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1 Introduction

Nonlinear optics is the field of research where a material is subjected to so intense light
that its response to this light yields fundamentally different properties than observed in
the more common optics that has been known and explored for centuries and is now
referred to as linear optics. Since the light needs to be of high intensity, i.e. yield a high
photon density, it was not until the advent of the laser in 1960 that nonlinear optics
could be discovered, although there had been a theoretical prediction of two-photon
absorption in 1931 [1]. In 1961 Franken et al. [2] used a laser with a wavelength of 6942
Aand observed an outgoing radiation with a wavelength of 3471 A, i.e. with double the
frequency. This was interpreted as the generation of the second harmonic in optical light,
a phenomenon previously only known for radio waves.

The distinction between nonlinear and linear optics is made with respect to the intensity
of the field. This means, while in linear optics the response of a material is proportional
to the amplitude of the applied field, in nonlinear optics it is related to the square, the
cube etc. of this field. Formally one can write down the polarization of the material
expanded in terms of the field as [3, 4]

P = \YE + Y?EE + y\® EEE + ... (1.1)

where the term y(!) determines the linear optical response and all effects described by
the other terms are referred to as nonlinear. Obviously, this one name refers to many
effects in all orders, which can be fundamentally different. For example, second order
effects are completely absent for materials with inversion symmetry and light that can
be described within the dipole approximation, while third order effects are in principle
always present. The susceptibilities x(* are thus material dependent and while the
efficiency of the effects can be very different for different materials, there is no material
that does not exhibit any nonlinear properties. But even within one order, say the
second or the third, one has a variety of effects of very different quality. Second order
phenomena comprise not only the doubling of an incoming frequencies as encountered
in second harmonic generation, but also the response with the sum or difference of two
different incoming frequencies (sum/difference frequency generation), the splitting of
one incoming photon into two outgoing ones (optical parametric amplification) or the
creation of a DC field out of an intense AC field (optical rectification)[3, 4]. To third
order, there are phenomena such as two photon absorption, third harmonic generation
(or generally four wave mixing phenomena) and a nonlinear refractive index that can lead
to the focalization of the laser inside the material by the material itself (self-focalization).
A nonlinear optical process can be thought of as occurring in two steps: the intense
light induces a nonlinear response in the material on a microscopic level that in turn



modifies the optical fields. The first step is related to the microscopic structure of the
material and thus governed by quantum mechanics, while the second step is described
by Maxwell’s equations.

1.1 Second Harmonic Generation

In this thesis I will almost exclusively consider the case of second harmonic generation.
The reason is, because on the one hand, it is one of the most widely used nonlinear
optical effects and on the other hand because, being of lowest order, it is the simplest
nonlinear effect to describe. Many considerations and the general formalism apply
however also to other second order processes or can be readily generalized to third
order. One can think of second harmonic generation in terms of a simple three level
system, c.f. Fig. 1.1, where one of the two incoming photons excite an electron out of
its equilibrium position to a higher lying state from which it gets excited by the second
photon to a third and when subsequently relaxing to the groundstate it emits a single
photon that then has twice the energy of the two incoming ones. The intermediate
excited states are virtual states, i.e. they do not need to correspond to actual energy
levels of the system. This is of course an oversimplification of what actually happens in
the many-body electron system, where, for example, interactions between the electronic
states have to be accounted for as well.

Second harmonic generation as an experimental tool has
two main applications. One is to actually double the fre-

quency of laboratory lasers and thus give access to other -~ PO
frequencies than the laser frequency. For this use it is \ 2w
particularly important that the second harmonics are gen- w

erated with sufficient efficiency, which above all means that \‘} x/\f‘/\/v

the phase matching condition k(2w) — k(w) = 0 between T

the lightvectors of incoming and outgoing field is fullfield. &
Otherwise, second harmonic generation will still take place

inside the material, but due to interference it would not be

observable on the outside. Apart from phase matching, it is Figure 1.1: Model for sec-
also important that the second harmonic susceptibility y(2) ©ond harmonic generation

is as large as possible at the desired frequencies. This again

is strongly material and frequency dependent and the search for high efficiency nonlinear
crystals is still underway [5, 6]. The other main area of application is to use second
harmonic generation as a probe. For systems with inversion symmetry second harmonic
generation is dipole forbidden and therefore extremely sensitive to symmetry breaking.
This makes it particularly suitable to probe surfaces or interfaces of centro-symmetric

media, where the bulk will not contribute to the second harmonic light and one thus has
a signal purely from the surface. The use of second harmonic generation is not limited to



these two fields and there are a variety of other circumstances where it is employed [7-18].

1.2 Ab initio optical excitations

The theoretical description of optical properties is based on the interaction of light with
the electrons and nuclei of the material. This entails in principle the simultaneous quan-
tum mechanical description of the light and the atoms that form the material with all
their respective interactions. It is, however, sufficient to describe the light as a classical
field and to assume that the dynamics of the electrons is decoupled from the dynam-
ics of the nuclei, so that for the electronic system one can assume fixed ionic positions
(Born-Oppenheimer approximation [19]). These two approximations leave essentially
the mutual interaction of the electrons as they are excited by the light field as the most
important effect. This can be formulated in terms of the Schrodinger equation

Ne Ne

S (29 Vel ) 4 3wl | W) = B¥Cr1s ) (12

i=1 i#]

where N, is the number of electrons, that has the order of 10?3 for macroscopic samples
and v is the Coulomb interaction between the electrons. Solving this equation directly is
not possible and not even necessarily desirable, because the sheer size of the solution in
terms of many-body wavefunctions and energies would be impossible to manage. This
fundamental problem that we know the equation that determines all properties of the
material, but its solution is impossible to obtain, is commonly referred to as the many-
body problem. For optical processes this system is then also subject to a time dependent
excitation, which adds to the complexity. To tackle excitations of the many-body problem
one usually separates it into the groundstate problem and the excited state problem that
builds on the groundstate.

To describe electrons in a solid it is convenient to make the approximation that the
electrons move independently of each other in the periodic potential created by the ions
of the solid and the other electrons. This assumptions allows one to describe the many-
body system in terms of single particle energies and wavefunctions, the so called Bloch
states [20], defined as

<—%V2 + Vext(r)> Ynk(r) = nkPnk(r) (1.3)

where ¥, (r) = u,e™*. This formulation gives rise to the band structure of solids

that gives the k-dependence of the single particle eigenenergies ¢,. This reduces the
groundstate many-body body problem to two crucial steps, one is to obtain the single
particle states and the other is to compensate the fact that one is using a single particle
picture to describe a many-body problem. The fist step is most commonly done by
density functional theory (DFT), which passes from a description of the problem in



terms of wavefunctions to a framework where the electron density is the fundamental
quantity. While this is in principle an exact theory, the many-body interactions are
here approximated via an effective one particle potential, the exchange and correlation
potential, that is not known exactly but approximation can be derived from fundamental
models without adjustable parameters (i.e. LDA and GGA [21]). The resulting effective
one particle states can be further refined with additional schemes (such as perturbative
GW |22, 23|) which add to some extend many-body effects but one still has a description
of the electronic system in terms of single particles. The second step, to incorporate
many-body-effects beyond the single particle picture, is far less standardized than DFT
but a rigorous framework for it exist in the many-body perturbation theory (MBPT) that
relies on the many-body Green’s function and a set of self consistent equations, Hedin’s
equations[24]. The crucial point is that in an ab initio approach one does not rely on
free parameters even when one uses approximations, but rather has to derive expression
and schemes that yield results that can be directly compared with experiments without
further adjustment.

For optical excitations one is not interested in single
particle properties like wavefunctions or energies, but
rather in the response of the many-body system, i.e. ol
its time dependent properties. By passing from the
single particle quantities to the actual physical quan-

tities, like for example the dielectric function, one has £ T
to account for the many-body effects along the way. “r
It is here where the relevant physical approximations or )
are made, since one can in principle choose which kind et e \4/‘? T

of many-body effect one wishes to include. One can,

for example, consider the optical response of indepen-

dent particles, which means that one does not include Figure 1.2: Absorption spectrum
any further interaction. Beyond this, there are several of bulk Si comparing experiment,
approximations and different methods that have been BSE and TDDFT, as in [25].
applied with varying success. The two most impor-

tant approaches for optical excitations are the Bethe-Salpeter equation (BSE) and the
time dependent generalization of the density functional framework (TDDFT). The main
difference between the two is that BSE is formulated in terms of the two-particle corre-
lation function L(rj,rs,rs3,rs,w), which is a part of the two-particle Green’s function,
whereas TDDFT in response formulation gives the susceptibility x(ri,r2,w). While the
downside of the BSE approach is that one has to deal with a four-point quantity as
compared to a two point one in TDDFT, its upside is that its ingredients have a clear
physical interpretation, while in TDDFT all many-body effects are expressed in the ef-
fective kernel f.., whose exact expression is unknown.

This problem, of finding working approximations for the TDDFT kernel f,., has for a
long time made it unsuitable for optical calculations, since existing approximation failed
to produce viable results. This was assigned to the failure of properly describing the



electron-hole interaction (excitons) that is of great importance for optical processes. The
BSE on the other hand, being a two particle correlation function, is perfectly suitable to
describe this effect. By systematically comparing the two approaches it has been possi-
ble to derive an f,. that does account for excitonic interaction and produces spectra of
comparable quality to BSE [25-29], c.f. Fig. 1.2.

It is in this context that the work in this thesis is set and its motivation is to translate
the success of TDDFT for linear optics into the nonlinear domain.

1.3 Calculations of Second Harmonic generation

The description of second harmonic generation based on band structure theory was devel-
oped shortly after the discovery of the effect. In 1962 Armstrong et al. [30] and Loudon
[31] give expressions for the microscopic second harmonic susceptibility that are similar
to those used today. Their equations allow an analysis of the susceptibility in terms of
the frequency structure, i.e. the microscopic origin of the frequency doubling. Actual
calculations based on this formulation have however been only of limited success for a
long time. All early calculations are restricted to the static second harmonic coefficient
[32-34], i.e. x®(w = 0), and with the absence of ab initio methods for the electronic
structure strong approximations and assumptions had to be made. Aspnes further an-
alyzed the formulation in 1972 [35] in terms of different gauges for the applied fields.
His calculations, however, had to rely heavily on empirical data by interpolating matrix
elements. Calculations made by Yong and Shen based on empirical pseudo-potentials
missed the experimental values by orders of magnitude, but they showed that for the
dispersion of x(?)(w) the k-dependence of the matrix elements is crucial. In a later work
in 1987 Moss et al. [36] used a semi-empirical tight-binding method to calculate static
and frequency dependent second harmonic coefficients for a range of semi-conductors.
While some of their static values are comparable to the experimental values their spectra
are quite off the measured values, which the authors attribute to the deficiencies of the
tight-binding approach. Although most works at that time were concerned with bulk
semiconductor, the authors used this approach to calculate the second harmonic gener-
ation spectra for superlattices as well [37, 38].

The evolution of computational methods allowed the first ab initio calculation of second
harmonic generation to be carried out by Levine and Allan in 1991 [39, 40] under con-
sideration of quasi-particle effects. These are described by the GW method and have
been found to open the DFT-LDA bandgap of simple semiconductors while leaving the
wavefunctions largely unaffected. Levine and Allan thus incorporated the quasiparticle
effect in their calculation by simply shifting the conduction bands (scissors shift). As
results they give only static values for the second harmonic generation, however in very
reasonable agreement with experimental values. They subsequently extended their for-
malism to account for crystal local field effects [41] and to frequency dependence [42]. At
the same time Huang and Ching presented first-principle calculations of second harmonic
spectra [43, 44] they relied on the formulas developed by Sipe and co-workers [36, 45]
but used a more accurate scheme to calculate the band structures.



Also in the 1990’s Sipe and co-workers further developed their formalism for an ab initio
calculation of the independent particle second harmonic susceptibility [46, 47] that finally
allowed them to perform an ab initio calculation of second harmonic spectra [48, 49].
While the agreement of their results with experimental spectra remained rather poor,
this work is notable because in [48] they give a formulation of the independent particle
response in the length gauge and optical limit that has since been widely used, e.g. in
[50-58] among others. An alternative to the straightforward ”sum over states” approach
was suggested by Dal Corso et al. [59] relying on the "2n-+1” theorem of perturbation
theory [60]. This approach has the advantage that it does not need unoccupied states
to evaluate the response and thus has advantageous scaling properties [61]. They also
account self-consistently for local field effects. Most of the mentioned early ab initio
approaches discuss the quality of the band structure and notice a strong dependence of
the second harmonic spectra on the accuracy of the groundstate values. This together
with the developing sophistication of DFT groundstate methods might be the reason for
large discrepancies between single results and the overall unfavorable agreement with
experiments might additionally be attributed to the fact that most approaches where
only within the independent particle response.

Nonetheless, the independent particle response formulation of second harmonic gener-
ation was applied to a variety of materials and systems. Sharma and Ambrosch-Draxl
applied a similar formulation to mono-layer InP/GaP (110) superlattices [62] and Lithium
under pressure [56, 57]. Rashkeev and co-workers presented an efficient scheme [58] to
evaluate the formulation given in [48] with a self-consistent linearized muffin-tin orbitals
band structure method and applied it to ITI-V semiconductors [50], ternary pnictides [51],
Ag-TII-VIy compounds [52], I-ITI-VI, chalcopyrites [53] and Zn-IV-Ng compounds [54] .
Gavrilenko and co-workers applied the independent particle response to study group-III
nitrides [55] and several surface and interface systems [63, 64]. Carbon nanotubes [65] and
SiC nanotubes [66] have been studied by Guo and coworkers. More recently fluoride- [6]
and borate-based crystals [5] have been studied within this approximation. While these
approaches gradually improved the numerical description of second harmonic generation,
the calculation remain non-trivial and the same level of accuracy encountered in linear
optics has not yet been achieved.

Furthermore, there have been only few attempts to go beyond the independent particle
approximation, where quasi-particle effects are almost always accounted for by the scis-
sors approximation. Bechstedt and co-workers investigated the validity of this approach
by comparing calculations with actual quasi-particle wavefunctions to results obtained
with the scissors operator [67]. But in particular excitonic effects have been considered
only by few authors. Chang et al. [68] proposed a method to include excitonic effects via
wavefunctions that they represent as superpositions of pair excitations. Their formalism
gives in principle the full frequency dependence but they only report calculations over a
very short range. Leitsmann et al. [69] developed this formalism further and they use
the excitonic wavefunctions obtained from a BSE calculation to construct the many-body
x?). This approach is clearly a conceptually improvement over the independent particle
formulation, since here many-body effects are included in the wavefunctions that are



no longer of an independent particle system. The results they obtain give a qualitative
agreement with experiments over a large spectral range. This work can be considered
the most advanced, as far as sophistication of the theoretical formulation is concerned.
Still, in this approach the crystal local field effects are only accounted for within the BSE
calculation, which might be a limiting factor on the quality of the result.

Having exposed previous work done within the scope of solid state physics, it is worth to
note that in the community of chemical physics nonlinear optical properties are calculated
routinely for molecular systems. In this community one speaks of hyperpolarizabilities
[70, 71| which is equivalent to the second order susceptibility of this work. TDDFT has
been applied to calculate these quantities since the early days of this method [72, 73].
Subsequently the calculation of hyperpolarizabilities has been received much attention
and a large body of work is available, e.g. [74-81]. This was facilitated by the imple-
mentation of hyperpolarizability features in widely used quantum chemistry codes, such
as AdF [82] and others. There are however important differences between these calcu-
lations and the corresponding efforts in solids. First, on a practical level, for molecular
polarizabilities the exchange-correlation functional used for the DFT groundstate is very
important and many developments have been made in the chemistry community to go
beyond the rather simple LDA approach, e. g. LB94 [83] or SOAP [84]. For optical
properties solids, on the other hand, using functionals beyond LDA for the ground state
calculation does not substantially improve the results. For the TDDFT exchange and
correlation functionals the situation appears to be the inverse, where ALDA performs
rather well for molecules but fails for solids, which is arguably the reason for the dif-
ferent levels of maturity TDDFT has gained in these two fields. Another important
difference between solids and molecules for optical response calculations, is the fact that
for molecules a microscopic description of the response is enough to model experiments,
while for solids the connection between the microscopic and macroscopic world is non-
trivial already in the linear case and one of the main results of this work is that they
are even more involved when one considers second order processes. Therefore, the early
and rapid success of TDDFT in the quantum chemistry community could not be easily
translated to the solid state domain but it is nonetheless one of the motivations of this
work to advance the description on nonlinear response in solids to a point where it is at
least comparable with linear optics of solids and pave the way for further developments
that might rival the accuracy achieved in chemistry calculations.

1.4 This work

While the independent particle formulation of second harmonic generation in solids can
be considered to be well established, approaches that go beyond this approximation are
not. Mainly for crystal local field effects and excitonic contributions there is a lack of
systematic description for the second order. On the other hand, for linear optics these
two effects can be considered to be well understood and their treatment fairly standard-
ized. Especially within the TDDFT framework local field effects are routinely calculated
and more recently the connection to the BSE had been made to account for excitons.



The main purpose of this work is to use the known concepts and experiences from linear
optics and apply them to the second order case.

The description of the theoretical formulation starts in Chap. 2 with a revision of time-
dependent perturbation theory which obviously is the basis for a response treatment.
Then, the known linear TDDFT Dyson equation, where the connection between the in-
dependent and interacting particle response is made, needs to be generalized to second
order, leading to a second order Dyson like equation that has been published only once
[85] and never been applied. The structure of the equation allows to solve it analytically
provided the linear response is known and thus can, to a certain extend, be related to
the linear response, but it contains a higher order correlation part that only appears
to second order. The most important difficulty lies in the numerical evaluation of the
solution the TDDFT Dyson like equation. It gives the microscopic second order response
of the electron density so that approximations concerning the many-body character have
to be made at this level.

The relation between microscopic and macroscopic response given by Adler and Wiser
[86, 87] is well known for linear optics, since it accounts for the crystal local field effects.
For nonlinear response this connection is less studied and to our knowledge the analogue
to the Adler and Wiser formulation has never been established for the nonlinear case.
Consequently, such a relation is derived in Chap. 3 in a fairly general way for longitudinal
and transverse fields. TDDFT, however can only give the response to longitudinal fields,
which has to be taken into consideration when passing from microscopic to macroscopic
quantities.

In the context of this thesis second harmonic generation is considered to be an optical
effect, which means one has to consider a perturbation in the long wavelength limit.
Therefore the theoretical formulation has to be taken in the limit q — 0, which calls for
a rather lengthy expansion of the independent particle density response that is described
in Chap. 4. To provide an alternative way to this expansion I propose a scheme that
considers this limit numerically and thus provides an alternative route to the optical
response. More specifically, I use the fact that for finite frequency the light wavevector
is still finite and thus carry out the calculation with very small but finite q.

This formulation in terms of finite q allows to investigate the spatial dispersion of the
optical response and thus gives also access to optical responses beyond the dipole limit.
This is particularly interesting for second harmonic generation because it is dipole for-
bidden in centro-symmetric media. I explore this possibility in Chap. 5 with the example
of bulk Si. This constitutes, to my knowledge, the first ab initio calculation of the sec-
ond harmonic bulk quadrupole response. There are however intrinsic limitations in its
formulation in terms of density response.

In Chap. 6 I will show a range of numerical results obtained in the standard formulation
of the optical limit and with the various levels of approximation that the theory provides.
The accuracy of the implementation is demonstrated in a benchmark test against the
experimental spectrum of GaAs, where previous formulations have yielded results with
only moderate success. I show that it is the interplay between local field and excitonic
effects that can give a very good agreement of the calculation with the experiment; an



agreement that is almost as good as that for silicon absorption shown in Fig. 1.2.
Finally, to follow the success of the Bethe-Salpeter equation for linear optics, I derive
the analogous expression for second order response. The resulting equation accounts for
all many-body effects that occur in second order processes of any kind, not only optical.
It is, however, far more complex to solve and eventhough its ingredients are in princi-
ple known it its not clear if an actual implementation would be feasible. Nonetheless, in
App. D.1 Isketch how such an implementation might be realized. Also, by exploiting the
similar structure between the second order Bethe-Salpeter equation and the second order
TDDFT Dyson like equation, I find an exact expression for the second order exchange
and correlation kernel.



2 Second order TDDFT

The theoretical description of nonlinear optics to second order necessarily means one has
to use perturbation theory to be able to account solely for the second order process. The
behaviour of a physical system under the influence of an external perturbation is called
its response. More precisely, it is the change in the expectation values of operators of
the system when the perturbation is applied.

2.1 Second order Response theory

To introduce the concept of response functions, we formally expand an operator fl(t) in
terms of a small perturbation v in interaction picture:

) .
AWo] = At)o + /dl%((f))v(l) +%/d1d2%v(l)v(2) o 2.1)

The expansion coefficients do not explicitly depend on the perturbing quantity, but are
variation of the operator with respect to the perturbation. These quantities are the
response functions. Their explicit form depends on the coupling between the system and
the perturbation. We consider an interaction Hamiltonian where the perturbing field v
couples with an operator O in the form

Hi(t) = / drO(r,t)v(r,t) . (2.2)

From the Kubo response theory [88| the linear response function is known to take the
general form

xa0(1,2) = —if(t1 — t2)([A(1), O(2)]) (2.3)

The theory can be generalized to higher orders (c.f. [89]) to yield the second order
response function

Xa00(1,2,3) = —6(t1 — t2)8(t1 — t3)T{[[A(1), O(2)}, O(3)]) (2.4)

where T is the time ordering operator!.

!The time ordering operator is defined by its action on a function of two time variables:
TF(tg, t3) = @(tg — t3)F(t2, t3) + @(t3 — tg)F(t3, tg)

10



2.2 Perturbation theory

It is clear that an expansion such as Eq. (2.1) can only be justified if the perturbation is
small compared with the overall energies of the system, e.g. electron binding energy of
a molecule or bond strength in a solid. That is to say, it is only valid within the scope
of perturbation theory, from which the response functions are derived. To give a picture
as comprehensive as possible, we will shortly expose here how this perturbation theory
yields the response functions for the special case of electro-magnetic radiation coupled
to a (many-body) electron system. When dealing with the interaction of the electron
system of a solid with light one can usually separate the total Hamiltonian in a part
describing the unperturbed electronic system and another part describing the coupling
to the time dependent external perturbation

H = Hy+ H(t) . (2.5)

This separation conveniently allows to define an interaction picture where the evolution
of the states |¥(¢)) is described by Hy via the time dependent Schrodinger equation

O () = —iH (1) W(t)) (2.6)
with gives the integral equation
(o) = 1wt i [ d ()| n) 1)

Iterating this equation gives the dependence of the states to the orders of the interaction.
We consider terms up to second order, thus

() = |W(t)) — /dtlHI(tl)]\I/ (o)) /dtl/tldtgHI(tl)H[(tg)]\I/(tO» (2.8)

to

Using this expression for [¥(£)) in the expectation value of an operator (W (¢)|A(t)|®(t))
and keeping only terms up to second order in H(t) yields the response of the operator
up to second order

(A(t)) = (A(to)) + (At ><>+5<A< ) (2.9)
— (Alt)) / dty (W (1) |[A(t), Hy (41)]|9 (o)) —

/t dt /tt1 dto (W (to)|[[A(t), Hp(t1)], Hr(t2)]| ¥ (to)) (2.10)

This is the general result of second order time dependent perturbation theory. It can
be generalized to m-th order, yielding increasingly nested commutators [90]. It gives,
however, not yet the response functions, because the terms in Eq. (2.10) contain the
perturbation itself.

11



To arrive at an explicit expression for the responses we have to use an explicit expression
for H;. Here we consider the interaction Hamiltonian of an electron system with a general
classical light field that can be written as

(0] = [0 Vher (1) = SR (1) + 3AZ, (1) 2:11)

where 1 is shorthand for rit; and Aper = 1Aper to keep the notation simple. This
Hamiltonian contains the diamagnetic term pAper that is second order in the field and is
thus neglected in first order response theory. We are, however, interested in the second
order and therefore this term has to be included when evaluating the §(A(t)) part of Eq.
(2.10), while it gives third and fourth order contributions when used for the second order
response §(A(t))2).

The quantities of interest here are the responses of electron- and current-density under
the perturbation. We can use Eq. (2.10) together with the Hamiltonian (2.11) to get
the first and second order responses of the total current composed of the para- and
diamagnetic current J(1) = j(1) + (1) Ape, (1) and the density 5(1). To first order in the
current we have

. t1 _ t1
S(I()D = (5(1) /t dts / dra([j(1),§(2)]) Aper(2 /t dt, / dra([j
0 0

where we can readily identify the response functions according to their definition Eq.
(2.1), so that we can write:

(2.12)

5<j(1)>(1) = /dQij(l’ 2)‘/})67'(2) + [ij(l’ 2) + 6(1’ Q)p(Q)]Aper (2) (2'13)

Similarly, we find the first order density response as

5 = / 02X (1,2)Vper (2) + 153 (1, 2) Aper (2) (2.14)

These are the well known first order responses. The second order responses, albeit more
lengthy, are obtained in the same way. They are:

SN = [ 25301 2 A502) + (a1, 2Aper(2) = X (1.2 Ver (g 1)+

1 - .
+5 / 4243 3538 per (2) Aper (3) = XA per (2) Vper (3) =

2
— Xio5 Voer (2) Aper(3) + XippVoer (2) Vier (3)
(2.15)
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and

5(p(1)® =

DO =
\

d2pr(1, Q)A?,er(Q)—}—
[ 205 A (DR 3) ~ Xagp B (Vi (3)— (216)

— Xors Voer(2) A per (3) + X Voer (2 Vper (3)]

DN | =

_l’_

So, the changes in the electronic system are described by the correlations of the density
and current density operator. These response functions are the central quantity of the
microscopic description of the interaction of solids with light and their calculation is the
central topic of this thesis.

These responses are given in terms of the general electromagnetic potentials V), and
Aper for which we can still choose a gauge. Here, it is convenient to take a gauge such
that Ve, = 0, which leaves only the vector potential as the perturbing quantity. The
response then read

§(J(1))®@ :/d2d3 [%ij(1,3)5(2,3) +x,5(3,2)0(1,3) + %ijj(1,2,3) Aper(2)Aper (3)

(2.17)
. 1 P <
8(p(1))® = / d203- [Xpp(1,3)0(2,3) + xpii(1,2,3)] Aper(2)Aper(3) . (2.18)
Additionally we note that due to the continuity equation
) j(l) = atlp(l) (219)

knowledge of the current response implies the density response. Therefore we can focus
on the current quantities without loss of generality. Writing Eq. (2.19) in momentum
and frequency space (c.f. App. B) it reads

q-j(q,w) = iwp(q,w). (2.20)

So we see that the density is actually proportional to the projection of j along the
direction of q, i.e. the longitudinal projection of j The density response can thus
be expressed in terms of the current response, or vice versa, the longitudinal current
response is proportional to the density response. Moreover, under the constraint that
the perturbing field is purely longitudinal, this means that the second order longitudinal
current response can be obtained from the second order density-density-density response
function xpp-
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2.2.1 Response functions

While their definition Eq. (2.3) and (2.4) together with the knowledge how to evaluate
the expectation value is in principle all one would need to obtain response functions, in
practice one has to make some transformations and assumptions to arrive at a quantity
that can be calculated within existing computational schemes.

The definition of the response function can be cast in a more useful way by passing from
the time domain to frequency space. Using the completeness relation in the definition of
the linear response function Eq. (2.3), we obtain?

xan(1,2) = =0(t—t2) > ((WolAr (1)) (@il B (2) [ ¥o) — (Wol By (2) ) (¥al A1 (1) o)) .

n
(2.21)
The matrix elements of the operators in the interaction picture are
(WA (0)E,) = (@l ot Ao @ ) — = BBt (| A] ) (2.22)
so that the response function reads

xaB(1,2) = —O(t; —t2) Ze—i(En—Eo)(tl_tQ) »

n

x (ol A1Wy ) (Wa| BIWo) — (W0l BW,) (W, A|W) )

and its Fourier transform (c.f. App. B) gives the spectral representation of the response
function

Z(w—(En—Eo)+in w+(En—E0)+i77> . (2.23)

2Here we write B for the operator of the system instead of O for the sake of readability. Likewise, in
the second order we use the notation C' for the third operator of the response function.
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To obtain an equivalent expression for the second order response, we follow exactly the
same steps. The result is

XABc(r1,T2, T3, w1, wa, w3) =

lim Owi —wy —w . ——
O (w1 —wp —ws) (Eo — Em + w3 + in)(Ey — By + wa + w3 + 2in)

nm
B (To| BIW,,) (W | A| W) (W, | C | W) ~
(Bo — B + w3 + i) (En — Epy + w2 + w3 + 2in)
(B, — Eo+ws +in)(E,, — By + we + ws + 2in)
(BEn — Eo + w3 + i) (Em — Eo + w2 + w3 + 2in)
+ {2 3}] .

_l’_

(2.24)

In this formulation we can already deduce some general properties of second order re-
sponse. First, we notice that the three frequencies are not independent but linked through
the delta function, which means that the response frequency w; can be the sum of the
two fundamental frequencies, i.e.

XABc (w1, w2,ws3) = Xapc (w2 + w3, w2, w3) (2.25)

This is the microscopic origin of the phenomenon of sum frequency generation, or in the
case of wy = w3 of second harmonic generation.

Regarding the spectral properties of the second order response function, we note that it
has resonances at the fundamental frequencies as well as at their sum. In the case of
second harmonic generation this means for each resonance at a frequency w there will
another resonance at w/2.

While its general structure shows some characteristics of the second order response, this
form of the response function can only be used if the many-body wavefunctions and
energies of the system are known. They are, however, not known and calculating them
explicitly is unfeasible. To overcome the basic problem of obtaining the solutions of the
many-body Hamiltonian is the motivation for many theories and calculatory schemes
in the field of computational physics. Namely the density-functional theory (DFT) has
been successfully employed to obtain the groundstate properties of interacting many-
body systems. The basic idea is to exploit the fact that the density of electrons subject
to some interacting potential is the same as the density of electrons in a non-interacting
potential, called exchange-correlation potential, that uniquely represents the interacting
potential [21].

This idea of mapping an interacting many-body system to a non-interacting one and
thus confining the many-body problem to the search for the appropriate non-interacting
potential is generalized to time dependent systems in the framework of time-dependent-
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density-functional-theory (TDDFT), c.f. section 2.3. That is to say, that the response
functions shown above are expressed in terms of a non-interacting system and the many-
body character is included via the exchange correlation potential. So, the central quan-
tities are the independent particle response functions. In App. A I outline how to pass
from the responses in terms of many-body wavefunctions to the independent particle
picture. The resulting response functions are:

) N L Aeren)la(e)|gs (1)) (g5 (r2) [b(r2) |94 (r2))
XAB(I‘l,I'Q,W)—Z(fz f]) (Ei_ej‘i‘w‘f‘in)

v

(2.26)

and

(97 (r1)]a(r1)|o;(r1))
€ — € + w1 + wa + 2in

(0)
XABC(rlarQ,r3aw2 + w3, wa, w3z) = Z
ijk

(@ (r2)[b(r2) Pk (r2)) (5 (r3) |é(rs)|pi(rs))
(€i — €x +ws +in) (2.27)

(¢§(F3)|5(F3)|¢k(r3)><¢7§(r2)|5(r2)|¢z’(r2)>+
(ex — €5 + w3 +1n)

(fi = fx)

+(f5 = fx)

{3 2)]

where @, b and ¢ are single electron operators, e.g. for A = j we have a(r) = d(r —r'),
and ¢;(r) one particle orbitals with eigenenergies ¢; and occupation numbers f;. The

(0)

explicit expression for x,g, is given in section 4 (Eq. (4.7)).

2.3 TDDFT

The generalization of Kohn and Sham’s density functional theory (DFT) to time depen-
dent system, i.e. time dependent density functional theory (TDDFT), by Runge and
Gross is exposed in great detail in many works throughout the last 20 years [91]. Here,
I will only roughly sketch the path from the static DFT to TDDFT, without going into
the subtleties of the theory. Its generalization to second order response is readily obtain,
once the first order response is established.

In DFT one constructs the electron density with wavefunctions obtained from a Hamilto-
nian with a non-interacting potential. By virtue of the Hohenberg-Kohn and Kohn-Sham
theorems this density is identical to one obtained with an interacting potential and there
is a one to one correspondence between the two potentials. The non-interacting wave-
functions do not have a rigorous physical meaning, but they are only used to build the
electron density. Once the exact density is known, all other quantities of the real system
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can be constructed, since they are regarded as functionals of the density.

Realsystem Kohn — Sham fict.system
Yy = p — P = Vks
1) ! i) 4
v, <= Veat Po = bi

The non-interacting potential is called Kohn-Sham potential, Vg, and is generally un-
known, but can be further decomposed in the form

Vis(r) = Vet (r) + Vi (r) + Vie(r) (2.28)

where we have the external potential Vg, (r), the Hartree potential defined with the
Coulomb potential v as

Vi(r) = /dr'p(r')v(r —1') (2.29)

and V., the potential corresponding to the exchange and correlation energy,

_ 0E.(r)
Vel =

of the system. It is this potential where the many-body effects are considered and con-
sequently it is here where the physical approximations to the many-body problem are
made.

The time dependent generalization of this theory is made by considering a time depen-
dent external potential and thus all quantities of the system become time dependent.
Analogously to the static case one defines a time-dependent Kohn Sham potential

(2.30)

Vis(r,t) = Vege(r,t) + Vi (r,t) + Vie(r, t). (2.31)

The time dependent density is then constructed from eigenstates of the time dependent
Kohn-Sham equation

1
|:—§V2 + VKS(I‘, t):| ¢,~(r, t) = z’@tqbi(r, t). (2.32)
Again, if the exact Kohn-Sham potential was known, such a density would be exact. The
point of TDDFT in response formulation is, that also the variation of this density would

be the same whether it was obtained with respect to the interacting potential or to the
corresponding non-interacting one [92]:

(1) = [ @20 26V (2) = [ d2xD (1. 20Vics (2.33)
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The response functions, however, are not the same. To relate the Kohn-Sham response
functions XE)(/))) that connects the density with the non-interacting potential to the response
function x,, that accounts for the interactions as well, is the objective of TDDFT in
response formulation.

Starting point is the definition of the full response function

Xpp(1,2) = 5‘(5/56751()2) (2.34)

in which we use the chain rule to obtain

- 5p(1) Viks(3)
pr(l’Q) _/d35VKS(3) 5Vper(2) ‘

(2.35)

Thus we have reformulated the response function to a product of the response of the non-
interacting Kohn-Sham system and variation of the Kohn-Sham potential with respect
to the perturbing potential. We define the response to the Kohn-Sham potential

X9 (1,2) = 5527(;()2) : (2.36)

The variation of the Kohn-Sham potential with respect to the perturbing potential is

5VKS(3) / 5(VH(3) + Vzc(3)) 610(4)
SRSV 53,2) + [ d4 2.37
W) " o0 Wper(2) 237
= 03,2+ [ 03,0 + LB DNlL.2) (2.38)
where we defined the exchange and correlation kernel
Vee(1)
Jaoe(1,2) = ——= . 2.39
(1.2) = 2 (239
Now we can write down the full response as in Eq. (2.35)

This is a Dyson equation for the response function x,, in terms of the interaction kernel
v + fze, that can be solved by inversion. It is in principle exact, provided the correct
exchange and correlation kernel is known. Since this kernel is defined as the functional
derivative of the exchange and correlation potential, this theory suffers the same limita-
tion as DFT, namely the fact that the true exchange and correlation potential is unknown
and has to be approximated.

This treatment of the response function that amounts to reformulating it in terms of
the independent particle response function and considering the many-body effects only
through a kernel, can be readily generalized to higher order responses. This has been
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sketched by Gross et. al. in [85]. Completely analogous to the linear case one starts with
the definition of the response function, however, now one can make use of the linear result
by realizing that the second order response is the variation of the first order response
with respect to a another perturbing field.

*p(1) ~ Oxpp(1,2)
Vper (3)0Vper(2) 512143) (2.41)

Xppp(1,2,3) =

Using the linear Dyson equation (2.40) for x,,, we have

(0) (0)
Xopp(1,2,3) % /d4d5‘2‘T51(’;1)fm(4, 5)xpp(5,2) (2.42)
/d4d5 O, 4)5;‘9;0(( )) op(5,2) + (2.43)
/ d4d5x Q) (1,4) foze (4, 5)% , (2.44)

where we have written fy..(4,5) = v(4,5) + fzc(4,5) for brevity. In the second term
appears the variation of the kernel f,. with respect to the perturbing field. This can be
rewritten using the chain rule

5f2e(4,5) S1:(0:5) 0
Vrer (3) / W= 50(6) 3Vper(3)

_ / 0602 (4, 5, 6)x,p(6,3) (2.45)

and we have defined a new quantity g¢.. that is the second derivative of the exchange
correlation potential and contains the higher order many-body effects. Furthermore, we
define the second order Kohn-Sham response

s(1,2) 5p(1)
5525(3) " Viks(3)6Vks(2) X0 (1,2,3) . (2.46)

The full expression for x,,, can now be obtained by using the chain rule in Eq. (2.42)
and Eq. (2.38), which finally yields

XPPP(L 27 3) = Xg)(z))p(la 27 3) + / d4d5xg%)p(17 47 3)fva:c(47 5)pr(57 2)
+ / 405X (1,2, 4) e (4, 5) X (5. 3)+
+ / d4d5d6dTx D) (1,5,4) fuze(5,6)Xpp (6, 2) foze (4, T)Xpp(7,3)+ (2.47)
/ 2456 (1, 4)ge (4,5, 6) X (6. 3) X (5. 2)+

/d4d5x (1,4) foae(4,5) X ppp(5,2,3) .
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This is the second order correspondent of the linear TDDFT Dyson equation (2.40). It is
however different in the sense that one does not need to invert the whole equation to solve
it. Only one term on the right hand side contains ,,, while all others either depend on
the second order Kohn-Sham response xﬁ)%)p or the second order kernel g,.. We also note
that the solution of the linear Dyson equation, i.e. X, is required in order to get the full
second order response. An interpretation of this structure might be given by considering
that the physical process underlying the second order response fundamentally involves
electrons making transitions between three levels. The Kohn-Sham response describes
how they do so without interacting with each other, while the full Dyson equation takes
into account their interactions. The repeated occurrence of x,, in the Dyson equation
means that the underlying interaction is of linear nature, i.e. it involves only two levels
or electrons. These two particle interactions can be seen as modulating the independent
particle response Xg;)p and only the term containing g,. represents a true three body
interaction.

Making use of the fact that the linear response has to be known in order to solve the
second order case, we can solve the second order Dyson like equation (2.47) analytically.

This is done by factorizing x,,, and rearranging the right hand side to give

/ Ad5 [5(1,5) — X9 (4,5) fuzc (4. 5)] Xppp(5,2.3) =
= / d4d5d6dTx ), (1,5,4) [6(2,5) + fure(5,6)X(6,2)] [6(3,4) + fuwe(4, T)Xpp(7,3)]

4 [ 0D (1. )92 (4,5.6)x, (6.3) 0 (5.2)
(2.48)

By using the linear Dyson equation (2.40) we can rewrite the terms in squared brackets
as

/ d4 [5(1,5) — XD (4,5) fue (4, 5)} - / d6x ) (1,6)x;,(6,5) (2.49)
and
[ 616(2:5) + Fuae(5. 60x,(6:2)] = [ x5 5.8)x,0(5.2) (2.50)

-1
where we have used the shorthand y, - [xﬁ%)} . Inserting these expressions in Eq.

(2.48), multiplying from left with the appropriate inverse and subsequently exchanging
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the names of integral variables we arrive at the solution

Xppp(1,2,3) = / dA...d9x o (1,8)x0 " (8, 9)X D), (9,5,4) x5 " (5,6) X (6,2)X0 " (4, T) X (7, 3)+

+ [ AT (1,70 (7,5,6) 00 (6. 2,0 (5.3).
(2.51)

This formulation has the advantage that once the linear response is known it only needs
the inverse of the linear independent particle response and the second order independent
particle response, XE)(,))),), to obtain the full x,,,. It is also more handy to apply approxi-
mations on it, ¢.f. Chap. 7 where it it is compared with the second order Bethe-Salpeter
equation. We also give it in shorthand form

), —

@ = xWxoxs %0  xWxg X + xWgaext

X X(l) 1)X(1) . (2.52)

Alternatively, to avoid inverse quantities altogether, in Eq. (2.48) on the right hand side
one can leave the terms in squared brackets and use the relation:

/ 485 (9, 8)x5 (8, 7) = / d8[5(9,7) + Xop(9: 8) fune (8, 7)] (2.53)

for the inverse of Eq. (2.49). This yields the solution of the second order Dyson equation
in the form

Xppp(1,2,3) = /d4...d9 [6(1,9) + Xpp(1,8) fuwe(8,9)] X\, (9, 5, 4) x
X [5(27 5) + fvacc(57 G)pr(ﬁv 2)] [5(37 4) + fvxc(4a 7)pr(77 3)] +

+ / d4d5d6d 7 pp (1, 7)gxc(7,5,6) X pp (6, 2) X pp(5, 3)
(2.54)

with the short hand form:
x? = [1 + X(l)fvxc} P {1 + fvch(l)] {1 + fvch(l)] +xWgrexWyM. (2.55)

2.3.1 Interpretation of the solution

This form actually gives some insight in the rather complex structure of the equation,
when we introduce the concept of the dielectric function. The role of the dielectric
function € is to account for the screening of the perturbing potential by the induced field
and thus connect the total with the perturbing potential:

Viar(1) = [ d267H(1,2)Vper(2). (2.56)
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where Vit = Vper + V. Formally the screening can be defined by

WinlD) SVir(1) 5p(3)
e = 0+ [

- 5(1,3)-+L/"d3v(1,3)xpp(3,2y

e 1(1,2) =
(2.57)

This definition assumes that the induced field is only due to the Hartree potential while
the density response x to the perturbing field contains exchange and correlation effects as
well (c.f. Egs. (2.33) and (2.40)). The screening of the perturbing potential can however
be due to exchange and correlation effects as well so that one has to define the screening
as the variation of a total potential that also contains V.:

erp(1,2) = % = (1,3) + /d3(v(1,3) + fze(1,3))xpp(3,2) (2.58)

:5@$+/%m4quan (2.59)

This case is called test-electron (TE) while the former is called test-particle, because they
either describe an experiment with a quantum mechanically interacting probe (electron)
or a classical particle.

We can use the test-electron screening to write the solution (Eq. (2.54) of the second
order Dyson equation as

Y@ = [ —1]T 2) -1 1)

eri] Xo erpern + X grex WX (2.60)

19T . - - -
where [ETIE] is the transposed of ET}E.The significance of the ETIE factors can be un-

derstood by considering that XE)2) gives the response to Vg while Y responds to Vper-

Now the two 65;3 on the right side of X(()Q) do nothing else but transform the applied
perturbing potential Vj, in a Kohn-Sham potential Vg, since Vg = GEEV}W-

The transpose e;}f to the left of the non-interacting XéQ) is, however more involved. To
understand its origin we reconsider the derivation of the second order Dyson equation

using for the linear response

= xert (2.61)
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from which follows

Voer  6Vper T

5X(()1) WVks 1 )

5VKS 5‘/};67« ETE * XO 5‘/per

PO VO el
Y2 = X A . (2.62)
per

1+ (0+ fae)x™ (2.63)

(2 -1 _—1 1) 0 fze sy

1
= Xo €refre T Xo Voer X(l) + X((] )(U + fre) 5Vper) (2.64)
4 Ofwe O
= Xéz)eT}EeT;J + Xt()l) L—pX(l) + Xt()l)(” + foe)x? (2.65)
dp OVper
= xPeqbers + x0 gaex W + x5 @ + fae)x®@ (2.66)

The last term in the last line can be combined with the left hand side of the equation and
then yields the [G;HT when inverted. From this derivation we see that this prefactor as

. Sert 2 . . .
well as the term with g,. comes from the term ‘re — O Viks in the first line. This
. . 6Vpe1" 6VpeT6Vper .
can be interpreted as a second order screening and as such does not have analogous linear

processes.
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2.3.2 Graphical representation of the 2nd order Dyson Equation

The linear Dyson equation (2.40), consisting of three terms of only two point quantities,
has a rather simple structure compared with the second order Dyson equation (2.47).
Here, we have to deal with a mixture of two- and three-point quantities as well as with
seven different terms. In order to get a clearer view of the structure of the equation and
to show how the different terms are connected with each other, I will use here a set of
diagrams in analogy with the Feynman diagrams. This might help to get a better view
of the content of the equation and its constituting terms. It does of course not provide
any further insight, that one might not get from the equation, but it might serve the
intuition and as a mnemonic device.

The different quantities appearing in the equation are represented according to this table:

1 1 . N 2
W) L. -

>
=
—~
=
DO
N~—
1»—! iH
N N N

fZBC(l?2)
_—e
2 ;" !
X (1,2,3) ¢ oo
\\\ :
\q_.
3
2

9zc(1,2,3)

A L

With these symbols the linear Dyson equation takes this form
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Figure 2.1: Graphical representation of the linear TDDFT Dyson equation (2.40).

which, indeed, has a very simple structure and for this alone one would not need a
graphical representation. Turning, however, to the second order Dyson equation, we
obtain are far richer picture
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Figure 2.2: Graphical representation of the second order TDDFT Dyson equation (2.47).
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2.4 Approximations
2.4.1 IPA

The simplest approximation in the Dyson like equation (2.47) is done by neglecting all
many-body effects by letting f,». = 0. Then, only the Kohn-Sham response is present
therefore it is called the independent particle approximation (IPA):

Xopd(1,2,3) = x0) (1,2,3) . (2.67)

We will see in later chapters (c.f. chapter 6) that this approximation can represent
important features of the response and thus is not as bad an approximation as its
simplicity suggests.

2.4.2 RPA

Considering the Coulomb interaction while still neglecting exchange and correlation ef-
fects, i.e. by keeping v but letting f,. = 0 the Dyson equation becomes

+ / dddsx0) (1,2, 4)v(4,5)x,, (5, 3)+
(2.68)

+/d4d5d6d7xg°p>p(1,5,4)v(5,6)xpp(6, 2)v(4, 7)Xpp (7, 3)+

+/d4d5><§$(1,4)v(4, B)XELA(5,2,3) .

and one speaks of the random phase approximations (RPA). This approximation already
captures the important effect that the perturbation locally polarizes lattice atoms re-
sulting in a field that itself can polarize other atoms and thus contribute to the overall
perturbation. Since it is linked to the lattice structure and the fields are generally fast
oscillating fields, this effect is commonly referred to as crystal local field effect (c.f. Chap.
3).

2.4.3 TDLDA

Apart from these two approximations that profit from what little is known exactly about
the system, any further approximation has to concern the exchange and correlation ker-
nel, which is unknown. Approximations to this kernel are made more in the spirit of
educated guessing rather than in a rigorous way from exact expressions. One of the most
commonly used TDDFT kernel is the time dependent generalization of the local density
approximation (LDA) of DFT. Here, one assumes that V,.(r) only depends on the den-
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sity at the point r rather than on the environment as well. The time dependent version
of this approximation, the time dependent local density approximation (TDLDA), uses
the so called adiabatic local density approximation (ALDA) where V,.(r,t) is taken to
be the local density exchange and correlation potential calculated from the density at
the time ¢

Vi PA( 1) = VP p(r, 1) - (2.69)
The kernel for TDDFT derived from this approximation is then

LDA
t
ITCDLDA(I'I, tla ro, tg) — 6([’1 _ r2)6(t1 _ t2) aVzc [p(I'l, 1)]
p(r1,t1)

(2.70)

From this approximation one can derive in the same spirit the second order g,.. While
the TDLDA works well for electron loss responses and other cases of finite momentum
transfer, it fails to produce reliable results for the optical absorption of solids [93]. This
failure has been attributed to the missing long range interaction in the local approxima-
tion. Long range interaction, however, is the hallmark of the Coulomb potential that in
semiconductors leads to the formation of excitons which in turn are known to contribute
important features to optical spectra. For this reason, TDLDA does not seem to be a
good candidate as kernel for second order optical processes.

2.4.4 Quasiparticles

To go beyond the local density approximation one has to consider that the excitation
of an electron in a solid will leave behind a hole that thus exerts an attractive force
on its neighboring electrons, leading to a cloud of opposite charged particles around it
and thus to a screening of the particle. This screening of the particle leads to a shift
in the excitation energies and one refers to the particle and its screening together as a
quasiparticle. The shifted energy spectrum is then attributed to this quasiparticle, which
has the advantage that one can still think about it in terms of a single particle process.
A TDDFT exchange and correlation kernel now has to fullfill two functions, first it should
transform the Kohn-Sham single particle response into the response of quasiparticles and
second it has to account for the actual two body interaction between the electron and
the hole, i.e. the exciton. It has been shown [28] that one can split up the f,. into two
parts

foe = fID + £ (2.71)

where fé? accounts for the quasiparticle effect and fﬁ) for the excitonic effects.
The quasiparticle formed by the screening of the hole is described within many-body
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perturbation theory (MBPT) by the quasiparticle equation

[ho(r1) + Vi (r1)] ¢i(r1) + /dF2E(F1,I‘2, E;)¢i(ra) = Eipi(ry) (2.72)

where ¥(rq,ro, F;) is the so called self energy that accounts for the many-body effects
and is the key quantity for which Hedin’s equations [94] are formulated. The central idea
is, instead of considering the bare Coulomb interaction v, one should formulate the self
energy in terms of the screened potential W defined as

W(1,2) = /d3e_1(1,3)v(3,2) (2.73)

where ¢! is the time ordered screening

5‘/tot (1)

e 1(1,2) = ()

(2.74)
This leads to a set of five self consistent equations (c.f App. E) for the Green’s function.
These equations are routinely solved within the GW approximation for the self energy
which together with the quasiparticle equation (2.72) gives the quasiparticle energies and
wavefunctions that can be used to construct a response function. It turns out that in
many practical cases the quasiparticle effect amounts only to a shift of the conduction
states in the band structure, which suggest that a calculation of the actual quasiparticle
effect can be circumvented by just shifting the Kohn-Sham spectrum by the appropriate
value. Indeed, it has been shown also for the case of second order response [67], that
the application of such a scissors shift can reproduce the spectra. Therefore, one does
not consider the exact form of fz(i), nor approximations to it, but either assumes the
quasiparticle effect to be appropriately accounted for by shifting of the conduction states
or uses the results of a quasiparticle calculation. Nevertheless, the simple scheme of
shifting the conduction states has some implications for our formalism when we consider
the optical limit (c.f. Chap. 4 ).

2.4.5 Excitons

Excitonic effects, being two particle processes, are correctly described by the Bethe-
Salpeter equation (BSE), which gives the many-body two particle correlation function
L. This quantity is closely related to the two body Green’s function by its definition [95]

iL(1,2,3,4) = G(1,2)G(3,4) — Ga(1,3,2,4). (2.75)

Thus, the two particle correlation function L describes those parts of two particle pro-
cesses that go beyond their independent propagation that is represented by GG. In
many-body perturbation theory, this quantity is also defined as the variation of the one

28



particle Green’s function under the presence of a perturbing potential

. G(1,2)
L(1,2,3,4) = —i————— 2.76
( »EY D ) 2‘/})@7-(3,4) ( )
while the single particle G is determined by the Dyson equation
G_1(17 2) = G;{l(la 2) - ‘/1767"(17 2) - 2(17 2) (277)

where ¥ is the self energy and G the Hartree Green’s function [95, 96]. Combining the
two equations yields the Bethe-Salpeter equation in the form [97]

iL(1,2,3,4) = G(1,3)G(4,2)+

2.78
/d5678G(1, 5)G(6,2) [v(5,7)0(5,6)d(7,8) + Z(5,6,7,8)] L(7,8,3,4) ( )
where the many-body interaction kernel has been defined as
0%(5,6)
=(5,6,7,8) = i——7—= . 2.79
(5.6.7.8) = 557.8) (2:79)

The similarity between the Bethe-Salpeter equation (2.78) and the TDDFT Dyson equa-
tion (2.40) can be used by exploiting the fact that the density response function is the
two point diagonal of the two body correlation function:

sp(1) . 6G(1,1%)
Vor2)  Vper(2.2)

Xpp(1,2) = = L(1,17,2,2%) . (2.80)
In [96] it is shown how one obtains from this an exact expression for the two body
correlation contribution to f.. that can be linearized to yield

fﬁ>(1,2):/d3456po1(1,3)G(3,4)G(5,3)W(4,5)G(4,6)G(6,5)P01(6,2) (2.81)

where P ! is the independent quasiparticle polarizability and W the screened potential.
This kernel has been shown to yield results for the absorption of solids that are almost
identical with the Bethe-Salpeter result. There are different ways to derive this kernel,
c.f. [25-29], each giving essentially the same result.

The main advantage of TDDFT with respect to BSE is that it deals only with 2-point
quantities, that are numerically represented by two dimensional matrices, instead of 4-
point quantities requiring much more computational ressources. Implementations of the
Eq. (2.81), that has been named the NANOQUANTA kernel, have however turned out
to require computational effort that is close to the one required to solve the BSE. This
is partly due to the fact that for BSE there exist well optimized methods of calculation
but also due to the complex structure of the kernel. Therefore, a drastically simplified
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kernel of the form.

@ and  fulq+G)=-——2 (2.82)

fzc(rlar2) — !q—i— G‘Z

B 471"1’1 - I'Q‘
has been proposed [98]. The motivation for such a formulation is to explicitly introduce
the long-range interaction, while « is a priori a parameter. One can, however, motivate
this form of a kernel from the exact expression of Eq. (2.81) by considering the limiting
behaviour of its constituents as ¢ — 0. One finds that in this limit Pgl ~ 1/¢* and
G ~ q while from the definition of the screening follows W ~ e3!/q?. This behaviour
yields indeed the form of Eq. (2.82) as a reasonable approximation for the optical limit
of the NANOQUANTA kernel. Tt does however also indicate that a ~ e}, which has
been confirmed by systematically comparing BSE results with results obtained with this
kernel [99].

This kernel has been shown to reproduce results obtained with the Bethe-Salpter equa-
tion on a qualitative and quantitative level. Indeed, the agreement can be viewed as
remarkable given its simplicity and the computational cost saved with respect to the
NANOQUANTA kernel or the BSE. Its downside, however, is the fact that « is a priori
a parameter and can only be determined by comparison with a BSE result, thus com-
prising either its efficiency or the ab initio character of the calculation. Nevertheless, in
this work I will use this kernel for the calculation of the second order response according
the second order TDDFT Dyson like equation (2.47), because in this case its downside is
somewhat less important. In most cases here we rely on established results from the lin-
ear case, where the value of a has already been confirmed by a BSE calculation. But even
if such values are unknown, performing first a linear BSE calculation to determine them
does not considerably increase the computational cost, since the second order calculation
is already orders of magnitude larger than a linear BSE one.
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3 Macroscopic response and local fields

In the previous chapter I have shown how one can use time-dependent perturbation theory
together with density-functional-theory to obtain the second order microscopic response.
To be able to interpret and predict experimental results, it is however important to be able
to connect these microscopic quantities to the macroscopic world of the laboratory. The
difference between these two responses comes from the fact that the charge distribution
induced by the light field polarizes the crystal and thus induces an electric field that
in turn modifies the charge distribution. Therefore the macroscopic and microscopic
responses differ depending on the inhomogeneity of the system.

The connection between the microscopic and macroscopic quantities is made by means
of a spatial average over a distance that is large compared with the lattice parameter a,
following the argumentation of Ehrenreich [100], I will first show how such an average is
taken and then proceed to relate the microscopic quantities to responses to macroscopic
fields. !

3.1 Macroscopic average

The microscopic potentials considered in Chap. 2.3 can be represented in momentum
space as

Virw) =3 V(g w)el@rer, (3.1)
qG

A macroscopic average now should be done by averaging over those parts of its decom-
position that are periodic with respect to the lattice. We therefore rewrite Eq. (3.1) to
yield explicitly these components

V(r,w) = Z elar Z Va(q,w)e'Sr = Z TV (q,r,w) (3.2)
q G q

where

Vigrw)=> Valqw)eS (3.3)
G

! A mathematically more systematic way of of obtaining macroscopic relations form microscopic quan-
tities is taken by homogenization theory, where one expands all fields in powers of a/), where A
is the wavelength of the light field [101]. The advantage, apart from mathematical rigour, is that
this approach also gives information about the corrections to the average, i.e. higher terms in the
expansion.
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is the lattice periodic part that has to be averaged. Integrating over the unit cell volume
yields the macroscopic component Vjs(q,w) of the potential

C

Vi(q,w) = Qi /drV(q, r,w) = Z:V(;,(q,w)Qi /dreiGr = Volq,w). (3.4)
G (&

Thus the macroscopic average amounts to considering only the G = 0 Fourier component
of the field. In an intuitive physical picture this means that the components with G # 0
are oscillating too fast to have influence on the macroscopic average.

3.2 Macroscopic response
The central quantity in optical measurements is the macroscopic polarization P
OnP(1) = j(1) . (3.5)

Its expansion in terms of the macroscopic total field defines the macroscopic linear and
non-linear susceptibilities:

P(1) = xm(1,2)Etot (2) + xar(1, 2, 3)Etot (2)Etot (3) + ... (3.6)

where the microscopic total field contains the applied external field and contribution
from the induced polarization of the system due to this perturbation. It is the effect
of the induced field that makes the difference between the macroscopic and microscopic
response and it is thus the main concern of this chapter.

To describe nonlinear optical experiments it is elementary to be able to distinguish be-
tween contributions according to their order in an expansion in terms of the total field
in Eq. (3.6), e.g. the macroscopic polarization

P=pPY L P® 4 | (3.7)

and we will find that the separation of orders in this expansion is not trivially obtained
from the microscopic formulation, because one has to consider carefully how the external
field induces a field in the medium thus giving rise to finite polarization. Starting point
are the Maxwell equations

V-B=0 V x H — ;D = 4rj

(3.8)
V-E=p VXxE+9B=0

where we will neglect the magnetization and use H = B. These Maxwell equations are
true for the total field

Etot — Eext + Eind . (39)
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It follows the wave equation:
V x V x Egot + 0;°Etor = —4Tjtot - (3.10)

Per definition the current is linked to the polarization via the time derivative thus it is
this quantity where the definitions of the susceptibilities are made. The total current can
be written as jiot = jext +Jina- Considering only the external field, the Maxwell equations
read:

V-B=0 \Y% xB—@tEeXt :47Tjext (3 11)
V - Eext = Pext VxE+9B=0 '
and the corresponding wave equation is
V X V X Eext + 0% BEext = —4T0jext - (3.12)

Using the linearity of the Maxwell equations a similar equation follows for the induced
field. Introducing the operator

O=VxVxe + 07 (3.13)
we can write it as
Eipng = 4707 ' 9jing - (3.14)

In terms of response theory we can formulate the perturbations of the induced current
as

ity (1)

/ d2x(1, 2)Eext (2) (3.15)
OGN = [ 42312 B (B (3) (3.16)

This can also be regarded as definition of the response function y to the external field.
They can be derived from quantum mechanical perturbation theory and thus can be
obtained from the quantum mechanical groundstate?. We are, however, interested in the
responses of the induced current to the total field, i.e. we would like to calculate response
functions 7 like

A1) = / d2(1,2) By (2) (3.17)

2521 = /d2d37r(1,2,3)Etot(2)Etot(3). (3.18)

’Del Sole and Fiorino [102] point out that this is only true for groundstates where retardation effects
of the electrons are accounted for. Since this is usually not the case, one has to include them in the
perturbation, which I do later on in Eq. (3.39).
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A microscopic formulation of these responses however, is not feasible because the induced
field is a priori unknown and therefore we need to express them in terms of the known
quantities y.

To first order the relation between the two fields is

Etot(l) - Eext(l) + Eind(l) - Eext(l) - 4ﬂo_1(1)atjind(1)
= 16(1,2) —4w0‘1(1)/d2x(1,2)} Eext(2) . (3.19)

This equation become considerably more readable if we use the macroscopic average
according to [100] as sketched in section 3.1, thus passing from the general variable 1 to
k = q + G and taking only the G = 0 component:?

Ewot(q) = [1 - 470" (@)x(a, )] Eext(q). (3.20)

This is only possible because the external field is assumed to have only macroscopic
components [102], i.e. on the right hand side of the equation we do take the average of
a product. Inversion yields

Eext(q) = [1— 470" (@)x(a,9)] ' Eiot(q) (3.21)

Now, we would like to relate the second order response functions. The definition (3.16)
can be averaged similarly as in Eq. (3.21)

0% (a@) = Y x(ai, a2 a3)Eex(a2)Eext (as)
q2q3

where again the fact that the external field is macroscopic was used. The external fields
can be expressed in terms of the averaged total field E¢y according to Eq. (3.21) and we
have

3tji(r2121(Q1) = Z x(ai,q2,q3) [1 — 4770—1((12))(((127%)]_1 Eiot(q2) x  (3.22)
q2q3

x [1 - 470~ (as)x(as. a3)] " Evor(as) (3.23)

This is a macroscopically averaged response to the total fields and thus can be regarded
as the macroscopically averaged version of Eq. (3.18) and by comparison we can define
the macroscopic average of m:

TGG1G2\d1,92,93)) =
(TGGiGs ( ) L 329)

x(ai,q2,93) [1 — 4707 (q2) x(q2, q2)] - [1— 470~ (a3)x(as, a3)]

*Here and in the following, microscopic quantities that are written to depend only on q are assumed
to be taken for G = 0, e.g. x(q,9) = XG=o0,c'=0(q,d). Also the frequency dependence is not
explicitly given to keep the equations readable but is always implicitly accounted for, because each
q; is associated with the frequency w;.
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Here we see how the induced fields enter into the macroscopically averaged response.
Clearly the induced polarization, accounted for by x(q,q,) in the equation, modifies the
second order microscopic response under the average.

To relate the two second order responses we had to use only the linear relation between
the fields, because taking into account the induced field to second order would yield terms
of higher than second order, when inserted into Eq. (3.16). However, an important point
of the treatment is that, when considering the first order induced current, as in the
definition (3.15), this argument does not hold, since we would like to account for all
second order terms to achieve a proper ordering of the contributions in Eq. (3.7) and
in general the relation between total and external field contains higher order terms. To
second order we have

Eiot = Box + B + B (3.25)

That means, if in the context of second order perturbation, we want to express the first
order response

93 (@) = x(a, @) Eext (a) (3.26)

in terms of the total field, we have to take into account the nonlinear relation Eq. (3.25)
between the two fields. Thus we have

diifh@) = x(a,a) [Boi(a) - Ef)(a) - B (a)
= X(a.9) [Bur(@) + 4707 (@ (@) + 4707 @) (@) (3:27)

Solving for ji(i()l yields the first order current in terms of the total field

230 (q) = [1 = 4mx(a, )0 (@)] " x(q @) Eror+

i (3.28)
+dr [1—drx(aq, )0 (@)] " x(a, @)0 (@)ai2)

While the relation between the induced current and perturbing field, Eq. (3.26), is linear,
the relation between the induced current and the total field, Eq. (3.27) is not, since in
this context we want to keep all second order contributions. Thus when expressing Eq.
(3.26) in terms of the total field, we find that this first order expression of the current
contains higher order terms.

Now we can write down the proper macroscopic expansion of the polarization to second
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order:

P = PO Lp®
1 (1 .(2
= — {2l + 2ilh@)}

1 _
] { [1—4mx(a, )07 x(a, Q) Bt +

+ (1+4r [1 = dmx(a, @07 7 xa @)07!) a0 }

1 - ~
= —= { [1—dmx(a, )0 ] x(q, @) Brog + [1 — 47y (q, )0 ] 51531(321}
(3.29)

where in the last step we used

1+ 4m [1 - drx(q, )0 @)] " x(a. )0 (q) = [1 - drx(q, )0 (q)] . (3.30)

Comparing Eq. (3.29) with the general expansion Eq. (3.6) and using Eq. (3.24) for
second order the induced current we have the macroscopic susceptibilities

v = 1- 25 [1-4rx(a a0 (@] x(a.q) (331)

Plad.a) = ~5 Mla) x(a d> ) Na) N() (3.32)
where we have introduced the two very similar definitions

M(q) = [1—4mx(q,@)0 ()] (3.33)

N(q) = [1-470 Y(a@)x(a.q)] (3.34)

These are the general relations between the microscopic and macroscopic responses,
where we have not made any assumptions on the nature of the external field except that
it is macroscopic. In the context of TDDFT it is however important to notice that it
can give only the longitudinal microscopic result whereas TDcurrentDFT can deal with
transverse fields as well. T will discuss this point in more detail in Chap. 4.

3.3 Macroscopic response from TDDFT

To make the link between the scalar density response and our general result Eqs. (3.31)
and (3.32) it is useful to consider the operator O(q) and its inverse in more detail. Fourier
transform of the definition (3.13) yields

O(q,w) =qx qx —w’l (3.35)
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Using the longitudinal and transverse projectors and their identity property*

Pl(q) = gg PT(q) = -2 qq P(q) + P (q) = 1 (3.36)

this operator can be expressed as
O(q,w) = —w*P(q) — (@* — ¢*)P"(q) (3.37)
and the inverse is readily obtained using the orthogonality of the projectors

1
—1 L
o (q,w) =—-—P (q) - w02 — q2

— PT(q). (3.38)

With this expression we can consider the longitudinal and transverse part separately.
Following the argumentation of Del Sole and Fiorino [102] we note that a microscopic
response obtained from TDDFT can only account for longitudinal perturbations and it
is therefore necessary to decompose the induced field into its longitudinal and transverse
components and define the perturbing field as

Eper(1) = Eext(1) + Efq(1) = Eor (1) — Eipa (1) (3.39)

so that the perturbation contains the transverse part of the induce field. It is the potential
of this perturbing field in terms of which the microscopic response in Chap. 2.3 is
formulated.

Now, to make the connection between this microscopic response and the macroscopic
dielectric tensor €j; (Eq. (3.31), we define the response function « for a perturbing field
that contains the transverse part of the induced field:

Dgiy(1) = / d2a(1,2)(Bext (2) + EL4(2)) = / d2a(1,2)(Eper (2)) - (3.40)

This field has only macroscopic contributions (according to [102]) and can thus be ex-
pressed in terms of the external fields as

Eper(q) = [1 - 4707 (@)x(a, Q)] Bext(q) - (3.41)

By comparison with the definition (3.15) of x we have:

-1

x(a,q) = [1 +4ra(q,q)07' (@)] " alq,q) - (3.42)

“The symbols P* and P” for the projectors should not be confused with the one for polarization P.
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Using the expression for x(q,q) in our result for the macroscopic dielectric tensor Eq.
(3.31) yields

[1— 4my(a, )0 (@)] " x(a,q)
[1 — 47 [1+ 4ra(q, )07 (@)] " a(a, q)O‘l(q)} T

x [1+4mra(q, )07 (q)] " a(q,q)
- i_g [1 - 4rala, )05 (@)] " [1 + 4ra(a, @) 07 ()] x

X [1 + 4ra(q, q)OEl(q)] - a(q,q)

ey =1 —

47
w2
47
-1 =
w2

where we have used
1 - 4ra(q,q) [1+ 4ma(q, )07 (@)] (9_1} T =
[1 —4ma(q, q)@;l(q)} - [1 + 4ra(q, Q)OEI(Q)]

Now identifying O;'(q) = —%%% (Eq. (3.38)) and defining & = —%« we find

~1
ey = 1+44rn [1 — 4rma(q, q)%%] a(q,q) (3.43)
aq -
= 1+4wa(q,q) [1 - 4775 ad(q, q)] (3.44)

which is exactly the result shown in [102]. The quasi-susceptibility & reads

. 1
a(qr,qz,w) = [xj3(a1, a2, w) — p(d1)dq;qs) - (3.45)

oW

We note that the convenient redefinition of the response function o« — & means that we
are considering a response of the polarization, rather than 0;j, since the two are related by
a factor of w?. The difference is that 0;j features in the wave equation (3.10), thus when
regarding the response functions as a means to close Maxwell’s equations it is convenient
to keep this quantity, while when we are interested in the polarization and its expansion
of the perturbing field (Eq. (3.6)) this redefinition is more convenient.

Using the same decomposition of the perturbing field as in Eq. (3.40) we define the
second order response to the perturbing field, now directly for the polarization

P (1) = / d2d36(1, 2, 3) Eper (2)Eper (3). (3.46)
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With this definition, we obtain instead of the second order macroscopic susceptibility as
in Eq. (3.32), the form

(2)(

s 1
Xof (a2, q3) = —4r [1—4rda(ar,a) P (a1)]  alar, a2, q3)x

t (3.47)
x [1 - 4nPL(qo)a(az, a2)] [1 — 47PL(as)a(as, as)]

-1

The advantage of this formulation is that now we can use the result of the second order
perturbation theory of Chap. 2.2. Comparing the definition Eq. (3.46) and the second

order microscopic perturbation response Eq. (2.17) yields the microscopic expression for
7(2)
Qa

7 1 1
§ij(q17 Q3)5q2q3 + ij(qz7q{5)5q1q3 + §ijj(Q1a QZ7Q3)
(3.48)

a(qr,q2,93) = — R

The linear responses x;j, and X,; vanish in the optical limit and are therefore neglected
in the following.

The link to TDDFT can now be made by considering only the longitudinal component
of the the susceptibility. Formally one has to project along the directions of the q:

an,a,a3) = PH(an)x) (a1, 2, a3) P (q2) PY(as)

(
= —4xPY(aqy) [1 — 4mi(an, ) PH(@)] T alar, ga, gs) X
x [1— 47 P (q2)d(q2, q2)] PL(QQ)
X [1—47TP (g3)a (%a%)] ( 3) -

LLL( L

(3.49)

The longitudinal projections of the linear prefactors of &2 take a very simple form if we
consider the identities

— ﬂa‘i‘(’?q) —P(q) (3.50)

a(q, q)
1 —d4mwa(q,q)tt

[1—4ra(q,q)P (q)] " = 1447

[1—4rP"(@d(q,q)] = 1+4rP"(q)

(3.51)

In Eq. (3.49) these terms are multiplied with longitudinal projectors from the left and
right respectively, so that there are three factors of the same form

PL(q)
1 —4ra(q, q)Lr

Pl(q) +4nPHq)— DD prg)

52
1 —4ra(q, q)Lr (3:52)

We note that this is equal to the two sided longitudinal projection of the macroscopic
dielectric tensor (Eq.(3.44))

PL(q)
1 —4na(q,q)tr

= PH(q)en P (q) = (3.53)
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so that the longitudinal projection of the macroscopic second order susceptibility reads

@LLL(qy, g, q3) = —AmekF (an)ebF (az)ekf (as)PE(a)alar, a2, as) P* (a2) P (qs)

(3.54)

X

which leaves the projection of the microscopic response function to be considered.
As already noted in Chap. 2.2 the longitudinal projection of the current is related to the
density via the continuity equation (2.20)

q-j(q,w) = ¢ PX(@)j(aq,w) = iwp(q,w). (3.55)

Using this relation to replace the projection of the current operators in the longitudinal
projection of &(qi,q2,qs) (Eq. (3.48)) we find

1

) 1
PH@)a(an, a2 a3 P () P () = 5 s

prp(cha QQ,qs) (3.56)

which is the quantity that is the result of the second order TDDFT Dyson equation. The
final result for the longitudinal projection of the macroscopic second order susceptibility
is thus, now also accounting for the frequency dependence

27X ppp(w2 + w3, w2, w3, A2 + 43, 42, d3) "
(@2 + 43)q243

(2),LLL(

X wy + w3, w2, w3, q2 + 43,42, q3) =

X 6%@2 + w3, q2 + C13)€%4L(w2, Q2)€%/1L(W3,Q3)
(3.57)

The simple TDDFT result x,,, therefore needs to be modulated by three different di-
electric functions in order to obtain the macroscopic susceptibility. Moreover, here the
limitation of TDDFT become appearant, since it can only provide the longitudinal com-
ponent of the susceptibility. However, as far as optical processes, i.e. when q — 0, are
concerned this limitation does not pose a problem to the applicability of TDDFT. The
quantity q defines the propagation direction of the field with respect to which the terms
longitudinal’ and ’transverse’ are defined. Therefore, when one considers the limit of
vanishing q the longitudinal and transverse directions loose their definition and any di-
rection is equivalent [103]. It is only in this limit that TDDFT can be applied rigorously.
In Chap. 4 T will further discuss this limit and it range of validity as well as effects that
occur beyond it.

It is interesting to note that Eq. (3.57) is similar to a result obtained by Armstrong and
Bloembergen [30] in the Lorentz model. They find for cubic symmetry a relation between
the macroscopic and microscopic susceptibilities of the form

€(w1 +wa) +2€(wr) + 2 e(wa) + 2

XD (w1 + w2) = NB (w1 + w2) 3 3 3

(3.58)

where [ is their microscopic susceptibility.
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3.3.1 Components of y(?

Having established that with TDDFT we can only get a scalar response, the problem
arises that the second order susceptibility ¥ has in general 27 components, which have
to be obtained from this scalar quantity. First, we note that for second harmonic gen-
eration only 18 of the 27 components are independent, since they are symmetric under
exchange of the two perturbing fields, i.e. X;jr = Xx;- While this is true for all crystal
systems, the symmetry operations of particular crystal systems also contribute to a re-
duction of the independent non-zero components. Table 3.1 lists these components by
point group.

We note that 11 out of the 32, do not yield any second harmonic generation due to

the inversion symmetry. For 4 others there is only one independent non-zero component
and thus they pose no problem for a scalar response calculation. It can, however, not be
obtained from any density response, but the polarization directions of the applied fields
must be considered. A careful analysis of how the polarization enters into the equations
yields not only the independent components of those 5 point groups but also a way to
obtain the components of X(Q) for point groups where more than one component is inde-
pendently non-zero.
To this end we consider the longitudinal projection of x(?) like it appears in the macro-
scopic averaged second order response, Eq (3.57). The longitudinal projections are pro-
jections parallel to the progation directions and can thus also be interpreted as projections
along the polarization of longitudinal fields. Introducing the polarization vectors n; and
ny of the perturbing field, we can write the longitudinal projection of the macroscopic
second order susceptibility (3.57) as®

(n; + ng)X(Q)nan = e%/[L(nl + 1, 2w)eﬁ/fL(n1, w)eﬁ/fL(nQ, W)X ppp(M1 +N2, 101,12, 2w, w)
(3.59)

which reads in terms of the tensor and vector components

(nli nQi)Xijknl 'n2k - EM(nl ny, 2w)€M (111, w)eM (112, W)prp(nl ng,nj,ny, 25‘” C")-
J
ijk

This means that in order to obtain single tensor components we have to perform TDDFT
calculations along different polarization directions.

There are four different kind of tensor components according to their index structure:

the diagonals Xﬁfo),a, two different block diagonals Xfo){ﬁ and X(;o){ ., and the off diagonals
X((fg)fy- We also remember that for second harmonic generation the last two indices are

2 _ @

interchangeable, i.e. Xopy = Xovs: As mentioned, depending on the symmetry, some

®Since x® only depends on two different q we will call them in the following q: and q» instead of q2
and qgs.
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# ‘ Symbol ‘ ‘ Components Bravais
1 1 18 | all Triclinic
2 1 0| —
3-5 2 8 | xyz, xxy, yxT, YYY, Y2, YIT, 2Z2Y, ZTY Monoclinic
6-9 o 9 rTT, TYY, ITTZ, YYz, YY,
zrx, 2YyYy, 2z%Z, 22T
10-15 2/m 0| —
16-24 222 3 | zyz, yzx, zxY Orthorhombic
25-46 mm2 o | zxz, yyz, z2xT, 2YY, 222
47-74 mmm 0| —
75-80 4 4 | xyz = —yxrz, xTZ =YYz, 2TT=2YY, 2Z2Z Tetragonal
81-82 4 4 | xyz = yxrz, TXZ=—YYz, 2TT = —2YY, ZTY
83-88 4/m 0| —
89-98 422 1 | xyz = —yzz
99-110 4dmm 3 | xxz =yyz, zxr =2YY, 222
111-122 42m 2 | xyz =yxrz, zZxy
123-142 | 4/mmm | 0 | —
143-146 3 6 TIT = —aYy = —YyT,  TYr = TYzE,  ITE=YYe Trigonal
YYy = —Yyrr = —TxY, 2TT = 2YY, 22Z
147-148 3 0 |—
149-155 32 2 | zxx = —xYyy = —Yyr, TYZ = —YITZ
156-161 3m 4 | xzxz =yyz, zxr=2YYy, YYy = —Yrr = —ITY, 22Z
162-167 | 32/m 0| —
168-173 6 4 | zyz = —yxrz, xTZ =YYz, 2TT=2YY, 222 Hexagonal
174 6 2 | xxx = —xyy = —yYyxr, YYy = —Yrr = —ITyY
175-176 6/m 0| —
177-182 622 1 | zyz = —yxz
183-186 6mm 3 | zxz =yyz, zxx=2z2Yy, 222
187-190 6m2 1 | yyy = —yxxr = —x2y
192-194 | 6/mmm | 0 | —
195-199 23 1 | xyz = yxrz = zyx Cubic
200-206 | 2/m3 0 |—
207-214 432 0| —
215-220 43m 1 | zyz =yxz = zyx
221-230 m3m 0 |—

Table 3.1: Components of the second order susceptibility x(?) for second harmonic generation.
After Y. R. Shen [3] (p. 27)
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components can be zero, which facilitates the solution of Eq. (3.60) for some symmetry
groups. This also means that for some of the tensor components, it might be necessary
to do a calculation with different polarizations, depending on the symmetry group of the
crystal.

Components Yoao @ For components of this form it is sufficient to perform a calculation
with the polarizations in ny = ny = e,, where e, is the unit vector in the cartesian
direction «). Eq. (3.60) thus reads:

Xaaa = €M(€as2w)Xppp(€a + €as €a, €n)en (€, w)err(eq,w) (3.61)

This is obviously true for any symmetry.

Components x,,3 The components x.qs can be obtained by a calculation with the
polarizations n; = e, and ny = eg. With this choice of polarization directions Eq. (3.60)
reads

Xaaf + XBBa = €M (eoz + €3, QW)prp(eoz + €3, €q, eﬁ)EM (eou u))EM (eﬁa w)- (362)

For most crystal symmetries only one of the components x,q3 and xgg. is non-zero, so
that such a calculation directly yields the non-zero component. The exception are the
symmery groups '1’, 2’ and 'm’, for which one has to perform an additional TDDFT
calculations, with the polarizations n; = e, and ny = —eg yielding Eq. (3.60) as

XaaB — XB8a = €M (€a — €3,2w) X ppp(€a — €3, €q, —€g)ers(€n, w)err(—eg,w). (3.63)

Adding or subtracting this from Eq. (3.62) yields the single component.

Components x,33: Components of this shape are less easily obtained, since one has to
use n; = e, and ny = 1/v/2(e, + es) which yields

L4v2 1+ V2
g XAde T Ty TR (3.64)

1 1
§Xaaﬁ + §Xaﬁ6 +

e (N1 + no, 2w) X ppp (N1 +n2,nq,00)epr (01, w)epr (N2, w).

So depending on which of the other components are simultaneously non-zero one has
to combine this with an additional calculation. For example, for the groups '6mm’, '6’,
4mm’, "4, ’4’ and 'mm2’ the xgg3 and xgg, components are zero, so that one has to
combine this calculation only with the x,qs calculation to obtain the x,gs component.
For other symmetry groups their are more dependent components, so that one has to
combine several calculations.

Components y,3, : For the off diagonal elements there are symmetry groups ('4m3’,
'237, 7622’ and '422’ ) where they are the only non-zero components. Then, it is sufficient
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to do a single calculation with ny = ny = e, + eg + e,, yielding directly the component

Xapy = 6M(Q(ecu + €p + e’y)a 2w)><
X Xppp(2(ea +eg+€y),eq +eg+ey,eq+eg+e,)en(en +es+ ey, wene, +es+ey,w)
(3.65)

In the case of the symmetry groups ’1°, ’2°,°32’, ’3’, "42m’, '4’, '222 and ’6’ there is no
general applicable combination. Instead, one has to decide for each symmetry which is
the best way to obtain the component.

For example for the x,,. component of group '3’ is useful to choose n; = e, +e, + e,
and ny = e, which yields

XayztXazz = €M (€at2eg+ey,2w) X ppp(€at2es+ey, eqtesgtey, egler(entesgtey,w)en(es,w)
(3.66)

From which one has to substract .., i.e. the result of a calculation of the form yaaa
to obtain the component.
In another example, for "42m’ group, the choice n; = ny = e, + e, + e, yields

8Xayz T 4Xayzs = A (3.67)
while a calculation with the polarizations n; = e, —e, +e, and n; = e, +e, +e, yields

AXzyz + WX eya = B (3.68)
These can be combined to yield the components via

B — A =4xyzy. and 2B — A = 4xys- (3.69)

Along these lines one can obtain the polarization directions for the off-diagonal compo-
nents of the other symmetry groups as well.

The above outlined choices for n; and ny for which one performs the TDDFT are not
necessarily unique to obtain the wanted components, there might be other, more practical
combinations, depending on the specific component on wants to obtain.

3.3.2 Macroscopic IPA response

The result from this section, that in order to obtain the second macroscopic susceptibility
one has to multiply the averaged microscopic second order density response function with
three linear dielectric functions merits some closer consideration. Namely, I want to show
what this means for the independent particle approximation, which is the one that has
been used in the literature so far.

In this approximation one lets f,. = 0 as well as neglects local fields by considering a

XE)2) with Go = G1 = G3 = 0, so that the solution of the TDDFT Dyson equation (2.54)
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reads

Xopp(Q1 + @2, q1,42) = [1+ Xpp(a1 + a2, a1 + a2)v(ar + q2)] X\, (a1 + a2, 1, g2) X

x [1+v(a1)Xpp(ar, )] [T + v(a2)Xpp (a2, a2)]
(3.70)

where the linear y,, obey the linear Dyson like equation (2.40) in the same approximation

(0)

Xpp(a,a) = X\ ©

(a,q) + X3 (a4, @)v(@)Xpp(a Q)- (3.71)

Now, we note that within this approximation

-1
[ELL(Q)] =1+ v(@)xp =1+ xppv(a) (3.72)
so that the microscopic response X, reads
-1 -1 -1
Xopp(Q1 + @2, a1, @2) = ["" (a1 + a2)]  x\0, (a1 + a2, a1, @2) [€9F(ar)] ™ [e"5(a2)]
(3.73)

This form of the microscopic response, inserted in the macroscopic susceptibility (3.57),
yields

(2),LLL _ 2 0
Xipa  (d1+dz2,41,q2) = —mxfyfp(ql +a2,q1,92) (3.74)

Thus, within the independent particle approximation, the macroscopic susceptibility is
identical with the microscopic response to a non-interacting potential. While, this result
agrees with physical intuition, it is not an obvious one when one considers the two
equations, the TDDFT Dyson like equation (2.47) and the macroscopic relation (3.57).
In this sense, it is at least a check of consistency of the theory.
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4 Optical limit

For electromagnetic radiation the relation between light momentum vector q and photon
energy w in vacuum is [104]

q= (4.1)

w
c
Visible light, as used in experiments like absorption, second harmonic generation or
generally valence band spectroscopes, carries energy in the order of 1 or 10 eV which
corresponds to a light wave vector of q ~ 1073 A~! or a wavelength of A\ ~ 2710% A.
On the other hand the typical length scale of the cell parameters in solids is of the order
of 1 A, which means that the light wave is almost constant over the length of the cell.
Therefore one considers for these kind of processes the long wavelength limit, i.e. A — o0,
or equivalently q — 0. This limit is also referred to as the optical limit.

This limit means that we are considering a field that does not propagate, which implies
that the longitudinal and transverse direction are not longer distinguishable since they
are defined with respect to the propagation direction [103|. It does however not mean
that the field has no direction and the polarization is still defined. These points are
important for our calculations, because they mean on the one hand that the longitudinal
and transverse response are equivalent in the optical limit, while the polarization which
determines the tensor components is well defined.

The limit is obtained formally by letting q — 0 in the response functions. There is
however an important difference how this limit is carried out whether one considers the
current response or the density response. To illustrate this I will here consider the linear
case. The linear microscopic quasi-suscpetibility & (3.45) depends on xj;:

1

_E [X.ij(q17 q2, w) - p(q1)5Q1—Q2] . (4-2)

a(qr,qz,w) =

and it can be shown [105] that!

. 2 . 2

ili]% Xjj ~ w and (}11_)1% Xpp ~ 4 (4.3)
(for G = 0) which means that the limit g — 0 of & is well behaved. On the other hand,
when one wants to use TDDFT one has to expresses & in terms of the density response
according to the relation [107, 108]

1
Xpp(A, qyw) = quj-j(q, q,w)q (4.4)

!Note that there are numerous mathematical subtleties involved in this limit, c.f. [106]
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which also means one considers only longitudinal fields and hence

2
w
xigt = PR CEDE (4.5)

In this case the limit of & is pathological because the denominator tends to zero in the
same way as the numerator. To avoid this problem one has to expand Y, in terms of q
so that the leading term, which is proportional to ¢? cancels the denominator so that the
limit can be taken safely. The same holds for the case w — 0 for the current response,
but which poses no problem in a x,, calculation.

The same reasoning holds for x,,, and xjj; with the limiting behaviour

: 3 : 3
clllg%) Xppp ~ 4 and QIJIE%) Xijj ~ W (4.6)
where the the ¢> dependence of Xppp cancels with the prefactor 1/g1g2¢g3 in Eq. (3.57).

In a TDDFT calculation the basic quantity is the non-interacting response function XE)(/)))/)
as given by Eq. 2.27. Using the real space representation for the density operator,

Bloch functions for the single orbitals |ny) and subsequently passing to momentum space
according to App. B yields the explicit expression for XE)(/)))M

q/ +q//+G

_ i )r
(2) 1 " / ’on " 2 <nk| e’ |nk+Q'+Q”>
X0 @+9" +G6,q9+G,q9 +Gww) == :
o ) 4 Z (Enk — En kpqqr + 2w + 2in)

n,n’ n'" k

i(q”+G")r’ ’nﬁ+q/> <nﬁ+q/ ’ei(q/JrG/)r/, ‘nk>

(En,k - En”,k—i—q’ +w+ ZT/)

(Nierqrrqrle
(fn,k - fn”,k-l—q’) tatd

<ni<+q/+q” |ei(q”+G”)r/ |nﬁ+q/ > <nﬁ+q/ |€i(q/+G/)r// |nk>

(B ieraqr = En kerqrvqr +w +in)

+ (fw x+a'+q” = fo' k+q)

i(a'+G")r’ Mt o) (M |ei(@”+G" )" )

(En,k — En”,k-i—q” +w + Z"I’])

(Meyoqrqrle
+ (fak — for k+q) tatd

<ni{+q’+q” |ei(q’+G’)r’ |nﬁ+q//> <nﬁ+q// |e’i(q”+G")r” |nk>

+(fn/,k+q’+q” — fn//,kJrq//) (En”,kJrq” — En/,k+q’+q” +w + Zn)

(4.7)

I will now give some details about how the optical limit of this quantity is obtained via
perturbation theory in q. The fully general Xg,]))p has q dependence in the occupation
numbers, the energies and the wavefunctions. We will henceforth only consider semicon-
ductors (and insulators) and therefore neglect the momentum dependence of the Fermi

factors, i.e. f,, x+q — fn. The energies and wavefunctions however have to be expanded
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in terms of q. It turns out that we basically have to perform k - p perturbation theory
to second order.

4.1 perturbation theory in q

We have formulated the second order susceptibility Xég) in terms of Bloch functions |¢,, k).
These generally depend on q, if we make the substitution k — k+q. In the limit q — 0
this means that we have to formulate a perturbation series in q for Bloch functions. We
start from the eigenvalue equation

1
H‘¢n,k+q> = |:§p2 + an:| ‘¢n,k+q> (4-8)
where p = iV,. and V}; is a generally non-local lattice periodic potential. Decomposing
the Bloch functions into @y, x1q) = €&V |u, 4 ) we have

1 1 1 p .
{_5’“2 ~ (k@) p gkt @)’ +gpt e IV T ) . (49)

Now, we expand the exponential as a series of q and rearrange the terms according the
order of q:

1 . A
hictq 25292 —k-p+e MV e

+k-q—q-p+ e X Ve iqr]+
a-q-p+| we™ ", iqr] (4.10)

1 ; ; 1 ; ; ; der 1
+ 5(]2 + iqre—zkrvnlezkriqr _ §(qr)26—zkrvnlezkr _ e—zkrvnlezkri(qr)Z_i_

+O@3).

This Hamiltonian is readily transformed into a Hamiltonian for the full Bloch functions
by multiplying with e’**, so that we have the perturbation Hamiltonians for the q per-

turbation series:
1 ) )
H1(< ) = —q-p+ [Va,iqr] = iq[Hy,r] = qv (4.11)

[av, qr] (4.12)

@ _Lo, 1 _ !
Hk - 2q + 2[qra [anaqr]] - 2
where we have used [p?,r] = ip and defined the generalized momentum operator

v=p+ [Vu,1] (4.13)

that is also called velocity operator. These two Hamiltonians are used within time
dependent perturbation theory, c.f. App. C, to expand the matrix elements and energy
denominators.
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4.1.1 q— 0 for X((]Z)

We now expand X(()Q)(q—i— G,d +G',q"+G”) in terms of q to carry out the limit q — 0.

Generally X(()Q) is a third rank tensor in terms of the G vectors. For third rank tensors
we classify four different parts

head: G=G'=G"=0 (4.14)
G=G'=0 and G"#0
wings: G=G"=0 and G #0 (4.15)

G'=G"=0 and G #0
G=0 and G'£0, G'+£0

faces: G' =0 and G#0, G"#0 (4.16)
G"=0 and G#0, G #0
body: G#0, G'#£0, G"#0 (4.17)

We have to treat each of these cases separately, because the leading term of the head is
proportional to ¢ while the faces and wings have a g and ¢ dependence respectively. This
is due to the fact that for finite G the leading order of an expansion in q is independent
of q. In practice this means that for the faces we have to expand up to the first order,
for the wings to second order and for the head to third order in q. For second harmonic
generation X(()Q) is symmetric under the exchange @' + G’ < q” + G” so that we have in
total 6 different terms, of which the body does not need any expansion in q. The exact
expressions for all these terms are rather lengthy and we refer to App. C for details.
Here we report only the result for the head, see Tab. 4.1, since it yields the dominating
contribution in most of our calculations.

Here we have given the full expression, in practical calculations however, the terms
containing the commutator turn out the be negligible and thus are not considered.
This expression is equivalent to the result of Hughes and Sipe [48], who are also using
the length gauge and that is frequently used for IPA calculations also by other authors
[50-58]. The difference between the two forms is that they did not consider non-locality
of the potential. Another frequently employed formulation is in terms of the velocity
operator [69] Eq. (4.13). The connection between the two formulations is made via the
equation

(nk|v|n'k)

nklir|n'k) = ————".
(nklir[nle) = &5

(4.19)

The use of the length gauge has the additional complication that the matrix element
of r is ill defined in a crystal, which has to be carefully accounted for when using this
representation.
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(fn,k - fn”,k) (fn/,k - fn”,k)

2
(0),head ——
Xpop (4,1, 92) v nn’zn” ) |:(Ann/ 25) (A 1 3) + B +20) By +0)
+9 (fn,k - fn’,k)(An”n + An”n’) . (fn,k - fn’,k)(An”n + An”n’)

x (nie| — il + qo)r|nge) [(ngeliaar|nge) (nicliqurini) + (nicliqur|nig) (niclicar|n) | +

(fn,k - fn’,k) %

(An’n + @)(Ann’ + ‘D)
x (nyli(ar + az)r|ni) [(nkliqir|ng) (nyligar|ny) + (niliqer|ny) (ny liqur|ny) | +

_l’_

S(fn,k - fn’,k) (fn,k - fn/,k)
+ — — — | x
x (nk| —i(q1 + q2)r|ng) [(ngliqer|n) AN, + (ny|iqur|ne) AR | +

+ (fnx = Jn k) Apim
Aot (Dot + @) (B 1 0)
X [=(mcliqur|n) (niciger|ng) (nili(ar + q2)r|ng) +
+ (nicli(ar + q2)r|ny) (nyligarny) (ny liqu e nig) —
— (nicJiqar|ni) (nicliqur|nig) (nicli(ar + gg)r|ni)+
+ (nicli(ar + az)rfmi) (nylique|ni) (nigliqar|ni) | +

(fn,k - fn’,k) 4(fn,k - fn’,k)
+ = — | X
A2 (Dp +@) A2 (Apn + 20)

7
[air, qav]|nk) + (ny| — 3

(it + el |0kl - faor. vl | +
(fn,k - fn/,k)

202 (A + @)
+ [(nk|[(a1 + q2)v, igar]|ny) (ny liqur|ni) + (ni|[(a1 + q2)v, iqir]ng) (n |igar|ny) —

— (nili(ar + q2)r|my) (n|[azv, iqur]|ni) — (nacli(an + q2)r|ny) (ng|[arv, iqar]|na) |
(4.18)

_|_

Table 4.1: Head of the leading order of the k - p expanded XEJ?J),J, where we have used the
a (nk|qvink) — (ni|qvin’k) and Ay = Ep, — By

nn’ T

shorthands @ = w + in, A
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4.2 Scissors shift

As mentioned in Chap. 2.4.4 the application of the scissors shift to the band structure
has some non-trivial implications in the second order case [109]. This is due to the fact
that the scissors operator is a non-local operator and thus does not commute with the
position operator, similar as the non-local potential. Formally the scissors operator reads

S = AZ(l - fn)‘¢n><¢n’ (4-20)

where A is the energy shift, the sum runs over all states n and a finite band gap is
assumed. The groundstate Hamiltonian of the k - p perturbation theory reads under
consideration of the scissors operator

1
Hso = 5p* + Vau + S (4.21)

and the approximation is that this Hamiltonian has the same eigenstates as the one
without the scissors operator

1
Hipa= 5]92 + Vo (4.22)

which is the Hamiltonian we used in Eq. (4.8). Here the name Hppa refers to the fact
that it gives the wavefunctions that we obtain from the DF'T groundstate calculation. The
convenience of the scissors approximation is that we can keep using these wavefunctions
even if the energies are shifted. This means that the matrix elements of the position
operator do not change regardless of which Hamiltonian is used. The matrix elements
of the velocity operator, however, do change under the scissors transformation, since the
scissors operator is non-local S:

vsc =P+ [Va + S, 1]. (4.23)

Using the relation between velocity and position matrix elements Eq. (4.19) and the fact
the position matrix elements are invariant, we can write

(nklv|n'k)  (nk|vsc|n'k)

LDA LDA — SC SC
Enk B En’k’ Enk B En’k’

(nk|r|n'k) =

(4.24)

where Eskc and ETLLI? A are eigenenergies of the corresponding groundstate Hamiltonians,
i.e. Egs. (4.21) and (4.22) respectively. From Eq. (4.24) follows the relation

ESC’ _ ES,C,
(nk|vsc|n'k) = <nk|v|n'k>w, (4.25)
n n/ /

which trivially true for a zero scissors shift, i.e. E;fc = ETLLI? 4 but can yield important
changes in the response functions for large A.
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The non-locality of S means it behaves the same as V,,; in our perturbation theory and
thus the commutator terms in Eq. (4.18) contain this operator as well. While we have
numerically verified that the potential commutators [r,p + [r, V,y]] are negligible, we
cannot make any general assumptions for [r,[r, S]] and thus have to take them fully
into account. Their contribution can be reexpressed in terms of shifted and non-shifted
energies, similar to Eq. (4.25), but the algebra is somewhat lengthy. Therefore we give
the final result, together with the k - p expressions for the wings and faces in appendix

C.

4.3 Exact optical transitions

The expansion of XE,(;,),, in terms of q to the leading order corresponds to the dipole
approximation, i.e. q — 0. According to Eq. (4.1), however, every finite frequency
corresponds to a finite . This means on the one hand, that the dipole approximation
is only strictly valid for the static case w — 0, but on the other hand it provides an
alternative way to obtain XE}%)/) by calculating it at the actual q corresponding to finite
frequencies. Such a treatment has two advantages. First one does not have to rely on
the lengthy perturbation theory and second it provides a way to go beyond the dipole
approximation by considering the actual q dependence, c.f. Sec. 5.

As mentioned these q are small so a numerical scheme has to be devised that can account
for these very small difference in k-points, since q = k/ — k. The sum over k-points in
Eq. (4.7) represents a discretization of the Brillouin zone into sample k-points at which
XE)%),, is evaluated. This discretization is usually done homogeneously, e.g. using the
Monkhorst-Pack scheme [110], but it can also be carried out by sampling with random
points. When one is interested in finite q calculations this sampling has to be done
under the restriction that differences between the resulting k-points correspond to the
desired q, c.f. Fig. 4.1. This means that for very small q a homogeneous sampling
is not very efficient because one has to work with a much higher density of sampling
points than necessary for convergence of the sum. Indeed, assuming that the size of the
Brillouin zone is ~A~! one needs 10° sampling points to be able to treat q in the order
of 1073A~1, while convergence is usually achieved already with 103 points. Therefore
one has to use a non-homogeneous sampling of the Brillouin zone, c.f. Fig. 4.1. The
advantage of such a sampling is that the actual value of q is not determined a posteriori
as done for homogeneous sampling, but one can choose basically arbitrary values for q.
Moreover a non-homogeneous sampling can easily combined with a random sampling
technique.
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Figure 4.1: k-points sampling schemes. Top left: Commonly used homogeneous grid with
restricted set of possible q vectors. Top right: Random sampling, where finite q calculations are
not possible, because all differences between k-points are random. Bottom left: Inhomogeneous
sampling done by shifting the homogeneous set by the target q. Bottom right: Random
sampling can be used by treating a set that contain for each random point one shifted by q.

In practice one has to calculate matrix elements of the form

pE @+ @) = [ o (1) D s 1), (4.26)

so it is convenient to work with two different sets of Kohn-Sham wavefunctions, one
corresponding to k and one for k. This means that they can be generated separately,
one shifted by q with respect to the other. On the other hand this means that the
implementation has to be able to manage two different k-point sets. Since X(p%)p depends
on two different q, it turns out that one has to treat four different sets of k-points, c.f.
Fig. 4.2. Inspection of the q dependent expression of Xg%)p Eq. (4.7) shows that one

actually needs to calculate five different kinds of matrix elements corresponding to the
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transitions shown in Fig. 4.2.

Another downside of this approach is the need for high numerical
accuracy. When used to calculate responses near the optical
limit, it must still hold that the xﬁ)%)p is proportional to ¢. Since k4 qi k+q:+q2
XE)(,])),, is constructed by products of three matrix elements, these
product have to be proportional to ¢®. If we think about the

matrix elements as expanded in terms of g, i.e. qi XO‘J’
~ ~ - - »
pla) =0+ pWq + @ + ... (4.27)
it is appearant that in order to have a product of three of these k 92 + Qa2

proportional to g% one has to calculate each matrix element with
an accuracy of the same order. This can be a serious numerical
challenge when ¢ is very small, e.g. for ¢ ~ 1073 we need an
accuracy up to 1072 or 6 orders of magnitude, which is just the
limit of single machine precision.

This approach is in a way a numerical brute force scheme where the exact cancellation
achieved in the perturbative expansion has to be reached numerically. One can, however,
use certain symmetry properties of the response function to improve the convergence even
in this scheme. In particular time-reversal and, in case, inversion symmetry are crucial
for convergence. Figure 4.3 illustrates which transitions are equivalent to a (k,n) —
(k + q,n’) transition under these symmetries. The idea is to hardwire these symmetries
into the numerical implementation by rewriting the equation for ng))p under consideration
of these symmetry operations and then add it to the original expression. That is to say

Figure 4.2: multigrid
scheme

that if T' is the unchanged summand of XE)%),, (Eq. (4.7)) and we apply analytically a
symmetry operation i on this term giving 7%, we can implement XE)(/)))/) in the form

X0 == V Zqu [T +17]. (4.28)
nnn

Like this we can make sure that we include cancellations between terms due to the
symmetry ¢ that we might have missed otherwise because of the finite k-point sampling
etc.

4.3.1 Time reversal

Under timereversal symmetry for wavefunctions and eigenvalues of band n at point k
holds:

¢nk(r) - ¢:;_k Enk - Enfk (429)
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Figure 4.3: Schematic view of the different transitions in terms of which we reformulate Xg%)p-

This means that we can write the matrix element p,x »/k1q as

Precra(@+ @) = [ dre G (1)0csq() (4.30)
= [ e G, ) (o) (4.31)
= [ G o) (4.32)
~ futcanla+G) (433)

from which we deduce that the transition (n’,—k —q) — (n,—k) is the time reversed
transition of (n,k) — (n’,k + q), c.f. Fig. 4.3.

To make use of this property we take the full expression of XE)(,])),, (Eq. (4.7)) and replace
in the sum n < n/ and redefine the k-point parameter as

~-K=k+qi1+q> k+q = —K—qg, k+qy = -K—qi, k=-K-qi—q
(4.34)
(0)

and sum over K in stead of k. We use these substitutions in Y, and then apply the time
reversal property Eq. (4.30) for the matrix elements and E,x = FE, _x for the energies.
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We obtain:

<nk | e (artaztGr |ni<+<l1 +q2 >

; 2
(0),timerev _ =
Xove 4 Z (—Enk + Enrkray+qp 2w + 2in)

nn/n'"k

|ei(q1 TG | nﬁ+q2 > <nﬁ+Q2

(_Enk + En”k—i—qg +w+ ’”7)

|ei(@2tG2)r|p, )

(it

) (€

(—Enk + Epnyq +w+ in)

+ (fn - fn”) <ni<+q1+q2

|6i(OI2+G2)I‘|n (011+G1)r|nk>

4 U — fory s, AL
" " (—Ewkiaqr T Bnktqitqs +w + 1)

/ ( +G ) " 7 ( e )
+(fnl — fnr) <nk+q1+q2 ’el T r‘nk+Q2><nk+q2 ‘ez At I“7”Lk>

(_EN”k+q2 + Enktqitqe T W+ in)

(4.35)

which is the usual XE,O,,),, (Eq. (4.7)) with negative energy differences and we have replaced

K by k for convenience. There is also a timereversal property for the k dependence of the
Fermi factors. Here we just suppress this dependence, since we deal with semi-conductors.

4.3.2 Inversion

Inversion symmetry is a symmetry property of the crystal system and does not hold in

general. However, to treat Silicon we might want to include this symmetry property

explicitly, because it is the crucial operation that lets XE,(;,),, vanish in the dipole approxi-

mation.
For any symmetry operation R we have ([111]):

ik Rk+q) (@ + G) = Pricnisq(R(q+ G)) . (4.36)

We consider the inversion operation
R=|( 0 -1 0 |=R"! (4.37)

and we have for the matrix elements:

ﬁnfk,n/fk*q(q + G) - ﬁnk,n/kJrq(_q - G)) : (4-38)
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The energies do not change under the symmetry operation, i.e. E,x = E,_ . We rewrite

XE,(;,),, with the same substitutions Eqs. (4.34) and then use the symmetry property Eq.

(4.38) of the system. Subsequently replacing K by k and expressing the result in terms
(0)

of the matrix elements of the unchanged x,,, yields

<nk|e i tatGr |ni<+Q1+q2>>

Enx + En’k+Q1+Q2 + 2w+ 2”7)

0)7 —
prpm V Z

nn n”k

(s ) (gl )

X —_ "
(fn fn (—Enk + En”k—l—qg +w + in)

* . *
e ) I (o R %)

(_Enk + Enrktq tw+ i77)

* . *
)<<ni(+q1+q2‘ i(q2+G2)r ’nk+q1>> ((nﬁ+q1’€Z(QI+Gl)r‘nk>>

(_En”k+q1 + Enktqiqe T W+ in)

. * . *
) <<ni<+q1 +q2 |ez(q1 TG | nﬁ—i—qg >> <<nﬁ+q2 |ez(q2 TG |nk>>

(—Enrktas T Bnkrar+q, +w +11)

_l’_

+ (fn - fn”)

_l’_

+ (fn’ - fn”

+(fn’ - fn”
(4.39)

which is exactly the starting term Eq. (4.7) with a sign change in the energies and all
matrix elements complex conjugated.

4.3.3 Time reversal and Inversion

To include both symmetry operations we need to obtain the time reversed version of
XE)%),;W . To this end we take Eq. (4.39) and use the time reversal property Eq. (4.30)
for the matrix elements and F,x = E, _x for the energies. Then, replacing n < n/ and

making the substitions

“k—-qi—q2 =K —k—q; = K+qy, —k—qs =K+qy, -k =+K+qi+q2
(4.40)
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yields

(0),inv+timerev

Xppp =

2 g ()
V nn/n"k (Enk o En’k+q1+q2 + 2w + 2”7)

. * . *
(<ni<+ql+qz el G |nﬁ+q2 >) <<nﬁ+qQ | it Ga)r |nk>)

X — "
(fu — for) (Bnk — Enriciqu +w + 1)

_l’_

’ei(Q2+G2)r’n£+ql>) <<n£+q1‘ei(ql+(}1)r’nk>) N (4.41)

(Enk — En”k+q1 + w + ’L?])

. * . *
(<ni<+ql+qz|el(q2+G2)r|nﬁ+Q1>) <<nﬁ+ql|el(ql+Gl)r|nk>)

(En”k+q1 - En/k+Q1+Q2 twt i?])

. * . *
<<ni<+q1 +a2 jetlart G ‘nﬁ+q2>> ((nﬁ+q2 ’el(QQ+G2)r\“k>>

(En”k+q2 — Evktqidq, tw in)

/
) ( <nk+q1 +az

+ (fn - fn”

+ (fwr = fur)

+

+(fn/ - fn”)

which is the unchanged term with complex conjugated matrix elements.
All these terms can be directly included in the implementation by writing the terms
under the same sum

X;(;)p _ é Z i [T + Ttimerev + Tinv + Tinv+timerev] (442)

nn/n"k
where T are the summands of the respective terms Eqs. (4.35),(4.39) and (4.41). Of

course in case the system does not have inversion symmetry the last two terms cannot
be included.

4.4 Transverse vs. Longitudinal response

For calculations with q values that are finite but still in the optical range the statement
that transverse and longitudinal response coincide is not true anymore, since it relies
on the limit q — 0. Still the dipole limit is frequently employed to calculate optical
spectra in a finite frequency range. The underlying assumption is that the longitudinal
and transverse responses do not differ substantially in this range. Since it is an important
assumption made in the formalism presented in this work, it should be to some extent
quantified. The usual density matrix elements clearly cannot give the transverse response,
instead one has to employ matrix elements of the current operator. This amounts to

o8



calculating a XJ%)) :

5 Ty
(0) 2 Jnkn/kq(d+ G)Jnk,n'k+q(q +G)
(g4 G w) = — — f - 4.43
where we have defined the current matrix elements j as
z —i 1
Jnknicra(a+ G) = / dre™ T G (1) (V= VD dwicrq(r) (444)

This is a 3 x 3 tensor in the (cartesian) components of the vector operator and it can be
used to construct the full dielectric tensor (in the independent particle approximation)
via

e(qw) =1- Ex‘jj (q,w). (4.45)

where we have neglected local field effects. This is in principle general if one takes the
full xj; instead of the non-interacting one as done in the framework of time dependent
current density theory [105, 112-114]. The development of functionals and kernels that
make use of the added information contained in the current density instead of the scalar
electron density is still in a very early stage [115]. One can however translate any TDDFT
kernel into TDcurrentDFT one by use of the continuity equation. Then, the two theories
give exactly the same results for the longitudinal components of €, while TDcurrentDF'T
may or may not contain additional information about the transverse components. Here,
we will however only deal with the independent particle approximation, i.e. v + fz. = 0,
where the equivalence between the two formulations is trivial.

A direct comparison between longitudinal and transverse can be made by considering
the full dielectric tensor €(q) and decomposing it into its longitudinal and transverse
constituents by applying the longitudinal and transverse projectors (c.f. Eq. (3.36))

qq T qxgx
(q) 1 (q) 7 (4.46)
to yield
(@ = Ple(@P" ()™ = P e(q)P". (4.47)

These terms take on a very simple form when q points in a cartesian direction, e.g.
q = ge, and we consider a system with cubic symmetry:

e(ge.)" =1 0 0 0 elges)™ =10 ¢, 0 (4.48)
0 00 0 0 e
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Figure 4.4: Comparison between the longitudinal and ttransversedielectric function for Si with
different q values (in Bohr™1).

where additionally holds €,, = €... Hence, in order to compare the longitudinal and
transverse responses of a cubic system as a function of ¢ we only need to consider the €,
and €, component of €(¢ge;), i.e. perform a calculation with q = ge, and subsequently
compare the components. In Fig. 4.4 such a comparison is shown for Si. We find that in
the optical range, i.e. ¢ = 10~3A~! the difference between the two polarization directions
is not discernable. Only at values for ¢ ~ 107241 differences occur. The energy carried
by photons with the momentum is however, beyond 100 eV and thus far outside the range
of valence band spectroscopy.
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5 Spatial dispersion

The best known feature of second harmonic generation is that it vanishes for systems with
inversion symmetry, which makes it a very useful symmetry selective tool. The vanishing
of second harmonic generation is, however, only true in the dipole limit, i.e. q — 0.
Since experiments, on the other hand, are usually performed at finite frequencies, this
means that the actual dipole limit is never strictly reached and quadrupole contributions
are in principle present in every measurement [116]. Therefore, when an experiment, e.g.
at the surface of a centro-symmetric material, relies on the fact that the bulk does not
contribute to second harmonic generation, it has to be very carefully performed in order
to rule out quadrupole response from the bulk. The actual importance of the quadrupole
contribution compared with, for example, surface dipole contributions is still a point of
debate [117, 118], but is generally considered to be substantial [119-123]. There exist, to
my knowledge, no published attempt at calculating this contribution within the ab initio
framework, although numerous models are frequently employed, c.f. [124].

In this chapter T will explore the possibility to calculate second harmonic generation
beyond the dipole limit using the facility of the multigrid approach described in Chap.
4.3 to treat g-vectors of arbitrary length. This gives access to the spatial dispersion of
the crystal that is intimately linked to multipole responses. I will discuss the concept of
spatial dispersion briefly with examples from linear optics and then show how it can be
used to obtain the quadrupole contributions to second harmonic generation.

5.1 Linear spatial dispersion

Spatial dispersion is the dependence of the dielectric function on the light wave vector
[125]. It originates from the fact that the polarization at a point does not only depend
on the field at this point but also on the field in its immediate neighborhood. This radius
of non-locality a is usually very small, in solids it is of the order of the lattice constant.
The amount of spatial dispersion one sees in the response depends on the ratio between
the characteristic length a and the wavelength A of the field. In the optical limit, when
we look at very low energetic light, this ratio becomes very small and vanishes in the
limit limy_, or equivalently limq_.q. For finite optical frequencies it is save to assume
[125]

—=—-<1 (5.1)

The fact that the spatial dispersion is so small implies that it can be neglected in most
cases and that in any case its effect will be visible only under special circumstances. But
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it also allows for an expansion of the dielectric tensor in terms of the wave vector q,
because a sharply peaked response in real space is smooth in reciprocal space. We write
the expansion as

gij(w,q) = €45 (w) + Yijr(W)ar + aijri(w)qeq + ... (5.2)

We note that the zeroth order in q is the usual dielectric tensor with frequency dispersion.
The higher order terms are the contribution of the non-locality to the full tensor. This
expansion is the basis of the description of spatial dispersion, since it allows the discussion
in terms of the tensors v;;; and ;.

5.1.1 symmetry properties of tensors

Although a crystal is not isotropic it does have some symmetry properties which according
to von-Neumann’s principle also hold for the dielectric tensor e(w,q). This means that
for a given symmetry operation .S that leaves the crystal unchanged the tensor must obey
the relation

S e(w,8q)S = ¢(w, q). (5.3)

Now, if we consider the special case of a vector q; that is invariant under one, or more,
symmetry operations S; of the crystal system, i.e.

Sidi = q; (54)
we can use the relation
571 e(w, ) = £(w, qy). (5.5)

which yields a set of equations that express conditions on the tensor ¢(w,q;) and upon
solving this set of equations we obtain information on the structure of the tensor. That
is to say which components are equal and which vanish. This, however, is not a general
property but only holds for the one q; (and its equivalent class) that fulfils Eq. (5.4).
But nevertheless, it can be useful information when doing calculations for experiments
that only use a few g-directions.

When we consider spatial dispersion in optics we expand the tensor £(w, q) in terms of q

0"e(w, q)
e(w,a) =) o (@ —qo)" (5.6)
n o
by introducing the quantities %‘ that are rank n tensor (vijx, aijr in Eq. (5.2))
a0

and are independent of q. Therefore, they posses the same symmetry properties as the
crystal system and we can use the whole group of symmetry operations associated with
the crystal to deduce the structure of the expansion tensors, i.e. to reduce them to their
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dissimilar non-zero components. A rank n tensor transforms according to ([126, p. 761
f])

3
Z Soq’ilSa2i2---SOéninXi1...in == )2041...041\7 (57)

11...0n

Under the conditions that the tensor is invariant under the symmetry operation we have

>~(a1...an = Xoi...an (5.8)

which yield our set of equations that we can use to reduce the number of components.
When we neglect spatial dispersion we consider only the zeroth order in the expansion and
our dielectric tensor has the properties a rank 2 tensor yields under the transformation
with all crystal symmetries, e.g. in the cubic case it is diagonal with all elements equal.
The higher order tensors, although invariant under the same symmetries, might however
contribute components to the £(w, q) that are zero to zeroth order. In an example we
consider cubic Silicon (Op,) where we have 7;;;, = 0 (due to inversion symmetry) and the
second order tensor reduces to three components:

a1 = i Qg = Qjjj a3 = Qjjij (5.9)
Most significantly we have for the off diagonal element xy of the dielectric tensor

Eay(w, q) = az(w)qzqy (5.10)

Here, the g-dependence becomes clear, because this term is only non-zero if the q has
finite ¢, and g, components. Indeed, it is true for any such q without any condition on
its symmetry properties. We have for the zz-component

Eee(W,q) = €22(W) + a1(W) G2z + a2(w)(QyQy +4.qz) . (5.11)

That means to second order the y and z components of q not only contribute to the
response in z-direction but their contribution also has a different value than the one in
z-direction.

It is important to note that this does not represent symmetry breaking nor does the q
introduce anisotropy to the system. Instead we think of spatial dispersion as a way of
probing the anisotropy of the crystal. The expansion simply gives the ordering of the
effect of the anisotropy in the different directions. To zeroth order the anisotropy does
not appear, to first order, in the cubic case we do not have any further contribution and
to second order the off diagonals become non-zero and the diagonals change depending
on the direction of q.

This is useful for the multi-grid approach described in Chap. 4.3 where, in principle,
we calculate the full e(w,q), but having the knowledge of the structure of v, etc.
we know for which component we can expect the largest effects and which directions
yield equivalent spatial dispersion effects (up to a certain order). It also tells us which
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components we can calculate using TDDFT, i.e. which components are longitudinal
responses.

5.2 SHG

Spatial disperion is particularly interesting in the case of second harmonic generation,
where for systems with inversion symmetry it yields the leading order contribution. This
is completely analogous to the linear case where the third rank tensor +;;, vanishes, but
the fourth rank tensor oy is finite. The expansion of the second order polarization is
commonly written as [119, 127, 128]

P (r,w) = xiji By (1) Bi(r) + i By (r) Vi Ey(r) + . (5.12)
which corresponds to an expansion of y(?) in terms of q
Xijh(Qw) = Xijr(w) + ngl(w)m + .. (5.13)

where we have defined the quadrupolar second harmonic generation coefficient Y% . As
mentioned before the rank three tensor vanishes for inversion symmetry and for cubic
systems the only non-zero components are
_ @ _ @ _ @ _.Q

Q1 = Niiii Q2 = Xjjji O3 = Xigjj = Xijij (5.14)
where in the last line we have used the fact that the polarization directions of the applied
fields are interchangeable. These components are analogous to the linear case, only that
here the indices have different meaning, i.e. the first three are polarization directions and
only the last one is a propagation direction. With these definitions one can write down
the general component of X9 as [129]

ngl = 1040104 + 205051 (1 — 055) + a3 ((0450k1(1 — dir) + (03652 (1 — 045)) (5.15)

We note that the terms 0;0;,, 0;j0k and ;.05 are rank four invariant scalars which
leaves them unchanged under any orthogonal transformation®?. This also means that
they are unchanged under rotation of the coordinate system and hence they represent
the isotropic contributions to Y. These isotropic contributions do not give any additional
information about the symmetry of the system and occur only as offsets in an angular

dependent experiment. Therefore we rewrite Eq. (5.15) to separate these contributions

'This definition differs from T';;z; in the ordering of the indices. The latter is used in literature, but
here I choose this definition because it is more consistent with the one used in [125].

>This can be seen by applying a transformation 7" on the tensor &;;0x;:
i Tei T Tk Ts10i50m = 351 Tai T TonTon = Yoip, Tig, TpiTiy Tok = Gapdas
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Xk = X T X (5.16)
= (a1 — g — 203)0;0ik 04 + 20416 % + 3(0:50k1 + Gixdj1). (5.17)

Hence the anisotropic part of Y¥ reads

XS}:; = (041 — g — 2a3)5ij6ik5il- (5'18)

which implies that only components of the form XS” have a non-vanishing anisotropic
contribution.

The combination of the tensor components (a; — aa — 2a3) can be obtained in the
multigrid approach described in Sec. 4.3 by two different longitudinal calculations:

Xpop(q€z) = a1 (5.19)
Xppp(d(€z +ey+e€.)) = 3ag +6as + 1203 (5.20)

and the combinations of both yields the anisotropic coefficient

; 3 1
Xz%zqz = §prp(qez) - EXPPP(Q(Q:B +e,+e;)). (5.21)

While the component a; = Xff“ can be calculated as a longitudinal response as in Eq.

(5.19) the two other components only appear as sums of the form of Eq. (5.20) in
longitudinal calculations and cannot be separated by different choices of q. This means,
we cannot calculate the isotropic part for all components and this puts a serious limit to
this approach. Still, we can calculate the isotropic part of chgu components via,

; 1 1
X,%;so = a9 + 203 = _§XPPP(qe:v) + EXPPP(q(eI + ey + ez))- (5-22)

5.2.1 Dipole case

In the expansion Eq. (5.13) the first term is independent of q and thus corresponds to
the dipole limit. While it is zero for systems with inversion symmetry it gives the leading
order contribution for systems without such symmetry. In section 4.1 I have shown how

these terms can be obtained form an analytical expansion of the fully q-dependent XE)(/)))/)

while in section 4.3 T described how one can use the gq-dependence of XE)%),, to obtain its
optical limit. Here, I will compare the two approaches for the example system of cubic
SiC, that does not have inversion symmetry and hence the leading term in a gq-dependent
calculation and the dipole expansion should give the same result.

Figure 5.1 shows on the left the direct comparison between a calculation where XE)%),, has
been expanded up to dipole order, i.e. is expressed as in Eq. (4.18), and a g-dependent

calculation with q = 6 x 1074(1,1,1), i.e. ¢ = 0.001. The Brillouin zone is in both cases

This is essentially the same expression given by Bloembergen et al. in [128].
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Figure 5.1: Comparison between analytical dipole expanded xg%)z and a g-dependent calcu-

lation with different q values for cubic SiC. The differences between the dipole result and the
g-dependent calculation are due to different convergence of the two methods.

sampled by a homogeneous grid of 4000 k-points, which in the case of the q-dependent
calculation has been shifted by q and 2q. The main difference in the calculation param-
eters is that in the case of the dipole calculation the basis size of the wavefunctions used
for the matrix elements has 139 G-vectors, while for the g-dependent calculation one
needs 3000 G-vectors to represent the wavefunctions with the necessary accuracy. The
overall agreement between the two calculation is rather good, with noticeable differences
only in the high energy region and other small differences due to different convergence of
the two methods. As an additional numerical test that this is indeed the dipole limit as
well as to verify the stability of the numerical approach, we show on the right of Fig. 5.1
the comparison between the g-dependent calculation for q = 6 x 107#(1,1,1) and one
with ¢’ = 2q = 1.2 x 1073(1,1,1). We see that the resulting X(()Q) is indeed independent
of ¢ as must be in the dipole limit. Here, this check is trivial since the agreement
with the analytical dipole expansion has already been shown, but in cases where one is
interested in linear or quadratic dependencies on ¢, i.e. quadru- and octopole terms, this
kind of analysis is crucial to ensure the calculation has been done with q in the right range.

5.2.2 Quadrupole case

The g-dependence of the quadrupole response is linear and therefore a g-dependent cal-
culation should give results that scale linearly with q. Moreover, for centro-symmetric
materials it is the leading order and thus the dependence should be such that the re-
sponse vanishes for zero ¢. In Fig. 5.2 such calculations are shown for cubic Si with
q values of 1073 and 1072, Scaling of the latter calculation by a factors of 1/10 shows
that the curves are identical up to this factor. The fact that there is a single factor of
proportionality between the two curves means not only that the g-dependence is indeed
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Figure 5.2: Comparison of two g-dependent calculations of x%iqi for Si with the two different
q = 1072(0,0,1) and ' = 1073(1,0,0) (left panel). There is clearly a linear g-dependence,
which can be seen on the right panel, where the q calculation is scaled by a factor of 1/10. The
different direction of q and ¢’ is an additional convergence test.

linear but it also means that the results vanish for ¢ — 0, i.e. no offset at ¢ = 0, as
must be. The results have hence to be scaled by 1/q to yield the quadrupole tensor
components defined in Eq. (5.13).

In Fig. 5.3 are shown the anisotropic contribution to the second harmonic quadrupole
response of Si according to Eq. (5.21) as well as the isotropic contribution to the XZQm
components for comparison. We note that both components have large intensities, ~ 103,
compared with the usual dipole contributions that are of the order of ~ 10'. This, how-
ever, does not mean that the quadrupole response is orders of magnitude larger than the
dipole. On the contrary, since the quadrupole response depends linearly on ¢, which in
turn is connected with the frequency of the perturbing light via Eq. (4.1), and has values
of 10~* A~! for optical light, the overall contribution will be rather small. The shape of
the isotropic and anisotropic contribution is very similar, which is due to the fact that
the responses Eq. (5.19) and (5.20) have very similar shape.

Furthermore, we note in Fig. 5.3 that the isotropic contribution to XZQm is much smaller

than the anisotropic one. We do not have any further information about the other two
isotropic components, xﬁ ji and Xgij, but one can at least assume that they will have the
same order of magnitude.
Actual comparison with experiment is difficult in this form, since no pure bulk quadrupole
spectra exist. But I would like to point out that Driscoll and Guidiotti [130] note a sig-
nificantly strong second harmonic signal from bulk Si at A = 527 nm, which corresponds
to w = 2.3 eV and thus to the main peak in Fig. 5.3.
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Figure 5.3: Anisotropic and isotropic contribution to the second harmonic quadrupole response
of Si.
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6 Results

In this chapter I will show some numerical results and test cases of the implementation
of the formalism outlined in the previous chapters [131]. The main interest here is
to investigate the influence of the local field and exchange and correlation effects on the
second harmonic spectra. This is done for the example system of hexagonal silicon carbide
(SiC), which exhibits polymorphism. The polymorphism is realized by different stacking
orders of Si-C bi layers of either cubic (¢) or hexagonal (h) types in the z-direction [132].
One can define the hexagonality H of the polytype by the ratio H = h/(h + ¢). The
polymorphism preserves the crystal symmetry thus allowing a direct comparison of the
components of the susceptibility.

SiC polytypes have been studied extensively in the context of ab-initio calculations of
SHG. Chen et al. [133] use a LDA+scissors scheme to calculate the static second harmonic
coefficients in the independent particle approximation of various SiC polytypes and find
a dependence of local field corrections on the hexagonality. In a later work [134] the
same authors use a refined scheme to describe nonlinear local field effects for the static
susceptibility and and report an increase of xzx component, whereas the zzz decreases
when local fields are accounted for. Rashkeev et al. [50] using a similar computational
scheme as in [133], while neglecting local field and many body effects, are able to calculate
the imaginary part of the frequency dependent second harmonic susceptibility, from
which, through a Kramers-Kronig relation they infer the real part, which then enables
them to construct the modulo of the susceptibility. Performing a transition by transition
analysis of the spectra, they can assign single spectral features to single band transition,
thereby suggesting SHG spectroscopy as a probe for electronic structure. The underlying
assumption of these three works, that quasiparticle effects can accurately be described by
a scissors operator is investigated in detail by Adolph and Bechstedt [135] by comparing
this approach with a calculation where the optical matrix elements are corrected by a
GW quasiparticle calculation. They find that the scissors operator approach gives very
good agreement with the actual quasiparticle result for all polytypes under consideration.
Then I will present the test case of GaAs, where a direct comparison of the calculated
spectrum with experimental spectra is possible.

6.0.3 Structures

In this section I will briefly discuss the structures of the materials used in this chapter
and also give some computational details concerning the parameters of the groundstate
and response calculations. All groundstates are obtained with the ABINIT package
[136], which gives the Kohn-Sham energies and wavefunctions in terms of a basis of plane
waves. The LDA for the exchange and correlation potential is used and the atomic
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core electrons are approximated by norm conserving pseudo-potentials of the Troullier-
Martins form [137].

SiC
The purely cubic polytype of SiC has zincblende structure and can therefore be described
by a unit cell with two atoms (primitive cell). I used the experimental cell parameter of
a = 8.24 Bohr and an energy cut-off of 50 Ha for the plane wave basis. The irreducible
Brillouin zone was sampled by 10 special k-points, corresponding to a Monkhorst-Pack
grid of 256 k-points in the full Brillouin zone.
The hexagonal polytypes 2h, 4h and 6h have the 6mm (Cg,) symmetry and differ only
in the stacking order of Si-C bilayers, c.f. Fig. 6.1. The primitive unit cells have 4, 8 and
12 atoms respectively and I used a cut off of 50 Ha for the basis of all polytypes. The
experimental cell parameters are a = 5.8 Bohr for all compounds and ¢ = 9.37, 18.99 for
2h and 4h, while for 6h the theoretical lattice constants of a = 5.7 and ¢ = 28.39 was
used.

The calculation of the second harmonic spectra are done with a random sampling of

2h 4h 6h

Figure 6.1: The y — z-plane of the three hexagonal polytypes. They differ only in the stacking
order of the Si-C bilayers. 2h-SiC has an ABAB pattern, 4h-SiC an ABAC and 6h-SiC has the
stacking pattern ABCACB.

the Brillouin zone for the hexagonal polytypes. Convergence was reached with 1600
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k-points for 2h ..., 2400 for 2h x4.:, 2000 for 2h x.,. and 800 for all 4h and 6h
components. Convergence of the local field effects with respect to the number of included
G vectors was reached with 23 for 2h ..., 59 for 2h x,.., 37 for x,.z, 39 for 4h ...
and X,.», 51 for 4h Y., and 43 for all 6h components. The number of conduction bands
necessary for convergence in the considered energy range are 12, 24, 36 for the 2h, 4h and
6h components respectively. The basis size for the DFT wavefunctions was sufficiently
converged with 300 for all polytypes.

GaAs

Gallium Arsenide also has the zincblende structure with the experimental lattice param-
eter of a = 10.67 Bohr and a cut off of 50 Ha is needed for a converged the groundstate
density. For the second harmonic spectrum convergence is reached with 17575 k-points
to sample the Brillouin zone and 7 conduction bands. The local field effects on the second
harmonic spectrum is converged with 65 G vectors. This compound as the added com-
plication that a pseudo potential description of Gallium needs the inclusion of d semicore
states to accurately describe the electronic structure [138]. Therefore a pseudo potential
with the valence configuration of 3d'%4s24p! is used for Gallium.

6.1 Independent (Quasi-)Particle Approximation

In the independent particle approximation the macroscopic susceptibility x(? is just the
head of the microscopic Kohn-Sham response function XE)(,))),), c.f. Eq. (3.74). The quasi-
particle effects are accounted for by the scissors operator approach, which means one
applies a rigid shift to all conduction bands, c.f. section 4.2. These two approximations
are very similar in the sense that they do not explicitly take into account exchange and
correlation effects. The quasi-particle shift of the band structure, does however, affect
the spectrum substantially, since it leads to a shift of the resonances. While in the linear
case this shift of the spectrum is more or less rigid [99] in the case of second harmonic
generation it also leads to a redistribution of spectral weights.

Fig. 6.2 shows how the scissors shift changes the second harmonic spectra of SiC poly-

types.

6.1.1 Transitions in c-SiC

The sum-over-states formulation for Xg;)p allows to do a transition resolved analysis of

the second harmonic process, as already suggested by Lambrecht et. al. [50]. Here, I will
briefly consider a decomposition of the transitions into valence-valence-conduction (vvc)
and conduction-conduction-valence (ccv), which also contain the permutations, i.e. cvv
and vce. Fig. 6.3 left panel shows how these two types of transition contribute to the
IPA spectrum of cubic SiC. The ccv transitions are clearly dominating the main peak at
3.5 eV, which could be explained by the fact that for a converged spectrum SiC needs
16 conduction bands on top of the 4 valence bands. Therefore, there are much more
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Figure 6.2: Effect of the scissors shift of 0.84 eV on the independent particle spectra of SiC
hexagonal polytypes. All graphs show the modulus of the respective x(?) component in the
independent particle approximation (IPA) and the independent quasi-particle approximation
(IQPA), realized by a scissors shift as described in section 4.2.

ccv transitions presents. When we restrict the number of included conduction states
to 2, Fig. 6.3 center panel, the contribution is only slightly reduced. It is essentially
the transitions between the bands 6 < 5 < {4,3} that make up the bigger part of the
spectrum, and most notably the main resonance at 3.5 eV. The same analysis shows
that the second peak, at 7 eV is only due to vvc transitions and, as shown in the right
panel of Fig. 6.3, these are dominated by 3 < 4 < {5,6}.

6.2 Crystal Local Field effects

Local field effects enter into the macroscopic second harmonic susceptibility in two places.
First the three macroscopic dielectric functions contain local field effects, and second the

second order TDDFT Dyson like equation mixes G-components of xfp)p and Xglp). We
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Figure 6.3: Analysis of transitions contributing to x.. for cubic SiC. left: Contributions of
vve and ccv transitions to the spectrum, which is clearly dominated by ccv transitions for the
peak at 3.5 eV, and by vvc transitions for the peak at 7 eV. center: Decomposition of the
cev transitions. The transitions 6 < 5 < {4,3} are the most important for the main peak at
3.5 eV, with the 6 < 5 < 4 transition accounting already for half of the peak intensity. right:
Decomposition of the vve transitions that make up the second peak at 7 eV. Here the transition
3 <« 4 « 5 accounts already for the full peak.

can write this more explicitly by using Eq. (2.60) for the solution of the Dyson equation
and write explicitly the G dependence. The macroscopic susceptibility then reads (in
RPA):

1T
X® = en [EleE] 0G [Xgpp

:|GG1G2 7] G10 [e7E] Go0 CMEM (6.1)
with implicit sums over the G vectors. While ¢;; are scalars in this equation the erg are
G-dependent and as such mix with the G components of X,

First we consider the macroscopic dielectric functions ep; that relate the microscopic
response to the macroscopic susceptibility. These quantities also contain local field effects
and are calculated according to [86, 87, 100]

1
= 1‘ _ 2
() a0 €Ge0,G—0(a;w) 02

where again a careful consideration of the G dependence is crucial.

Therefore we have to consider the local field effects in the linear dielectric tensor as
well. Due to the crystal symmetry the hexagonal polytypes have an optical anisotropy
with two independent components of the dielectric tensor that are commonly denoted
as €| = €, and € = %(em + €yy). In Fig. 6.4 are shown the local field effects in these
two components for the three polytypes. We can see a clear trend for the €, compo-
nent, where the effect decreases with decreasing hexagonality and almost vanishes for
the 6h polytype. The effect for €,, component, however, seems to be independent of the
hexagonality, being of the same magnitude for all three polytypes. We also note that the
relative local field effect in the €,, component is of the same size as for the €, in 2h.
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Figure 6.4: Influence of local fields on the imaginary part of the components of the linear
dielectric tensor for the SiC polytypes 2h, 4h, 6h, where calculations accounting for local fields
are denoted LF and those where they are neglected NLF. For the perpendicular component €
local field effects decrease with decreasing hexagonality and vanish for 6h, while the local field
effect for the €., component is independent of the hexagonality.

Since local field effects stem from the inhomogeneity of the crystal, it can be illustrating
to link this dependence of the local field effect to the electronic densities of the different
polytypes and thus explain the different behaviour in terms of the different electronic
densities. Inhomogeneity of a density can be considered as the variation from a mean
value. In order to quantify inhomogeneity in this sense I consider the Fourier transform
of the density, which decomposes it into its constituent frequencies. The idea here is that
for a homogeneous density only one Fourier component will be present, while inhomoge-
neous densities have a more complex decomposition.

A discrete Fourier transform is performed on the real space DFT densities for the different
polytypes and the (b1,0,0) and (0,b2,0) = (0,0, bs) directions which correspond to the
z- and |-direction respectively. Inspection of the three dimensional Fourier transformed
density shows, that indeed these directions yield the only significant contribution. Fig.
6.5 shows the comparison of the result for the three polytypes. First we note the strong
dependence on hexagonality of the density in L-direction, where the values at the first
G decrease with decreasing hexagonality. Indeed, the 6h polytype exhibits no signifi-
cant deviation from the maximum at G = 0 (not shown in the figure) and can thus be
interpreted as being almost completely homogeneous. This behaviour is consistent with
the absence of local field effects for this component of 6h. We find the same consistency
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Figure 6.5: Fourier decomposition of the electronic densities of the three polytypes 2h, 4h and
6h along the directions b; and by = bg that correspond to the z- and 1 -direction respectively.
The values are normalized with to the maximum of each transform, that occurs at G = 0 and is
not shown here. The different number of points in bi-direction for the different polytypes is due
to the different size of the unit cell in that direction.

for the z-direction where all densities show the same dispersion and no polytype related
dependence is discernable in the spectra. Furthermore we note that the value of the peak
at G = 2.5 A1 is the same as for the peak for the 2h in L-direction at the same G values
indicating the same importance of local field effects for the ¢, of 2h and the ¢,, for all
polytypes. Also this corresponds to the observations we made for Fig. 6.4.

The analysis of the electronic density in terms of its Fourier components that give the
frequency decomposition and thus a quantitative meaning to the concept of inhomogene-
ity is thus consistent with the influence of local field effects on the linear dielectric tensor.
As far as the second harmonic susceptibility is concerned, however, it is not enough to
consider only the linear € that enter in Eq. (6.1), but also the contribution of the second
order TDDFT Dyson like equation, where local field are also accounted for in the form of
65;3 and their G dependence. Figs. 6.6 and 6.7 show the components of the macroscopic
second order susceptibility for the same polytypes as in Fig. 6.4. In Fig. 6.6 are shown
the imaginary and real parts of the y(2 components. They are both equally affected by
the local fields and thus the effect on the absolute values shown in Fig. 6.7 stem from
both parts. While the influence of the local field on the xzz-component can be seen as
roughly the same as for €, the overall trend is not as clear as in the linear case. This
is partly due to the fact that xzzx accounts for effects in two different crystallographic
directions, but also due to the more complex mixing of effects in the Dyson equation.
We also note that the zxx components increase due to the local fields as opposed to the
decrease observed in the other components.

6.3 Exchange and correlation

To include exchange and correlation effects we have to make an approximation for f,.
in the TDDFT Dyson equation. As in the case of local field effects the exchange and
correlation enter in several steps in the calculation of the macroscopic second order
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Figure 6.6: Comparison between a calculation including local field effects (RPA) and indepen-
dent quasi-particle calculation (IQPA) where no local field effects are accounted. The effect is
similar for the real and imaginary part for the components of the hexagonal SiC polytypes.
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susceptibility x(?). First, the DFT groundstate from which the independent particle
responses ng)) and XE}%)p are constructed, has to be obtained with some approximation
for the exchange and correlation potential V., here T always use the LDA. Next, in
the second order Dyson equation (2.47) f,. appears in several places, as well as in the

calculation of the e); factors for the final expression for the macroscopic x(2.

6.3.1 ALDA

The time dependent generalization of the local density approximation (ALDA), c.f.
Sec. 2.4.3, is known to be not sufficient to accurately describe optical absorption due
to the lack of long range interaction in the @ — 0 limit [93]. In Fig. 6.8 are shown
the components of the second harmonic generation susceptibility obtained within the
ALDA and compared to the results from the previous section (Fig. 6.7). While in both
calculations local fields are accounted for, it is appearant that the additional contribution
of exchange and correlation as described by ALDA leaves the spectra virtually unaffected.

2h 4h 6h

— RPA
— ALDA

0 5 10

5 10
w [eV] w [eV]

5
w [eV]
Figure 6.8: Effect of the adiabatic local density approximation (ALDA) on the second harmonic

spectra of hexagonal SiC polytypes. The ALDA spectra are compared the RPA spectra (c.f. Fig.
6.7) and practically no change is discernable.
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This weak influence of the local exchange and correlation effects on the second harmonic
spectra can be attributed to the same lack of long range interaction that was already
responsible for the failure of this approximationn for optical absorption. On the one hand
it means that the ej; that appear in the expression for the macroscopic susceptibility
are not accurately described and hence the nonlinear result suffers the same deficiencies
present in linear ALDA results, and on the other hand the effect of the kernel in the
second order Dyson equation seems to be not important. Here I show calculations where
the ALDA kernel is combined with the scissors operator, i.e. quasiparticle corrections,
which is in principle not consistent with the theory of the local density approximation.
It is, however, well known, that ALDA fails to account for the quasiparticle shift and
here T show it just to demonstrate that it has only very little influence on the shape and
intensity of the spectrum.

6.3.2 Long Range Kernel

The known lack of long range interaction in the local density approximation can be
corrected as described in chapter 2.4.5 by an effective kernel of the form f,. = —a/¢?
that mimics the effect of the Bethe-Salpeter equation. Therefore, I refer to this kind
of calculation as excitonic. Fig. 6.9 shows the influence of the long range kernel with
« = 0.5 on the spectra of the hexagonal polytypes. The value for alpha is taken from
Botti et al. [99] where it is used to fit the linear spectrum on the Bethe-Salpeter result.
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Figure 6.9: Effect of the effective long range kernel on the second harmonic spectra of hexagonal
SiC polytypes. The excitonic spectra are compared the RPA spectra (c.f. Fig. 6.7) and show a
considerable increase in intensity.

At this point it is interesting to compare the influence of the long range kernel on
the linear and non-linear spectra. To this end I show in Fig. 6.10 the linear dielectric
function for the hexagonal SiC polytypes calculated within the RPA and with the long
range kernel. The effect is a strong increase in the first peak and a slight decrease for
the higher energy part of the spectrum, but in general one can say that the effect does
not result in a dramatic shift of intensity as seen for the non-linear spectra (Fig. 6.9).
On the other hand, the influence of the long range kernel in the nonlinear Dyson like
equation, i.e. on X, is shown in Fig. 6.11 and seen to be almost negligible. Therefore,
one has to conclude that for second harmonic generation excitonic effects, as described
by fze, almost exclusively enter via the macroscopic linear dielectric functions.
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Figure 6.10: Influence of the long range kernel on the macroscopic dielectric function with
a = 0.5 for the direction along the stacking axis (e,,) and in plane (e).

The behaviour of overall increase of x(2) can be understood by considering the limiting
case of G = G; = Go = 0 throughout the calculation but keeping f... In this case it
is possible to solve the TDDFT Dyson equation (2.47) analytically and thus obtain an
expression for the effect of the kernel on the susceptibility. We find (here explicitly for
the zzz-component)

(2)
Xzzz(w)
= A(e,,2w)A(e,,w)Al(e,, _
X(O)(2emez,ez,2waw) (ez, 2w)A(ez, w)A(ez,w) (6.3)
where
«
Alg,w) =1 —lem(aq,w) —1]. (6.4)

47

That means that when €, is smooth, the change of y.,, with the long range kernel is
directly proportional to a. On the other hand when €y, is changing significantly the
change directly affects the long range contribution. This explains why in all spectra in
Fig. 6.9 the low energy peaks are most prominently increased, because it is this feature
in the ej; that changes most. For the high energy range, when the e¢j; are close to one,
we do not see considerable change. This is consistent with the behaviour of Eq. (6.4)
which is close to one when €, is close to one.
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Figure 6.11: Influence of the long range kernel on the microscopic second harmonic suscepti-
bility x,p, for 2h-SiC.

Fig. 6.11 also shows the importance of including the macroscopic dielectric functions
€y in the final result, since the microscopic x,,, shown in the figure is not only order of
magnitude off the independent particle and RPA results (c.f. Figs. 6.2 and 6.7) but the
shape is very different also qualitatively. Most significantly so for the 2h case where the
large peak of ey directly influences the y(2) components adding considerable qualitative
features to the spectra.

6.4 GaAs spectrum as a Benchmark

While in the above sections I have used SiC polytypes to discuss some properties of this
framework to calculate the second harmonic generation susceptibility, I will here present
the case of GaAs where a detailed experimental spectrum is available. Bergfeld and
Daum [139] measure the modulus of the second harmonic generationn light in reflectance
from a GaAs surface, which gives rise to an additional surface contribution that has been
identified by the authors.

Fig. 6.12 shows step by step how the different levels of approximation in our framework
perform in comparison to this experimental spectrum. The independent particle approx-
imation has the lowest level of sophistication and indeed it gives a spectrum that,apart
from an overall intensity, does not share many characteristics with the experiment. The
application of a scissors shift of 0.8 eV, however, greatly improves the spectrum in com-
parison with the experiment, giving good positions of the peaks and also to some extend
their relative intensity. The overall intensity is however too low compared with the exper-
iment. The inclusion of local fields within the randomphase approximation has the effect
of only further decreasing the intensity, as observed for some SiC components. Finally,
when excitonic effects are included via the long range kernel the two spectra agree in
terms of peak positions and intensity of the main peak, however the relative intensity
in the calculated spectrum is not very good. Most significantly the low frequency part
is far too high. This is partly due to the fact that the long range kernel used here is
static, i.e. it is assumed that the value for « is the same for all frequencies. Especially
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Figure 6.12: Calculated second harmonic spectrum of GaAs compared with the experimental
one. Different levels of sophistication of the theory are shown, that gradually improve the
comparison between the two (see text).

for the static limit (w = 0) this is not the case and it has been shown by Botti et al.
[140] that a frequency dependence of the kernel can remedy this deficiency. To obtain a
good static dielectric constant they use o = 0.05, which in the case of our static second
harmonic coefficient yields |xzy-(0)] = 216.54 pm/V, which compares rather well with
the experimental values that range between 166 [141] and 180 pm/V [142].

As shown in Fig. 6.11 the influence of the long range kernel is not very important for
the microscopic x,,, and therefore most excitonic contributions to the spectrum stem
from the macroscopic dielectric functions €57. On the other hand, the inclusion of long
range interactions has proven to be crucial to obtain a good comparison with experiment.
Consequently, the quality of description of the linear quantities determines to a great ex-
tend the quality of our calculated second harmonic spectrum. Fig. 6.13 compares the
imaginary part of the ejs used in the excitonic calculation shown in Fig. 6.12 to the
experimental one measured by Studna and Aspnes [143]. While the overall agreement is
very good, the two curves show considerable differences in the low energy range that is
important for the second harmonic spectrum, i.e. from w = 1 to 2.5 eV. If instead of the
calculated e)p; we use this experimental one in the calculation of Xy, as also shown in
Fig. 6.13, we get a much better agreement with the experimental spectrum.

Given that the experimental €y gives a much better x,,. than the calculated one and
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Figure 6.13: left: Calculated ej; for GaAs compared with the experimental one. right:
Comparison between the experimental x,,. and a calculation where the experimental e;; has
been used.
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Figure 6.14: Calculation according to Eq. (6.5) with ejs calculated (right) and the experi-
mental ey (left).

the fact that the IQPA result is very close to the RPA one, c.f. Fig. 6.12, it is tempting
to assume that one could get a similarly good result by neglecting the computationally
costly local field calculation by making the approximation

11T _ _
X = et [kl o0 X oo 700 7] oo errent (6.5)

where the test-particle dielectric functions are just [e7] o0 = 1+ (4™ — a)[xpploo- The
result of such calculations is shown in Fig. 6.14 where one time the experimental €,
was used and in another calculation the usual €j; from TDDFT. The result does not
yield satisfactory agreement in either case. This means that although in the result they
do not show a large effect compared with an IPA calculation, the finite G components
of X,pp are very important when combined with the €)7, because there are substantial
cancellation effects.

In summary we have seen for GaAs that already the IQPA yields a qualitative agree-
ment with the experiment and the accounting for local field effects within RPA does not
improve the spectrum. It is only when one wants to account for excitonic effects as well
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that the local fields are important to achieve a quantitative agreement with experiments.
Furthemore the accuracy of the ep; over the whole frequency range used turn out to be
very important for the macroscopic y?.
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7 A second order Bethe-Salpeter
Equation

While the strength of TDDFT is to provide an efficient way to account for many body
effects via the exchange and correlation term f,. it is also its weakness, because its exact
form is unknown and hence approximations rely to some extend on educated guessing
rather than formal theory. On the other hand many-body perturbation theory does
rigorously describe these effects and it is nowadays used almost routinely to calculate
optical spectra of increasingly complex systems [144-146] via the Bethe-Salpeter equa-
tion, cf. Sec. 2.4.5. The advantage of the Bethe-Salpeter equation is its ability to
properly account for excitonic effects that are of great importance for optical absorption
[93]. Tt is, as a computational framework, however, much heavier than TDDFT, because
the two-body correlation function in terms of which it is formulated contains much more
information than actually needed to describe optical spectroscopy [147|. In practice one
therefore takes contractions of the two particle correlation function and thus discards a
lot of information that is contained in this quantity. Some efforts have been made to
capture the essential parts of this framework and translate them into TDDFT kernels,
as described in Sec. 2.4.5, leading to the NANOQUANTA kernel and its simplification
in form of the long range kernel I used in Chap. 6.

The Bethe-Salpter equation does not only describe optical effects, but it gives, in its
exact form, an equation for any kind of linear response [148]. This makes it a powerful
tool to study a vast range of physical phenomena, not necessarily by solving it exactly
but by providing a description that is at the same time exact and intuitive. Therefore, it
could be interesting to find the generalization of the Bethe-Salpeter equation to second
order responses. In this chapter I will outline how such a second order Bethe-Salpeter
equation can be obtained, solved and related to second order response TDDFT.

7.1 The equation

The Bethe-Salpeter equation as described in section 2.4.5 provides an approach to many-
body excitations within the framework of many-body perturbation theory [95]. More
precisely it is an equation for the correlation part of the two-particle Green’s function
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that can be written using the Schwinger’s functional derivative identity [95] as !

0G(1,2)

i0(1,2,3,4) = ———— = —-(G(1,3,2,4) + G(1,2)G(3,4 7.1

(12:3,4) = "5 = —G(1,3.2,4) + G(1, 26,9 (71)
where the product of the one-particle Green’s functions GG describes the independent
propagation of the two particles. The contraction of L yields the connection to the time

ordered density response
dp(1) C0G(1,1T)

1,2) = —/——~ = —— 2~ —[(1,17,2,2"). 7.2

XPP( ) 5‘/]267"(2) 5‘/]267"(27 2+) ( ) ( )

For second harmonic generation and generally for any second order process in response
formulation, we are interested in the response of the density to two perturbing fields and
thus generalizing Eq. (7.2) we find the corresponding three-particle correlation function

§2p(1) §G(1,17)
1,2,3) = = ! =L(1,1%,2,2%,3,3"
R T T R T P A o B
(7.3)
which as a full six point quantity is defined as
52G(1,2 L(1,2,3,4
[(1,2,3,4,5,6) — —i GLz) L1234 (7.4)

5‘/})67‘ (5? 6)5‘/1767‘ (3’ 4) 6‘/})67'(5, 6)

This quantity can be interpreted as the correlation part of the three-particle Green’s
function, which is obtained from Eq. (7.1) by taking the functional derivative with
respect to an additional non-local perturbing potential, c.f. App. D

iL(1,2,3,4,5,6) = —G(1,3,5,2,4,6) —
~G(1,3,2,4)G(5,6) — G(1,5,2,6)G(3,4) — G(3,5,4,6)G(1,2) +
+2G(1,2)G(3,4)G(5,6) (7.5)

There are not only the free propagations of three particles represented by the G1G1G}
term but also the fully interacting propagation of pairs of particles with an independent
third one represented by GaGi. One can thus see from this equation that L3 indeed
represents the three-particle correlation part of Gs.

A second order Bethe-Salpeter equation can now be derived from the linear Bethe-
Salpeter equation (2.78) by carrying out the functional derivative in Eq. (7.4) as outlined

'Here and in the following I use the notation G1 = G(e,e), G2 = G(e,e,e,0) etc., i.e. whether a
quantity is second order, of two particles, of three particles etc. is determined by the number of
variables.
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in App. D. The final result reads, c.f. Eq. (D.11):

L(1,2,3,4,5,6) =
Lo(123456)+

[1]:

(78910)L(9 10 56)+

+ [ d78910Lo(123478)

[1]:

d789 10Lo(127856)= (789 10)L(9 10 34)+

+

[1]2

+ [ d7891011121314Lo (1278 1112)2 (111213 14)L(13 14 56)Z (789 10)L(9 10 34)+

+ [ d789101112L0(1278)=(789101112)L(111256)L(9 10 34)

+ [ d78910Lo(1278)Z(78910)L(9 10 3456)

— e — Y —

where the non-interacting part Lgs is defined as
iLp(123456) = G(1,5)G(6,3)(4,2) + G(1,3)G(4,5)(6,2) (7.7)

and the many-body interaction kernels are defined as

5%(1,2)

5G4 (7.8)

2(1,2,3,4) = v(1,3)8(1,2)8(3,4)

§23(1,2)

3G(5.6)0G(3.4) (7.9)

=(1,2,3,4,5,6) =

Eq. (7.6) has exactly the same structure as the second order TDDFT Dyson like equation
(2.47) only that here we have six-point quantities whereas second order response of
TDDEFT deals with three point quantities. Since it has the same structure, it can also be
solved analytically assuming that the solution of the linear BSE, Lo, is known, c.f Eq.
(D.16). The solution reads in short hand

Ly = LyLgy LogLgy LoLyy Lo + LeZ3Lo Ly (7.10)
or alternatively in analogy to Eq. (2.55)
L3 = [1 =+ LQEQ] Log [1 + EQLQ] [1 + EQLQ] =+ L2E3L2L2. (711)

In the form 7.10 the solution can in principle be obtained by combining the known
two-particle quantities Lo and La; with the three-particle quantities L3 and Z3. These
quantities are however not obtained as straightforwardly and it is in these quantities
where approximations have to made or computational ressources are needed.
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7.2 The non-interacting part L

The three-particle non-interacting part of the second order Bethe-Salpeter equation is, ac-
cording to Eq. (7.7), essentially the products of the three single-particle Green’s functions
combined in two different ways. Using the Lehmann representation of the single-particle
Green’s function [149]

iG(r1,r2,ti—t2) = Y [O(1 — 12)O(ei — ) — Otz — 11)O(p — )] eIy (r1) 97 (r2)

(7.12)

one can construct these products in terms of the electron addition and removal energies ¢;
and the corresponding Lehmann amplitudes ¢;. Expressing the step functions containing
the chemical potential p in terms of electronic occupation numbers, i.e. O(¢; — p) =
(1 — f;) and O(u — €;) = f;, as well as contracting the time variables to — t1, t4 — t3
and tg — t5 we can write Loz in frequency space as

¢; (r1)¢;(ra)
€ — € + w2 +w3+2in)
0} (r5)dr(r6) (r3)i(ra)
(ek—ej +W3+i77) +
05 (r3)dr(ra)} (r5) i (re)
(ek — € T w2 +i77)
(7.13)

Lo(r1,T2,r3,T4,T5,T6, w2 + W3, wa, w3) = Z (
ijk
‘ @] (15) 1 (r6) 93 (r3) 94 (ra)
x (fz B fk) (ei — € + w2 + i77)
¢ (r3) P (ra)d}.(r5)i(re)
(ei — € + w3 + in)

+(fj = fx)

(fi — fx) + (fj — fr)

From this expression the analogy with the response of TDDFT becomes obvious once
more, because a contraction of the space variables ro — ry, ry — r3 and rg — r; and
with the assumption that the Lehmann amplitudes are Kohn-Sham eigenstates and the
energies the corresponding Kohn-Sham energies, this expression gives the independent
particle response of TDDFT, Eq. (2.27). Also, this means that the independent (Kohn-
Sham) particle response of TDDFT can in fact be represented as the contraction of Los
as

X(1,2,3) = Lo(1,1,2,2,3,3) = —iGo(1,2)Go(2,3)Go(3,1)—iGo(1,3)Go(3,2)Go(2, 1)
(7.14)

where Gy are Green’s function constructed with Kohn-Sham energies and states.

7.3 The second order many-body kernel =;

The linear many-body interaction kernel is the variation of the self energy with respect
to a single-particle Green’s function. In practical applications of the BSE this self energy
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is taken in the GW approximation, so that the kernel reads

2(5,6,7,8) = zgiﬁ g; = —5G(2£()%()5’6) = —5(5,7)6(6,8)W(5,6)—G(5,6)7(;Z((75”§)).
(7.15)

Additionally one assumes that the functional derivative of the screening with respect to
the Green’s function, dW/§G, which describes the change of the screening due to the
excitation, is small and can thus be neglected, as shown by Hanke and Sham [150]. This
assumptions is however an ad hoc approximation and mainly justified pragmatically. In
this approximation the second order kernel that is defined as

o 0%2(1,2) §=(1234)
5(1,2,3,4,5,6) = -
(1.2,3,4.5.0) = i1 5mE 553G ~ 0G(5.6)

(7.16)

obviously vanishes as well. It does, however, not vanish a prior: if one considers other
approximations for the first order kernel, c.f. [148] for example.

Furthermore, even in GW, the assumption 6W/6G = 0 could mean that one is missing
important contribution and it might not be a good approximation when one is interested
in second order processes. Especially, since the second order BSE is describing second
order processes, the changing of the screening due to the excitation might be important.

7.4 Connection to Many Body Perturbation Theory

Many body perturbation theory is in the solid state community most commonly seen
through the lens of Hedin’s equations, c.f. App. E. It can therefore be illustrating
to make the connection between the second order Bethe-Salpeter equation and these
equations. Here, we are particularly interested in the second order polarizability, because
it is is closely related to x(2). More precisely, in the previous chapters, I have always
considered x,,,, which is a reducible quantity, since it contains the Coulomb interaction.
In the context of many-body perturbation theory one seeks to separate this interaction
from the other many-body interactions and thus considers the irreducible quantity P
that is the variation of the density with respect to the total potential. In App. E.1 I
show how these quantities are related in the second order case, and find :

x2 = [1+x10] P +vxa][1+vx] (7.17)
= xiP{'PPraPr (7.18)
P, = [1—Po]x2[l —vP][1 —ovP] (7.19)
= Pixyxexg 'Pog P (7.20)

’In this part I adopt a notation where x1 = X,, and Y2 = X,p, to ensure readability of the equations
and to make a clear distinction between first order and second order quantities.
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These are the relations between second order reducible and irreducible quantities. While
the linear relation has the form of a linear Dyson equation (E.12), we note that this
relation has indeed the form of the second order Dyson like equation, similar to Eq.
(2.54) and Eq. (7.11). The only difference is that there is no term corresponding to
the second order interaction kernel, since the kernel between reducible and irreducible
quantities is just the Coulomb interaction.

The second order irreducible polarizability P» can be expressed in the context of Hedin’s
equations as (c.f. App. E.1)

P(1,2,3) = +i / A567G(2, 6)T(6,7, 3)G(7, )G (5, 2)T(4,5,1) —

i / A5G (2, 4)G(5,6)0(6,7, 3)G(7, 2)T(4,5, 1) —

6T (4,5,1)

Vion(3) (7.21)

i / 45G(2, 4)G(5,2)

In the GW approximation one neglects vertex corrections and thus takes I'(1,2,3) =
5(1,3)6(1,2). Applying this approximation to P yields the RPA. We thus have the
second order RPA irreducible polarizability:

iPy(1,2,3) = G(1,2)G(2,3)G(3,1) + G(1,3)G(3,2)G(2,1) (7.22)
This is the same expression we have found for Xg;)p as a contraction of Los, Eq. (7.14).
Indeed, the RPA irreducible polarizability cooresponds to the independent particle po-
larizability, since in both cases no interaction is present.
In the expression (7.21) for P» features the variation of the vertex function with respect
to the total potential. This can be used as a motivation to define a second order vertex,
which in turn is closely related to the second order Bethe-Salpeter equation, just like the
linear vertex function is related to the linear BSE, as shown in [93].

7.5 A g,. from MBPT

The similarity between the Bethe-Salpeter Equation and the fact that the contraction of
Lo yields the linear density response, has been used to derive an exact expression for the
two-particle correlation part of the TDDFT kernel f,. [98] as outlined in Chap. 2.4.5.
Here, I will sketch how the second order Bethe-Salpeter equation can be used to derive
a similar expression for g..

Since the Coulomb interaction v is known and does not contribute directly to g,. it is
convenient to compare only the irreducible quantities in TDDFT and BSE. Combining
Eq. (7.20) and the second order TDDFT Dyson like equation (2.52) yields the relation
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between the irreducible polarizability and the independent particle response?:

Py = P1Py' Pya Py Py Py Py + Prguc P Pr (7.23)

where T have used the fact that yo = Fy. This equation can be solved for Py, which
yields

Pyg = Poy P ' Po Pt Pyy Py Poy + Po1guePor Por.- (7.24)

Exactly the same steps can be taken for the second order BSE, i.e. passing to irreducible
quantities L, expressing them in terms of non-interacting quantities Ly and solving for
L03:

Loz = LogLy ' L3 Ly Lo Ly ' Log + Lo2Z3 Loz Loa- (7.25)

Here I only give the shorthand notation, but it is understood that Ly and Lg are four
and six-point quantities, while P; and P» are two and three point quantities.

The two equations can be combined by exploiting the similarity of the two independent
particle responses L3 and FPyo. As shown in Sec. 7.2 the three point contraction of Lgg
equals the independent density response and thus also FPyo. It is however not practical to
contract Eq. (7.25), because it prevents the possibility to eliminate Ls at a later point.
Instead we generalize Eq. (7.24) to six points, thus making all P and Py to trivially
contractible four (*P) and six-point (°P) quantities, c.f. App. F.

Now using Loz = %Pgy and Loy = %Py the two equations can be combined and solved
for the kernels

S5 — O, = Ly Lsly Lyt — 4Py Py 4P A (7.26)

At this point we already note that even in the cases where Z3 = 0, c.f. Sec. 7.3, the second
order TDDFT kernel g, is still finite. Indeed it only vanishes if additionally Py = L
and %Py = Lo, which is generally false and can only be achieved in oversimplified models.
In particular this means that in the GW approximation with the additional assumption
of SW/6G = 0, where =3 = 0, the second order TDDFT kernel g,. generally does not
vanish. That means that g,. has to account for interactions that are not purely of second
order in the sense of the Bethe-Salpeter interactions kernels, but are due to some non-
trivial coupling of linear quantities.

We can now use the fact that P, is the three point contraction of Ls and thus let

6P2|6_)3 =P =13 s By solving equation (7.26) for L3 and making this substitution
we obtain

= -1 -1z -1z =
Py = (Ly*P| Py 4P| Ly *P| Ly) + (Ly(B3 — %,.)LoLo)

. 7.27
6—3 6—3 (7.27)

*Reminder on notation used: P» is the second order polarizability which cooresponds to the three
particle correlation function Ls.

92



where 6 — 3 indicates the pairwise contraction of the six free indices to three. This
constitutes a Sham-Schliiter equation [96] for the kernels that now can be solved for g,..
To keep track of the contracted quantities, it is necessary to explicitly account for the
indices while proceeding, c.f. App. F. Therefore the resulting expression (F.9) lacks
readability, so that here I give again only a shorthand, indicating left or right sided
contractions of four point quantities as je and e[ respectively. Thus, Eq. (7.27) solved
for g.. reads

-1 7 4p—1 -1z -1 = —1p-1
Gre =11 { 3‘L2 Py ‘3P2 3‘ Py L2‘3 3‘ P L2‘3 K ] P
(7.28)
—|—P1_1 ‘EQ =3 ZQ‘ ZQ‘ Pl_lpl_l
3 3 3

In comparison the corresponding expression of linear f;. derived in this framework, c.f.
Sec. 2.4.5, reads in this notation

fre = Pf13‘ iprt Ele‘ Pl (7.29)
3
To illustrate the notation in Eq. (7.28), we have, for example, quantities like

3( p EQ‘?’ = 4p71(1,1,3,4)0.(4,3,2,2) (7.30)

from which we can see again that only if 4Py = Ly one can follow gy, = E3lg_,3- Instead,
Eq. (7.28) gives the exact expression for a TDDFT kernel that reproduces a P, such that
P(1,2,3) = L(1,1,2,2,3,3,), i.e. a second order irreducible polarizability that accounts
for all three-particle many-body interactions. The advantage is that one does not have
to solve the six point second order Bethe-Salpeter equation, as outlined in App. D.1,
but can keep the three point formalism described in the preceding part of this thesis.

The downside is that apart from having to perform a linear BSE calculation first to
obtain Ly the actual knowledge of the kernel g, as in Eq. (7.28) implies knowledge of P;
and is therefore not possible. For calculation purposes one has to make approximation
on this equation, particularly on P,. The most straightforward would be to let Py — Pps.
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8 Conclusions

This work has been concerned with the ab initio calculation of the material dependent
second harmonic generation susceptibility x(2). The central result is its expression con-
taining exchange and correlation effects in terms of the second order density response
Xppp and the macroscopic dielectric function from linear respone €y, c.f. Eq. (3.57):

(2),LLL _ _ 2r pp LLLL (8.1)

X 2 €M Xppp€M €M

In this expression, local field effects and exchange and correlation effects are contained
in the x,,, and the e alike. It turns out that for the influence of the local fields there is
rather subtle cancellation effect between the local fields accounted for in x,,, and those
in €37. For SiC polytypes, the influence of local fields is traced back to the inhomogeneity
of the electron density, where the effect varies with component and polytype.

The agreement with experimental data has been shown to depend on the inclusion of
exchange and correlation effects, here in form of an effective kernel that mimics the
excitonic interaction. This kernel leads to good agreement of peak intensity between
the spectra, but is not completely accurate over the whole frequency range. We traced
this problem back to small differences between the calculated ej; and the experimental
one, showing that when we use the experimental €y in our calculation of x(2), we obtain
excellent agreement with the experimental result. This means on the one hand that the
accuracy of the linear €, is of great importance for a nonlinear calculation, but on the
other hand that many important contributions are stemming from linear processes.
The numerical implementation of this formalism allows for realistic calculations of second
harmonic spectra. Pending optimization, it can be used for surfaces and interfaces alike,
where second harmonic generation is of great interest. Also, it can be used to make
more quantitative predictions of the second harmonic intensity of materials and thus be
applied to systematically improve second harmonic crystals.

TDDFT can also be used to calculate the quadrupole second harmonic generation,
which is the leading order for centro-symmetric materials. However, the fact that one
only deals with a density response means that one can not calculate all components
separately but only superpositions. This could in principle be overcome by considering
current matrix elements, but the density formalism used in this work can yield the full
anisotropic, i.e. directional dependent, contribution of this effect and thus might still be
valuable.

Finally, from a more formal point of view, second harmonic generation is a process
involving three electronic states and thus can be described by the three-particle Green’s
function, or more precisely, its three-particle correlation part. This is done by a second
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order generalization of the Bethe-Salpeter equation. While a solution of this equation
is readily obtained formally, a numerical implementation does not seem feasible at the
moment. Still, by comparing this equation with the second order TDDFT Dyson like
equation, one can gain some insight into the properties of the second order exchange
and correlation kernel g,..

On a more general note, I found that second order variations as described by the TDDFT
Dyson equation or Bethe-Salpeter can be solved analytically when the corresponding
first order is known. From this observation one could formulate the following conjecture:

Conjecture: Let S be a first order variational quantity that is related to its non-
interacting expression Sy via an interaction kernel K as

S = Sy + SyKS. (8.2)

The second order variation R of this quantity is then related to its non-interaction ex-
pression Ry via

R = [1+SK]|Ry[1+KS|[1+ KS]+ SkSS (8.3)
SSyt Ry Sy 'SSy S + SkSS (8.4)

where k is the variation of the interaction kernel K.
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A Independent particle response function

The spectral representation of the linear and second order response functions, Eq. (2.23)
and (2.24), are given in terms of many body wavefunctions and many body excitations
energies. These quantities are not feasibly computed and thus, as a first approximation
and starting point for further computational schemes, one constructs the response func-
tions with wavefunctions and energies of non-interacting particles. Here, T will outline
how to pass from the many body response functions to the single, independent, particle
ones by example of the second order response function. The same reasoning can of course
be applied to the first order case, which however is much simpler and has been shown in
other places, e.g. [151].

The operators in the matrix elements of Eq. (2.24) read in second quantization formula-
tion (c.f. [152])

A= [arvt @t (A1)

where a(r) is the single particle operator and v(r) and 1 (r) are the field operators that
can be represented by single particle orbitals as

ol =) oimal  and o) =3 6i(r)as (A.2)

The operators d;-r and a; create and annihilate a particle in the state ¢. With this repre-

sentation the many body operator reads
A=Y (#ila(r)|o;)ala;. (A3)
]

We consider the first term of Eq. (2.24) with this formulation

(Eo — Em + w3 + i?])(EQ — En + wo + w3 + 2i77)

nm

3 (Bila(r1)]d;) (Drlb(ra)|dr) (dr|e(rs)|ds) (Wolalaj | W) (W, |ahar| W) (Ul as| o)
(EO — Em + w3 + in)(Eo — En + wo + w3 + 2i77)

nmijklrs

(A4)

the creation and annihilation operators now impose conditions on the excited many body
states |¥,,) and |¥,,) so that the matrix elements do not vanish. For a non-interacting
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groundstate we can convince ourselves that the first matrix element (\Ifo|&3&j|\lfn> is
only non-zero if |¥,) = d}&i|\lfo> due to the orthogonality of the states. Similarly, the
last matrix element (W,,|a}ds|¥o) demands that |U,,) = alas|¥o). This makes the
sums over n and m obsolete and the many body excitation energies get replaced by the
corresponding single particle energies, i.e. Ey — E, = ¢; —¢; and Ey — E,, = €5 — €.
Thus we have

(EQ —F, —i—u)g—i—in)(Eo —FE, 4w +w3+21'77)

D (Gilalrn)ld;) (nlb(ra) g (drle(rs) ) x (A.5)
ijklrs

AAAAAAA

(es — & +ws+ m)(q —€j +wa + w3 + 2in)

The operators in the central matrix element now imply that either k =sAr=jAl=1
ork=jAs=iANl=r,Ii.e.

AAAAAAA

(Wolala;afaalas|Wo) = (WolalajalasalasWo) + (Wolalajata,ala;|Wo) (A.6)

We now make use of the anti-commuting property of the operators while rearranging
them to the form &zdi = n,, that is to say to give occupation number operators:

> (ol A|W0) (V| B i) (W1 |C | To) _
~ (Eo — Ep + w3 + i) (Eo — En + w2 + w3 + 2in)
= Z<¢i|d(r1)|¢j><¢s|B(r2)|¢i><¢j|é(r3)|¢s>X
» (Wolni (1 — ) [Wo)(Wolfi(1 — iy)ins|Wo) (Wolns (1 — 7y)[Wo)
(68 — € tws+ 1'77)(61‘ —€ w2 +ws+ Qin)
+ ;<¢i|d(rl)|¢j><¢j|i)(r2)|¢r><¢r|é(r3)|¢i>x (A7)
» (Wolni (1 — ny)[Wo) (o hi(1 — ny) (1 — 2p) [Wo) (Yol R (1 — 7y)[Wo)
(6,‘ — € + w3 + in)(ei — € twy+ws+ Qin)
_ Z fz 1 - f] fk ¢Z|a(r1)|¢]><¢k‘|b(r2)|¢Z><¢]| (r3)|¢k>
ek — € + w3+ ZT/)(EZ — € + w2 + w3 + 22"7)

ijk

Fill = £)(1 = fi)(Bila(ri)|e;) (8;1b(ra)|dx) (Grlé(rs)|d:)
(€i — €x +ws +in)(e; — €j + w2 + w3 + 2in)

_l’_

where in the last step we used (Vg|n;|¥o) = f; and that this expectation value of the
occupation operator is either 1 or 0.
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B Fourier Transforms

When dealing with first and second order response we have to take the Fourier-transforms
of functions of two or three variables, for which we need to define the Fourier transform.
For one point functions we use the definitions

flkw) = /drdtei(k'r“’t)f(r,t) (B.1)
f(r,t) = ﬁ/dkdwei(k'r_w)f(k,w) (B.2)

When dealing with functions of two variables, especially response function, these defini-
tions have to carefully generalized. here we will shortly demonstrate this by considering
a two time linear response function and its transformation into frequency space. The
transformation into momentum space as well as the generalization to second order is
done analogously. Considering a first order response function defined in real time by

f(h) = / Qg (1, 12) Vyer (£2) B3)

which we would like to express in Fourier space as

flon) = [ donx(on, )V 2) (B.4)

Starting by substituting the perturbing field in terms of its Fourier transform we have

f(tl) = %/dtgx(tl,tg)/dwgethQVE,,er(wg) (B.5)

and performing now the Fourier transform of the whole expression according to

flw) = [ dee 50 (B.6)
we have

1 .
f(wl) = % /dwgdtldtgewltlx(tl,tg)e_wt?Vper(wg). (B?)
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Comparison with Eq. (B.4) yields the rule for Fourier transforming linear response
functions:

1 .
X(wi,w2) = %/dt1dt26M1t1X(t1,t2)6_w2t2. (B.8)

For the transformation into the momentum space of a periodic crystal we find analogously

1 . )
x(ri,rg) = v Z 62(q+G1)-r1X(q+Gl’q+G2)e*2(Q+G2)-P2 (B.9)
q,G1,Ge2
1 . .
X(q+G1,q+G2) = V/ drlrQQ*l(thGq)-rlX(rl,rz)el(Q+G2)'r2 (B.lO)
1%

where we used the periodicity of the lattice and V' is the volume of solid (c.f. [153]).
The second order response functions follow in the same way and we have:

1 ) ) )
X(u)l, w9, wg) = % /dtldtgdtge““tlx(tl, tQ, t3)€7w2t267w3t3 (B.ll)
and
x(ri,ro,r3) =
1 ) . )
= Y UGN (q + G, qp + G, qg + Ga)e (TG ilastGa)rs
q1,92,93
G1,G2,G3
(B.12)
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C Degenerate perturbation theory

The important difference to usual perturbation theory is, that as we are dealing with
eigenenergies from real band structures, we need to account for the degeneracy of bands.
This is text book knowledge, so we just state the results. They are similar to non-
degenerate ones, only that the sums exclude those states that belong to the subspace
D of states that have degenerate energies. (We denote the non-degenerate energies and
states by E,, and |¢,) respectively.)

Energies
= (u HV tp) (G.1)
o HO [90) 2
- S WOl 1) (©2)
mgDn n m

Note that this kind of expression is only possible if 1, diagonlaize the perturbation,
which here is the case, because v,, are Bloch functions and the perturbing Hamiltonian
is Eq. (4.11). Now we can insert this k - p-perturbed Hamiltonian Eq. (4.11):

Y = (¢nlaviin) (C3)
2 .
@@ =y MVl L gy, aru) (©4)
m¢Dn n m
States
m H n
wy =y Sl
miDn n m
| HO HOy,) (| H® | ¢h)
\11(2) — <¢ |H |71Z)p><¢p| m "
<wm\H rwn> wmrHl rw

m¢D
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Again, we insert the k - p-perturbed Hamiltonian:

oy — (Ymlav|ivn) _
me¢Dn,
(wm\qvambp!qvwm (Vm| — %[qva qr]|¢n)
’\I/1(12)> - W}m> + ‘¢m>
Z (En - Ep)(En - Em) Z (En - Em)
m,p¢ Dy, me¢ Dy,
(C.9)
(Vmlav|n) 1 | (mlQven)?
- n n D) m - A T = A N9 n ']‘
m¢D m&Dyp,
In XE)?))p there are three different kinds matrix elements and denominators:
(@) = (macle TSy ) (C.11)
bn’n”(q/l + G”) = <7’Li(+q/+q//‘ei(qll+G,/)rl‘n£+q,> (012)
e (d + G = <nﬁ+q,]ei(q,+G/)r”]nk> (C.13)
(C.14)
and three different denominators:
EAnn’ = Emk — En’,k+q’+q” + 2w + 227’] (015)
EBn”n/ (q/) = En7k — En//,k+q/ + w + Z’I7 (016)
ECnn” (q/) — En”,kJrq/ — En/,k+q/+q// +w + ’L?’] (017)
(C.18)
So we can write:
2
X;}(z))p(q/ 4 q// + G,q' + G',q" 4 G”,w,w) _ v Z ann/(Q)EAnn/X
n,n’ n' k
[(fnk - fn”k)bn’n”(q” + G/I)Cn”n(ql + G/)ECnn”(q/)+
(C.19)

+ (fn’k - fn”k)bn’n”(q” + G”)Cn”n(q, + G/)EBnn” (q,)+
+ (fnk - fn”k)bn’n”(q/ + Gl)cn”n(ql/ + GI/)ECnn//(q/I)+

(ke = fanc)bwn (A + G enrn(d” + G) Eppnr ()]
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In order to carry out the perturbative expansion we apply the perturbation theory to
all these six terms separately up to second order!:

a-matrix elements

aglorzl = Onn (C.QO)
0l (G) = (mcle™ S |nf,) (C.21)
@, {(l(d +4q")vny)
ty (Q) = B~ Bk (C.22)
1 (macl (d' + q")v|nf) (nic|e "G |my)
a6y =3 R (C.23)
méD,, n’ k m,k
b-matrix elements
bilol)n// = Op/n’’ (024)
b (G) = (k€S |nfy) (C.25)
/ / "
b(l,) (q) = <”k’q V’nk> 9
e (A) Foe — Enre (C.26)
b +G) =Y (™Yl e )
o5 Epr s — Eme
(il + a" )i mud S () 20
+ Z kI\d q k k k
m¢D, s En’,k - Em,k

'In principle one would need them up to third order, but it turns out that all terms containing third
order matrix elements or denominators vanish due tot the occupation number. The same holds for
second order of a.
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52 (mld'vip) (pela'ving) — (nglav)|ng) (m|a'ving)

"
AN | = §
n'n ( ) péD ) (En”,k — Ep7k)(En”,k — En/,k) (En//7k - En/,k)Q

Lt — 5la'r, q'v]ng)

En//,k - En/,k
Py (i (@ + @) vIpic) (il (@ + @")ving)  (mal (9 + @) v)lmie) {miel(a’ + q")vlmgg)
péD. (En’,k — Ep,k)(En’,k — En”,k) (En’,k — En”,k)Q
Lt = sl(d’ +a")r. (d' + a")v]|ng) N
En/,k - En”,k
. (i l(@” + q")vlmue) (mac| g’ vimy)
m¢D /,¢D " (En’7k - Em7k)(EnN7k o Em7k)
s Z [(mald'vIng) P Z (| (@' + @) v]mi) [?
27055, B = Ena® o (B = Emo)?
(C.28)
c-matrix elements
O = G (C.29)
(@) = ('S m) (©30)
W) (ony _ (mda'vime) 031
n”n( ) En”,k_En,k ( - )
1| ! 1G’ L1
W (o 1+ G = (il vmuc) (mic|e"™ " my) .39
cum(dl +6) = 3 e — B (€52
me¢ Dy,
/V n n// /V
CS?,Z(CI/) _ Z (p|a'v|ni) (ny|a'vipi) +
ity Enae = Epid) (En g — En )
R sla'r, a'v]|ni) vl (nila’v|ni) . (C.33)
En”,k - En,k (En”,k - En,k)
_1 $ | (el @'v |ngg) [P 5o
2 m&D i (En//’k B Em7k)2
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'vimy ) (nl|q'v I
(2) <pk‘q ‘ k>< k’q ’pk> mk|ezGr |nk>+

/ /
[e] + G’ -
! n( ) mpiZD " (En”,k B Epvk)(En”vk - Em,k)<
<’I’Lﬁ| — %[q’r, q'v]|mk> Tel
+ myle’™ " ng)—
ny|la'vimy) ——
! qlv n! < k M ezG ) —
L) 3 T Byl 1)
1 |<mk|q'v|nﬁ> 2 i iG'r"
- = nyle Nk
2 m¢ZD:n// (Ennvk o Em7k)2< k’ ‘ >
Denominators
O _ 1
Ann' (B — B g + 2w + 2in)
1
B _ By (d +4q")
Ann/ (En,k _ En/,k + 2w + 2”7)2
5O 1

Bn''n! — (En”,k — En’,k + w + ZT])

- B9 +q") - BQ(q)

E(l)// ’ ! -
Bn'n (q ) (En”,k — En/,k 4+ w + 277)2
5O _ 1
Cnn (En,k — En”,k + w + Z’I’})
E(l)( /)
1 »\q
E(Cr)zn”(ql) = =

(En,k — En”,k +w + Z"I’})2

where B (q) = (nic|qv|nu).

(C.34)

(C.35)

(C.36)

(C.37)

(C.38)

(C.39)

(C.40)

We note that here all matrix elements are in terms of v .= p + [V,;,r]. For our imple-
mentation we pass to matrix elements of the position operator r, using the relation

\%

nklrln'k) = ————.
(nk|r|n'k) B B
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C.1 Head

The head of X(p%)p including the scissors approximation as described in section 4.2 reads:

(0),head fn k — fn”,k) (fn/,k — far k)
Xops (A1) v 2 [ ASC 120 )(ASC 1) (A 4 2)(ASS, 1 )

(fox — for) (ALPA 4 ALDA) (faxk — forx) (AEDA + ALDA
ALDAASC (ASC + 2(4/) ALDAASC (ASC +w )
x (ni| —i(q1 + q2)r|ny) [(nyliger|ng) (niliqir|ni) + (nyliqur|ng) (niliger|nk) | +
(fn,k - fn’,k) %
B+ R 7
x (nyli(ar + qz)r|ni) [(niliqur|ng) (nyligor|ny) + (nicliqer|ny) (ny liqur|ny) | +
+ 8(fn,k - fn/,k) _ (fn,k - fn/,k)
(ASE2(ASE +2w)  2(ASG2(ASG + )
+ 4(fn,k - fn’,k) + (fn,k - fn/,k) 1 o 1 %
S e | o
X (ni| — (a1 + q2)r|ny) [(niliger|n) A, + (nyJiqurne) AR | +
+ (fnk_fn/k)ALDA %
RTAASS A% )
X [—(niliqur|ny) (ny ligar|ny) (ni|i(qr + ga)r|ni) +
+ (nili(aq1 + qa)r|ny) (nyiqar|ny) (ny|iqur|ng) —
— (nxliqar|my) (nyJiqur|ny) (nyi(ar + qo)r|ni)+
+ (nili(ar + q2)r|ny) (niiqur|ny) (ny[iger|ni) | +

(fn,k - fn/7k) _ 4(fn,k — fn’,k)
ALDANSO(ASG ) ALTAASCIALS +2)

n,n’ n'" k

+ 2

_|_

_l’_

7
=[qor, quv]|nk) | +

7
— Slair, qav]|ni) + (ny | — 5

X (il + qz)rfnie) | (nic] = 5

(fn,k - fn/,k) %
QALD,AASC,(ASC, + w/)
+ [(nk|[(ar + q2)v, iqor]|ny) (ny liqur|ni) + (ni| (a1 + q2) v, iqur][ng) (ny|igar|ny) —
— (nkli(qr + q2)r|ny) (n|[aev, iqur]ini) — (nicli(ar + q2)r|ny) (ny|[auv, iger] ) |
(C.42)

_|_
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C.2 Wings
C.21 G#O:

‘ 2 —iGr .
X G a) = DD (e fsd) | e ™ ) (i el AT,

nn/ n' k
1 2
* | (ASC)P(ASC o) " ALDAASC(ASC 1o
+ & + 2 } +
ASC(ATS +20) (A5G + o) | ALDAASC 4 2.5) (MG + )
N 2(nk|iqor|ny.) (njl|e "% nj ) (nf |iqir|ni)

(A + @A, + )

+ (macle™ ST i) (nicliqu e |ng) (nig[iqar | mic) X
2(A5G + ASC ) (ASC + A5G ) (ASC + ASC ) }

n n n

L@ ) T IR ) AT 2 AT )

+ (el e ™" i) (il i) (i i v ac) <
(ARRA + ALY (ARRA + ALY ] }

n'n n'n

X
| BEAASTANG + ) T RTINS + )AL+ )

+ (nacle™ " njo) (nicliqzr|nig) (niglian e |nic) <

(fn,k - fn//7k) (fn’,k - fn”,k)
(Agg, + 2w’)(A§S,, + W) (Agg + 2w’)(Ag§n, + W)

X

Frde = I ac) (macl €™ my) (mg [l v, icgor] Imae)

(
+ IDAASC [ ASC
Ann’ Ann’(Ann’ + 20‘)/)

+ {aq1 < q2}
(C.43)
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C.2.2 G £ 0:

_ 9 ‘ _
X(p%)p’wmﬁ(m + a2, Gi,q2) = v Z (nicli(ar + az)r|nj) (nf e’ ST i) A%,

n,n’ n' k

X

_ 2(fn,k - fn’,k) _ (fn,k - fn’,k) . (fn,k - fn’,k) o

BB + 2T ) (BGPANG +w)  AAATAT )
(fate = for ) (macliqor|ng) (g [ €S 7 [ AT T
ALDAASC (ASC + w/)

nn’ nn' nn’

(e Strnfe) (it + a)elmd A%, + (o} idor|ni) A%, ]

LDAASC SsC
2Ann/ Ann’(Ann/ + wl)

- (fn,k - fn’,k)

Apingt (mucliaar|nig) (nieli(ar + ap)r|ni) (nic|e" 1" i)

+(fn,k_fn/,k)A£rlb)lA AES/(AETCL;‘F(UI) +
b e oo S (s + o)l i iqorli) i 7 ) |
n7 n K
AL ATS(ATTS + ')
nk eiGll‘ 7,LI
+ (fn,k - fn’,k) < ‘ ‘ k>

RSB + )
X [(nyli(ar + aqo)r|ny) (ni|iqor|ny) — (nyliqar|ny) (nili(qr + qa)r|nk) | —
(nkli(ar + qz2)r|ny)
AN +2.)

% [(niele™ S [nie) (nicliaar i) — (nliqar|ng) (nile

- 2(fn,k - fn’,k)

iGlrI“nkﬂ +

(nicliqor|ny)
SC SC
2Ann,(Ann, + ')

% [(nicli(an + az)rlni) (nicle"  |nie) — (g[S i) (nicli(ar + gz)rrini) |

+ (fn,k - fn’,k)

— (nli(ar + aa)r|ny) [(nicle" T i) (nicliqar|ni) + (niligar|nig) (nigle’S " Ini)] x
(fn,k - fn”,k) (fn/,k - fn”,k)
(ASC 4+ 20)(ASC, + W) (ASG +2w)(ASG, + ')

n

(C.44)

The case Gg # 0 follows from this one by exchanging G; <« G and q; < qo.

107



C.3 Faces
C3.1 G=0:

(nkli(ar + qz)r|ny)
(Agg, + W’)(Ai’% + W)

2
X(p%)p’facel(% +q2,G1,Go) = v Z (fak — for k)

n,n’.n'" k

% [(nicle" T fnge) (i€ 2 frue) + (nigle" 2 i) (mic " )| -

— (nucli(ar + a2)r|nie) [(ni]e" ST n) (ngre" G2 ni) + (ng|e" G2 In) (nge| €S )| x
(fn,k - fn”,k) (fn’,k - fn”,k)
(A5G 4+ 20 (ASC, 4w (ASG + 2w (AST + W)

(C.45)
C3.2 G, =0:

G ) = o Y | gtk (s = furad ]
pop AL, 2) = 37 (ASC +2w)(AYC, +w)  (ASC 4+ 2w)(AST , + w)

n,n’ n'" k

x (e i) (il fnfdy i aarlne) + (miarr i) (1S )| +

2(fax — for x) (ke "CT|ni )

+
S
AYC(ASC + 20w)

[t (k|15 ) — (o lqaelnf) (' i) +

4(fn,k - fn’,k)<nk|€_iGr|ni(><ni(|eiG2r/ |’I’Lk>A2;/
Aig,(AgS, + 2w)(A§g, +w)

+ +

fn,k - fn’,k) <nk|6_iGr|ni(> <ni(|eiG2r’ |’I’Lk>A2;/

L
(AZS)HANG +w)

(Fake — forc) (| €782 )
ASC(ATE +w)

+ [(naele ™S mge) (niglanrni) — (maclane|ngg) (nig]e ™" S ng)]
(C.46)

The case Go = 0 follows from this one by exchanging G; < G and q; < qo.
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D Derivation of the 2nd order
Bethe-Salpter equation

In this appendix I give the detailed derivation of the second order Bethe-Salpeter equation
discussed in chapter 2.4.5.

The second order BSE is formulated in terms of the three-particle correlation function L3
that is related to the three-particle Green’s function via Schwingers functional derivative
identity, Eq. (7.1) and its derivative':

, 52G(1,2) 8G(1,3,2,4)  §G(1,2)G(3,4)
L(1,2,3,4,5,6) = = —
iL(1,2,3,4,5,6) 3V (3,4)0V (5,6) 5V (5,6) 3V (5,6)
5G(1,3,2,4)  §G(1,2) 5G(3,4)
= — G(3,4 G(1,2
Vo) T ave.e oY LA
_ 0G(1,3,2,4)
B 5V (5,6)

—G(1,5,2,6)G(3,4) + G(1,2)G(5,6)G(3,4)
—G(1,2)G(3,5,4,6) + G(1,2)G(3,4)G(5,6)
(1,

= —G(1,3,5,2,4,6) —
~G(1,3,2,4)G(5,6) — G(1,5,2,6)G(3,4) — G(3,5,4,6)G(1,2) +
+2G(1,2)G(3,4)G(5,6) (D.1)

where T used Schwinger’s relation for Gj

6G(1,3,2,4)

5V (5,6) = (G(1,3,5,2,4,6) + G(1,3,2,4)G(5,6). (D.2)

'In this section the potential V always represents the perturbing potential Vper as opposed to the total
potential.
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To obtain a Bethe-Salpeter like equation for this quantity we simply have to derive the
first order BSE (2.78):

5L(1, 2,3,4) -
3V (5,6)
5

= g TCL3GE]+

n ﬁ [/ d78910(—i)G(1,7)G(8,2) %

x [0(7, 9)8(7,8)8(9,10) + ;GE((; 180))} (_1)55?/(??;13}
= (g 0D + (NG T
+ [ d78910(—1) 5v((§5 8G(8 )[v(7,9)5(7,8)5(9, 10)“555(%77180))} (_i)é(s?/(?g;lzg)

/

| | ]

/ ) 5%(7,8) i) §G(9,10)
/

+

d7891 G(1 2
+ [ A0 (=G NGB, 2w 156010y | TP v e

+ [ d78910 (—i)G(1,7)G(8,2)x

6%(7,8) §°G(9,10)
x [v(7,9)5(7, 8)0(9,10) +i5779 10)] 576,607 (3.9)
(D.3)

We note the repeated occurrence of first order quantities known from first order BSE.
The only new term is the second derivative of the self energy in the second last line. In
this term we use the chain rule and get

0 0%(7,8) ) 0%(7,8) 1 6G(11,12)
= 1112 D4
oV (5,6) [56’(9, 10)] /d 0G(11,12) [56’(9, 10) | oV (5,6) (D-4)
Analogously to the first order case, we define the six-point kernel:
§2%(1,2
2(1,2,3,4,5,6) =i (1,2) (D.5)

3G(5,6)3G(3, 4)

and to keep the notation compact we also define a first order kernel that contains the

coulomb potential:

2(1,2,3,4) = v(1,3)6(1,2)8(3,4) +=(1,2,3,4) (D.6)
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Now inserting the known first order quantities we can write

§L(1,2,3,4)

=L(1 4,2 1,3)L(4,2
5V (5,6) (1,3,5,6)G(4,2) + G(1,3)L(4,2,5,6)+

+/d789 10L(1,7,5,6)G(8,2)2(7,8,9,10)L(9, 10, 3, 4)+
+/d789 10G(1,7)L(8,2,5,6)=(7,8,9,10)L(9, 10, 3,4)+

+ / d789101112Lo(1,2,7,8)2(7,8,9,10,11,12)L(11,12,5,6)L(9, 10, 3, 4)

§L(9,10,3,4)

+/d789 10Lo(1,2,7,8)2(7,8,9,10) SV .6)

(D.7)

This is in principle already a second order BSE. We note that at this point we do not
need any six-point quantities other than the kernel.

To make the connection to the TDDFT Dyson equation and to avoid explicit reference
to the one-particle Green’s function G, we define

iLh(1,2,3,4,5,6) = G(1,3)G(4,2)G(5,6) (D.8)
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and insert the full first order expressions for the Lo (Eq. (2.78)) in the above equation.
Recalling the definition for Ly = §Ly/5V we have 2

L(123456) =
L1 (135642) + L} (425613)+

+ / d789 10L) (137842)=(78910) L(9 10 56)+

+ / d789 10L) (427813)2(78910) L(9 10 56)+
+ / d789 10L} (175682)2 (789 10) L(9 10 34)+
+ / d789 10L} (825617)2 (789 10) L(9 10 34)+
+/d789 10111213 14L)(17111282)=2 (111213 14) L(13 1456)2 (789 10) L(9 10 34) +
+/d789 10111213 14L)(82111217)2(11 1213 14) L(13 1456)Z (789 10) L(9 10 34) +-
+ /d789 1011 12L (1278)=(78910 11 12) L(11 12 56)L(9 10 34)
+ / d789 10Lo (1278)Z(789 10) L(9 10 3456).
(D.9)

We note that the eight first terms are in fact pairs of terms with the same structure. This
is due to the symmetry in the perturbing fields, i.e. it doesent make a physical difference
if the V'(5,6) field is applied before the V/(3,4) field or vice versa. We can see that by
exchanging the indices 3 «<» 5 and 4 < 6 in the equation. We therefore define an Ly such
that it accounts for these two possibilities:

iLo(123456) = iL)(135642) + L) (425613) = G(1,5)G(6,3)(4,2) + G(1,3)G(4,5)(6,2)
(D.10)

2To keep the equation readable I drop the separating commas between variables, relying on the readers
goodwill to distinguish.
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with this the second order BSE reads:

L(123456) =
Lo(123456)+
+ / d789 10 Lo (123478)=(78910)L(9 10 56)+
+ / d789 10 Lo (127856)= (789 10)L(910 34)+
+ / d7891011121314L0 (1278 1112)=(11121314)L(13 14 56)Z (789 10)L(9 10 34)+
+ /d789 101112L¢(1278)=(789101112)L(111256)L(910 34)
+ / d78910Lo(1278)Z (789 10) L (9 10 3456).
(D.11)
To formally solve the second order BSE we rearrange it to
/d78910 {6(1,7)5(7, 9)4(2,8)0(8,10) — L0(1278)§(78910)} L(9103456) =
= /d?...14L0(1278 1112) |6(7,3)0(8,4) + Z(78910)L(9 10 34)} X D.12)

X {6(5, 11)6(6,12) + =(11121314)L(1314 56)] +
+ /d789 101112L(1278)=(789101112)L(111256)L(910 34).
Now we can use the linear BSE to write for the factor on the left hand side
/d78 {5(1,9)5(2, 10) —L0(1278)§(78910)] = /d78L0(1278)L1(87109) (D.13)

as well as to rewrite the two linear factors on the right hand side according to

[1]x

/ d56 [5(3,1)5(4, 2) + (1256)L(5634)] - / d56L;" (2165)L(5634) (D.14)

so that the second order BSE can be written as
/ d78910L0(1278)If1 (87109)L(9103456) =
= / d7..14Lo (127811 12)L51 (87109)L(910 34)L0_1 (121114 13)L(131456)+

+ / d789101112L((1278)=(789101112)L(111256)L(91034)
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(D.15)

Now multiplying from the left with [ d121516L(17181516)L, " (161521) and renaming
the indices 17 «+— 1 and 18 < 2 we have the final result

L(123456) =
/d? A8L(121516) Ly ' (161518 17) Lo (1718 78 11 12) x
Lyt (8,7109)L(91034) Lyt (121114 13)L(13 14 56)+

+/d789 1011121516L(121516)2(15 1691011 12)L(111256)L(9 10 34)
(D.16)

D.1 Solving the 2nd order BSE

In this section I will give a quick sketch how the solution of the second order Bethe-
Salpter equation might be evaluated in practice using the known scheme for solving the
first order BSE.

In order to simplify the notation and the evaluation of the solution (D.16) we assume for
the moment that =3 is indeed vanishing and we define the quantities

F(1234) = /d56L(1256)L (6543) (D.17)
I(1234) = /d56L51(2165)L(5634) (D.18)
so that the solution reads

L(123456) = /d? 12F(1278) LY (78910 11 12)1(9 10 34) I (11 12 56). (D.19)

The linear BSE is customarily solved in the linear transition space (nk) < (n’k’), where
the linear quantities are matrices. In this space the second order quantities are three
dimensional arrays. Note that in principle one could define a second order transition
space (nk) < (n’k’) < (n"K”), where second order quantities are diagonal, but the
product with the linear quantities in such a representation is not straightforward. We
will therefore solve the equation in the linear transition space. Here, we are only interested
in optic (i.e. vertical transitions), so we can drop the k index and henceforth assume an
implicit sum over all k-points.

The definition of the transition space is such that Lgo is diagonal, i.e. for any Lo

L(1234) = Y ny (1)65, (2005, (3)bn, (O L{ Y (D-20)

ninan3ng
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and

(n1n2)

Ly = / d123467,, (1)bn, (2) g (3)65, (4) L(1234). (D.21)
Inserting the real space representation of Lgo

¢i(1)95(2)7 (3)9;(4)

Lo(1234) = i — [y D.22
0(1234) %}(fz et (D.22)
yields
(nana) _ ;g p+0(n1,n3)d(n2, na)
LO(nlng) = (1= f2) e tw (D.23)
Analogously, we define for the 6-point quantities:
* * * (nSnG)
LO23456) = 3 b (165, (2% (8)6u, (6%, (5)dng (6)Limnsy  (D.24)
NIN2NINANENG ninz)
and
(nsne)
Lgn3n4g = /d123456¢21 (1)¢n2(2)¢n3(3)¢24(4)¢n5(5)¢26(6)L(123456) (D.25)
ning

inserting the real space representation of Lgg
¢i(r1)¢;(r2)

€ — € +WQ+(U3+2’L.T])

5 (r5) Pk (r6) P} (r3) di(ra)

Lo(123456) = Z(
ijk

¢§(r5)¢k(rﬁ)¢2(r3)¢z(r4)+

¢} (r3)d1s(ra) 9 (r5) di(re)

X [(fz_fk) (Ei—€k+w2+i77)
¢} (r3)d1,(ra) ¢} (r5)di(re)

(fi = fw) (¢, — € + ws + in) + (£ = fr) (e — €5 +wa + 1)
(D.26)
yields
(nsne) 1
Lo(ngni) =

X
(niny) (€ — €j + wa + w3 + 2in)
< - f3)5(n2,n5)5(n3,n6)5(@1,n4)
(€1 — €3 +wa +1in)
(ng, ng)é(n4, n5)5(n1, n6)
(61 — €4 + w3+ in)

d(n2,n5)8(n3,n6)0(n1, n4)
(€3 — €2 + w3z +in)
(ng, n3)5(n4, 715)(5(77,1, TLG)
(64 — €9 +wy + in)
(D.27)

+ (f2 — f3)

(fl—f4)5 +(f2—f4)5
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With this notation the solution of the second order BSE reads
(n7ns)

n5n6

_ (n7ns) (n3na) r(nsne)
Z?Zi - Z Fn1n2 LO(:1917;112))1(”9”10)1(”11n12) (D28)

nr...ni2

The convenience of the representation in transition space is that one can assign to each
pair of indices (njny) a single index i, i.e i < (njny), so that we have to evaluate the
rank three matrix equation

Liji = Z Fy LotmnImjInk- (D.29)

Imn

The second order polarizability xo is then obtained from this result via

X(123) = L(112233) = > ¢4, (1)¢7, (1)95, (285 (2) 0%, (3)dks (3) L (D.30)

ijk

The method outlined here to evaluate the three-particle correlation function can be im-
plemented on top of existing schemes to solve the linear BSE, provided they give Lo in
transition space. While the linear BSE is now almost routinely solved for systems with
increasing complexity, it is however not clear if this method to obtain the three-particle
correlation function is feasible in terms of computational ressources because the scaling
of the six-point quantity is very unfavorable.

116



E Hedin's equations

Hedin’s equations are a set of self-consisten many-body equations that in principle give
the exact single particle Green’s function. They read:

(1, 2) :i/d34G(1,4)W(3, 1)T'(4,2,3) (B.1)
G(1,2) = Gu(1,2) +/d34GH(1,3)E(3,4)G(4, 2) (E.2)
I(1,2,3) = 6(1,2)5(1,3) + / d4567%0(4, 6)G(7,5)(6,7,3) (E.3)
P(1,2) = —z‘/d34G(2,3)G(4, 2)0(3,4,1) (E.4)
W(1,2) = v(1,2) + / d34v(1,2) P(3,4)W (4,2) (E.5)

While these equations form a closed set of equations, it is in practice not possible to solve
them exactly so that many different approximations have been made to solve them at
least partly.

In the following I will give the definitions of the constituent quantities of Hedin’s equa-
tions, without going into detail about their physical motivation, which has been done in
many other places [24, 96, 154]. The Hartree Green’s function G can be defined from

0

[28_ — ho(1) — VH(l,Q)] Gr(1,2) =0(1,2) (E.6)
t1

where ho(1) = —V?%/2 + Viy is the single particle Hamiltonian and Vy is the Hartree

potential.

The self energy ¥ is introduced to closed the equation of motion [95] of the Green’s

function by letting

i/d%(ﬁﬁ)iii’ég = /d32(1,3)G(3, 2) (E.7)

and is most commonly approximated as ¥ = GW, where the screened interaction W
reads

W(1,2) = /d361(1, 2)v(3,2). (E.8)
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and e~ ! is the (time ordered) screening

e 1(1,2) = g“;;‘j(é)) = 61,2 +/d3v(1,3)x(3, 2). (E.9)

The vertex I' contains the higher order corrections to the self energy and is defined as

§G71(1,2)

I'1,2,3) = — .
( ? ?3) 5m0t(3)

(E.10)
The irreducible polarizability P is closely related to the reducible polarizability x1, Eq.
(2.34), and is defined as

pa,2) = 20 (E.11)

B ‘/tot(Q)

so it is the variation of the density with respect to the total insted the perturbing poten-
tial, as in the case of x1. Their relation obeys the Dyson equation

x(1,2) = P(1,2) +/d34P(1,3)v(3,4)X(4,2). (E.12)

E.1 Second order Irreducible Polarizability

For the second order 2, which in this context is called the second order reducible polariz-
ability, one can derive the analogous second order irreducible polarizability P». Starting
from the definition of xo

3p(1)

x(1,2,3) = Voon (3)5Voer (2) (E.13)

we can make the connection to the irreducible quantities in Hedin’s equations. We use
the chainrule to obtain derivative with respect to the total potential:

dp(1) op(1) Vit (4)
Vper (3) [/ NV (@ 6vper<2>}
/d45 5 |: 6/)(1) 5‘/:50t(4):| 5‘/:501:(5)

Viot (5) [ 0Viot (4) 6Viper (2) | Viper (3)
_ /d45 52P(1) 5‘/tot(4) 5‘/:501:(5)
B Vot (5)0Viot (4) 6Vper (2) 6Viper (3)

op(1)  *Viw(d)  6Vier(5)
* / a5 5Vtot (4) 5Vtot(5)5vper(2) 5Vper(3)

x1,2,3)

_l’_

_ 52P(1) 5Vvtot (4) 5‘401:(5) 5/)(1) 52%% (4)
B /d45 5%01: (5)5‘/mt (4) 5‘/per(Q) 5Vper(3) + /d45‘/tot (4) 5Vper(3)5vper(2)
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Now we use the definitions of the screening ¢!, Eq. (E.9), the linear irreducible polar-
izability P;, Eq. (E.11) and define the second order irreducible polarizability as

*p(1)
P(1,2,3) = E.14
( ) 5Wot(3)5‘/tot(2) ( )
SO we can write
52 Viot (4)
1,2,3) = [ d45P(1,4,5)e 1 (4,2)e (5,3 /d4P14 tot . (E.15
x(1.2:3) = [a5P45 12 6.3 + [ a0 o @
Using again Eq. (E.9) for e~! in this expression and carrying out
82 Viot (4) Se1(4,2)
- =) — | d50(4,5)v(5,2,3 E.16
Voo (3)0Voer (2)  6Vper(3) / v(4,5)x(5,2,3) (E.16)
we obtain

x(1,2,3) = / d4567P(1,4,5) [5(4,2) + v(4,6)x(6,2)] [6(5,3) + v(5, 7)x(7,3)] + -
E.17
+/d45P(1,4)v(4, 5)x(5,2,3).

In analogy with the Dyson like equation for x(2) (2.47) this can be formally solved by
using the first order Dyson equation for the reducible polarizability (E.12) in steps similar
to Eqgs. (2.48)-(2.55). The final relations are

x(1,2,3) =
/d4567 [6(1,9) + x(1,8)v(8,9)] P(9,4,5)[0(4,2) + v(4,6)x(6,2)] [6(5,3) + v(5,7)x(7,3)]
(E.18)
and
P(1,2,3) =

/ 4567 [5(1,9) — v(8,9)P(1,8)] x(9,4,5) [6(4,2) — v(4,6)P(6,2)] [5(5,3)v(5,7)P(7,3)]
(E.19)

or alternatively expressed with inverse linear quantities

x(1,2,3) = /d4...d9x(1,8)P1(8,9)P(9,5,4)P1(5,6)X(6,2)P1(4, 7)x(7,3)
(E.20)
P(1,2,3) = /d4...d9P(1,8)X_1(8,9)X(9,5,4)X_1(5,6)P(6,2)X_1(4, 7)P(7,3).
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These are the relations between reducible and irreducible quantities for the second
order case.
The second order irreducible polarizability (E.14) contains all many body interactions
and can be obtained from Hedin’s equation for the first order, Eq. (E.4), by deriving
with respect to Viet:

— i / d45‘gcvif’é; G(5,2)T(4,5,1) — (E.22)
i / d45a(2,4)§ii’(§;r(4,5,1) - (E.23)
i / d45G(2,4)G(5,2)%. (E.24)

The derivative of G with respect to the total field can be expressed in terms of the vertex.
To this end we take the derivative of the identity

/d3G—1(1,3)G(3, 2) = 6(1,2) (E.25)

with respect to the total field

-1
/d3G1(1,3)§C‘2(j’(i3 = _/d36§Tt((1;1$)G(3’2) (E.26)
and it follows
5G(1,2) . 5G—1(4, 5)
Vit 3) = —/d45G(1,4)mG(5,2). (E.27)

Furthermore we use the definition of the irreducible vertex function, Eq. (E.10) so we
have for our second order irreducible polarizability

P(1,2,3) = +z’/d4567G(2,6)F(6,7,3)G(7,4)G(5,2)F(4,5,1)— (E.28)
+z’/d45G(2,4)G(5,6)F(6, 7,3)G(7,2)T'(4,5,1) — (E.29)

, 5T(4,5,1)
—i / d45G(2,4)G(5,2)m. (E.30)
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F Second order TDDFT and BSE

In this appendix I will give some details concerning the derivation of the second order
many body exchange and correlation kernel g,. as described in Sec. 7.5.

To combine the second order Bethe Salpeter equation and the TDDFT Dyson like equa-
tion we have to represent the TDDFT equation in terms of four and six point quantities,
written as P and SP. The Dyson like equation for the irreducible polarizability reads:

P(1,2,3,4,5,6) :/d?..194p(1,2,7,8) 1Pt (8,7,10,9) Py (9,10, 11,12, 13, 14) x
« 4Py 1(12,11,16,17) 4P(16,17,3,4) *P, (14,13, 19, 18) *P(18, 19, 5, 6)+
+ /d?..124P(1, 2,7,8) %,.(7,8,9,10,11,12) “P(9, 10, 3,4) *P(11,12, 5, 6)
(F.1)

where
Cg2¢(7,8,9,10,11,12) = 6(7,8)8(9,10)6(11,12) gy (7,9, 11) (F.2)
and the linear quantities obey the four point Dyson equation, like
‘P(1,2,3,4) = /d56784P0(1,2,5,6) [0(3,5)0(4,6) + d(5,6)0(7,8)f(5,7)P(7,8,3,4)]
(F.3)
so that
/d124P01(10,9,2, 1)%P(1,2,3,4) = /d78 [6(3,9)6(4,10) 4 6(9,10)8(7,8) f(9,7)P(7,8,3,4)]
(F.4)

so that when one takes the contraction P(1,1,2,2,3,3) of Eq. (F.1) it collapses to

P(1,2,3) :/d456789P(1,4)P0_1(4, 5)Py(5,6,7)P; (6,8)P(8,2) Py 1 (7,9)P(9,2)+

+/d45P(1,4)gmc(4,5,6)P(5,2)P(6,3).
(F.5)
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With this definitions the 'Sham-Schliiter’ equation (7.27) reads

/7 1201 (1278)L(789101112) L~ (109 34) L~ (12 11 56)—

/d? 124P 1 (1278) 0P(789 1011 12) *P~ 1 (109:34) P~ (1211 56) = (F.6)
= 2(123456) — %,.(123456)
and can be solved for Ls to yield
L(131415161718) =
= /d1..12£(13 1421) 4P~ " (1278) 6P(789 1011 12) “P~ " (109.34) L (43 15 16) x
(F.7)

x 4P (121156)L(651718)+

+ / d1..6L(131421) [£(123456) — %,..(123456)] L(431516)L(65 1718).

Now, to use the property L(131315151717) = P(13,15,17) we carry out this contrac-
tion, as well as collapsing all redundant indices and obtain

P(13,15,17) =
:/d1..12£(13 1321) 4P~ (1277)P(7911) P~ ' (9934) L.(43 15 15) x
% 4PN (1111 56)L(65 17 17)+ (F.8)

+ /dl..6i(13 1321)=(123456) L (4315 15) L (6517 17)—

— /d135i(13 1311) g, (135)L(331515) L(55 17 17).

The diagonal Lo in the last term are in fact P; quantities, so that we obtain solving this
equation for g..

ga:c(L 27 3) =

:/d4..15P—1(1,4) L(4456)*P " (6577) Py (7,8,9) P~ (881110) L (1011 1212) x
x 4P71(991413)L (131415 15) — Py(4,12,15)| P1(12,2)P~1(15,3)+

+/d4..12P—1(1,4)13(4456)5(6587109) (781111)L(9101212)P~1(12,2) P~ (12, 3).
(F.9)
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