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1 Introdu
tionNonlinear opti
s is the �eld of resear
h where a material is subje
ted to so intense lightthat its response to this light yields fundamentally di�erent properties than observed inthe more 
ommon opti
s that has been known and explored for 
enturies and is nowreferred to as linear opti
s. Sin
e the light needs to be of high intensity, i.e. yield a highphoton density, it was not until the advent of the laser in 1960 that nonlinear opti
s
ould be dis
overed, although there had been a theoreti
al predi
tion of two-photonabsorption in 1931 [1℄. In 1961 Franken et al. [2℄ used a laser with a wavelength of 6942Åand observed an outgoing radiation with a wavelength of 3471 Å, i.e. with double thefrequen
y. This was interpreted as the generation of the se
ond harmoni
 in opti
al light,a phenomenon previously only known for radio waves.The distin
tion between nonlinear and linear opti
s is made with respe
t to the intensityof the �eld. This means, while in linear opti
s the response of a material is proportionalto the amplitude of the applied �eld, in nonlinear opti
s it is related to the square, the
ube et
. of this �eld. Formally one 
an write down the polarization of the materialexpanded in terms of the �eld as [3, 4℄
P = χ(1)E + χ(2)EE + χ(3)EEE + ... (1.1)where the term χ(1) determines the linear opti
al response and all e�e
ts des
ribed bythe other terms are referred to as nonlinear. Obviously, this one name refers to manye�e
ts in all orders, whi
h 
an be fundamentally di�erent. For example, se
ond ordere�e
ts are 
ompletely absent for materials with inversion symmetry and light that 
anbe des
ribed within the dipole approximation, while third order e�e
ts are in prin
iplealways present. The sus
eptibilities χ(i) are thus material dependent and while thee�
ien
y of the e�e
ts 
an be very di�erent for di�erent materials, there is no materialthat does not exhibit any nonlinear properties. But even within one order, say these
ond or the third, one has a variety of e�e
ts of very di�erent quality. Se
ond orderphenomena 
omprise not only the doubling of an in
oming frequen
ies as en
ounteredin se
ond harmoni
 generation, but also the response with the sum or di�eren
e of twodi�erent in
oming frequen
ies (sum/di�eren
e frequen
y generation), the splitting ofone in
oming photon into two outgoing ones (opti
al parametri
 ampli�
ation) or the
reation of a DC �eld out of an intense AC �eld (opti
al re
ti�
ation)[3, 4℄. To thirdorder, there are phenomena su
h as two photon absorption, third harmoni
 generation(or generally four wave mixing phenomena) and a nonlinear refra
tive index that 
an leadto the fo
alization of the laser inside the material by the material itself (self-fo
alization).A nonlinear opti
al pro
ess 
an be thought of as o

urring in two steps: the intenselight indu
es a nonlinear response in the material on a mi
ros
opi
 level that in turn1



modi�es the opti
al �elds. The �rst step is related to the mi
ros
opi
 stru
ture of thematerial and thus governed by quantum me
hani
s, while the se
ond step is des
ribedby Maxwell's equations.1.1 Se
ond Harmoni
 GenerationIn this thesis I will almost ex
lusively 
onsider the 
ase of se
ond harmoni
 generation.The reason is, be
ause on the one hand, it is one of the most widely used nonlinearopti
al e�e
ts and on the other hand be
ause, being of lowest order, it is the simplestnonlinear e�e
t to des
ribe. Many 
onsiderations and the general formalism applyhowever also to other se
ond order pro
esses or 
an be readily generalized to thirdorder. One 
an think of se
ond harmoni
 generation in terms of a simple three levelsystem, 
.f. Fig. 1.1, where one of the two in
oming photons ex
ite an ele
tron out ofits equilibrium position to a higher lying state from whi
h it gets ex
ited by the se
ondphoton to a third and when subsequently relaxing to the groundstate it emits a singlephoton that then has twi
e the energy of the two in
oming ones. The intermediateex
ited states are virtual states, i.e. they do not need to 
orrespond to a
tual energylevels of the system. This is of 
ourse an oversimpli�
ation of what a
tually happens inthe many-body ele
tron system, where, for example, intera
tions between the ele
troni
states have to be a

ounted for as well.
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Figure 1.1: Model for se
-ond harmoni
 generation
Se
ond harmoni
 generation as an experimental tool hastwo main appli
ations. One is to a
tually double the fre-quen
y of laboratory lasers and thus give a

ess to otherfrequen
ies than the laser frequen
y. For this use it isparti
ularly important that the se
ond harmoni
s are gen-erated with su�
ient e�
ien
y, whi
h above all means thatthe phase mat
hing 
ondition k(2ω) − k(ω) = 0 betweenthe lightve
tors of in
oming and outgoing �eld is full�eld.Otherwise, se
ond harmoni
 generation will still take pla
einside the material, but due to interferen
e it would not beobservable on the outside. Apart from phase mat
hing, it isalso important that the se
ond harmoni
 sus
eptibility χ(2)is as large as possible at the desired frequen
ies. This againis strongly material and frequen
y dependent and the sear
h for high e�
ien
y nonlinear
rystals is still underway [5, 6℄. The other main area of appli
ation is to use se
ondharmoni
 generation as a probe. For systems with inversion symmetry se
ond harmoni
generation is dipole forbidden and therefore extremely sensitive to symmetry breaking.This makes it parti
ularly suitable to probe surfa
es or interfa
es of 
entro-symmetri
media, where the bulk will not 
ontribute to the se
ond harmoni
 light and one thus hasa signal purely from the surfa
e. The use of se
ond harmoni
 generation is not limited to
2



these two �elds and there are a variety of other 
ir
umstan
es where it is employed [7�18℄.1.2 Ab initio opti
al ex
itationsThe theoreti
al des
ription of opti
al properties is based on the intera
tion of light withthe ele
trons and nu
lei of the material. This entails in prin
iple the simultaneous quan-tum me
hani
al des
ription of the light and the atoms that form the material with alltheir respe
tive intera
tions. It is, however, su�
ient to des
ribe the light as a 
lassi
al�eld and to assume that the dynami
s of the ele
trons is de
oupled from the dynam-i
s of the nu
lei, so that for the ele
troni
 system one 
an assume �xed ioni
 positions(Born-Oppenheimer approximation [19℄). These two approximations leave essentiallythe mutual intera
tion of the ele
trons as they are ex
ited by the light �eld as the mostimportant e�e
t. This 
an be formulated in terms of the S
hrödinger equation




Ne
∑

i=1

(

−1

2
∇2

i + Vext(ri)

)

+
1

2

Ne
∑

i6=j

v(|ri − rj |)



Ψ(r1, ..., rN ) = EΨ(r1, ..., rN ) (1.2)where Ne is the number of ele
trons, that has the order of 1023 for ma
ros
opi
 samplesand v is the Coulomb intera
tion between the ele
trons. Solving this equation dire
tly isnot possible and not even ne
essarily desirable, be
ause the sheer size of the solution interms of many-body wavefun
tions and energies would be impossible to manage. Thisfundamental problem that we know the equation that determines all properties of thematerial, but its solution is impossible to obtain, is 
ommonly referred to as the many-body problem. For opti
al pro
esses this system is then also subje
t to a time dependentex
itation, whi
h adds to the 
omplexity. To ta
kle ex
itations of the many-body problemone usually separates it into the groundstate problem and the ex
ited state problem thatbuilds on the groundstate.To des
ribe ele
trons in a solid it is 
onvenient to make the approximation that theele
trons move independently of ea
h other in the periodi
 potential 
reated by the ionsof the solid and the other ele
trons. This assumptions allows one to des
ribe the many-body system in terms of single parti
le energies and wavefun
tions, the so 
alled Blo
hstates [20℄, de�ned as
(

−1

2
∇2 + Vext(r)

)

ψnk(r) = εnkψnk(r) (1.3)where ψnk(r) = unke
ikr. This formulation gives rise to the band stru
ture of solidsthat gives the k-dependen
e of the single parti
le eigenenergies εnk. This redu
es thegroundstate many-body body problem to two 
ru
ial steps, one is to obtain the singleparti
le states and the other is to 
ompensate the fa
t that one is using a single parti
lepi
ture to des
ribe a many-body problem. The �st step is most 
ommonly done bydensity fun
tional theory (DFT), whi
h passes from a des
ription of the problem in3



terms of wavefun
tions to a framework where the ele
tron density is the fundamentalquantity. While this is in prin
iple an exa
t theory, the many-body intera
tions arehere approximated via an e�e
tive one parti
le potential, the ex
hange and 
orrelationpotential, that is not known exa
tly but approximation 
an be derived from fundamentalmodels without adjustable parameters (i.e. LDA and GGA [21℄). The resulting e�e
tiveone parti
le states 
an be further re�ned with additional s
hemes (su
h as perturbative
GW [22, 23℄) whi
h add to some extend many-body e�e
ts but one still has a des
riptionof the ele
troni
 system in terms of single parti
les. The se
ond step, to in
orporatemany-body-e�e
ts beyond the single parti
le pi
ture, is far less standardized than DFTbut a rigorous framework for it exist in the many-body perturbation theory (MBPT) thatrelies on the many-body Green's fun
tion and a set of self 
onsistent equations, Hedin'sequations[24℄. The 
ru
ial point is that in an ab initio approa
h one does not rely onfree parameters even when one uses approximations, but rather has to derive expressionand s
hemes that yield results that 
an be dire
tly 
ompared with experiments withoutfurther adjustment.
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Figure 1.2: Absorption spe
trumof bulk Si 
omparing experiment,BSE and TDDFT, as in [25℄.

For opti
al ex
itations one is not interested in singleparti
le properties like wavefun
tions or energies, butrather in the response of the many-body system, i.e.its time dependent properties. By passing from thesingle parti
le quantities to the a
tual physi
al quan-tities, like for example the diele
tri
 fun
tion, one hasto a

ount for the many-body e�e
ts along the way.It is here where the relevant physi
al approximationsare made, sin
e one 
an in prin
iple 
hoose whi
h kindof many-body e�e
t one wishes to in
lude. One 
an,for example, 
onsider the opti
al response of indepen-dent parti
les, whi
h means that one does not in
ludeany further intera
tion. Beyond this, there are severalapproximations and di�erent methods that have beenapplied with varying su

ess. The two most impor-tant approa
hes for opti
al ex
itations are the Bethe-Salpeter equation (BSE) and thetime dependent generalization of the density fun
tional framework (TDDFT). The maindi�eren
e between the two is that BSE is formulated in terms of the two-parti
le 
orre-lation fun
tion L(r1, r2, r3, r4, ω), whi
h is a part of the two-parti
le Green's fun
tion,whereas TDDFT in response formulation gives the sus
eptibility χ(r1, r2, ω). While thedownside of the BSE approa
h is that one has to deal with a four-point quantity as
ompared to a two point one in TDDFT, its upside is that its ingredients have a 
learphysi
al interpretation, while in TDDFT all many-body e�e
ts are expressed in the ef-fe
tive kernel fxc, whose exa
t expression is unknown.This problem, of �nding working approximations for the TDDFT kernel fxc, has for along time made it unsuitable for opti
al 
al
ulations, sin
e existing approximation failedto produ
e viable results. This was assigned to the failure of properly des
ribing the4



ele
tron-hole intera
tion (ex
itons) that is of great importan
e for opti
al pro
esses. TheBSE on the other hand, being a two parti
le 
orrelation fun
tion, is perfe
tly suitable todes
ribe this e�e
t. By systemati
ally 
omparing the two approa
hes it has been possi-ble to derive an fxc that does a

ount for ex
itoni
 intera
tion and produ
es spe
tra of
omparable quality to BSE [25�29℄, 
.f. Fig. 1.2.It is in this 
ontext that the work in this thesis is set and its motivation is to translatethe su

ess of TDDFT for linear opti
s into the nonlinear domain.1.3 Cal
ulations of Se
ond Harmoni
 generationThe des
ription of se
ond harmoni
 generation based on band stru
ture theory was devel-oped shortly after the dis
overy of the e�e
t. In 1962 Armstrong et al. [30℄ and Loudon[31℄ give expressions for the mi
ros
opi
 se
ond harmoni
 sus
eptibility that are similarto those used today. Their equations allow an analysis of the sus
eptibility in terms ofthe frequen
y stru
ture, i.e. the mi
ros
opi
 origin of the frequen
y doubling. A
tual
al
ulations based on this formulation have however been only of limited su

ess for along time. All early 
al
ulations are restri
ted to the stati
 se
ond harmoni
 
oe�
ient[32�34℄, i.e. χ(2)(ω = 0), and with the absen
e of ab initio methods for the ele
troni
stru
ture strong approximations and assumptions had to be made. Aspnes further an-alyzed the formulation in 1972 [35℄ in terms of di�erent gauges for the applied �elds.His 
al
ulations, however, had to rely heavily on empiri
al data by interpolating matrixelements. Cal
ulations made by Yong and Shen based on empiri
al pseudo-potentialsmissed the experimental values by orders of magnitude, but they showed that for thedispersion of χ(2)(ω) the k-dependen
e of the matrix elements is 
ru
ial. In a later workin 1987 Moss et al. [36℄ used a semi-empiri
al tight-binding method to 
al
ulate stati
and frequen
y dependent se
ond harmoni
 
oe�
ients for a range of semi-
ondu
tors.While some of their stati
 values are 
omparable to the experimental values their spe
traare quite o� the measured values, whi
h the authors attribute to the de�
ien
ies of thetight-binding approa
h. Although most works at that time were 
on
erned with bulksemi
ondu
tor, the authors used this approa
h to 
al
ulate the se
ond harmoni
 gener-ation spe
tra for superlatti
es as well [37, 38℄.The evolution of 
omputational methods allowed the �rst ab initio 
al
ulation of se
ondharmoni
 generation to be 
arried out by Levine and Allan in 1991 [39, 40℄ under 
on-sideration of quasi-parti
le e�e
ts. These are des
ribed by the GW method and havebeen found to open the DFT-LDA bandgap of simple semi
ondu
tors while leaving thewavefun
tions largely una�e
ted. Levine and Allan thus in
orporated the quasiparti
lee�e
t in their 
al
ulation by simply shifting the 
ondu
tion bands (s
issors shift). Asresults they give only stati
 values for the se
ond harmoni
 generation, however in veryreasonable agreement with experimental values. They subsequently extended their for-malism to a

ount for 
rystal lo
al �eld e�e
ts [41℄ and to frequen
y dependen
e [42℄. Atthe same time Huang and Ching presented �rst-prin
iple 
al
ulations of se
ond harmoni
spe
tra [43, 44℄ they relied on the formulas developed by Sipe and 
o-workers [36, 45℄but used a more a

urate s
heme to 
al
ulate the band stru
tures. 5



Also in the 1990's Sipe and 
o-workers further developed their formalism for an ab initio
al
ulation of the independent parti
le se
ond harmoni
 sus
eptibility [46, 47℄ that �nallyallowed them to perform an ab initio 
al
ulation of se
ond harmoni
 spe
tra [48, 49℄.While the agreement of their results with experimental spe
tra remained rather poor,this work is notable be
ause in [48℄ they give a formulation of the independent parti
leresponse in the length gauge and opti
al limit that has sin
e been widely used, e.g. in[50�58℄ among others. An alternative to the straightforward �sum over states� approa
hwas suggested by Dal Corso et al. [59℄ relying on the �2n+1� theorem of perturbationtheory [60℄. This approa
h has the advantage that it does not need uno

upied statesto evaluate the response and thus has advantageous s
aling properties [61℄. They alsoa

ount self-
onsistently for lo
al �eld e�e
ts. Most of the mentioned early ab initioapproa
hes dis
uss the quality of the band stru
ture and noti
e a strong dependen
e ofthe se
ond harmoni
 spe
tra on the a

ura
y of the groundstate values. This togetherwith the developing sophisti
ation of DFT groundstate methods might be the reason forlarge dis
repan
ies between single results and the overall unfavorable agreement withexperiments might additionally be attributed to the fa
t that most approa
hes whereonly within the independent parti
le response.Nonetheless, the independent parti
le response formulation of se
ond harmoni
 gener-ation was applied to a variety of materials and systems. Sharma and Ambros
h-Draxlapplied a similar formulation to mono-layer InP/GaP (110) superlatti
es [62℄ and Lithiumunder pressure [56, 57℄. Rashkeev and 
o-workers presented an e�
ient s
heme [58℄ toevaluate the formulation given in [48℄ with a self-
onsistent linearized mu�n-tin orbitalsband stru
ture method and applied it to III-V semi
ondu
tors [50℄, ternary pni
tides [51℄,Ag-III-VI2 
ompounds [52℄, I-III-VI2 
hal
opyrites [53℄ and Zn-IV-N2 
ompounds [54℄ .Gavrilenko and 
o-workers applied the independent parti
le response to study group-IIInitrides [55℄ and several surfa
e and interfa
e systems [63, 64℄. Carbon nanotubes [65℄ andSiC nanotubes [66℄ have been studied by Guo and 
oworkers. More re
ently �uoride- [6℄and borate-based 
rystals [5℄ have been studied within this approximation. While theseapproa
hes gradually improved the numeri
al des
ription of se
ond harmoni
 generation,the 
al
ulation remain non-trivial and the same level of a

ura
y en
ountered in linearopti
s has not yet been a
hieved.Furthermore, there have been only few attempts to go beyond the independent parti
leapproximation, where quasi-parti
le e�e
ts are almost always a

ounted for by the s
is-sors approximation. Be
hstedt and 
o-workers investigated the validity of this approa
hby 
omparing 
al
ulations with a
tual quasi-parti
le wavefun
tions to results obtainedwith the s
issors operator [67℄. But in parti
ular ex
itoni
 e�e
ts have been 
onsideredonly by few authors. Chang et al. [68℄ proposed a method to in
lude ex
itoni
 e�e
ts viawavefun
tions that they represent as superpositions of pair ex
itations. Their formalismgives in prin
iple the full frequen
y dependen
e but they only report 
al
ulations over avery short range. Leitsmann et al. [69℄ developed this formalism further and they usethe ex
itoni
 wavefun
tions obtained from a BSE 
al
ulation to 
onstru
t the many-body
χ(2). This approa
h is 
learly a 
on
eptually improvement over the independent parti
leformulation, sin
e here many-body e�e
ts are in
luded in the wavefun
tions that are6



no longer of an independent parti
le system. The results they obtain give a qualitativeagreement with experiments over a large spe
tral range. This work 
an be 
onsideredthe most advan
ed, as far as sophisti
ation of the theoreti
al formulation is 
on
erned.Still, in this approa
h the 
rystal lo
al �eld e�e
ts are only a

ounted for within the BSE
al
ulation, whi
h might be a limiting fa
tor on the quality of the result.Having exposed previous work done within the s
ope of solid state physi
s, it is worth tonote that in the 
ommunity of 
hemi
al physi
s nonlinear opti
al properties are 
al
ulatedroutinely for mole
ular systems. In this 
ommunity one speaks of hyperpolarizabilities[70, 71℄ whi
h is equivalent to the se
ond order sus
eptibility of this work. TDDFT hasbeen applied to 
al
ulate these quantities sin
e the early days of this method [72, 73℄.Subsequently the 
al
ulation of hyperpolarizabilities has been re
eived mu
h attentionand a large body of work is available, e.g. [74�81℄. This was fa
ilitated by the imple-mentation of hyperpolarizability features in widely used quantum 
hemistry 
odes, su
has AdF [82℄ and others. There are however important di�eren
es between these 
al
u-lations and the 
orresponding e�orts in solids. First, on a pra
ti
al level, for mole
ularpolarizabilities the ex
hange-
orrelation fun
tional used for the DFT groundstate is veryimportant and many developments have been made in the 
hemistry 
ommunity to gobeyond the rather simple LDA approa
h, e. g. LB94 [83℄ or SOAP [84℄. For opti
alproperties solids, on the other hand, using fun
tionals beyond LDA for the ground state
al
ulation does not substantially improve the results. For the TDDFT ex
hange and
orrelation fun
tionals the situation appears to be the inverse, where ALDA performsrather well for mole
ules but fails for solids, whi
h is arguably the reason for the dif-ferent levels of maturity TDDFT has gained in these two �elds. Another importantdi�eren
e between solids and mole
ules for opti
al response 
al
ulations, is the fa
t thatfor mole
ules a mi
ros
opi
 des
ription of the response is enough to model experiments,while for solids the 
onne
tion between the mi
ros
opi
 and ma
ros
opi
 world is non-trivial already in the linear 
ase and one of the main results of this work is that theyare even more involved when one 
onsiders se
ond order pro
esses. Therefore, the earlyand rapid su

ess of TDDFT in the quantum 
hemistry 
ommunity 
ould not be easilytranslated to the solid state domain but it is nonetheless one of the motivations of thiswork to advan
e the des
ription on nonlinear response in solids to a point where it is atleast 
omparable with linear opti
s of solids and pave the way for further developmentsthat might rival the a

ura
y a
hieved in 
hemistry 
al
ulations.1.4 This workWhile the independent parti
le formulation of se
ond harmoni
 generation in solids 
anbe 
onsidered to be well established, approa
hes that go beyond this approximation arenot. Mainly for 
rystal lo
al �eld e�e
ts and ex
itoni
 
ontributions there is a la
k ofsystemati
 des
ription for the se
ond order. On the other hand, for linear opti
s thesetwo e�e
ts 
an be 
onsidered to be well understood and their treatment fairly standard-ized. Espe
ially within the TDDFT framework lo
al �eld e�e
ts are routinely 
al
ulatedand more re
ently the 
onne
tion to the BSE had been made to a

ount for ex
itons.7



The main purpose of this work is to use the known 
on
epts and experien
es from linearopti
s and apply them to the se
ond order 
ase.The des
ription of the theoreti
al formulation starts in Chap. 2 with a revision of time-dependent perturbation theory whi
h obviously is the basis for a response treatment.Then, the known linear TDDFT Dyson equation, where the 
onne
tion between the in-dependent and intera
ting parti
le response is made, needs to be generalized to se
ondorder, leading to a se
ond order Dyson like equation that has been published only on
e[85℄ and never been applied. The stru
ture of the equation allows to solve it analyti
allyprovided the linear response is known and thus 
an, to a 
ertain extend, be related tothe linear response, but it 
ontains a higher order 
orrelation part that only appearsto se
ond order. The most important di�
ulty lies in the numeri
al evaluation of thesolution the TDDFT Dyson like equation. It gives the mi
ros
opi
 se
ond order responseof the ele
tron density so that approximations 
on
erning the many-body 
hara
ter haveto be made at this level.The relation between mi
ros
opi
 and ma
ros
opi
 response given by Adler and Wiser[86, 87℄ is well known for linear opti
s, sin
e it a

ounts for the 
rystal lo
al �eld e�e
ts.For nonlinear response this 
onne
tion is less studied and to our knowledge the analogueto the Adler and Wiser formulation has never been established for the nonlinear 
ase.Consequently, su
h a relation is derived in Chap. 3 in a fairly general way for longitudinaland transverse �elds. TDDFT, however 
an only give the response to longitudinal �elds,whi
h has to be taken into 
onsideration when passing from mi
ros
opi
 to ma
ros
opi
quantities.In the 
ontext of this thesis se
ond harmoni
 generation is 
onsidered to be an opti
ale�e
t, whi
h means one has to 
onsider a perturbation in the long wavelength limit.Therefore the theoreti
al formulation has to be taken in the limit q → 0, whi
h 
alls fora rather lengthy expansion of the independent parti
le density response that is des
ribedin Chap. 4. To provide an alternative way to this expansion I propose a s
heme that
onsiders this limit numeri
ally and thus provides an alternative route to the opti
alresponse. More spe
i�
ally, I use the fa
t that for �nite frequen
y the light waveve
toris still �nite and thus 
arry out the 
al
ulation with very small but �nite q.This formulation in terms of �nite q allows to investigate the spatial dispersion of theopti
al response and thus gives also a

ess to opti
al responses beyond the dipole limit.This is parti
ularly interesting for se
ond harmoni
 generation be
ause it is dipole for-bidden in 
entro-symmetri
 media. I explore this possibility in Chap. 5 with the exampleof bulk Si. This 
onstitutes, to my knowledge, the �rst ab initio 
al
ulation of the se
-ond harmoni
 bulk quadrupole response. There are however intrinsi
 limitations in itsformulation in terms of density response.In Chap. 6 I will show a range of numeri
al results obtained in the standard formulationof the opti
al limit and with the various levels of approximation that the theory provides.The a

ura
y of the implementation is demonstrated in a ben
hmark test against theexperimental spe
trum of GaAs, where previous formulations have yielded results withonly moderate su

ess. I show that it is the interplay between lo
al �eld and ex
itoni
e�e
ts that 
an give a very good agreement of the 
al
ulation with the experiment; an8



agreement that is almost as good as that for sili
on absorption shown in Fig. 1.2.Finally, to follow the su

ess of the Bethe-Salpeter equation for linear opti
s, I derivethe analogous expression for se
ond order response. The resulting equation a

ounts forall many-body e�e
ts that o

ur in se
ond order pro
esses of any kind, not only opti
al.It is, however, far more 
omplex to solve and eventhough its ingredients are in prin
i-ple known it its not 
lear if an a
tual implementation would be feasible. Nonetheless, inApp. D.1 I sket
h how su
h an implementation might be realized. Also, by exploiting thesimilar stru
ture between the se
ond order Bethe-Salpeter equation and the se
ond orderTDDFT Dyson like equation, I �nd an exa
t expression for the se
ond order ex
hangeand 
orrelation kernel.
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2 Se
ond order TDDFTThe theoreti
al des
ription of nonlinear opti
s to se
ond order ne
essarily means one hasto use perturbation theory to be able to a

ount solely for the se
ond order pro
ess. Thebehaviour of a physi
al system under the in�uen
e of an external perturbation is 
alledits response. More pre
isely, it is the 
hange in the expe
tation values of operators ofthe system when the perturbation is applied.2.1 Se
ond order Response theoryTo introdu
e the 
on
ept of response fun
tions, we formally expand an operator Â(t) interms of a small perturbation v in intera
tion pi
ture:
Â(t)[v] = Â(t)0 +

∫

d1
δÂ(t)

δv(1)
v(1) +

1

2!

∫

d1d2
δ2Â(t)

δv(1)δv(2)
v(1)v(2) + ... (2.1)The expansion 
oe�
ients do not expli
itly depend on the perturbing quantity, but arevariation of the operator with respe
t to the perturbation. These quantities are theresponse fun
tions. Their expli
it form depends on the 
oupling between the system andthe perturbation. We 
onsider an intera
tion Hamiltonian where the perturbing �eld v
ouples with an operator Ô in the form

ĤI(t) =

∫

drÔ(r, t)v(r, t) . (2.2)From the Kubo response theory [88℄ the linear response fun
tion is known to take thegeneral form
χAO(1, 2) = −iθ(t1 − t2)〈[Â(1), Ô(2)]〉 (2.3)The theory 
an be generalized to higher orders (
.f. [89℄) to yield the se
ond orderresponse fun
tion
χAOO(1, 2, 3) = −θ(t1 − t2)θ(t1 − t3)T 〈[[Â(1), Ô(2)], Ô(3)]〉 (2.4)where T is the time ordering operator1.1The time ordering operator is de�ned by its a
tion on a fun
tion of two time variables:

TF (t2, t3) = Θ(t2 − t3)F (t2, t3) + Θ(t3 − t2)F (t3, t2)10



2.2 Perturbation theoryIt is 
lear that an expansion su
h as Eq. (2.1) 
an only be justi�ed if the perturbation issmall 
ompared with the overall energies of the system, e.g. ele
tron binding energy ofa mole
ule or bond strength in a solid. That is to say, it is only valid within the s
opeof perturbation theory, from whi
h the response fun
tions are derived. To give a pi
tureas 
omprehensive as possible, we will shortly expose here how this perturbation theoryyields the response fun
tions for the spe
ial 
ase of ele
tro-magneti
 radiation 
oupledto a (many-body) ele
tron system. When dealing with the intera
tion of the ele
tronsystem of a solid with light one 
an usually separate the total Hamiltonian in a partdes
ribing the unperturbed ele
troni
 system and another part des
ribing the 
ouplingto the time dependent external perturbation
Ĥ = Ĥ0 + ĤI(t) . (2.5)This separation 
onveniently allows to de�ne an intera
tion pi
ture where the evolutionof the states |Ψ(t)〉 is des
ribed by ĤI via the time dependent S
hrödinger equation
∂t|Ψ(t)〉 = −iĤI(t)|Ψ(t)〉 (2.6)with gives the integral equation
|Ψ(t)〉 = |Ψ(t0)〉 − i

∫ t

t0

dt1ĤI(t1)|Ψ(t1)〉 . (2.7)Iterating this equation gives the dependen
e of the states to the orders of the intera
tion.We 
onsider terms up to se
ond order, thus
|Ψ(t)〉 = |Ψ(t0)〉 − i

∫ t

t0

dt1ĤI(t1)|Ψ(t0)〉 −
∫ t

t0

dt1

∫ t1

t0

dt2ĤI(t1)ĤI(t2)|Ψ(t0)〉. (2.8)Using this expression for |Ψ(t)〉 in the expe
tation value of an operator 〈Ψ(t)|Â(t)|Ψ(t)〉and keeping only terms up to se
ond order in ĤI(t) yields the response of the operatorup to se
ond order
〈Â(t)〉 = 〈Â(t0)〉 + δ〈Â(t)〉(1) + δ〈Â(t)〉(2) (2.9)

= 〈Â(t0)〉 − i

∫ t

t0

dt1〈Ψ(t0)|[Â(t), ĤI(t1)]|Ψ(t0)〉 −

−
∫ t

t0

dt1

∫ t1

t0

dt2〈Ψ(t0)|[[Â(t), ĤI(t1)], ĤI(t2)]|Ψ(t0)〉 (2.10)This is the general result of se
ond order time dependent perturbation theory. It 
anbe generalized to n-th order, yielding in
reasingly nested 
ommutators [90℄. It gives,however, not yet the response fun
tions, be
ause the terms in Eq. (2.10) 
ontain theperturbation itself. 11



To arrive at an expli
it expression for the responses we have to use an expli
it expressionfor ĤI . Here we 
onsider the intera
tion Hamiltonian of an ele
tron system with a general
lassi
al light �eld that 
an be written as
ĤI(t1) =

∫

dr1

[

ρ̂(1)Vper(1) − ĵ(1)Ãper(1) +
1

2
ρ̂(1)Ã2

per(1)

] (2.11)where 1 is shorthand for r1t1 and Ãper ≡ 1
cAper to keep the notation simple. ThisHamiltonian 
ontains the diamagneti
 term ρ̂A2

per that is se
ond order in the �eld and isthus negle
ted in �rst order response theory. We are, however, interested in the se
ondorder and therefore this term has to be in
luded when evaluating the δ〈Â(t)〉 part of Eq.(2.10), while it gives third and fourth order 
ontributions when used for the se
ond orderresponse δ〈Â(t)〉(2).The quantities of interest here are the responses of ele
tron- and 
urrent-density underthe perturbation. We 
an use Eq. (2.10) together with the Hamiltonian (2.11) to getthe �rst and se
ond order responses of the total 
urrent 
omposed of the para- anddiamagneti
 
urrent Ĵ(1) = ĵ(1)+ ρ̂(1)Ãper(1) and the density ρ̂(1). To �rst order in the
urrent we have
δ〈Ĵ(1)〉(1) = 〈ρ̂(1)〉Ãper(1)+i

∫ t1

t0

dt2

∫

dr2〈[̂j(1), ĵ(2)]〉Ãper(2)−i
∫ t1

t0

dt2

∫

dr2〈[̂j(1), ρ̂(1)]〉Vper(2)(2.12)where we 
an readily identify the response fun
tions a

ording to their de�nition Eq.(2.1), so that we 
an write:
δ〈Ĵ(1)〉(1) =

∫

d2χjρ(1, 2)Vper(2) + [χjj(1, 2) + δ(1, 2)ρ(2)]Ãper(2) (2.13)Similarly, we �nd the �rst order density response as
δ〈ρ̂(1)〉(1) =

∫

d2χρρ(1, 2)Vper(2) + χρj(1, 2)Ãper(2) . (2.14)These are the well known �rst order responses. The se
ond order responses, albeit morelengthy, are obtained in the same way. They are:
δ〈Ĵ(1)〉(2) =

∫

d2
1

2
χjρ(1, 2)Ã

2
per(2) + [χρj(1, 2)Ãper(2) − χρρ(1, 2)Vper(2)]Ãper(1)+

+
1

2

∫

d2d3
[

χjjjÃper(2)Ãper(3) − χjjρÃper(2)Vper(3)−

− χjρjVper(2)Ãper(3) + χjρρVper(2)Vper(3)
] (2.15)
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and
δ〈ρ̂(1)〉(2) =

1

2

∫

d2χρρ(1, 2)Ã
2
per(2)+

+
1

2

∫

d2d3
[

χρjjÃper(2)Ãper(3) − χρjρÃper(2)Vper(3)−

− χρρjVper(2)Ãper(3) + χρρρVper(2)Vper(3)
]

.

(2.16)So, the 
hanges in the ele
troni
 system are des
ribed by the 
orrelations of the densityand 
urrent density operator. These response fun
tions are the 
entral quantity of themi
ros
opi
 des
ription of the intera
tion of solids with light and their 
al
ulation is the
entral topi
 of this thesis.These responses are given in terms of the general ele
tromagneti
 potentials Vper and
Ãper for whi
h we 
an still 
hoose a gauge. Here, it is 
onvenient to take a gauge su
hthat Vper = 0, whi
h leaves only the ve
tor potential as the perturbing quantity. Theresponse then read
δ〈Ĵ(1)〉(2) =

∫

d2d3

[

1

2
χjρ(1, 3)δ(2, 3) + χρj(3, 2)δ(1, 3) +

1

2
χjjj(1, 2, 3)

]

Ãper(2)Ãper(3)(2.17)
δ〈ρ̂(1)〉(2) =

∫

d2d3
1

2
[χρρ(1, 3)δ(2, 3) + χρjj(1, 2, 3)] Ãper(2)Ãper(3) . (2.18)Additionally we note that due to the 
ontinuity equation

∇r1 ĵ(1) = ∂t1ρ(1) (2.19)knowledge of the 
urrent response implies the density response. Therefore we 
an fo
uson the 
urrent quantities without loss of generality. Writing Eq. (2.19) in momentumand frequen
y spa
e (
.f. App. B) it reads
q · ĵ(q, ω) = iωρ(q, ω). (2.20)So we see that the density is a
tually proportional to the proje
tion of ĵ along thedire
tion of q, i.e. the longitudinal proje
tion of ĵ. The density response 
an thusbe expressed in terms of the 
urrent response, or vi
e versa, the longitudinal 
urrentresponse is proportional to the density response. Moreover, under the 
onstraint thatthe perturbing �eld is purely longitudinal, this means that the se
ond order longitudinal
urrent response 
an be obtained from the se
ond order density-density-density responsefun
tion χρρρ.

13



2.2.1 Response fun
tionsWhile their de�nition Eq. (2.3) and (2.4) together with the knowledge how to evaluatethe expe
tation value is in prin
iple all one would need to obtain response fun
tions, inpra
ti
e one has to make some transformations and assumptions to arrive at a quantitythat 
an be 
al
ulated within existing 
omputational s
hemes.The de�nition of the response fun
tion 
an be 
ast in a more useful way by passing fromthe time domain to frequen
y spa
e. Using the 
ompleteness relation in the de�nition ofthe linear response fun
tion Eq. (2.3), we obtain2
χAB(1, 2) = −Θ(t1−t2)

∑

n

(

〈Ψ0|ÂI(1)|Ψn〉〈Ψni|B̂I(2)|Ψ0〉 − 〈Ψ0|B̂I(2)|Ψn〉〈Ψn|ÂI(1)|Ψ0〉
)

.(2.21)The matrix elements of the operators in the intera
tion pi
ture are
〈Ψi|ÂI(t)|Ψj〉 = 〈Ψi|e−iĤ0tÂeiĤ0t|Ψj〉 = e−i(Ei−Ej)t〈Ψ0|Â|Ψi〉 (2.22)so that the response fun
tion reads
χAB(1, 2) = −Θ(t1 − t2)

∑

n

e−i(En−E0)(t1−t2) ×

×
(

〈Ψ0|Â|Ψn〉〈Ψn|B̂|Ψ0〉 − 〈Ψ0|B̂|Ψn〉〈Ψn|Â|Ψ0〉
)and its Fourier transform (
.f. App. B) gives the spe
tral representation of the responsefun
tion

χAB(r1, r2, ω) = lim
η→0+

∑

n

(

〈Ψ0|Â|Ψn〉〈Ψn|B̂|Ψ0〉
ω − (En − E0) + iη

− 〈Ψ0|B̂|Ψn〉〈Ψn|Â|Ψ0〉
ω + (En − E0) + iη

)

. (2.23)

2Here we write B̂ for the operator of the system instead of Ô for the sake of readability. Likewise, inthe se
ond order we use the notation Ĉ for the third operator of the response fun
tion.14



To obtain an equivalent expression for the se
ond order response, we follow exa
tly thesame steps. The result is
χABC(r1, r2, r3, ω1, ω2, ω3) =

lim
η→0+

∑

nm

δ(ω1 − ω2 − ω3)

[

〈Ψ0|Â|Ψn〉〈Ψn|B̂|Ψm〉〈Ψm|Ĉ|Ψ0〉
(E0 −Em + ω3 + iη)(E0 −En + ω2 + ω3 + 2iη)

−

− 〈Ψ0|B̂|Ψn〉〈Ψn|Â|Ψm〉〈Ψm|Ĉ|Ψ0〉
(E0 − Em + ω3 + iη)(En − Em + ω2 + ω3 + 2iη)

−

− 〈Ψ0|Ĉ|Ψn〉〈Ψn|Â|Ψm〉〈Ψm|B̂|Ψ0〉
(En − E0 + ω3 + iη)(En − Em + ω2 + ω3 + 2iη)

+

+
〈Ψ0|Ĉ|Ψn〉〈Ψn|B̂|Ψm〉〈Ψm|Â|Ψ0〉

(En − E0 + ω3 + iη)(Em − E0 + ω2 + ω3 + 2iη)
+

+ {2 ↔ 3}] . (2.24)In this formulation we 
an already dedu
e some general properties of se
ond order re-sponse. First, we noti
e that the three frequen
ies are not independent but linked throughthe delta fun
tion, whi
h means that the response frequen
y ω1 
an be the sum of thetwo fundamental frequen
ies, i.e.
χABC(ω1, ω2, ω3) = χABC(ω2 + ω3, ω2, ω3) (2.25)This is the mi
ros
opi
 origin of the phenomenon of sum frequen
y generation, or in the
ase of ω2 = ω3 of se
ond harmoni
 generation.Regarding the spe
tral properties of the se
ond order response fun
tion, we note that ithas resonan
es at the fundamental frequen
ies as well as at their sum. In the 
ase ofse
ond harmoni
 generation this means for ea
h resonan
e at a frequen
y ω there willanother resonan
e at ω/2.While its general stru
ture shows some 
hara
teristi
s of the se
ond order response, thisform of the response fun
tion 
an only be used if the many-body wavefun
tions andenergies of the system are known. They are, however, not known and 
al
ulating themexpli
itly is unfeasible. To over
ome the basi
 problem of obtaining the solutions of themany-body Hamiltonian is the motivation for many theories and 
al
ulatory s
hemesin the �eld of 
omputational physi
s. Namely the density-fun
tional theory (DFT) hasbeen su

essfully employed to obtain the groundstate properties of intera
ting many-body systems. The basi
 idea is to exploit the fa
t that the density of ele
trons subje
tto some intera
ting potential is the same as the density of ele
trons in a non-intera
tingpotential, 
alled ex
hange-
orrelation potential, that uniquely represents the intera
tingpotential [21℄.This idea of mapping an intera
ting many-body system to a non-intera
ting one andthus 
on�ning the many-body problem to the sear
h for the appropriate non-intera
tingpotential is generalized to time dependent systems in the framework of time-dependent-15



density-fun
tional-theory (TDDFT), 
.f. se
tion 2.3. That is to say, that the responsefun
tions shown above are expressed in terms of a non-intera
ting system and the many-body 
hara
ter is in
luded via the ex
hange 
orrelation potential. So, the 
entral quan-tities are the independent parti
le response fun
tions. In App. A I outline how to passfrom the responses in terms of many-body wavefun
tions to the independent parti
lepi
ture. The resulting response fun
tions are:
χ

(0)
AB(r1, r2, ω) =

∑

ij

(fi − fj)
〈φ∗i (r1)|â(r1)|φj(r1)〉〈φ∗j (r2)|b̂(r2)|φi(r2)〉

(ǫi − ǫj + ω + iη)
(2.26)and

χ
(0)
ABC(r1, r2, r3, ω2 + ω3, ω2, ω3) =

∑

ijk

〈φ∗i (r1)|â(r1)|φj(r1)〉
ǫi − ǫj + ω1 + ω2 + 2iη

×

×
[

(fi − fk)
〈φ∗j (r2)|b̂(r2)|φk(r2)〉〈φ∗k(r3)|ĉ(r3)|φi(r3)〉

(ǫi − ǫk + ω3 + iη)
+

+ (fj − fk)
〈φ∗j (r3)|ĉ(r3)|φk(r3)〉〈φ∗k(r2)|b̂(r2)|φi(r2)〉

(ǫk − ǫj + ω3 + iη)
+

+ {3 ↔ 2}]

(2.27)
where â, b̂ and ĉ are single ele
tron operators, e.g. for Â = ρ̂ we have â(r) = δ(r − r′),and φi(r) one parti
le orbitals with eigenenergies ǫi and o

upation numbers fi. Theexpli
it expression for χ(0)

ρρρ is given in se
tion 4 (Eq. (4.7)).2.3 TDDFTThe generalization of Kohn and Sham's density fun
tional theory (DFT) to time depen-dent system, i.e. time dependent density fun
tional theory (TDDFT), by Runge andGross is exposed in great detail in many works throughout the last 20 years [91℄. Here,I will only roughly sket
h the path from the stati
 DFT to TDDFT, without going intothe subtleties of the theory. Its generalization to se
ond order response is readily obtain,on
e the �rst order response is established.In DFT one 
onstru
ts the ele
tron density with wavefun
tions obtained from a Hamilto-nian with a non-intera
ting potential. By virtue of the Hohenberg-Kohn and Kohn-Shamtheorems this density is identi
al to one obtained with an intera
ting potential and thereis a one to one 
orresponden
e between the two potentials. The non-intera
ting wave-fun
tions do not have a rigorous physi
al meaning, but they are only used to build theele
tron density. On
e the exa
t density is known, all other quantities of the real system
16




an be 
onstru
ted, sin
e they are regarded as fun
tionals of the density.
Realsystem Kohn − Sham fict.system

Ψ0 ⇒ ρ ⇐⇒ ρ ⇒ VKS

⇑ ⇓ ⇑ ⇓
Ψi ⇐ Vext φ0 ⇐ φiThe non-intera
ting potential is 
alled Kohn-Sham potential, VKS, and is generally un-known, but 
an be further de
omposed in the form

VKS(r) = Vext(r) + VH(r) + Vxc(r) (2.28)where we have the external potential Vext(r), the Hartree potential de�ned with theCoulomb potential v as
VH(r) =

∫

dr′ρ(r′)v(r − r′) (2.29)and Vxc, the potential 
orresponding to the ex
hange and 
orrelation energy,
Vxc(r) =

δExc(r)

δρ(r)
(2.30)of the system. It is this potential where the many-body e�e
ts are 
onsidered and 
on-sequently it is here where the physi
al approximations to the many-body problem aremade.The time dependent generalization of this theory is made by 
onsidering a time depen-dent external potential and thus all quantities of the system be
ome time dependent.Analogously to the stati
 
ase one de�nes a time-dependent Kohn Sham potential

VKS(r, t) = Vext(r, t) + VH(r, t) + Vxc(r, t). (2.31)The time dependent density is then 
onstru
ted from eigenstates of the time dependentKohn-Sham equation
[

−1

2
∇2 + VKS(r, t)

]

φi(r, t) = i∂tφi(r, t). (2.32)Again, if the exa
t Kohn-Sham potential was known, su
h a density would be exa
t. Thepoint of TDDFT in response formulation is, that also the variation of this density wouldbe the same whether it was obtained with respe
t to the intera
ting potential or to the
orresponding non-intera
ting one [92℄:
δρ(1) =

∫

d2χρρ(1, 2)δVper(2) =

∫

d2χ(0)
ρρ (1, 2)δVKS (2.33)
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The response fun
tions, however, are not the same. To relate the Kohn-Sham responsefun
tions χ(0)
ρρ that 
onne
ts the density with the non-intera
ting potential to the responsefun
tion χρρ that a

ounts for the intera
tions as well, is the obje
tive of TDDFT inresponse formulation.Starting point is the de�nition of the full response fun
tion

χρρ(1, 2) =
δρ(1)

δVper(2)
(2.34)in whi
h we use the 
hain rule to obtain

χρρ(1, 2) =

∫

d3
δρ(1)

δVKS(3)

δVKS(3)

δVper(2)
. (2.35)Thus we have reformulated the response fun
tion to a produ
t of the response of the non-intera
ting Kohn-Sham system and variation of the Kohn-Sham potential with respe
tto the perturbing potential. We de�ne the response to the Kohn-Sham potential

χ(0)
ρρ (1, 2) =

δρ(1)

δVKS(2)
. (2.36)The variation of the Kohn-Sham potential with respe
t to the perturbing potential is

δVKS(3)

δVper(2)
= δ(3, 2) +

∫

d4
δ(VH (3) + Vxc(3))

δρ(4)

δρ(4)

δVper(2)
(2.37)

= δ(3, 2) +

∫

d4(v(3, 4) + fxc(3, 4))χρρ(4, 2) , (2.38)where we de�ned the ex
hange and 
orrelation kernel
fxc(1, 2) =

δVxc(1)

δρ(2)
. (2.39)Now we 
an write down the full response as in Eq. (2.35)

χρρ(1, 2) = χ(0)
ρρ (1, 2) +

∫

d3d4χ(0)
ρρ (1, 3)(v(3, 4) + fxc(3, 4))χρρ(4, 2). (2.40)This is a Dyson equation for the response fun
tion χρρ in terms of the intera
tion kernel

v + fxc, that 
an be solved by inversion. It is in prin
iple exa
t, provided the 
orre
tex
hange and 
orrelation kernel is known. Sin
e this kernel is de�ned as the fun
tionalderivative of the ex
hange and 
orrelation potential, this theory su�ers the same limita-tion as DFT, namely the fa
t that the true ex
hange and 
orrelation potential is unknownand has to be approximated.This treatment of the response fun
tion that amounts to reformulating it in terms ofthe independent parti
le response fun
tion and 
onsidering the many-body e�e
ts onlythrough a kernel, 
an be readily generalized to higher order responses. This has been18



sket
hed by Gross et. al. in [85℄. Completely analogous to the linear 
ase one starts withthe de�nition of the response fun
tion, however, now one 
an make use of the linear resultby realizing that the se
ond order response is the variation of the �rst order responsewith respe
t to a another perturbing �eld.
χρρρ(1, 2, 3) =

δ2ρ(1)

δVper(3)δVper(2)
=
δχρρ(1, 2)

δVper(3)
(2.41)Using the linear Dyson equation (2.40) for χρρ, we have

χρρρ(1, 2, 3) =
δχ

(0)
ρρ (1, 2)

δVper(3)
+

∫

d4d5
δχ

(0)
ρρ (1, 4)

δVper(3)
fvxc(4, 5)χρρ(5, 2) (2.42)

+

∫

d4d5χ(0)
ρρ (1, 4)

δfxc(4, 5)

δVper(3)
χρρ(5, 2) + (2.43)

+

∫

d4d5χ(0)
ρρ (1, 4)fvxc(4, 5)

δχρρ(5, 2)

δVper(3)
, (2.44)where we have written fvxc(4, 5) = v(4, 5) + fxc(4, 5) for brevity. In the se
ond termappears the variation of the kernel fxc with respe
t to the perturbing �eld. This 
an berewritten using the 
hain rule

δfxc(4, 5)

δVper(3)
=

∫

d6
δfxc(4, 5)

δρ(6)

δρ(6)

δVper(3)
=

∫

d6gxc(4, 5, 6)χρρ(6, 3) (2.45)and we have de�ned a new quantity gxc that is the se
ond derivative of the ex
hange
orrelation potential and 
ontains the higher order many-body e�e
ts. Furthermore, wede�ne the se
ond order Kohn-Sham response
δχ

(0)
ρρ (1, 2)

δVKS(3)
=

δρ(1)

δVKS(3)δVKS(2)
= χ(0)

ρρρ(1, 2, 3) . (2.46)The full expression for χρρρ 
an now be obtained by using the 
hain rule in Eq. (2.42)and Eq. (2.38), whi
h �nally yields
χρρρ(1, 2, 3) = χ(0)

ρρρ(1, 2, 3) +

∫

d4d5χ(0)
ρρρ(1, 4, 3)fvxc(4, 5)χρρ(5, 2)

+

∫

d4d5χ(0)
ρρρ(1, 2, 4)fvxc(4, 5)χρρ(5, 3)+

+

∫

d4d5d6d7χ(0)
ρρρ(1, 5, 4)fvxc(5, 6)χρρ(6, 2)fvxc(4, 7)χρρ(7, 3)+

+

∫

d4d5d6χ(0)
ρρ (1, 4)gxc(4, 5, 6)χρρ(6, 3)χρρ(5, 2)+

+

∫

d4d5χ(0)
ρρ (1, 4)fvxc(4, 5)χρρρ(5, 2, 3) .

(2.47)
19



This is the se
ond order 
orrespondent of the linear TDDFT Dyson equation (2.40). It ishowever di�erent in the sense that one does not need to invert the whole equation to solveit. Only one term on the right hand side 
ontains χρρρ, while all others either depend onthe se
ond order Kohn-Sham response χ(0)
ρρρ or the se
ond order kernel gxc. We also notethat the solution of the linear Dyson equation, i.e. χρρ, is required in order to get the fullse
ond order response. An interpretation of this stru
ture might be given by 
onsideringthat the physi
al pro
ess underlying the se
ond order response fundamentally involvesele
trons making transitions between three levels. The Kohn-Sham response des
ribeshow they do so without intera
ting with ea
h other, while the full Dyson equation takesinto a

ount their intera
tions. The repeated o

urren
e of χρρ in the Dyson equationmeans that the underlying intera
tion is of linear nature, i.e. it involves only two levelsor ele
trons. These two parti
le intera
tions 
an be seen as modulating the independentparti
le response χ(0)

ρρρ and only the term 
ontaining gxc represents a true three bodyintera
tion.Making use of the fa
t that the linear response has to be known in order to solve these
ond order 
ase, we 
an solve the se
ond order Dyson like equation (2.47) analyti
ally.This is done by fa
torizing χρρρ and rearranging the right hand side to give
∫

d4d5
[

δ(1, 5) − χ(0)
ρρ (4, 5)fvxc(4, 5)

]

χρρρ(5, 2, 3) =

=

∫

d4d5d6d7χ(0)
ρρρ(1, 5, 4) [δ(2, 5) + fvxc(5, 6)χρρ(6, 2)] [δ(3, 4) + fvxc(4, 7)χρρ(7, 3)]

+

∫

d4d5d6χ(0)
ρρ (1, 4)gxc(4, 5, 6)χρρ(6, 3)χρρ(5, 2) . (2.48)By using the linear Dyson equation (2.40) we 
an rewrite the terms in squared bra
ketsas

∫

d4
[

δ(1, 5) − χ(0)
ρρ (4, 5)fvxc(4, 5)

]

=

∫

d6χ(0)
ρρ (1, 6)χ−1

ρρ (6, 5) (2.49)and
∫

d6 [δ(2, 5) + fvxc(5, 6)χρρ(6, 2)] =

∫

d8χ−1
0 (5, 8)χρρ(8, 2) (2.50)where we have used the shorthand χ−1

0 =
[

χ
(0)
ρρ

]−1. Inserting these expressions in Eq.(2.48), multiplying from left with the appropriate inverse and subsequently ex
hanging
20



the names of integral variables we arrive at the solution
χρρρ(1, 2, 3) =

∫

d4...d9χρρ(1, 8)χ
−1
0 (8, 9)χ(0)

ρρρ(9, 5, 4)χ
−1
0 (5, 6)χρρ(6, 2)χ

−1
0 (4, 7)χρρ(7, 3)+

+

∫

d4d5d6d7χρρ(1, 7)gxc(7, 5, 6)χρρ(6, 2)χρρ(5, 3). (2.51)This formulation has the advantage that on
e the linear response is known it only needsthe inverse of the linear independent parti
le response and the se
ond order independentparti
le response, χ(0)
ρρρ, to obtain the full χρρρ. It is also more handy to apply approxi-mations on it, 
.f. Chap. 7 where it it is 
ompared with the se
ond order Bethe-Salpeterequation. We also give it in shorthand form

χ(2) = χ(1)χ−1
0 χ

(2)
0 χ−1

0 χ(1)χ−1
0 χ(1) + χ(1)gxcχ

(1)χ(1) . (2.52)Alternatively, to avoid inverse quantities altogether, in Eq. (2.48) on the right hand sideone 
an leave the terms in squared bra
kets and use the relation:
∫

d8χρρ(9, 8)χ
−1
0 (8, 7) =

∫

d8 [δ(9, 7) + χρρ(9, 8)fvxc(8, 7)] (2.53)for the inverse of Eq. (2.49). This yields the solution of the se
ond order Dyson equationin the form
χρρρ(1, 2, 3) =

∫

d4...d9 [δ(1, 9) + χρρ(1, 8)fvxc(8, 9)]χ
(0)
ρρρ(9, 5, 4)×

× [δ(2, 5) + fvxc(5, 6)χρρ(6, 2)] [δ(3, 4) + fvxc(4, 7)χρρ(7, 3)] +

+

∫

d4d5d6d7χρρ(1, 7)gxc(7, 5, 6)χρρ(6, 2)χρρ(5, 3) (2.54)with the short hand form:
χ(2) =

[

1 + χ(1)fvxc

]

χ
(2)
0

[

1 + fvxcχ
(1)
] [

1 + fvxcχ
(1)
]

+ χ(1)gxcχ
(1)χ(1). (2.55)2.3.1 Interpretation of the solutionThis form a
tually gives some insight in the rather 
omplex stru
ture of the equation,when we introdu
e the 
on
ept of the diele
tri
 fun
tion. The role of the diele
tri
fun
tion ǫ is to a

ount for the s
reening of the perturbing potential by the indu
ed �eldand thus 
onne
t the total with the perturbing potential:

Vtot(1) =

∫

d2ǫ−1(1, 2)Vper(2). (2.56)21



where Vtot = Vper + VH . Formally the s
reening 
an be de�ned by
ǫ−1(1, 2) =

δVtot(1)

δVper(2)
= δ(1, 3) +

∫

d3
δVH (1)

δρ(3)

δρ(3)

δVper(2)

= δ(1, 3) +

∫

d3v(1, 3)χρρ(3, 2).

(2.57)This de�nition assumes that the indu
ed �eld is only due to the Hartree potential whilethe density response χ to the perturbing �eld 
ontains ex
hange and 
orrelation e�e
ts aswell (
.f. Eqs. (2.33) and (2.40)). The s
reening of the perturbing potential 
an howeverbe due to ex
hange and 
orrelation e�e
ts as well so that one has to de�ne the s
reeningas the variation of a total potential that also 
ontains Vxc:
ǫ−1
TE(1, 2) =

δVKS(1)

δVper(2)
= δ(1, 3) +

∫

d3(v(1, 3) + fxc(1, 3))χρρ(3, 2) (2.58)
= δ(1, 3) +

∫

d3fvxc(1, 3)χρρ(3, 2). (2.59)This 
ase is 
alled test-ele
tron (TE) while the former is 
alled test-parti
le, be
ause theyeither des
ribe an experiment with a quantum me
hani
ally intera
ting probe (ele
tron)or a 
lassi
al parti
le.We 
an use the test-ele
tron s
reening to write the solution (Eq. (2.54) of the se
ondorder Dyson equation as
χ(2) =

[

ǫ−1
TE

]T
χ

(2)
0 ǫ−1

TEǫ
−1
TE + χ(1)gxcχ

(1)χ(1) (2.60)where [ǫ−1
TE

]T is the transposed of ǫ−1
TE.The signi�
an
e of the ǫ−1

TE fa
tors 
an be un-derstood by 
onsidering that χ(2)
0 gives the response to VKS while χ(2) responds to Vper.Now the two ǫ−1

TE on the right side of χ(2)
0 do nothing else but transform the appliedperturbing potential Vper in a Kohn-Sham potential VKS, sin
e VKS = ǫ−1

TEVper.The transpose ǫ−1
TE to the left of the non-intera
ting χ(2)

0 is, however more involved. Tounderstand its origin we re
onsider the derivation of the se
ond order Dyson equationusing for the linear response
χ(1) = χ

(1)
0 ǫ−1

TE (2.61)
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from whi
h follows
χ(2) =

δχ(1)

δVper
=
δχ

(1)
0

δVper
ǫ−1
TE + χ

(1)
0

δǫ−1
TE

δVper
(2.62)

=
δχ

(1)
0

δVKS

δVKS

δVper
ǫ−1
TE + χ

(1)
0

δ

δVper

[

1 + (v + fxc)χ
(1)
] (2.63)

= χ
(2)
0 ǫ−1

TEǫ
−1
TE + χ

(1)
0

δfxc

δVper
χ(1) + χ

(1)
0 (v + fxc)

δχ(1)

δVper
) (2.64)

= χ
(2)
0 ǫ−1

TEǫ
−1
TE + χ

(1)
0

δfxc

δρ

δρ

δVper
χ(1) + χ

(1)
0 (v + fxc)χ

(2) (2.65)
= χ

(2)
0 ǫ−1

TEǫ
−1
TE + χ

(1)
0 gxcχ

(1)χ(1) + χ
(1)
0 (v + fxc)χ

(2) . (2.66)The last term in the last line 
an be 
ombined with the left hand side of the equation andthen yields the [ǫ−1
TE

]T when inverted. From this derivation we see that this prefa
tor aswell as the term with gxc 
omes from the term δǫ−1
TE

δVper
= δ2VKS

δVperδVper
in the �rst line. This
an be interpreted as a se
ond order s
reening and as su
h does not have analogous linearpro
esses.
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2.3.2 Graphi
al representation of the 2nd order Dyson EquationThe linear Dyson equation (2.40), 
onsisting of three terms of only two point quantities,has a rather simple stru
ture 
ompared with the se
ond order Dyson equation (2.47).Here, we have to deal with a mixture of two- and three-point quantities as well as withseven di�erent terms. In order to get a 
learer view of the stru
ture of the equation andto show how the di�erent terms are 
onne
ted with ea
h other, I will use here a set ofdiagrams in analogy with the Feynman diagrams. This might help to get a better viewof the 
ontent of the equation and its 
onstituting terms. It does of 
ourse not provideany further insight, that one might not get from the equation, but it might serve theintuition and as a mnemoni
 devi
e.The di�erent quantities appearing in the equation are represented a

ording to this table:
χ

(1)
0 (1, 2) 1 2

χ(1)(1, 2) 1 2

fxc(1, 2)
1 2

χ
(2)
0 (1, 2, 3) 1

2

3

χ(2)(1, 2, 3) 1

2

3

gxc(1, 2, 3) 1

2

3With these symbols the linear Dyson equation takes this form
24



111 222 3 4
= +Figure 2.1: Graphi
al representation of the linear TDDFT Dyson equation (2.40).whi
h, indeed, has a very simple stru
ture and for this alone one would not need agraphi
al representation. Turning, however, to the se
ond order Dyson equation, weobtain are far ri
her pi
ture
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Figure 2.2: Graphi
al representation of the se
ond order TDDFT Dyson equation (2.47).
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2.4 Approximations2.4.1 IPAThe simplest approximation in the Dyson like equation (2.47) is done by negle
ting allmany-body e�e
ts by letting fvxc = 0. Then, only the Kohn-Sham response is presenttherefore it is 
alled the independent parti
le approximation (IPA):
χIPA

ρρρ (1, 2, 3) = χ(0)
ρρρ(1, 2, 3) . (2.67)We will see in later 
hapters (
.f. 
hapter 6) that this approximation 
an representimportant features of the response and thus is not as bad an approximation as itssimpli
ity suggests.2.4.2 RPAConsidering the Coulomb intera
tion while still negle
ting ex
hange and 
orrelation ef-fe
ts, i.e. by keeping v but letting fxc = 0 the Dyson equation be
omes

χRPA
ρρρ (1, 2, 3) = χ(0)

ρρρ(1, 2, 3) +

∫

d4d5χ(0)
ρρρ(1, 4, 3)v(4, 5)χρρ(5, 2)

+

∫

d4d5χ(0)
ρρρ(1, 2, 4)v(4, 5)χρρ(5, 3)+

+

∫

d4d5d6d7χ(0)
ρρρ(1, 5, 4)v(5, 6)χρρ(6, 2)v(4, 7)χρρ(7, 3)+

+

∫

d4d5χ(0)
ρρ (1, 4)v(4, 5)χRPA

ρρρ (5, 2, 3) .

(2.68)
and one speaks of the random phase approximations (RPA). This approximation already
aptures the important e�e
t that the perturbation lo
ally polarizes latti
e atoms re-sulting in a �eld that itself 
an polarize other atoms and thus 
ontribute to the overallperturbation. Sin
e it is linked to the latti
e stru
ture and the �elds are generally fastos
illating �elds, this e�e
t is 
ommonly referred to as 
rystal lo
al �eld e�e
t (
.f. Chap.3).2.4.3 TDLDAApart from these two approximations that pro�t from what little is known exa
tly aboutthe system, any further approximation has to 
on
ern the ex
hange and 
orrelation ker-nel, whi
h is unknown. Approximations to this kernel are made more in the spirit ofedu
ated guessing rather than in a rigorous way from exa
t expressions. One of the most
ommonly used TDDFT kernel is the time dependent generalization of the lo
al densityapproximation (LDA) of DFT. Here, one assumes that Vxc(r) only depends on the den-26



sity at the point r rather than on the environment as well. The time dependent versionof this approximation, the time dependent lo
al density approximation (TDLDA), usesthe so 
alled adiabati
 lo
al density approximation (ALDA) where Vxc(r, t) is taken tobe the lo
al density ex
hange and 
orrelation potential 
al
ulated from the density atthe time t
V ALDA

xc (r, t) = V LDA
xc [ρ(r, t)] . (2.69)The kernel for TDDFT derived from this approximation is then

fTDLDA
xc (r1, t1, r2, t2) = δ(r1 − r2)δ(t1 − t2)

∂V LDA
xc [ρ(r1, t1)]

ρ(r1, t1)
. (2.70)From this approximation one 
an derive in the same spirit the se
ond order gxc. Whilethe TDLDA works well for ele
tron loss responses and other 
ases of �nite momentumtransfer, it fails to produ
e reliable results for the opti
al absorption of solids [93℄. Thisfailure has been attributed to the missing long range intera
tion in the lo
al approxima-tion. Long range intera
tion, however, is the hallmark of the Coulomb potential that insemi
ondu
tors leads to the formation of ex
itons whi
h in turn are known to 
ontributeimportant features to opti
al spe
tra. For this reason, TDLDA does not seem to be agood 
andidate as kernel for se
ond order opti
al pro
esses.2.4.4 Quasiparti
lesTo go beyond the lo
al density approximation one has to 
onsider that the ex
itationof an ele
tron in a solid will leave behind a hole that thus exerts an attra
tive for
eon its neighboring ele
trons, leading to a 
loud of opposite 
harged parti
les around itand thus to a s
reening of the parti
le. This s
reening of the parti
le leads to a shiftin the ex
itation energies and one refers to the parti
le and its s
reening together as aquasiparti
le. The shifted energy spe
trum is then attributed to this quasiparti
le, whi
hhas the advantage that one 
an still think about it in terms of a single parti
le pro
ess.A TDDFT ex
hange and 
orrelation kernel now has to full�ll two fun
tions, �rst it shouldtransform the Kohn-Sham single parti
le response into the response of quasiparti
les andse
ond it has to a

ount for the a
tual two body intera
tion between the ele
tron andthe hole, i.e. the ex
iton. It has been shown [28℄ that one 
an split up the fxc into twoparts

fxc = f (1)
xc + f (2)

xc (2.71)where f (1)
xc a

ounts for the quasiparti
le e�e
t and f (2)

xc for the ex
itoni
 e�e
ts.The quasiparti
le formed by the s
reening of the hole is des
ribed within many-body
27



perturbation theory (MBPT) by the quasiparti
le equation
[h0(r1) + VH(r1)]φi(r1) +

∫

dr2Σ(r1, r2, Ei)φi(r2) = Eiφi(r1) (2.72)where Σ(r1, r2, Ei) is the so 
alled self energy that a

ounts for the many-body e�e
tsand is the key quantity for whi
h Hedin's equations [94℄ are formulated. The 
entral ideais, instead of 
onsidering the bare Coulomb intera
tion v, one should formulate the selfenergy in terms of the s
reened potential W de�ned as
W (1, 2) =

∫

d3ǫ−1(1, 3)v(3, 2) (2.73)where ǫ−1 is the time ordered s
reening
ǫ−1(1, 2) =

δVtot(1)

δVper(2)
. (2.74)This leads to a set of �ve self 
onsistent equations (
.f App. E) for the Green's fun
tion.These equations are routinely solved within the GW approximation for the self energywhi
h together with the quasiparti
le equation (2.72) gives the quasiparti
le energies andwavefun
tions that 
an be used to 
onstru
t a response fun
tion. It turns out that inmany pra
ti
al 
ases the quasiparti
le e�e
t amounts only to a shift of the 
ondu
tionstates in the band stru
ture, whi
h suggest that a 
al
ulation of the a
tual quasiparti
lee�e
t 
an be 
ir
umvented by just shifting the Kohn-Sham spe
trum by the appropriatevalue. Indeed, it has been shown also for the 
ase of se
ond order response [67℄, thatthe appli
ation of su
h a s
issors shift 
an reprodu
e the spe
tra. Therefore, one doesnot 
onsider the exa
t form of f (1)

xc , nor approximations to it, but either assumes thequasiparti
le e�e
t to be appropriately a

ounted for by shifting of the 
ondu
tion statesor uses the results of a quasiparti
le 
al
ulation. Nevertheless, the simple s
heme ofshifting the 
ondu
tion states has some impli
ations for our formalism when we 
onsiderthe opti
al limit (
.f. Chap. 4 ).2.4.5 Ex
itonsEx
itoni
 e�e
ts, being two parti
le pro
esses, are 
orre
tly des
ribed by the Bethe-Salpeter equation (BSE), whi
h gives the many-body two parti
le 
orrelation fun
tion
L. This quantity is 
losely related to the two body Green's fun
tion by its de�nition [95℄

iL(1, 2, 3, 4) = G(1, 2)G(3, 4) −G2(1, 3, 2, 4). (2.75)Thus, the two parti
le 
orrelation fun
tion L des
ribes those parts of two parti
le pro-
esses that go beyond their independent propagation that is represented by GG. Inmany-body perturbation theory, this quantity is also de�ned as the variation of the one
28



parti
le Green's fun
tion under the presen
e of a perturbing potential
L(1, 2, 3, 4) = −i G(1, 2)

Vper(3, 4)
(2.76)while the single parti
le G is determined by the Dyson equation

G−1(1, 2) = G−1
H (1, 2) − Vper(1, 2) − Σ(1, 2) (2.77)where Σ is the self energy and GH the Hartree Green's fun
tion [95, 96℄. Combining thetwo equations yields the Bethe-Salpeter equation in the form [97℄

iL(1, 2, 3, 4) = G(1, 3)G(4, 2)+
∫

d5678G(1, 5)G(6, 2) [v(5, 7)δ(5, 6)δ(7, 8) + Ξ(5, 6, 7, 8)] L(7, 8, 3, 4)
(2.78)where the many-body intera
tion kernel has been de�ned as

Ξ(5, 6, 7, 8) = i
δΣ(5, 6)

δG(7, 8)
. (2.79)The similarity between the Bethe-Salpeter equation (2.78) and the TDDFT Dyson equa-tion (2.40) 
an be used by exploiting the fa
t that the density response fun
tion is thetwo point diagonal of the two body 
orrelation fun
tion:

χρρ(1, 2) =
δρ(1)

Vper(2)
= −i δG(1, 1+)

Vper(2, 2+)
= L(1, 1+, 2, 2+) . (2.80)In [96℄ it is shown how one obtains from this an exa
t expression for the two body
orrelation 
ontribution to fxc that 
an be linearized to yield

f (2)
xc (1, 2) =

∫

d3456P−1
0 (1, 3)G(3, 4)G(5, 3)W (4, 5)G(4, 6)G(6, 5)P−1

0 (6, 2) (2.81)where P−1
0 is the independent quasiparti
le polarizability and W the s
reened potential.This kernel has been shown to yield results for the absorption of solids that are almostidenti
al with the Bethe-Salpeter result. There are di�erent ways to derive this kernel,
.f. [25�29℄, ea
h giving essentially the same result.The main advantage of TDDFT with respe
t to BSE is that it deals only with 2-pointquantities, that are numeri
ally represented by two dimensional matri
es, instead of 4-point quantities requiring mu
h more 
omputational ressour
es. Implementations of theEq. (2.81), that has been named the NANOQUANTA kernel, have however turned outto require 
omputational e�ort that is 
lose to the one required to solve the BSE. Thisis partly due to the fa
t that for BSE there exist well optimized methods of 
al
ulationbut also due to the 
omplex stru
ture of the kernel. Therefore, a drasti
ally simpli�ed
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kernel of the form.
fxc(r1, r2) = − α

4π|r1 − r2|
and fxc(q + G) = − α

|q + G|2 (2.82)has been proposed [98℄. The motivation for su
h a formulation is to expli
itly introdu
ethe long-range intera
tion, while α is a priori a parameter. One 
an, however, motivatethis form of a kernel from the exa
t expression of Eq. (2.81) by 
onsidering the limitingbehaviour of its 
onstituents as q → 0. One �nds that in this limit P−1
0 ∼ 1/q2 and

G ∼ q while from the de�nition of the s
reening follows W ∼ ǫ−1
∞ /q2. This behaviouryields indeed the form of Eq. (2.82) as a reasonable approximation for the opti
al limitof the NANOQUANTA kernel. It does however also indi
ate that α ∼ ǫ−1

∞ , whi
h hasbeen 
on�rmed by systemati
ally 
omparing BSE results with results obtained with thiskernel [99℄.This kernel has been shown to reprodu
e results obtained with the Bethe-Salpter equa-tion on a qualitative and quantitative level. Indeed, the agreement 
an be viewed asremarkable given its simpli
ity and the 
omputational 
ost saved with respe
t to theNANOQUANTA kernel or the BSE. Its downside, however, is the fa
t that α is a prioria parameter and 
an only be determined by 
omparison with a BSE result, thus 
om-prising either its e�
ien
y or the ab initio 
hara
ter of the 
al
ulation. Nevertheless, inthis work I will use this kernel for the 
al
ulation of the se
ond order response a

ordingthe se
ond order TDDFT Dyson like equation (2.47), be
ause in this 
ase its downside issomewhat less important. In most 
ases here we rely on established results from the lin-ear 
ase, where the value of α has already been 
on�rmed by a BSE 
al
ulation. But evenif su
h values are unknown, performing �rst a linear BSE 
al
ulation to determine themdoes not 
onsiderably in
rease the 
omputational 
ost, sin
e the se
ond order 
al
ulationis already orders of magnitude larger than a linear BSE one.
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3 Ma
ros
opi
 response and lo
al �eldsIn the previous 
hapter I have shown how one 
an use time-dependent perturbation theorytogether with density-fun
tional-theory to obtain the se
ond order mi
ros
opi
 response.To be able to interpret and predi
t experimental results, it is however important to be ableto 
onne
t these mi
ros
opi
 quantities to the ma
ros
opi
 world of the laboratory. Thedi�eren
e between these two responses 
omes from the fa
t that the 
harge distributionindu
ed by the light �eld polarizes the 
rystal and thus indu
es an ele
tri
 �eld thatin turn modi�es the 
harge distribution. Therefore the ma
ros
opi
 and mi
ros
opi
responses di�er depending on the inhomogeneity of the system.The 
onne
tion between the mi
ros
opi
 and ma
ros
opi
 quantities is made by meansof a spatial average over a distan
e that is large 
ompared with the latti
e parameter a,following the argumentation of Ehrenrei
h [100℄, I will �rst show how su
h an average istaken and then pro
eed to relate the mi
ros
opi
 quantities to responses to ma
ros
opi
�elds. 13.1 Ma
ros
opi
 averageThe mi
ros
opi
 potentials 
onsidered in Chap. 2.3 
an be represented in momentumspa
e as
V (r, ω) =

∑

qG

VG(q, ω)ei(q+G)r. (3.1)A ma
ros
opi
 average now should be done by averaging over those parts of its de
om-position that are periodi
 with respe
t to the latti
e. We therefore rewrite Eq. (3.1) toyield expli
itly these 
omponents
V (r, ω) =

∑

q

eiqr
∑

G

VG(q, ω)eiGr =
∑

q

eiqrV (q, r, ω) (3.2)where
V (q, r, ω) =

∑

G

VG(q, ω)eiGr (3.3)1A mathemati
ally more systemati
 way of of obtaining ma
ros
opi
 relations form mi
ros
opi
 quan-tities is taken by homogenization theory, where one expands all �elds in powers of a/λ, where λis the wavelength of the light �eld [101℄. The advantage, apart from mathemati
al rigour, is thatthis approa
h also gives information about the 
orre
tions to the average, i.e. higher terms in theexpansion. 31



is the latti
e periodi
 part that has to be averaged. Integrating over the unit 
ell volumeyields the ma
ros
opi
 
omponent VM (q, ω) of the potential
VM (q, ω) =

1

Ωc

∫

drV (q, r, ω) =
∑

G

VG(q, ω)
1

Ωc

∫

dreiGr = V0(q, ω). (3.4)Thus the ma
ros
opi
 average amounts to 
onsidering only the G = 0 Fourier 
omponentof the �eld. In an intuitive physi
al pi
ture this means that the 
omponents with G 6= 0are os
illating too fast to have in�uen
e on the ma
ros
opi
 average.3.2 Ma
ros
opi
 responseThe 
entral quantity in opti
al measurements is the ma
ros
opi
 polarization P

∂t1P(1) = j(1) . (3.5)Its expansion in terms of the ma
ros
opi
 total �eld de�nes the ma
ros
opi
 linear andnon-linear sus
eptibilities:
P(1) = χM (1, 2)Etot(2) + χM (1, 2, 3)Etot(2)Etot(3) + ... (3.6)where the mi
ros
opi
 total �eld 
ontains the applied external �eld and 
ontributionfrom the indu
ed polarization of the system due to this perturbation. It is the e�e
tof the indu
ed �eld that makes the di�eren
e between the ma
ros
opi
 and mi
ros
opi
response and it is thus the main 
on
ern of this 
hapter.To des
ribe nonlinear opti
al experiments it is elementary to be able to distinguish be-tween 
ontributions a

ording to their order in an expansion in terms of the total �eldin Eq. (3.6), e.g. the ma
ros
opi
 polarization
P = P(1) + P(2) + ... (3.7)and we will �nd that the separation of orders in this expansion is not trivially obtainedfrom the mi
ros
opi
 formulation, be
ause one has to 
onsider 
arefully how the external�eld indu
es a �eld in the medium thus giving rise to �nite polarization. Starting pointare the Maxwell equations
∇ · B = 0 ∇× H − ∂tD = 4πj

∇ · E = ρ ∇× E + ∂tB = 0
(3.8)where we will negle
t the magnetization and use H = B. These Maxwell equations aretrue for the total �eld

Etot = Eext + Eind . (3.9)
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It follows the wave equation:
∇×∇× Etot + ∂t

2Etot = −4π∂tjtot . (3.10)Per de�nition the 
urrent is linked to the polarization via the time derivative thus it isthis quantity where the de�nitions of the sus
eptibilities are made. The total 
urrent 
anbe written as jtot = jext +jind. Considering only the external �eld, the Maxwell equationsread:
∇ ·B = 0 ∇× B− ∂tEext = 4πjext

∇ · Eext = ρext ∇×E + ∂tB = 0
(3.11)and the 
orresponding wave equation is

∇×∇× Eext + ∂t
2Eext = −4π∂tjext . (3.12)Using the linearity of the Maxwell equations a similar equation follows for the indu
ed�eld. Introdu
ing the operator

O = ∇×∇× • + ∂t
2• (3.13)we 
an write it as

Eind = −4πO−1∂tjind . (3.14)In terms of response theory we 
an formulate the perturbations of the indu
ed 
urrentas
∂tj

(1)
ind(1) =

∫

d2χ(1, 2)Eext(2) (3.15)
∂tj

(2)
ind(1) =

∫

d2d3χ(1, 2, 3)Eext(2)Eext(3) . (3.16)This 
an also be regarded as de�nition of the response fun
tion χ to the external �eld.They 
an be derived from quantum me
hani
al perturbation theory and thus 
an beobtained from the quantum me
hani
al groundstate2. We are, however, interested in theresponses of the indu
ed 
urrent to the total �eld, i.e. we would like to 
al
ulate responsefun
tions π like
∂tj

(1)
ind(1) =

∫

d2π(1, 2)Etot(2) (3.17)
∂tj

(2)
ind(1) =

∫

d2d3π(1, 2, 3)Etot(2)Etot(3) . (3.18)2Del Sole and Fiorino [102℄ point out that this is only true for groundstates where retardation e�e
tsof the ele
trons are a

ounted for. Sin
e this is usually not the 
ase, one has to in
lude them in theperturbation, whi
h I do later on in Eq. (3.39). 33



A mi
ros
opi
 formulation of these responses however, is not feasible be
ause the indu
ed�eld is a priori unknown and therefore we need to express them in terms of the knownquantities χ.To �rst order the relation between the two �elds is
Etot(1) = Eext(1) + Eind(1) = Eext(1) − 4πO−1(1)∂tjind(1)

=

[

δ(1, 2) − 4πO−1(1)

∫

d2χ(1, 2)

]

Eext(2) . (3.19)This equation be
ome 
onsiderably more readable if we use the ma
ros
opi
 averagea

ording to [100℄ as sket
hed in se
tion 3.1, thus passing from the general variable 1 to
k = q + G and taking only the G = 0 
omponent:3

Etot(q) =
[

1 − 4πO−1(q)χ(q,q)
]

Eext(q). (3.20)This is only possible be
ause the external �eld is assumed to have only ma
ros
opi

omponents [102℄, i.e. on the right hand side of the equation we do take the average ofa produ
t. Inversion yields
Eext(q) =

[

1 − 4πO−1(q)χ(q,q)
]−1

Etot(q) (3.21)Now, we would like to relate the se
ond order response fun
tions. The de�nition (3.16)
an be averaged similarly as in Eq. (3.21)
∂tj

(2)
ind(q1) =

∑

q2q3

χ(q1,q2,q3)Eext(q2)Eext(q3)where again the fa
t that the external �eld is ma
ros
opi
 was used. The external �elds
an be expressed in terms of the averaged total �eld Etot a

ording to Eq. (3.21) and wehave
∂tj

(2)
ind(q1) =

∑

q2q3

χ(q1,q2,q3)
[

1 − 4πO−1(q2)χ(q2,q2)
]−1

Etot(q2) × (3.22)
×
[

1 − 4πO−1(q3)χ(q3,q3)
]−1

Etot(q3) (3.23)This is a ma
ros
opi
ally averaged response to the total �elds and thus 
an be regardedas the ma
ros
opi
ally averaged version of Eq. (3.18) and by 
omparison we 
an de�nethe ma
ros
opi
 average of π:
〈πGG1G2(q1,q2,q3)〉 =

χ(q1,q2,q3)
[

1 − 4πO−1(q2)χ(q2,q2)
]−1 [

1 − 4πO−1(q3)χ(q3,q3)
]−1 (3.24)3Here and in the following, mi
ros
opi
 quantities that are written to depend only on q are assumedto be taken for G = 0, e.g. χ(q,q) = χG=0,G′=0(q,q). Also the frequen
y dependen
e is notexpli
itly given to keep the equations readable but is always impli
itly a

ounted for, be
ause ea
h

qi is asso
iated with the frequen
y ωi.34



Here we see how the indu
ed �elds enter into the ma
ros
opi
ally averaged response.Clearly the indu
ed polarization, a

ounted for by χ(q,q, ) in the equation, modi�es these
ond order mi
ros
opi
 response under the average.To relate the two se
ond order responses we had to use only the linear relation betweenthe �elds, be
ause taking into a

ount the indu
ed �eld to se
ond order would yield termsof higher than se
ond order, when inserted into Eq. (3.16). However, an important pointof the treatment is that, when 
onsidering the �rst order indu
ed 
urrent, as in thede�nition (3.15), this argument does not hold, sin
e we would like to a

ount for allse
ond order terms to a
hieve a proper ordering of the 
ontributions in Eq. (3.7) andin general the relation between total and external �eld 
ontains higher order terms. Tose
ond order we have
Etot = Eext + E

(1)
ind + E

(2)
ind. (3.25)That means, if in the 
ontext of se
ond order perturbation, we want to express the �rstorder response

∂tj
(1)
ind(q) = χ(q,q)Eext(q) (3.26)in terms of the total �eld, we have to take into a

ount the nonlinear relation Eq. (3.25)between the two �elds. Thus we have

∂tj
(1)
ind(q) = χ(q,q)

[

Etot(q) −E
(1)
ind(q) − E

(2)
ind(q)

]

= χ(q,q)
[

Etot(q) + 4πO−1(q)∂tj
(1)
ind(q) + 4πO−1(q)∂tj

(2)
ind)(q)

] (3.27)Solving for j
(1)
ind yields the �rst order 
urrent in terms of the total �eld

∂tj
(1)
ind(q) =

[

1 − 4πχ(q,q)O−1(q)
]−1

χ(q,q)Etot+

+ 4π
[

1 − 4πχ(q,q)O−1(q)
]−1

χ(q,q)O−1(q)∂tj
(2)
ind

(3.28)While the relation between the indu
ed 
urrent and perturbing �eld, Eq. (3.26), is linear,the relation between the indu
ed 
urrent and the total �eld, Eq. (3.27) is not, sin
e inthis 
ontext we want to keep all se
ond order 
ontributions. Thus when expressing Eq.(3.26) in terms of the total �eld, we �nd that this �rst order expression of the 
urrent
ontains higher order terms.Now we 
an write down the proper ma
ros
opi
 expansion of the polarization to se
ond
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order:
P = P(1) + P(2)

= − 1

ω2

{

∂tj
(1)
ind(q) + ∂tj

(2)
ind(q)

}

= − 1

ω2

{

[

1 − 4πχ(q,q)O−1
]−1

χ(q,q)Etot+

+
(

1 + 4π
[

1 − 4πχ(q,q)O−1
]−1

χ(q,q)O−1
)

∂tj
(2)
ind

}

= − 1

ω2

{

[

1 − 4πχ(q,q)O−1
]−1

χ(q,q)Etot +
[

1 − 4πχ(q,q)O−1
]−1

∂tj
(2)
ind

}(3.29)where in the last step we used
1 + 4π

[

1 − 4πχ(q,q)O−1(q)
]−1

χ(q,q)O−1(q) =
[

1 − 4πχ(q,q)O−1(q)
]−1

. (3.30)Comparing Eq. (3.29) with the general expansion Eq. (3.6) and using Eq. (3.24) forse
ond order the indu
ed 
urrent we have the ma
ros
opi
 sus
eptibilities
ǫM = 1 − 4π

ω2

[

1 − 4πχ(q,q)O−1(q)
]−1

χ(q,q) (3.31)
χ

(2)
M (q,q′,q′′) = −4π

ω2
M(q) χ(q,q′,q′′) N(q′) N(q′′) (3.32)where we have introdu
ed the two very similar de�nitions

M(q) =
[

1 − 4πχ(q,q)O−1(q)
]−1 (3.33)

N(q) =
[

1 − 4πO−1(q)χ(q,q)
]−1 (3.34)These are the general relations between the mi
ros
opi
 and ma
ros
opi
 responses,where we have not made any assumptions on the nature of the external �eld ex
ept thatit is ma
ros
opi
. In the 
ontext of TDDFT it is however important to noti
e that it
an give only the longitudinal mi
ros
opi
 result whereas TD
urrentDFT 
an deal withtransverse �elds as well. I will dis
uss this point in more detail in Chap. 4.3.3 Ma
ros
opi
 response from TDDFTTo make the link between the s
alar density response and our general result Eqs. (3.31)and (3.32) it is useful to 
onsider the operator O(q) and its inverse in more detail. Fouriertransform of the de�nition (3.13) yields

O(q, ω) = q× q×−ω21 (3.35)
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Using the longitudinal and transverse proje
tors and their identity property4
PL(q) =

q

q

q

q
, P T (q) = −q× q×

q2
, PL(q) + P T (q) = 1 (3.36)this operator 
an be expressed as

O(q, ω) = −ω2PL(q) − (ω2 − q2)P T (q) (3.37)and the inverse is readily obtained using the orthogonality of the proje
tors
O−1(q, ω) = − 1

ω2
PL(q) − 1

ω2 − q2
P T (q). (3.38)With this expression we 
an 
onsider the longitudinal and transverse part separately.Following the argumentation of Del Sole and Fiorino [102℄ we note that a mi
ros
opi
response obtained from TDDFT 
an only a

ount for longitudinal perturbations and itis therefore ne
essary to de
ompose the indu
ed �eld into its longitudinal and transverse
omponents and de�ne the perturbing �eld as

Eper(1) = Eext(1) + ET
ind(1) = Etot(1) − EL

ind(1) (3.39)so that the perturbation 
ontains the transverse part of the indu
e �eld. It is the potentialof this perturbing �eld in terms of whi
h the mi
ros
opi
 response in Chap. 2.3 isformulated.Now, to make the 
onne
tion between this mi
ros
opi
 response and the ma
ros
opi
diele
tri
 tensor ǫM (Eq. (3.31), we de�ne the response fun
tion α for a perturbing �eldthat 
ontains the transverse part of the indu
ed �eld:
∂tj

(1)
ind(1) =

∫

d2α(1, 2)(Eext(2) + ET
ind(2)) =

∫

d2α(1, 2)(Eper(2)) . (3.40)This �eld has only ma
ros
opi
 
ontributions (a

ording to [102℄) and 
an thus be ex-pressed in terms of the external �elds as
Eper(q) =

[

1 − 4πO−1
T (q)χ(q,q)

]

Eext(q) . (3.41)By 
omparison with the de�nition (3.15) of χ we have:
χ(q,q) =

[

1 + 4πα(q,q)O−1
T (q)

]−1
α(q,q) . (3.42)

4The symbols P L and P T for the proje
tors should not be 
onfused with the one for polarization P.37



Using the expression for χ(q,q) in our result for the ma
ros
opi
 diele
tri
 tensor Eq.(3.31) yields
ǫM =1 − 4π

ω2

[

1 − 4πχ(q,q)O−1(q)
]−1

χ(q,q)

=1 − 4π

ω2

[

1 − 4π
[

1 + 4πα(q,q)O−1
T (q)

]−1
α(q,q)O−1(q)

]−1
×

×
[

1 + 4πα(q,q)O−1
T (q)

]−1
α(q,q)

=1 − 4π

ω2

[

1 − 4πα(q,q)O−1
L (q)

]−1 [
1 + 4πα(q,q)O−1

T (q)
]

×

×
[

1 + 4πα(q,q)O−1
T (q)

]−1
α(q,q)

=1 − 4π

ω2

[

1 − 4πα(q,q)O−1
L (q)

]−1
α(q,q)where we have used

[

1 − 4πα(q,q)
[

1 + 4πα(q,q)O−1
T (q)

]−1 O−1
]−1

=

[

1 − 4πα(q,q)O−1
L (q)

]−1 [
1 + 4πα(q,q)O−1

T (q)
]

.Now identifying O−1
L (q) = − 1

ω2
q
q

q
q (Eq. (3.38)) and de�ning α̃ = − 1

ω2α we �nd
ǫM = 1 + 4π

[

1 − 4πα̃(q,q)
q

q

q

q

]−1

α̃(q,q) (3.43)
= 1 + 4πα̃(q,q)

[

1 − 4π
q

q

q

q
α̃(q,q)

]−1 (3.44)whi
h is exa
tly the result shown in [102℄. The quasi-sus
eptibility α̃ reads
α̃(q1,q2, ω) = − 1

ω2
[χjj(q1,q2, ω) − ρ(q1)δq1q2] . (3.45)We note that the 
onvenient rede�nition of the response fun
tion α→ α̃ means that weare 
onsidering a response of the polarization, rather than ∂tj, sin
e the two are related bya fa
tor of ω2. The di�eren
e is that ∂tj features in the wave equation (3.10), thus whenregarding the response fun
tions as a means to 
lose Maxwell's equations it is 
onvenientto keep this quantity, while when we are interested in the polarization and its expansionof the perturbing �eld (Eq. (3.6)) this rede�nition is more 
onvenient.Using the same de
omposition of the perturbing �eld as in Eq. (3.40) we de�ne these
ond order response to the perturbing �eld, now dire
tly for the polarization

P
(2)
ind(1) =

∫

d2d3α̃(1, 2, 3)Eper(2)Eper(3). (3.46)
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With this de�nition, we obtain instead of the se
ond order ma
ros
opi
 sus
eptibility asin Eq. (3.32), the form
χ

(2)
M (q1,q2,q3) = − 4π

[

1 − 4πα̃(q1,q1)P
L(q1)

]−1
α̃(q1,q2,q3)×

×
[

1 − 4πPL(q2)α̃(q2,q2)
]−1 [

1 − 4πPL(q3)α̃(q3,q3)
]−1

.
(3.47)The advantage of this formulation is that now we 
an use the result of the se
ond orderperturbation theory of Chap. 2.2. Comparing the de�nition Eq. (3.46) and the se
ondorder mi
ros
opi
 perturbation response Eq. (2.17) yields the mi
ros
opi
 expression for

α̃(2)

α̃(q1,q2,q3) = − i

ω1ω2ω3

[

1

2
χjρ(q1,q3)δq2q3 + χρj(q2,q3)δq1q3 +

1

2
χjjj(q1,q2,q3)

]

.(3.48)The linear responses χjρ and χρj vanish in the opti
al limit and are therefore negle
tedin the following.The link to TDDFT 
an now be made by 
onsidering only the longitudinal 
omponentof the the sus
eptibility. Formally one has to proje
t along the dire
tions of the q:
χLLL

M (q1,q2,q3) = PL(q1)χ
(2)
M (q1,q2,q3)P

L(q2)P
L(q3)

= − 4πPL(q1)
[

1 − 4πα̃(q1,q1)P
L(q)

]−1
α̃(q1,q2,q3)×

×
[

1 − 4πPL(q2)α̃(q2,q2)
]−1

PL(q2)×
×
[

1 − 4πPL(q3)α̃(q3,q3)
]−1

PL(q3) .

(3.49)The longitudinal proje
tions of the linear prefa
tors of α̃(2) take a very simple form if we
onsider the identities
[

1 − 4πα̃(q,q)PL(q)
]−1

= 1 + 4π
α̃(q,q)

1 − 4πα̃(q,q)LL
PL(q) (3.50)

[

1 − 4πPL(q)α̃(q,q)
]−1

= 1 + 4πPL(q)
α̃(q,q)

1 − 4πα̃(q,q)LL
. (3.51)In Eq. (3.49) these terms are multiplied with longitudinal proje
tors from the left andright respe
tively, so that there are three fa
tors of the same form

PL(q) + 4πPL(q)
α̃(q,q)

1 − 4πα̃(q,q)LL
PL(q) =

PL(q)

1 − 4πα̃(q,q)LL
. (3.52)We note that this is equal to the two sided longitudinal proje
tion of the ma
ros
opi
diele
tri
 tensor (Eq.(3.44))

ǫLL
M = PL(q)ǫMPL(q) =

PL(q)

1 − 4πα̃(q,q)LL
(3.53)39



so that the longitudinal proje
tion of the ma
ros
opi
 se
ond order sus
eptibility reads
χ(2),LLL(q1,q2,q3) = −4πǫLL

M (q1)ǫ
LL
M (q2)ǫ

LL
M (q3)P

L(q)α̃(q1,q2,q3)P
L(q2)P

L(q3)(3.54)whi
h leaves the proje
tion of the mi
ros
opi
 response fun
tion to be 
onsidered.As already noted in Chap. 2.2 the longitudinal proje
tion of the 
urrent is related to thedensity via the 
ontinuity equation (2.20)
q · ĵ(q, ω) = q PL(q)̂j(q, ω) = iωρ̂(q, ω). (3.55)Using this relation to repla
e the proje
tion of the 
urrent operators in the longitudinalproje
tion of α̃(q1,q2,q3) (Eq. (3.48)) we �nd
PL(q1)α̃(q1,q2,q3)P

L(q2)P
L(q3) =

1

2

1

(q2 + q3)q2q3
χρρρ(q1,q2,q3) (3.56)whi
h is the quantity that is the result of the se
ond order TDDFT Dyson equation. The�nal result for the longitudinal proje
tion of the ma
ros
opi
 se
ond order sus
eptibilityis thus, now also a

ounting for the frequen
y dependen
e

χ(2),LLL(ω2 + ω3, ω2, ω3,q2 + q3,q2,q3) = −2πχρρρ(ω2 + ω3, ω2, ω3,q2 + q3,q2,q3)

(q2 + q3)q2q3
×

× ǫLL
M (ω2 + ω3,q2 + q3)ǫ

LL
M (ω2,q2)ǫ

LL
M (ω3,q3)

.(3.57)The simple TDDFT result χρρρ therefore needs to be modulated by three di�erent di-ele
tri
 fun
tions in order to obtain the ma
ros
opi
 sus
eptibility. Moreover, here thelimitation of TDDFT be
ome appearant, sin
e it 
an only provide the longitudinal 
om-ponent of the sus
eptibility. However, as far as opti
al pro
esses, i.e. when q → 0, are
on
erned this limitation does not pose a problem to the appli
ability of TDDFT. Thequantity q de�nes the propagation dire
tion of the �eld with respe
t to whi
h the terms'longitudinal' and 'transverse' are de�ned. Therefore, when one 
onsiders the limit ofvanishing q the longitudinal and transverse dire
tions loose their de�nition and any di-re
tion is equivalent [103℄. It is only in this limit that TDDFT 
an be applied rigorously.In Chap. 4 I will further dis
uss this limit and it range of validity as well as e�e
ts thato

ur beyond it.It is interesting to note that Eq. (3.57) is similar to a result obtained by Armstrong andBloembergen [30℄ in the Lorentz model. They �nd for 
ubi
 symmetry a relation betweenthe ma
ros
opi
 and mi
ros
opi
 sus
eptibilities of the form
χ(2)(ω1 + ω2) = Nβ(ω1 + ω2)

ǫ(ω1 + ω2) + 2

3

ǫ(ω1) + 2

3

ǫ(ω2) + 2

3
(3.58)where β is their mi
ros
opi
 sus
eptibility.40



3.3.1 Components of χ(2)Having established that with TDDFT we 
an only get a s
alar response, the problemarises that the se
ond order sus
eptibility χ(2) has in general 27 
omponents, whi
h haveto be obtained from this s
alar quantity. First, we note that for se
ond harmoni
 gen-eration only 18 of the 27 
omponents are independent, sin
e they are symmetri
 underex
hange of the two perturbing �elds, i.e. χijk = χikj. While this is true for all 
rystalsystems, the symmetry operations of parti
ular 
rystal systems also 
ontribute to a re-du
tion of the independent non-zero 
omponents. Table 3.1 lists these 
omponents bypoint group.We note that 11 out of the 32, do not yield any se
ond harmoni
 generation due tothe inversion symmetry. For 4 others there is only one independent non-zero 
omponentand thus they pose no problem for a s
alar response 
al
ulation. It 
an, however, not beobtained from any density response, but the polarization dire
tions of the applied �eldsmust be 
onsidered. A 
areful analysis of how the polarization enters into the equationsyields not only the independent 
omponents of those 5 point groups but also a way toobtain the 
omponents of χ(2) for point groups where more than one 
omponent is inde-pendently non-zero.To this end we 
onsider the longitudinal proje
tion of χ(2) like it appears in the ma
ro-s
opi
 averaged se
ond order response, Eq (3.57). The longitudinal proje
tions are pro-je
tions parallel to the progation dire
tions and 
an thus also be interpreted as proje
tionsalong the polarization of longitudinal �elds. Introdu
ing the polarization ve
tors n1 and
n2 of the perturbing �eld, we 
an write the longitudinal proje
tion of the ma
ros
opi
se
ond order sus
eptibility (3.57) as5

(n1 +n2)χ
(2)n1n2 = ǫLL

M (n1 +n2, 2ω)ǫLL
M (n1, ω)ǫLL

M (n2, ω)χρρρ(n1 +n2,n1,n2, 2ω, ω)(3.59)whi
h reads in terms of the tensor and ve
tor 
omponents
∑

ijk

(n1i
+n2i

)χijkn1j
n2k

= ǫM (n1+n2, 2ω)ǫLL
M (n1, ω)ǫLL

M (n2, ω)χρρρ(n1+n2,n1,n2, 2ω, ω).(3.60)This means that in order to obtain single tensor 
omponents we have to perform TDDFT
al
ulations along di�erent polarization dire
tions.There are four di�erent kind of tensor 
omponents a

ording to their index stru
ture:the diagonals χ(2)
ααα, two di�erent blo
k diagonals χ(2)

ααβ and χ(2)
βαα and the o� diagonals

χ
(2)
αβγ . We also remember that for se
ond harmoni
 generation the last two indi
es areinter
hangeable, i.e. χ

(2)
αβγ = χ

(2)
αγβ. As mentioned, depending on the symmetry, some5Sin
e χ(2) only depends on two di�erent q we will 
all them in the following q1 and q2 instead of q2and q3. 41



# Symbol Components Bravais1 1 18 all Tri
lini
2 1 0 �3-5 2 8 xyz, xxy, yxx, yyy, yzz, yzx, zzy, zxy Mono
lini
6-9 m 9 xxx, xyy, xxz, yyz, yyx,
zxx, zyy, zzz, zzx10-15 2/m 0 �16-24 222 3 xyz, yzx, zxy Orthorhombi
25-46 mm2 5 xxz, yyz, zxx, zyy, zzz47-74 mmm 0 �75-80 4 4 xyz = −yxz, xxz = yyz, zxx = zyy, zzz Tetragonal81-82 4 4 xyz = yxz, xxz = −yyz, zxx = −zyy, zxy83-88 4/m 0 �89-98 422 1 xyz = −yxz99-110 4mm 3 xxz = yyz, zxx = zyy, zzz111-122 42m 2 xyz = yxz, zxy123-142 4/mmm 0 �143-146 3 6 xxx = −xyy = −yyx, xyz = −yxz, xxz = yyz
yyy = −yxx = −xxy, zxx = zyy, zzz

Trigonal147-148 3 0 �149-155 32 2 xxx = −xyy = −yyx, xyz = −yxz156-161 3m 4 xxz = yyz, zxx = zyy, yyy = −yxx = −xxy, zzz162-167 32/m 0 �168-173 6 4 xyz = −yxz, xxz = yyz, zxx = zyy, zzz Hexagonal174 6 2 xxx = −xyy = −yyx, yyy = −yxx = −xxy175-176 6/m 0 �177-182 622 1 xyz = −yxz183-186 6mm 3 xxz = yyz, zxx = zyy, zzz187-190 6m2 1 yyy = −yxx = −xxy192-194 6/mmm 0 �195-199 23 1 xyz = yxz = zyx Cubi
200-206 2/m3 0 �207-214 432 0 �215-220 43m 1 xyz = yxz = zyx221-230 m3m 0 �Table 3.1: Components of the se
ond order sus
eptibility χ(2) for se
ond harmoni
 generation.After Y. R. Shen [3℄ (p. 27)
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omponents 
an be zero, whi
h fa
ilitates the solution of Eq. (3.60) for some symmetrygroups. This also means that for some of the tensor 
omponents, it might be ne
essaryto do a 
al
ulation with di�erent polarizations, depending on the symmetry group of the
rystal.Components χααα : For 
omponents of this form it is su�
ient to perform a 
al
ulationwith the polarizations in n1 = n2 = eα, where eα is the unit ve
tor in the 
artesiandire
tion α). Eq. (3.60) thus reads:
χααα = ǫM(eα, 2ω)χρρρ(eα + eα, eα, eα)ǫM (eα, ω)ǫM (eα, ω) (3.61)This is obviously true for any symmetry.Components χααβ The 
omponents χααβ 
an be obtained by a 
al
ulation with thepolarizations n1 = eα and n2 = eβ. With this 
hoi
e of polarization dire
tions Eq. (3.60)reads
χααβ + χββα = ǫM (eα + eβ, 2ω)χρρρ(eα + eβ, eα, eβ)ǫM (eα, ω)ǫM (eβ, ω). (3.62)For most 
rystal symmetries only one of the 
omponents χααβ and χββα is non-zero, sothat su
h a 
al
ulation dire
tly yields the non-zero 
omponent. The ex
eption are thesymmery groups '1', '2' and 'm', for whi
h one has to perform an additional TDDFT
al
ulations, with the polarizations n1 = eα and n2 = −eβ yielding Eq. (3.60) as
χααβ − χββα = ǫM (eα − eβ, 2ω)χρρρ(eα − eβ , eα,−eβ)ǫM (eα, ω)ǫM (−eβ, ω). (3.63)Adding or subtra
ting this from Eq. (3.62) yields the single 
omponent.Components χαββ : Components of this shape are less easily obtained, sin
e one has touse n1 = eα and n2 = 1/

√
2(eα + eβ) whi
h yields

1

2
χααβ +

1

2
χαββ +

1 +
√

2

2
χββα +

1 +
√

2

2
χβββ =

ǫM (n1 + n2, 2ω)χρρρ(n1 + n2,n1,n2)ǫM (n1, ω)ǫM (n2, ω).

(3.64)So depending on whi
h of the other 
omponents are simultaneously non-zero one hasto 
ombine this with an additional 
al
ulation. For example, for the groups '6mm', '6','4mm', '4', '4' and 'mm2' the χβββ and χββα 
omponents are zero, so that one has to
ombine this 
al
ulation only with the χααβ 
al
ulation to obtain the χαββ 
omponent.For other symmetry groups their are more dependent 
omponents, so that one has to
ombine several 
al
ulations.Components χαβγ : For the o� diagonal elements there are symmetry groups ('4m3','23', '622' and '422' ) where they are the only non-zero 
omponents. Then, it is su�
ient43



to do a single 
al
ulation with n1 = n2 = eα + eβ + eγ , yielding dire
tly the 
omponent
χαβγ = ǫM (2(eα + eβ + eγ), 2ω)×

× χρρρ(2(eα + eβ + eγ), eα + eβ + eγ , eα + eβ + eγ)ǫM (eα + eβ + eγ , ω)ǫM (eα + eβ + eγ , ω)(3.65)In the 
ase of the symmetry groups '1', '2','32', '3', '42m', '4', '222 and '6' there is nogeneral appli
able 
ombination. Instead, one has to de
ide for ea
h symmetry whi
h isthe best way to obtain the 
omponent.For example for the χxyz 
omponent of group '3' is useful to 
hoose n1 = ex + ey + ezand n2 = ey whi
h yields
χxyz+χxxx = ǫM (eα+2eβ+eγ , 2ω)χρρρ(eα+2eβ+eγ , eα+eβ+eγ , eβ)ǫM (eα+eβ+eγ , ω)ǫM (eβ, ω)(3.66)From whi
h one has to substra
t χxxx, i.e. the result of a 
al
ulation of the form χαααto obtain the 
omponent.In another example, for '42m' group, the 
hoi
e n1 = n2 = ex + ey + ez yields

8χxyz + 4χzyx = A (3.67)while a 
al
ulation with the polarizations n1 = ex −ey +ez and n1 = ex +ey +ez yields
4χxyz + 4χzyx = B (3.68)These 
an be 
ombined to yield the 
omponents via
B −A = 4χxyz and 2B −A = 4χzyx. (3.69)Along these lines one 
an obtain the polarization dire
tions for the o�-diagonal 
ompo-nents of the other symmetry groups as well.The above outlined 
hoi
es for n1 and n2 for whi
h one performs the TDDFT are notne
essarily unique to obtain the wanted 
omponents, there might be other, more pra
ti
al
ombinations, depending on the spe
i�
 
omponent on wants to obtain.3.3.2 Ma
ros
opi
 IPA responseThe result from this se
tion, that in order to obtain the se
ond ma
ros
opi
 sus
eptibilityone has to multiply the averaged mi
ros
opi
 se
ond order density response fun
tion withthree linear diele
tri
 fun
tions merits some 
loser 
onsideration. Namely, I want to showwhat this means for the independent parti
le approximation, whi
h is the one that hasbeen used in the literature so far.In this approximation one lets fxc = 0 as well as negle
ts lo
al �elds by 
onsidering a

χ
(2)
0 with G2 = G1 = G3 = 0, so that the solution of the TDDFT Dyson equation (2.54)44



reads
χρρρ(q1 + q2,q1,q2) = [1 + χρρ(q1 + q2,q1 + q2)v(q1 + q2)]χ

(0)
ρρρ(q1 + q2,q1,q2)×

× [1 + v(q1)χρρ(q1,q1)] [1 + v(q2)χρρ(q2,q2)] (3.70)where the linear χρρ obey the linear Dyson like equation (2.40) in the same approximation
χρρ(q,q) = χ(0)

ρρ (q,q) + χ(0)
ρρ (q,q)v(q)χρρ(q,q). (3.71)Now, we note that within this approximation

[

ǫLL(q)
]−1

= 1 + v(q)χρρ = 1 + χρρv(q) (3.72)so that the mi
ros
opi
 response χρρρ reads
χρρρ(q1 + q2,q1,q2) =

[

ǫLL(q1 + q2)
]−1

χ(0)
ρρρ(q1 + q2,q1,q2)

[

ǫLL(q1)
]−1 [

ǫLL(q2)
]−1

.(3.73)This form of the mi
ros
opi
 response, inserted in the ma
ros
opi
 sus
eptibility (3.57),yields
χ

(2),LLL
IPA (q1 + q2,q1,q2) = − 2π

(q1 + q2)q1q2
χ(0)

ρρρ(q1 + q2,q1,q2) (3.74)Thus, within the independent parti
le approximation, the ma
ros
opi
 sus
eptibility isidenti
al with the mi
ros
opi
 response to a non-intera
ting potential. While, this resultagrees with physi
al intuition, it is not an obvious one when one 
onsiders the twoequations, the TDDFT Dyson like equation (2.47) and the ma
ros
opi
 relation (3.57).In this sense, it is at least a 
he
k of 
onsisten
y of the theory.
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4 Opti
al limitFor ele
tromagneti
 radiation the relation between light momentum ve
tor q and photonenergy ω in va
uum is [104℄
q =

ω

c
. (4.1)Visible light, as used in experiments like absorption, se
ond harmoni
 generation orgenerally valen
e band spe
tros
opes, 
arries energy in the order of 1 or 10 eV whi
h
orresponds to a light wave ve
tor of q ∼ 10−3 Å−1 or a wavelength of λ ∼ 2π103 Å.On the other hand the typi
al length s
ale of the 
ell parameters in solids is of the orderof 1 Å, whi
h means that the light wave is almost 
onstant over the length of the 
ell.Therefore one 
onsiders for these kind of pro
esses the long wavelength limit, i.e. λ→ ∞,or equivalently q → 0. This limit is also referred to as the opti
al limit.This limit means that we are 
onsidering a �eld that does not propagate, whi
h impliesthat the longitudinal and transverse dire
tion are not longer distinguishable sin
e theyare de�ned with respe
t to the propagation dire
tion [103℄. It does however not meanthat the �eld has no dire
tion and the polarization is still de�ned. These points areimportant for our 
al
ulations, be
ause they mean on the one hand that the longitudinaland transverse response are equivalent in the opti
al limit, while the polarization whi
hdetermines the tensor 
omponents is well de�ned.The limit is obtained formally by letting q → 0 in the response fun
tions. There ishowever an important di�eren
e how this limit is 
arried out whether one 
onsiders the
urrent response or the density response. To illustrate this I will here 
onsider the linear
ase. The linear mi
ros
opi
 quasi-sus
petibility α̃ (3.45) depends on χjj:

α̃(q1,q2, ω) = − 1

ω2
[χjj(q1,q2, ω) − ρ(q1)δq1−q2] . (4.2)and it 
an be shown [105℄ that1

lim
ω→0

χjj ∼ ω2 and lim
q→0

χρρ ∼ q2 (4.3)(for G = 0) whi
h means that the limit q → 0 of α̃ is well behaved. On the other hand,when one wants to use TDDFT one has to expresses α̃ in terms of the density responsea

ording to the relation [107, 108℄
χρρ(q,q, ω) =

1

ω2
qχjj(q,q, ω)q (4.4)1Note that there are numerous mathemati
al subtleties involved in this limit, 
.f. [106℄46



whi
h also means one 
onsiders only longitudinal �elds and hen
e
χLL

jj =
ω2

q2
χρρ(q,q, ω) . (4.5)In this 
ase the limit of α̃ is pathologi
al be
ause the denominator tends to zero in thesame way as the numerator. To avoid this problem one has to expand χρρ in terms of qso that the leading term, whi
h is proportional to q2 
an
els the denominator so that thelimit 
an be taken safely. The same holds for the 
ase ω → 0 for the 
urrent response,but whi
h poses no problem in a χρρ 
al
ulation.The same reasoning holds for χρρρ and χjjj with the limiting behaviour

lim
q→0

χρρρ ∼ q3 and lim
ω→0

χjjj ∼ ω3 (4.6)where the the q3 dependen
e of χρρρ 
an
els with the prefa
tor 1/q1q2q3 in Eq. (3.57).In a TDDFT 
al
ulation the basi
 quantity is the non-intera
ting response fun
tion χ(0)
ρρρas given by Eq. 2.27. Using the real spa
e representation for the density operator,Blo
h fun
tions for the single orbitals |nk〉 and subsequently passing to momentum spa
ea

ording to App. B yields the expli
it expression for χ(0)

ρρρ:
χ

(2)
0 (q′ + q′′ + G,q′ + G′,q′′ + G′′, ω, ω) =

2

V

∑

n,n′,n′′,k

〈nk| − ei(q
′+q′′+G)r|nk+q′+q′′〉

(En,k − En′,k+q′+q′′ + 2ω + 2iη)
×

[

(fn,k − fn′′,k+q′)
〈n′k+q′+q′′ |ei(q′′+G′′)r′ |n′′k+q′〉〈n′′k+q′ |ei(q′+G′)r′′ |nk〉

(En,k − En′′,k+q′ + ω + iη)
+

+ (fn′,k+q′+q′′ − fn′′,k+q′)
〈n′k+q′+q′′ |ei(q′′+G′′)r′ |n′′k+q′〉〈n′′k+q′ |ei(q′+G′)r′′ |nk〉

(En′′,k+q′ −En′,k+q′+q′′ + ω + iη)
+

+ (fn,k − fn′′,k+q′′)
〈n′k+q′+q′′ |ei(q′+G′)r′ |n′′k+q′′〉〈n′′k+q′′ |ei(q′′+G′′)r′′ |nk〉

(En,k − En′′,k+q′′ + ω + iη)
+

+(fn′,k+q′+q′′ − fn′′,k+q′′)
〈n′k+q′+q′′ |ei(q′+G′)r′ |n′′k+q′′〉〈n′′k+q′′ |ei(q′′+G′′)r′′ |nk〉

(En′′,k+q′′ − En′,k+q′+q′′ + ω + iη)

](4.7)I will now give some details about how the opti
al limit of this quantity is obtained viaperturbation theory in q. The fully general χ(0)
ρρρ has q dependen
e in the o

upationnumbers, the energies and the wavefun
tions. We will hen
eforth only 
onsider semi
on-du
tors (and insulators) and therefore negle
t the momentum dependen
e of the Fermifa
tors, i.e. fn,k+q → fn. The energies and wavefun
tions however have to be expanded
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in terms of q. It turns out that we basi
ally have to perform k · p perturbation theoryto se
ond order.4.1 perturbation theory in qWe have formulated the se
ond order sus
eptibility χ(2)
0 in terms of Blo
h fun
tions |φn,k〉.These generally depend on q, if we make the substitution k → k+q. In the limit q → 0this means that we have to formulate a perturbation series in q for Blo
h fun
tions. Westart from the eigenvalue equation

H|φn,k+q〉 =

[

1

2
p2 + Vnl

]

|φn,k+q〉 (4.8)where p = i∇r and Vnl is a generally non-lo
al latti
e periodi
 potential. De
omposingthe Blo
h fun
tions into |φn,k+q〉 = ei(k+q)r|un,k+q〉 we have
[

−1

2
k2 − (k + q) · p +

1

2
(k + q)2 +

1

2
p2 + e−i(k+q)rVnle

i(k+q)r

]

|un,k+qv〉 . (4.9)Now, we expand the exponential as a series of q and rearrange the terms a

ording theorder of q:
hk+q =

1

2
p2 − k · p + e−ikrVnle

ikr+

+ k · q − q · p + [e−ikrVnle
ikr, iqr]+

+
1

2
q2 + iqre−ikrVnle

ikriqr − 1

2
(qr)2e−ikrVnle

ikr − e−ikrVnle
ikr 1

2
(qr)2+

+O(3) .

(4.10)This Hamiltonian is readily transformed into a Hamiltonian for the full Blo
h fun
tionsby multiplying with eikr, so that we have the perturbation Hamiltonians for the q per-turbation series:
H

(1)
k

= −q · p + [Vnl, iqr] = iq[Hk, r] = qv (4.11)
H

(2)
k =

1

2
q2 +

1

2
[qr, [Vnl,qr]] = − i

2
[qv,qr] (4.12)where we have used [p2, r] = ip and de�ned the generalized momentum operator

v = p + [Vnl, r] (4.13)that is also 
alled velo
ity operator. These two Hamiltonians are used within timedependent perturbation theory, 
.f. App. C, to expand the matrix elements and energydenominators.
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4.1.1 q → 0 for χ
(2)
0We now expand χ(2)

0 (q+G,q′ +G′,q′′ +G′′) in terms of q to 
arry out the limit q → 0.Generally χ(2)
0 is a third rank tensor in terms of the G ve
tors. For third rank tensorswe 
lassify four di�erent partshead: G = G′ = G′′ = 0 (4.14)wings: 









G = G′ = 0 and G′′ 6= 0

G = G′′ = 0 and G′ 6= 0

G′ = G′′ = 0 and G 6= 0

(4.15)fa
es: 









G = 0 and G′ 6= 0, G′′ 6= 0

G′ = 0 and G 6= 0, G′′ 6= 0

G′′ = 0 and G 6= 0, G′ 6= 0

(4.16)body: G 6= 0, G′ 6= 0, G′′ 6= 0 (4.17)We have to treat ea
h of these 
ases separately, be
ause the leading term of the head isproportional to q3 while the fa
es and wings have a q and q2 dependen
e respe
tively. Thisis due to the fa
t that for �nite G the leading order of an expansion in q is independentof q. In pra
ti
e this means that for the fa
es we have to expand up to the �rst order,for the wings to se
ond order and for the head to third order in q. For se
ond harmoni
generation χ(2)
0 is symmetri
 under the ex
hange q′ + G′ ↔ q′′ + G′′ so that we have intotal 6 di�erent terms, of whi
h the body does not need any expansion in q. The exa
texpressions for all these terms are rather lengthy and we refer to App. C for details.Here we report only the result for the head, see Tab. 4.1, sin
e it yields the dominating
ontribution in most of our 
al
ulations.Here we have given the full expression, in pra
ti
al 
al
ulations however, the terms
ontaining the 
ommutator turn out the be negligible and thus are not 
onsidered.This expression is equivalent to the result of Hughes and Sipe [48℄, who are also usingthe length gauge and that is frequently used for IPA 
al
ulations also by other authors[50�58℄. The di�eren
e between the two forms is that they did not 
onsider non-lo
alityof the potential. Another frequently employed formulation is in terms of the velo
ityoperator [69℄ Eq. (4.13). The 
onne
tion between the two formulations is made via theequation

〈nk|ir|n′k〉 =
〈nk|v|n′k〉
Enk − En′k′

. (4.19)The use of the length gauge has the additional 
ompli
ation that the matrix elementof r is ill de�ned in a 
rystal, whi
h has to be 
arefully a

ounted for when using thisrepresentation.
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χ(0),head
ρρρ (q,q1,q2) =

2

V

∑

n,n′,n′′,k

[

(fn,k − fn′′,k)

(∆nn′ + 2ω̃)(∆nn′ + ω̃)
+

(fn′,k − fn′′,k)

(∆nn′ + 2ω̃)(∆n′′n′ + ω̃)
+

+ 2
(fn,k − fn′,k)(∆n′′n + ∆n′′n′)

∆2
nn′(∆nn′ + 2ω̃)

− (fn,k − fn′,k)(∆n′′n + ∆n′′n′)

2∆2
nn′(∆nn′ + ω̃)

]

×

× 〈nk| − i(q1 + q2)r|n′k〉
[

〈n′k|iq2r|n′′k〉〈n′′k|iq1r|nk〉 + 〈n′k|iq1r|n′′k〉〈n′′k|iq2r|nk〉
]

+

+
(fn,k − fn′,k)

(∆n′n + ω̃)(∆nn′ + ω̃)
×

× 〈n′′k|i(q1 + q2)r|nk〉
[

〈nk|iq1r|n′k〉〈n′k|iq2r|n′′k〉 + 〈nk|iq2r|n′k〉〈n′k|iq1r|n′′k〉
]

+

+

[

8(fn,k − fn′,k)

∆2
nn′(∆nn′ + 2ω̃)

− (fn,k − fn′,k)

2∆2
nn′(∆nn′ + ω̃)

]

×

× 〈nk| − i(q1 + q2)r|n′k〉
[

〈n′k|iq2r|nk〉∆q1

nn′ + 〈n′k|iq1r|nk〉∆q2

nn′

]

+

+
(fn,k − fn′,k)∆n′′n

∆nn′(∆nn′ + ω̃)(∆n′n + ω̃)
×

×
[

−〈nk|iq1r|n′k〉〈n′k|iq2r|n′′k〉〈n′′k|i(q1 + q2)r|nk〉+
+ 〈nk|i(q1 + q2)r|n′k〉〈n′k|iq2r|n′′k〉〈n′′k|iq1r|nk〉−
− 〈nk|iq2r|n′k〉〈n′k|iq1r|n′′k〉〈n′′k|i(q1 + q2)r|nk〉+
+ 〈nk|i(q1 + q2)r|n′k〉〈n′k|iq1r|n′′k〉〈n′′k|iq2r|nk〉

]

+

+

[

(fn,k − fn′,k)

∆2
nn′(∆nn′ + ω̃)

− 4(fn,k − fn′,k)

∆2
nn′(∆nn′ + 2ω̃)

]

×

× 〈nk|i(q1 + q2)r|n′k〉
[

〈n′k| −
i

2
[q1r,q2v]|nk〉 + 〈n′k| −

i

2
[q2r,q1v]|nk〉

]

+

+
(fn,k − fn′,k)

2∆2
nn′(∆nn′ + ω̃)

×

+
[

〈nk|[(q1 + q2)v, iq2r]|n′k〉〈n′k|iq1r|nk〉 + 〈nk|[(q1 + q2)v, iq1r]|n′k〉〈n′k|iq2r|nk〉−
− 〈nk|i(q1 + q2)r|n′k〉〈n′k|[q2v, iq1r]|nk〉 − 〈nk|i(q1 + q2)r|n′k〉〈n′k|[q1v, iq2r]|nk〉

](4.18)Table 4.1: Head of the leading order of the k · p expanded χ
(0)
ρρρ, where we have used theshorthands ω̃ = ω + iη, ∆q

nn′ = 〈nk|qv|nk〉 − 〈n′

k|qv|n′k〉 and ∆nn′ = Enk
− En′

k
.
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4.2 S
issors shiftAs mentioned in Chap. 2.4.4 the appli
ation of the s
issors shift to the band stru
turehas some non-trivial impli
ations in the se
ond order 
ase [109℄. This is due to the fa
tthat the s
issors operator is a non-lo
al operator and thus does not 
ommute with theposition operator, similar as the non-lo
al potential. Formally the s
issors operator reads
S = ∆

∑

n

(1 − fn)|φn〉〈φn| (4.20)where ∆ is the energy shift, the sum runs over all states n and a �nite band gap isassumed. The groundstate Hamiltonian of the k · p perturbation theory reads under
onsideration of the s
issors operator
HSC =

1

2
p2 + Vnl + S (4.21)and the approximation is that this Hamiltonian has the same eigenstates as the onewithout the s
issors operator

HLDA =
1

2
p2 + Vnl (4.22)whi
h is the Hamiltonian we used in Eq. (4.8). Here the name HLDA refers to the fa
tthat it gives the wavefun
tions that we obtain from the DFT groundstate 
al
ulation. The
onvenien
e of the s
issors approximation is that we 
an keep using these wavefun
tionseven if the energies are shifted. This means that the matrix elements of the positionoperator do not 
hange regardless of whi
h Hamiltonian is used. The matrix elementsof the velo
ity operator, however, do 
hange under the s
issors transformation, sin
e thes
issors operator is non-lo
al S:

vSC = p + [Vnl + S, r]. (4.23)Using the relation between velo
ity and position matrix elements Eq. (4.19) and the fa
tthe position matrix elements are invariant, we 
an write
〈nk|r|n′k〉 =

〈nk|v|n′k〉
ELDA

nk − ELDA
n′k′

=
〈nk|vSC |n′k〉
ESC

nk −ESC
n′k′

(4.24)where ESC
nk and ELDA

nk are eigenenergies of the 
orresponding groundstate Hamiltonians,i.e. Eqs. (4.21) and (4.22) respe
tively. From Eq. (4.24) follows the relation
〈nk|vSC |n′k〉 = 〈nk|v|n′k〉 ESC

nk − ESC
n′k′

ELDA
nk −ELDA

n′k′

, (4.25)whi
h trivially true for a zero s
issors shift, i.e. ESC
nk = ELDA

nk , but 
an yield important
hanges in the response fun
tions for large ∆. 51



The non-lo
ality of S means it behaves the same as Vnl in our perturbation theory andthus the 
ommutator terms in Eq. (4.18) 
ontain this operator as well. While we havenumeri
ally veri�ed that the potential 
ommutators [r,p + [r, Vnl]] are negligible, we
annot make any general assumptions for [r, [r, S]] and thus have to take them fullyinto a

ount. Their 
ontribution 
an be reexpressed in terms of shifted and non-shiftedenergies, similar to Eq. (4.25), but the algebra is somewhat lengthy. Therefore we givethe �nal result, together with the k · p expressions for the wings and fa
es in appendixC.4.3 Exa
t opti
al transitionsThe expansion of χ(0)
ρρρ in terms of q to the leading order 
orresponds to the dipoleapproximation, i.e. q → 0. A

ording to Eq. (4.1), however, every �nite frequen
y
orresponds to a �nite q. This means on the one hand, that the dipole approximationis only stri
tly valid for the stati
 
ase ω → 0, but on the other hand it provides analternative way to obtain χ(0)

ρρρ by 
al
ulating it at the a
tual q 
orresponding to �nitefrequen
ies. Su
h a treatment has two advantages. First one does not have to rely onthe lengthy perturbation theory and se
ond it provides a way to go beyond the dipoleapproximation by 
onsidering the a
tual q dependen
e, 
.f. Se
. 5.As mentioned these q are small so a numeri
al s
heme has to be devised that 
an a

ountfor these very small di�eren
e in k-points, sin
e q = k′ − k. The sum over k-points inEq. (4.7) represents a dis
retization of the Brillouin zone into sample k-points at whi
h
χ

(0)
ρρρ is evaluated. This dis
retization is usually done homogeneously, e.g. using theMonkhorst-Pa
k s
heme [110℄, but it 
an also be 
arried out by sampling with randompoints. When one is interested in �nite q 
al
ulations this sampling has to be doneunder the restri
tion that di�eren
es between the resulting k-points 
orrespond to thedesired q, 
.f. Fig. 4.1. This means that for very small q a homogeneous samplingis not very e�
ient be
ause one has to work with a mu
h higher density of samplingpoints than ne
essary for 
onvergen
e of the sum. Indeed, assuming that the size of theBrillouin zone is ∼Å−1 one needs 109 sampling points to be able to treat q in the orderof 10−3Å−1, while 
onvergen
e is usually a
hieved already with 103 points. Thereforeone has to use a non-homogeneous sampling of the Brillouin zone, 
.f. Fig. 4.1. Theadvantage of su
h a sampling is that the a
tual value of q is not determined a posteriorias done for homogeneous sampling, but one 
an 
hoose basi
ally arbitrary values for q.Moreover a non-homogeneous sampling 
an easily 
ombined with a random samplingte
hnique.
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qk

k′

k′

k′

k′

Figure 4.1: k-points sampling s
hemes. Top left: Commonly used homogeneous grid withrestri
ted set of possible q ve
tors. Top right: Random sampling, where �nite q 
al
ulations arenot possible, be
ause all di�eren
es between k-points are random. Bottom left: Inhomogeneoussampling done by shifting the homogeneous set by the target q. Bottom right: Randomsampling 
an be used by treating a set that 
ontain for ea
h random point one shifted by q.In pra
ti
e one has to 
al
ulate matrix elements of the form
ρ̃ k′n′

kn (q + G) =

∫

drφkn(r)e−i(q+G)rφk′n′(r). (4.26)so it is 
onvenient to work with two di�erent sets of Kohn-Sham wavefun
tions, one
orresponding to k and one for k′. This means that they 
an be generated separately,one shifted by q with respe
t to the other. On the other hand this means that theimplementation has to be able to manage two di�erent k-point sets. Sin
e χ(0)
ρρρ dependson two di�erent q, it turns out that one has to treat four di�erent sets of k-points, 
.f.Fig. 4.2. Inspe
tion of the q dependent expression of χ(0)

ρρρ Eq. (4.7) shows that onea
tually needs to 
al
ulate �ve di�erent kinds of matrix elements 
orresponding to the53



transitions shown in Fig. 4.2.
q2

q 1
+
q 2q1

k k + q2

k + q1 k + q1 + q2

Figure 4.2: multigrids
heme

Another downside of this approa
h is the need for high numeri
ala

ura
y. When used to 
al
ulate responses near the opti
allimit, it must still hold that the χ(0)
ρρρ is proportional to q3. Sin
e

χ
(0)
ρρρ is 
onstru
ted by produ
ts of three matrix elements, theseprodu
t have to be proportional to q3. If we think about thematrix elements as expanded in terms of q, i.e.

ρ̃(q) = ρ̃(0) + ρ̃(1)q + ρ̃(2)q2 + ... (4.27)it is appearant that in order to have a produ
t of three of theseproportional to q3 one has to 
al
ulate ea
h matrix element withan a

ura
y of the same order. This 
an be a serious numeri
al
hallenge when q is very small, e.g. for q ∼ 10−3 we need ana

ura
y up to 10−9 or 6 orders of magnitude, whi
h is just thelimit of single ma
hine pre
ision.This approa
h is in a way a numeri
al brute for
e s
heme where the exa
t 
an
ellationa
hieved in the perturbative expansion has to be rea
hed numeri
ally. One 
an, however,use 
ertain symmetry properties of the response fun
tion to improve the 
onvergen
e evenin this s
heme. In parti
ular time-reversal and, in 
ase, inversion symmetry are 
ru
ialfor 
onvergen
e. Figure 4.3 illustrates whi
h transitions are equivalent to a (k, n) →
(k + q, n′) transition under these symmetries. The idea is to hardwire these symmetriesinto the numeri
al implementation by rewriting the equation for χ(0)

ρρρ under 
onsiderationof these symmetry operations and then add it to the original expression. That is to saythat if T is the un
hanged summand of χ(0)
ρρρ (Eq. (4.7)) and we apply analyti
ally asymmetry operation i on this term giving T i, we 
an implement χ(0)

ρρρ in the form
χ(0)

ρρρ =
2

V

∑

nn′n′′k

1

2

[

T + T i
]

. (4.28)Like this we 
an make sure that we in
lude 
an
ellations between terms due to thesymmetry i that we might have missed otherwise be
ause of the �nite k-point samplinget
.4.3.1 Time reversalUnder timereversal symmetry for wavefun
tions and eigenvalues of band n at point kholds:
φnk(r) = φ∗n−k Enk = En−k (4.29)
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inversion

time reversal

inversion + time reversal

k

k+q-k-q

-k

q

n′

nFigure 4.3: S
hemati
 view of the di�erent transitions in terms of whi
h we reformulate χ(0)
ρρρ.This means that we 
an write the matrix element ρ̃nk,n′k+q as

ρ̃nk,n′k+q(q + G) =

∫

dre−i(q+G)rφ∗nk(r)φn′k+q(r) (4.30)
=

∫

dre−i(q+G)rφn−k(r)φ∗n′−k−q(r) (4.31)
=

∫

dre−i(q+G)rφ∗n′−k−q(r)φn−k(r) (4.32)
= ρ̃n′−k−q,n−k(q + G) (4.33)from whi
h we dedu
e that the transition (n′,−k − q) → (n,−k) is the time reversedtransition of (n,k) → (n′,k + q), 
.f. Fig. 4.3.To make use of this property we take the full expression of χ(0)

ρρρ (Eq. (4.7)) and repla
ein the sum n↔ n′ and rede�ne the k-point parameter as
−K = k+q1+q2 k+q1 = −K−q2, k+q2 = −K−q1, k = −K−q1−q2(4.34)and sum over K in stead of k. We use these substitutions in χ(0)

ρρρ and then apply the timereversal property Eq. (4.30) for the matrix elements and Enk = En−k for the energies.
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We obtain:
χ(0),timerev

ρρρ =
2

V

∑

nn′n′′k

〈nk|e−i(q1+q2+G)r|n′k+q1+q2
〉

(−Enk + En′k+q1+q2 + 2ω + 2iη)
×

×
[

(fn − fn′′)
〈n′k+q1+q2

|ei(q1+G1)r|n′′k+q2
〉〈n′′k+q2

|ei(q2+G2)r|nk〉
(−Enk + En′′k+q2 + ω + iη)

+

+ (fn − fn′′)
〈n′k+q1+q2

|ei(q2+G2)r|n′′k+q1
〉〈n′′k+q1

|ei(q1+G1)r|nk〉
(−Enk + En′′k+q1 + ω + iη)

+

+ (fn′ − fn′′)
〈n′k+q1+q2

|ei(q2+G2)r|n′′k+q1
〉〈n′′k+q1

|ei(q1+G1)r|nk〉
(−En′′k+q1 + En′k+q1+q2 + ω + iη)

+

+(fn′ − fn′′)
〈n′k+q1+q2

|ei(q1+G1)r|n′′k+q2
〉〈n′′k+q2

|ei(q2+G2)r|nk〉
(−En′′k+q2 + En′k+q1+q2 + ω + iη)

](4.35)whi
h is the usual χ(0)
ρρρ (Eq. (4.7)) with negative energy di�eren
es and we have repla
ed

K by k for 
onvenien
e. There is also a timereversal property for the k dependen
e of theFermi fa
tors. Here we just suppress this dependen
e, sin
e we deal with semi-
ondu
tors.4.3.2 InversionInversion symmetry is a symmetry property of the 
rystal system and does not hold ingeneral. However, to treat Sili
on we might want to in
lude this symmetry propertyexpli
itly, be
ause it is the 
ru
ial operation that lets χ(0)
ρρρ vanish in the dipole approxi-mation.For any symmetry operation R we have ([111℄):

ρ̃nRk,n′R(k+q)(q + G) = ρ̃nk,n′k+q(R−1(q + G)) . (4.36)We 
onsider the inversion operation
R =





−1 0 0
0 −1 0
0 0 −1



 = R−1 (4.37)and we have for the matrix elements:
ρ̃n−k,n′−k−q(q + G) = ρ̃nk,n′k+q(−q − G)) . (4.38)
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The energies do not 
hange under the symmetry operation, i.e. Enk = En−k. We rewrite
χ

(0)
ρρρ with the same substitutions Eqs. (4.34) and then use the symmetry property Eq.(4.38) of the system. Subsequently repla
ing K by k and expressing the result in termsof the matrix elements of the un
hanged χ(0)

ρρρ yields
χ(0),inv

ρρρ =
2

V

∑

nn′n′′k

(

〈nk|e−i(q1+q2+G)r|n′k+q1+q2
〉
)∗

(−Enk + En′k+q1+q2 + 2ω + 2iη)
×

×



(fn − fn′′)

(

〈n′k+q1+q2
|ei(q1+G1)r|n′′k+q2

〉
)∗ (

〈n′′k+q2
|ei(q2+G2)r|nk〉

)∗

(−Enk + En′′k+q2 + ω + iη)
+

+ (fn − fn′′)

(

〈n′k+q1+q2
|ei(q2+G2)r|n′′k+q1

〉
)∗ (

〈n′′k+q1
|ei(q1+G1)r|nk〉

)∗

(−Enk + En′′k+q1 + ω + iη)
+

+ (fn′ − fn′′)

(

〈n′k+q1+q2
|ei(q2+G2)r|n′′k+q1

〉
)∗ (

〈n′′k+q1
|ei(q1+G1)r|nk〉

)∗

(−En′′k+q1 + En′k+q1+q2 + ω + iη)
+

+(fn′ − fn′′)

(

〈n′k+q1+q2
|ei(q1+G1)r|n′′k+q2

〉
)∗ (

〈n′′k+q2
|ei(q2+G2)r|nk〉

)∗

(−En′′k+q2
+ En′k+q1+q2

+ ω + iη)



(4.39)whi
h is exa
tly the starting term Eq. (4.7) with a sign 
hange in the energies and allmatrix elements 
omplex 
onjugated.4.3.3 Time reversal and InversionTo in
lude both symmetry operations we need to obtain the time reversed version of
χ

(0),inv
ρρρ . To this end we take Eq. (4.39) and use the time reversal property Eq. (4.30)for the matrix elements and Enk = En−k for the energies. Then, repla
ing n ↔ n′ andmaking the substitions
−k−q1−q2 = K −k−q1 = K+q2, −k−q2 = K+q1, −k = +K+q1+q2(4.40)

57



yields
χρρρ

(0),inv+timerev =

2

V

∑

nn′n′′k

(

〈nk|e−i(q1+q2+G)r|n′k+q1+q2
〉
)∗

(Enk − En′k+q1+q2 + 2ω + 2iη)
×

×



(fn − fn′′)

(

〈n′k+q1+q2
|ei(q1+G1)r|n′′k+q2

〉
)∗ (

〈n′′k+q2
|ei(q2+G2)r|nk〉

)∗

(Enk −En′′k+q2 + ω + iη)
+

+ (fn − fn′′)

(

〈n′k+q1+q2
|ei(q2+G2)r|n′′k+q1

〉
)∗ (

〈n′′k+q1
|ei(q1+G1)r|nk〉

)∗

(Enk − En′′k+q1 + ω + iη)
+

+ (fn′ − fn′′)

(

〈n′k+q1+q2
|ei(q2+G2)r|n′′k+q1

〉
)∗ (

〈n′′k+q1
|ei(q1+G1)r|nk〉

)∗

(En′′k+q1 − En′k+q1+q2 + ω + iη)
+

+(fn′ − fn′′)

(

〈n′k+q1+q2
|ei(q1+G1)r|n′′k+q2

〉
)∗ (

〈n′′k+q2
|ei(q2+G2)r|nk〉

)∗

(En′′k+q2
− En′k+q1+q2

+ ω + iη)





(4.41)
whi
h is the un
hanged term with 
omplex 
onjugated matrix elements.All these terms 
an be dire
tly in
luded in the implementation by writing the termsunder the same sum

χ(0)
ρρρ =

2

V

∑

nn′n′′k

1

4

[

T + T timerev + T inv + T inv+timerev
] (4.42)where T i are the summands of the respe
tive terms Eqs. (4.35),(4.39) and (4.41). Of
ourse in 
ase the system does not have inversion symmetry the last two terms 
annotbe in
luded.4.4 Transverse vs. Longitudinal responseFor 
al
ulations with q values that are �nite but still in the opti
al range the statementthat transverse and longitudinal response 
oin
ide is not true anymore, sin
e it relieson the limit q → 0. Still the dipole limit is frequently employed to 
al
ulate opti
alspe
tra in a �nite frequen
y range. The underlying assumption is that the longitudinaland transverse responses do not di�er substantially in this range. Sin
e it is an importantassumption made in the formalism presented in this work, it should be to some extentquanti�ed. The usual density matrix elements 
learly 
annot give the transverse response,instead one has to employ matrix elements of the 
urrent operator. This amounts to
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al
ulating a χ(0)
jj :

χ
(0)
jj (q + G, ω) =

2

V

∑

knn′

(fnk − fn′k+q)
j̃nk,n′k+q(q + G)̃j∗nk,n′k+q(q + G)

(ǫnk − ǫn′k+q + ω + iη)
(4.43)where we have de�ned the 
urrent matrix elements j̃ as

j̃nk,n′k+q(q + G) =

∫

dre−i(q+G)rφ∗nk(r)
1

2i
(∇−∇†)φn′k+q(r) (4.44)This is a 3× 3 tensor in the (
artesian) 
omponents of the ve
tor operator and it 
an beused to 
onstru
t the full diele
tri
 tensor (in the independent parti
le approximation)via

ǫ(q, ω) = 1 − 4π

ω2
χ

(0)
jj (q, ω). (4.45)where we have negle
ted lo
al �eld e�e
ts. This is in prin
iple general if one takes thefull χjj instead of the non-intera
ting one as done in the framework of time dependent
urrent density theory [105, 112�114℄. The development of fun
tionals and kernels thatmake use of the added information 
ontained in the 
urrent density instead of the s
alarele
tron density is still in a very early stage [115℄. One 
an however translate any TDDFTkernel into TD
urrentDFT one by use of the 
ontinuity equation. Then, the two theoriesgive exa
tly the same results for the longitudinal 
omponents of ǫ, while TD
urrentDFTmay or may not 
ontain additional information about the transverse 
omponents. Here,we will however only deal with the independent parti
le approximation, i.e. v+ fxc = 0,where the equivalen
e between the two formulations is trivial.A dire
t 
omparison between longitudinal and transverse 
an be made by 
onsideringthe full diele
tri
 tensor ǫ(q) and de
omposing it into its longitudinal and transverse
onstituents by applying the longitudinal and transverse proje
tors (
.f. Eq. (3.36))

PL(q) =
q

q

q

q
, P T (q) = −q× q×

q2
(4.46)to yield

ǫ(q)LL = PL
ǫ(q)PL

ǫ(q)TT = P T
ǫ(q)P T . (4.47)These terms take on a very simple form when q points in a 
artesian dire
tion, e.g.

q = qex and we 
onsider a system with 
ubi
 symmetry:
ǫ(qex)LL =





ǫxx 0 0
0 0 0
0 0 0



 ǫ(qex)
TT =





0 0 0
0 ǫyy 0
0 0 ǫzz



 (4.48)
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Figure 4.4: Comparison between the longitudinal and ttransversediele
tri
 fun
tion for Si withdi�erent q values (in Bohr−1).where additionally holds ǫyy = ǫzz. Hen
e, in order to 
ompare the longitudinal andtransverse responses of a 
ubi
 system as a fun
tion of q we only need to 
onsider the ǫxxand ǫyy 
omponent of ǫ(qex), i.e. perform a 
al
ulation with q = qex and subsequently
ompare the 
omponents. In Fig. 4.4 su
h a 
omparison is shown for Si. We �nd that inthe opti
al range, i.e. q ≈ 10−3Å−1 the di�eren
e between the two polarization dire
tionsis not dis
ernable. Only at values for q ≈ 10−2Å−1 di�eren
es o

ur. The energy 
arriedby photons with the momentum is however, beyond 100 eV and thus far outside the rangeof valen
e band spe
tros
opy.
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5 Spatial dispersionThe best known feature of se
ond harmoni
 generation is that it vanishes for systems withinversion symmetry, whi
h makes it a very useful symmetry sele
tive tool. The vanishingof se
ond harmoni
 generation is, however, only true in the dipole limit, i.e. q → 0.Sin
e experiments, on the other hand, are usually performed at �nite frequen
ies, thismeans that the a
tual dipole limit is never stri
tly rea
hed and quadrupole 
ontributionsare in prin
iple present in every measurement [116℄. Therefore, when an experiment, e.g.at the surfa
e of a 
entro-symmetri
 material, relies on the fa
t that the bulk does not
ontribute to se
ond harmoni
 generation, it has to be very 
arefully performed in orderto rule out quadrupole response from the bulk. The a
tual importan
e of the quadrupole
ontribution 
ompared with, for example, surfa
e dipole 
ontributions is still a point ofdebate [117, 118℄, but is generally 
onsidered to be substantial [119�123℄. There exist, tomy knowledge, no published attempt at 
al
ulating this 
ontribution within the ab initioframework, although numerous models are frequently employed, 
.f. [124℄.In this 
hapter I will explore the possibility to 
al
ulate se
ond harmoni
 generationbeyond the dipole limit using the fa
ility of the multigrid approa
h des
ribed in Chap.4.3 to treat q-ve
tors of arbitrary length. This gives a

ess to the spatial dispersion ofthe 
rystal that is intimately linked to multipole responses. I will dis
uss the 
on
ept ofspatial dispersion brie�y with examples from linear opti
s and then show how it 
an beused to obtain the quadrupole 
ontributions to se
ond harmoni
 generation.5.1 Linear spatial dispersionSpatial dispersion is the dependen
e of the diele
tri
 fun
tion on the light wave ve
tor[125℄. It originates from the fa
t that the polarization at a point does not only dependon the �eld at this point but also on the �eld in its immediate neighborhood. This radiusof non-lo
ality a is usually very small, in solids it is of the order of the latti
e 
onstant.The amount of spatial dispersion one sees in the response depends on the ratio betweenthe 
hara
teristi
 length a and the wavelength λ of the �eld. In the opti
al limit, whenwe look at very low energeti
 light, this ratio be
omes very small and vanishes in thelimit limλ→∞ or equivalently limq→0. For �nite opti
al frequen
ies it is save to assume[125℄
aq

2π
=
a

λ
≪ 1. (5.1)The fa
t that the spatial dispersion is so small implies that it 
an be negle
ted in most
ases and that in any 
ase its e�e
t will be visible only under spe
ial 
ir
umstan
es. But61



it also allows for an expansion of the diele
tri
 tensor in terms of the wave ve
tor q,be
ause a sharply peaked response in real spa
e is smooth in re
ipro
al spa
e. We writethe expansion as
εij(ω,q) = εij(ω) + γijk(ω)qk + αijkl(ω)qkql + ... (5.2)We note that the zeroth order in q is the usual diele
tri
 tensor with frequen
y dispersion.The higher order terms are the 
ontribution of the non-lo
ality to the full tensor. Thisexpansion is the basis of the des
ription of spatial dispersion, sin
e it allows the dis
ussionin terms of the tensors γijk and αijkl.5.1.1 symmetry properties of tensorsAlthough a 
rystal is not isotropi
 it does have some symmetry properties whi
h a

ordingto von-Neumann's prin
iple also hold for the diele
tri
 tensor ε(ω,q). This means thatfor a given symmetry operation S that leaves the 
rystal un
hanged the tensor must obeythe relation
S−1ε(ω, Sq)S = ε(ω,q). (5.3)Now, if we 
onsider the spe
ial 
ase of a ve
tor qi that is invariant under one, or more,symmetry operations Si of the 
rystal system, i.e.
Siqi = qi (5.4)we 
an use the relation
S−1ε(ω,qi)S = ε(ω,qi). (5.5)whi
h yields a set of equations that express 
onditions on the tensor ε(ω,qi) and uponsolving this set of equations we obtain information on the stru
ture of the tensor. Thatis to say whi
h 
omponents are equal and whi
h vanish. This, however, is not a generalproperty but only holds for the one qi (and its equivalent 
lass) that ful�ls Eq. (5.4).But nevertheless, it 
an be useful information when doing 
al
ulations for experimentsthat only use a few q-dire
tions.When we 
onsider spatial dispersion in opti
s we expand the tensor ε(ω,q) in terms of q
ε(ω,q) =

∑

n

∂(n)ε(ω,q)

∂qn

∣

∣

∣

∣

∣

q0

(q − q0)
n (5.6)by introdu
ing the quantities ∂(n)ε(ω,q)

∂qn

∣

∣

∣

q0

that are rank n tensor (γijk, αijkl in Eq. (5.2))and are independent of q. Therefore, they posses the same symmetry properties as the
rystal system and we 
an use the whole group of symmetry operations asso
iated withthe 
rystal to dedu
e the stru
ture of the expansion tensors, i.e. to redu
e them to their62



dissimilar non-zero 
omponents. A rank n tensor transforms a

ording to ([126, p. 761�℄)
3
∑

i1...in

Sα1i1Sα2i2...Sαninχi1...in = χ̃α1...αN
(5.7)Under the 
onditions that the tensor is invariant under the symmetry operation we have

χ̃α1...αn = χα1...αn (5.8)whi
h yield our set of equations that we 
an use to redu
e the number of 
omponents.When we negle
t spatial dispersion we 
onsider only the zeroth order in the expansion andour diele
tri
 tensor has the properties a rank 2 tensor yields under the transformationwith all 
rystal symmetries, e.g. in the 
ubi
 
ase it is diagonal with all elements equal.The higher order tensors, although invariant under the same symmetries, might however
ontribute 
omponents to the ε(ω,q) that are zero to zeroth order. In an example we
onsider 
ubi
 Sili
on (Oh) where we have γijk = 0 (due to inversion symmetry) and these
ond order tensor redu
es to three 
omponents:
α1 = αiiii α2 = αiijj α3 = αijij (5.9)Most signi�
antly we have for the o� diagonal element xy of the diele
tri
 tensor
εxy(ω,q) = α3(ω)qxqy (5.10)Here, the q-dependen
e be
omes 
lear, be
ause this term is only non-zero if the q has�nite qx and qy 
omponents. Indeed, it is true for any su
h q without any 
ondition onits symmetry properties. We have for the xx-
omponent
εxx(ω,q) = εxx(ω) + α1(ω)qxqx + α2(ω)(qyqy + qzqz) . (5.11)That means to se
ond order the y and z 
omponents of q not only 
ontribute to theresponse in x-dire
tion but their 
ontribution also has a di�erent value than the one in

x-dire
tion.It is important to note that this does not represent symmetry breaking nor does the qintrodu
e anisotropy to the system. Instead we think of spatial dispersion as a way ofprobing the anisotropy of the 
rystal. The expansion simply gives the ordering of thee�e
t of the anisotropy in the di�erent dire
tions. To zeroth order the anisotropy doesnot appear, to �rst order, in the 
ubi
 
ase we do not have any further 
ontribution andto se
ond order the o� diagonals be
ome non-zero and the diagonals 
hange dependingon the dire
tion of q.This is useful for the multi-grid approa
h des
ribed in Chap. 4.3 where, in prin
iple,we 
al
ulate the full ε(ω,q), but having the knowledge of the stru
ture of γ, α et
.we know for whi
h 
omponent we 
an expe
t the largest e�e
ts and whi
h dire
tionsyield equivalent spatial dispersion e�e
ts (up to a 
ertain order). It also tells us whi
h63




omponents we 
an 
al
ulate using TDDFT, i.e. whi
h 
omponents are longitudinalresponses.5.2 SHGSpatial disperion is parti
ularly interesting in the 
ase of se
ond harmoni
 generation,where for systems with inversion symmetry it yields the leading order 
ontribution. Thisis 
ompletely analogous to the linear 
ase where the third rank tensor γijk vanishes, butthe fourth rank tensor αijkl is �nite. The expansion of the se
ond order polarization is
ommonly written as [119, 127, 128℄
P

(2)
i (r, ω) = χijkEj(r)Ek(r) + ΓijklEj(r)∇kEl(r) + .. (5.12)whi
h 
orresponds to an expansion of χ(2) in terms of q

χijk(q, ω) = χijk(ω) + χQ
ijkl(ω)ql + .. (5.13)where we have de�ned the quadrupolar se
ond harmoni
 generation 
oe�
ient χQ 1. Asmentioned before the rank three tensor vanishes for inversion symmetry and for 
ubi
systems the only non-zero 
omponents are

α1 = χQ
iiii α2 = χQ

ijji α3 = χQ
iijj = χQ

ijij (5.14)where in the last line we have used the fa
t that the polarization dire
tions of the applied�elds are inter
hangeable. These 
omponents are analogous to the linear 
ase, only thathere the indi
es have di�erent meaning, i.e. the �rst three are polarization dire
tions andonly the last one is a propagation dire
tion. With these de�nitions one 
an write downthe general 
omponent of χQ as [129℄
χQ

ijkl = α1δijδikδil + α2δilδjk(1 − δij) + α3 ((δijδkl(1 − δik) + (δikδjl(1 − δij)) (5.15)We note that the terms δilδjk, δijδkl and δikδjl are rank four invariant s
alars whi
hleaves them un
hanged under any orthogonal transformation2. This also means thatthey are un
hanged under rotation of the 
oordinate system and hen
e they representthe isotropi
 
ontributions to χQ. These isotropi
 
ontributions do not give any additionalinformation about the symmetry of the system and o

ur only as o�sets in an angulardependent experiment. Therefore we rewrite Eq. (5.15) to separate these 
ontributions
1This de�nition di�ers from Γijkl in the ordering of the indi
es. The latter is used in literature, buthere I 
hoose this de�nition be
ause it is more 
onsistent with the one used in [125℄.2This 
an be seen by applying a transformation T on the tensor δijδkl:

P

ijkl TαiTβjTγkTδlδijδkl =
P

ik TαiTβiTγkTδk =
P

ik T−1
iα TβiT

−1
kγ Tδk = δαβδγδ64



3:
χQ

ijkl = χQ,ai
ijkl + χQ,iso

ijkl (5.16)
= (α1 − α2 − 2α3)δijδikδil + α2δilδjk + α3(δijδkl + δikδjl). (5.17)Hen
e the anisotropi
 part of χQ reads

χQ,ai
ijkl = (α1 − α2 − 2α3)δijδikδil. (5.18)whi
h implies that only 
omponents of the form χQ

iiii have a non-vanishing anisotropi

ontribution.The 
ombination of the tensor 
omponents (α1 − α2 − 2α3) 
an be obtained in themultigrid approa
h des
ribed in Se
. 4.3 by two di�erent longitudinal 
al
ulations:
χρρρ(qex) = α1 (5.19)

χρρρ(q(ex + ey + ez)) = 3α1 + 6α2 + 12α3 (5.20)and the 
ombinations of both yields the anisotropi
 
oe�
ient
χQ,ai

iiii =
3

2
χρρρ(qex) − 1

6
χρρρ(q(ex + ey + ez)). (5.21)While the 
omponent α1 = χQ
iiii 
an be 
al
ulated as a longitudinal response as in Eq.(5.19) the two other 
omponents only appear as sums of the form of Eq. (5.20) inlongitudinal 
al
ulations and 
annot be separated by di�erent 
hoi
es of q. This means,we 
annot 
al
ulate the isotropi
 part for all 
omponents and this puts a serious limit tothis approa
h. Still, we 
an 
al
ulate the isotropi
 part of χQ

iiii 
omponents via,
χQ,iso

iiii = α2 + 2α3 = −1

2
χρρρ(qex) +

1

6
χρρρ(q(ex + ey + ez)). (5.22)5.2.1 Dipole 
aseIn the expansion Eq. (5.13) the �rst term is independent of q and thus 
orresponds tothe dipole limit. While it is zero for systems with inversion symmetry it gives the leadingorder 
ontribution for systems without su
h symmetry. In se
tion 4.1 I have shown howthese terms 
an be obtained form an analyti
al expansion of the fully q-dependent χ(0)

ρρρwhile in se
tion 4.3 I des
ribed how one 
an use the q-dependen
e of χ(0)
ρρρ to obtain itsopti
al limit. Here, I will 
ompare the two approa
hes for the example system of 
ubi
SiC, that does not have inversion symmetry and hen
e the leading term in a q-dependent
al
ulation and the dipole expansion should give the same result.Figure 5.1 shows on the left the dire
t 
omparison between a 
al
ulation where χ(0)

ρρρ hasbeen expanded up to dipole order, i.e. is expressed as in Eq. (4.18), and a q-dependent
al
ulation with q = 6× 10−4(1, 1, 1), i.e. q = 0.001. The Brillouin zone is in both 
ases3This is essentially the same expression given by Bloembergen et al. in [128℄. 65
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al dipole expanded χ
(0)
xyz and a q-dependent 
al
u-lation with di�erent q values for 
ubi
 SiC. The di�eren
es between the dipole result and theq-dependent 
al
ulation are due to di�erent 
onvergen
e of the two methods.sampled by a homogeneous grid of 4000 k-points, whi
h in the 
ase of the q-dependent
al
ulation has been shifted by q and 2q. The main di�eren
e in the 
al
ulation param-eters is that in the 
ase of the dipole 
al
ulation the basis size of the wavefun
tions usedfor the matrix elements has 139 G-ve
tors, while for the q-dependent 
al
ulation oneneeds 3000 G-ve
tors to represent the wavefun
tions with the ne
essary a

ura
y. Theoverall agreement between the two 
al
ulation is rather good, with noti
eable di�eren
esonly in the high energy region and other small di�eren
es due to di�erent 
onvergen
e ofthe two methods. As an additional numeri
al test that this is indeed the dipole limit aswell as to verify the stability of the numeri
al approa
h, we show on the right of Fig. 5.1the 
omparison between the q-dependent 
al
ulation for q = 6 × 10−4(1, 1, 1) and onewith q′ = 2q = 1.2 × 10−3(1, 1, 1). We see that the resulting χ(2)

0 is indeed independentof q as must be in the dipole limit. Here, this 
he
k is trivial sin
e the agreementwith the analyti
al dipole expansion has already been shown, but in 
ases where one isinterested in linear or quadrati
 dependen
ies on q, i.e. quadru- and o
topole terms, thiskind of analysis is 
ru
ial to ensure the 
al
ulation has been done with q in the right range.5.2.2 Quadrupole 
aseThe q-dependen
e of the quadrupole response is linear and therefore a q-dependent 
al-
ulation should give results that s
ale linearly with q. Moreover, for 
entro-symmetri
materials it is the leading order and thus the dependen
e should be su
h that the re-sponse vanishes for zero q. In Fig. 5.2 su
h 
al
ulations are shown for 
ubi
 Si with
q values of 10−3 and 10−2. S
aling of the latter 
al
ulation by a fa
tors of 1/10 showsthat the 
urves are identi
al up to this fa
tor. The fa
t that there is a single fa
tor ofproportionality between the two 
urves means not only that the q-dependen
e is indeed66
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Figure 5.2: Comparison of two q-dependent 
al
ulations of χQ
iiiiqi for Si with the two di�erent

q = 10−2(0, 0, 1) and q′ = 10−3(1, 0, 0) (left panel). There is 
learly a linear q-dependen
e,whi
h 
an be seen on the right panel, where the q 
al
ulation is s
aled by a fa
tor of 1/10. Thedi�erent dire
tion of q and q′ is an additional 
onvergen
e test.linear but it also means that the results vanish for q → 0, i.e. no o�set at q = 0, asmust be. The results have hen
e to be s
aled by 1/q to yield the quadrupole tensor
omponents de�ned in Eq. (5.13).In Fig. 5.3 are shown the anisotropi
 
ontribution to the se
ond harmoni
 quadrupoleresponse of Si a

ording to Eq. (5.21) as well as the isotropi
 
ontribution to the χQ
iiii
omponents for 
omparison. We note that both 
omponents have large intensities, ∼ 103,
ompared with the usual dipole 
ontributions that are of the order of ∼ 101. This, how-ever, does not mean that the quadrupole response is orders of magnitude larger than thedipole. On the 
ontrary, sin
e the quadrupole response depends linearly on q, whi
h inturn is 
onne
ted with the frequen
y of the perturbing light via Eq. (4.1), and has valuesof 10−4 Å−1 for opti
al light, the overall 
ontribution will be rather small. The shape ofthe isotropi
 and anisotropi
 
ontribution is very similar, whi
h is due to the fa
t thatthe responses Eq. (5.19) and (5.20) have very similar shape.Furthermore, we note in Fig. 5.3 that the isotropi
 
ontribution to χQ

iiii is mu
h smallerthan the anisotropi
 one. We do not have any further information about the other twoisotropi
 
omponents, χQ
ijji and χQ

ijij, but one 
an at least assume that they will have thesame order of magnitude.A
tual 
omparison with experiment is di�
ult in this form, sin
e no pure bulk quadrupolespe
tra exist. But I would like to point out that Dris
oll and Guidiotti [130℄ note a sig-ni�
antly strong se
ond harmoni
 signal from bulk Si at λ = 527 nm, whi
h 
orrespondsto ω = 2.3 eV and thus to the main peak in Fig. 5.3.
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6 ResultsIn this 
hapter I will show some numeri
al results and test 
ases of the implementationof the formalism outlined in the previous 
hapters [131℄. The main interest here isto investigate the in�uen
e of the lo
al �eld and ex
hange and 
orrelation e�e
ts on these
ond harmoni
 spe
tra. This is done for the example system of hexagonal sili
on 
arbide(SiC), whi
h exhibits polymorphism. The polymorphism is realized by di�erent sta
kingorders of Si-C bi layers of either 
ubi
 (c) or hexagonal (h) types in the z-dire
tion [132℄.One 
an de�ne the hexagonality H of the polytype by the ratio H = h/(h + c). Thepolymorphism preserves the 
rystal symmetry thus allowing a dire
t 
omparison of the
omponents of the sus
eptibility.SiC polytypes have been studied extensively in the 
ontext of ab-initio 
al
ulations ofSHG. Chen et al. [133℄ use a LDA+s
issors s
heme to 
al
ulate the stati
 se
ond harmoni

oe�
ients in the independent parti
le approximation of various SiC polytypes and �nda dependen
e of lo
al �eld 
orre
tions on the hexagonality. In a later work [134℄ thesame authors use a re�ned s
heme to des
ribe nonlinear lo
al �eld e�e
ts for the stati
sus
eptibility and and report an in
rease of xzx 
omponent, whereas the zzz de
reaseswhen lo
al �elds are a

ounted for. Rashkeev et al. [50℄ using a similar 
omputationals
heme as in [133℄, while negle
ting lo
al �eld and many body e�e
ts, are able to 
al
ulatethe imaginary part of the frequen
y dependent se
ond harmoni
 sus
eptibility, fromwhi
h, through a Kramers-Kronig relation they infer the real part, whi
h then enablesthem to 
onstru
t the modulo of the sus
eptibility. Performing a transition by transitionanalysis of the spe
tra, they 
an assign single spe
tral features to single band transition,thereby suggesting SHG spe
tros
opy as a probe for ele
troni
 stru
ture. The underlyingassumption of these three works, that quasiparti
le e�e
ts 
an a

urately be des
ribed bya s
issors operator is investigated in detail by Adolph and Be
hstedt [135℄ by 
omparingthis approa
h with a 
al
ulation where the opti
al matrix elements are 
orre
ted by aGW quasiparti
le 
al
ulation. They �nd that the s
issors operator approa
h gives verygood agreement with the a
tual quasiparti
le result for all polytypes under 
onsideration.Then I will present the test 
ase of GaAs, where a dire
t 
omparison of the 
al
ulatedspe
trum with experimental spe
tra is possible.6.0.3 Stru
turesIn this se
tion I will brie�y dis
uss the stru
tures of the materials used in this 
hapterand also give some 
omputational details 
on
erning the parameters of the groundstateand response 
al
ulations. All groundstates are obtained with the ABINIT pa
kage[136℄, whi
h gives the Kohn-Sham energies and wavefun
tions in terms of a basis of planewaves. The LDA for the ex
hange and 
orrelation potential is used and the atomi
69




ore ele
trons are approximated by norm 
onserving pseudo-potentials of the Troullier-Martins form [137℄.SiCThe purely 
ubi
 polytype of SiC has zin
blende stru
ture and 
an therefore be des
ribedby a unit 
ell with two atoms (primitive 
ell). I used the experimental 
ell parameter of
a = 8.24 Bohr and an energy 
ut-o� of 50 Ha for the plane wave basis. The irredu
ibleBrillouin zone was sampled by 10 spe
ial k-points, 
orresponding to a Monkhorst-Pa
kgrid of 256 k-points in the full Brillouin zone.The hexagonal polytypes 2h, 4h and 6h have the 6mm (C6v) symmetry and di�er onlyin the sta
king order of Si-C bilayers, 
.f. Fig. 6.1. The primitive unit 
ells have 4, 8 and12 atoms respe
tively and I used a 
ut o� of 50 Ha for the basis of all polytypes. Theexperimental 
ell parameters are a = 5.8 Bohr for all 
ompounds and c = 9.37, 18.99 for2h and 4h, while for 6h the theoreti
al latti
e 
onstants of a = 5.7 and c = 28.39 wasused.The 
al
ulation of the se
ond harmoni
 spe
tra are done with a random sampling of

PSfrag repla
ements
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Figure 6.1: The y− z-plane of the three hexagonal polytypes. They di�er only in the sta
kingorder of the Si-C bilayers. 2h-SiC has an ABAB pattern, 4h-SiC an ABAC and 6h-SiC has thesta
king pattern ABCACB.the Brillouin zone for the hexagonal polytypes. Convergen
e was rea
hed with 160070



k-points for 2h χzzz, 2400 for 2h χxzx, 2000 for 2h χzxx and 800 for all 4h and 6h
omponents. Convergen
e of the lo
al �eld e�e
ts with respe
t to the number of in
luded
G ve
tors was rea
hed with 23 for 2h χxzx, 59 for 2h χzzz, 37 for χzxx, 39 for 4h χxzxand χzzz, 51 for 4h χzxx and 43 for all 6h 
omponents. The number of 
ondu
tion bandsne
essary for 
onvergen
e in the 
onsidered energy range are 12, 24, 36 for the 2h, 4h and6h 
omponents respe
tively. The basis size for the DFT wavefun
tions was su�
iently
onverged with 300 for all polytypes.GaAsGallium Arsenide also has the zin
blende stru
ture with the experimental latti
e param-eter of a = 10.67 Bohr and a 
ut o� of 50 Ha is needed for a 
onverged the groundstatedensity. For the se
ond harmoni
 spe
trum 
onvergen
e is rea
hed with 17575 k-pointsto sample the Brillouin zone and 7 
ondu
tion bands. The lo
al �eld e�e
ts on the se
ondharmoni
 spe
trum is 
onverged with 65 G ve
tors. This 
ompound as the added 
om-pli
ation that a pseudo potential des
ription of Gallium needs the in
lusion of d semi
orestates to a

urately des
ribe the ele
troni
 stru
ture [138℄. Therefore a pseudo potentialwith the valen
e 
on�guration of 3d104s24p1 is used for Gallium.6.1 Independent (Quasi-)Parti
le ApproximationIn the independent parti
le approximation the ma
ros
opi
 sus
eptibility χ(2) is just thehead of the mi
ros
opi
 Kohn-Sham response fun
tion χ(0)

ρρρ, 
.f. Eq. (3.74). The quasi-parti
le e�e
ts are a

ounted for by the s
issors operator approa
h, whi
h means oneapplies a rigid shift to all 
ondu
tion bands, 
.f. se
tion 4.2. These two approximationsare very similar in the sense that they do not expli
itly take into a

ount ex
hange and
orrelation e�e
ts. The quasi-parti
le shift of the band stru
ture, does however, a�e
tthe spe
trum substantially, sin
e it leads to a shift of the resonan
es. While in the linear
ase this shift of the spe
trum is more or less rigid [99℄ in the 
ase of se
ond harmoni
generation it also leads to a redistribution of spe
tral weights.Fig. 6.2 shows how the s
issors shift 
hanges the se
ond harmoni
 spe
tra of SiC poly-types.6.1.1 Transitions in 
-SiCThe sum-over-states formulation for χ(0)
ρρρ allows to do a transition resolved analysis ofthe se
ond harmoni
 pro
ess, as already suggested by Lambre
ht et. al. [50℄. Here, I willbrie�y 
onsider a de
omposition of the transitions into valen
e-valen
e-
ondu
tion (vv
)and 
ondu
tion-
ondu
tion-valen
e (

v), whi
h also 
ontain the permutations, i.e. 
vvand v

. Fig. 6.3 left panel shows how these two types of transition 
ontribute to theIPA spe
trum of 
ubi
 SiC. The 

v transitions are 
learly dominating the main peak at3.5 eV, whi
h 
ould be explained by the fa
t that for a 
onverged spe
trum SiC needs16 
ondu
tion bands on top of the 4 valen
e bands. Therefore, there are mu
h more71
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Figure 6.2: E�e
t of the s
issors shift of 0.84 eV on the independent parti
le spe
tra of SiChexagonal polytypes. All graphs show the modulus of the respe
tive χ(2) 
omponent in theindependent parti
le approximation (IPA) and the independent quasi-parti
le approximation(IQPA), realized by a s
issors shift as des
ribed in se
tion 4.2.

v transitions presents. When we restri
t the number of in
luded 
ondu
tion statesto 2, Fig. 6.3 
enter panel, the 
ontribution is only slightly redu
ed. It is essentiallythe transitions between the bands 6 ↔ 5 ↔ {4, 3} that make up the bigger part of thespe
trum, and most notably the main resonan
e at 3.5 eV. The same analysis showsthat the se
ond peak, at 7 eV is only due to vv
 transitions and, as shown in the rightpanel of Fig. 6.3, these are dominated by 3 ↔ 4 ↔ {5, 6}.6.2 Crystal Lo
al Field e�e
tsLo
al �eld e�e
ts enter into the ma
ros
opi
 se
ond harmoni
 sus
eptibility in two pla
es.First the three ma
ros
opi
 diele
tri
 fun
tions 
ontain lo
al �eld e�e
ts, and se
ond these
ond order TDDFT Dyson like equation mixes G-
omponents of χ(2)
ρρρ and χ

(1)
ρρ . We72
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Figure 6.3: Analysis of transitions 
ontributing to χxyz for 
ubi
 SiC. left: Contributions ofvv
 and 

v transitions to the spe
trum, whi
h is 
learly dominated by 

v transitions for thepeak at 3.5 eV, and by vv
 transitions for the peak at 7 eV. 
enter: De
omposition of the

v transitions. The transitions 6 ↔ 5 ↔ {4, 3} are the most important for the main peak at3.5 eV, with the 6 ↔ 5 ↔ 4 transition a

ounting already for half of the peak intensity. right:De
omposition of the vv
 transitions that make up the se
ond peak at 7 eV. Here the transition
3 ↔ 4 ↔ 5 a

ounts already for the full peak.
an write this more expli
itly by using Eq. (2.60) for the solution of the Dyson equationand write expli
itly the G dependen
e. The ma
ros
opi
 sus
eptibility then reads (inRPA):

χ(2) = ǫM
[

ǫ−1
TE

]T

0G

[

χ(0)
ρρρ

]

GG1G2

[

ǫ−1
TE

]

G10

[

ǫ−1
TE

]

G20
ǫM ǫM (6.1)with impli
it sums over the G ve
tors. While ǫM are s
alars in this equation the ǫTE are

G-dependent and as su
h mix with the G 
omponents of χρρρ.First we 
onsider the ma
ros
opi
 diele
tri
 fun
tions ǫM that relate the mi
ros
opi
response to the ma
ros
opi
 sus
eptibility. These quantities also 
ontain lo
al �eld e�e
tsand are 
al
ulated a

ording to [86, 87, 100℄
ǫM (ω) = lim

q→0

1

ǫ−1
G=0,G=0(q, ω)

(6.2)where again a 
areful 
onsideration of the G dependen
e is 
ru
ial.Therefore we have to 
onsider the lo
al �eld e�e
ts in the linear diele
tri
 tensor aswell. Due to the 
rystal symmetry the hexagonal polytypes have an opti
al anisotropywith two independent 
omponents of the diele
tri
 tensor that are 
ommonly denotedas ǫ‖ = ǫzz and ǫ⊥ = 1
2(ǫxx + ǫyy). In Fig. 6.4 are shown the lo
al �eld e�e
ts in thesetwo 
omponents for the three polytypes. We 
an see a 
lear trend for the ǫ⊥ 
ompo-nent, where the e�e
t de
reases with de
reasing hexagonality and almost vanishes forthe 6h polytype. The e�e
t for ǫzz 
omponent, however, seems to be independent of thehexagonality, being of the same magnitude for all three polytypes. We also note that therelative lo
al �eld e�e
t in the ǫzz 
omponent is of the same size as for the ǫ⊥ in 2h. 73
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e of lo
al �elds on the imaginary part of the 
omponents of the lineardiele
tri
 tensor for the SiC polytypes 2h, 4h, 6h, where 
al
ulations a

ounting for lo
al �eldsare denoted LF and those where they are negle
ted NLF. For the perpendi
ular 
omponent ǫ⊥lo
al �eld e�e
ts de
rease with de
reasing hexagonality and vanish for 6h, while the lo
al �elde�e
t for the ǫzz 
omponent is independent of the hexagonality.Sin
e lo
al �eld e�e
ts stem from the inhomogeneity of the 
rystal, it 
an be illustratingto link this dependen
e of the lo
al �eld e�e
t to the ele
troni
 densities of the di�erentpolytypes and thus explain the di�erent behaviour in terms of the di�erent ele
troni
densities. Inhomogeneity of a density 
an be 
onsidered as the variation from a meanvalue. In order to quantify inhomogeneity in this sense I 
onsider the Fourier transformof the density, whi
h de
omposes it into its 
onstituent frequen
ies. The idea here is thatfor a homogeneous density only one Fourier 
omponent will be present, while inhomoge-neous densities have a more 
omplex de
omposition.A dis
rete Fourier transform is performed on the real spa
e DFT densities for the di�erentpolytypes and the (b1, 0, 0) and (0, b2, 0) = (0, 0, b3) dire
tions whi
h 
orrespond to the
z- and ⊥-dire
tion respe
tively. Inspe
tion of the three dimensional Fourier transformeddensity shows, that indeed these dire
tions yield the only signi�
ant 
ontribution. Fig.6.5 shows the 
omparison of the result for the three polytypes. First we note the strongdependen
e on hexagonality of the density in ⊥-dire
tion, where the values at the �rst
G de
rease with de
reasing hexagonality. Indeed, the 6h polytype exhibits no signi�-
ant deviation from the maximum at G = 0 (not shown in the �gure) and 
an thus beinterpreted as being almost 
ompletely homogeneous. This behaviour is 
onsistent withthe absen
e of lo
al �eld e�e
ts for this 
omponent of 6h. We �nd the same 
onsisten
y74
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omposition of the ele
troni
 densities of the three polytypes 2h, 4h and6h along the dire
tions b1 and b2 = b3 that 
orrespond to the z- and ⊥-dire
tion respe
tively.The values are normalized with to the maximum of ea
h transform, that o

urs at G = 0 and isnot shown here. The di�erent number of points in b1-dire
tion for the di�erent polytypes is dueto the di�erent size of the unit 
ell in that dire
tion.for the z-dire
tion where all densities show the same dispersion and no polytype relateddependen
e is dis
ernable in the spe
tra. Furthermore we note that the value of the peakat G = 2.5 Å−1 is the same as for the peak for the 2h in ⊥-dire
tion at the same G valuesindi
ating the same importan
e of lo
al �eld e�e
ts for the ǫ⊥ of 2h and the ǫzz for allpolytypes. Also this 
orresponds to the observations we made for Fig. 6.4.The analysis of the ele
troni
 density in terms of its Fourier 
omponents that give thefrequen
y de
omposition and thus a quantitative meaning to the 
on
ept of inhomogene-ity is thus 
onsistent with the in�uen
e of lo
al �eld e�e
ts on the linear diele
tri
 tensor.As far as the se
ond harmoni
 sus
eptibility is 
on
erned, however, it is not enough to
onsider only the linear ǫ that enter in Eq. (6.1), but also the 
ontribution of the se
ondorder TDDFT Dyson like equation, where lo
al �eld are also a

ounted for in the form of
ǫ−1
TE and their G dependen
e. Figs. 6.6 and 6.7 show the 
omponents of the ma
ros
opi
se
ond order sus
eptibility for the same polytypes as in Fig. 6.4. In Fig. 6.6 are shownthe imaginary and real parts of the χ(2) 
omponents. They are both equally a�e
ted bythe lo
al �elds and thus the e�e
t on the absolute values shown in Fig. 6.7 stem fromboth parts. While the in�uen
e of the lo
al �eld on the xzx-
omponent 
an be seen asroughly the same as for ǫ⊥ the overall trend is not as 
lear as in the linear 
ase. Thisis partly due to the fa
t that xzx a

ounts for e�e
ts in two di�erent 
rystallographi
dire
tions, but also due to the more 
omplex mixing of e�e
ts in the Dyson equation.We also note that the zxx 
omponents in
rease due to the lo
al �elds as opposed to thede
rease observed in the other 
omponents.6.3 Ex
hange and 
orrelationTo in
lude ex
hange and 
orrelation e�e
ts we have to make an approximation for fxcin the TDDFT Dyson equation. As in the 
ase of lo
al �eld e�e
ts the ex
hange and
orrelation enter in several steps in the 
al
ulation of the ma
ros
opi
 se
ond order75
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Figure 6.6: Comparison between a 
al
ulation in
luding lo
al �eld e�e
ts (RPA) and indepen-dent quasi-parti
le 
al
ulation (IQPA) where no lo
al �eld e�e
ts are a

ounted. The e�e
t issimilar for the real and imaginary part for the 
omponents of the hexagonal SiC polytypes.76
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sus
eptibility χ(2). First, the DFT groundstate from whi
h the independent parti
leresponses χ(0)
ρρ and χ

(0)
ρρρ are 
onstru
ted, has to be obtained with some approximationfor the ex
hange and 
orrelation potential Vxc, here I always use the LDA. Next, inthe se
ond order Dyson equation (2.47) fxc appears in several pla
es, as well as in the
al
ulation of the ǫM fa
tors for the �nal expression for the ma
ros
opi
 χ(2).6.3.1 ALDAThe time dependent generalization of the lo
al density approximation (ALDA), 
.f.Se
. 2.4.3, is known to be not su�
ient to a

urately des
ribe opti
al absorption dueto the la
k of long range intera
tion in the q → 0 limit [93℄. In Fig. 6.8 are shownthe 
omponents of the se
ond harmoni
 generation sus
eptibility obtained within theALDA and 
ompared to the results from the previous se
tion (Fig. 6.7). While in both
al
ulations lo
al �elds are a

ounted for, it is appearant that the additional 
ontributionof ex
hange and 
orrelation as des
ribed by ALDA leaves the spe
tra virtually una�e
ted.
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Figure 6.8: E�e
t of the adiabati
 lo
al density approximation (ALDA) on the se
ond harmoni
spe
tra of hexagonal SiC polytypes. The ALDA spe
tra are 
ompared the RPA spe
tra (
.f. Fig.6.7) and pra
ti
ally no 
hange is dis
ernable.78



This weak in�uen
e of the lo
al ex
hange and 
orrelation e�e
ts on the se
ond harmoni
spe
tra 
an be attributed to the same la
k of long range intera
tion that was alreadyresponsible for the failure of this approximationn for opti
al absorption. On the one handit means that the ǫM that appear in the expression for the ma
ros
opi
 sus
eptibilityare not a

urately des
ribed and hen
e the nonlinear result su�ers the same de�
ien
iespresent in linear ALDA results, and on the other hand the e�e
t of the kernel in these
ond order Dyson equation seems to be not important. Here I show 
al
ulations wherethe ALDA kernel is 
ombined with the s
issors operator, i.e. quasiparti
le 
orre
tions,whi
h is in prin
iple not 
onsistent with the theory of the lo
al density approximation.It is, however, well known, that ALDA fails to a

ount for the quasiparti
le shift andhere I show it just to demonstrate that it has only very little in�uen
e on the shape andintensity of the spe
trum.6.3.2 Long Range KernelThe known la
k of long range intera
tion in the lo
al density approximation 
an be
orre
ted as des
ribed in 
hapter 2.4.5 by an e�e
tive kernel of the form fxc = −α/q2that mimi
s the e�e
t of the Bethe-Salpeter equation. Therefore, I refer to this kindof 
al
ulation as ex
itoni
. Fig. 6.9 shows the in�uen
e of the long range kernel with
α = 0.5 on the spe
tra of the hexagonal polytypes. The value for alpha is taken fromBotti et al. [99℄ where it is used to �t the linear spe
trum on the Bethe-Salpeter result.
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Figure 6.9: E�e
t of the e�e
tive long range kernel on the se
ond harmoni
 spe
tra of hexagonalSiC polytypes. The ex
itoni
 spe
tra are 
ompared the RPA spe
tra (
.f. Fig. 6.7) and show a
onsiderable in
rease in intensity.At this point it is interesting to 
ompare the in�uen
e of the long range kernel onthe linear and non-linear spe
tra. To this end I show in Fig. 6.10 the linear diele
tri
fun
tion for the hexagonal SiC polytypes 
al
ulated within the RPA and with the longrange kernel. The e�e
t is a strong in
rease in the �rst peak and a slight de
rease forthe higher energy part of the spe
trum, but in general one 
an say that the e�e
t doesnot result in a dramati
 shift of intensity as seen for the non-linear spe
tra (Fig. 6.9).On the other hand, the in�uen
e of the long range kernel in the nonlinear Dyson likeequation, i.e. on χρρρ, is shown in Fig. 6.11 and seen to be almost negligible. Therefore,one has to 
on
lude that for se
ond harmoni
 generation ex
itoni
 e�e
ts, as des
ribedby fxc, almost ex
lusively enter via the ma
ros
opi
 linear diele
tri
 fun
tions.
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Figure 6.10: In�uen
e of the long range kernel on the ma
ros
opi
 diele
tri
 fun
tion with
α = 0.5 for the dire
tion along the sta
king axis (ǫzz) and in plane (ǫ⊥).The behaviour of overall in
rease of χ(2) 
an be understood by 
onsidering the limiting
ase of G = G1 = G2 = 0 throughout the 
al
ulation but keeping fxc. In this 
ase itis possible to solve the TDDFT Dyson equation (2.47) analyti
ally and thus obtain anexpression for the e�e
t of the kernel on the sus
eptibility. We �nd (here expli
itly forthe zzz-
omponent)

χ
(2)
zzz(ω)

χ(0)(2ez, ez, ez, 2ω, ω)
= A(ez, 2ω)A(ez , ω)A(ez , ω) (6.3)where

A(q, ω) = 1 − α

4π
[ǫM (q, ω) − 1] . (6.4)That means that when ǫM is smooth, the 
hange of χzzz with the long range kernel isdire
tly proportional to α. On the other hand when ǫM is 
hanging signi�
antly the
hange dire
tly a�e
ts the long range 
ontribution. This explains why in all spe
tra inFig. 6.9 the low energy peaks are most prominently in
reased, be
ause it is this featurein the ǫM that 
hanges most. For the high energy range, when the ǫM are 
lose to one,we do not see 
onsiderable 
hange. This is 
onsistent with the behaviour of Eq. (6.4)whi
h is 
lose to one when ǫM is 
lose to one.
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Figure 6.11: In�uen
e of the long range kernel on the mi
ros
opi
 se
ond harmoni
 sus
epti-bility χρρρ for 2h-SiC.Fig. 6.11 also shows the importan
e of in
luding the ma
ros
opi
 diele
tri
 fun
tions
ǫM in the �nal result, sin
e the mi
ros
opi
 χρρρ shown in the �gure is not only order ofmagnitude o� the independent parti
le and RPA results (
.f. Figs. 6.2 and 6.7) but theshape is very di�erent also qualitatively. Most signi�
antly so for the 2h 
ase where thelarge peak of ǫM dire
tly in�uen
es the χ(2) 
omponents adding 
onsiderable qualitativefeatures to the spe
tra.6.4 GaAs spe
trum as a Ben
hmarkWhile in the above se
tions I have used SiC polytypes to dis
uss some properties of thisframework to 
al
ulate the se
ond harmoni
 generation sus
eptibility, I will here presentthe 
ase of GaAs where a detailed experimental spe
trum is available. Bergfeld andDaum [139℄ measure the modulus of the se
ond harmoni
 generationn light in re�e
tan
efrom a GaAs surfa
e, whi
h gives rise to an additional surfa
e 
ontribution that has beenidenti�ed by the authors.Fig. 6.12 shows step by step how the di�erent levels of approximation in our frameworkperform in 
omparison to this experimental spe
trum. The independent parti
le approx-imation has the lowest level of sophisti
ation and indeed it gives a spe
trum that,apartfrom an overall intensity, does not share many 
hara
teristi
s with the experiment. Theappli
ation of a s
issors shift of 0.8 eV, however, greatly improves the spe
trum in 
om-parison with the experiment, giving good positions of the peaks and also to some extendtheir relative intensity. The overall intensity is however too low 
ompared with the exper-iment. The in
lusion of lo
al �elds within the randomphase approximation has the e�e
tof only further de
reasing the intensity, as observed for some SiC 
omponents. Finally,when ex
itoni
 e�e
ts are in
luded via the long range kernel the two spe
tra agree interms of peak positions and intensity of the main peak, however the relative intensityin the 
al
ulated spe
trum is not very good. Most signi�
antly the low frequen
y partis far too high. This is partly due to the fa
t that the long range kernel used here isstati
, i.e. it is assumed that the value for α is the same for all frequen
ies. Espe
ially82



200

400

600

800

exp
IPA

IQPA

1 1.5 2

200

400

600

800

RPA

1 1.5 2

alpha=0.2

PSfrag repla
ements |χ
x
y
z
|[p
m
/V

]
|χ

x
y
z
|[p
m
/V

]

ω [eV℄ω [eV℄Figure 6.12: Cal
ulated se
ond harmoni
 spe
trum of GaAs 
ompared with the experimentalone. Di�erent levels of sophisti
ation of the theory are shown, that gradually improve the
omparison between the two (see text).for the stati
 limit (ω = 0) this is not the 
ase and it has been shown by Botti et al.[140℄ that a frequen
y dependen
e of the kernel 
an remedy this de�
ien
y. To obtain agood stati
 diele
tri
 
onstant they use α = 0.05, whi
h in the 
ase of our stati
 se
ondharmoni
 
oe�
ient yields |χxyz(0)| = 216.54 pm/V, whi
h 
ompares rather well withthe experimental values that range between 166 [141℄ and 180 pm/V [142℄.As shown in Fig. 6.11 the in�uen
e of the long range kernel is not very important forthe mi
ros
opi
 χρρρ and therefore most ex
itoni
 
ontributions to the spe
trum stemfrom the ma
ros
opi
 diele
tri
 fun
tions ǫM . On the other hand, the in
lusion of longrange intera
tions has proven to be 
ru
ial to obtain a good 
omparison with experiment.Consequently, the quality of des
ription of the linear quantities determines to a great ex-tend the quality of our 
al
ulated se
ond harmoni
 spe
trum. Fig. 6.13 
ompares theimaginary part of the ǫM used in the ex
itoni
 
al
ulation shown in Fig. 6.12 to theexperimental one measured by Studna and Aspnes [143℄. While the overall agreement isvery good, the two 
urves show 
onsiderable di�eren
es in the low energy range that isimportant for the se
ond harmoni
 spe
trum, i.e. from ω = 1 to 2.5 eV. If instead of the
al
ulated ǫM we use this experimental one in the 
al
ulation of χxyz, as also shown inFig. 6.13, we get a mu
h better agreement with the experimental spe
trum.Given that the experimental ǫM gives a mu
h better χxyz than the 
al
ulated one and
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ulation a

ording to Eq. (6.5) with ǫM 
al
ulated (right) and the experi-mental ǫM (left).the fa
t that the IQPA result is very 
lose to the RPA one, 
.f. Fig. 6.12, it is temptingto assume that one 
ould get a similarly good result by negle
ting the 
omputationally
ostly lo
al �eld 
al
ulation by making the approximation
χ(2) = ǫM
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00

[

ǫ−1
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]

00
ǫM ǫM (6.5)where the test-parti
le diele
tri
 fun
tions are just [ǫ−1

TE

]

00
= 1 + (4π − α)[χρρ]00. Theresult of su
h 
al
ulations is shown in Fig. 6.14 where one time the experimental ǫMwas used and in another 
al
ulation the usual ǫM from TDDFT. The result does notyield satisfa
tory agreement in either 
ase. This means that although in the result theydo not show a large e�e
t 
ompared with an IPA 
al
ulation, the �nite G 
omponentsof χρρρ are very important when 
ombined with the ǫM , be
ause there are substantial
an
ellation e�e
ts.In summary we have seen for GaAs that already the IQPA yields a qualitative agree-ment with the experiment and the a

ounting for lo
al �eld e�e
ts within RPA does notimprove the spe
trum. It is only when one wants to a

ount for ex
itoni
 e�e
ts as well84



that the lo
al �elds are important to a
hieve a quantitative agreement with experiments.Furthemore the a

ura
y of the ǫM over the whole frequen
y range used turn out to bevery important for the ma
ros
opi
 χ(2).
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7 A se
ond order Bethe-SalpeterEquationWhile the strength of TDDFT is to provide an e�
ient way to a

ount for many bodye�e
ts via the ex
hange and 
orrelation term fxc it is also its weakness, be
ause its exa
tform is unknown and hen
e approximations rely to some extend on edu
ated guessingrather than formal theory. On the other hand many-body perturbation theory doesrigorously des
ribe these e�e
ts and it is nowadays used almost routinely to 
al
ulateopti
al spe
tra of in
reasingly 
omplex systems [144�146℄ via the Bethe-Salpeter equa-tion, 
.f. Se
. 2.4.5. The advantage of the Bethe-Salpeter equation is its ability toproperly a

ount for ex
itoni
 e�e
ts that are of great importan
e for opti
al absorption[93℄. It is, as a 
omputational framework, however, mu
h heavier than TDDFT, be
ausethe two-body 
orrelation fun
tion in terms of whi
h it is formulated 
ontains mu
h moreinformation than a
tually needed to des
ribe opti
al spe
tros
opy [147℄. In pra
ti
e onetherefore takes 
ontra
tions of the two parti
le 
orrelation fun
tion and thus dis
ards alot of information that is 
ontained in this quantity. Some e�orts have been made to
apture the essential parts of this framework and translate them into TDDFT kernels,as des
ribed in Se
. 2.4.5, leading to the NANOQUANTA kernel and its simpli�
ationin form of the long range kernel I used in Chap. 6.The Bethe-Salpter equation does not only des
ribe opti
al e�e
ts, but it gives, in itsexa
t form, an equation for any kind of linear response [148℄. This makes it a powerfultool to study a vast range of physi
al phenomena, not ne
essarily by solving it exa
tlybut by providing a des
ription that is at the same time exa
t and intuitive. Therefore, it
ould be interesting to �nd the generalization of the Bethe-Salpeter equation to se
ondorder responses. In this 
hapter I will outline how su
h a se
ond order Bethe-Salpeterequation 
an be obtained, solved and related to se
ond order response TDDFT.7.1 The equationThe Bethe-Salpeter equation as des
ribed in se
tion 2.4.5 provides an approa
h to many-body ex
itations within the framework of many-body perturbation theory [95℄. Morepre
isely it is an equation for the 
orrelation part of the two-parti
le Green's fun
tion
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that 
an be written using the S
hwinger's fun
tional derivative identity [95℄ as 1
iL(1, 2, 3, 4) =

δG(1, 2)

δVper(3, 4)
= −G(1, 3, 2, 4) +G(1, 2)G(3, 4) (7.1)where the produ
t of the one-parti
le Green's fun
tions GG des
ribes the independentpropagation of the two parti
les. The 
ontra
tion of L yields the 
onne
tion to the timeordered density response

χρρ(1, 2) =
δρ(1)

δVper(2)
= −i δG(1, 1+)

δVper(2, 2+)
= L(1, 1+, 2, 2+) . (7.2)For se
ond harmoni
 generation and generally for any se
ond order pro
ess in responseformulation, we are interested in the response of the density to two perturbing �elds andthus generalizing Eq. (7.2) we �nd the 
orresponding three-parti
le 
orrelation fun
tion

χρρρ(1, 2, 3) =
δ2ρ(1)

δVper(2)δVper(3)
= −i δG(1, 1+)

δVper(2, 2+)δVper(3, 3+)
= L(1, 1+, 2, 2+, 3, 3+)(7.3)whi
h as a full six point quantity is de�ned as

L(1, 2, 3, 4, 5, 6) = −i δ2G(1, 2)

δVper(5, 6)δVper(3, 4)
=
δL(1, 2, 3, 4)

δVper(5, 6)
. (7.4)This quantity 
an be interpreted as the 
orrelation part of the three-parti
le Green'sfun
tion, whi
h is obtained from Eq. (7.1) by taking the fun
tional derivative withrespe
t to an additional non-lo
al perturbing potential, 
.f. App. D

iL(1, 2, 3, 4, 5, 6) = −G(1, 3, 5, 2, 4, 6) −
−G(1, 3, 2, 4)G(5, 6) −G(1, 5, 2, 6)G(3, 4) −G(3, 5, 4, 6)G(1, 2) +

+2G(1, 2)G(3, 4)G(5, 6) (7.5)There are not only the free propagations of three parti
les represented by the G1G1G1term but also the fully intera
ting propagation of pairs of parti
les with an independentthird one represented by G2G1. One 
an thus see from this equation that L3 indeedrepresents the three-parti
le 
orrelation part of G3.A se
ond order Bethe-Salpeter equation 
an now be derived from the linear Bethe-Salpeter equation (2.78) by 
arrying out the fun
tional derivative in Eq. (7.4) as outlined
1Here and in the following I use the notation G1 = G(•, •), G2 = G(•, •, •, •) et
., i.e. whether aquantity is se
ond order, of two parti
les, of three parti
les et
. is determined by the number ofvariables. 87



in App. D. The �nal result reads, 
.f. Eq. (D.11):
L(1, 2, 3, 4, 5, 6) =

L0(123456)+

+

∫

d789 10L0(123478)Ξ̃(78910)L(9 10 56)+

+

∫

d789 10L0(127856)Ξ̃(789 10)L(9 10 34)+

+

∫

d789 10 11 12 13 14L0(1278 11 12)Ξ̃(11 12 13 14)L(13 14 56)Ξ̃(789 10)L(9 10 34)+

+

∫

d789 10 11 12L0(1278)Ξ(789 10 11 12)L(11 12 56)L(9 10 34)

+

∫

d789 10L0(1278)Ξ̃(789 10)L(9 10 3456) (7.6)where the non-intera
ting part L03 is de�ned as
iL0(123456) = G(1, 5)G(6, 3)(4, 2) +G(1, 3)G(4, 5)(6, 2) (7.7)and the many-body intera
tion kernels are de�ned as

Ξ̃(1, 2, 3, 4) = v(1, 3)δ(1, 2)δ(3, 4) + i
δΣ(1, 2)

δG(3, 4)
(7.8)

Ξ(1, 2, 3, 4, 5, 6) = i
δ2Σ(1, 2)

δG(5, 6)δG(3, 4)
. (7.9)Eq. (7.6) has exa
tly the same stru
ture as the se
ond order TDDFT Dyson like equation(2.47) only that here we have six-point quantities whereas se
ond order response ofTDDFT deals with three point quantities. Sin
e it has the same stru
ture, it 
an also besolved analyti
ally assuming that the solution of the linear BSE, L2, is known, 
.f Eq.(D.16). The solution reads in short hand

L3 = L2L
−1
02 L03L

−1
02 L2L

−1
02 L2 + L2Ξ3L2L2 (7.10)or alternatively in analogy to Eq. (2.55)

L3 = [1 + L2Ξ2]L03 [1 + Ξ2L2] [1 + Ξ2L2] + L2Ξ3L2L2. (7.11)In the form 7.10 the solution 
an in prin
iple be obtained by 
ombining the knowntwo-parti
le quantities L2 and L−1
02 with the three-parti
le quantities L03 and Ξ3. Thesequantities are however not obtained as straightforwardly and it is in these quantitieswhere approximations have to made or 
omputational ressour
es are needed.
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7.2 The non-intera
ting part L03The three-parti
le non-intera
ting part of the se
ond order Bethe-Salpeter equation is, a
-
ording to Eq. (7.7), essentially the produ
ts of the three single-parti
le Green's fun
tions
ombined in two di�erent ways. Using the Lehmann representation of the single-parti
leGreen's fun
tion [149℄
iG(r1, r2, t1−t2) =

∑

i

[Θ(t1 − t2)Θ(ǫi − µ) − Θ(t2 − t1)Θ(µ− ǫi)] e
−iǫi(t1−t2)φi(r1)φ

∗
i (r2)(7.12)one 
an 
onstru
t these produ
ts in terms of the ele
tron addition and removal energies ǫiand the 
orresponding Lehmann amplitudes φi. Expressing the step fun
tions 
ontainingthe 
hemi
al potential µ in terms of ele
troni
 o

upation numbers, i.e. Θ(ǫi − µ) =

(1 − fi) and Θ(µ − ǫi) = fi, as well as 
ontra
ting the time variables t2 → t1, t4 → t3and t6 → t5 we 
an write L03 in frequen
y spa
e as
L0(r1, r2,r3, r4, r5, r6, ω2 + ω3, ω2, ω3) =

∑

ijk

φ∗i (r1)φj(r2)

(ǫi − ǫj + ω2 + ω3 + 2iη)
×

×
[

(fi − fk)
φ∗j (r5)φk(r6)φ

∗
k(r3)φi(r4)

(ǫi − ǫk + ω2 + iη)
+ (fj − fk)

φ∗j (r5)φk(r6)φ
∗
k(r3)φi(r4)

(ǫk − ǫj + ω3 + iη)
+

(fi − fk)
φ∗j (r3)φk(r4)φ

∗
k(r5)φi(r6)

(ǫi − ǫk + ω3 + iη)
+ (fj − fk)

φ∗j (r3)φk(r4)φ
∗
k(r5)φi(r6)

(ǫk − ǫj + ω2 + iη)

]

.(7.13)From this expression the analogy with the response of TDDFT be
omes obvious on
emore, be
ause a 
ontra
tion of the spa
e variables r2 → r1, r4 → r3 and r6 → r5 andwith the assumption that the Lehmann amplitudes are Kohn-Sham eigenstates and theenergies the 
orresponding Kohn-Sham energies, this expression gives the independentparti
le response of TDDFT, Eq. (2.27). Also, this means that the independent (Kohn-Sham) parti
le response of TDDFT 
an in fa
t be represented as the 
ontra
tion of L03as
χ(0)

ρρρ(1, 2, 3) = L0(1, 1, 2, 2, 3, 3) = −iG0(1, 2)G0(2, 3)G0(3, 1)−iG0(1, 3)G0(3, 2)G0(2, 1)(7.14)where G01 are Green's fun
tion 
onstru
ted with Kohn-Sham energies and states.7.3 The se
ond order many-body kernel Ξ3The linear many-body intera
tion kernel is the variation of the self energy with respe
tto a single-parti
le Green's fun
tion. In pra
ti
al appli
ations of the BSE this self energy89



is taken in the GW approximation, so that the kernel reads
Ξ(5, 6, 7, 8) = i

δΣ(5, 6)

δG(7, 8)
= −δG(5, 6)W (5, 6)

δG(7, 8)
= −δ(5, 7)δ(6, 8)W (5, 6)−G(5, 6)

δW (5, 6)

δG(7, 8)
.(7.15)Additionally one assumes that the fun
tional derivative of the s
reening with respe
t tothe Green's fun
tion, δW/δG, whi
h des
ribes the 
hange of the s
reening due to theex
itation, is small and 
an thus be negle
ted, as shown by Hanke and Sham [150℄. Thisassumptions is however an ad ho
 approximation and mainly justi�ed pragmati
ally. Inthis approximation the se
ond order kernel that is de�ned as

Ξ(1, 2, 3, 4, 5, 6) = i
δ2Σ(1, 2)

δG(5, 6)δG(3, 4)
=
δΞ(1234)

δG(5, 6)
(7.16)obviously vanishes as well. It does, however, not vanish a priori if one 
onsiders otherapproximations for the �rst order kernel, 
.f. [148℄ for example.Furthermore, even in GW , the assumption δW/δG = 0 
ould mean that one is missingimportant 
ontribution and it might not be a good approximation when one is interestedin se
ond order pro
esses. Espe
ially, sin
e the se
ond order BSE is des
ribing se
ondorder pro
esses, the 
hanging of the s
reening due to the ex
itation might be important.7.4 Conne
tion to Many Body Perturbation TheoryMany body perturbation theory is in the solid state 
ommunity most 
ommonly seenthrough the lens of Hedin's equations, 
.f. App. E. It 
an therefore be illustratingto make the 
onne
tion between the se
ond order Bethe-Salpeter equation and theseequations. Here, we are parti
ularly interested in the se
ond order polarizability, be
auseit is is 
losely related to χ(2). More pre
isely, in the previous 
hapters, I have always
onsidered χρρρ, whi
h is a redu
ible quantity, sin
e it 
ontains the Coulomb intera
tion.In the 
ontext of many-body perturbation theory one seeks to separate this intera
tionfrom the other many-body intera
tions and thus 
onsiders the irredu
ible quantity Pthat is the variation of the density with respe
t to the total potential. In App. E.1 Ishow how these quantities are related in the se
ond order 
ase, and �nd 2:

χ2 = [1 + χ1v]P2 [1 + vχ1] [1 + vχ1] (7.17)
= χ1P

−1
1 P2P

−1
1 χ1P

−1
1 χ1 (7.18)

P2 = [1 − P1v]χ2 [1 − vP1] [1 − vP1] (7.19)
= P1χ

−1
1 χ2χ

−1
1 P1χ

−1
1 P1 (7.20)2In this part I adopt a notation where χ1 = χρρ and χ2 = χρρρ to ensure readability of the equationsand to make a 
lear distin
tion between �rst order and se
ond order quantities.90



These are the relations between se
ond order redu
ible and irredu
ible quantities. Whilethe linear relation has the form of a linear Dyson equation (E.12), we note that thisrelation has indeed the form of the se
ond order Dyson like equation, similar to Eq.(2.54) and Eq. (7.11). The only di�eren
e is that there is no term 
orresponding tothe se
ond order intera
tion kernel, sin
e the kernel between redu
ible and irredu
iblequantities is just the Coulomb intera
tion.The se
ond order irredu
ible polarizability P2 
an be expressed in the 
ontext of Hedin'sequations as (
.f. App. E.1)
P (1, 2, 3) = +i

∫

d4567G(2, 6)Γ(6, 7, 3)G(7, 4)G(5, 2)Γ(4, 5, 1) −

+i

∫

d45G(2, 4)G(5, 6)Γ(6, 7, 3)G(7, 2)Γ(4, 5, 1) −

−i
∫

d45G(2, 4)G(5, 2)
δΓ(4, 5, 1)

δVtot(3)
. (7.21)In the GW approximation one negle
ts vertex 
orre
tions and thus takes Γ(1, 2, 3) =

δ(1, 3)δ(1, 2). Applying this approximation to P yields the RPA. We thus have these
ond order RPA irredu
ible polarizability:
iP0(1, 2, 3) = G(1, 2)G(2, 3)G(3, 1) +G(1, 3)G(3, 2)G(2, 1) (7.22)This is the same expression we have found for χ(0)

ρρρ as a 
ontra
tion of L03, Eq. (7.14).Indeed, the RPA irredu
ible polarizability 
ooresponds to the independent parti
le po-larizability, sin
e in both 
ases no intera
tion is present.In the expression (7.21) for P2 features the variation of the vertex fun
tion with respe
tto the total potential. This 
an be used as a motivation to de�ne a se
ond order vertex,whi
h in turn is 
losely related to the se
ond order Bethe-Salpeter equation, just like thelinear vertex fun
tion is related to the linear BSE, as shown in [93℄.7.5 A gxc from MBPTThe similarity between the Bethe-Salpeter Equation and the fa
t that the 
ontra
tion of
L2 yields the linear density response, has been used to derive an exa
t expression for thetwo-parti
le 
orrelation part of the TDDFT kernel fxc [98℄ as outlined in Chap. 2.4.5.Here, I will sket
h how the se
ond order Bethe-Salpeter equation 
an be used to derivea similar expression for gxc.Sin
e the Coulomb intera
tion v is known and does not 
ontribute dire
tly to gxc it is
onvenient to 
ompare only the irredu
ible quantities in TDDFT and BSE. CombiningEq. (7.20) and the se
ond order TDDFT Dyson like equation (2.52) yields the relation
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between the irredu
ible polarizability and the independent parti
le response3:
P2 = P1P

−1
01 P02P

−1
01 P1P

−1
01 P1 + P1gxcP1P1 (7.23)where I have used the fa
t that χ0 = P0. This equation 
an be solved for P02 whi
hyields

P02 = P01P
−1
1 P2P

−1
1 P01P

−1
1 P01 + P01gxcP01P01. (7.24)Exa
tly the same steps 
an be taken for the se
ond order BSE, i.e. passing to irredu
iblequantities L̃, expressing them in terms of non-intera
ting quantities L0 and solving for

L03:
L03 = L02L̃

−1
2 L̃3L̃

−1
2 L02L̃

−1
2 L02 + L02Ξ3L02L02. (7.25)Here I only give the shorthand notation, but it is understood that L̃2 and L̃3 are fourand six-point quantities, while P1 and P2 are two and three point quantities.The two equations 
an be 
ombined by exploiting the similarity of the two independentparti
le responses L03 and P02. As shown in Se
. 7.2 the three point 
ontra
tion of L03equals the independent density response and thus also P02. It is however not pra
ti
al to
ontra
t Eq. (7.25), be
ause it prevents the possibility to eliminate L̃3 at a later point.Instead we generalize Eq. (7.24) to six points, thus making all P and P0 to trivially
ontra
tible four ( 4P ) and six-point ( 6P ) quantities, 
.f. App. F.Now using L03 = 6P 02 and L02 = 4P 01 the two equations 
an be 
ombined and solvedfor the kernels

Ξ3 − 6gxc = L̃−1
2 L̃3L̃

−1
2 L̃−1

2 − 4P
−1
1

6P 2
4P

−1
1

4P
−1
1 . (7.26)At this point we already note that even in the 
ases where Ξ3 = 0, 
.f. Se
. 7.3, the se
ondorder TDDFT kernel gxc is still �nite. Indeed it only vanishes if additionally 6P 2 = L̃3and 4P 1 = L̃2, whi
h is generally false and 
an only be a
hieved in oversimpli�ed models.In parti
ular this means that in the GW approximation with the additional assumptionof δW/δG = 0, where Ξ3 = 0, the se
ond order TDDFT kernel gxc generally does notvanish. That means that gxc has to a

ount for intera
tions that are not purely of se
ondorder in the sense of the Bethe-Salpeter intera
tions kernels, but are due to some non-trivial 
oupling of linear quantities.We 
an now use the fa
t that P2 is the three point 
ontra
tion of L̃3 and thus let

6P 2

∣

∣

6→3
= P2 = L̃3

∣

∣

∣

6→3
. By solving equation (7.26) for L3 and making this substitutionwe obtain

P2 = (L̃2
4P

−1
1

6P 2
4P

−1
1 L̃2

4P
−1
1 L̃2)

∣

∣

∣

6→3
+ (L̃2(Ξ3 − 6gxc)L̃2L̃2)

∣

∣

∣

6→3
. (7.27)3Reminder on notation used: P2 is the se
ond order polarizability whi
h 
ooresponds to the threeparti
le 
orrelation fun
tion L3.92



where 6 → 3 indi
ates the pairwise 
ontra
tion of the six free indi
es to three. This
onstitutes a Sham-S
hlüter equation [96℄ for the kernels that now 
an be solved for gxc.To keep tra
k of the 
ontra
ted quantities, it is ne
essary to expli
itly a

ount for theindi
es while pro
eeding, 
.f. App. F. Therefore the resulting expression (F.9) la
ksreadability, so that here I give again only a shorthand, indi
ating left or right sided
ontra
tions of four point quantities as 3|• and •|3 respe
tively. Thus, Eq. (7.27) solvedfor gxc reads
gxc =P−1

1

[

3

∣

∣

∣L̃2
4P

−1
1

∣

∣

∣

3
P2

3

∣

∣

∣

4P
−1
1 L̃2

∣

∣

∣

3 3

∣

∣

∣

4P
−1
1 L̃2

∣

∣

∣

3
− P2

]

P−1
1 P−1

1 +

+ P−1
1

3

∣

∣

∣
L̃2 Ξ3 L̃2

∣

∣

∣

3
L̃2

∣

∣

∣

3
P−1

1 P−1
1 .

(7.28)In 
omparison the 
orresponding expression of linear fxc derived in this framework, 
.f.Se
. 2.4.5, reads in this notation
fxc = P−1

1
3

∣

∣

∣

4P
−1
1 Ξ2L1

∣

∣

∣

3
P−1. (7.29)To illustrate the notation in Eq. (7.28), we have, for example, quantities like

3

∣

∣

∣

4P
−1
1 L̃2

∣

∣

∣

3
= 4P

−1
(1, 1, 3, 4)L̃(4, 3, 2, 2) (7.30)from whi
h we 
an see again that only if 4P 1 = L̃2 one 
an follow gxc = Ξ3|6→3. Instead,Eq. (7.28) gives the exa
t expression for a TDDFT kernel that reprodu
es a P2 su
h that

P (1, 2, 3) = L̃(1, 1, 2, 2, 3, 3, ), i.e. a se
ond order irredu
ible polarizability that a

ountsfor all three-parti
le many-body intera
tions. The advantage is that one does not haveto solve the six point se
ond order Bethe-Salpeter equation, as outlined in App. D.1,but 
an keep the three point formalism des
ribed in the pre
eding part of this thesis.The downside is that apart from having to perform a linear BSE 
al
ulation �rst toobtain L̃2 the a
tual knowledge of the kernel gxc as in Eq. (7.28) implies knowledge of P2and is therefore not possible. For 
al
ulation purposes one has to make approximationon this equation, parti
ularly on P2. The most straightforward would be to let P2 → P02.
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8 Con
lusionsThis work has been 
on
erned with the ab initio 
al
ulation of the material dependentse
ond harmoni
 generation sus
eptibility χ(2). The 
entral result is its expression 
on-taining ex
hange and 
orrelation e�e
ts in terms of the se
ond order density response
χρρρ and the ma
ros
opi
 diele
tri
 fun
tion from linear respone ǫM , 
.f. Eq. (3.57):

χ(2),LLL = − 2π

2q3
ǫLL
M χρρρǫ

LL
M ǫLL

M . (8.1)In this expression, lo
al �eld e�e
ts and ex
hange and 
orrelation e�e
ts are 
ontainedin the χρρρ and the ǫM alike. It turns out that for the in�uen
e of the lo
al �elds there israther subtle 
an
ellation e�e
t between the lo
al �elds a

ounted for in χρρρ and thosein ǫM . For SiC polytypes, the in�uen
e of lo
al �elds is tra
ed ba
k to the inhomogeneityof the ele
tron density, where the e�e
t varies with 
omponent and polytype.The agreement with experimental data has been shown to depend on the in
lusion ofex
hange and 
orrelation e�e
ts, here in form of an e�e
tive kernel that mimi
s theex
itoni
 intera
tion. This kernel leads to good agreement of peak intensity betweenthe spe
tra, but is not 
ompletely a

urate over the whole frequen
y range. We tra
edthis problem ba
k to small di�eren
es between the 
al
ulated ǫM and the experimentalone, showing that when we use the experimental ǫM in our 
al
ulation of χ(2), we obtainex
ellent agreement with the experimental result. This means on the one hand that thea

ura
y of the linear ǫM is of great importan
e for a nonlinear 
al
ulation, but on theother hand that many important 
ontributions are stemming from linear pro
esses.The numeri
al implementation of this formalism allows for realisti
 
al
ulations of se
ondharmoni
 spe
tra. Pending optimization, it 
an be used for surfa
es and interfa
es alike,where se
ond harmoni
 generation is of great interest. Also, it 
an be used to makemore quantitative predi
tions of the se
ond harmoni
 intensity of materials and thus beapplied to systemati
ally improve se
ond harmoni
 
rystals.TDDFT 
an also be used to 
al
ulate the quadrupole se
ond harmoni
 generation,whi
h is the leading order for 
entro-symmetri
 materials. However, the fa
t that oneonly deals with a density response means that one 
an not 
al
ulate all 
omponentsseparately but only superpositions. This 
ould in prin
iple be over
ome by 
onsidering
urrent matrix elements, but the density formalism used in this work 
an yield the fullanisotropi
, i.e. dire
tional dependent, 
ontribution of this e�e
t and thus might still bevaluable.Finally, from a more formal point of view, se
ond harmoni
 generation is a pro
essinvolving three ele
troni
 states and thus 
an be des
ribed by the three-parti
le Green'sfun
tion, or more pre
isely, its three-parti
le 
orrelation part. This is done by a se
ond94



order generalization of the Bethe-Salpeter equation. While a solution of this equationis readily obtained formally, a numeri
al implementation does not seem feasible at themoment. Still, by 
omparing this equation with the se
ond order TDDFT Dyson likeequation, one 
an gain some insight into the properties of the se
ond order ex
hangeand 
orrelation kernel gxc.On a more general note, I found that se
ond order variations as des
ribed by the TDDFTDyson equation or Bethe-Salpeter 
an be solved analyti
ally when the 
orresponding�rst order is known. From this observation one 
ould formulate the following 
onje
ture:Conje
ture: Let S be a �rst order variational quantity that is related to its non-intera
ting expression S0 via an intera
tion kernel K as
S = S0 + S0KS. (8.2)The se
ond order variation R of this quantity is then related to its non-intera
tion ex-pression R0 via
R = [1 + SK]R0 [1 +KS] [1 +KS] + SκSS (8.3)

= SS−1
0 R0 S

−1
0 SS−1

0 S + SκSS (8.4)where κ is the variation of the intera
tion kernel K.
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A Independent parti
le response fun
tionThe spe
tral representation of the linear and se
ond order response fun
tions, Eq. (2.23)and (2.24), are given in terms of many body wavefun
tions and many body ex
itationsenergies. These quantities are not feasibly 
omputed and thus, as a �rst approximationand starting point for further 
omputational s
hemes, one 
onstru
ts the response fun
-tions with wavefun
tions and energies of non-intera
ting parti
les. Here, I will outlinehow to pass from the many body response fun
tions to the single, independent, parti
leones by example of the se
ond order response fun
tion. The same reasoning 
an of 
oursebe applied to the �rst order 
ase, whi
h however is mu
h simpler and has been shown inother pla
es, e.g. [151℄.The operators in the matrix elements of Eq. (2.24) read in se
ond quantization formula-tion (
.f. [152℄)
Â =

∫

drψ†(r)â(r)ψ(r) (A.1)where â(r) is the single parti
le operator and ψ(r) and ψ†(r) are the �eld operators that
an be represented by single parti
le orbitals as
ψ†(r) =

∑

i

φ∗i (r)â
†
i and ψ(r) =

∑

i

φi(r)âi. (A.2)The operators â†i and âi 
reate and annihilate a parti
le in the state i. With this repre-sentation the many body operator reads
Â =

∑

ij

〈φi|â(r)|φj〉â†i âj. (A.3)We 
onsider the �rst term of Eq. (2.24) with this formulation
∑

nm

〈Ψ0|Â|Ψn〉〈Ψn|B̂|Ψm〉〈Ψm|Ĉ|Ψ0〉
(E0 − Em + ω3 + iη)(E0 − En + ω2 + ω3 + 2iη)

=

∑

nmijklrs

〈φi|â(r1)|φj〉〈φk|b̂(r2)|φl〉〈φr|ĉ(r3)|φs〉〈Ψ0|â†i âj|Ψn〉〈Ψn|â†kâl|Ψm〉〈Ψm|â†râs|Ψ0〉
(E0 −Em + ω3 + iη)(E0 −En + ω2 + ω3 + 2iη) (A.4)the 
reation and annihilation operators now impose 
onditions on the ex
ited many bodystates |Ψn〉 and |Ψm〉 so that the matrix elements do not vanish. For a non-intera
ting96



groundstate we 
an 
onvin
e ourselves that the �rst matrix element 〈Ψ0|â†i âj|Ψn〉 isonly non-zero if |Ψn〉 = â†j âi|Ψ0〉 due to the orthogonality of the states. Similarly, thelast matrix element 〈Ψm|â†râs|Ψ0〉 demands that |Ψm〉 = â†râs|Ψ0〉. This makes thesums over n and m obsolete and the many body ex
itation energies get repla
ed by the
orresponding single parti
le energies, i.e. E0 − En = ǫi − ǫj and E0 − Em = ǫs − ǫr.Thus we have
∑

nm

〈Ψ0|Â|Ψn〉〈Ψn|B̂|Ψm〉〈Ψm|Ĉ|Ψ0〉
(E0 − Em + ω3 + iη)(E0 − En + ω2 + ω3 + 2iη)

=

∑

ijklrs

〈φi|â(r1)|φj〉〈φk|b̂(r2)|φl〉〈φr|ĉ(r3)|φs〉×

×
〈Ψ0|â†i âj â

†
j âi|Ψ0〉〈Ψ0|â†i âj â

†
kâlâ

†
râs|Ψ0〉〈Ψ0|â†sârâ

†
râs|Ψ0〉

(ǫs − ǫr + ω3 + iη)(ǫi − ǫj + ω2 + ω3 + 2iη)

(A.5)
The operators in the 
entral matrix element now imply that either k = s ∧ r = j ∧ l = ior k = j ∧ s = i ∧ l = r, i.e.

〈Ψ0|â†i âj â
†
kâlâ

†
râs|Ψ0〉 = 〈Ψ0|â†i âj â

†
sâiâ

†
j âs|Ψ0〉 + 〈Ψ0|â†i âj â

†
j ârâ

†
râi|Ψ0〉 (A.6)We now make use of the anti-
ommuting property of the operators while rearrangingthem to the form â†i âi = n̂i, that is to say to give o

upation number operators:

∑

nm

〈Ψ0|Â|Ψn〉〈Ψn|B̂|Ψm〉〈Ψm|Ĉ|Ψ0〉
(E0 − Em + ω3 + iη)(E0 − En + ω2 + ω3 + 2iη)

=

=
∑

ijs

〈φi|â(r1)|φj〉〈φs|b̂(r2)|φi〉〈φj |ĉ(r3)|φs〉×

× 〈Ψ0|n̂i(1 − n̂j)|Ψ0〉〈Ψ0|n̂i(1 − n̂j)n̂s|Ψ0〉〈Ψ0|n̂s(1 − n̂j)|Ψ0〉
(ǫs − ǫj + ω3 + iη)(ǫi − ǫj + ω2 + ω3 + 2iη)

+

+
∑

ijr

〈φi|â(r1)|φj〉〈φj |b̂(r2)|φr〉〈φr|ĉ(r3)|φi〉×

× 〈Ψ0|n̂i(1 − n̂j)|Ψ0〉〈Ψ0|n̂i(1 − n̂j)(1 − n̂r)|Ψ0〉〈Ψ0|n̂i(1 − n̂r)|Ψ0〉
(ǫi − ǫr + ω3 + iη)(ǫi − ǫj + ω2 + ω3 + 2iη)

=
∑

ijk

fi(1 − fj)fk〈φi|â(r1)|φj〉〈φk|b̂(r2)|φi〉〈φj |ĉ(r3)|φk〉
(ǫk − ǫj + ω3 + iη)(ǫi − ǫj + ω2 + ω3 + 2iη)

+

+
fi(1 − fj)(1 − fk)〈φi|â(r1)|φj〉〈φj |b̂(r2)|φk〉〈φk|ĉ(r3)|φi〉

(ǫi − ǫk + ω3 + iη)(ǫi − ǫj + ω2 + ω3 + 2iη)

(A.7)
where in the last step we used 〈Ψ0|n̂i|Ψ0〉 = fi and that this expe
tation value of theo

upation operator is either 1 or 0.
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B Fourier TransformsWhen dealing with �rst and se
ond order response we have to take the Fourier-transformsof fun
tions of two or three variables, for whi
h we need to de�ne the Fourier transform.For one point fun
tions we use the de�nitions
f̃(k, ω) =

∫

drdte−i(k·r−ωt)f(r, t) (B.1)
f(r, t) =

1

(2π)4

∫

dkdωei(k·r−ωt)f̃(k, ω) (B.2)When dealing with fun
tions of two variables, espe
ially response fun
tion, these de�ni-tions have to 
arefully generalized. here we will shortly demonstrate this by 
onsideringa two time linear response fun
tion and its transformation into frequen
y spa
e. Thetransformation into momentum spa
e as well as the generalization to se
ond order isdone analogously. Considering a �rst order response fun
tion de�ned in real time by
f(t1) =

∫

dt2χ(t1, t2)Vper(t2) (B.3)whi
h we would like to express in Fourier spa
e as
f(ω1) =

∫

dω2χ(ω1, ω2)Vper(ω2). (B.4)Starting by substituting the perturbing �eld in terms of its Fourier transform we have
f(t1) =

1

2π

∫

dt2χ(t1, t2)

∫

dω2e
−ω2t2Vper(ω2) (B.5)and performing now the Fourier transform of the whole expression a

ording to

f(ω) =

∫

dteiωtf(t) (B.6)we have
f(ω1) =

1

2π

∫

dω2dt1dt2e
iω1t1χ(t1, t2)e

−ω2t2Vper(ω2). (B.7)
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Comparison with Eq. (B.4) yields the rule for Fourier transforming linear responsefun
tions:
χ(ω1, ω2) =

1

2π

∫

dt1dt2e
iω1t1χ(t1, t2)e

−ω2t2 . (B.8)For the transformation into the momentum spa
e of a periodi
 
rystal we �nd analogously
χ(r1, r2) =

1

V

∑

q,G1,G2

ei(q+G1)·r1χ(q + G1,q + G2)e
−i(q+G2)·r2 (B.9)

χ(q + G1,q + G2) =
1

V

∫

V
dr1r2e

−i(q+G1)·r1χ(r1, r2)e
i(q+G2)·r2 (B.10)where we used the periodi
ity of the latti
e and V is the volume of solid (
.f. [153℄).The se
ond order response fun
tions follow in the same way and we have:

χ(ω1, ω2, ω3) =
1

2π

∫

dt1dt2dt3e
iω1t1χ(t1, t2, t3)e

−iω2t2e−iω3t3 (B.11)and
χ(r1, r2, r3) =

1

V

∑

q1,q2,q3
G1,G2,G3

ei(q1+G1)·r1χ(q1 + G1,q2 + G2,q3 + G3)e
−i(q2+G2)·r2e−i(q3+G3)·r2(B.12)
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C Degenerate perturbation theoryThe important di�eren
e to usual perturbation theory is, that as we are dealing witheigenenergies from real band stru
tures, we need to a

ount for the degenera
y of bands.This is text book knowledge, so we just state the results. They are similar to non-degenerate ones, only that the sums ex
lude those states that belong to the subspa
e
D of states that have degenerate energies. (We denote the non-degenerate energies andstates by En and |ψn〉 respe
tively.)Energies

ǫ(1)n = 〈ψn|H(1)|ψn〉 (C.1)
ǫ(2)n =

∑

m/∈Dn

|〈ψn|H(1)|ψn〉|2
En − Em

+ 〈ψn|H(2)|ψn〉 (C.2)Note that this kind of expression is only possible if ψn diagonlaize the perturbation,whi
h here is the 
ase, be
ause ψn are Blo
h fun
tions and the perturbing Hamiltonianis Eq. (4.11). Now we 
an insert this k · p-perturbed Hamiltonian Eq. (4.11):
ǫ(1)n = 〈ψn|qv|ψn〉 (C.3)
ǫ(2)n =

∑

m/∈Dn

|〈ψn|qv|ψn〉|2
En − Em

− i

2
〈ψn|[qv,qr]|ψn〉 (C.4)States

|Ψ(1)
n 〉 =

∑

m/∈Dn

〈ψm|H(1)|ψn〉
En −Em

|ψm〉 (C.5)
|Ψ(2)

n 〉 =
∑

m,p/∈Dn

〈ψm|H(1)|ψp〉〈ψp|H(1)|ψn〉
(En − Ep)(En − Em)

|ψm〉 +
∑

m/∈Dn

〈ψm|H(2)|ψn〉
(En − Em)

|ψm〉 (C.6)
− 〈ψn|H(1)|ψn〉

∑

m/∈D

〈ψm|H(1)|ψn〉
(En − Em)2

|ψm〉 − 1

2

∑

m/∈Dn

|〈ψm|H(1)|ψn〉|2
(En − Em)2

|ψn〉 (C.7)
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Again, we insert the k · p-perturbed Hamiltonian:
|Ψ(1)

n 〉 =
∑

m/∈Dn

〈ψm|qv|ψn〉
En − Em

|ψm〉 (C.8)
|Ψ(2)

n 〉 =
∑

m,p/∈Dn

〈ψm|qv|ψp〉〈ψp|qv|ψn〉
(En − Ep)(En − Em)

|ψm〉 +
∑

m/∈Dn

〈ψm| − i
2 [qv,qr]|ψn〉

(En − Em)
|ψm〉 (C.9)

− 〈ψn|qv|ψn〉
∑

m/∈D

〈ψm|qv|ψn〉
(En − Em)2

|ψm〉 − 1

2

∑

m/∈Dn

|〈ψm|qv|ψn〉|2
(En − Em)2

|ψn〉 (C.10)In χ(0)
ρρρ there are three di�erent kinds matrix elements and denominators:
ann′(q) = 〈nk|e−i(q′+q′′+G)r|nk+q′+q′′〉 (C.11)
bn′n′′(q′′ + G′′) = 〈n′k+q′+q′′ |ei(q′′+G′′)r′ |n′′k+q′〉 (C.12)
cn′′n(q′ + G′) = 〈n′′k+q′ |ei(q′+G′)r′′ |nk〉 (C.13)(C.14)and three di�erent denominators:
EAnn′ = En,k −En′,k+q′+q′′ + 2ω + 2iη (C.15)
EBn′′n′(q′) = En,k − En′′,k+q′ + ω + iη (C.16)
ECnn′′(q′) = En′′,k+q′ − En′,k+q′+q′′ + ω + iη (C.17)(C.18)So we 
an write:
χ(0)

ρρρ(q
′ + q′′ + G,q′ + G′,q′′ + G′′, ω, ω) =

2

V

∑

n,n′,n′′,k

ann′(q)EAnn′×

[

(fnk − fn′′k)bn′n′′(q′′ + G′′)cn′′n(q′ + G′)ECnn′′(q′)+

+ (fn′k − fn′′k)bn′n′′(q′′ + G′′)cn′′n(q′ + G′)EBnn′′(q′)+

+ (fnk − fn′′k)bn′n′′(q′ + G′)cn′′n(q′′ + G′′)ECnn′′(q′′)+

+(fn′k − fn′′k)bn′n′′(q′ + G′)cn′′n(q′′ + G′′)EBnn′′(q′′)
]

(C.19)
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In order to 
arry out the perturbative expansion we apply the perturbation theory toall these six terms separately up to se
ond order1:a-matrix elements
a

(0)
nn′ = δnn′ (C.20)
a

(0)
nn′(G) = 〈nk|e−iGr|n′k〉 (C.21)
a

(1)
nn′(q) =

〈nk|(q′ + q′′)v|n′k〉
En′,k − En,k

(C.22)
a

(1)
nn′(G) =

∑

m/∈Dn′

〈mk|(q′ + q′′)v|n′k〉〈nk|e−iGr|mk〉
En′,k −Em,k

(C.23)b-matrix elements
b
(0)
n′n′′ = δn′n′′ (C.24)
b
(0)
n′n′′(G) = 〈n′k|eiGr′ |n′′k〉 (C.25)
b
(1)
n′n′′(q

′) =
〈n′k|q′v|n′′k〉
En′,k − En′′,k

(C.26)
b
(1)
n′n′′(q

′ + G′) =
∑

m/∈Dn′′

〈mk|q′′v|n′′k〉〈n′k|eiG
′r′ |mk〉

En′′,k − Em,k
+

+
∑

m/∈Dn′

〈n′k|(q′ + q′′)v|mk〉〈mk|eiG
′r′ |n′′k〉

En′,k − Em,k

(C.27)

1In prin
iple one would need them up to third order, but it turns out that all terms 
ontaining thirdorder matrix elements or denominators vanish due tot the o

upation number. The same holds forse
ond order of a.102



b
(2)
n′n′′(q

′′) =
∑

p/∈Dn′′

〈n′k|q′v|pk〉〈pk|q′v|n′′k〉
(En′′,k −Ep,k)(En′′,k − En′,k)

− 〈n′′k|q′v)|n′′k〉〈n′k|q′v|n′′k〉
(En′′,k −En′,k)2

+

+
〈n′k| − i

2 [q′r,q′v]|n′′k〉
En′′,k − En′,k

+

+
∑

p/∈Dn′

〈n′k|(q′ + q′′)v|pk〉〈pk|(q′ + q′′)v|n′′k〉
(En′,k − Ep,k)(En′,k −En′′,k)

− 〈n′k|(q′ + q′′)v)|n′k〉〈n′k|(q′ + q′′)v|n′′k〉
(En′,k − En′′,k)2

+

+
〈n′k| − i

2 [(q′ + q′′)r, (q′ + q′′)v]|n′′k〉
En′,k − En′′,k

+

+
∑

m/∈Dn′ , /∈Dn′′

〈n′k|(q′ + q′′)v|mk〉〈mk|q′v|n′′k〉
(En′,k − Em,k)(En′′,k − Em,k)

−

− 1

2
δn′n′′





∑

m/∈Dn′′

|〈mk|q′v|n′′k〉|2
(En′′,k − Em,k)2

−
∑

m/∈Dn′

|〈n′k|(q′ + q′′)v|mk〉|2
(En′,k − Em,k)2



(C.28)
-matrix elements
c
(0)
n′′n = δn′′n (C.29)
c
(0)
n′′n(G) = 〈n′′k|eiGr′′ |nk〉 (C.30)
c
(1)
n′′n(q′) =

〈n′′k|q′v|nk〉
En′′,k − En,k

(C.31)
c
(1)
n′′n(q′ + G′) =

∑

m/∈Dn

〈n′′k|q′v|mk〉〈mk|eiG
′

r′′|nk〉
En′′,k − Em,k

(C.32)
c
(2)
n′′n(q′) =

∑

p/∈Dn′′

〈pk|q′v|nk〉〈n′′k|q′v|pk〉
(En′′,k − Ep,k)(En′′,k − En,k)

+

+
〈n′′k| − i

2 [q′r,q′v]|nk〉
En′′,k − En,k

− 〈n′′k|q′v|n′′k〉
〈n′′k|q′v|nk〉

(En′′,k − En,k)2
−

− 1

2

∑

m/∈Dn′′

|〈mk|q′v|n′′k〉|2
(En′′,k − Em,k)2

δn′′n

(C.33)
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c
(2)
n′′n(q′ + G′) =

∑

m,p/∈Dn′′

〈pk|q′v|mk〉〈n′′k|q′v|pk〉
(En′′,k − Ep,k)(En′′,k − Em,k)

〈mk|eiG
′r′′ |nk〉+

+
∑

m/∈Dn′′

〈n′′k| − i
2 [q′r,q′v]|mk〉

En′′,k − Em,k
〈mk|eiG

′r′′ |nk〉−

− 〈n′′k|q′v|n′′k〉
∑

m/∈Dn′′

〈n′′k|q′v|mk〉
(En′′,k − Em,k)2

〈mk|eiG
′r′′ |nk〉−

− 1

2

∑

m/∈Dn′′

|〈mk|q′v|n′′k〉|2
(En′′,k − Em,k)2

〈n′′k|eiG
′r′′ |nk〉

(C.34)
Denominators

E
(0)
Ann′ =

1

(En,k − En′,k + 2ω + 2iη)
(C.35)

E
(1)
Ann′ =

E
(1)
n′ (q′ + q′′)

(En,k − En′,k + 2ω + 2iη)2
(C.36)

E
(0)
Bn′′n′ =

1

(En′′,k − En′,k + ω + iη)
(C.37)

E
(1)
Bn′′n′(q

′) =
E

(1)
n′ (q′ + q′′) − E

(1)
n′′ (q′)

(En′′,k − En′,k + ω + iη)2
(C.38)

E
(0)
Cnn′′ =

1

(En,k − En′′,k + ω + iη)
(C.39)

E
(1)
Cnn′′(q

′) =
E

(1)
n′′ (q′)

(En,k − En′′,k + ω + iη)2
(C.40)where E(1)

n (q) = 〈nk|qv|nk〉.We note that here all matrix elements are in terms of v = p + [Vnl, r]. For our imple-mentation we pass to matrix elements of the position operator r, using the relation
〈nk|r|n′k〉 =

v

Enk − En′k′

. (C.41)
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C.1 HeadThe head of χ(0)
ρρρ in
luding the s
issors approximation as des
ribed in se
tion 4.2 reads:

χ(0),head
ρρρ (q,q1,q2) =

2

V

∑

n,n′,n′′,k

[

(fn,k − fn′′,k)

(∆SC
nn′ + 2ω′)(∆SC

nn′ + ω′)
+

(fn′,k − fn′′,k)

(∆SC
nn′ + 2ω′)(∆SC

n′′n′ + ω′)
+

+ 2
(fn,k − fn′,k)(∆LDA

n′′n + ∆LDA
n′′n′ )

∆LDA
nn′ ∆SC

nn′(∆SC
nn′ + 2ω′)

− (fn,k − fn′,k)(∆LDA
n′′n + ∆LDA

n′′n′ )

2∆LDA
nn′ ∆SC

nn′(∆SC
nn′ + ω′)

]

×

× 〈nk| − i(q1 + q2)r|n′k〉
[

〈n′k|iq2r|n′′k〉〈n′′k|iq1r|nk〉 + 〈n′k|iq1r|n′′k〉〈n′′k|iq2r|nk〉
]

+

+
(fn,k − fn′,k)

(∆SC
n′n + ω′)(∆SC

nn′ + ω′)
×

× 〈n′′k|i(q1 + q2)r|nk〉
[

〈nk|iq1r|n′k〉〈n′k|iq2r|n′′k〉 + 〈nk|iq2r|n′k〉〈n′k|iq1r|n′′k〉
]

+

+

{

8(fn,k − fn′,k)

(∆SC
nn′)2(∆SC

nn′ + 2ω′)
− (fn,k − fn′,k)

2(∆SC
nn′)2(∆SC

nn′ + ω′)
+

+

[

4(fn,k − fn′,k)

∆SC
n′n(∆SC

nn′ + 2ω′)
+

(fn,k − fn′,k)

2∆SC
n′n(∆SC

nn′ + ω′)

] [

1

∆SC
nn′

− 1

∆LDA
nn′

]}

×

× 〈nk| − i(q1 + q2)r|n′k〉
[

〈n′k|iq2r|nk〉∆q1

nn′ + 〈n′k|iq1r|nk〉∆q2

nn′

]

+

+
(fn,k − fn′,k)∆LDA

n′′n

∆LDA
nn′ (∆SC

nn′ + ω′)(∆SC
n′n + ω′)

×

×
[

−〈nk|iq1r|n′k〉〈n′k|iq2r|n′′k〉〈n′′k|i(q1 + q2)r|nk〉+
+ 〈nk|i(q1 + q2)r|n′k〉〈n′k|iq2r|n′′k〉〈n′′k|iq1r|nk〉−
− 〈nk|iq2r|n′k〉〈n′k|iq1r|n′′k〉〈n′′k|i(q1 + q2)r|nk〉+
+ 〈nk|i(q1 + q2)r|n′k〉〈n′k|iq1r|n′′k〉〈n′′k|iq2r|nk〉

]

+

+

[

(fn,k − fn′,k)

∆LDA
nn′ ∆SC

nn′(∆SC
nn′ + ω′)

− 4(fn,k − fn′,k)

∆LDA
nn′ ∆SC

nn′(∆SC
nn′ + 2ω′)

]

×

× 〈nk|i(q1 + q2)r|n′k〉
[

〈n′k| −
i

2
[q1r,q2v]|nk〉 + 〈n′k| −

i

2
[q2r,q1v]|nk〉

]

+

+
(fn,k − fn′,k)

2∆LDA
nn′ ∆SC

nn′(∆SC
nn′ + ω′)

×

+
[

〈nk|[(q1 + q2)v, iq2r]|n′k〉〈n′k|iq1r|nk〉 + 〈nk|[(q1 + q2)v, iq1r]|n′k〉〈n′k|iq2r|nk〉−
− 〈nk|i(q1 + q2)r|n′k〉〈n′k|[q2v, iq1r]|nk〉 − 〈nk|i(q1 + q2)r|n′k〉〈n′k|[q1v, iq2r]|nk〉

](C.42)
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C.2 WingsC.2.1 G 6= 0:
χ(0),wing1

ρρρ (G,q1,q2) =
2

V

∑

n,n′,n′′,k

(fn,k − fn′,k)
{

〈nk|e−iGr|n′k〉〈n′k|iq1r|nk〉∆q2

nn′×

×
[

1

(∆SC
nn′)2(∆SC

nn′ + ω′)
+

2

∆LDA
nn′ ∆SC

nn′(∆SC
nn′ + ω′)

+

+
2

∆SC
nn′(∆SC

nn′ + 2ω′)(∆SC
nn′ + ω′)

+
2

∆LDA
nn′ (∆SC

nn′ + 2ω′)(∆SC
nn′ + ω′)

]

+

+
2〈nk|iq2r|n′′k〉〈n′′k|e−iGr|n′k〉〈n′k|iq1r|nk〉

(∆SC
nn′ + ω′)(∆SC

n′n + ω′)
+

+ 〈nk|e−iGr|n′k〉〈n′k|iq1r|n′′k〉〈n′′k|iq2r|nk〉×

×
[

2(∆SC
n′′n + ∆SC

n′′n′)

(∆SC
nn′)2(∆SC

nn′ + 2ω′)
− (∆SC

n′′n + ∆SC
n′′n′)

(∆SC
nn′)2(∆SC

nn′ + ω′)
− (∆SC

n′′n + ∆SC
n′′n′)

∆SC
nn′(∆SC

nn′ + 2ω′)(∆SC
nn′ + ω′)

]

+

+ 〈nk|e−iGr|n′k〉〈n′k|iq2r|n′′k〉〈n′′k|iq1r|nk〉×

×
[

(∆LDA
n′′n + ∆LDA

n′′n′ )

∆LDA
nn′ ∆SC

nn′(∆SC
nn′ + ω′)

+
(∆LDA

n′′n + ∆LDA
n′′n′ )

∆LDA
nn′ (∆SC

nn′ + 2ω′)(∆SC
nn′ + ω′)

]

}

+

+ 〈nk|e−iGr|n′k〉〈n′k|iq2r|n′′k〉〈n′′k|iq1r|nk〉×

×
[

(fn,k − fn′′,k)

(∆SC
nn′ + 2ω′)(∆SC

nn′′ + ω′)
+

(fn′,k − fn′′,k)

(∆SC
nn′ + 2ω′)(∆SC

n′′n′ + ω′)

]

+

+
(fn,k − fn′,k)〈nk|e−iGr|n′k〉〈n′k|[q1v, iq2r]|nk〉

∆LDA
nn′ ∆SC

nn′(∆SC
nn′ + 2ω′)

+

+ {q1 ↔ q2} (C.43)
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C.2.2 G1 6= 0:
χ(0),wing2

ρρρ (q1 + q2,G1,q2) =
2

V

∑

n,n′,n′′,k

〈nk|i(q1 + q2)r|n′k〉〈n′k|eiG1r|nk〉∆q2

nn′×

×
[

− 2(fn,k − fn′,k)

∆SC
nn′(∆SC

nn′ + 2ω′)(∆SC
nn′ + ω′)

− (fn,k − fn′,k)

(∆SC
nn′)2(∆SC

nn′ + ω′)
− (fn,k − fn′,k)

∆LDA
nn′ ∆SC

nn′(∆SC
nn′ + ω′)

]

−

− (fn,k − fn′,k)〈nk|iq2r|n′k〉〈n′k|eiG1r|nk〉∆q1+q2

nn′

∆LDA
nn′ ∆SC

nn′(∆SC
nn′ + ω′)

−

− (fn,k − fn′,k)
〈nk|eiG1r|n′k〉

[

〈n′k|i(q1 + q2)r|nk〉∆q2

nn′ + 〈n′k|iq2r|nk〉∆q2+q2

nn′

]

2∆LDA
nn′ ∆SC

nn′(∆SC
nn′ + ω′)

+

+ (fn,k − fn′,k)
∆LDA

n′′n′

∆LDA
nn′

〈nk|iq2r|n′′k〉〈n′′k|i(q1 + q2)r|n′k〉〈n′k|eiG1r|nk〉
∆SC

nn′(∆SC
nn′ + ω′)

+

+ (fn,k − fn′,k)
∆LDA

n′′n

∆LDA
nn′

〈nk|i(q1 + q2)r|n′′k〉〈n′′k|iq2r|n′k〉〈n′k|eiG1r|nk〉
∆SC

nn′(∆SC
nn′ + ω′)

+

+ (fn,k − fn′,k)
〈nk|eiG1r|n′k〉

∆SC
nn′(∆SC

nn′ + ω′)
×

×
[

〈n′k|i(q1 + q2)r|n′′k〉〈n′′k|iq2r|nk〉 − 〈n′k|iq2r|n′′k〉〈n′′k|i(q1 + q2)r|nk〉
]

−

− 2(fn,k − fn′,k)
〈nk|i(q1 + q2)r|n′k〉
∆SC

nn′(∆SC
nn′ + 2ω′)

×

×
[

〈n′k|eiG1r|n′′k〉〈n′′k|iq2r|nk〉 − 〈n′k|iq2r|n′′k〉〈n′′k|eiG1rr|nk〉
]

+

+ (fn,k − fn′,k)
〈nk|iq2r|n′k〉

2∆SC
nn′(∆SC

nn′ + ω′)
×

×
[

〈n′k|i(q1 + q2)r|n′′k〉〈n′′k|eiG1r|nk〉 − 〈n′k|eiG1r|n′′k〉〈n′′k|i(q1 + q2)rr|nk〉
]

−

− 〈nk|i(q1 + q2)r|n′k〉
[

〈n′k|eiG1r|n′′k〉〈n′′k|iq2r|nk〉 + 〈n′k|iq2r|n′′k〉〈n′′k|eiG1r|nk〉
]

×

×
[

(fn,k − fn′′,k)

(∆SC
nn′ + 2ω′)(∆SC

nn′′ + ω′)
+

(fn′,k − fn′′,k)

(∆SC
nn′ + 2ω′)(∆SC

n′′n′ + ω′)

] (C.44)The 
ase G2 6= 0 follows from this one by ex
hanging G1 ↔ G2 and q1 ↔ q2.
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C.3 Fa
esC.3.1 G = 0:
χ(0),face1

ρρρ (q1 + q2,G1,G2) =
2

V

∑

n,n′,n′′,k

(fn,k − fn′,k)
〈nk|i(q1 + q2)r|n′′k〉

(∆SC
nn′ + ω′)(∆SC

n′n + ω′)
×

×
[

〈n′′k|eiG1r|n′k〉〈n′k|eiG2r|nk〉 + 〈n′′k|eiG2r|n′k〉〈n′k|eiG1r|nk〉
]

−

− 〈nk|i(q1 + q2)r|n′k〉
[

〈n′k|eiG1r|n′′k〉〈n′′k|eiG2r|nk〉 + 〈n′k|eiG2r|n′′k〉〈n′′k|eiG1r|nk〉
]

×

×
[

(fn,k − fn′′,k)

(∆SC
nn′ + 2ω′)(∆SC

nn′′ + ω′)
+

(fn′,k − fn′′,k)

(∆SC
nn′ + 2ω′)(∆SC

n′′n′ + ω′)

] (C.45)C.3.2 G1 = 0:
χ(0),face2

ρρρ (G,q1,G2) =
2

V

∑

n,n′,n′′,k

[

(fn,k − fn′′,k)

(∆SC
nn′ + 2ω)(∆SC

nn′′ + ω)
+

(fn′,k − fn′′,k)

(∆SC
nn′ + 2ω)(∆SC

n′′n′ + ω)

]

×

× 〈nk|e−iGr|n′k〉
[

〈n′k|eiG2r
′ |n′′k〉〈n′′k|q1r|nk〉 + 〈n′k|q1r|n′′k〉〈n′′k|eiG2r

′′ |nk〉
]

+

+
2(fn,k − fn′,k)〈nk|e−iGr|n′k〉

∆SC
nn′(∆SC

nn′ + 2ω)

[

〈n′′k|q1r|nk〉〈n′k|eiG2r
′ |n′′k〉 − 〈n′k|q1r|n′′k〉〈n′′k|eiG2r

′ |nk〉
]

+

+
4(fn,k − fn′,k)〈nk|e−iGr|n′k〉〈n′k|eiG2r

′ |nk〉∆q1

nn′

∆SC
nn′(∆SC

nn′ + 2ω)(∆SC
nn′ + ω)

+

+
(fn,k − fn′,k)〈nk|e−iGr|n′k〉〈n′k|eiG2r

′ |nk〉∆q1

nn′

(∆SC
nn′)2(∆SC

nn′ + ω)
+

+
(fn,k − fn′,k)〈n′k|eiG2r

′ |nk〉
∆SC

nn′(∆SC
nn′ + ω)

[

〈nk|e−iGr|n′′k〉〈n′′k|q1r|n′k〉 − 〈nk|q1r|n′′k〉〈n′′k|e−iGr|n′k〉
](C.46)The 
ase G2 = 0 follows from this one by ex
hanging G1 ↔ G2 and q1 ↔ q2.
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D Derivation of the 2nd orderBethe-Salpter equationIn this appendix I give the detailed derivation of the se
ond order Bethe-Salpeter equationdis
ussed in 
hapter 2.4.5.The se
ond order BSE is formulated in terms of the three-parti
le 
orrelation fun
tion L3that is related to the three-parti
le Green's fun
tion via S
hwingers fun
tional derivativeidentity, Eq. (7.1) and its derivative1:
iL(1, 2, 3, 4, 5, 6) =

δ2G(1, 2)

δV (3, 4)δV (5, 6)
= −δG(1, 3, 2, 4)

δV (5, 6)
+
δG(1, 2)G(3, 4)

δV (5, 6)

= −δG(1, 3, 2, 4)

δV (5, 6)
+
δG(1, 2)

δV (5, 6)
G(3, 4) +G(1, 2)

δG(3, 4)

δV (5, 6)

= −δG(1, 3, 2, 4)

δV (5, 6)
−

−G(1, 5, 2, 6)G(3, 4) +G(1, 2)G(5, 6)G(3, 4)

−G(1, 2)G(3, 5, 4, 6) +G(1, 2)G(3, 4)G(5, 6)

= −G(1, 3, 5, 2, 4, 6) −
−G(1, 3, 2, 4)G(5, 6) −G(1, 5, 2, 6)G(3, 4) −G(3, 5, 4, 6)G(1, 2) +

+2G(1, 2)G(3, 4)G(5, 6) (D.1)where I used S
hwinger's relation for G3

δG(1, 3, 2, 4)

δV (5, 6)
= G(1, 3, 5, 2, 4, 6) +G(1, 3, 2, 4)G(5, 6). (D.2)

1In this se
tion the potential V always represents the perturbing potential Vper as opposed to the totalpotential. 109



To obtain a Bethe-Salpeter like equation for this quantity we simply have to derive the�rst order BSE (2.78):
δL(1, 2, 3, 4)

δV (5, 6)
=

=
δ

δV (5, 6)
[−iG(1, 3)G(4, 2)] +

+
δ

δV (5, 6)

[∫

d789 10(−i)G(1, 7)G(8, 2)×

×
[

v(7, 9)δ(7, 8)δ(9, 10) + i
δΣ(7, 8)

δG(9, 10)

]

(−i)δG(9, 10)

δV (3, 4)

]

= (−i)δG(1, 3)

δV (5, 6)
G(4, 2) + (−i)G(1, 3)

δG(4, 2)

V (5, 6)
+

+

∫

d789 10(−i)δG(1, 7)

δV (5, 6)
G(8, 2)

[

v(7, 9)δ(7, 8)δ(9, 10) + i
δΣ(7, 8)

δG(9, 10)

]

(−i)δG(9, 10)

δV (3, 4)

+

∫

d789 10 (−i)G(1, 7)
δG(8, 2)

δV (5, 6)

[

v(7, 9)δ(7, 8)δ(9, 10) + i
δΣ(7, 8)

δG(9, 10)

]

(−i)δG(9, 10)

δV (3, 4)

+

∫

d789 10 (−i)G(1, 7)G(8, 2)i
δ

δV (5, 6)

[

δΣ(7, 8)

δG(9, 10)

]

(−i)δG(9, 10)

δV (3, 4)

+

∫

d789 10 (−i)G(1, 7)G(8, 2)×

×
[

v(7, 9)δ(7, 8)δ(9, 10) + i
δΣ(7, 8)

δG(9, 10)

]

(−i) δ2G(9, 10)

δV (5, 6)δV (3, 4)(D.3)We note the repeated o

urren
e of �rst order quantities known from �rst order BSE.The only new term is the se
ond derivative of the self energy in the se
ond last line. Inthis term we use the 
hain rule and get
δ

δV (5, 6)

[

δΣ(7, 8)

δG(9, 10)

]

=

∫

d11 12
δ

δG(11, 12)

[

δΣ(7, 8)

δG(9, 10)

]

δG(11, 12)

δV (5, 6)
(D.4)Analogously to the �rst order 
ase, we de�ne the six-point kernel:

Ξ(1, 2, 3, 4, 5, 6) = i
δ2Σ(1, 2)

δG(5, 6)δG(3, 4)
(D.5)and to keep the notation 
ompa
t we also de�ne a �rst order kernel that 
ontains the
oulomb potential:

Ξ̃(1, 2, 3, 4) = v(1, 3)δ(1, 2)δ(3, 4) + Ξ(1, 2, 3, 4) (D.6)
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Now inserting the known �rst order quantities we 
an write
δL(1, 2, 3, 4)

δV (5, 6)
=L(1, 3, 5, 6)G(4, 2) +G(1, 3)L(4, 2, 5, 6)+

+

∫

d789 10L(1, 7, 5, 6)G(8, 2)Ξ̃(7, 8, 9, 10)L(9, 10, 3, 4)+

+

∫

d789 10G(1, 7)L(8, 2, 5, 6)Ξ̃(7, 8, 9, 10)L(9, 10, 3, 4)+

+

∫

d789 10 11 12L0(1, 2, 7, 8)Ξ(7, 8, 9, 10, 11, 12)L(11, 12, 5, 6)L(9, 10, 3, 4)

+

∫

d789 10L0(1, 2, 7, 8)Ξ̃(7, 8, 9, 10)
δL(9, 10, 3, 4)

δV (5, 6) (D.7)This is in prin
iple already a se
ond order BSE. We note that at this point we do notneed any six-point quantities other than the kernel.To make the 
onne
tion to the TDDFT Dyson equation and to avoid expli
it referen
eto the one-parti
le Green's fun
tion G, we de�ne
iL′

0(1, 2, 3, 4, 5, 6) = G(1, 3)G(4, 2)G(5, 6) (D.8)
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and insert the full �rst order expressions for the L2 (Eq. (2.78)) in the above equation.Re
alling the de�nition for L3 = δL2/δV we have 2
L(123456) =

L′
0(135642) + L′

0(425613)+

+

∫

d789 10L′
0(137842)Ξ̃(78910)L(9 10 56)+

+

∫

d789 10L′
0(427813)Ξ̃(78910)L(9 10 56)+

+

∫

d789 10L′
0(175682)Ξ̃(789 10)L(9 10 34)+

+

∫

d789 10L′
0(825617)Ξ̃(789 10)L(9 10 34)+

+

∫

d789 10 11 12 13 14L′
0(17 11 12 82)Ξ̃(11 12 13 14)L(13 14 56)Ξ̃(789 10)L(9 10 34)+

+

∫

d789 10 11 12 13 14L′
0(82 11 12 17)Ξ̃(11 12 13 14)L(13 14 56)Ξ̃(789 10)L(9 10 34)+

+

∫

d789 10 11 12L0(1278)Ξ(789 10 11 12)L(11 12 56)L(9 10 34)

+

∫

d789 10L0(1278)Ξ̃(789 10)L(9 10 3456). (D.9)We note that the eight �rst terms are in fa
t pairs of terms with the same stru
ture. Thisis due to the symmetry in the perturbing �elds, i.e. it doesent make a physi
al di�eren
eif the V (5, 6) �eld is applied before the V (3, 4) �eld or vi
e versa. We 
an see that byex
hanging the indi
es 3 ↔ 5 and 4 ↔ 6 in the equation. We therefore de�ne an L0 su
hthat it a

ounts for these two possibilities:
iL0(123456) = iL′

0(135642)+ iL′
0(425613) = G(1, 5)G(6, 3)(4, 2)+G(1, 3)G(4, 5)(6, 2)(D.10)

2To keep the equation readable I drop the separating 
ommas between variables, relying on the readersgoodwill to distinguish.112



with this the se
ond order BSE reads:
L(123456) =

L0(123456)+

+

∫

d789 10L0(123478)Ξ̃(78910)L(9 10 56)+

+

∫

d789 10L0(127856)Ξ̃(789 10)L(9 10 34)+

+

∫

d789 10 11 12 13 14L0(1278 11 12)Ξ̃(11 12 13 14)L(13 14 56)Ξ̃(789 10)L(9 10 34)+

+

∫

d789 10 11 12L0(1278)Ξ(789 10 11 12)L(11 12 56)L(9 10 34)

+

∫

d789 10L0(1278)Ξ̃(789 10)L(9 10 3456). (D.11)To formally solve the se
ond order BSE we rearrange it to
∫

d78910
[

δ(1, 7)δ(7, 9)δ(2, 8)δ(8, 10) − L0(1278)Ξ̃(78910)
]

L(9 10 3456) =

=

∫

d7...14L0(1278 11 12)
[

δ(7, 3)δ(8, 4) + Ξ̃(78910)L(9 10 34)
]

×

×
[

δ(5, 11)δ(6, 12) + Ξ̃(11 12 13 14)L(13 14 56)
]

+

+

∫

d789 10 11 12L0(1278)Ξ(789 10 11 12)L(11 12 56)L(9 10 34).

(D.12)
Now we 
an use the linear BSE to write for the fa
tor on the left hand side

∫

d78
[

δ(1, 9)δ(2, 10) − L0(1278)Ξ̃(78910)
]

=

∫

d78L0(1278)L
−1(8710 9) (D.13)as well as to rewrite the two linear fa
tors on the right hand side a

ording to

∫

d56
[

δ(3, 1)δ(4, 2) + Ξ̃(1256)L(5634)
]

=

∫

d56L−1
0 (2165)L(5634) (D.14)so that the se
ond order BSE 
an be written as

∫

d78910L0(1278)L
−1(8710 9)L(9 10 3456) =

=

∫

d7...14L0(1278 11 12)L−1
0 (87 10 9)L(9 10 34)L−1

0 (12 11 14 13)L(13 14 56)+

+

∫

d789 10 11 12L0(1278)Ξ(789 10 11 12)L(11 12 56)L(9 10 34)
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(D.15)Now multiplying from the left with ∫ d12 15 16L(17 18 15 16)L−1
0 (16 15 21) and renamingthe indi
es 17 ↔ 1 and 18 ↔ 2 we have the �nal result

L(123456) =

=

∫

d7...18L(12 15 16)L−1
0 (16 15 18 17)L0(17 18 78 11 12)×

× L−1
0 (8, 7 10 9)L(9 10 34)L−1

0 (12 11 14 13)L(13 14 56)+

+

∫

d789 10 11 12 15 16L(12 15 16)Ξ(15 16 9 10 11 12)L(11 12 56)L(9 10 34)(D.16)D.1 Solving the 2nd order BSEIn this se
tion I will give a qui
k sket
h how the solution of the se
ond order Bethe-Salpter equation might be evaluated in pra
ti
e using the known s
heme for solving the�rst order BSE.In order to simplify the notation and the evaluation of the solution (D.16) we assume forthe moment that Ξ3 is indeed vanishing and we de�ne the quantities
F (1234) =

∫

d56L(1256)L−1
0 (6543) (D.17)

I(1234) =

∫

d56L−1
0 (2165)L(5634) (D.18)so that the solution reads

L(123456) =

∫

d7..12F (1278)L
(2)
0 (789 10 11 12)I(9 10 34)I(11 12 56). (D.19)The linear BSE is 
ustomarily solved in the linear transition spa
e (nk) ↔ (n′k′), wherethe linear quantities are matri
es. In this spa
e the se
ond order quantities are threedimensional arrays. Note that in prin
iple one 
ould de�ne a se
ond order transitionspa
e (nk) ↔ (n′k′) ↔ (n′′k′′), where se
ond order quantities are diagonal, but theprodu
t with the linear quantities in su
h a representation is not straightforward. Wewill therefore solve the equation in the linear transition spa
e. Here, we are only interestedin opti
 (i.e. verti
al transitions), so we 
an drop the k index and hen
eforth assume animpli
it sum over all k-points.The de�nition of the transition spa
e is su
h that L02 is diagonal, i.e. for any L2

L(1234) =
∑

n1n2n3n4

φn1(1)φ
∗
n2

(2)φ∗n3
(3)φn4(4)L

(n3n4)
(n1n2)

(D.20)
114



and
L

(n3n4)
(n1n2) =

∫

d1234φ∗n1
(1)φn2(2)φn3(3)φ

∗
n4

(4)L(1234). (D.21)Inserting the real spa
e representation of L02

L0(1234) =
∑

ij

(fi − fj)
φi(1)φ

∗
j (2)φ

∗
i (3)φj(4)

ǫi − ǫj + ω
(D.22)yields

L
(n3n4)
0(n1n2) = (f1 − f2)

δ(n1, n3)δ(n2, n4)

ǫ1 − ǫ2 + ω
(D.23)Analogously, we de�ne for the 6-point quantities:

L(123456) =
∑

n1n2n3n4n5n6

φn1(1)φ
∗
n2

(2)φ∗n3
(3)φn4(4)φ

∗
n5

(5)φn6(6)L
(n5n6)
(n3n4)
(n1n2)

(D.24)and
L

(n5n6)
(n3n4)
(n1n2)

=

∫

d123456φ∗n1
(1)φn2(2)φn3(3)φ

∗
n4

(4)φn5(5)φ
∗
n6

(6)L(123456) (D.25)inserting the real spa
e representation of L03

L0(123456) =
∑

ijk

φi(r1)φ
∗
j (r2)

(ǫi − ǫj + ω2 + ω3 + 2iη)
×

×
[

(fi − fk)
φ∗j (r5)φk(r6)φ

∗
k(r3)φi(r4)

(ǫi − ǫk + ω2 + iη)
+ (fj − fk)

φ∗j (r5)φk(r6)φ
∗
k(r3)φi(r4)

(ǫk − ǫj + ω3 + iη)
+

(fi − fk)
φ∗j (r3)φk(r4)φ

∗
k(r5)φi(r6)

(ǫi − ǫk + ω3 + iη)
+ (fj − fk)

φ∗j (r3)φk(r4)φ
∗
k(r5)φi(r6)

(ǫk − ǫj + ω2 + iη)

](D.26)yields
L0

(n5n6)
(n3n4)
(n1n2)

=
1

(ǫi − ǫj + ω2 + ω3 + 2iη)
×

×
[

(f1 − f3)
δ(n2, n5)δ(n3, n6)δ(n1, n4)

(ǫ1 − ǫ3 + ω2 + iη)
+ (f2 − f3)

δ(n2, n5)δ(n3, n6)δ(n1, n4)

(ǫ3 − ǫ2 + ω3 + iη)
+

(f1 − f4)
δ(n2, n3)δ(n4, n5)δ(n1, n6)

(ǫ1 − ǫ4 + ω3 + iη)
+ (f2 − f4)

δ(n2, n3)δ(n4, n5)δ(n1, n6)

(ǫ4 − ǫ2 + ω2 + iη)

](D.27)115



With this notation the solution of the se
ond order BSE reads
L

(n5n6)
(n3n4)
(n1n2)

=
∑

n7...n12

F
(n7n8)
(n1n2)

L0

(n7n8)
(n9n10)
(n11n12)

I
(n3n4)
(n9n10)I

(n5n6)
(n11n12) (D.28)The 
onvenien
e of the representation in transition spa
e is that one 
an assign to ea
hpair of indi
es (njnk) a single index i, i.e i ↔ (njnk), so that we have to evaluate therank three matrix equation

Lijk =
∑

lmn

FilL0lmnImjInk. (D.29)The se
ond order polarizability χ2 is then obtained from this result via
χ(123) = L(112233) =

∑

ijk

φi1(1)φ
∗
i2(1)φ

∗
j1(2)φj2(2)φ

∗
k1

(3)φk2(3)Lijk. (D.30)The method outlined here to evaluate the three-parti
le 
orrelation fun
tion 
an be im-plemented on top of existing s
hemes to solve the linear BSE, provided they give L2 intransition spa
e. While the linear BSE is now almost routinely solved for systems within
reasing 
omplexity, it is however not 
lear if this method to obtain the three-parti
le
orrelation fun
tion is feasible in terms of 
omputational ressour
es be
ause the s
alingof the six-point quantity is very unfavorable.
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E Hedin's equationsHedin's equations are a set of self-
onsisten many-body equations that in prin
iple givethe exa
t single parti
le Green's fun
tion. They read:
Σ(1, 2) = i

∫

d34G(1, 4)W (3, 1)Γ(4, 2, 3) (E.1)
G(1, 2) = GH(1, 2) +

∫

d34GH (1, 3)Σ(3, 4)G(4, 2) (E.2)
Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫

d4567
δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3) (E.3)

P (1, 2) = −i
∫

d34G(2, 3)G(4, 2)Γ(3, 4, 1) (E.4)
W (1, 2) = v(1, 2) +

∫

d34v(1, 2)P (3, 4)W (4, 2) (E.5)While these equations form a 
losed set of equations, it is in pra
ti
e not possible to solvethem exa
tly so that many di�erent approximations have been made to solve them atleast partly.In the following I will give the de�nitions of the 
onstituent quantities of Hedin's equa-tions, without going into detail about their physi
al motivation, whi
h has been done inmany other pla
es [24, 96, 154℄. The Hartree Green's fun
tion GH 
an be de�ned from
[

i
∂

∂t1

− h0(1) − VH(1, 2)

]

GH(1, 2) = δ(1, 2) (E.6)where h0(1) = −∇2
1/2 + Vext is the single parti
le Hamiltonian and VH is the Hartreepotential.The self energy Σ is introdu
ed to 
losed the equation of motion [95℄ of the Green'sfun
tion by letting

i

∫

d3v(1+, 3)
δG(1, 2)

δVper(3)
=

∫

d3Σ(1, 3)G(3, 2) (E.7)and is most 
ommonly approximated as Σ = GW , where the s
reened intera
tion Wreads
W (1, 2) =

∫

d3ǫ−1(1, 2)v(3, 2). (E.8)
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and ǫ−1 is the (time ordered) s
reening
ǫ−1(1, 2) =

δVtot(1)

δVper(2)
= δ1, 2 +

∫

d3v(1, 3)χ(3, 2). (E.9)The vertex Γ 
ontains the higher order 
orre
tions to the self energy and is de�ned as
Γ(1, 2, 3) = −δG

−1(1, 2)

δVtot(3)
. (E.10)The irredu
ible polarizability P is 
losely related to the redu
ible polarizability χ1, Eq.(2.34), and is de�ned as

P (1, 2) =
δρ(1)

Vtot(2)
(E.11)so it is the variation of the density with respe
t to the total insted the perturbing poten-tial, as in the 
ase of χ1. Their relation obeys the Dyson equation

χ(1, 2) = P (1, 2) +

∫

d34P (1, 3)v(3, 4)χ(4, 2). (E.12)E.1 Se
ond order Irredu
ible PolarizabilityFor the se
ond order χ2, whi
h in this 
ontext is 
alled the se
ond order redu
ible polariz-ability, one 
an derive the analogous se
ond order irredu
ible polarizability P2. Startingfrom the de�nition of χ2

χ(1, 2, 3) =
δ2ρ(1)

δVper(3)δVper(2)
(E.13)we 
an make the 
onne
tion to the irredu
ible quantities in Hedin's equations. We usethe 
hainrule to obtain derivative with respe
t to the total potential:

χ1, 2, 3) =
δρ(1)

δVper(3)

[∫

d4
δρ(1)

δVtot(4)

δVtot(4)

δVper(2)

]

=

∫

d45
δ

δVtot(5)

[

δρ(1)

δVtot(4)

δVtot(4)

δVper(2)

]

δVtot(5)

δVper(3)

=

∫

d45
δ2ρ(1)

δVtot(5)δVtot(4)

δVtot(4)

δVper(2)

δVtot(5)

δVper(3)
+

+

∫

d45
δρ(1)

δVtot(4)

δ2Vtot(4)

δVtot(5)δVper(2)

δVtot(5)

δVper(3)

=

∫

d45
δ2ρ(1)

δVtot(5)δVtot(4)

δVtot(4)

δVper(2)

δVtot(5)

δVper(3)
+

∫

d4
δρ(1)

δVtot(4)

δ2Vtot(4)

δVper(3)δVper(2)
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Now we use the de�nitions of the s
reening ǫ−1, Eq. (E.9), the linear irredu
ible polar-izability P1, Eq. (E.11) and de�ne the se
ond order irredu
ible polarizability as
P (1, 2, 3) =

δ2ρ(1)

δVtot(3)δVtot(2)
(E.14)so we 
an write

χ(1, 2, 3) =

∫

d45P (1, 4, 5)ǫ−1(4, 2)ǫ−1(5, 3) +

∫

d4P (1, 4)
δ2Vtot(4)

δVper(3)δVper(2)
. (E.15)Using again Eq. (E.9) for ǫ−1 in this expression and 
arrying out

δ2Vtot(4)

δVper(3)δVper(2)
=
δǫ−1(4, 2)

δVper(3)
=

∫

d5v(4, 5)χ(5, 2, 3) (E.16)we obtain
χ(1, 2, 3) =

∫

d4567P (1, 4, 5) [δ(4, 2) + v(4, 6)χ(6, 2)] [δ(5, 3) + v(5, 7)χ(7, 3)] +

+

∫

d45P (1, 4)v(4, 5)χ(5, 2, 3).

(E.17)In analogy with the Dyson like equation for χ(2) (2.47) this 
an be formally solved byusing the �rst order Dyson equation for the redu
ible polarizability (E.12) in steps similarto Eqs. (2.48)-(2.55). The �nal relations are
χ(1, 2, 3) =
∫

d4567 [δ(1, 9) + χ(1, 8)v(8, 9)] P (9, 4, 5) [δ(4, 2) + v(4, 6)χ(6, 2)] [δ(5, 3) + v(5, 7)χ(7, 3)](E.18)and
P (1, 2, 3) =
∫

d4567 [δ(1, 9) − v(8, 9)P (1, 8)] χ(9, 4, 5) [δ(4, 2) − v(4, 6)P (6, 2)] [δ(5, 3)v(5, 7)P (7, 3)](E.19)or alternatively expressed with inverse linear quantities
χ(1, 2, 3) =

∫

d4...d9χ(1, 8)P−1(8, 9)P (9, 5, 4)P−1(5, 6)χ(6, 2)P−1(4, 7)χ(7, 3)

P (1, 2, 3) =

∫

d4...d9P (1, 8)χ−1(8, 9)χ(9, 5, 4)χ−1(5, 6)P (6, 2)χ−1(4, 7)P (7, 3).

(E.20)
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These are the relations between redu
ible and irredu
ible quantities for the se
ondorder 
ase.The se
ond order irredu
ible polarizability (E.14) 
ontains all many body intera
tionsand 
an be obtained from Hedin's equation for the �rst order, Eq. (E.4), by derivingwith respe
t to Vtot:
P (1, 2, 3) =

δ2ρ(1)

δVtot(3)δVtot(2)
=
δP (1, 2)

Vtot(3)
(E.21)

= −i
∫

d45
δG(2, 4)

δVtot(3)
G(5, 2)Γ(4, 5, 1) − (E.22)

−i
∫

d45G(2, 4)
δG(5, 2)

δVtot(3)
Γ(4, 5, 1) − (E.23)

−i
∫

d45G(2, 4)G(5, 2)
δΓ(4, 5, 1)

δVtot(3)
. (E.24)The derivative of G with respe
t to the total �eld 
an be expressed in terms of the vertex.To this end we take the derivative of the identity

∫

d3G−1(1, 3)G(3, 2) = δ(1, 2) (E.25)with respe
t to the total �eld
∫

d3G−1(1, 3)
δG(3, 2)

δVtot(4)
= −

∫

d3
δG−1(1, 3)

δVtot(4)
G(3, 2) (E.26)and it follows

δG(1, 2)

δVtot(3)
= −

∫

d45G(1, 4)
δG−1(4, 5)

δVtot(3)
G(5, 2). (E.27)Furthermore we use the de�nition of the irredu
ible vertex fun
tion, Eq. (E.10) so wehave for our se
ond order irredu
ible polarizability

P (1, 2, 3) = +i

∫

d4567G(2, 6)Γ(6, 7, 3)G(7, 4)G(5, 2)Γ(4, 5, 1) − (E.28)
+i

∫

d45G(2, 4)G(5, 6)Γ(6, 7, 3)G(7, 2)Γ(4, 5, 1) − (E.29)
−i
∫

d45G(2, 4)G(5, 2)
δΓ(4, 5, 1)

δVtot(3)
. (E.30)
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F Se
ond order TDDFT and BSEIn this appendix I will give some details 
on
erning the derivation of the se
ond ordermany body ex
hange and 
orrelation kernel gxc as des
ribed in Se
. 7.5.To 
ombine the se
ond order Bethe Salpeter equation and the TDDFT Dyson like equa-tion we have to represent the TDDFT equation in terms of four and six point quantities,written as 4P and 6P . The Dyson like equation for the irredu
ible polarizability reads:
6P (1, 2, 3, 4, 5, 6) =

∫

d7..19 4P (1, 2, 7, 8) 4P
−1
0 (8, 7, 10, 9) 6P 0(9, 10, 11, 12, 13, 14)×

× 4P
−1
0 (12, 11, 16, 17) 4P (16, 17, 3, 4) 4P

−1
0 (14, 13, 19, 18) 4P (18, 19, 5, 6)+

+

∫

d7..12 4P (1, 2, 7, 8) 6gxc(7, 8, 9, 10, 11, 12)
4P (9, 10, 3, 4) 4P (11, 12, 5, 6)(F.1)where

6gxc(7, 8, 9, 10, 11, 12) = δ(7, 8)δ(9, 10)δ(11, 12)gxc(7, 9, 11) (F.2)and the linear quantities obey the four point Dyson equation, like
4P (1, 2, 3, 4) =

∫

d5678 4P 0(1, 2, 5, 6) [δ(3, 5)δ(4, 6) + δ(5, 6)δ(7, 8)f(5, 7)P (7, 8, 3, 4)](F.3)so that
∫

d12 4P
−1
0 (10, 9, 2, 1) 4P (1, 2, 3, 4) =

∫

d78 [δ(3, 9)δ(4, 10) + δ(9, 10)δ(7, 8)f(9, 7)P (7, 8, 3, 4)](F.4)so that when one takes the 
ontra
tion P (1, 1, 2, 2, 3, 3) of Eq. (F.1) it 
ollapses to
P (1, 2, 3) =

∫

d456789P (1, 4)P−1
0 (4, 5)P0(5, 6, 7)P

−1
0 (6, 8)P (8, 2)P−1

0 (7, 9)P (9, 2)+

+

∫

d45P (1, 4)gxc(4, 5, 6)P (5, 2)P (6, 3). (F.5)
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With this de�nitions the 'Sham-S
hlüter' equation (7.27) reads
∫

d7..12L̃−1(1278)L̃(789 10 11 12)L̃−1(10 9 34)L̃−1(12 11 56)−
∫

d7..12 4P
−1

(1278) 6P (789 10 11 12) 4P
−1

(10 9 34) 4P
−1

(12 11 56) =

= Ξ(123456) − 6gxc(123456)

(F.6)and 
an be solved for L̃3 to yield
L̃(13 14 15 16 17 18) =

=

∫

d1..12L̃(13 14 21) 4P
−1

(1278) 6P (789 10 11 12) 4P
−1

(10 9 34)L̃(43 15 16)×

× 4P
−1

(12 11 56)L̃(65 17 18)+

+

∫

d1..6L̃(13 14 21)
[

Ξ(123456) − 6gxc(123456)
]

L̃(43 15 16)L̃(65 17 18).

(F.7)
Now, to use the property L̃(13 13 15 15 17 17) = P (13, 15, 17) we 
arry out this 
ontra
-tion, as well as 
ollapsing all redundant indi
es and obtain

P (13, 15, 17) =

=

∫

d1..12L̃(13 13 21) 4P
−1

(1277)P (79 11) 4P
−1

(9 9 34)L̃(43 15 15)×

× 4P
−1

(11 11 56)L̃(65 17 17)+

+

∫

d1..6L̃(13 13 21)Ξ(123456)L̃(43 15 15)L̃(65 17 17)−

−
∫

d135L̃(13 13 11)gxc(135)L̃(33 15 15)L̃(55 17 17).

(F.8)
The diagonal L̃2 in the last term are in fa
t P1 quantities, so that we obtain solving thisequation for gxc

gxc(1, 2, 3) =

=

∫

d4..15P−1(1, 4)
[

L̃(4456) 4P
−1

(6577)P2(7, 8, 9)
4P

−1
(88 11 10)L̃(10 11 12 12) ×

× 4P
−1

(99 14 13)L̃(13 14 15 15) − P2(4, 12, 15)
]

P−1(12, 2)P−1(15, 3)+

+

∫

d4..12P−1(1, 4)L̃(4456)Ξ(6587 10 9)L̃(78 11 11)L̃(9 10 12 12)P−1(12, 2)P−1(12, 3).(F.9)
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