order longitudinalurrent response an be obtained from the seond order density-density-density responsefuntion χρρρ.
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2.2.1 Response funtionsWhile their de�nition Eq. (2.3) and (2.4) together with the knowledge how to evaluatethe expetation value is in priniple all one would need to obtain response funtions, inpratie one has to make some transformations and assumptions to arrive at a quantitythat an be alulated within existing omputational shemes.The de�nition of the response funtion an be ast in a more useful way by passing fromthe time domain to frequeny spae. Using the ompleteness relation in the de�nition ofthe linear response funtion Eq. (2.3), we obtain2
χAB(1, 2) = −Θ(t1−t2)

∑

n

(

〈Ψ0|ÂI(1)|Ψn〉〈Ψni|B̂I(2)|Ψ0〉 − 〈Ψ0|B̂I(2)|Ψn〉〈Ψn|ÂI(1)|Ψ0〉
)

.(2.21)The matrix elements of the operators in the interation piture are
〈Ψi|ÂI(t)|Ψj〉 = 〈Ψi|e−iĤ0tÂeiĤ0t|Ψj〉 = e−i(Ei−Ej)t〈Ψ0|Â|Ψi〉 (2.22)so that the response funtion reads
χAB(1, 2) = −Θ(t1 − t2)

∑

n

e−i(En−E0)(t1−t2) ×

×
(

〈Ψ0|Â|Ψn〉〈Ψn|B̂|Ψ0〉 − 〈Ψ0|B̂|Ψn〉〈Ψn|Â|Ψ0〉
)and its Fourier transform (.f. App. B) gives the spetral representation of the responsefuntion

χAB(r1, r2, ω) = lim
η→0+

∑

n

(

〈Ψ0|Â|Ψn〉〈Ψn|B̂|Ψ0〉
ω − (En − E0) + iη

− 〈Ψ0|B̂|Ψn〉〈Ψn|Â|Ψ0〉
ω + (En − E0) + iη

)

. (2.23)

2Here we write B̂ for the operator of the system instead of Ô for the sake of readability. Likewise, inthe seond order we use the notation Ĉ for the third operator of the response funtion.14



To obtain an equivalent expression for the seond order response, we follow exatly thesame steps. The result is
χABC(r1, r2, r3, ω1, ω2, ω3) =

lim
η→0+

∑

nm

δ(ω1 − ω2 − ω3)

[

〈Ψ0|Â|Ψn〉〈Ψn|B̂|Ψm〉〈Ψm|Ĉ|Ψ0〉
(E0 −Em + ω3 + iη)(E0 −En + ω2 + ω3 + 2iη)

−

− 〈Ψ0|B̂|Ψn〉〈Ψn|Â|Ψm〉〈Ψm|Ĉ|Ψ0〉
(E0 − Em + ω3 + iη)(En − Em + ω2 + ω3 + 2iη)

−

− 〈Ψ0|Ĉ|Ψn〉〈Ψn|Â|Ψm〉〈Ψm|B̂|Ψ0〉
(En − E0 + ω3 + iη)(En − Em + ω2 + ω3 + 2iη)

+

+
〈Ψ0|Ĉ|Ψn〉〈Ψn|B̂|Ψm〉〈Ψm|Â|Ψ0〉

(En − E0 + ω3 + iη)(Em − E0 + ω2 + ω3 + 2iη)
+

+ {2 ↔ 3}] . (2.24)In this formulation we an already dedue some general properties of seond order re-sponse. First, we notie that the three frequenies are not independent but linked throughthe delta funtion, whih means that the response frequeny ω1 an be the sum of thetwo fundamental frequenies, i.e.
χABC(ω1, ω2, ω3) = χABC(ω2 + ω3, ω2, ω3) (2.25)This is the mirosopi origin of the phenomenon of sum frequeny generation, or in thease of ω2 = ω3 of seond harmoni generation.Regarding the spetral properties of the seond order response funtion, we note that ithas resonanes at the fundamental frequenies as well as at their sum. In the ase ofseond harmoni generation this means for eah resonane at a frequeny ω there willanother resonane at ω/2.While its general struture shows some harateristis of the seond order response, thisform of the response funtion an only be used if the many-body wavefuntions andenergies of the system are known. They are, however, not known and alulating themexpliitly is unfeasible. To overome the basi problem of obtaining the solutions of themany-body Hamiltonian is the motivation for many theories and alulatory shemesin the �eld of omputational physis. Namely the density-funtional theory (DFT) hasbeen suessfully employed to obtain the groundstate properties of interating many-body systems. The basi idea is to exploit the fat that the density of eletrons subjetto some interating potential is the same as the density of eletrons in a non-interatingpotential, alled exhange-orrelation potential, that uniquely represents the interatingpotential [21℄.This idea of mapping an interating many-body system to a non-interating one andthus on�ning the many-body problem to the searh for the appropriate non-interatingpotential is generalized to time dependent systems in the framework of time-dependent-15



density-funtional-theory (TDDFT), .f. setion 2.3. That is to say, that the responsefuntions shown above are expressed in terms of a non-interating system and the many-body harater is inluded via the exhange orrelation potential. So, the entral quan-tities are the independent partile response funtions. In App. A I outline how to passfrom the responses in terms of many-body wavefuntions to the independent partilepiture. The resulting response funtions are:
χ

(0)
AB(r1, r2, ω) =

∑

ij

(fi − fj)
〈φ∗i (r1)|â(r1)|φj(r1)〉〈φ∗j (r2)|b̂(r2)|φi(r2)〉

(ǫi − ǫj + ω + iη)
(2.26)and

χ
(0)
ABC(r1, r2, r3, ω2 + ω3, ω2, ω3) =

∑

ijk

〈φ∗i (r1)|â(r1)|φj(r1)〉
ǫi − ǫj + ω1 + ω2 + 2iη

×

×
[

(fi − fk)
〈φ∗j (r2)|b̂(r2)|φk(r2)〉〈φ∗k(r3)|ĉ(r3)|φi(r3)〉

(ǫi − ǫk + ω3 + iη)
+

+ (fj − fk)
〈φ∗j (r3)|ĉ(r3)|φk(r3)〉〈φ∗k(r2)|b̂(r2)|φi(r2)〉

(ǫk − ǫj + ω3 + iη)
+

+ {3 ↔ 2}]

(2.27)
where â, b̂ and ĉ are single eletron operators, e.g. for Â = ρ̂ we have â(r) = δ(r − r′),and φi(r) one partile orbitals with eigenenergies ǫi and oupation numbers fi. Theexpliit expression for χ(0)

ρρρ is given in setion 4 (Eq. (4.7)).2.3 TDDFTThe generalization of Kohn and Sham's density funtional theory (DFT) to time depen-dent system, i.e. time dependent density funtional theory (TDDFT), by Runge andGross is exposed in great detail in many works throughout the last 20 years [91℄. Here,I will only roughly sketh the path from the stati DFT to TDDFT, without going intothe subtleties of the theory. Its generalization to seond order response is readily obtain,one the �rst order response is established.In DFT one onstruts the eletron density with wavefuntions obtained from a Hamilto-nian with a non-interating potential. By virtue of the Hohenberg-Kohn and Kohn-Shamtheorems this density is idential to one obtained with an interating potential and thereis a one to one orrespondene between the two potentials. The non-interating wave-funtions do not have a rigorous physial meaning, but they are only used to build theeletron density. One the exat density is known, all other quantities of the real system
16



an be onstruted, sine they are regarded as funtionals of the density.
Realsystem Kohn − Sham fict.system

Ψ0 ⇒ ρ ⇐⇒ ρ ⇒ VKS

⇑ ⇓ ⇑ ⇓
Ψi ⇐ Vext φ0 ⇐ φiThe non-interating potential is alled Kohn-Sham potential, VKS, and is generally un-known, but an be further deomposed in the form

VKS(r) = Vext(r) + VH(r) + Vxc(r) (2.28)where we have the external potential Vext(r), the Hartree potential de�ned with theCoulomb potential v as
VH(r) =

∫

dr′ρ(r′)v(r − r′) (2.29)and Vxc, the potential orresponding to the exhange and orrelation energy,
Vxc(r) =

δExc(r)

δρ(r)
(2.30)of the system. It is this potential where the many-body e�ets are onsidered and on-sequently it is here where the physial approximations to the many-body problem aremade.The time dependent generalization of this theory is made by onsidering a time depen-dent external potential and thus all quantities of the system beome time dependent.Analogously to the stati ase one de�nes a time-dependent Kohn Sham potential

VKS(r, t) = Vext(r, t) + VH(r, t) + Vxc(r, t). (2.31)The time dependent density is then onstruted from eigenstates of the time dependentKohn-Sham equation
[

−1

2
∇2 + VKS(r, t)

]

φi(r, t) = i∂tφi(r, t). (2.32)Again, if the exat Kohn-Sham potential was known, suh a density would be exat. Thepoint of TDDFT in response formulation is, that also the variation of this density wouldbe the same whether it was obtained with respet to the interating potential or to theorresponding non-interating one [92℄:
δρ(1) =

∫

d2χρρ(1, 2)δVper(2) =

∫

d2χ(0)
ρρ (1, 2)δVKS (2.33)
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The response funtions, however, are not the same. To relate the Kohn-Sham responsefuntions χ(0)
ρρ that onnets the density with the non-interating potential to the responsefuntion χρρ that aounts for the interations as well, is the objetive of TDDFT inresponse formulation.Starting point is the de�nition of the full response funtion

χρρ(1, 2) =
δρ(1)

δVper(2)
(2.34)in whih we use the hain rule to obtain

χρρ(1, 2) =

∫

d3
δρ(1)

δVKS(3)

δVKS(3)

δVper(2)
. (2.35)Thus we have reformulated the response funtion to a produt of the response of the non-interating Kohn-Sham system and variation of the Kohn-Sham potential with respetto the perturbing potential. We de�ne the response to the Kohn-Sham potential

χ(0)
ρρ (1, 2) =

δρ(1)

δVKS(2)
. (2.36)The variation of the Kohn-Sham potential with respet to the perturbing potential is

δVKS(3)

δVper(2)
= δ(3, 2) +

∫

d4
δ(VH (3) + Vxc(3))

δρ(4)

δρ(4)

δVper(2)
(2.37)

= δ(3, 2) +

∫

d4(v(3, 4) + fxc(3, 4))χρρ(4, 2) , (2.38)where we de�ned the exhange and orrelation kernel
fxc(1, 2) =

δVxc(1)

δρ(2)
. (2.39)Now we an write down the full response as in Eq. (2.35)

χρρ(1, 2) = χ(0)
ρρ (1, 2) +

∫

d3d4χ(0)
ρρ (1, 3)(v(3, 4) + fxc(3, 4))χρρ(4, 2). (2.40)This is a Dyson equation for the response funtion χρρ in terms of the interation kernel

v + fxc, that an be solved by inversion. It is in priniple exat, provided the orretexhange and orrelation kernel is known. Sine this kernel is de�ned as the funtionalderivative of the exhange and orrelation potential, this theory su�ers the same limita-tion as DFT, namely the fat that the true exhange and orrelation potential is unknownand has to be approximated.This treatment of the response funtion that amounts to reformulating it in terms ofthe independent partile response funtion and onsidering the many-body e�ets onlythrough a kernel, an be readily generalized to higher order responses. This has been18



skethed by Gross et. al. in [85℄. Completely analogous to the linear ase one starts withthe de�nition of the response funtion, however, now one an make use of the linear resultby realizing that the seond order response is the variation of the �rst order responsewith respet to a another perturbing �eld.
χρρρ(1, 2, 3) =

δ2ρ(1)

δVper(3)δVper(2)
=
δχρρ(1, 2)

δVper(3)
(2.41)Using the linear Dyson equation (2.40) for χρρ, we have

χρρρ(1, 2, 3) =
δχ

(0)
ρρ (1, 2)

δVper(3)
+

∫

d4d5
δχ

(0)
ρρ (1, 4)

δVper(3)
fvxc(4, 5)χρρ(5, 2) (2.42)

+

∫

d4d5χ(0)
ρρ (1, 4)

δfxc(4, 5)

δVper(3)
χρρ(5, 2) + (2.43)

+

∫

d4d5χ(0)
ρρ (1, 4)fvxc(4, 5)

δχρρ(5, 2)

δVper(3)
, (2.44)where we have written fvxc(4, 5) = v(4, 5) + fxc(4, 5) for brevity. In the seond termappears the variation of the kernel fxc with respet to the perturbing �eld. This an berewritten using the hain rule

δfxc(4, 5)

δVper(3)
=

∫

d6
δfxc(4, 5)

δρ(6)

δρ(6)

δVper(3)
=

∫

d6gxc(4, 5, 6)χρρ(6, 3) (2.45)and we have de�ned a new quantity gxc that is the seond derivative of the exhangeorrelation potential and ontains the higher order many-body e�ets. Furthermore, wede�ne the seond order Kohn-Sham response
δχ

(0)
ρρ (1, 2)

δVKS(3)
=

δρ(1)

δVKS(3)δVKS(2)
= χ(0)

ρρρ(1, 2, 3) . (2.46)The full expression for χρρρ an now be obtained by using the hain rule in Eq. (2.42)and Eq. (2.38), whih �nally yields
χρρρ(1, 2, 3) = χ(0)

ρρρ(1, 2, 3) +

∫

d4d5χ(0)
ρρρ(1, 4, 3)fvxc(4, 5)χρρ(5, 2)

+

∫

d4d5χ(0)
ρρρ(1, 2, 4)fvxc(4, 5)χρρ(5, 3)+

+

∫

d4d5d6d7χ(0)
ρρρ(1, 5, 4)fvxc(5, 6)χρρ(6, 2)fvxc(4, 7)χρρ(7, 3)+

+

∫

d4d5d6χ(0)
ρρ (1, 4)gxc(4, 5, 6)χρρ(6, 3)χρρ(5, 2)+

+

∫

d4d5χ(0)
ρρ (1, 4)fvxc(4, 5)χρρρ(5, 2, 3) .

(2.47)
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This is the seond order orrespondent of the linear TDDFT Dyson equation (2.40). It ishowever di�erent in the sense that one does not need to invert the whole equation to solveit. Only one term on the right hand side ontains χρρρ, while all others either depend onthe seond order Kohn-Sham response χ(0)
ρρρ or the seond order kernel gxc. We also notethat the solution of the linear Dyson equation, i.e. χρρ, is required in order to get the fullseond order response. An interpretation of this struture might be given by onsideringthat the physial proess underlying the seond order response fundamentally involveseletrons making transitions between three levels. The Kohn-Sham response desribeshow they do so without interating with eah other, while the full Dyson equation takesinto aount their interations. The repeated ourrene of χρρ in the Dyson equationmeans that the underlying interation is of linear nature, i.e. it involves only two levelsor eletrons. These two partile interations an be seen as modulating the independentpartile response χ(0)

ρρρ and only the term ontaining gxc represents a true three bodyinteration.Making use of the fat that the linear response has to be known in order to solve theseond order ase, we an solve the seond order Dyson like equation (2.47) analytially.This is done by fatorizing χρρρ and rearranging the right hand side to give
∫

d4d5
[

δ(1, 5) − χ(0)
ρρ (4, 5)fvxc(4, 5)

]

χρρρ(5, 2, 3) =

=

∫

d4d5d6d7χ(0)
ρρρ(1, 5, 4) [δ(2, 5) + fvxc(5, 6)χρρ(6, 2)] [δ(3, 4) + fvxc(4, 7)χρρ(7, 3)]

+

∫

d4d5d6χ(0)
ρρ (1, 4)gxc(4, 5, 6)χρρ(6, 3)χρρ(5, 2) . (2.48)By using the linear Dyson equation (2.40) we an rewrite the terms in squared braketsas

∫

d4
[

δ(1, 5) − χ(0)
ρρ (4, 5)fvxc(4, 5)

]

=

∫

d6χ(0)
ρρ (1, 6)χ−1

ρρ (6, 5) (2.49)and
∫

d6 [δ(2, 5) + fvxc(5, 6)χρρ(6, 2)] =

∫

d8χ−1
0 (5, 8)χρρ(8, 2) (2.50)where we have used the shorthand χ−1

0 =
[

χ
(0)
ρρ

]−1. Inserting these expressions in Eq.(2.48), multiplying from left with the appropriate inverse and subsequently exhanging
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the names of integral variables we arrive at the solution
χρρρ(1, 2, 3) =

∫

d4...d9χρρ(1, 8)χ
−1
0 (8, 9)χ(0)

ρρρ(9, 5, 4)χ
−1
0 (5, 6)χρρ(6, 2)χ

−1
0 (4, 7)χρρ(7, 3)+

+

∫

d4d5d6d7χρρ(1, 7)gxc(7, 5, 6)χρρ(6, 2)χρρ(5, 3). (2.51)This formulation has the advantage that one the linear response is known it only needsthe inverse of the linear independent partile response and the seond order independentpartile response, χ(0)
ρρρ, to obtain the full χρρρ. It is also more handy to apply approxi-mations on it, .f. Chap. 7 where it it is ompared with the seond order Bethe-Salpeterequation. We also give it in shorthand form

χ(2) = χ(1)χ−1
0 χ

(2)
0 χ−1

0 χ(1)χ−1
0 χ(1) + χ(1)gxcχ

(1)χ(1) . (2.52)Alternatively, to avoid inverse quantities altogether, in Eq. (2.48) on the right hand sideone an leave the terms in squared brakets and use the relation:
∫

d8χρρ(9, 8)χ
−1
0 (8, 7) =

∫

d8 [δ(9, 7) + χρρ(9, 8)fvxc(8, 7)] (2.53)for the inverse of Eq. (2.49). This yields the solution of the seond order Dyson equationin the form
χρρρ(1, 2, 3) =

∫

d4...d9 [δ(1, 9) + χρρ(1, 8)fvxc(8, 9)]χ
(0)
ρρρ(9, 5, 4)×

× [δ(2, 5) + fvxc(5, 6)χρρ(6, 2)] [δ(3, 4) + fvxc(4, 7)χρρ(7, 3)] +

+

∫

d4d5d6d7χρρ(1, 7)gxc(7, 5, 6)χρρ(6, 2)χρρ(5, 3) (2.54)with the short hand form:
χ(2) =

[

1 + χ(1)fvxc

]

χ
(2)
0

[

1 + fvxcχ
(1)
] [

1 + fvxcχ
(1)
]

+ χ(1)gxcχ
(1)χ(1). (2.55)2.3.1 Interpretation of the solutionThis form atually gives some insight in the rather omplex struture of the equation,when we introdue the onept of the dieletri funtion. The role of the dieletrifuntion ǫ is to aount for the sreening of the perturbing potential by the indued �eldand thus onnet the total with the perturbing potential:

Vtot(1) =

∫

d2ǫ−1(1, 2)Vper(2). (2.56)21



where Vtot = Vper + VH . Formally the sreening an be de�ned by
ǫ−1(1, 2) =

δVtot(1)

δVper(2)
= δ(1, 3) +

∫

d3
δVH (1)

δρ(3)

δρ(3)

δVper(2)

= δ(1, 3) +

∫

d3v(1, 3)χρρ(3, 2).

(2.57)This de�nition assumes that the indued �eld is only due to the Hartree potential whilethe density response χ to the perturbing �eld ontains exhange and orrelation e�ets aswell (.f. Eqs. (2.33) and (2.40)). The sreening of the perturbing potential an howeverbe due to exhange and orrelation e�ets as well so that one has to de�ne the sreeningas the variation of a total potential that also ontains Vxc:
ǫ−1
TE(1, 2) =

δVKS(1)

δVper(2)
= δ(1, 3) +

∫

d3(v(1, 3) + fxc(1, 3))χρρ(3, 2) (2.58)
= δ(1, 3) +

∫

d3fvxc(1, 3)χρρ(3, 2). (2.59)This ase is alled test-eletron (TE) while the former is alled test-partile, beause theyeither desribe an experiment with a quantum mehanially interating probe (eletron)or a lassial partile.We an use the test-eletron sreening to write the solution (Eq. (2.54) of the seondorder Dyson equation as
χ(2) =

[

ǫ−1
TE

]T
χ

(2)
0 ǫ−1

TEǫ
−1
TE + χ(1)gxcχ

(1)χ(1) (2.60)where [ǫ−1
TE

]T is the transposed of ǫ−1
TE.The signi�ane of the ǫ−1

TE fators an be un-derstood by onsidering that χ(2)
0 gives the response to VKS while χ(2) responds to Vper.Now the two ǫ−1

TE on the right side of χ(2)
0 do nothing else but transform the appliedperturbing potential Vper in a Kohn-Sham potential VKS, sine VKS = ǫ−1

TEVper.The transpose ǫ−1
TE to the left of the non-interating χ(2)

0 is, however more involved. Tounderstand its origin we reonsider the derivation of the seond order Dyson equationusing for the linear response
χ(1) = χ

(1)
0 ǫ−1

TE (2.61)
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from whih follows
χ(2) =

δχ(1)

δVper
=
δχ

(1)
0

δVper
ǫ−1
TE + χ

(1)
0

δǫ−1
TE

δVper
(2.62)

=
δχ

(1)
0

δVKS

δVKS

δVper
ǫ−1
TE + χ

(1)
0

δ

δVper

[

1 + (v + fxc)χ
(1)
] (2.63)

= χ
(2)
0 ǫ−1

TEǫ
−1
TE + χ

(1)
0

δfxc

δVper
χ(1) + χ

(1)
0 (v + fxc)

δχ(1)

δVper
) (2.64)

= χ
(2)
0 ǫ−1

TEǫ
−1
TE + χ

(1)
0

δfxc

δρ

δρ

δVper
χ(1) + χ

(1)
0 (v + fxc)χ

(2) (2.65)
= χ

(2)
0 ǫ−1

TEǫ
−1
TE + χ

(1)
0 gxcχ

(1)χ(1) + χ
(1)
0 (v + fxc)χ

(2) . (2.66)The last term in the last line an be ombined with the left hand side of the equation andthen yields the [ǫ−1
TE

]T when inverted. From this derivation we see that this prefator aswell as the term with gxc omes from the term δǫ−1
TE

δVper
= δ2VKS

δVperδVper
in the �rst line. Thisan be interpreted as a seond order sreening and as suh does not have analogous linearproesses.
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2.3.2 Graphial representation of the 2nd order Dyson EquationThe linear Dyson equation (2.40), onsisting of three terms of only two point quantities,has a rather simple struture ompared with the seond order Dyson equation (2.47).Here, we have to deal with a mixture of two- and three-point quantities as well as withseven di�erent terms. In order to get a learer view of the struture of the equation andto show how the di�erent terms are onneted with eah other, I will use here a set ofdiagrams in analogy with the Feynman diagrams. This might help to get a better viewof the ontent of the equation and its onstituting terms. It does of ourse not provideany further insight, that one might not get from the equation, but it might serve theintuition and as a mnemoni devie.The di�erent quantities appearing in the equation are represented aording to this table:
χ

(1)
0 (1, 2) 1 2

χ(1)(1, 2) 1 2

fxc(1, 2)
1 2

χ
(2)
0 (1, 2, 3) 1

2

3

χ(2)(1, 2, 3) 1

2

3

gxc(1, 2, 3) 1

2

3With these symbols the linear Dyson equation takes this form
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111 222 3 4
= +Figure 2.1: Graphial representation of the linear TDDFT Dyson equation (2.40).whih, indeed, has a very simple struture and for this alone one would not need agraphial representation. Turning, however, to the seond order Dyson equation, weobtain are far riher piture
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Figure 2.2: Graphial representation of the seond order TDDFT Dyson equation (2.47).
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2.4 Approximations2.4.1 IPAThe simplest approximation in the Dyson like equation (2.47) is done by negleting allmany-body e�ets by letting fvxc = 0. Then, only the Kohn-Sham response is presenttherefore it is alled the independent partile approximation (IPA):
χIPA

ρρρ (1, 2, 3) = χ(0)
ρρρ(1, 2, 3) . (2.67)We will see in later hapters (.f. hapter 6) that this approximation an representimportant features of the response and thus is not as bad an approximation as itssimpliity suggests.2.4.2 RPAConsidering the Coulomb interation while still negleting exhange and orrelation ef-fets, i.e. by keeping v but letting fxc = 0 the Dyson equation beomes

χRPA
ρρρ (1, 2, 3) = χ(0)

ρρρ(1, 2, 3) +

∫

d4d5χ(0)
ρρρ(1, 4, 3)v(4, 5)χρρ(5, 2)

+

∫

d4d5χ(0)
ρρρ(1, 2, 4)v(4, 5)χρρ(5, 3)+

+

∫

d4d5d6d7χ(0)
ρρρ(1, 5, 4)v(5, 6)χρρ(6, 2)v(4, 7)χρρ(7, 3)+

+

∫

d4d5χ(0)
ρρ (1, 4)v(4, 5)χRPA

ρρρ (5, 2, 3) .

(2.68)
and one speaks of the random phase approximations (RPA). This approximation alreadyaptures the important e�et that the perturbation loally polarizes lattie atoms re-sulting in a �eld that itself an polarize other atoms and thus ontribute to the overallperturbation. Sine it is linked to the lattie struture and the �elds are generally fastosillating �elds, this e�et is ommonly referred to as rystal loal �eld e�et (.f. Chap.3).2.4.3 TDLDAApart from these two approximations that pro�t from what little is known exatly aboutthe system, any further approximation has to onern the exhange and orrelation ker-nel, whih is unknown. Approximations to this kernel are made more in the spirit ofeduated guessing rather than in a rigorous way from exat expressions. One of the mostommonly used TDDFT kernel is the time dependent generalization of the loal densityapproximation (LDA) of DFT. Here, one assumes that Vxc(r) only depends on the den-26



sity at the point r rather than on the environment as well. The time dependent versionof this approximation, the time dependent loal density approximation (TDLDA), usesthe so alled adiabati loal density approximation (ALDA) where Vxc(r, t) is taken tobe the loal density exhange and orrelation potential alulated from the density atthe time t
V ALDA

xc (r, t) = V LDA
xc [ρ(r, t)] . (2.69)The kernel for TDDFT derived from this approximation is then

fTDLDA
xc (r1, t1, r2, t2) = δ(r1 − r2)δ(t1 − t2)

∂V LDA
xc [ρ(r1, t1)]

ρ(r1, t1)
. (2.70)From this approximation one an derive in the same spirit the seond order gxc. Whilethe TDLDA works well for eletron loss responses and other ases of �nite momentumtransfer, it fails to produe reliable results for the optial absorption of solids [93℄. Thisfailure has been attributed to the missing long range interation in the loal approxima-tion. Long range interation, however, is the hallmark of the Coulomb potential that insemiondutors leads to the formation of exitons whih in turn are known to ontributeimportant features to optial spetra. For this reason, TDLDA does not seem to be agood andidate as kernel for seond order optial proesses.2.4.4 QuasipartilesTo go beyond the loal density approximation one has to onsider that the exitationof an eletron in a solid will leave behind a hole that thus exerts an attrative foreon its neighboring eletrons, leading to a loud of opposite harged partiles around itand thus to a sreening of the partile. This sreening of the partile leads to a shiftin the exitation energies and one refers to the partile and its sreening together as aquasipartile. The shifted energy spetrum is then attributed to this quasipartile, whihhas the advantage that one an still think about it in terms of a single partile proess.A TDDFT exhange and orrelation kernel now has to full�ll two funtions, �rst it shouldtransform the Kohn-Sham single partile response into the response of quasipartiles andseond it has to aount for the atual two body interation between the eletron andthe hole, i.e. the exiton. It has been shown [28℄ that one an split up the fxc into twoparts

fxc = f (1)
xc + f (2)

xc (2.71)where f (1)
xc aounts for the quasipartile e�et and f (2)

xc for the exitoni e�ets.The quasipartile formed by the sreening of the hole is desribed within many-body
27



perturbation theory (MBPT) by the quasipartile equation
[h0(r1) + VH(r1)]φi(r1) +

∫

dr2Σ(r1, r2, Ei)φi(r2) = Eiφi(r1) (2.72)where Σ(r1, r2, Ei) is the so alled self energy that aounts for the many-body e�etsand is the key quantity for whih Hedin's equations [94℄ are formulated. The entral ideais, instead of onsidering the bare Coulomb interation v, one should formulate the selfenergy in terms of the sreened potential W de�ned as
W (1, 2) =

∫

d3ǫ−1(1, 3)v(3, 2) (2.73)where ǫ−1 is the time ordered sreening
ǫ−1(1, 2) =

δVtot(1)

δVper(2)
. (2.74)This leads to a set of �ve self onsistent equations (.f App. E) for the Green's funtion.These equations are routinely solved within the GW approximation for the self energywhih together with the quasipartile equation (2.72) gives the quasipartile energies andwavefuntions that an be used to onstrut a response funtion. It turns out that inmany pratial ases the quasipartile e�et amounts only to a shift of the ondutionstates in the band struture, whih suggest that a alulation of the atual quasipartilee�et an be irumvented by just shifting the Kohn-Sham spetrum by the appropriatevalue. Indeed, it has been shown also for the ase of seond order response [67℄, thatthe appliation of suh a sissors shift an reprodue the spetra. Therefore, one doesnot onsider the exat form of f (1)

xc , nor approximations to it, but either assumes thequasipartile e�et to be appropriately aounted for by shifting of the ondution statesor uses the results of a quasipartile alulation. Nevertheless, the simple sheme ofshifting the ondution states has some impliations for our formalism when we onsiderthe optial limit (.f. Chap. 4 ).2.4.5 ExitonsExitoni e�ets, being two partile proesses, are orretly desribed by the Bethe-Salpeter equation (BSE), whih gives the many-body two partile orrelation funtion
L. This quantity is losely related to the two body Green's funtion by its de�nition [95℄

iL(1, 2, 3, 4) = G(1, 2)G(3, 4) −G2(1, 3, 2, 4). (2.75)Thus, the two partile orrelation funtion L desribes those parts of two partile pro-esses that go beyond their independent propagation that is represented by GG. Inmany-body perturbation theory, this quantity is also de�ned as the variation of the one
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partile Green's funtion under the presene of a perturbing potential
L(1, 2, 3, 4) = −i G(1, 2)

Vper(3, 4)
(2.76)while the single partile G is determined by the Dyson equation

G−1(1, 2) = G−1
H (1, 2) − Vper(1, 2) − Σ(1, 2) (2.77)where Σ is the self energy and GH the Hartree Green's funtion [95, 96℄. Combining thetwo equations yields the Bethe-Salpeter equation in the form [97℄

iL(1, 2, 3, 4) = G(1, 3)G(4, 2)+
∫

d5678G(1, 5)G(6, 2) [v(5, 7)δ(5, 6)δ(7, 8) + Ξ(5, 6, 7, 8)] L(7, 8, 3, 4)
(2.78)where the many-body interation kernel has been de�ned as

Ξ(5, 6, 7, 8) = i
δΣ(5, 6)

δG(7, 8)
. (2.79)The similarity between the Bethe-Salpeter equation (2.78) and the TDDFT Dyson equa-tion (2.40) an be used by exploiting the fat that the density response funtion is thetwo point diagonal of the two body orrelation funtion:

χρρ(1, 2) =
δρ(1)

Vper(2)
= −i δG(1, 1+)

Vper(2, 2+)
= L(1, 1+, 2, 2+) . (2.80)In [96℄ it is shown how one obtains from this an exat expression for the two bodyorrelation ontribution to fxc that an be linearized to yield

f (2)
xc (1, 2) =

∫

d3456P−1
0 (1, 3)G(3, 4)G(5, 3)W (4, 5)G(4, 6)G(6, 5)P−1

0 (6, 2) (2.81)where P−1
0 is the independent quasipartile polarizability and W the sreened potential.This kernel has been shown to yield results for the absorption of solids that are almostidential with the Bethe-Salpeter result. There are di�erent ways to derive this kernel,.f. [25�29℄, eah giving essentially the same result.The main advantage of TDDFT with respet to BSE is that it deals only with 2-pointquantities, that are numerially represented by two dimensional matries, instead of 4-point quantities requiring muh more omputational ressoures. Implementations of theEq. (2.81), that has been named the NANOQUANTA kernel, have however turned outto require omputational e�ort that is lose to the one required to solve the BSE. Thisis partly due to the fat that for BSE there exist well optimized methods of alulationbut also due to the omplex struture of the kernel. Therefore, a drastially simpli�ed
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kernel of the form.
fxc(r1, r2) = − α

4π|r1 − r2|
and fxc(q + G) = − α

|q + G|2 (2.82)has been proposed [98℄. The motivation for suh a formulation is to expliitly introduethe long-range interation, while α is a priori a parameter. One an, however, motivatethis form of a kernel from the exat expression of Eq. (2.81) by onsidering the limitingbehaviour of its onstituents as q → 0. One �nds that in this limit P−1
0 ∼ 1/q2 and

G ∼ q while from the de�nition of the sreening follows W ∼ ǫ−1
∞ /q2. This behaviouryields indeed the form of Eq. (2.82) as a reasonable approximation for the optial limitof the NANOQUANTA kernel. It does however also indiate that α ∼ ǫ−1

∞ , whih hasbeen on�rmed by systematially omparing BSE results with results obtained with thiskernel [99℄.This kernel has been shown to reprodue results obtained with the Bethe-Salpter equa-tion on a qualitative and quantitative level. Indeed, the agreement an be viewed asremarkable given its simpliity and the omputational ost saved with respet to theNANOQUANTA kernel or the BSE. Its downside, however, is the fat that α is a prioria parameter and an only be determined by omparison with a BSE result, thus om-prising either its e�ieny or the ab initio harater of the alulation. Nevertheless, inthis work I will use this kernel for the alulation of the seond order response aordingthe seond order TDDFT Dyson like equation (2.47), beause in this ase its downside issomewhat less important. In most ases here we rely on established results from the lin-ear ase, where the value of α has already been on�rmed by a BSE alulation. But evenif suh values are unknown, performing �rst a linear BSE alulation to determine themdoes not onsiderably inrease the omputational ost, sine the seond order alulationis already orders of magnitude larger than a linear BSE one.
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3 Marosopi response and loal �eldsIn the previous hapter I have shown how one an use time-dependent perturbation theorytogether with density-funtional-theory to obtain the seond order mirosopi response.To be able to interpret and predit experimental results, it is however important to be ableto onnet these mirosopi quantities to the marosopi world of the laboratory. Thedi�erene between these two responses omes from the fat that the harge distributionindued by the light �eld polarizes the rystal and thus indues an eletri �eld thatin turn modi�es the harge distribution. Therefore the marosopi and mirosopiresponses di�er depending on the inhomogeneity of the system.The onnetion between the mirosopi and marosopi quantities is made by meansof a spatial average over a distane that is large ompared with the lattie parameter a,following the argumentation of Ehrenreih [100℄, I will �rst show how suh an average istaken and then proeed to relate the mirosopi quantities to responses to marosopi�elds. 13.1 Marosopi averageThe mirosopi potentials onsidered in Chap. 2.3 an be represented in momentumspae as
V (r, ω) =

∑

qG

VG(q, ω)ei(q+G)r. (3.1)A marosopi average now should be done by averaging over those parts of its deom-position that are periodi with respet to the lattie. We therefore rewrite Eq. (3.1) toyield expliitly these omponents
V (r, ω) =

∑

q

eiqr
∑

G

VG(q, ω)eiGr =
∑

q

eiqrV (q, r, ω) (3.2)where
V (q, r, ω) =

∑

G

VG(q, ω)eiGr (3.3)1A mathematially more systemati way of of obtaining marosopi relations form mirosopi quan-tities is taken by homogenization theory, where one expands all �elds in powers of a/λ, where λis the wavelength of the light �eld [101℄. The advantage, apart from mathematial rigour, is thatthis approah also gives information about the orretions to the average, i.e. higher terms in theexpansion. 31



is the lattie periodi part that has to be averaged. Integrating over the unit ell volumeyields the marosopi omponent VM (q, ω) of the potential
VM (q, ω) =

1

Ωc

∫

drV (q, r, ω) =
∑

G

VG(q, ω)
1

Ωc

∫

dreiGr = V0(q, ω). (3.4)Thus the marosopi average amounts to onsidering only the G = 0 Fourier omponentof the �eld. In an intuitive physial piture this means that the omponents with G 6= 0are osillating too fast to have in�uene on the marosopi average.3.2 Marosopi responseThe entral quantity in optial measurements is the marosopi polarization P

∂t1P(1) = j(1) . (3.5)Its expansion in terms of the marosopi total �eld de�nes the marosopi linear andnon-linear suseptibilities:
P(1) = χM (1, 2)Etot(2) + χM (1, 2, 3)Etot(2)Etot(3) + ... (3.6)where the mirosopi total �eld ontains the applied external �eld and ontributionfrom the indued polarization of the system due to this perturbation. It is the e�etof the indued �eld that makes the di�erene between the marosopi and mirosopiresponse and it is thus the main onern of this hapter.To desribe nonlinear optial experiments it is elementary to be able to distinguish be-tween ontributions aording to their order in an expansion in terms of the total �eldin Eq. (3.6), e.g. the marosopi polarization
P = P(1) + P(2) + ... (3.7)and we will �nd that the separation of orders in this expansion is not trivially obtainedfrom the mirosopi formulation, beause one has to onsider arefully how the external�eld indues a �eld in the medium thus giving rise to �nite polarization. Starting pointare the Maxwell equations
∇ · B = 0 ∇× H − ∂tD = 4πj

∇ · E = ρ ∇× E + ∂tB = 0
(3.8)where we will neglet the magnetization and use H = B. These Maxwell equations aretrue for the total �eld

Etot = Eext + Eind . (3.9)
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It follows the wave equation:
∇×∇× Etot + ∂t

2Etot = −4π∂tjtot . (3.10)Per de�nition the urrent is linked to the polarization via the time derivative thus it isthis quantity where the de�nitions of the suseptibilities are made. The total urrent anbe written as jtot = jext +jind. Considering only the external �eld, the Maxwell equationsread:
∇ ·B = 0 ∇× B− ∂tEext = 4πjext

∇ · Eext = ρext ∇×E + ∂tB = 0
(3.11)and the orresponding wave equation is

∇×∇× Eext + ∂t
2Eext = −4π∂tjext . (3.12)Using the linearity of the Maxwell equations a similar equation follows for the indued�eld. Introduing the operator

O = ∇×∇× • + ∂t
2• (3.13)we an write it as

Eind = −4πO−1∂tjind . (3.14)In terms of response theory we an formulate the perturbations of the indued urrentas
∂tj

(1)
ind(1) =

∫

d2χ(1, 2)Eext(2) (3.15)
∂tj

(2)
ind(1) =

∫

d2d3χ(1, 2, 3)Eext(2)Eext(3) . (3.16)This an also be regarded as de�nition of the response funtion χ to the external �eld.They an be derived from quantum mehanial perturbation theory and thus an beobtained from the quantum mehanial groundstate2. We are, however, interested in theresponses of the indued urrent to the total �eld, i.e. we would like to alulate responsefuntions π like
∂tj

(1)
ind(1) =

∫

d2π(1, 2)Etot(2) (3.17)
∂tj

(2)
ind(1) =

∫

d2d3π(1, 2, 3)Etot(2)Etot(3) . (3.18)2Del Sole and Fiorino [102℄ point out that this is only true for groundstates where retardation e�etsof the eletrons are aounted for. Sine this is usually not the ase, one has to inlude them in theperturbation, whih I do later on in Eq. (3.39). 33



A mirosopi formulation of these responses however, is not feasible beause the indued�eld is a priori unknown and therefore we need to express them in terms of the knownquantities χ.To �rst order the relation between the two �elds is
Etot(1) = Eext(1) + Eind(1) = Eext(1) − 4πO−1(1)∂tjind(1)

=

[

δ(1, 2) − 4πO−1(1)

∫

d2χ(1, 2)

]

Eext(2) . (3.19)This equation beome onsiderably more readable if we use the marosopi averageaording to [100℄ as skethed in setion 3.1, thus passing from the general variable 1 to
k = q + G and taking only the G = 0 omponent:3

Etot(q) =
[

1 − 4πO−1(q)χ(q,q)
]

Eext(q). (3.20)This is only possible beause the external �eld is assumed to have only marosopiomponents [102℄, i.e. on the right hand side of the equation we do take the average ofa produt. Inversion yields
Eext(q) =

[

1 − 4πO−1(q)χ(q,q)
]−1

Etot(q) (3.21)Now, we would like to relate the seond order response funtions. The de�nition (3.16)an be averaged similarly as in Eq. (3.21)
∂tj

(2)
ind(q1) =

∑

q2q3

χ(q1,q2,q3)Eext(q2)Eext(q3)where again the fat that the external �eld is marosopi was used. The external �eldsan be expressed in terms of the averaged total �eld Etot aording to Eq. (3.21) and wehave
∂tj

(2)
ind(q1) =

∑

q2q3

χ(q1,q2,q3)
[

1 − 4πO−1(q2)χ(q2,q2)
]−1

Etot(q2) × (3.22)
×
[

1 − 4πO−1(q3)χ(q3,q3)
]−1

Etot(q3) (3.23)This is a marosopially averaged response to the total �elds and thus an be regardedas the marosopially averaged version of Eq. (3.18) and by omparison we an de�nethe marosopi average of π:
〈πGG1G2(q1,q2,q3)〉 =

χ(q1,q2,q3)
[

1 − 4πO−1(q2)χ(q2,q2)
]−1 [

1 − 4πO−1(q3)χ(q3,q3)
]−1 (3.24)3Here and in the following, mirosopi quantities that are written to depend only on q are assumedto be taken for G = 0, e.g. χ(q,q) = χG=0,G′=0(q,q). Also the frequeny dependene is notexpliitly given to keep the equations readable but is always impliitly aounted for, beause eah

qi is assoiated with the frequeny ωi.34



Here we see how the indued �elds enter into the marosopially averaged response.Clearly the indued polarization, aounted for by χ(q,q, ) in the equation, modi�es theseond order mirosopi response under the average.To relate the two seond order responses we had to use only the linear relation betweenthe �elds, beause taking into aount the indued �eld to seond order would yield termsof higher than seond order, when inserted into Eq. (3.16). However, an important pointof the treatment is that, when onsidering the �rst order indued urrent, as in thede�nition (3.15), this argument does not hold, sine we would like to aount for allseond order terms to ahieve a proper ordering of the ontributions in Eq. (3.7) andin general the relation between total and external �eld ontains higher order terms. Toseond order we have
Etot = Eext + E

(1)
ind + E

(2)
ind. (3.25)That means, if in the ontext of seond order perturbation, we want to express the �rstorder response

∂tj
(1)
ind(q) = χ(q,q)Eext(q) (3.26)in terms of the total �eld, we have to take into aount the nonlinear relation Eq. (3.25)between the two �elds. Thus we have

∂tj
(1)
ind(q) = χ(q,q)

[

Etot(q) −E
(1)
ind(q) − E

(2)
ind(q)

]

= χ(q,q)
[

Etot(q) + 4πO−1(q)∂tj
(1)
ind(q) + 4πO−1(q)∂tj

(2)
ind)(q)

] (3.27)Solving for j
(1)
ind yields the �rst order urrent in terms of the total �eld

∂tj
(1)
ind(q) =

[

1 − 4πχ(q,q)O−1(q)
]−1

χ(q,q)Etot+

+ 4π
[

1 − 4πχ(q,q)O−1(q)
]−1

χ(q,q)O−1(q)∂tj
(2)
ind

(3.28)While the relation between the indued urrent and perturbing �eld, Eq. (3.26), is linear,the relation between the indued urrent and the total �eld, Eq. (3.27) is not, sine inthis ontext we want to keep all seond order ontributions. Thus when expressing Eq.(3.26) in terms of the total �eld, we �nd that this �rst order expression of the urrentontains higher order terms.Now we an write down the proper marosopi expansion of the polarization to seond
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order:
P = P(1) + P(2)

= − 1

ω2

{

∂tj
(1)
ind(q) + ∂tj

(2)
ind(q)

}

= − 1

ω2

{

[

1 − 4πχ(q,q)O−1
]−1

χ(q,q)Etot+

+
(

1 + 4π
[

1 − 4πχ(q,q)O−1
]−1

χ(q,q)O−1
)

∂tj
(2)
ind

}

= − 1

ω2

{

[

1 − 4πχ(q,q)O−1
]−1

χ(q,q)Etot +
[

1 − 4πχ(q,q)O−1
]−1

∂tj
(2)
ind

}(3.29)where in the last step we used
1 + 4π

[

1 − 4πχ(q,q)O−1(q)
]−1

χ(q,q)O−1(q) =
[

1 − 4πχ(q,q)O−1(q)
]−1

. (3.30)Comparing Eq. (3.29) with the general expansion Eq. (3.6) and using Eq. (3.24) forseond order the indued urrent we have the marosopi suseptibilities
ǫM = 1 − 4π

ω2

[

1 − 4πχ(q,q)O−1(q)
]−1

χ(q,q) (3.31)
χ

(2)
M (q,q′,q′′) = −4π

ω2
M(q) χ(q,q′,q′′) N(q′) N(q′′) (3.32)where we have introdued the two very similar de�nitions

M(q) =
[

1 − 4πχ(q,q)O−1(q)
]−1 (3.33)

N(q) =
[

1 − 4πO−1(q)χ(q,q)
]−1 (3.34)These are the general relations between the mirosopi and marosopi responses,where we have not made any assumptions on the nature of the external �eld exept thatit is marosopi. In the ontext of TDDFT it is however important to notie that itan give only the longitudinal mirosopi result whereas TDurrentDFT an deal withtransverse �elds as well. I will disuss this point in more detail in Chap. 4.3.3 Marosopi response from TDDFTTo make the link between the salar density response and our general result Eqs. (3.31)and (3.32) it is useful to onsider the operator O(q) and its inverse in more detail. Fouriertransform of the de�nition (3.13) yields

O(q, ω) = q× q×−ω21 (3.35)
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Using the longitudinal and transverse projetors and their identity property4
PL(q) =

q

q

q

q
, P T (q) = −q× q×

q2
, PL(q) + P T (q) = 1 (3.36)this operator an be expressed as

O(q, ω) = −ω2PL(q) − (ω2 − q2)P T (q) (3.37)and the inverse is readily obtained using the orthogonality of the projetors
O−1(q, ω) = − 1

ω2
PL(q) − 1

ω2 − q2
P T (q). (3.38)With this expression we an onsider the longitudinal and transverse part separately.Following the argumentation of Del Sole and Fiorino [102℄ we note that a mirosopiresponse obtained from TDDFT an only aount for longitudinal perturbations and itis therefore neessary to deompose the indued �eld into its longitudinal and transverseomponents and de�ne the perturbing �eld as

Eper(1) = Eext(1) + ET
ind(1) = Etot(1) − EL

ind(1) (3.39)so that the perturbation ontains the transverse part of the indue �eld. It is the potentialof this perturbing �eld in terms of whih the mirosopi response in Chap. 2.3 isformulated.Now, to make the onnetion between this mirosopi response and the marosopidieletri tensor ǫM (Eq. (3.31), we de�ne the response funtion α for a perturbing �eldthat ontains the transverse part of the indued �eld:
∂tj

(1)
ind(1) =

∫

d2α(1, 2)(Eext(2) + ET
ind(2)) =

∫

d2α(1, 2)(Eper(2)) . (3.40)This �eld has only marosopi ontributions (aording to [102℄) and an thus be ex-pressed in terms of the external �elds as
Eper(q) =

[

1 − 4πO−1
T (q)χ(q,q)

]

Eext(q) . (3.41)By omparison with the de�nition (3.15) of χ we have:
χ(q,q) =

[

1 + 4πα(q,q)O−1
T (q)

]−1
α(q,q) . (3.42)

4The symbols P L and P T for the projetors should not be onfused with the one for polarization P.37



Using the expression for χ(q,q) in our result for the marosopi dieletri tensor Eq.(3.31) yields
ǫM =1 − 4π

ω2

[

1 − 4πχ(q,q)O−1(q)
]−1

χ(q,q)

=1 − 4π

ω2

[

1 − 4π
[

1 + 4πα(q,q)O−1
T (q)

]−1
α(q,q)O−1(q)

]−1
×

×
[

1 + 4πα(q,q)O−1
T (q)

]−1
α(q,q)

=1 − 4π

ω2

[

1 − 4πα(q,q)O−1
L (q)

]−1 [
1 + 4πα(q,q)O−1

T (q)
]

×

×
[

1 + 4πα(q,q)O−1
T (q)

]−1
α(q,q)

=1 − 4π

ω2

[

1 − 4πα(q,q)O−1
L (q)

]−1
α(q,q)where we have used

[

1 − 4πα(q,q)
[

1 + 4πα(q,q)O−1
T (q)

]−1 O−1
]−1

=

[

1 − 4πα(q,q)O−1
L (q)

]−1 [
1 + 4πα(q,q)O−1

T (q)
]

.Now identifying O−1
L (q) = − 1

ω2
q
q

q
q (Eq. (3.38)) and de�ning α̃ = − 1

ω2α we �nd
ǫM = 1 + 4π

[

1 − 4πα̃(q,q)
q

q

q

q

]−1

α̃(q,q) (3.43)
= 1 + 4πα̃(q,q)

[

1 − 4π
q

q

q

q
α̃(q,q)

]−1 (3.44)whih is exatly the result shown in [102℄. The quasi-suseptibility α̃ reads
α̃(q1,q2, ω) = − 1

ω2
[χjj(q1,q2, ω) − ρ(q1)δq1q2] . (3.45)We note that the onvenient rede�nition of the response funtion α→ α̃ means that weare onsidering a response of the polarization, rather than ∂tj, sine the two are related bya fator of ω2. The di�erene is that ∂tj features in the wave equation (3.10), thus whenregarding the response funtions as a means to lose Maxwell's equations it is onvenientto keep this quantity, while when we are interested in the polarization and its expansionof the perturbing �eld (Eq. (3.6)) this rede�nition is more onvenient.Using the same deomposition of the perturbing �eld as in Eq. (3.40) we de�ne theseond order response to the perturbing �eld, now diretly for the polarization

P
(2)
ind(1) =

∫

d2d3α̃(1, 2, 3)Eper(2)Eper(3). (3.46)
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With this de�nition, we obtain instead of the seond order marosopi suseptibility asin Eq. (3.32), the form
χ

(2)
M (q1,q2,q3) = − 4π

[

1 − 4πα̃(q1,q1)P
L(q1)

]−1
α̃(q1,q2,q3)×

×
[

1 − 4πPL(q2)α̃(q2,q2)
]−1 [

1 − 4πPL(q3)α̃(q3,q3)
]−1

.
(3.47)The advantage of this formulation is that now we an use the result of the seond orderperturbation theory of Chap. 2.2. Comparing the de�nition Eq. (3.46) and the seondorder mirosopi perturbation response Eq. (2.17) yields the mirosopi expression for

α̃(2)

α̃(q1,q2,q3) = − i

ω1ω2ω3

[

1

2
χjρ(q1,q3)δq2q3 + χρj(q2,q3)δq1q3 +

1

2
χjjj(q1,q2,q3)

]

.(3.48)The linear responses χjρ and χρj vanish in the optial limit and are therefore negletedin the following.The link to TDDFT an now be made by onsidering only the longitudinal omponentof the the suseptibility. Formally one has to projet along the diretions of the q:
χLLL

M (q1,q2,q3) = PL(q1)χ
(2)
M (q1,q2,q3)P

L(q2)P
L(q3)

= − 4πPL(q1)
[

1 − 4πα̃(q1,q1)P
L(q)

]−1
α̃(q1,q2,q3)×

×
[

1 − 4πPL(q2)α̃(q2,q2)
]−1

PL(q2)×
×
[

1 − 4πPL(q3)α̃(q3,q3)
]−1

PL(q3) .

(3.49)The longitudinal projetions of the linear prefators of α̃(2) take a very simple form if weonsider the identities
[

1 − 4πα̃(q,q)PL(q)
]−1

= 1 + 4π
α̃(q,q)

1 − 4πα̃(q,q)LL
PL(q) (3.50)

[

1 − 4πPL(q)α̃(q,q)
]−1

= 1 + 4πPL(q)
α̃(q,q)

1 − 4πα̃(q,q)LL
. (3.51)In Eq. (3.49) these terms are multiplied with longitudinal projetors from the left andright respetively, so that there are three fators of the same form

PL(q) + 4πPL(q)
α̃(q,q)

1 − 4πα̃(q,q)LL
PL(q) =

PL(q)

1 − 4πα̃(q,q)LL
. (3.52)We note that this is equal to the two sided longitudinal projetion of the marosopidieletri tensor (Eq.(3.44))

ǫLL
M = PL(q)ǫMPL(q) =

PL(q)

1 − 4πα̃(q,q)LL
(3.53)39



so that the longitudinal projetion of the marosopi seond order suseptibility reads
χ(2),LLL(q1,q2,q3) = −4πǫLL

M (q1)ǫ
LL
M (q2)ǫ

LL
M (q3)P

L(q)α̃(q1,q2,q3)P
L(q2)P

L(q3)(3.54)whih leaves the projetion of the mirosopi response funtion to be onsidered.As already noted in Chap. 2.2 the longitudinal projetion of the urrent is related to thedensity via the ontinuity equation (2.20)
q · ĵ(q, ω) = q PL(q)̂j(q, ω) = iωρ̂(q, ω). (3.55)Using this relation to replae the projetion of the urrent operators in the longitudinalprojetion of α̃(q1,q2,q3) (Eq. (3.48)) we �nd
PL(q1)α̃(q1,q2,q3)P

L(q2)P
L(q3) =

1

2

1

(q2 + q3)q2q3
χρρρ(q1,q2,q3) (3.56)whih is the quantity that is the result of the seond order TDDFT Dyson equation. The�nal result for the longitudinal projetion of the marosopi seond order suseptibilityis thus, now also aounting for the frequeny dependene

χ(2),LLL(ω2 + ω3, ω2, ω3,q2 + q3,q2,q3) = −2πχρρρ(ω2 + ω3, ω2, ω3,q2 + q3,q2,q3)

(q2 + q3)q2q3
×

× ǫLL
M (ω2 + ω3,q2 + q3)ǫ

LL
M (ω2,q2)ǫ

LL
M (ω3,q3)

.(3.57)The simple TDDFT result χρρρ therefore needs to be modulated by three di�erent di-eletri funtions in order to obtain the marosopi suseptibility. Moreover, here thelimitation of TDDFT beome appearant, sine it an only provide the longitudinal om-ponent of the suseptibility. However, as far as optial proesses, i.e. when q → 0, areonerned this limitation does not pose a problem to the appliability of TDDFT. Thequantity q de�nes the propagation diretion of the �eld with respet to whih the terms'longitudinal' and 'transverse' are de�ned. Therefore, when one onsiders the limit ofvanishing q the longitudinal and transverse diretions loose their de�nition and any di-retion is equivalent [103℄. It is only in this limit that TDDFT an be applied rigorously.In Chap. 4 I will further disuss this limit and it range of validity as well as e�ets thatour beyond it.It is interesting to note that Eq. (3.57) is similar to a result obtained by Armstrong andBloembergen [30℄ in the Lorentz model. They �nd for ubi symmetry a relation betweenthe marosopi and mirosopi suseptibilities of the form
χ(2)(ω1 + ω2) = Nβ(ω1 + ω2)

ǫ(ω1 + ω2) + 2

3

ǫ(ω1) + 2

3

ǫ(ω2) + 2

3
(3.58)where β is their mirosopi suseptibility.40



3.3.1 Components of χ(2)Having established that with TDDFT we an only get a salar response, the problemarises that the seond order suseptibility χ(2) has in general 27 omponents, whih haveto be obtained from this salar quantity. First, we note that for seond harmoni gen-eration only 18 of the 27 omponents are independent, sine they are symmetri underexhange of the two perturbing �elds, i.e. χijk = χikj. While this is true for all rystalsystems, the symmetry operations of partiular rystal systems also ontribute to a re-dution of the independent non-zero omponents. Table 3.1 lists these omponents bypoint group.We note that 11 out of the 32, do not yield any seond harmoni generation due tothe inversion symmetry. For 4 others there is only one independent non-zero omponentand thus they pose no problem for a salar response alulation. It an, however, not beobtained from any density response, but the polarization diretions of the applied �eldsmust be onsidered. A areful analysis of how the polarization enters into the equationsyields not only the independent omponents of those 5 point groups but also a way toobtain the omponents of χ(2) for point groups where more than one omponent is inde-pendently non-zero.To this end we onsider the longitudinal projetion of χ(2) like it appears in the maro-sopi averaged seond order response, Eq (3.57). The longitudinal projetions are pro-jetions parallel to the progation diretions and an thus also be interpreted as projetionsalong the polarization of longitudinal �elds. Introduing the polarization vetors n1 and
n2 of the perturbing �eld, we an write the longitudinal projetion of the marosopiseond order suseptibility (3.57) as5

(n1 +n2)χ
(2)n1n2 = ǫLL

M (n1 +n2, 2ω)ǫLL
M (n1, ω)ǫLL

M (n2, ω)χρρρ(n1 +n2,n1,n2, 2ω, ω)(3.59)whih reads in terms of the tensor and vetor omponents
∑

ijk

(n1i
+n2i

)χijkn1j
n2k

= ǫM (n1+n2, 2ω)ǫLL
M (n1, ω)ǫLL

M (n2, ω)χρρρ(n1+n2,n1,n2, 2ω, ω).(3.60)This means that in order to obtain single tensor omponents we have to perform TDDFTalulations along di�erent polarization diretions.There are four di�erent kind of tensor omponents aording to their index struture:the diagonals χ(2)
ααα, two di�erent blok diagonals χ(2)

ααβ and χ(2)
βαα and the o� diagonals

χ
(2)
αβγ . We also remember that for seond harmoni generation the last two indies areinterhangeable, i.e. χ

(2)
αβγ = χ

(2)
αγβ. As mentioned, depending on the symmetry, some5Sine χ(2) only depends on two di�erent q we will all them in the following q1 and q2 instead of q2and q3. 41



# Symbol Components Bravais1 1 18 all Trilini2 1 0 �3-5 2 8 xyz, xxy, yxx, yyy, yzz, yzx, zzy, zxy Monolini6-9 m 9 xxx, xyy, xxz, yyz, yyx,
zxx, zyy, zzz, zzx10-15 2/m 0 �16-24 222 3 xyz, yzx, zxy Orthorhombi25-46 mm2 5 xxz, yyz, zxx, zyy, zzz47-74 mmm 0 �75-80 4 4 xyz = −yxz, xxz = yyz, zxx = zyy, zzz Tetragonal81-82 4 4 xyz = yxz, xxz = −yyz, zxx = −zyy, zxy83-88 4/m 0 �89-98 422 1 xyz = −yxz99-110 4mm 3 xxz = yyz, zxx = zyy, zzz111-122 42m 2 xyz = yxz, zxy123-142 4/mmm 0 �143-146 3 6 xxx = −xyy = −yyx, xyz = −yxz, xxz = yyz
yyy = −yxx = −xxy, zxx = zyy, zzz

Trigonal147-148 3 0 �149-155 32 2 xxx = −xyy = −yyx, xyz = −yxz156-161 3m 4 xxz = yyz, zxx = zyy, yyy = −yxx = −xxy, zzz162-167 32/m 0 �168-173 6 4 xyz = −yxz, xxz = yyz, zxx = zyy, zzz Hexagonal174 6 2 xxx = −xyy = −yyx, yyy = −yxx = −xxy175-176 6/m 0 �177-182 622 1 xyz = −yxz183-186 6mm 3 xxz = yyz, zxx = zyy, zzz187-190 6m2 1 yyy = −yxx = −xxy192-194 6/mmm 0 �195-199 23 1 xyz = yxz = zyx Cubi200-206 2/m3 0 �207-214 432 0 �215-220 43m 1 xyz = yxz = zyx221-230 m3m 0 �Table 3.1: Components of the seond order suseptibility χ(2) for seond harmoni generation.After Y. R. Shen [3℄ (p. 27)
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omponents an be zero, whih failitates the solution of Eq. (3.60) for some symmetrygroups. This also means that for some of the tensor omponents, it might be neessaryto do a alulation with di�erent polarizations, depending on the symmetry group of therystal.Components χααα : For omponents of this form it is su�ient to perform a alulationwith the polarizations in n1 = n2 = eα, where eα is the unit vetor in the artesiandiretion α). Eq. (3.60) thus reads:
χααα = ǫM(eα, 2ω)χρρρ(eα + eα, eα, eα)ǫM (eα, ω)ǫM (eα, ω) (3.61)This is obviously true for any symmetry.Components χααβ The omponents χααβ an be obtained by a alulation with thepolarizations n1 = eα and n2 = eβ. With this hoie of polarization diretions Eq. (3.60)reads
χααβ + χββα = ǫM (eα + eβ, 2ω)χρρρ(eα + eβ, eα, eβ)ǫM (eα, ω)ǫM (eβ, ω). (3.62)For most rystal symmetries only one of the omponents χααβ and χββα is non-zero, sothat suh a alulation diretly yields the non-zero omponent. The exeption are thesymmery groups '1', '2' and 'm', for whih one has to perform an additional TDDFTalulations, with the polarizations n1 = eα and n2 = −eβ yielding Eq. (3.60) as
χααβ − χββα = ǫM (eα − eβ, 2ω)χρρρ(eα − eβ , eα,−eβ)ǫM (eα, ω)ǫM (−eβ, ω). (3.63)Adding or subtrating this from Eq. (3.62) yields the single omponent.Components χαββ : Components of this shape are less easily obtained, sine one has touse n1 = eα and n2 = 1/

√
2(eα + eβ) whih yields

1

2
χααβ +

1

2
χαββ +

1 +
√

2

2
χββα +

1 +
√

2

2
χβββ =

ǫM (n1 + n2, 2ω)χρρρ(n1 + n2,n1,n2)ǫM (n1, ω)ǫM (n2, ω).

(3.64)So depending on whih of the other omponents are simultaneously non-zero one hasto ombine this with an additional alulation. For example, for the groups '6mm', '6','4mm', '4', '4' and 'mm2' the χβββ and χββα omponents are zero, so that one has toombine this alulation only with the χααβ alulation to obtain the χαββ omponent.For other symmetry groups their are more dependent omponents, so that one has toombine several alulations.Components χαβγ : For the o� diagonal elements there are symmetry groups ('4m3','23', '622' and '422' ) where they are the only non-zero omponents. Then, it is su�ient43



to do a single alulation with n1 = n2 = eα + eβ + eγ , yielding diretly the omponent
χαβγ = ǫM (2(eα + eβ + eγ), 2ω)×

× χρρρ(2(eα + eβ + eγ), eα + eβ + eγ , eα + eβ + eγ)ǫM (eα + eβ + eγ , ω)ǫM (eα + eβ + eγ , ω)(3.65)In the ase of the symmetry groups '1', '2','32', '3', '42m', '4', '222 and '6' there is nogeneral appliable ombination. Instead, one has to deide for eah symmetry whih isthe best way to obtain the omponent.For example for the χxyz omponent of group '3' is useful to hoose n1 = ex + ey + ezand n2 = ey whih yields
χxyz+χxxx = ǫM (eα+2eβ+eγ , 2ω)χρρρ(eα+2eβ+eγ , eα+eβ+eγ , eβ)ǫM (eα+eβ+eγ , ω)ǫM (eβ, ω)(3.66)From whih one has to substrat χxxx, i.e. the result of a alulation of the form χαααto obtain the omponent.In another example, for '42m' group, the hoie n1 = n2 = ex + ey + ez yields

8χxyz + 4χzyx = A (3.67)while a alulation with the polarizations n1 = ex −ey +ez and n1 = ex +ey +ez yields
4χxyz + 4χzyx = B (3.68)These an be ombined to yield the omponents via
B −A = 4χxyz and 2B −A = 4χzyx. (3.69)Along these lines one an obtain the polarization diretions for the o�-diagonal ompo-nents of the other symmetry groups as well.The above outlined hoies for n1 and n2 for whih one performs the TDDFT are notneessarily unique to obtain the wanted omponents, there might be other, more pratialombinations, depending on the spei� omponent on wants to obtain.3.3.2 Marosopi IPA responseThe result from this setion, that in order to obtain the seond marosopi suseptibilityone has to multiply the averaged mirosopi seond order density response funtion withthree linear dieletri funtions merits some loser onsideration. Namely, I want to showwhat this means for the independent partile approximation, whih is the one that hasbeen used in the literature so far.In this approximation one lets fxc = 0 as well as neglets loal �elds by onsidering a

χ
(2)
0 with G2 = G1 = G3 = 0, so that the solution of the TDDFT Dyson equation (2.54)44



reads
χρρρ(q1 + q2,q1,q2) = [1 + χρρ(q1 + q2,q1 + q2)v(q1 + q2)]χ

(0)
ρρρ(q1 + q2,q1,q2)×

× [1 + v(q1)χρρ(q1,q1)] [1 + v(q2)χρρ(q2,q2)] (3.70)where the linear χρρ obey the linear Dyson like equation (2.40) in the same approximation
χρρ(q,q) = χ(0)

ρρ (q,q) + χ(0)
ρρ (q,q)v(q)χρρ(q,q). (3.71)Now, we note that within this approximation

[

ǫLL(q)
]−1

= 1 + v(q)χρρ = 1 + χρρv(q) (3.72)so that the mirosopi response χρρρ reads
χρρρ(q1 + q2,q1,q2) =

[

ǫLL(q1 + q2)
]−1

χ(0)
ρρρ(q1 + q2,q1,q2)

[

ǫLL(q1)
]−1 [

ǫLL(q2)
]−1

.(3.73)This form of the mirosopi response, inserted in the marosopi suseptibility (3.57),yields
χ

(2),LLL
IPA (q1 + q2,q1,q2) = − 2π

(q1 + q2)q1q2
χ(0)

ρρρ(q1 + q2,q1,q2) (3.74)Thus, within the independent partile approximation, the marosopi suseptibility isidential with the mirosopi response to a non-interating potential. While, this resultagrees with physial intuition, it is not an obvious one when one onsiders the twoequations, the TDDFT Dyson like equation (2.47) and the marosopi relation (3.57).In this sense, it is at least a hek of onsisteny of the theory.
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4 Optial limitFor eletromagneti radiation the relation between light momentum vetor q and photonenergy ω in vauum is [104℄
q =

ω

c
. (4.1)Visible light, as used in experiments like absorption, seond harmoni generation orgenerally valene band spetrosopes, arries energy in the order of 1 or 10 eV whihorresponds to a light wave vetor of q ∼ 10−3 Å−1 or a wavelength of λ ∼ 2π103 Å.On the other hand the typial length sale of the ell parameters in solids is of the orderof 1 Å, whih means that the light wave is almost onstant over the length of the ell.Therefore one onsiders for these kind of proesses the long wavelength limit, i.e. λ→ ∞,or equivalently q → 0. This limit is also referred to as the optial limit.This limit means that we are onsidering a �eld that does not propagate, whih impliesthat the longitudinal and transverse diretion are not longer distinguishable sine theyare de�ned with respet to the propagation diretion [103℄. It does however not meanthat the �eld has no diretion and the polarization is still de�ned. These points areimportant for our alulations, beause they mean on the one hand that the longitudinaland transverse response are equivalent in the optial limit, while the polarization whihdetermines the tensor omponents is well de�ned.The limit is obtained formally by letting q → 0 in the response funtions. There ishowever an important di�erene how this limit is arried out whether one onsiders theurrent response or the density response. To illustrate this I will here onsider the linearase. The linear mirosopi quasi-suspetibility α̃ (3.45) depends on χjj:

α̃(q1,q2, ω) = − 1

ω2
[χjj(q1,q2, ω) − ρ(q1)δq1−q2] . (4.2)and it an be shown [105℄ that1

lim
ω→0

χjj ∼ ω2 and lim
q→0

χρρ ∼ q2 (4.3)(for G = 0) whih means that the limit q → 0 of α̃ is well behaved. On the other hand,when one wants to use TDDFT one has to expresses α̃ in terms of the density responseaording to the relation [107, 108℄
χρρ(q,q, ω) =

1

ω2
qχjj(q,q, ω)q (4.4)1Note that there are numerous mathematial subtleties involved in this limit, .f. [106℄46



whih also means one onsiders only longitudinal �elds and hene
χLL

jj =
ω2

q2
χρρ(q,q, ω) . (4.5)In this ase the limit of α̃ is pathologial beause the denominator tends to zero in thesame way as the numerator. To avoid this problem one has to expand χρρ in terms of qso that the leading term, whih is proportional to q2 anels the denominator so that thelimit an be taken safely. The same holds for the ase ω → 0 for the urrent response,but whih poses no problem in a χρρ alulation.The same reasoning holds for χρρρ and χjjj with the limiting behaviour

lim
q→0

χρρρ ∼ q3 and lim
ω→0

χjjj ∼ ω3 (4.6)where the the q3 dependene of χρρρ anels with the prefator 1/q1q2q3 in Eq. (3.57).In a TDDFT alulation the basi quantity is the non-interating response funtion χ(0)
ρρρas given by Eq. 2.27. Using the real spae representation for the density operator,Bloh funtions for the single orbitals |nk〉 and subsequently passing to momentum spaeaording to App. B yields the expliit expression for χ(0)

ρρρ:
χ

(2)
0 (q′ + q′′ + G,q′ + G′,q′′ + G′′, ω, ω) =

2

V

∑

n,n′,n′′,k

〈nk| − ei(q
′+q′′+G)r|nk+q′+q′′〉

(En,k − En′,k+q′+q′′ + 2ω + 2iη)
×

[

(fn,k − fn′′,k+q′)
〈n′k+q′+q′′ |ei(q′′+G′′)r′ |n′′k+q′〉〈n′′k+q′ |ei(q′+G′)r′′ |nk〉

(En,k − En′′,k+q′ + ω + iη)
+

+ (fn′,k+q′+q′′ − fn′′,k+q′)
〈n′k+q′+q′′ |ei(q′′+G′′)r′ |n′′k+q′〉〈n′′k+q′ |ei(q′+G′)r′′ |nk〉

(En′′,k+q′ −En′,k+q′+q′′ + ω + iη)
+

+ (fn,k − fn′′,k+q′′)
〈n′k+q′+q′′ |ei(q′+G′)r′ |n′′k+q′′〉〈n′′k+q′′ |ei(q′′+G′′)r′′ |nk〉

(En,k − En′′,k+q′′ + ω + iη)
+

+(fn′,k+q′+q′′ − fn′′,k+q′′)
〈n′k+q′+q′′ |ei(q′+G′)r′ |n′′k+q′′〉〈n′′k+q′′ |ei(q′′+G′′)r′′ |nk〉

(En′′,k+q′′ − En′,k+q′+q′′ + ω + iη)

](4.7)I will now give some details about how the optial limit of this quantity is obtained viaperturbation theory in q. The fully general χ(0)
ρρρ has q dependene in the oupationnumbers, the energies and the wavefuntions. We will heneforth only onsider semion-dutors (and insulators) and therefore neglet the momentum dependene of the Fermifators, i.e. fn,k+q → fn. The energies and wavefuntions however have to be expanded
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in terms of q. It turns out that we basially have to perform k · p perturbation theoryto seond order.4.1 perturbation theory in qWe have formulated the seond order suseptibility χ(2)
0 in terms of Bloh funtions |φn,k〉.These generally depend on q, if we make the substitution k → k+q. In the limit q → 0this means that we have to formulate a perturbation series in q for Bloh funtions. Westart from the eigenvalue equation

H|φn,k+q〉 =

[

1

2
p2 + Vnl

]

|φn,k+q〉 (4.8)where p = i∇r and Vnl is a generally non-loal lattie periodi potential. Deomposingthe Bloh funtions into |φn,k+q〉 = ei(k+q)r|un,k+q〉 we have
[

−1

2
k2 − (k + q) · p +

1

2
(k + q)2 +

1

2
p2 + e−i(k+q)rVnle

i(k+q)r

]

|un,k+qv〉 . (4.9)Now, we expand the exponential as a series of q and rearrange the terms aording theorder of q:
hk+q =

1

2
p2 − k · p + e−ikrVnle

ikr+

+ k · q − q · p + [e−ikrVnle
ikr, iqr]+

+
1

2
q2 + iqre−ikrVnle

ikriqr − 1

2
(qr)2e−ikrVnle

ikr − e−ikrVnle
ikr 1

2
(qr)2+

+O(3) .

(4.10)This Hamiltonian is readily transformed into a Hamiltonian for the full Bloh funtionsby multiplying with eikr, so that we have the perturbation Hamiltonians for the q per-turbation series:
H

(1)
k

= −q · p + [Vnl, iqr] = iq[Hk, r] = qv (4.11)
H

(2)
k =

1

2
q2 +

1

2
[qr, [Vnl,qr]] = − i

2
[qv,qr] (4.12)where we have used [p2, r] = ip and de�ned the generalized momentum operator

v = p + [Vnl, r] (4.13)that is also alled veloity operator. These two Hamiltonians are used within timedependent perturbation theory, .f. App. C, to expand the matrix elements and energydenominators.
48



4.1.1 q → 0 for χ
(2)
0We now expand χ(2)

0 (q+G,q′ +G′,q′′ +G′′) in terms of q to arry out the limit q → 0.Generally χ(2)
0 is a third rank tensor in terms of the G vetors. For third rank tensorswe lassify four di�erent partshead: G = G′ = G′′ = 0 (4.14)wings: 









G = G′ = 0 and G′′ 6= 0

G = G′′ = 0 and G′ 6= 0

G′ = G′′ = 0 and G 6= 0

(4.15)faes: 









G = 0 and G′ 6= 0, G′′ 6= 0

G′ = 0 and G 6= 0, G′′ 6= 0

G′′ = 0 and G 6= 0, G′ 6= 0

(4.16)body: G 6= 0, G′ 6= 0, G′′ 6= 0 (4.17)We have to treat eah of these ases separately, beause the leading term of the head isproportional to q3 while the faes and wings have a q and q2 dependene respetively. Thisis due to the fat that for �nite G the leading order of an expansion in q is independentof q. In pratie this means that for the faes we have to expand up to the �rst order,for the wings to seond order and for the head to third order in q. For seond harmonigeneration χ(2)
0 is symmetri under the exhange q′ + G′ ↔ q′′ + G′′ so that we have intotal 6 di�erent terms, of whih the body does not need any expansion in q. The exatexpressions for all these terms are rather lengthy and we refer to App. C for details.Here we report only the result for the head, see Tab. 4.1, sine it yields the dominatingontribution in most of our alulations.Here we have given the full expression, in pratial alulations however, the termsontaining the ommutator turn out the be negligible and thus are not onsidered.This expression is equivalent to the result of Hughes and Sipe [48℄, who are also usingthe length gauge and that is frequently used for IPA alulations also by other authors[50�58℄. The di�erene between the two forms is that they did not onsider non-loalityof the potential. Another frequently employed formulation is in terms of the veloityoperator [69℄ Eq. (4.13). The onnetion between the two formulations is made via theequation

〈nk|ir|n′k〉 =
〈nk|v|n′k〉
Enk − En′k′

. (4.19)The use of the length gauge has the additional ompliation that the matrix elementof r is ill de�ned in a rystal, whih has to be arefully aounted for when using thisrepresentation.
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χ(0),head
ρρρ (q,q1,q2) =

2

V

∑

n,n′,n′′,k

[

(fn,k − fn′′,k)

(∆nn′ + 2ω̃)(∆nn′ + ω̃)
+

(fn′,k − fn′′,k)

(∆nn′ + 2ω̃)(∆n′′n′ + ω̃)
+

+ 2
(fn,k − fn′,k)(∆n′′n + ∆n′′n′)

∆2
nn′(∆nn′ + 2ω̃)

− (fn,k − fn′,k)(∆n′′n + ∆n′′n′)

2∆2
nn′(∆nn′ + ω̃)

]

×

× 〈nk| − i(q1 + q2)r|n′k〉
[

〈n′k|iq2r|n′′k〉〈n′′k|iq1r|nk〉 + 〈n′k|iq1r|n′′k〉〈n′′k|iq2r|nk〉
]

+

+
(fn,k − fn′,k)

(∆n′n + ω̃)(∆nn′ + ω̃)
×

× 〈n′′k|i(q1 + q2)r|nk〉
[

〈nk|iq1r|n′k〉〈n′k|iq2r|n′′k〉 + 〈nk|iq2r|n′k〉〈n′k|iq1r|n′′k〉
]

+

+

[

8(fn,k − fn′,k)

∆2
nn′(∆nn′ + 2ω̃)

− (fn,k − fn′,k)

2∆2
nn′(∆nn′ + ω̃)

]

×

× 〈nk| − i(q1 + q2)r|n′k〉
[

〈n′k|iq2r|nk〉∆q1

nn′ + 〈n′k|iq1r|nk〉∆q2

nn′

]

+

+
(fn,k − fn′,k)∆n′′n

∆nn′(∆nn′ + ω̃)(∆n′n + ω̃)
×

×
[

−〈nk|iq1r|n′k〉〈n′k|iq2r|n′′k〉〈n′′k|i(q1 + q2)r|nk〉+
+ 〈nk|i(q1 + q2)r|n′k〉〈n′k|iq2r|n′′k〉〈n′′k|iq1r|nk〉−
− 〈nk|iq2r|n′k〉〈n′k|iq1r|n′′k〉〈n′′k|i(q1 + q2)r|nk〉+
+ 〈nk|i(q1 + q2)r|n′k〉〈n′k|iq1r|n′′k〉〈n′′k|iq2r|nk〉

]

+

+

[

(fn,k − fn′,k)

∆2
nn′(∆nn′ + ω̃)

− 4(fn,k − fn′,k)

∆2
nn′(∆nn′ + 2ω̃)

]

×

× 〈nk|i(q1 + q2)r|n′k〉
[

〈n′k| −
i

2
[q1r,q2v]|nk〉 + 〈n′k| −

i

2
[q2r,q1v]|nk〉

]

+

+
(fn,k − fn′,k)

2∆2
nn′(∆nn′ + ω̃)

×

+
[

〈nk|[(q1 + q2)v, iq2r]|n′k〉〈n′k|iq1r|nk〉 + 〈nk|[(q1 + q2)v, iq1r]|n′k〉〈n′k|iq2r|nk〉−
− 〈nk|i(q1 + q2)r|n′k〉〈n′k|[q2v, iq1r]|nk〉 − 〈nk|i(q1 + q2)r|n′k〉〈n′k|[q1v, iq2r]|nk〉

](4.18)Table 4.1: Head of the leading order of the k · p expanded χ
(0)
ρρρ, where we have used theshorthands ω̃ = ω + iη, ∆q

nn′ = 〈nk|qv|nk〉 − 〈n′

k|qv|n′k〉 and ∆nn′ = Enk
− En′

k
.
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4.2 Sissors shiftAs mentioned in Chap. 2.4.4 the appliation of the sissors shift to the band struturehas some non-trivial impliations in the seond order ase [109℄. This is due to the fatthat the sissors operator is a non-loal operator and thus does not ommute with theposition operator, similar as the non-loal potential. Formally the sissors operator reads
S = ∆

∑

n

(1 − fn)|φn〉〈φn| (4.20)where ∆ is the energy shift, the sum runs over all states n and a �nite band gap isassumed. The groundstate Hamiltonian of the k · p perturbation theory reads underonsideration of the sissors operator
HSC =

1

2
p2 + Vnl + S (4.21)and the approximation is that this Hamiltonian has the same eigenstates as the onewithout the sissors operator

HLDA =
1

2
p2 + Vnl (4.22)whih is the Hamiltonian we used in Eq. (4.8). Here the name HLDA refers to the fatthat it gives the wavefuntions that we obtain from the DFT groundstate alulation. Theonveniene of the sissors approximation is that we an keep using these wavefuntionseven if the energies are shifted. This means that the matrix elements of the positionoperator do not hange regardless of whih Hamiltonian is used. The matrix elementsof the veloity operator, however, do hange under the sissors transformation, sine thesissors operator is non-loal S:

vSC = p + [Vnl + S, r]. (4.23)Using the relation between veloity and position matrix elements Eq. (4.19) and the fatthe position matrix elements are invariant, we an write
〈nk|r|n′k〉 =

〈nk|v|n′k〉
ELDA

nk − ELDA
n′k′

=
〈nk|vSC |n′k〉
ESC

nk −ESC
n′k′

(4.24)where ESC
nk and ELDA

nk are eigenenergies of the orresponding groundstate Hamiltonians,i.e. Eqs. (4.21) and (4.22) respetively. From Eq. (4.24) follows the relation
〈nk|vSC |n′k〉 = 〈nk|v|n′k〉 ESC

nk − ESC
n′k′

ELDA
nk −ELDA

n′k′

, (4.25)whih trivially true for a zero sissors shift, i.e. ESC
nk = ELDA

nk , but an yield importanthanges in the response funtions for large ∆. 51



The non-loality of S means it behaves the same as Vnl in our perturbation theory andthus the ommutator terms in Eq. (4.18) ontain this operator as well. While we havenumerially veri�ed that the potential ommutators [r,p + [r, Vnl]] are negligible, weannot make any general assumptions for [r, [r, S]] and thus have to take them fullyinto aount. Their ontribution an be reexpressed in terms of shifted and non-shiftedenergies, similar to Eq. (4.25), but the algebra is somewhat lengthy. Therefore we givethe �nal result, together with the k · p expressions for the wings and faes in appendixC.4.3 Exat optial transitionsThe expansion of χ(0)
ρρρ in terms of q to the leading order orresponds to the dipoleapproximation, i.e. q → 0. Aording to Eq. (4.1), however, every �nite frequenyorresponds to a �nite q. This means on the one hand, that the dipole approximationis only stritly valid for the stati ase ω → 0, but on the other hand it provides analternative way to obtain χ(0)

ρρρ by alulating it at the atual q orresponding to �nitefrequenies. Suh a treatment has two advantages. First one does not have to rely onthe lengthy perturbation theory and seond it provides a way to go beyond the dipoleapproximation by onsidering the atual q dependene, .f. Se. 5.As mentioned these q are small so a numerial sheme has to be devised that an aountfor these very small di�erene in k-points, sine q = k′ − k. The sum over k-points inEq. (4.7) represents a disretization of the Brillouin zone into sample k-points at whih
χ

(0)
ρρρ is evaluated. This disretization is usually done homogeneously, e.g. using theMonkhorst-Pak sheme [110℄, but it an also be arried out by sampling with randompoints. When one is interested in �nite q alulations this sampling has to be doneunder the restrition that di�erenes between the resulting k-points orrespond to thedesired q, .f. Fig. 4.1. This means that for very small q a homogeneous samplingis not very e�ient beause one has to work with a muh higher density of samplingpoints than neessary for onvergene of the sum. Indeed, assuming that the size of theBrillouin zone is ∼Å−1 one needs 109 sampling points to be able to treat q in the orderof 10−3Å−1, while onvergene is usually ahieved already with 103 points. Thereforeone has to use a non-homogeneous sampling of the Brillouin zone, .f. Fig. 4.1. Theadvantage of suh a sampling is that the atual value of q is not determined a posteriorias done for homogeneous sampling, but one an hoose basially arbitrary values for q.Moreover a non-homogeneous sampling an easily ombined with a random samplingtehnique.
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qk

k′

k′

k′

k′

Figure 4.1: k-points sampling shemes. Top left: Commonly used homogeneous grid withrestrited set of possible q vetors. Top right: Random sampling, where �nite q alulations arenot possible, beause all di�erenes between k-points are random. Bottom left: Inhomogeneoussampling done by shifting the homogeneous set by the target q. Bottom right: Randomsampling an be used by treating a set that ontain for eah random point one shifted by q.In pratie one has to alulate matrix elements of the form
ρ̃ k′n′

kn (q + G) =

∫

drφkn(r)e−i(q+G)rφk′n′(r). (4.26)so it is onvenient to work with two di�erent sets of Kohn-Sham wavefuntions, oneorresponding to k and one for k′. This means that they an be generated separately,one shifted by q with respet to the other. On the other hand this means that theimplementation has to be able to manage two di�erent k-point sets. Sine χ(0)
ρρρ dependson two di�erent q, it turns out that one has to treat four di�erent sets of k-points, .f.Fig. 4.2. Inspetion of the q dependent expression of χ(0)

ρρρ Eq. (4.7) shows that oneatually needs to alulate �ve di�erent kinds of matrix elements orresponding to the53



transitions shown in Fig. 4.2.
q2

q 1
+
q 2q1

k k + q2

k + q1 k + q1 + q2

Figure 4.2: multigridsheme

Another downside of this approah is the need for high numerialauray. When used to alulate responses near the optiallimit, it must still hold that the χ(0)
ρρρ is proportional to q3. Sine

χ
(0)
ρρρ is onstruted by produts of three matrix elements, theseprodut have to be proportional to q3. If we think about thematrix elements as expanded in terms of q, i.e.

ρ̃(q) = ρ̃(0) + ρ̃(1)q + ρ̃(2)q2 + ... (4.27)it is appearant that in order to have a produt of three of theseproportional to q3 one has to alulate eah matrix element withan auray of the same order. This an be a serious numerialhallenge when q is very small, e.g. for q ∼ 10−3 we need anauray up to 10−9 or 6 orders of magnitude, whih is just thelimit of single mahine preision.This approah is in a way a numerial brute fore sheme where the exat anellationahieved in the perturbative expansion has to be reahed numerially. One an, however,use ertain symmetry properties of the response funtion to improve the onvergene evenin this sheme. In partiular time-reversal and, in ase, inversion symmetry are ruialfor onvergene. Figure 4.3 illustrates whih transitions are equivalent to a (k, n) →
(k + q, n′) transition under these symmetries. The idea is to hardwire these symmetriesinto the numerial implementation by rewriting the equation for χ(0)

ρρρ under onsiderationof these symmetry operations and then add it to the original expression. That is to saythat if T is the unhanged summand of χ(0)
ρρρ (Eq. (4.7)) and we apply analytially asymmetry operation i on this term giving T i, we an implement χ(0)

ρρρ in the form
χ(0)

ρρρ =
2

V

∑

nn′n′′k

1

2

[

T + T i
]

. (4.28)Like this we an make sure that we inlude anellations between terms due to thesymmetry i that we might have missed otherwise beause of the �nite k-point samplinget.4.3.1 Time reversalUnder timereversal symmetry for wavefuntions and eigenvalues of band n at point kholds:
φnk(r) = φ∗n−k Enk = En−k (4.29)
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inversion

time reversal

inversion + time reversal

k

k+q-k-q

-k

q

n′

nFigure 4.3: Shemati view of the di�erent transitions in terms of whih we reformulate χ(0)
ρρρ.This means that we an write the matrix element ρ̃nk,n′k+q as

ρ̃nk,n′k+q(q + G) =

∫

dre−i(q+G)rφ∗nk(r)φn′k+q(r) (4.30)
=

∫

dre−i(q+G)rφn−k(r)φ∗n′−k−q(r) (4.31)
=

∫

dre−i(q+G)rφ∗n′−k−q(r)φn−k(r) (4.32)
= ρ̃n′−k−q,n−k(q + G) (4.33)from whih we dedue that the transition (n′,−k − q) → (n,−k) is the time reversedtransition of (n,k) → (n′,k + q), .f. Fig. 4.3.To make use of this property we take the full expression of χ(0)

ρρρ (Eq. (4.7)) and replaein the sum n↔ n′ and rede�ne the k-point parameter as
−K = k+q1+q2 k+q1 = −K−q2, k+q2 = −K−q1, k = −K−q1−q2(4.34)and sum over K in stead of k. We use these substitutions in χ(0)

ρρρ and then apply the timereversal property Eq. (4.30) for the matrix elements and Enk = En−k for the energies.
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We obtain:
χ(0),timerev

ρρρ =
2

V

∑

nn′n′′k

〈nk|e−i(q1+q2+G)r|n′k+q1+q2
〉

(−Enk + En′k+q1+q2 + 2ω + 2iη)
×

×
[

(fn − fn′′)
〈n′k+q1+q2

|ei(q1+G1)r|n′′k+q2
〉〈n′′k+q2

|ei(q2+G2)r|nk〉
(−Enk + En′′k+q2 + ω + iη)

+

+ (fn − fn′′)
〈n′k+q1+q2

|ei(q2+G2)r|n′′k+q1
〉〈n′′k+q1

|ei(q1+G1)r|nk〉
(−Enk + En′′k+q1 + ω + iη)

+

+ (fn′ − fn′′)
〈n′k+q1+q2

|ei(q2+G2)r|n′′k+q1
〉〈n′′k+q1

|ei(q1+G1)r|nk〉
(−En′′k+q1 + En′k+q1+q2 + ω + iη)

+

+(fn′ − fn′′)
〈n′k+q1+q2

|ei(q1+G1)r|n′′k+q2
〉〈n′′k+q2

|ei(q2+G2)r|nk〉
(−En′′k+q2 + En′k+q1+q2 + ω + iη)

](4.35)whih is the usual χ(0)
ρρρ (Eq. (4.7)) with negative energy di�erenes and we have replaed

K by k for onveniene. There is also a timereversal property for the k dependene of theFermi fators. Here we just suppress this dependene, sine we deal with semi-ondutors.4.3.2 InversionInversion symmetry is a symmetry property of the rystal system and does not hold ingeneral. However, to treat Silion we might want to inlude this symmetry propertyexpliitly, beause it is the ruial operation that lets χ(0)
ρρρ vanish in the dipole approxi-mation.For any symmetry operation R we have ([111℄):

ρ̃nRk,n′R(k+q)(q + G) = ρ̃nk,n′k+q(R−1(q + G)) . (4.36)We onsider the inversion operation
R =





−1 0 0
0 −1 0
0 0 −1



 = R−1 (4.37)and we have for the matrix elements:
ρ̃n−k,n′−k−q(q + G) = ρ̃nk,n′k+q(−q − G)) . (4.38)
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The energies do not hange under the symmetry operation, i.e. Enk = En−k. We rewrite
χ

(0)
ρρρ with the same substitutions Eqs. (4.34) and then use the symmetry property Eq.(4.38) of the system. Subsequently replaing K by k and expressing the result in termsof the matrix elements of the unhanged χ(0)

ρρρ yields
χ(0),inv

ρρρ =
2

V

∑

nn′n′′k

(

〈nk|e−i(q1+q2+G)r|n′k+q1+q2
〉
)∗

(−Enk + En′k+q1+q2 + 2ω + 2iη)
×

×



(fn − fn′′)

(

〈n′k+q1+q2
|ei(q1+G1)r|n′′k+q2

〉
)∗ (

〈n′′k+q2
|ei(q2+G2)r|nk〉

)∗

(−Enk + En′′k+q2 + ω + iη)
+

+ (fn − fn′′)

(

〈n′k+q1+q2
|ei(q2+G2)r|n′′k+q1

〉
)∗ (

〈n′′k+q1
|ei(q1+G1)r|nk〉

)∗

(−Enk + En′′k+q1 + ω + iη)
+

+ (fn′ − fn′′)

(

〈n′k+q1+q2
|ei(q2+G2)r|n′′k+q1

〉
)∗ (

〈n′′k+q1
|ei(q1+G1)r|nk〉

)∗

(−En′′k+q1 + En′k+q1+q2 + ω + iη)
+

+(fn′ − fn′′)

(

〈n′k+q1+q2
|ei(q1+G1)r|n′′k+q2

〉
)∗ (

〈n′′k+q2
|ei(q2+G2)r|nk〉

)∗

(−En′′k+q2
+ En′k+q1+q2

+ ω + iη)



(4.39)whih is exatly the starting term Eq. (4.7) with a sign hange in the energies and allmatrix elements omplex onjugated.4.3.3 Time reversal and InversionTo inlude both symmetry operations we need to obtain the time reversed version of
χ

(0),inv
ρρρ . To this end we take Eq. (4.39) and use the time reversal property Eq. (4.30)for the matrix elements and Enk = En−k for the energies. Then, replaing n ↔ n′ andmaking the substitions
−k−q1−q2 = K −k−q1 = K+q2, −k−q2 = K+q1, −k = +K+q1+q2(4.40)
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yields
χρρρ

(0),inv+timerev =

2

V

∑

nn′n′′k

(

〈nk|e−i(q1+q2+G)r|n′k+q1+q2
〉
)∗

(Enk − En′k+q1+q2 + 2ω + 2iη)
×

×



(fn − fn′′)

(

〈n′k+q1+q2
|ei(q1+G1)r|n′′k+q2

〉
)∗ (

〈n′′k+q2
|ei(q2+G2)r|nk〉

)∗

(Enk −En′′k+q2 + ω + iη)
+

+ (fn − fn′′)

(

〈n′k+q1+q2
|ei(q2+G2)r|n′′k+q1

〉
)∗ (

〈n′′k+q1
|ei(q1+G1)r|nk〉

)∗

(Enk − En′′k+q1 + ω + iη)
+

+ (fn′ − fn′′)

(

〈n′k+q1+q2
|ei(q2+G2)r|n′′k+q1

〉
)∗ (

〈n′′k+q1
|ei(q1+G1)r|nk〉

)∗

(En′′k+q1 − En′k+q1+q2 + ω + iη)
+

+(fn′ − fn′′)

(

〈n′k+q1+q2
|ei(q1+G1)r|n′′k+q2

〉
)∗ (

〈n′′k+q2
|ei(q2+G2)r|nk〉

)∗

(En′′k+q2
− En′k+q1+q2

+ ω + iη)





(4.41)
whih is the unhanged term with omplex onjugated matrix elements.All these terms an be diretly inluded in the implementation by writing the termsunder the same sum

χ(0)
ρρρ =

2

V

∑

nn′n′′k

1

4

[

T + T timerev + T inv + T inv+timerev
] (4.42)where T i are the summands of the respetive terms Eqs. (4.35),(4.39) and (4.41). Ofourse in ase the system does not have inversion symmetry the last two terms annotbe inluded.4.4 Transverse vs. Longitudinal responseFor alulations with q values that are �nite but still in the optial range the statementthat transverse and longitudinal response oinide is not true anymore, sine it relieson the limit q → 0. Still the dipole limit is frequently employed to alulate optialspetra in a �nite frequeny range. The underlying assumption is that the longitudinaland transverse responses do not di�er substantially in this range. Sine it is an importantassumption made in the formalism presented in this work, it should be to some extentquanti�ed. The usual density matrix elements learly annot give the transverse response,instead one has to employ matrix elements of the urrent operator. This amounts to
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alulating a χ(0)
jj :

χ
(0)
jj (q + G, ω) =

2

V

∑

knn′

(fnk − fn′k+q)
j̃nk,n′k+q(q + G)̃j∗nk,n′k+q(q + G)

(ǫnk − ǫn′k+q + ω + iη)
(4.43)where we have de�ned the urrent matrix elements j̃ as

j̃nk,n′k+q(q + G) =

∫

dre−i(q+G)rφ∗nk(r)
1

2i
(∇−∇†)φn′k+q(r) (4.44)This is a 3× 3 tensor in the (artesian) omponents of the vetor operator and it an beused to onstrut the full dieletri tensor (in the independent partile approximation)via

ǫ(q, ω) = 1 − 4π

ω2
χ

(0)
jj (q, ω). (4.45)where we have negleted loal �eld e�ets. This is in priniple general if one takes thefull χjj instead of the non-interating one as done in the framework of time dependenturrent density theory [105, 112�114℄. The development of funtionals and kernels thatmake use of the added information ontained in the urrent density instead of the salareletron density is still in a very early stage [115℄. One an however translate any TDDFTkernel into TDurrentDFT one by use of the ontinuity equation. Then, the two theoriesgive exatly the same results for the longitudinal omponents of ǫ, while TDurrentDFTmay or may not ontain additional information about the transverse omponents. Here,we will however only deal with the independent partile approximation, i.e. v+ fxc = 0,where the equivalene between the two formulations is trivial.A diret omparison between longitudinal and transverse an be made by onsideringthe full dieletri tensor ǫ(q) and deomposing it into its longitudinal and transverseonstituents by applying the longitudinal and transverse projetors (.f. Eq. (3.36))

PL(q) =
q

q

q

q
, P T (q) = −q× q×

q2
(4.46)to yield

ǫ(q)LL = PL
ǫ(q)PL

ǫ(q)TT = P T
ǫ(q)P T . (4.47)These terms take on a very simple form when q points in a artesian diretion, e.g.

q = qex and we onsider a system with ubi symmetry:
ǫ(qex)LL =





ǫxx 0 0
0 0 0
0 0 0



 ǫ(qex)
TT =





0 0 0
0 ǫyy 0
0 0 ǫzz



 (4.48)
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Figure 4.4: Comparison between the longitudinal and ttransversedieletri funtion for Si withdi�erent q values (in Bohr−1).where additionally holds ǫyy = ǫzz. Hene, in order to ompare the longitudinal andtransverse responses of a ubi system as a funtion of q we only need to onsider the ǫxxand ǫyy omponent of ǫ(qex), i.e. perform a alulation with q = qex and subsequentlyompare the omponents. In Fig. 4.4 suh a omparison is shown for Si. We �nd that inthe optial range, i.e. q ≈ 10−3Å−1 the di�erene between the two polarization diretionsis not disernable. Only at values for q ≈ 10−2Å−1 di�erenes our. The energy arriedby photons with the momentum is however, beyond 100 eV and thus far outside the rangeof valene band spetrosopy.
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5 Spatial dispersionThe best known feature of seond harmoni generation is that it vanishes for systems withinversion symmetry, whih makes it a very useful symmetry seletive tool. The vanishingof seond harmoni generation is, however, only true in the dipole limit, i.e. q → 0.Sine experiments, on the other hand, are usually performed at �nite frequenies, thismeans that the atual dipole limit is never stritly reahed and quadrupole ontributionsare in priniple present in every measurement [116℄. Therefore, when an experiment, e.g.at the surfae of a entro-symmetri material, relies on the fat that the bulk does notontribute to seond harmoni generation, it has to be very arefully performed in orderto rule out quadrupole response from the bulk. The atual importane of the quadrupoleontribution ompared with, for example, surfae dipole ontributions is still a point ofdebate [117, 118℄, but is generally onsidered to be substantial [119�123℄. There exist, tomy knowledge, no published attempt at alulating this ontribution within the ab initioframework, although numerous models are frequently employed, .f. [124℄.In this hapter I will explore the possibility to alulate seond harmoni generationbeyond the dipole limit using the faility of the multigrid approah desribed in Chap.4.3 to treat q-vetors of arbitrary length. This gives aess to the spatial dispersion ofthe rystal that is intimately linked to multipole responses. I will disuss the onept ofspatial dispersion brie�y with examples from linear optis and then show how it an beused to obtain the quadrupole ontributions to seond harmoni generation.5.1 Linear spatial dispersionSpatial dispersion is the dependene of the dieletri funtion on the light wave vetor[125℄. It originates from the fat that the polarization at a point does not only dependon the �eld at this point but also on the �eld in its immediate neighborhood. This radiusof non-loality a is usually very small, in solids it is of the order of the lattie onstant.The amount of spatial dispersion one sees in the response depends on the ratio betweenthe harateristi length a and the wavelength λ of the �eld. In the optial limit, whenwe look at very low energeti light, this ratio beomes very small and vanishes in thelimit limλ→∞ or equivalently limq→0. For �nite optial frequenies it is save to assume[125℄
aq

2π
=
a

λ
≪ 1. (5.1)The fat that the spatial dispersion is so small implies that it an be negleted in mostases and that in any ase its e�et will be visible only under speial irumstanes. But61



it also allows for an expansion of the dieletri tensor in terms of the wave vetor q,beause a sharply peaked response in real spae is smooth in reiproal spae. We writethe expansion as
εij(ω,q) = εij(ω) + γijk(ω)qk + αijkl(ω)qkql + ... (5.2)We note that the zeroth order in q is the usual dieletri tensor with frequeny dispersion.The higher order terms are the ontribution of the non-loality to the full tensor. Thisexpansion is the basis of the desription of spatial dispersion, sine it allows the disussionin terms of the tensors γijk and αijkl.5.1.1 symmetry properties of tensorsAlthough a rystal is not isotropi it does have some symmetry properties whih aordingto von-Neumann's priniple also hold for the dieletri tensor ε(ω,q). This means thatfor a given symmetry operation S that leaves the rystal unhanged the tensor must obeythe relation
S−1ε(ω, Sq)S = ε(ω,q). (5.3)Now, if we onsider the speial ase of a vetor qi that is invariant under one, or more,symmetry operations Si of the rystal system, i.e.
Siqi = qi (5.4)we an use the relation
S−1ε(ω,qi)S = ε(ω,qi). (5.5)whih yields a set of equations that express onditions on the tensor ε(ω,qi) and uponsolving this set of equations we obtain information on the struture of the tensor. Thatis to say whih omponents are equal and whih vanish. This, however, is not a generalproperty but only holds for the one qi (and its equivalent lass) that ful�ls Eq. (5.4).But nevertheless, it an be useful information when doing alulations for experimentsthat only use a few q-diretions.When we onsider spatial dispersion in optis we expand the tensor ε(ω,q) in terms of q
ε(ω,q) =

∑

n

∂(n)ε(ω,q)

∂qn

∣

∣

∣

∣

∣

q0

(q − q0)
n (5.6)by introduing the quantities ∂(n)ε(ω,q)

∂qn

∣

∣

∣

q0

that are rank n tensor (γijk, αijkl in Eq. (5.2))and are independent of q. Therefore, they posses the same symmetry properties as therystal system and we an use the whole group of symmetry operations assoiated withthe rystal to dedue the struture of the expansion tensors, i.e. to redue them to their62



dissimilar non-zero omponents. A rank n tensor transforms aording to ([126, p. 761�℄)
3
∑

i1...in

Sα1i1Sα2i2...Sαninχi1...in = χ̃α1...αN
(5.7)Under the onditions that the tensor is invariant under the symmetry operation we have

χ̃α1...αn = χα1...αn (5.8)whih yield our set of equations that we an use to redue the number of omponents.When we neglet spatial dispersion we onsider only the zeroth order in the expansion andour dieletri tensor has the properties a rank 2 tensor yields under the transformationwith all rystal symmetries, e.g. in the ubi ase it is diagonal with all elements equal.The higher order tensors, although invariant under the same symmetries, might howeverontribute omponents to the ε(ω,q) that are zero to zeroth order. In an example weonsider ubi Silion (Oh) where we have γijk = 0 (due to inversion symmetry) and theseond order tensor redues to three omponents:
α1 = αiiii α2 = αiijj α3 = αijij (5.9)Most signi�antly we have for the o� diagonal element xy of the dieletri tensor
εxy(ω,q) = α3(ω)qxqy (5.10)Here, the q-dependene beomes lear, beause this term is only non-zero if the q has�nite qx and qy omponents. Indeed, it is true for any suh q without any ondition onits symmetry properties. We have for the xx-omponent
εxx(ω,q) = εxx(ω) + α1(ω)qxqx + α2(ω)(qyqy + qzqz) . (5.11)That means to seond order the y and z omponents of q not only ontribute to theresponse in x-diretion but their ontribution also has a di�erent value than the one in

x-diretion.It is important to note that this does not represent symmetry breaking nor does the qintrodue anisotropy to the system. Instead we think of spatial dispersion as a way ofprobing the anisotropy of the rystal. The expansion simply gives the ordering of thee�et of the anisotropy in the di�erent diretions. To zeroth order the anisotropy doesnot appear, to �rst order, in the ubi ase we do not have any further ontribution andto seond order the o� diagonals beome non-zero and the diagonals hange dependingon the diretion of q.This is useful for the multi-grid approah desribed in Chap. 4.3 where, in priniple,we alulate the full ε(ω,q), but having the knowledge of the struture of γ, α et.we know for whih omponent we an expet the largest e�ets and whih diretionsyield equivalent spatial dispersion e�ets (up to a ertain order). It also tells us whih63



omponents we an alulate using TDDFT, i.e. whih omponents are longitudinalresponses.5.2 SHGSpatial disperion is partiularly interesting in the ase of seond harmoni generation,where for systems with inversion symmetry it yields the leading order ontribution. Thisis ompletely analogous to the linear ase where the third rank tensor γijk vanishes, butthe fourth rank tensor αijkl is �nite. The expansion of the seond order polarization isommonly written as [119, 127, 128℄
P

(2)
i (r, ω) = χijkEj(r)Ek(r) + ΓijklEj(r)∇kEl(r) + .. (5.12)whih orresponds to an expansion of χ(2) in terms of q

χijk(q, ω) = χijk(ω) + χQ
ijkl(ω)ql + .. (5.13)where we have de�ned the quadrupolar seond harmoni generation oe�ient χQ 1. Asmentioned before the rank three tensor vanishes for inversion symmetry and for ubisystems the only non-zero omponents are

α1 = χQ
iiii α2 = χQ

ijji α3 = χQ
iijj = χQ

ijij (5.14)where in the last line we have used the fat that the polarization diretions of the applied�elds are interhangeable. These omponents are analogous to the linear ase, only thathere the indies have di�erent meaning, i.e. the �rst three are polarization diretions andonly the last one is a propagation diretion. With these de�nitions one an write downthe general omponent of χQ as [129℄
χQ

ijkl = α1δijδikδil + α2δilδjk(1 − δij) + α3 ((δijδkl(1 − δik) + (δikδjl(1 − δij)) (5.15)We note that the terms δilδjk, δijδkl and δikδjl are rank four invariant salars whihleaves them unhanged under any orthogonal transformation2. This also means thatthey are unhanged under rotation of the oordinate system and hene they representthe isotropi ontributions to χQ. These isotropi ontributions do not give any additionalinformation about the symmetry of the system and our only as o�sets in an angulardependent experiment. Therefore we rewrite Eq. (5.15) to separate these ontributions
1This de�nition di�ers from Γijkl in the ordering of the indies. The latter is used in literature, buthere I hoose this de�nition beause it is more onsistent with the one used in [125℄.2This an be seen by applying a transformation T on the tensor δijδkl:

P

ijkl TαiTβjTγkTδlδijδkl =
P

ik TαiTβiTγkTδk =
P

ik T−1
iα TβiT

−1
kγ Tδk = δαβδγδ64



3:
χQ

ijkl = χQ,ai
ijkl + χQ,iso

ijkl (5.16)
= (α1 − α2 − 2α3)δijδikδil + α2δilδjk + α3(δijδkl + δikδjl). (5.17)Hene the anisotropi part of χQ reads

χQ,ai
ijkl = (α1 − α2 − 2α3)δijδikδil. (5.18)whih implies that only omponents of the form χQ

iiii have a non-vanishing anisotropiontribution.The ombination of the tensor omponents (α1 − α2 − 2α3) an be obtained in themultigrid approah desribed in Se. 4.3 by two di�erent longitudinal alulations:
χρρρ(qex) = α1 (5.19)

χρρρ(q(ex + ey + ez)) = 3α1 + 6α2 + 12α3 (5.20)and the ombinations of both yields the anisotropi oe�ient
χQ,ai

iiii =
3

2
χρρρ(qex) − 1

6
χρρρ(q(ex + ey + ez)). (5.21)While the omponent α1 = χQ
iiii an be alulated as a longitudinal response as in Eq.(5.19) the two other omponents only appear as sums of the form of Eq. (5.20) inlongitudinal alulations and annot be separated by di�erent hoies of q. This means,we annot alulate the isotropi part for all omponents and this puts a serious limit tothis approah. Still, we an alulate the isotropi part of χQ

iiii omponents via,
χQ,iso

iiii = α2 + 2α3 = −1

2
χρρρ(qex) +

1

6
χρρρ(q(ex + ey + ez)). (5.22)5.2.1 Dipole aseIn the expansion Eq. (5.13) the �rst term is independent of q and thus orresponds tothe dipole limit. While it is zero for systems with inversion symmetry it gives the leadingorder ontribution for systems without suh symmetry. In setion 4.1 I have shown howthese terms an be obtained form an analytial expansion of the fully q-dependent χ(0)

ρρρwhile in setion 4.3 I desribed how one an use the q-dependene of χ(0)
ρρρ to obtain itsoptial limit. Here, I will ompare the two approahes for the example system of ubiSiC, that does not have inversion symmetry and hene the leading term in a q-dependentalulation and the dipole expansion should give the same result.Figure 5.1 shows on the left the diret omparison between a alulation where χ(0)

ρρρ hasbeen expanded up to dipole order, i.e. is expressed as in Eq. (4.18), and a q-dependentalulation with q = 6× 10−4(1, 1, 1), i.e. q = 0.001. The Brillouin zone is in both ases3This is essentially the same expression given by Bloembergen et al. in [128℄. 65
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iiii is muh smallerthan the anisotropi one. We do not have any further information about the other twoisotropi omponents, χQ
ijji and χQ

ijij, but one an at least assume that they will have thesame order of magnitude.Atual omparison with experiment is di�ult in this form, sine no pure bulk quadrupolespetra exist. But I would like to point out that Drisoll and Guidiotti [130℄ note a sig-ni�antly strong seond harmoni signal from bulk Si at λ = 527 nm, whih orrespondsto ω = 2.3 eV and thus to the main peak in Fig. 5.3.
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6 ResultsIn this hapter I will show some numerial results and test ases of the implementationof the formalism outlined in the previous hapters [131℄. The main interest here isto investigate the in�uene of the loal �eld and exhange and orrelation e�ets on theseond harmoni spetra. This is done for the example system of hexagonal silion arbide(SiC), whih exhibits polymorphism. The polymorphism is realized by di�erent stakingorders of Si-C bi layers of either ubi (c) or hexagonal (h) types in the z-diretion [132℄.One an de�ne the hexagonality H of the polytype by the ratio H = h/(h + c). Thepolymorphism preserves the rystal symmetry thus allowing a diret omparison of theomponents of the suseptibility.SiC polytypes have been studied extensively in the ontext of ab-initio alulations ofSHG. Chen et al. [133℄ use a LDA+sissors sheme to alulate the stati seond harmonioe�ients in the independent partile approximation of various SiC polytypes and �nda dependene of loal �eld orretions on the hexagonality. In a later work [134℄ thesame authors use a re�ned sheme to desribe nonlinear loal �eld e�ets for the statisuseptibility and and report an inrease of xzx omponent, whereas the zzz dereaseswhen loal �elds are aounted for. Rashkeev et al. [50℄ using a similar omputationalsheme as in [133℄, while negleting loal �eld and many body e�ets, are able to alulatethe imaginary part of the frequeny dependent seond harmoni suseptibility, fromwhih, through a Kramers-Kronig relation they infer the real part, whih then enablesthem to onstrut the modulo of the suseptibility. Performing a transition by transitionanalysis of the spetra, they an assign single spetral features to single band transition,thereby suggesting SHG spetrosopy as a probe for eletroni struture. The underlyingassumption of these three works, that quasipartile e�ets an aurately be desribed bya sissors operator is investigated in detail by Adolph and Behstedt [135℄ by omparingthis approah with a alulation where the optial matrix elements are orreted by aGW quasipartile alulation. They �nd that the sissors operator approah gives verygood agreement with the atual quasipartile result for all polytypes under onsideration.Then I will present the test ase of GaAs, where a diret omparison of the alulatedspetrum with experimental spetra is possible.6.0.3 StruturesIn this setion I will brie�y disuss the strutures of the materials used in this hapterand also give some omputational details onerning the parameters of the groundstateand response alulations. All groundstates are obtained with the ABINIT pakage[136℄, whih gives the Kohn-Sham energies and wavefuntions in terms of a basis of planewaves. The LDA for the exhange and orrelation potential is used and the atomi69



ore eletrons are approximated by norm onserving pseudo-potentials of the Troullier-Martins form [137℄.SiCThe purely ubi polytype of SiC has zinblende struture and an therefore be desribedby a unit ell with two atoms (primitive ell). I used the experimental ell parameter of
a = 8.24 Bohr and an energy ut-o� of 50 Ha for the plane wave basis. The irreduibleBrillouin zone was sampled by 10 speial k-points, orresponding to a Monkhorst-Pakgrid of 256 k-points in the full Brillouin zone.The hexagonal polytypes 2h, 4h and 6h have the 6mm (C6v) symmetry and di�er onlyin the staking order of Si-C bilayers, .f. Fig. 6.1. The primitive unit ells have 4, 8 and12 atoms respetively and I used a ut o� of 50 Ha for the basis of all polytypes. Theexperimental ell parameters are a = 5.8 Bohr for all ompounds and c = 9.37, 18.99 for2h and 4h, while for 6h the theoretial lattie onstants of a = 5.7 and c = 28.39 wasused.The alulation of the seond harmoni spetra are done with a random sampling of
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Figure 6.1: The y− z-plane of the three hexagonal polytypes. They di�er only in the stakingorder of the Si-C bilayers. 2h-SiC has an ABAB pattern, 4h-SiC an ABAC and 6h-SiC has thestaking pattern ABCACB.the Brillouin zone for the hexagonal polytypes. Convergene was reahed with 160070



k-points for 2h χzzz, 2400 for 2h χxzx, 2000 for 2h χzxx and 800 for all 4h and 6homponents. Convergene of the loal �eld e�ets with respet to the number of inluded
G vetors was reahed with 23 for 2h χxzx, 59 for 2h χzzz, 37 for χzxx, 39 for 4h χxzxand χzzz, 51 for 4h χzxx and 43 for all 6h omponents. The number of ondution bandsneessary for onvergene in the onsidered energy range are 12, 24, 36 for the 2h, 4h and6h omponents respetively. The basis size for the DFT wavefuntions was su�ientlyonverged with 300 for all polytypes.GaAsGallium Arsenide also has the zinblende struture with the experimental lattie param-eter of a = 10.67 Bohr and a ut o� of 50 Ha is needed for a onverged the groundstatedensity. For the seond harmoni spetrum onvergene is reahed with 17575 k-pointsto sample the Brillouin zone and 7 ondution bands. The loal �eld e�ets on the seondharmoni spetrum is onverged with 65 G vetors. This ompound as the added om-pliation that a pseudo potential desription of Gallium needs the inlusion of d semiorestates to aurately desribe the eletroni struture [138℄. Therefore a pseudo potentialwith the valene on�guration of 3d104s24p1 is used for Gallium.6.1 Independent (Quasi-)Partile ApproximationIn the independent partile approximation the marosopi suseptibility χ(2) is just thehead of the mirosopi Kohn-Sham response funtion χ(0)

ρρρ, .f. Eq. (3.74). The quasi-partile e�ets are aounted for by the sissors operator approah, whih means oneapplies a rigid shift to all ondution bands, .f. setion 4.2. These two approximationsare very similar in the sense that they do not expliitly take into aount exhange andorrelation e�ets. The quasi-partile shift of the band struture, does however, a�etthe spetrum substantially, sine it leads to a shift of the resonanes. While in the linearase this shift of the spetrum is more or less rigid [99℄ in the ase of seond harmonigeneration it also leads to a redistribution of spetral weights.Fig. 6.2 shows how the sissors shift hanges the seond harmoni spetra of SiC poly-types.6.1.1 Transitions in -SiCThe sum-over-states formulation for χ(0)
ρρρ allows to do a transition resolved analysis ofthe seond harmoni proess, as already suggested by Lambreht et. al. [50℄. Here, I willbrie�y onsider a deomposition of the transitions into valene-valene-ondution (vv)and ondution-ondution-valene (v), whih also ontain the permutations, i.e. vvand v. Fig. 6.3 left panel shows how these two types of transition ontribute to theIPA spetrum of ubi SiC. The v transitions are learly dominating the main peak at3.5 eV, whih ould be explained by the fat that for a onverged spetrum SiC needs16 ondution bands on top of the 4 valene bands. Therefore, there are muh more71
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χ(2) = ǫM
[

ǫ−1
TE

]T

0G

[

χ(0)
ρρρ

]

GG1G2

[

ǫ−1
TE

]

G10

[

ǫ−1
TE

]

G20
ǫM ǫM (6.1)with impliit sums over the G vetors. While ǫM are salars in this equation the ǫTE are

G-dependent and as suh mix with the G omponents of χρρρ.First we onsider the marosopi dieletri funtions ǫM that relate the mirosopiresponse to the marosopi suseptibility. These quantities also ontain loal �eld e�etsand are alulated aording to [86, 87, 100℄
ǫM (ω) = lim

q→0

1

ǫ−1
G=0,G=0(q, ω)

(6.2)where again a areful onsideration of the G dependene is ruial.Therefore we have to onsider the loal �eld e�ets in the linear dieletri tensor aswell. Due to the rystal symmetry the hexagonal polytypes have an optial anisotropywith two independent omponents of the dieletri tensor that are ommonly denotedas ǫ‖ = ǫzz and ǫ⊥ = 1
2(ǫxx + ǫyy). In Fig. 6.4 are shown the loal �eld e�ets in thesetwo omponents for the three polytypes. We an see a lear trend for the ǫ⊥ ompo-nent, where the e�et dereases with dereasing hexagonality and almost vanishes forthe 6h polytype. The e�et for ǫzz omponent, however, seems to be independent of thehexagonality, being of the same magnitude for all three polytypes. We also note that therelative loal �eld e�et in the ǫzz omponent is of the same size as for the ǫ⊥ in 2h. 73
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suseptibility χ(2). First, the DFT groundstate from whih the independent partileresponses χ(0)
ρρ and χ

(0)
ρρρ are onstruted, has to be obtained with some approximationfor the exhange and orrelation potential Vxc, here I always use the LDA. Next, inthe seond order Dyson equation (2.47) fxc appears in several plaes, as well as in thealulation of the ǫM fators for the �nal expression for the marosopi χ(2).6.3.1 ALDAThe time dependent generalization of the loal density approximation (ALDA), .f.Se. 2.4.3, is known to be not su�ient to aurately desribe optial absorption dueto the lak of long range interation in the q → 0 limit [93℄. In Fig. 6.8 are shownthe omponents of the seond harmoni generation suseptibility obtained within theALDA and ompared to the results from the previous setion (Fig. 6.7). While in bothalulations loal �elds are aounted for, it is appearant that the additional ontributionof exhange and orrelation as desribed by ALDA leaves the spetra virtually una�eted.
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This weak in�uene of the loal exhange and orrelation e�ets on the seond harmonispetra an be attributed to the same lak of long range interation that was alreadyresponsible for the failure of this approximationn for optial absorption. On the one handit means that the ǫM that appear in the expression for the marosopi suseptibilityare not aurately desribed and hene the nonlinear result su�ers the same de�ieniespresent in linear ALDA results, and on the other hand the e�et of the kernel in theseond order Dyson equation seems to be not important. Here I show alulations wherethe ALDA kernel is ombined with the sissors operator, i.e. quasipartile orretions,whih is in priniple not onsistent with the theory of the loal density approximation.It is, however, well known, that ALDA fails to aount for the quasipartile shift andhere I show it just to demonstrate that it has only very little in�uene on the shape andintensity of the spetrum.6.3.2 Long Range KernelThe known lak of long range interation in the loal density approximation an beorreted as desribed in hapter 2.4.5 by an e�etive kernel of the form fxc = −α/q2that mimis the e�et of the Bethe-Salpeter equation. Therefore, I refer to this kindof alulation as exitoni. Fig. 6.9 shows the in�uene of the long range kernel with
α = 0.5 on the spetra of the hexagonal polytypes. The value for alpha is taken fromBotti et al. [99℄ where it is used to �t the linear spetrum on the Bethe-Salpeter result.
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χ
(2)
zzz(ω)

χ(0)(2ez, ez, ez, 2ω, ω)
= A(ez, 2ω)A(ez , ω)A(ez , ω) (6.3)where

A(q, ω) = 1 − α

4π
[ǫM (q, ω) − 1] . (6.4)That means that when ǫM is smooth, the hange of χzzz with the long range kernel isdiretly proportional to α. On the other hand when ǫM is hanging signi�antly thehange diretly a�ets the long range ontribution. This explains why in all spetra inFig. 6.9 the low energy peaks are most prominently inreased, beause it is this featurein the ǫM that hanges most. For the high energy range, when the ǫM are lose to one,we do not see onsiderable hange. This is onsistent with the behaviour of Eq. (6.4)whih is lose to one when ǫM is lose to one.
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]

00
= 1 + (4π − α)[χρρ]00. Theresult of suh alulations is shown in Fig. 6.14 where one time the experimental ǫMwas used and in another alulation the usual ǫM from TDDFT. The result does notyield satisfatory agreement in either ase. This means that although in the result theydo not show a large e�et ompared with an IPA alulation, the �nite G omponentsof χρρρ are very important when ombined with the ǫM , beause there are substantialanellation e�ets.In summary we have seen for GaAs that already the IQPA yields a qualitative agree-ment with the experiment and the aounting for loal �eld e�ets within RPA does notimprove the spetrum. It is only when one wants to aount for exitoni e�ets as well84



that the loal �elds are important to ahieve a quantitative agreement with experiments.Furthemore the auray of the ǫM over the whole frequeny range used turn out to bevery important for the marosopi χ(2).
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7 A seond order Bethe-SalpeterEquationWhile the strength of TDDFT is to provide an e�ient way to aount for many bodye�ets via the exhange and orrelation term fxc it is also its weakness, beause its exatform is unknown and hene approximations rely to some extend on eduated guessingrather than formal theory. On the other hand many-body perturbation theory doesrigorously desribe these e�ets and it is nowadays used almost routinely to alulateoptial spetra of inreasingly omplex systems [144�146℄ via the Bethe-Salpeter equa-tion, .f. Se. 2.4.5. The advantage of the Bethe-Salpeter equation is its ability toproperly aount for exitoni e�ets that are of great importane for optial absorption[93℄. It is, as a omputational framework, however, muh heavier than TDDFT, beausethe two-body orrelation funtion in terms of whih it is formulated ontains muh moreinformation than atually needed to desribe optial spetrosopy [147℄. In pratie onetherefore takes ontrations of the two partile orrelation funtion and thus disards alot of information that is ontained in this quantity. Some e�orts have been made toapture the essential parts of this framework and translate them into TDDFT kernels,as desribed in Se. 2.4.5, leading to the NANOQUANTA kernel and its simpli�ationin form of the long range kernel I used in Chap. 6.The Bethe-Salpter equation does not only desribe optial e�ets, but it gives, in itsexat form, an equation for any kind of linear response [148℄. This makes it a powerfultool to study a vast range of physial phenomena, not neessarily by solving it exatlybut by providing a desription that is at the same time exat and intuitive. Therefore, itould be interesting to �nd the generalization of the Bethe-Salpeter equation to seondorder responses. In this hapter I will outline how suh a seond order Bethe-Salpeterequation an be obtained, solved and related to seond order response TDDFT.7.1 The equationThe Bethe-Salpeter equation as desribed in setion 2.4.5 provides an approah to many-body exitations within the framework of many-body perturbation theory [95℄. Morepreisely it is an equation for the orrelation part of the two-partile Green's funtion
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that an be written using the Shwinger's funtional derivative identity [95℄ as 1
iL(1, 2, 3, 4) =

δG(1, 2)

δVper(3, 4)
= −G(1, 3, 2, 4) +G(1, 2)G(3, 4) (7.1)where the produt of the one-partile Green's funtions GG desribes the independentpropagation of the two partiles. The ontration of L yields the onnetion to the timeordered density response

χρρ(1, 2) =
δρ(1)

δVper(2)
= −i δG(1, 1+)

δVper(2, 2+)
= L(1, 1+, 2, 2+) . (7.2)For seond harmoni generation and generally for any seond order proess in responseformulation, we are interested in the response of the density to two perturbing �elds andthus generalizing Eq. (7.2) we �nd the orresponding three-partile orrelation funtion

χρρρ(1, 2, 3) =
δ2ρ(1)

δVper(2)δVper(3)
= −i δG(1, 1+)

δVper(2, 2+)δVper(3, 3+)
= L(1, 1+, 2, 2+, 3, 3+)(7.3)whih as a full six point quantity is de�ned as

L(1, 2, 3, 4, 5, 6) = −i δ2G(1, 2)

δVper(5, 6)δVper(3, 4)
=
δL(1, 2, 3, 4)

δVper(5, 6)
. (7.4)This quantity an be interpreted as the orrelation part of the three-partile Green'sfuntion, whih is obtained from Eq. (7.1) by taking the funtional derivative withrespet to an additional non-loal perturbing potential, .f. App. D

iL(1, 2, 3, 4, 5, 6) = −G(1, 3, 5, 2, 4, 6) −
−G(1, 3, 2, 4)G(5, 6) −G(1, 5, 2, 6)G(3, 4) −G(3, 5, 4, 6)G(1, 2) +

+2G(1, 2)G(3, 4)G(5, 6) (7.5)There are not only the free propagations of three partiles represented by the G1G1G1term but also the fully interating propagation of pairs of partiles with an independentthird one represented by G2G1. One an thus see from this equation that L3 indeedrepresents the three-partile orrelation part of G3.A seond order Bethe-Salpeter equation an now be derived from the linear Bethe-Salpeter equation (2.78) by arrying out the funtional derivative in Eq. (7.4) as outlined
1Here and in the following I use the notation G1 = G(•, •), G2 = G(•, •, •, •) et., i.e. whether aquantity is seond order, of two partiles, of three partiles et. is determined by the number ofvariables. 87



in App. D. The �nal result reads, .f. Eq. (D.11):
L(1, 2, 3, 4, 5, 6) =

L0(123456)+

+

∫

d789 10L0(123478)Ξ̃(78910)L(9 10 56)+

+

∫

d789 10L0(127856)Ξ̃(789 10)L(9 10 34)+

+

∫

d789 10 11 12 13 14L0(1278 11 12)Ξ̃(11 12 13 14)L(13 14 56)Ξ̃(789 10)L(9 10 34)+

+

∫

d789 10 11 12L0(1278)Ξ(789 10 11 12)L(11 12 56)L(9 10 34)

+

∫

d789 10L0(1278)Ξ̃(789 10)L(9 10 3456) (7.6)where the non-interating part L03 is de�ned as
iL0(123456) = G(1, 5)G(6, 3)(4, 2) +G(1, 3)G(4, 5)(6, 2) (7.7)and the many-body interation kernels are de�ned as

Ξ̃(1, 2, 3, 4) = v(1, 3)δ(1, 2)δ(3, 4) + i
δΣ(1, 2)

δG(3, 4)
(7.8)

Ξ(1, 2, 3, 4, 5, 6) = i
δ2Σ(1, 2)

δG(5, 6)δG(3, 4)
. (7.9)Eq. (7.6) has exatly the same struture as the seond order TDDFT Dyson like equation(2.47) only that here we have six-point quantities whereas seond order response ofTDDFT deals with three point quantities. Sine it has the same struture, it an also besolved analytially assuming that the solution of the linear BSE, L2, is known, .f Eq.(D.16). The solution reads in short hand

L3 = L2L
−1
02 L03L

−1
02 L2L

−1
02 L2 + L2Ξ3L2L2 (7.10)or alternatively in analogy to Eq. (2.55)

L3 = [1 + L2Ξ2]L03 [1 + Ξ2L2] [1 + Ξ2L2] + L2Ξ3L2L2. (7.11)In the form 7.10 the solution an in priniple be obtained by ombining the knowntwo-partile quantities L2 and L−1
02 with the three-partile quantities L03 and Ξ3. Thesequantities are however not obtained as straightforwardly and it is in these quantitieswhere approximations have to made or omputational ressoures are needed.
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7.2 The non-interating part L03The three-partile non-interating part of the seond order Bethe-Salpeter equation is, a-ording to Eq. (7.7), essentially the produts of the three single-partile Green's funtionsombined in two di�erent ways. Using the Lehmann representation of the single-partileGreen's funtion [149℄
iG(r1, r2, t1−t2) =

∑

i

[Θ(t1 − t2)Θ(ǫi − µ) − Θ(t2 − t1)Θ(µ− ǫi)] e
−iǫi(t1−t2)φi(r1)φ

∗
i (r2)(7.12)one an onstrut these produts in terms of the eletron addition and removal energies ǫiand the orresponding Lehmann amplitudes φi. Expressing the step funtions ontainingthe hemial potential µ in terms of eletroni oupation numbers, i.e. Θ(ǫi − µ) =

(1 − fi) and Θ(µ − ǫi) = fi, as well as ontrating the time variables t2 → t1, t4 → t3and t6 → t5 we an write L03 in frequeny spae as
L0(r1, r2,r3, r4, r5, r6, ω2 + ω3, ω2, ω3) =

∑

ijk

φ∗i (r1)φj(r2)

(ǫi − ǫj + ω2 + ω3 + 2iη)
×

×
[

(fi − fk)
φ∗j (r5)φk(r6)φ

∗
k(r3)φi(r4)

(ǫi − ǫk + ω2 + iη)
+ (fj − fk)

φ∗j (r5)φk(r6)φ
∗
k(r3)φi(r4)

(ǫk − ǫj + ω3 + iη)
+

(fi − fk)
φ∗j (r3)φk(r4)φ

∗
k(r5)φi(r6)

(ǫi − ǫk + ω3 + iη)
+ (fj − fk)

φ∗j (r3)φk(r4)φ
∗
k(r5)φi(r6)

(ǫk − ǫj + ω2 + iη)

]

.(7.13)From this expression the analogy with the response of TDDFT beomes obvious onemore, beause a ontration of the spae variables r2 → r1, r4 → r3 and r6 → r5 andwith the assumption that the Lehmann amplitudes are Kohn-Sham eigenstates and theenergies the orresponding Kohn-Sham energies, this expression gives the independentpartile response of TDDFT, Eq. (2.27). Also, this means that the independent (Kohn-Sham) partile response of TDDFT an in fat be represented as the ontration of L03as
χ(0)

ρρρ(1, 2, 3) = L0(1, 1, 2, 2, 3, 3) = −iG0(1, 2)G0(2, 3)G0(3, 1)−iG0(1, 3)G0(3, 2)G0(2, 1)(7.14)where G01 are Green's funtion onstruted with Kohn-Sham energies and states.7.3 The seond order many-body kernel Ξ3The linear many-body interation kernel is the variation of the self energy with respetto a single-partile Green's funtion. In pratial appliations of the BSE this self energy89



is taken in the GW approximation, so that the kernel reads
Ξ(5, 6, 7, 8) = i

δΣ(5, 6)

δG(7, 8)
= −δG(5, 6)W (5, 6)

δG(7, 8)
= −δ(5, 7)δ(6, 8)W (5, 6)−G(5, 6)

δW (5, 6)

δG(7, 8)
.(7.15)Additionally one assumes that the funtional derivative of the sreening with respet tothe Green's funtion, δW/δG, whih desribes the hange of the sreening due to theexitation, is small and an thus be negleted, as shown by Hanke and Sham [150℄. Thisassumptions is however an ad ho approximation and mainly justi�ed pragmatially. Inthis approximation the seond order kernel that is de�ned as

Ξ(1, 2, 3, 4, 5, 6) = i
δ2Σ(1, 2)

δG(5, 6)δG(3, 4)
=
δΞ(1234)

δG(5, 6)
(7.16)obviously vanishes as well. It does, however, not vanish a priori if one onsiders otherapproximations for the �rst order kernel, .f. [148℄ for example.Furthermore, even in GW , the assumption δW/δG = 0 ould mean that one is missingimportant ontribution and it might not be a good approximation when one is interestedin seond order proesses. Espeially, sine the seond order BSE is desribing seondorder proesses, the hanging of the sreening due to the exitation might be important.7.4 Connetion to Many Body Perturbation TheoryMany body perturbation theory is in the solid state ommunity most ommonly seenthrough the lens of Hedin's equations, .f. App. E. It an therefore be illustratingto make the onnetion between the seond order Bethe-Salpeter equation and theseequations. Here, we are partiularly interested in the seond order polarizability, beauseit is is losely related to χ(2). More preisely, in the previous hapters, I have alwaysonsidered χρρρ, whih is a reduible quantity, sine it ontains the Coulomb interation.In the ontext of many-body perturbation theory one seeks to separate this interationfrom the other many-body interations and thus onsiders the irreduible quantity Pthat is the variation of the density with respet to the total potential. In App. E.1 Ishow how these quantities are related in the seond order ase, and �nd 2:

χ2 = [1 + χ1v]P2 [1 + vχ1] [1 + vχ1] (7.17)
= χ1P

−1
1 P2P

−1
1 χ1P

−1
1 χ1 (7.18)

P2 = [1 − P1v]χ2 [1 − vP1] [1 − vP1] (7.19)
= P1χ

−1
1 χ2χ

−1
1 P1χ

−1
1 P1 (7.20)2In this part I adopt a notation where χ1 = χρρ and χ2 = χρρρ to ensure readability of the equationsand to make a lear distintion between �rst order and seond order quantities.90



These are the relations between seond order reduible and irreduible quantities. Whilethe linear relation has the form of a linear Dyson equation (E.12), we note that thisrelation has indeed the form of the seond order Dyson like equation, similar to Eq.(2.54) and Eq. (7.11). The only di�erene is that there is no term orresponding tothe seond order interation kernel, sine the kernel between reduible and irreduiblequantities is just the Coulomb interation.The seond order irreduible polarizability P2 an be expressed in the ontext of Hedin'sequations as (.f. App. E.1)
P (1, 2, 3) = +i

∫

d4567G(2, 6)Γ(6, 7, 3)G(7, 4)G(5, 2)Γ(4, 5, 1) −

+i

∫

d45G(2, 4)G(5, 6)Γ(6, 7, 3)G(7, 2)Γ(4, 5, 1) −

−i
∫

d45G(2, 4)G(5, 2)
δΓ(4, 5, 1)

δVtot(3)
. (7.21)In the GW approximation one neglets vertex orretions and thus takes Γ(1, 2, 3) =

δ(1, 3)δ(1, 2). Applying this approximation to P yields the RPA. We thus have theseond order RPA irreduible polarizability:
iP0(1, 2, 3) = G(1, 2)G(2, 3)G(3, 1) +G(1, 3)G(3, 2)G(2, 1) (7.22)This is the same expression we have found for χ(0)

ρρρ as a ontration of L03, Eq. (7.14).Indeed, the RPA irreduible polarizability ooresponds to the independent partile po-larizability, sine in both ases no interation is present.In the expression (7.21) for P2 features the variation of the vertex funtion with respetto the total potential. This an be used as a motivation to de�ne a seond order vertex,whih in turn is losely related to the seond order Bethe-Salpeter equation, just like thelinear vertex funtion is related to the linear BSE, as shown in [93℄.7.5 A gxc from MBPTThe similarity between the Bethe-Salpeter Equation and the fat that the ontration of
L2 yields the linear density response, has been used to derive an exat expression for thetwo-partile orrelation part of the TDDFT kernel fxc [98℄ as outlined in Chap. 2.4.5.Here, I will sketh how the seond order Bethe-Salpeter equation an be used to derivea similar expression for gxc.Sine the Coulomb interation v is known and does not ontribute diretly to gxc it isonvenient to ompare only the irreduible quantities in TDDFT and BSE. CombiningEq. (7.20) and the seond order TDDFT Dyson like equation (2.52) yields the relation
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between the irreduible polarizability and the independent partile response3:
P2 = P1P

−1
01 P02P

−1
01 P1P

−1
01 P1 + P1gxcP1P1 (7.23)where I have used the fat that χ0 = P0. This equation an be solved for P02 whihyields

P02 = P01P
−1
1 P2P

−1
1 P01P

−1
1 P01 + P01gxcP01P01. (7.24)Exatly the same steps an be taken for the seond order BSE, i.e. passing to irreduiblequantities L̃, expressing them in terms of non-interating quantities L0 and solving for

L03:
L03 = L02L̃

−1
2 L̃3L̃

−1
2 L02L̃

−1
2 L02 + L02Ξ3L02L02. (7.25)Here I only give the shorthand notation, but it is understood that L̃2 and L̃3 are fourand six-point quantities, while P1 and P2 are two and three point quantities.The two equations an be ombined by exploiting the similarity of the two independentpartile responses L03 and P02. As shown in Se. 7.2 the three point ontration of L03equals the independent density response and thus also P02. It is however not pratial toontrat Eq. (7.25), beause it prevents the possibility to eliminate L̃3 at a later point.Instead we generalize Eq. (7.24) to six points, thus making all P and P0 to triviallyontratible four ( 4P ) and six-point ( 6P ) quantities, .f. App. F.Now using L03 = 6P 02 and L02 = 4P 01 the two equations an be ombined and solvedfor the kernels

Ξ3 − 6gxc = L̃−1
2 L̃3L̃

−1
2 L̃−1

2 − 4P
−1
1

6P 2
4P

−1
1

4P
−1
1 . (7.26)At this point we already note that even in the ases where Ξ3 = 0, .f. Se. 7.3, the seondorder TDDFT kernel gxc is still �nite. Indeed it only vanishes if additionally 6P 2 = L̃3and 4P 1 = L̃2, whih is generally false and an only be ahieved in oversimpli�ed models.In partiular this means that in the GW approximation with the additional assumptionof δW/δG = 0, where Ξ3 = 0, the seond order TDDFT kernel gxc generally does notvanish. That means that gxc has to aount for interations that are not purely of seondorder in the sense of the Bethe-Salpeter interations kernels, but are due to some non-trivial oupling of linear quantities.We an now use the fat that P2 is the three point ontration of L̃3 and thus let

6P 2

∣

∣

6→3
= P2 = L̃3

∣

∣

∣

6→3
. By solving equation (7.26) for L3 and making this substitutionwe obtain

P2 = (L̃2
4P

−1
1

6P 2
4P

−1
1 L̃2

4P
−1
1 L̃2)

∣

∣

∣

6→3
+ (L̃2(Ξ3 − 6gxc)L̃2L̃2)

∣

∣

∣

6→3
. (7.27)3Reminder on notation used: P2 is the seond order polarizability whih ooresponds to the threepartile orrelation funtion L3.92



where 6 → 3 indiates the pairwise ontration of the six free indies to three. Thisonstitutes a Sham-Shlüter equation [96℄ for the kernels that now an be solved for gxc.To keep trak of the ontrated quantities, it is neessary to expliitly aount for theindies while proeeding, .f. App. F. Therefore the resulting expression (F.9) laksreadability, so that here I give again only a shorthand, indiating left or right sidedontrations of four point quantities as 3|• and •|3 respetively. Thus, Eq. (7.27) solvedfor gxc reads
gxc =P−1

1

[

3

∣

∣

∣L̃2
4P

−1
1

∣

∣

∣

3
P2

3

∣

∣

∣

4P
−1
1 L̃2

∣

∣

∣

3 3

∣

∣

∣

4P
−1
1 L̃2

∣

∣

∣

3
− P2

]

P−1
1 P−1

1 +

+ P−1
1

3

∣

∣

∣
L̃2 Ξ3 L̃2

∣

∣

∣

3
L̃2

∣

∣

∣

3
P−1

1 P−1
1 .

(7.28)In omparison the orresponding expression of linear fxc derived in this framework, .f.Se. 2.4.5, reads in this notation
fxc = P−1

1
3

∣

∣

∣

4P
−1
1 Ξ2L1

∣

∣

∣

3
P−1. (7.29)To illustrate the notation in Eq. (7.28), we have, for example, quantities like

3

∣

∣

∣

4P
−1
1 L̃2

∣

∣

∣

3
= 4P

−1
(1, 1, 3, 4)L̃(4, 3, 2, 2) (7.30)from whih we an see again that only if 4P 1 = L̃2 one an follow gxc = Ξ3|6→3. Instead,Eq. (7.28) gives the exat expression for a TDDFT kernel that reprodues a P2 suh that

P (1, 2, 3) = L̃(1, 1, 2, 2, 3, 3, ), i.e. a seond order irreduible polarizability that aountsfor all three-partile many-body interations. The advantage is that one does not haveto solve the six point seond order Bethe-Salpeter equation, as outlined in App. D.1,but an keep the three point formalism desribed in the preeding part of this thesis.The downside is that apart from having to perform a linear BSE alulation �rst toobtain L̃2 the atual knowledge of the kernel gxc as in Eq. (7.28) implies knowledge of P2and is therefore not possible. For alulation purposes one has to make approximationon this equation, partiularly on P2. The most straightforward would be to let P2 → P02.
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8 ConlusionsThis work has been onerned with the ab initio alulation of the material dependentseond harmoni generation suseptibility χ(2). The entral result is its expression on-taining exhange and orrelation e�ets in terms of the seond order density response
χρρρ and the marosopi dieletri funtion from linear respone ǫM , .f. Eq. (3.57):

χ(2),LLL = − 2π

2q3
ǫLL
M χρρρǫ

LL
M ǫLL

M . (8.1)In this expression, loal �eld e�ets and exhange and orrelation e�ets are ontainedin the χρρρ and the ǫM alike. It turns out that for the in�uene of the loal �elds there israther subtle anellation e�et between the loal �elds aounted for in χρρρ and thosein ǫM . For SiC polytypes, the in�uene of loal �elds is traed bak to the inhomogeneityof the eletron density, where the e�et varies with omponent and polytype.The agreement with experimental data has been shown to depend on the inlusion ofexhange and orrelation e�ets, here in form of an e�etive kernel that mimis theexitoni interation. This kernel leads to good agreement of peak intensity betweenthe spetra, but is not ompletely aurate over the whole frequeny range. We traedthis problem bak to small di�erenes between the alulated ǫM and the experimentalone, showing that when we use the experimental ǫM in our alulation of χ(2), we obtainexellent agreement with the experimental result. This means on the one hand that theauray of the linear ǫM is of great importane for a nonlinear alulation, but on theother hand that many important ontributions are stemming from linear proesses.The numerial implementation of this formalism allows for realisti alulations of seondharmoni spetra. Pending optimization, it an be used for surfaes and interfaes alike,where seond harmoni generation is of great interest. Also, it an be used to makemore quantitative preditions of the seond harmoni intensity of materials and thus beapplied to systematially improve seond harmoni rystals.TDDFT an also be used to alulate the quadrupole seond harmoni generation,whih is the leading order for entro-symmetri materials. However, the fat that oneonly deals with a density response means that one an not alulate all omponentsseparately but only superpositions. This ould in priniple be overome by onsideringurrent matrix elements, but the density formalism used in this work an yield the fullanisotropi, i.e. diretional dependent, ontribution of this e�et and thus might still bevaluable.Finally, from a more formal point of view, seond harmoni generation is a proessinvolving three eletroni states and thus an be desribed by the three-partile Green'sfuntion, or more preisely, its three-partile orrelation part. This is done by a seond94



order generalization of the Bethe-Salpeter equation. While a solution of this equationis readily obtained formally, a numerial implementation does not seem feasible at themoment. Still, by omparing this equation with the seond order TDDFT Dyson likeequation, one an gain some insight into the properties of the seond order exhangeand orrelation kernel gxc.On a more general note, I found that seond order variations as desribed by the TDDFTDyson equation or Bethe-Salpeter an be solved analytially when the orresponding�rst order is known. From this observation one ould formulate the following onjeture:Conjeture: Let S be a �rst order variational quantity that is related to its non-interating expression S0 via an interation kernel K as
S = S0 + S0KS. (8.2)The seond order variation R of this quantity is then related to its non-interation ex-pression R0 via
R = [1 + SK]R0 [1 +KS] [1 +KS] + SκSS (8.3)

= SS−1
0 R0 S

−1
0 SS−1

0 S + SκSS (8.4)where κ is the variation of the interation kernel K.
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A Independent partile response funtionThe spetral representation of the linear and seond order response funtions, Eq. (2.23)and (2.24), are given in terms of many body wavefuntions and many body exitationsenergies. These quantities are not feasibly omputed and thus, as a �rst approximationand starting point for further omputational shemes, one onstruts the response fun-tions with wavefuntions and energies of non-interating partiles. Here, I will outlinehow to pass from the many body response funtions to the single, independent, partileones by example of the seond order response funtion. The same reasoning an of oursebe applied to the �rst order ase, whih however is muh simpler and has been shown inother plaes, e.g. [151℄.The operators in the matrix elements of Eq. (2.24) read in seond quantization formula-tion (.f. [152℄)
Â =

∫

drψ†(r)â(r)ψ(r) (A.1)where â(r) is the single partile operator and ψ(r) and ψ†(r) are the �eld operators thatan be represented by single partile orbitals as
ψ†(r) =

∑

i

φ∗i (r)â
†
i and ψ(r) =

∑

i

φi(r)âi. (A.2)The operators â†i and âi reate and annihilate a partile in the state i. With this repre-sentation the many body operator reads
Â =

∑

ij

〈φi|â(r)|φj〉â†i âj. (A.3)We onsider the �rst term of Eq. (2.24) with this formulation
∑

nm

〈Ψ0|Â|Ψn〉〈Ψn|B̂|Ψm〉〈Ψm|Ĉ|Ψ0〉
(E0 − Em + ω3 + iη)(E0 − En + ω2 + ω3 + 2iη)

=

∑

nmijklrs

〈φi|â(r1)|φj〉〈φk|b̂(r2)|φl〉〈φr|ĉ(r3)|φs〉〈Ψ0|â†i âj|Ψn〉〈Ψn|â†kâl|Ψm〉〈Ψm|â†râs|Ψ0〉
(E0 −Em + ω3 + iη)(E0 −En + ω2 + ω3 + 2iη) (A.4)the reation and annihilation operators now impose onditions on the exited many bodystates |Ψn〉 and |Ψm〉 so that the matrix elements do not vanish. For a non-interating96



groundstate we an onvine ourselves that the �rst matrix element 〈Ψ0|â†i âj|Ψn〉 isonly non-zero if |Ψn〉 = â†j âi|Ψ0〉 due to the orthogonality of the states. Similarly, thelast matrix element 〈Ψm|â†râs|Ψ0〉 demands that |Ψm〉 = â†râs|Ψ0〉. This makes thesums over n and m obsolete and the many body exitation energies get replaed by theorresponding single partile energies, i.e. E0 − En = ǫi − ǫj and E0 − Em = ǫs − ǫr.Thus we have
∑

nm

〈Ψ0|Â|Ψn〉〈Ψn|B̂|Ψm〉〈Ψm|Ĉ|Ψ0〉
(E0 − Em + ω3 + iη)(E0 − En + ω2 + ω3 + 2iη)

=

∑

ijklrs

〈φi|â(r1)|φj〉〈φk|b̂(r2)|φl〉〈φr|ĉ(r3)|φs〉×

×
〈Ψ0|â†i âj â

†
j âi|Ψ0〉〈Ψ0|â†i âj â

†
kâlâ

†
râs|Ψ0〉〈Ψ0|â†sârâ

†
râs|Ψ0〉

(ǫs − ǫr + ω3 + iη)(ǫi − ǫj + ω2 + ω3 + 2iη)

(A.5)
The operators in the entral matrix element now imply that either k = s ∧ r = j ∧ l = ior k = j ∧ s = i ∧ l = r, i.e.

〈Ψ0|â†i âj â
†
kâlâ

†
râs|Ψ0〉 = 〈Ψ0|â†i âj â

†
sâiâ

†
j âs|Ψ0〉 + 〈Ψ0|â†i âj â

†
j ârâ

†
râi|Ψ0〉 (A.6)We now make use of the anti-ommuting property of the operators while rearrangingthem to the form â†i âi = n̂i, that is to say to give oupation number operators:

∑

nm

〈Ψ0|Â|Ψn〉〈Ψn|B̂|Ψm〉〈Ψm|Ĉ|Ψ0〉
(E0 − Em + ω3 + iη)(E0 − En + ω2 + ω3 + 2iη)

=

=
∑

ijs

〈φi|â(r1)|φj〉〈φs|b̂(r2)|φi〉〈φj |ĉ(r3)|φs〉×

× 〈Ψ0|n̂i(1 − n̂j)|Ψ0〉〈Ψ0|n̂i(1 − n̂j)n̂s|Ψ0〉〈Ψ0|n̂s(1 − n̂j)|Ψ0〉
(ǫs − ǫj + ω3 + iη)(ǫi − ǫj + ω2 + ω3 + 2iη)

+

+
∑

ijr

〈φi|â(r1)|φj〉〈φj |b̂(r2)|φr〉〈φr|ĉ(r3)|φi〉×

× 〈Ψ0|n̂i(1 − n̂j)|Ψ0〉〈Ψ0|n̂i(1 − n̂j)(1 − n̂r)|Ψ0〉〈Ψ0|n̂i(1 − n̂r)|Ψ0〉
(ǫi − ǫr + ω3 + iη)(ǫi − ǫj + ω2 + ω3 + 2iη)

=
∑

ijk

fi(1 − fj)fk〈φi|â(r1)|φj〉〈φk|b̂(r2)|φi〉〈φj |ĉ(r3)|φk〉
(ǫk − ǫj + ω3 + iη)(ǫi − ǫj + ω2 + ω3 + 2iη)

+

+
fi(1 − fj)(1 − fk)〈φi|â(r1)|φj〉〈φj |b̂(r2)|φk〉〈φk|ĉ(r3)|φi〉

(ǫi − ǫk + ω3 + iη)(ǫi − ǫj + ω2 + ω3 + 2iη)

(A.7)
where in the last step we used 〈Ψ0|n̂i|Ψ0〉 = fi and that this expetation value of theoupation operator is either 1 or 0.
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B Fourier TransformsWhen dealing with �rst and seond order response we have to take the Fourier-transformsof funtions of two or three variables, for whih we need to de�ne the Fourier transform.For one point funtions we use the de�nitions
f̃(k, ω) =

∫

drdte−i(k·r−ωt)f(r, t) (B.1)
f(r, t) =

1

(2π)4

∫

dkdωei(k·r−ωt)f̃(k, ω) (B.2)When dealing with funtions of two variables, espeially response funtion, these de�ni-tions have to arefully generalized. here we will shortly demonstrate this by onsideringa two time linear response funtion and its transformation into frequeny spae. Thetransformation into momentum spae as well as the generalization to seond order isdone analogously. Considering a �rst order response funtion de�ned in real time by
f(t1) =

∫

dt2χ(t1, t2)Vper(t2) (B.3)whih we would like to express in Fourier spae as
f(ω1) =

∫

dω2χ(ω1, ω2)Vper(ω2). (B.4)Starting by substituting the perturbing �eld in terms of its Fourier transform we have
f(t1) =

1

2π

∫

dt2χ(t1, t2)

∫

dω2e
−ω2t2Vper(ω2) (B.5)and performing now the Fourier transform of the whole expression aording to

f(ω) =

∫

dteiωtf(t) (B.6)we have
f(ω1) =

1

2π

∫

dω2dt1dt2e
iω1t1χ(t1, t2)e

−ω2t2Vper(ω2). (B.7)
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Comparison with Eq. (B.4) yields the rule for Fourier transforming linear responsefuntions:
χ(ω1, ω2) =

1

2π

∫

dt1dt2e
iω1t1χ(t1, t2)e

−ω2t2 . (B.8)For the transformation into the momentum spae of a periodi rystal we �nd analogously
χ(r1, r2) =

1

V

∑

q,G1,G2

ei(q+G1)·r1χ(q + G1,q + G2)e
−i(q+G2)·r2 (B.9)

χ(q + G1,q + G2) =
1

V

∫

V
dr1r2e

−i(q+G1)·r1χ(r1, r2)e
i(q+G2)·r2 (B.10)where we used the periodiity of the lattie and V is the volume of solid (.f. [153℄).The seond order response funtions follow in the same way and we have:

χ(ω1, ω2, ω3) =
1

2π

∫

dt1dt2dt3e
iω1t1χ(t1, t2, t3)e

−iω2t2e−iω3t3 (B.11)and
χ(r1, r2, r3) =

1

V

∑

q1,q2,q3
G1,G2,G3

ei(q1+G1)·r1χ(q1 + G1,q2 + G2,q3 + G3)e
−i(q2+G2)·r2e−i(q3+G3)·r2(B.12)
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C Degenerate perturbation theoryThe important di�erene to usual perturbation theory is, that as we are dealing witheigenenergies from real band strutures, we need to aount for the degeneray of bands.This is text book knowledge, so we just state the results. They are similar to non-degenerate ones, only that the sums exlude those states that belong to the subspae
D of states that have degenerate energies. (We denote the non-degenerate energies andstates by En and |ψn〉 respetively.)Energies

ǫ(1)n = 〈ψn|H(1)|ψn〉 (C.1)
ǫ(2)n =

∑

m/∈Dn

|〈ψn|H(1)|ψn〉|2
En − Em

+ 〈ψn|H(2)|ψn〉 (C.2)Note that this kind of expression is only possible if ψn diagonlaize the perturbation,whih here is the ase, beause ψn are Bloh funtions and the perturbing Hamiltonianis Eq. (4.11). Now we an insert this k · p-perturbed Hamiltonian Eq. (4.11):
ǫ(1)n = 〈ψn|qv|ψn〉 (C.3)
ǫ(2)n =

∑

m/∈Dn

|〈ψn|qv|ψn〉|2
En − Em

− i

2
〈ψn|[qv,qr]|ψn〉 (C.4)States

|Ψ(1)
n 〉 =

∑

m/∈Dn

〈ψm|H(1)|ψn〉
En −Em

|ψm〉 (C.5)
|Ψ(2)

n 〉 =
∑

m,p/∈Dn

〈ψm|H(1)|ψp〉〈ψp|H(1)|ψn〉
(En − Ep)(En − Em)

|ψm〉 +
∑

m/∈Dn

〈ψm|H(2)|ψn〉
(En − Em)

|ψm〉 (C.6)
− 〈ψn|H(1)|ψn〉

∑

m/∈D

〈ψm|H(1)|ψn〉
(En − Em)2

|ψm〉 − 1

2

∑

m/∈Dn

|〈ψm|H(1)|ψn〉|2
(En − Em)2

|ψn〉 (C.7)
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Again, we insert the k · p-perturbed Hamiltonian:
|Ψ(1)

n 〉 =
∑

m/∈Dn

〈ψm|qv|ψn〉
En − Em

|ψm〉 (C.8)
|Ψ(2)

n 〉 =
∑

m,p/∈Dn

〈ψm|qv|ψp〉〈ψp|qv|ψn〉
(En − Ep)(En − Em)

|ψm〉 +
∑

m/∈Dn

〈ψm| − i
2 [qv,qr]|ψn〉

(En − Em)
|ψm〉 (C.9)

− 〈ψn|qv|ψn〉
∑

m/∈D

〈ψm|qv|ψn〉
(En − Em)2

|ψm〉 − 1

2

∑

m/∈Dn

|〈ψm|qv|ψn〉|2
(En − Em)2

|ψn〉 (C.10)In χ(0)
ρρρ there are three di�erent kinds matrix elements and denominators:
ann′(q) = 〈nk|e−i(q′+q′′+G)r|nk+q′+q′′〉 (C.11)
bn′n′′(q′′ + G′′) = 〈n′k+q′+q′′ |ei(q′′+G′′)r′ |n′′k+q′〉 (C.12)
cn′′n(q′ + G′) = 〈n′′k+q′ |ei(q′+G′)r′′ |nk〉 (C.13)(C.14)and three di�erent denominators:
EAnn′ = En,k −En′,k+q′+q′′ + 2ω + 2iη (C.15)
EBn′′n′(q′) = En,k − En′′,k+q′ + ω + iη (C.16)
ECnn′′(q′) = En′′,k+q′ − En′,k+q′+q′′ + ω + iη (C.17)(C.18)So we an write:
χ(0)

ρρρ(q
′ + q′′ + G,q′ + G′,q′′ + G′′, ω, ω) =

2

V

∑

n,n′,n′′,k

ann′(q)EAnn′×

[

(fnk − fn′′k)bn′n′′(q′′ + G′′)cn′′n(q′ + G′)ECnn′′(q′)+

+ (fn′k − fn′′k)bn′n′′(q′′ + G′′)cn′′n(q′ + G′)EBnn′′(q′)+

+ (fnk − fn′′k)bn′n′′(q′ + G′)cn′′n(q′′ + G′′)ECnn′′(q′′)+

+(fn′k − fn′′k)bn′n′′(q′ + G′)cn′′n(q′′ + G′′)EBnn′′(q′′)
]

(C.19)
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In order to arry out the perturbative expansion we apply the perturbation theory toall these six terms separately up to seond order1:a-matrix elements
a

(0)
nn′ = δnn′ (C.20)
a

(0)
nn′(G) = 〈nk|e−iGr|n′k〉 (C.21)
a

(1)
nn′(q) =

〈nk|(q′ + q′′)v|n′k〉
En′,k − En,k

(C.22)
a

(1)
nn′(G) =

∑

m/∈Dn′

〈mk|(q′ + q′′)v|n′k〉〈nk|e−iGr|mk〉
En′,k −Em,k

(C.23)b-matrix elements
b
(0)
n′n′′ = δn′n′′ (C.24)
b
(0)
n′n′′(G) = 〈n′k|eiGr′ |n′′k〉 (C.25)
b
(1)
n′n′′(q

′) =
〈n′k|q′v|n′′k〉
En′,k − En′′,k

(C.26)
b
(1)
n′n′′(q

′ + G′) =
∑

m/∈Dn′′

〈mk|q′′v|n′′k〉〈n′k|eiG
′r′ |mk〉

En′′,k − Em,k
+

+
∑

m/∈Dn′

〈n′k|(q′ + q′′)v|mk〉〈mk|eiG
′r′ |n′′k〉

En′,k − Em,k

(C.27)

1In priniple one would need them up to third order, but it turns out that all terms ontaining thirdorder matrix elements or denominators vanish due tot the oupation number. The same holds forseond order of a.102



b
(2)
n′n′′(q

′′) =
∑

p/∈Dn′′

〈n′k|q′v|pk〉〈pk|q′v|n′′k〉
(En′′,k −Ep,k)(En′′,k − En′,k)

− 〈n′′k|q′v)|n′′k〉〈n′k|q′v|n′′k〉
(En′′,k −En′,k)2

+

+
〈n′k| − i

2 [q′r,q′v]|n′′k〉
En′′,k − En′,k

+

+
∑

p/∈Dn′

〈n′k|(q′ + q′′)v|pk〉〈pk|(q′ + q′′)v|n′′k〉
(En′,k − Ep,k)(En′,k −En′′,k)

− 〈n′k|(q′ + q′′)v)|n′k〉〈n′k|(q′ + q′′)v|n′′k〉
(En′,k − En′′,k)2

+

+
〈n′k| − i

2 [(q′ + q′′)r, (q′ + q′′)v]|n′′k〉
En′,k − En′′,k

+

+
∑

m/∈Dn′ , /∈Dn′′

〈n′k|(q′ + q′′)v|mk〉〈mk|q′v|n′′k〉
(En′,k − Em,k)(En′′,k − Em,k)

−

− 1

2
δn′n′′





∑

m/∈Dn′′

|〈mk|q′v|n′′k〉|2
(En′′,k − Em,k)2

−
∑

m/∈Dn′

|〈n′k|(q′ + q′′)v|mk〉|2
(En′,k − Em,k)2



(C.28)-matrix elements
c
(0)
n′′n = δn′′n (C.29)
c
(0)
n′′n(G) = 〈n′′k|eiGr′′ |nk〉 (C.30)
c
(1)
n′′n(q′) =

〈n′′k|q′v|nk〉
En′′,k − En,k

(C.31)
c
(1)
n′′n(q′ + G′) =

∑

m/∈Dn

〈n′′k|q′v|mk〉〈mk|eiG
′

r′′|nk〉
En′′,k − Em,k

(C.32)
c
(2)
n′′n(q′) =

∑

p/∈Dn′′

〈pk|q′v|nk〉〈n′′k|q′v|pk〉
(En′′,k − Ep,k)(En′′,k − En,k)

+

+
〈n′′k| − i

2 [q′r,q′v]|nk〉
En′′,k − En,k

− 〈n′′k|q′v|n′′k〉
〈n′′k|q′v|nk〉

(En′′,k − En,k)2
−

− 1

2

∑

m/∈Dn′′

|〈mk|q′v|n′′k〉|2
(En′′,k − Em,k)2

δn′′n

(C.33)
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c
(2)
n′′n(q′ + G′) =

∑

m,p/∈Dn′′

〈pk|q′v|mk〉〈n′′k|q′v|pk〉
(En′′,k − Ep,k)(En′′,k − Em,k)

〈mk|eiG
′r′′ |nk〉+

+
∑

m/∈Dn′′

〈n′′k| − i
2 [q′r,q′v]|mk〉

En′′,k − Em,k
〈mk|eiG

′r′′ |nk〉−

− 〈n′′k|q′v|n′′k〉
∑

m/∈Dn′′

〈n′′k|q′v|mk〉
(En′′,k − Em,k)2

〈mk|eiG
′r′′ |nk〉−

− 1

2

∑

m/∈Dn′′

|〈mk|q′v|n′′k〉|2
(En′′,k − Em,k)2

〈n′′k|eiG
′r′′ |nk〉

(C.34)
Denominators

E
(0)
Ann′ =

1

(En,k − En′,k + 2ω + 2iη)
(C.35)

E
(1)
Ann′ =

E
(1)
n′ (q′ + q′′)

(En,k − En′,k + 2ω + 2iη)2
(C.36)

E
(0)
Bn′′n′ =

1

(En′′,k − En′,k + ω + iη)
(C.37)

E
(1)
Bn′′n′(q

′) =
E

(1)
n′ (q′ + q′′) − E

(1)
n′′ (q′)

(En′′,k − En′,k + ω + iη)2
(C.38)

E
(0)
Cnn′′ =

1

(En,k − En′′,k + ω + iη)
(C.39)

E
(1)
Cnn′′(q

′) =
E

(1)
n′′ (q′)

(En,k − En′′,k + ω + iη)2
(C.40)where E(1)

n (q) = 〈nk|qv|nk〉.We note that here all matrix elements are in terms of v = p + [Vnl, r]. For our imple-mentation we pass to matrix elements of the position operator r, using the relation
〈nk|r|n′k〉 =

v

Enk − En′k′

. (C.41)
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C.1 HeadThe head of χ(0)
ρρρ inluding the sissors approximation as desribed in setion 4.2 reads:

χ(0),head
ρρρ (q,q1,q2) =

2

V

∑

n,n′,n′′,k

[

(fn,k − fn′′,k)

(∆SC
nn′ + 2ω′)(∆SC

nn′ + ω′)
+

(fn′,k − fn′′,k)

(∆SC
nn′ + 2ω′)(∆SC

n′′n′ + ω′)
+

+ 2
(fn,k − fn′,k)(∆LDA

n′′n + ∆LDA
n′′n′ )

∆LDA
nn′ ∆SC

nn′(∆SC
nn′ + 2ω′)

− (fn,k − fn′,k)(∆LDA
n′′n + ∆LDA

n′′n′ )

2∆LDA
nn′ ∆SC

nn′(∆SC
nn′ + ω′)

]

×

× 〈nk| − i(q1 + q2)r|n′k〉
[

〈n′k|iq2r|n′′k〉〈n′′k|iq1r|nk〉 + 〈n′k|iq1r|n′′k〉〈n′′k|iq2r|nk〉
]

+

+
(fn,k − fn′,k)

(∆SC
n′n + ω′)(∆SC

nn′ + ω′)
×

× 〈n′′k|i(q1 + q2)r|nk〉
[

〈nk|iq1r|n′k〉〈n′k|iq2r|n′′k〉 + 〈nk|iq2r|n′k〉〈n′k|iq1r|n′′k〉
]

+

+

{

8(fn,k − fn′,k)

(∆SC
nn′)2(∆SC

nn′ + 2ω′)
− (fn,k − fn′,k)

2(∆SC
nn′)2(∆SC

nn′ + ω′)
+

+

[

4(fn,k − fn′,k)

∆SC
n′n(∆SC

nn′ + 2ω′)
+

(fn,k − fn′,k)

2∆SC
n′n(∆SC

nn′ + ω′)

] [

1

∆SC
nn′

− 1

∆LDA
nn′

]}

×

× 〈nk| − i(q1 + q2)r|n′k〉
[

〈n′k|iq2r|nk〉∆q1

nn′ + 〈n′k|iq1r|nk〉∆q2

nn′

]

+

+
(fn,k − fn′,k)∆LDA

n′′n

∆LDA
nn′ (∆SC

nn′ + ω′)(∆SC
n′n + ω′)

×

×
[

−〈nk|iq1r|n′k〉〈n′k|iq2r|n′′k〉〈n′′k|i(q1 + q2)r|nk〉+
+ 〈nk|i(q1 + q2)r|n′k〉〈n′k|iq2r|n′′k〉〈n′′k|iq1r|nk〉−
− 〈nk|iq2r|n′k〉〈n′k|iq1r|n′′k〉〈n′′k|i(q1 + q2)r|nk〉+
+ 〈nk|i(q1 + q2)r|n′k〉〈n′k|iq1r|n′′k〉〈n′′k|iq2r|nk〉

]

+

+

[

(fn,k − fn′,k)

∆LDA
nn′ ∆SC

nn′(∆SC
nn′ + ω′)

− 4(fn,k − fn′,k)

∆LDA
nn′ ∆SC

nn′(∆SC
nn′ + 2ω′)

]

×

× 〈nk|i(q1 + q2)r|n′k〉
[

〈n′k| −
i

2
[q1r,q2v]|nk〉 + 〈n′k| −

i

2
[q2r,q1v]|nk〉

]

+

+
(fn,k − fn′,k)

2∆LDA
nn′ ∆SC

nn′(∆SC
nn′ + ω′)

×

+
[

〈nk|[(q1 + q2)v, iq2r]|n′k〉〈n′k|iq1r|nk〉 + 〈nk|[(q1 + q2)v, iq1r]|n′k〉〈n′k|iq2r|nk〉−
− 〈nk|i(q1 + q2)r|n′k〉〈n′k|[q2v, iq1r]|nk〉 − 〈nk|i(q1 + q2)r|n′k〉〈n′k|[q1v, iq2r]|nk〉

](C.42)
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C.2 WingsC.2.1 G 6= 0:
χ(0),wing1

ρρρ (G,q1,q2) =
2

V

∑

n,n′,n′′,k

(fn,k − fn′,k)
{

〈nk|e−iGr|n′k〉〈n′k|iq1r|nk〉∆q2

nn′×

×
[

1

(∆SC
nn′)2(∆SC

nn′ + ω′)
+

2

∆LDA
nn′ ∆SC

nn′(∆SC
nn′ + ω′)

+

+
2

∆SC
nn′(∆SC

nn′ + 2ω′)(∆SC
nn′ + ω′)

+
2

∆LDA
nn′ (∆SC

nn′ + 2ω′)(∆SC
nn′ + ω′)

]

+

+
2〈nk|iq2r|n′′k〉〈n′′k|e−iGr|n′k〉〈n′k|iq1r|nk〉

(∆SC
nn′ + ω′)(∆SC

n′n + ω′)
+

+ 〈nk|e−iGr|n′k〉〈n′k|iq1r|n′′k〉〈n′′k|iq2r|nk〉×

×
[

2(∆SC
n′′n + ∆SC

n′′n′)

(∆SC
nn′)2(∆SC

nn′ + 2ω′)
− (∆SC

n′′n + ∆SC
n′′n′)

(∆SC
nn′)2(∆SC

nn′ + ω′)
− (∆SC

n′′n + ∆SC
n′′n′)

∆SC
nn′(∆SC

nn′ + 2ω′)(∆SC
nn′ + ω′)

]

+

+ 〈nk|e−iGr|n′k〉〈n′k|iq2r|n′′k〉〈n′′k|iq1r|nk〉×

×
[

(∆LDA
n′′n + ∆LDA

n′′n′ )

∆LDA
nn′ ∆SC

nn′(∆SC
nn′ + ω′)

+
(∆LDA

n′′n + ∆LDA
n′′n′ )

∆LDA
nn′ (∆SC

nn′ + 2ω′)(∆SC
nn′ + ω′)

]

}

+

+ 〈nk|e−iGr|n′k〉〈n′k|iq2r|n′′k〉〈n′′k|iq1r|nk〉×

×
[

(fn,k − fn′′,k)

(∆SC
nn′ + 2ω′)(∆SC

nn′′ + ω′)
+

(fn′,k − fn′′,k)

(∆SC
nn′ + 2ω′)(∆SC

n′′n′ + ω′)

]

+

+
(fn,k − fn′,k)〈nk|e−iGr|n′k〉〈n′k|[q1v, iq2r]|nk〉

∆LDA
nn′ ∆SC

nn′(∆SC
nn′ + 2ω′)

+

+ {q1 ↔ q2} (C.43)
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C.2.2 G1 6= 0:
χ(0),wing2

ρρρ (q1 + q2,G1,q2) =
2

V

∑

n,n′,n′′,k

〈nk|i(q1 + q2)r|n′k〉〈n′k|eiG1r|nk〉∆q2

nn′×

×
[

− 2(fn,k − fn′,k)

∆SC
nn′(∆SC

nn′ + 2ω′)(∆SC
nn′ + ω′)

− (fn,k − fn′,k)

(∆SC
nn′)2(∆SC

nn′ + ω′)
− (fn,k − fn′,k)

∆LDA
nn′ ∆SC

nn′(∆SC
nn′ + ω′)

]

−

− (fn,k − fn′,k)〈nk|iq2r|n′k〉〈n′k|eiG1r|nk〉∆q1+q2

nn′

∆LDA
nn′ ∆SC

nn′(∆SC
nn′ + ω′)

−

− (fn,k − fn′,k)
〈nk|eiG1r|n′k〉

[

〈n′k|i(q1 + q2)r|nk〉∆q2

nn′ + 〈n′k|iq2r|nk〉∆q2+q2

nn′

]

2∆LDA
nn′ ∆SC

nn′(∆SC
nn′ + ω′)

+

+ (fn,k − fn′,k)
∆LDA

n′′n′

∆LDA
nn′

〈nk|iq2r|n′′k〉〈n′′k|i(q1 + q2)r|n′k〉〈n′k|eiG1r|nk〉
∆SC

nn′(∆SC
nn′ + ω′)

+

+ (fn,k − fn′,k)
∆LDA

n′′n

∆LDA
nn′

〈nk|i(q1 + q2)r|n′′k〉〈n′′k|iq2r|n′k〉〈n′k|eiG1r|nk〉
∆SC

nn′(∆SC
nn′ + ω′)

+

+ (fn,k − fn′,k)
〈nk|eiG1r|n′k〉

∆SC
nn′(∆SC

nn′ + ω′)
×

×
[

〈n′k|i(q1 + q2)r|n′′k〉〈n′′k|iq2r|nk〉 − 〈n′k|iq2r|n′′k〉〈n′′k|i(q1 + q2)r|nk〉
]

−

− 2(fn,k − fn′,k)
〈nk|i(q1 + q2)r|n′k〉
∆SC

nn′(∆SC
nn′ + 2ω′)

×

×
[

〈n′k|eiG1r|n′′k〉〈n′′k|iq2r|nk〉 − 〈n′k|iq2r|n′′k〉〈n′′k|eiG1rr|nk〉
]

+

+ (fn,k − fn′,k)
〈nk|iq2r|n′k〉

2∆SC
nn′(∆SC

nn′ + ω′)
×

×
[

〈n′k|i(q1 + q2)r|n′′k〉〈n′′k|eiG1r|nk〉 − 〈n′k|eiG1r|n′′k〉〈n′′k|i(q1 + q2)rr|nk〉
]

−

− 〈nk|i(q1 + q2)r|n′k〉
[

〈n′k|eiG1r|n′′k〉〈n′′k|iq2r|nk〉 + 〈n′k|iq2r|n′′k〉〈n′′k|eiG1r|nk〉
]

×

×
[

(fn,k − fn′′,k)

(∆SC
nn′ + 2ω′)(∆SC

nn′′ + ω′)
+

(fn′,k − fn′′,k)

(∆SC
nn′ + 2ω′)(∆SC

n′′n′ + ω′)

] (C.44)The ase G2 6= 0 follows from this one by exhanging G1 ↔ G2 and q1 ↔ q2.
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C.3 FaesC.3.1 G = 0:
χ(0),face1

ρρρ (q1 + q2,G1,G2) =
2

V

∑

n,n′,n′′,k

(fn,k − fn′,k)
〈nk|i(q1 + q2)r|n′′k〉

(∆SC
nn′ + ω′)(∆SC

n′n + ω′)
×

×
[

〈n′′k|eiG1r|n′k〉〈n′k|eiG2r|nk〉 + 〈n′′k|eiG2r|n′k〉〈n′k|eiG1r|nk〉
]

−

− 〈nk|i(q1 + q2)r|n′k〉
[

〈n′k|eiG1r|n′′k〉〈n′′k|eiG2r|nk〉 + 〈n′k|eiG2r|n′′k〉〈n′′k|eiG1r|nk〉
]

×

×
[

(fn,k − fn′′,k)

(∆SC
nn′ + 2ω′)(∆SC

nn′′ + ω′)
+

(fn′,k − fn′′,k)

(∆SC
nn′ + 2ω′)(∆SC

n′′n′ + ω′)

] (C.45)C.3.2 G1 = 0:
χ(0),face2

ρρρ (G,q1,G2) =
2

V

∑

n,n′,n′′,k

[

(fn,k − fn′′,k)

(∆SC
nn′ + 2ω)(∆SC

nn′′ + ω)
+

(fn′,k − fn′′,k)

(∆SC
nn′ + 2ω)(∆SC

n′′n′ + ω)

]

×

× 〈nk|e−iGr|n′k〉
[

〈n′k|eiG2r
′ |n′′k〉〈n′′k|q1r|nk〉 + 〈n′k|q1r|n′′k〉〈n′′k|eiG2r

′′ |nk〉
]

+

+
2(fn,k − fn′,k)〈nk|e−iGr|n′k〉

∆SC
nn′(∆SC

nn′ + 2ω)

[

〈n′′k|q1r|nk〉〈n′k|eiG2r
′ |n′′k〉 − 〈n′k|q1r|n′′k〉〈n′′k|eiG2r

′ |nk〉
]

+

+
4(fn,k − fn′,k)〈nk|e−iGr|n′k〉〈n′k|eiG2r

′ |nk〉∆q1

nn′

∆SC
nn′(∆SC

nn′ + 2ω)(∆SC
nn′ + ω)

+

+
(fn,k − fn′,k)〈nk|e−iGr|n′k〉〈n′k|eiG2r

′ |nk〉∆q1

nn′

(∆SC
nn′)2(∆SC

nn′ + ω)
+

+
(fn,k − fn′,k)〈n′k|eiG2r

′ |nk〉
∆SC

nn′(∆SC
nn′ + ω)

[

〈nk|e−iGr|n′′k〉〈n′′k|q1r|n′k〉 − 〈nk|q1r|n′′k〉〈n′′k|e−iGr|n′k〉
](C.46)The ase G2 = 0 follows from this one by exhanging G1 ↔ G2 and q1 ↔ q2.
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D Derivation of the 2nd orderBethe-Salpter equationIn this appendix I give the detailed derivation of the seond order Bethe-Salpeter equationdisussed in hapter 2.4.5.The seond order BSE is formulated in terms of the three-partile orrelation funtion L3that is related to the three-partile Green's funtion via Shwingers funtional derivativeidentity, Eq. (7.1) and its derivative1:
iL(1, 2, 3, 4, 5, 6) =

δ2G(1, 2)

δV (3, 4)δV (5, 6)
= −δG(1, 3, 2, 4)

δV (5, 6)
+
δG(1, 2)G(3, 4)

δV (5, 6)

= −δG(1, 3, 2, 4)

δV (5, 6)
+
δG(1, 2)

δV (5, 6)
G(3, 4) +G(1, 2)

δG(3, 4)

δV (5, 6)

= −δG(1, 3, 2, 4)

δV (5, 6)
−

−G(1, 5, 2, 6)G(3, 4) +G(1, 2)G(5, 6)G(3, 4)

−G(1, 2)G(3, 5, 4, 6) +G(1, 2)G(3, 4)G(5, 6)

= −G(1, 3, 5, 2, 4, 6) −
−G(1, 3, 2, 4)G(5, 6) −G(1, 5, 2, 6)G(3, 4) −G(3, 5, 4, 6)G(1, 2) +

+2G(1, 2)G(3, 4)G(5, 6) (D.1)where I used Shwinger's relation for G3

δG(1, 3, 2, 4)

δV (5, 6)
= G(1, 3, 5, 2, 4, 6) +G(1, 3, 2, 4)G(5, 6). (D.2)

1In this setion the potential V always represents the perturbing potential Vper as opposed to the totalpotential. 109



To obtain a Bethe-Salpeter like equation for this quantity we simply have to derive the�rst order BSE (2.78):
δL(1, 2, 3, 4)

δV (5, 6)
=

=
δ

δV (5, 6)
[−iG(1, 3)G(4, 2)] +

+
δ

δV (5, 6)

[∫

d789 10(−i)G(1, 7)G(8, 2)×

×
[

v(7, 9)δ(7, 8)δ(9, 10) + i
δΣ(7, 8)

δG(9, 10)

]

(−i)δG(9, 10)

δV (3, 4)

]

= (−i)δG(1, 3)

δV (5, 6)
G(4, 2) + (−i)G(1, 3)

δG(4, 2)

V (5, 6)
+

+

∫

d789 10(−i)δG(1, 7)

δV (5, 6)
G(8, 2)

[

v(7, 9)δ(7, 8)δ(9, 10) + i
δΣ(7, 8)

δG(9, 10)

]

(−i)δG(9, 10)

δV (3, 4)

+

∫

d789 10 (−i)G(1, 7)
δG(8, 2)

δV (5, 6)

[

v(7, 9)δ(7, 8)δ(9, 10) + i
δΣ(7, 8)

δG(9, 10)

]

(−i)δG(9, 10)

δV (3, 4)

+

∫

d789 10 (−i)G(1, 7)G(8, 2)i
δ

δV (5, 6)

[

δΣ(7, 8)

δG(9, 10)

]

(−i)δG(9, 10)

δV (3, 4)

+

∫

d789 10 (−i)G(1, 7)G(8, 2)×

×
[

v(7, 9)δ(7, 8)δ(9, 10) + i
δΣ(7, 8)

δG(9, 10)

]

(−i) δ2G(9, 10)

δV (5, 6)δV (3, 4)(D.3)We note the repeated ourrene of �rst order quantities known from �rst order BSE.The only new term is the seond derivative of the self energy in the seond last line. Inthis term we use the hain rule and get
δ

δV (5, 6)

[

δΣ(7, 8)

δG(9, 10)

]

=

∫

d11 12
δ

δG(11, 12)

[

δΣ(7, 8)

δG(9, 10)

]

δG(11, 12)

δV (5, 6)
(D.4)Analogously to the �rst order ase, we de�ne the six-point kernel:

Ξ(1, 2, 3, 4, 5, 6) = i
δ2Σ(1, 2)

δG(5, 6)δG(3, 4)
(D.5)and to keep the notation ompat we also de�ne a �rst order kernel that ontains theoulomb potential:

Ξ̃(1, 2, 3, 4) = v(1, 3)δ(1, 2)δ(3, 4) + Ξ(1, 2, 3, 4) (D.6)
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Now inserting the known �rst order quantities we an write
δL(1, 2, 3, 4)

δV (5, 6)
=L(1, 3, 5, 6)G(4, 2) +G(1, 3)L(4, 2, 5, 6)+

+

∫

d789 10L(1, 7, 5, 6)G(8, 2)Ξ̃(7, 8, 9, 10)L(9, 10, 3, 4)+

+

∫

d789 10G(1, 7)L(8, 2, 5, 6)Ξ̃(7, 8, 9, 10)L(9, 10, 3, 4)+

+

∫

d789 10 11 12L0(1, 2, 7, 8)Ξ(7, 8, 9, 10, 11, 12)L(11, 12, 5, 6)L(9, 10, 3, 4)

+

∫

d789 10L0(1, 2, 7, 8)Ξ̃(7, 8, 9, 10)
δL(9, 10, 3, 4)

δV (5, 6) (D.7)This is in priniple already a seond order BSE. We note that at this point we do notneed any six-point quantities other than the kernel.To make the onnetion to the TDDFT Dyson equation and to avoid expliit refereneto the one-partile Green's funtion G, we de�ne
iL′

0(1, 2, 3, 4, 5, 6) = G(1, 3)G(4, 2)G(5, 6) (D.8)

111



and insert the full �rst order expressions for the L2 (Eq. (2.78)) in the above equation.Realling the de�nition for L3 = δL2/δV we have 2
L(123456) =

L′
0(135642) + L′

0(425613)+

+

∫

d789 10L′
0(137842)Ξ̃(78910)L(9 10 56)+

+

∫

d789 10L′
0(427813)Ξ̃(78910)L(9 10 56)+

+

∫

d789 10L′
0(175682)Ξ̃(789 10)L(9 10 34)+

+

∫

d789 10L′
0(825617)Ξ̃(789 10)L(9 10 34)+

+

∫

d789 10 11 12 13 14L′
0(17 11 12 82)Ξ̃(11 12 13 14)L(13 14 56)Ξ̃(789 10)L(9 10 34)+

+

∫

d789 10 11 12 13 14L′
0(82 11 12 17)Ξ̃(11 12 13 14)L(13 14 56)Ξ̃(789 10)L(9 10 34)+

+

∫

d789 10 11 12L0(1278)Ξ(789 10 11 12)L(11 12 56)L(9 10 34)

+

∫

d789 10L0(1278)Ξ̃(789 10)L(9 10 3456). (D.9)We note that the eight �rst terms are in fat pairs of terms with the same struture. Thisis due to the symmetry in the perturbing �elds, i.e. it doesent make a physial di�ereneif the V (5, 6) �eld is applied before the V (3, 4) �eld or vie versa. We an see that byexhanging the indies 3 ↔ 5 and 4 ↔ 6 in the equation. We therefore de�ne an L0 suhthat it aounts for these two possibilities:
iL0(123456) = iL′

0(135642)+ iL′
0(425613) = G(1, 5)G(6, 3)(4, 2)+G(1, 3)G(4, 5)(6, 2)(D.10)

2To keep the equation readable I drop the separating ommas between variables, relying on the readersgoodwill to distinguish.112



with this the seond order BSE reads:
L(123456) =

L0(123456)+

+

∫

d789 10L0(123478)Ξ̃(78910)L(9 10 56)+

+

∫

d789 10L0(127856)Ξ̃(789 10)L(9 10 34)+

+

∫

d789 10 11 12 13 14L0(1278 11 12)Ξ̃(11 12 13 14)L(13 14 56)Ξ̃(789 10)L(9 10 34)+

+

∫

d789 10 11 12L0(1278)Ξ(789 10 11 12)L(11 12 56)L(9 10 34)

+

∫

d789 10L0(1278)Ξ̃(789 10)L(9 10 3456). (D.11)To formally solve the seond order BSE we rearrange it to
∫

d78910
[

δ(1, 7)δ(7, 9)δ(2, 8)δ(8, 10) − L0(1278)Ξ̃(78910)
]

L(9 10 3456) =

=

∫

d7...14L0(1278 11 12)
[

δ(7, 3)δ(8, 4) + Ξ̃(78910)L(9 10 34)
]

×

×
[

δ(5, 11)δ(6, 12) + Ξ̃(11 12 13 14)L(13 14 56)
]

+

+

∫

d789 10 11 12L0(1278)Ξ(789 10 11 12)L(11 12 56)L(9 10 34).

(D.12)
Now we an use the linear BSE to write for the fator on the left hand side

∫

d78
[

δ(1, 9)δ(2, 10) − L0(1278)Ξ̃(78910)
]

=

∫

d78L0(1278)L
−1(8710 9) (D.13)as well as to rewrite the two linear fators on the right hand side aording to

∫

d56
[

δ(3, 1)δ(4, 2) + Ξ̃(1256)L(5634)
]

=

∫

d56L−1
0 (2165)L(5634) (D.14)so that the seond order BSE an be written as

∫

d78910L0(1278)L
−1(8710 9)L(9 10 3456) =

=

∫

d7...14L0(1278 11 12)L−1
0 (87 10 9)L(9 10 34)L−1

0 (12 11 14 13)L(13 14 56)+

+

∫

d789 10 11 12L0(1278)Ξ(789 10 11 12)L(11 12 56)L(9 10 34)
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(D.15)Now multiplying from the left with ∫ d12 15 16L(17 18 15 16)L−1
0 (16 15 21) and renamingthe indies 17 ↔ 1 and 18 ↔ 2 we have the �nal result

L(123456) =

=

∫

d7...18L(12 15 16)L−1
0 (16 15 18 17)L0(17 18 78 11 12)×

× L−1
0 (8, 7 10 9)L(9 10 34)L−1

0 (12 11 14 13)L(13 14 56)+

+

∫

d789 10 11 12 15 16L(12 15 16)Ξ(15 16 9 10 11 12)L(11 12 56)L(9 10 34)(D.16)D.1 Solving the 2nd order BSEIn this setion I will give a quik sketh how the solution of the seond order Bethe-Salpter equation might be evaluated in pratie using the known sheme for solving the�rst order BSE.In order to simplify the notation and the evaluation of the solution (D.16) we assume forthe moment that Ξ3 is indeed vanishing and we de�ne the quantities
F (1234) =

∫

d56L(1256)L−1
0 (6543) (D.17)

I(1234) =

∫

d56L−1
0 (2165)L(5634) (D.18)so that the solution reads

L(123456) =

∫

d7..12F (1278)L
(2)
0 (789 10 11 12)I(9 10 34)I(11 12 56). (D.19)The linear BSE is ustomarily solved in the linear transition spae (nk) ↔ (n′k′), wherethe linear quantities are matries. In this spae the seond order quantities are threedimensional arrays. Note that in priniple one ould de�ne a seond order transitionspae (nk) ↔ (n′k′) ↔ (n′′k′′), where seond order quantities are diagonal, but theprodut with the linear quantities in suh a representation is not straightforward. Wewill therefore solve the equation in the linear transition spae. Here, we are only interestedin opti (i.e. vertial transitions), so we an drop the k index and heneforth assume animpliit sum over all k-points.The de�nition of the transition spae is suh that L02 is diagonal, i.e. for any L2

L(1234) =
∑

n1n2n3n4

φn1(1)φ
∗
n2

(2)φ∗n3
(3)φn4(4)L

(n3n4)
(n1n2)

(D.20)
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and
L

(n3n4)
(n1n2) =

∫

d1234φ∗n1
(1)φn2(2)φn3(3)φ

∗
n4

(4)L(1234). (D.21)Inserting the real spae representation of L02

L0(1234) =
∑

ij

(fi − fj)
φi(1)φ

∗
j (2)φ

∗
i (3)φj(4)

ǫi − ǫj + ω
(D.22)yields

L
(n3n4)
0(n1n2) = (f1 − f2)

δ(n1, n3)δ(n2, n4)

ǫ1 − ǫ2 + ω
(D.23)Analogously, we de�ne for the 6-point quantities:

L(123456) =
∑

n1n2n3n4n5n6

φn1(1)φ
∗
n2

(2)φ∗n3
(3)φn4(4)φ

∗
n5

(5)φn6(6)L
(n5n6)
(n3n4)
(n1n2)

(D.24)and
L

(n5n6)
(n3n4)
(n1n2)

=

∫

d123456φ∗n1
(1)φn2(2)φn3(3)φ

∗
n4

(4)φn5(5)φ
∗
n6

(6)L(123456) (D.25)inserting the real spae representation of L03

L0(123456) =
∑

ijk

φi(r1)φ
∗
j (r2)

(ǫi − ǫj + ω2 + ω3 + 2iη)
×

×
[

(fi − fk)
φ∗j (r5)φk(r6)φ

∗
k(r3)φi(r4)

(ǫi − ǫk + ω2 + iη)
+ (fj − fk)

φ∗j (r5)φk(r6)φ
∗
k(r3)φi(r4)

(ǫk − ǫj + ω3 + iη)
+

(fi − fk)
φ∗j (r3)φk(r4)φ

∗
k(r5)φi(r6)

(ǫi − ǫk + ω3 + iη)
+ (fj − fk)

φ∗j (r3)φk(r4)φ
∗
k(r5)φi(r6)

(ǫk − ǫj + ω2 + iη)

](D.26)yields
L0

(n5n6)
(n3n4)
(n1n2)

=
1

(ǫi − ǫj + ω2 + ω3 + 2iη)
×

×
[

(f1 − f3)
δ(n2, n5)δ(n3, n6)δ(n1, n4)

(ǫ1 − ǫ3 + ω2 + iη)
+ (f2 − f3)

δ(n2, n5)δ(n3, n6)δ(n1, n4)

(ǫ3 − ǫ2 + ω3 + iη)
+

(f1 − f4)
δ(n2, n3)δ(n4, n5)δ(n1, n6)

(ǫ1 − ǫ4 + ω3 + iη)
+ (f2 − f4)

δ(n2, n3)δ(n4, n5)δ(n1, n6)

(ǫ4 − ǫ2 + ω2 + iη)

](D.27)115



With this notation the solution of the seond order BSE reads
L

(n5n6)
(n3n4)
(n1n2)

=
∑

n7...n12

F
(n7n8)
(n1n2)

L0

(n7n8)
(n9n10)
(n11n12)

I
(n3n4)
(n9n10)I

(n5n6)
(n11n12) (D.28)The onveniene of the representation in transition spae is that one an assign to eahpair of indies (njnk) a single index i, i.e i ↔ (njnk), so that we have to evaluate therank three matrix equation

Lijk =
∑

lmn

FilL0lmnImjInk. (D.29)The seond order polarizability χ2 is then obtained from this result via
χ(123) = L(112233) =

∑

ijk

φi1(1)φ
∗
i2(1)φ

∗
j1(2)φj2(2)φ

∗
k1

(3)φk2(3)Lijk. (D.30)The method outlined here to evaluate the three-partile orrelation funtion an be im-plemented on top of existing shemes to solve the linear BSE, provided they give L2 intransition spae. While the linear BSE is now almost routinely solved for systems withinreasing omplexity, it is however not lear if this method to obtain the three-partileorrelation funtion is feasible in terms of omputational ressoures beause the salingof the six-point quantity is very unfavorable.
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E Hedin's equationsHedin's equations are a set of self-onsisten many-body equations that in priniple givethe exat single partile Green's funtion. They read:
Σ(1, 2) = i

∫

d34G(1, 4)W (3, 1)Γ(4, 2, 3) (E.1)
G(1, 2) = GH(1, 2) +

∫

d34GH (1, 3)Σ(3, 4)G(4, 2) (E.2)
Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫

d4567
δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3) (E.3)

P (1, 2) = −i
∫

d34G(2, 3)G(4, 2)Γ(3, 4, 1) (E.4)
W (1, 2) = v(1, 2) +

∫

d34v(1, 2)P (3, 4)W (4, 2) (E.5)While these equations form a losed set of equations, it is in pratie not possible to solvethem exatly so that many di�erent approximations have been made to solve them atleast partly.In the following I will give the de�nitions of the onstituent quantities of Hedin's equa-tions, without going into detail about their physial motivation, whih has been done inmany other plaes [24, 96, 154℄. The Hartree Green's funtion GH an be de�ned from
[

i
∂

∂t1

− h0(1) − VH(1, 2)

]

GH(1, 2) = δ(1, 2) (E.6)where h0(1) = −∇2
1/2 + Vext is the single partile Hamiltonian and VH is the Hartreepotential.The self energy Σ is introdued to losed the equation of motion [95℄ of the Green'sfuntion by letting

i

∫

d3v(1+, 3)
δG(1, 2)

δVper(3)
=

∫

d3Σ(1, 3)G(3, 2) (E.7)and is most ommonly approximated as Σ = GW , where the sreened interation Wreads
W (1, 2) =

∫

d3ǫ−1(1, 2)v(3, 2). (E.8)
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and ǫ−1 is the (time ordered) sreening
ǫ−1(1, 2) =

δVtot(1)

δVper(2)
= δ1, 2 +

∫

d3v(1, 3)χ(3, 2). (E.9)The vertex Γ ontains the higher order orretions to the self energy and is de�ned as
Γ(1, 2, 3) = −δG

−1(1, 2)

δVtot(3)
. (E.10)The irreduible polarizability P is losely related to the reduible polarizability χ1, Eq.(2.34), and is de�ned as

P (1, 2) =
δρ(1)

Vtot(2)
(E.11)so it is the variation of the density with respet to the total insted the perturbing poten-tial, as in the ase of χ1. Their relation obeys the Dyson equation

χ(1, 2) = P (1, 2) +

∫

d34P (1, 3)v(3, 4)χ(4, 2). (E.12)E.1 Seond order Irreduible PolarizabilityFor the seond order χ2, whih in this ontext is alled the seond order reduible polariz-ability, one an derive the analogous seond order irreduible polarizability P2. Startingfrom the de�nition of χ2

χ(1, 2, 3) =
δ2ρ(1)

δVper(3)δVper(2)
(E.13)we an make the onnetion to the irreduible quantities in Hedin's equations. We usethe hainrule to obtain derivative with respet to the total potential:

χ1, 2, 3) =
δρ(1)

δVper(3)

[∫

d4
δρ(1)

δVtot(4)

δVtot(4)

δVper(2)

]

=

∫

d45
δ

δVtot(5)

[

δρ(1)

δVtot(4)

δVtot(4)

δVper(2)

]

δVtot(5)

δVper(3)

=

∫

d45
δ2ρ(1)

δVtot(5)δVtot(4)

δVtot(4)

δVper(2)

δVtot(5)

δVper(3)
+

+

∫

d45
δρ(1)

δVtot(4)

δ2Vtot(4)

δVtot(5)δVper(2)

δVtot(5)

δVper(3)

=

∫

d45
δ2ρ(1)

δVtot(5)δVtot(4)

δVtot(4)

δVper(2)

δVtot(5)

δVper(3)
+

∫

d4
δρ(1)

δVtot(4)

δ2Vtot(4)

δVper(3)δVper(2)
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Now we use the de�nitions of the sreening ǫ−1, Eq. (E.9), the linear irreduible polar-izability P1, Eq. (E.11) and de�ne the seond order irreduible polarizability as
P (1, 2, 3) =

δ2ρ(1)

δVtot(3)δVtot(2)
(E.14)so we an write

χ(1, 2, 3) =

∫

d45P (1, 4, 5)ǫ−1(4, 2)ǫ−1(5, 3) +

∫

d4P (1, 4)
δ2Vtot(4)

δVper(3)δVper(2)
. (E.15)Using again Eq. (E.9) for ǫ−1 in this expression and arrying out

δ2Vtot(4)

δVper(3)δVper(2)
=
δǫ−1(4, 2)

δVper(3)
=

∫

d5v(4, 5)χ(5, 2, 3) (E.16)we obtain
χ(1, 2, 3) =

∫

d4567P (1, 4, 5) [δ(4, 2) + v(4, 6)χ(6, 2)] [δ(5, 3) + v(5, 7)χ(7, 3)] +

+

∫

d45P (1, 4)v(4, 5)χ(5, 2, 3).

(E.17)In analogy with the Dyson like equation for χ(2) (2.47) this an be formally solved byusing the �rst order Dyson equation for the reduible polarizability (E.12) in steps similarto Eqs. (2.48)-(2.55). The �nal relations are
χ(1, 2, 3) =
∫

d4567 [δ(1, 9) + χ(1, 8)v(8, 9)] P (9, 4, 5) [δ(4, 2) + v(4, 6)χ(6, 2)] [δ(5, 3) + v(5, 7)χ(7, 3)](E.18)and
P (1, 2, 3) =
∫

d4567 [δ(1, 9) − v(8, 9)P (1, 8)] χ(9, 4, 5) [δ(4, 2) − v(4, 6)P (6, 2)] [δ(5, 3)v(5, 7)P (7, 3)](E.19)or alternatively expressed with inverse linear quantities
χ(1, 2, 3) =

∫

d4...d9χ(1, 8)P−1(8, 9)P (9, 5, 4)P−1(5, 6)χ(6, 2)P−1(4, 7)χ(7, 3)

P (1, 2, 3) =

∫

d4...d9P (1, 8)χ−1(8, 9)χ(9, 5, 4)χ−1(5, 6)P (6, 2)χ−1(4, 7)P (7, 3).

(E.20)
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These are the relations between reduible and irreduible quantities for the seondorder ase.The seond order irreduible polarizability (E.14) ontains all many body interationsand an be obtained from Hedin's equation for the �rst order, Eq. (E.4), by derivingwith respet to Vtot:
P (1, 2, 3) =

δ2ρ(1)

δVtot(3)δVtot(2)
=
δP (1, 2)

Vtot(3)
(E.21)

= −i
∫

d45
δG(2, 4)

δVtot(3)
G(5, 2)Γ(4, 5, 1) − (E.22)

−i
∫

d45G(2, 4)
δG(5, 2)

δVtot(3)
Γ(4, 5, 1) − (E.23)

−i
∫

d45G(2, 4)G(5, 2)
δΓ(4, 5, 1)

δVtot(3)
. (E.24)The derivative of G with respet to the total �eld an be expressed in terms of the vertex.To this end we take the derivative of the identity

∫

d3G−1(1, 3)G(3, 2) = δ(1, 2) (E.25)with respet to the total �eld
∫

d3G−1(1, 3)
δG(3, 2)

δVtot(4)
= −

∫

d3
δG−1(1, 3)

δVtot(4)
G(3, 2) (E.26)and it follows

δG(1, 2)

δVtot(3)
= −

∫

d45G(1, 4)
δG−1(4, 5)

δVtot(3)
G(5, 2). (E.27)Furthermore we use the de�nition of the irreduible vertex funtion, Eq. (E.10) so wehave for our seond order irreduible polarizability

P (1, 2, 3) = +i

∫

d4567G(2, 6)Γ(6, 7, 3)G(7, 4)G(5, 2)Γ(4, 5, 1) − (E.28)
+i

∫

d45G(2, 4)G(5, 6)Γ(6, 7, 3)G(7, 2)Γ(4, 5, 1) − (E.29)
−i
∫

d45G(2, 4)G(5, 2)
δΓ(4, 5, 1)

δVtot(3)
. (E.30)
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F Seond order TDDFT and BSEIn this appendix I will give some details onerning the derivation of the seond ordermany body exhange and orrelation kernel gxc as desribed in Se. 7.5.To ombine the seond order Bethe Salpeter equation and the TDDFT Dyson like equa-tion we have to represent the TDDFT equation in terms of four and six point quantities,written as 4P and 6P . The Dyson like equation for the irreduible polarizability reads:
6P (1, 2, 3, 4, 5, 6) =

∫

d7..19 4P (1, 2, 7, 8) 4P
−1
0 (8, 7, 10, 9) 6P 0(9, 10, 11, 12, 13, 14)×

× 4P
−1
0 (12, 11, 16, 17) 4P (16, 17, 3, 4) 4P

−1
0 (14, 13, 19, 18) 4P (18, 19, 5, 6)+

+

∫

d7..12 4P (1, 2, 7, 8) 6gxc(7, 8, 9, 10, 11, 12)
4P (9, 10, 3, 4) 4P (11, 12, 5, 6)(F.1)where

6gxc(7, 8, 9, 10, 11, 12) = δ(7, 8)δ(9, 10)δ(11, 12)gxc(7, 9, 11) (F.2)and the linear quantities obey the four point Dyson equation, like
4P (1, 2, 3, 4) =

∫

d5678 4P 0(1, 2, 5, 6) [δ(3, 5)δ(4, 6) + δ(5, 6)δ(7, 8)f(5, 7)P (7, 8, 3, 4)](F.3)so that
∫

d12 4P
−1
0 (10, 9, 2, 1) 4P (1, 2, 3, 4) =

∫

d78 [δ(3, 9)δ(4, 10) + δ(9, 10)δ(7, 8)f(9, 7)P (7, 8, 3, 4)](F.4)so that when one takes the ontration P (1, 1, 2, 2, 3, 3) of Eq. (F.1) it ollapses to
P (1, 2, 3) =

∫

d456789P (1, 4)P−1
0 (4, 5)P0(5, 6, 7)P

−1
0 (6, 8)P (8, 2)P−1

0 (7, 9)P (9, 2)+

+

∫

d45P (1, 4)gxc(4, 5, 6)P (5, 2)P (6, 3). (F.5)
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With this de�nitions the 'Sham-Shlüter' equation (7.27) reads
∫

d7..12L̃−1(1278)L̃(789 10 11 12)L̃−1(10 9 34)L̃−1(12 11 56)−
∫

d7..12 4P
−1

(1278) 6P (789 10 11 12) 4P
−1

(10 9 34) 4P
−1

(12 11 56) =

= Ξ(123456) − 6gxc(123456)

(F.6)and an be solved for L̃3 to yield
L̃(13 14 15 16 17 18) =

=

∫

d1..12L̃(13 14 21) 4P
−1

(1278) 6P (789 10 11 12) 4P
−1

(10 9 34)L̃(43 15 16)×

× 4P
−1

(12 11 56)L̃(65 17 18)+

+

∫

d1..6L̃(13 14 21)
[

Ξ(123456) − 6gxc(123456)
]

L̃(43 15 16)L̃(65 17 18).

(F.7)
Now, to use the property L̃(13 13 15 15 17 17) = P (13, 15, 17) we arry out this ontra-tion, as well as ollapsing all redundant indies and obtain

P (13, 15, 17) =

=

∫

d1..12L̃(13 13 21) 4P
−1

(1277)P (79 11) 4P
−1

(9 9 34)L̃(43 15 15)×

× 4P
−1

(11 11 56)L̃(65 17 17)+

+

∫

d1..6L̃(13 13 21)Ξ(123456)L̃(43 15 15)L̃(65 17 17)−

−
∫

d135L̃(13 13 11)gxc(135)L̃(33 15 15)L̃(55 17 17).

(F.8)
The diagonal L̃2 in the last term are in fat P1 quantities, so that we obtain solving thisequation for gxc

gxc(1, 2, 3) =

=

∫

d4..15P−1(1, 4)
[

L̃(4456) 4P
−1

(6577)P2(7, 8, 9)
4P

−1
(88 11 10)L̃(10 11 12 12) ×

× 4P
−1

(99 14 13)L̃(13 14 15 15) − P2(4, 12, 15)
]

P−1(12, 2)P−1(15, 3)+

+

∫

d4..12P−1(1, 4)L̃(4456)Ξ(6587 10 9)L̃(78 11 11)L̃(9 10 12 12)P−1(12, 2)P−1(12, 3).(F.9)
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