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Preface

Bisogna esser duri senza perder mai la
tenerezza.

Ernesto Guevara de La Serna

The great amount of breakthroughs in Silicon-based technology in the last
decade has switched the traditional electronic branch into a new fascinating
research field: the Silicon Photonics. Squeezing of light out of Silicon is
becoming one of the most intriguing task of the Silicon research field: in par-
ticular because over the past few years the trend of continued down-scaling
of the ”traditional” Silicon integrated circuits to increase speed is reaching
the limit. Thus the necessity to speed up the level of communications
has been dictated not only by the digital processing of information or
by the developing of interconnections to carry the information, but also
simply by the requirement to communicate between people all around the
world; this has determined an acceleration to improve the interface between
the traditional Silicon electronics and the newest Silicon Photonics, a
very challenging task, high on the agenda in the field of optoelectronics.
Propelled by pioneering research conducted in the 1980s and 1990s, Silicon
photonics has enjoyed spectacular progress in particular in the past decade.

Several recent papers confirm that Silicon-based active optical compo-
nents are nowadays becoming reliable and interesting in order to leverage
the infrastructure of Silicon microelectronics technology for the fabrication
of optoelectronic devices. Moving towards dimension of just few nanometers
seems to be the ultimate and very useful way to overcome the physical
limitations of overlapping electrical fields and current leakage of the
two-dimensional field-effect transistors. New devices incorporating Silicon
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nanostructures (like nanocrystals, nanowires, nanorods) have attract effort
of research for their optical features in the photonics and Nanophotonics
branch.

Aim of this PhD thesis work will be the investigation of the role played
by doping with donor and acceptor impurities like Boron and Phospho-
rous Silicon based nanostructures, like Silicon nanocrystals and nanowires.
Doping - the intentional introduction of impurities into a material is fun-
damental to control the properties of bulk semiconductors, and also to
engineer the electronic and optical properties of nanocrystals and nanowires
for optoelectronic applications. Doping Silicon nanostructures can be
an useful tool in order to render the emission of light from nanocrystals
and nanowires more efficient, bypassing through the insertion of acceptor
and donor impurities several competitive processes, like the absorption of
free carriers and the Auger non radiative recombination of electron-hole
pairs, that quench and degrade the emission of light from these Silicon
nanostructures.

Till now very few theoretical works about doping Silicon nanocrystals
and nanowires are appeared in literature and the majority concerns the
single doping of nanostructures for transport applications. Aim of this
research will be therefore the study of the effects produced by codoping
simultaneously with Boron and Phosphorus Silicon nanocrystals
and nanowires. Supported by the recent experimental outcomes by
Minoru Fujii and coworkers on the possibility to tune the photolumines-
cence emission from codoped Silicon nanocrystals, we performed the first
theoretical ab initio study based on a plane wave pseudopotential
method on codoped Silicon nanostructures focusing the attention on
how the codoping modifies the stability and the structures of nanoclusters
and nanowires and how the electronic and optical features can be engineered
according to the experimental evidence.

The thesis is organized as follow: after a brief Introduction which describes
the technological and scientific interests that lies behind the Silicon Nanos-
tructures, in the First and Second Chapter will be described the theoretical
background on which are based the present first principle calculations, mov-
ing from the basic knowledge of DFT to the Many Body Perturbation The-
ory framework; moreover the codoped Silicon Nanocrystals will be describe in
terms of Formation Energy and Structural Stability in Chapter Three, point-
ing out the effects of doping on electronic and optical properties on Chapter
Four. More specifically, for the first time it has been performed an ab ini-
tio calculation of the emission spectrum for one of the codoped nanocrystals
studied, comparing the IP-RPA spectra with the one obtained through the
Many-Body approach by including GW corrections and excitonic effect via
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Bethe-Salpeter equation. Next the attention will be focused in Chapter Five
on multidoped Silicon Nanocrystals, with more than two impurities inserted
into the core. Finally the Chapter Six will be devoted to the description of
codoped Silicon Nanowires of different diameters and unit cell size in terms
of electronic and optical IP-RPA absorption.





1
Introduction

Zemian!
tgnirev strec a cla piopa
elta, saca e slanzeda
chl a-s ciama Ghirlandeina

Sandrone,Famiglia Pavironica

1.1 The Silicon Connection

Silicon, the second most abundant element (after oxygen) in the Earth
crust, making up 25.7% of the crust by mass, is one of most (probably the
absolute) striking material for electronic and technological applications.
Silicon has be defined the material where the extraordinary is made ordinary
[1], where enormous performance improvements and manufacturing cost
reductions over the last fifty years have been coupled by the basic research
field and the applied one. Thus integration and economy of scale are the
two keys ingredient for the Silicon technological success, as demonstrated
since the early 1947 when the ”electronic age” started with the invention of
the transistor by J. Bardeen, W. H. Brattain and W. B. Shockley then has
become a reality when the first electronic integrated circuit was developed
by J. S. Kilby in 1957.

Silicon has thus become the leading and most prominent building-block
material for electronics. Silicon has an indirect band-gap of 1.12 eV that
is ideal for room temperature operation and an oxide SiO2 that allows the
processing flexibility to place today more than 109 devices on a single chip.
However all the single transistors and electronic devices have transferred
information to length scale which are relevant with respect to their
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14 1. Introduction

nanometric scale. Pushing down the dimension of Silicon-based devices
toward the nanometric scale determines an high concentration of transistor
on a single Silicon crystal (around 200 mm for the moment) that have
permitted with an high integration level high-speed device performances
and unprecedented interconnection levels. As the famous empirical law
coined by Gordon Moore in 1960 asserts, the number of transistors on an
integrated circuit would be double every 12 months (lately corrected to 18
months) (see Fig. 1.1) and at the same time the chip interconnections
length (15 Km of connection today, 91 till ten years!) and the power density
(too high to keep the components at low working temperature) supplied by
the components will increase uncontrolled.

Figure 1.1: The Moore’s law: number of transistor integrated from 1970’s to
nowadays and the hand-sketched note by G. Moore. This empirical trend will
saturate if either new technologies in Integrated Circuits (IC) are going to be
introduced or new devices concepts developed (Courtesy of Intel).

The present interconnection degree is sufficient to cause interconnect
propagation delays, overheating and information latency between single
devices, generating the so-called interconnection bottleneck, depicted in
Fig. 1.2 . Overcome these problematic is together the main motivation and
opportunity for the present-day Silicon microphotonics, where attempts to
combine photonics and electronic components on a single Si chip or wafer
are strongly pursued. In addition, photonics aims to combine the power
of Silicon microelectronics with the advantages of photonics: the challenge
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Figure 1.2: Trends in transistor gate delay (switching time) and interconnect
delay (propagation time for an aluminium/Silicon dioxide system) with IC fabri-
cation technology. The crossover point represents the start of the interconnect

bottleneck, where optical technology could have come to the rescue. With
copper wires and advanced dielectric materials, the crossover happened at a
linewidth of 0.18 µm, from [2].

is to turn Silicon into the photonics material per excellence where the
convergence between electronic and photonics is realized, to make the
extraordinary happen again in Silicon.

Silicon photonics has boomed in recent years and all the various photonics
devices have been demonstrated, focusing in particular the attention to
the emitting, guiding and modulating light features that could be the
key to creating short-distance ultrafast optical interconnects for data
communication applications: Si-based optical waveguides with extremely
low losses and small curvature radii [3], tuneable optical filters, fast switches
(ns) [4] and fast optical modulators (GHz)[5], fast CMOS photodetectors
[6], integrated Ge photodetectors for 1.55 µm radiation [7, 8] are only a
little fraction of the new promising generation technology.

The main difficult that slows the progress is nowadays the lack of practi-
cal Si-based light sources, such as efficient Si light emitting diodes (LED) or
all Si injection lasers. Thus since Silicon is an indirect band-gap material,
light emission is a phonon-mediated process with low probability (sponta-
neous recombination lifetimes are in the ms range) and with low intensity
emission in the near infrared. Moreover, in bulk Silicon, the competitive
non-radiative recombination rates are much higher than the radiative ones
and most of the excited e-h pairs recombine non-radiatively. This yields
very low internal quantum efficiency (ηi ≈10−6) for bulk Silicon lumines-
cence. In addition, fast non-radiative processes such as Auger or free carrier
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absorption processes severely prevent population inversion for Silicon opti-
cal transitions at the high pumping rates which is instead needed to achieve
optical amplification.

Despite of all, during the nineties many different strategies have been
employed to overcome these materials limitations. The most successful ones
are based on the exploitation of low dimensional Silicon structures
where the electronic properties of free carriers are modified by quantum
confinement effects [9, 10].
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1.2 Let be there Light, let be there Silicon!

The roadmap for Si photonics has been traced but is only with several recent
breakthrough in the last decade that the exploitation of optical phenomena
in Silicon on the nanoscale, Silicon nanophotonics, is opening up a diverse
field of study that promises to deliver technological solutions. The way to
achieve light from Silicon and more important, to increase the emission ef-
ficiency of Silicon is to turn it into a low dimensional material and, hence,
to exploit quantum confinement effects to increase the radiative probability
of carriers. The first attempt has been pioneered in 1990 (by chance at the
beginning) by the work of L. Canham which showed that when Silicon is
partially etched in an HF solution via an electrochemical attack, the sur-
viving structure is formed by small nanocrystals and nanowires which show
bright red luminescence at room temperature [11]. This material, assimi-
lated to a ”quantum sponge”, is called Porous Silicon, shown in Fig. 1.3 and
it has been deeply studied since its discover [12, 13]. The explanation of

Figure 1.3: Porous Silicon sample at TEM on the left, and scheme of the
different level of porosity which gives rise to different confined nanostructures
(from [11]).

the observed high luminescence internal quantum efficiency was: i) quan-
tum confinement which leads to an enlargement of the band-gap and to an
increased recombination probability, ii) the spatial confinement of the free
carriers which prevent them to reach non radiative recombination centers,
iii) the reduction of the refractive index of the material which increases the
extraction efficiency via refractive index matching. This result has moti-
vated many research efforts in order to exploit these properties in visible
light emitting devices such as LED based on Porous Silicon [14].

Furthermore one of the main point of attraction on Silicon photonics
lies in the possibility to achieve not only light from Silicon-based devices,
but prominently to achieve gain of light from this dispositive, as shown in
Fig. 1.4. In particular great attention has been payed to Silicon nanostruc-
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Figure 1.4: Left: first light from Silicon. Nanocrystalline Silicon emits red light
when stimulated by an argon-ion laser (green light). Right: experimental setup
to observe emission of visible light from Silicon Nanocrystals.

tures such as Silicon nanocrystals (Sinc) and nanowires (Sinw) (in Fig. 1.5)
since the first optical gain in Sinc has been demonstrated by Lorenzo
Pavesi and coworker in 2000 [15]. By firing high-energy Silicon ions into
quartz (Silicon dioxide), and then heating the material to 1100 C, Pavesi
and his colleagues generated Silicon particles about 3 nm across that were
embedded in the quartz. These researchers showed that not only do the
nanocrystals emit red light when energized with a laser beam, but they can
also amplify a ’probe’ beam of the same wavelength as the emission. Known
as optical gain, this phenomenon is one of the fundamental features of
laser emission. Sinc embedded in silica matrix have shown strong photolu-
minescence emission and in particular the possibility to gain as a measure of
amplified spontaneous emission or as a superlinear increase of the lumines-
cence intensity or as probe amplification in transmission experiments under
high pumping excitation [16, 17, 18]. Light emission has not been observed
only in Porous Silicon [19, 12, 20], but also in low dimensional Si systems
such as Silicon nanocrystals [21], Silicon/insulator superlattices [22, 23] and
Silicon nanopillars [24].

Moreover by considering from the early experimental outcomes of Can-
ham the Porous Silicon as a substance made up of a network of nanowires,
also these one-dimensional systems has attracted the attention of research.
Illuminating Silicon nanowires with laser light to create pairs of negative
and positive charge carriers determines suddenly Porous Silicon glows with
visible light; this process has revealed to be 10,000 times more efficient in
the nanowires than in normal Silicon. Nanowires such as nanocrystals have
thus found application for new photonics devices, such as LED: several ex-
perimental groups have been able to build crossed-wire p-n junctions that
efficiently emit light in the visible region [25, 26, 27].
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Figure 1.5: Top: TEM image of Silicon nanocrystals embedded in an oxide
matrix. Bottom: TEM and SEM images of bunch of Silicon nanowiress.

1.3 Doping goes to nano

Although the great effort in the research for a Si based emitting light source
and even if it has been found that Si nanocrystals band-gap increases with
decreasing size with a luminescence external efficiency in excess of 23%,
Si nanocrystals (Sinc) still have a memory of the indirect band gap of
the bulk phase and this is evidenced by the clearly observed structures
related to momentum-conserving phonons [28, 29]. Although in Silicon
nanocrystals the quantum confinement breaks the k-vector selection rule
and allows direct radiative transitions even without phonon assistance,
the calculated radiative lifetime remains long, more than 10 µs, for Sinc
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containing more than 20 atoms as confirmed by theoretical [30] and
experimental [31] evidence. Since the Auger lifetimes τ lie between 10−1

and 102 nanoseconds (ns), these non radiative recombination process are
much faster and more competitive than the radiative ones. This drawback
can be circumvented by doping Silicon nanostructures, thus by introducing
isoelectronic [32] or n- and p- type impurities [29, 12, 33] within both na-
nocrystals and nanowires in order to sustain more the radiative transitions
and diminish the competitive quenching action of the Auger decay processes.

Yet impurities play a central role in semiconductor technology. Perfor-
mance of a semiconductor device is dictated by shallow dopants. Shallow
dopants like Boron (B) and Phosphorus (P) alter the conductivity of bulk
Silicon by several orders of magnitude. Deep defects, on the other hand,
are known to degrade device performance. These properties are expected to
be significantly altered in highly confined systems such as Sinc. Important
questions arise as to whether dopants will continue to play a role similar to
that in bulk semiconductors and whether new applications will become pos-
sible. Experimental studies of impurities in Sinc have been slow to address
such issues, the major part due to difficulties in preparation of samples in a
controllable manner. To date, efforts have focused almost exclusively on: (i)
studies of Boron-doped or Phosphorus-doped Si nanowires [34, 35], materials
that have enabled the assembly and fabrication of field-effect transistors and
biosensors, and (ii) the possible control of the photoluminescence properties
of Si nanodots by n- and p-type impurities [36, 37]. Concerning these exper-
iments several questions are still open: in some cases a very low conductivity
is measured, thus it is not clear whether or not the doping of Sinc provides
a generation of free charge carriers. In the case of Si nanowires a decrease
in mobility with decreasing dopant concentration has been observed that
contrasts the usual behaviour in bulk Si, where increase in dopant concen-
tration leads to increased scattering and a reduction in mobility; it is not
clear if this effect is intrinsic or not to the one-dimensional geometry of the
wires.

In the last years the experimental group of Minoru Fujii has demonstrated
that the simultaneously insertion of n- and p- type impurities, such as Boron
and Phosphorus, within the Silicon nanocrystals tends to suppress the PL
quenching that normally arise in undoped Sinc or when stand-alone donor or
acceptor impurity are individually present [36, 37, 38]. It has been demon-
strated infact by Kovalev and coworkers [39] that, when single donor or
acceptor impurities are present within the nanocrystals, due to the spatial
localization of excitons in the vicinity of neutral impurities the effective con-
centration of the carriers (two photogenerated + one intrinsic) is very high
on the order of 1018 to 1019 cm−3: at these concentrations the most effective
recombination mechanism in Si is the Auger process. Thus the crystallites
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Figure 1.6: Annealing temperature dependence of (a) pure nc-Si, (b) B-doped
nc-Si (left side) and (c) P-doped nc-Si, and (d) B- and P-codoped nc-Si (right
side). All spectra are taken at the same condition. The vertical red line is drawn
at the band-gap energy of bulk Si crystals s1.12 eV.

containing a single shallow impurity are ”dark” [33, 40, 41].

By simultaneously doping Silicon nanocrystals instead, Fujii demonstrate
that PL properties of P and B codoped Sinc’s assemblies have the PL maxi-
mum below the band-gap energy of bulk Si crystals and also that the mech-
anism of the PL is different from that of pure Sinc’s. Under resonant PL
excitation condition, impurity codoped samples exhibit quite different PL
spectra from those of pure Sinc’s.

In particular B and P codoping suppress the quenching of photolumines-
cence that occurs when only Boron or Phosphorus are singularly present;
furthermore the codoped nc exhibit stronger PL peaks shifted to lower
energies with respect to the corresponding undoped and single doped Sinc
and in particular below the bulk Silicon band gap limit as in Fig. 1.6, thus
demonstrating that by simultaneously doping n- and p- type impurities in
Sinc, it’ s possible to change the indirect band-gap nature of pure Sinc to
direct ones without losing the intensity as shown in panel (d) of Fig. 1.6.
This approach may further improve the luminescence efficiency of Sinc as
well as extend the tunable range of the luminescence energy. However, to
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make the benefit of this effect maximum, carriers in all nanocrystals in a
sample should be compensated.

Since impurity doping is expected to change significantly the electronic
band structure of nanocrystals, there is a need of a detailed theoretical
knowledge of their electronic states, crucial to fully understand their opti-
cal and electrical transport properties. Theoretical studies of impurities in
quantum dots and wires have lagged relative to calculations for pure, un-
doped systems. To the best of our knowledge only few theoretical studies
exist in literature related to the role of doping on Silicon nanostructures
and, for what concern the nanowires, mostly of them are mainly focused
on the electronic conductance and transport properties of n- or p- type sin-
gle doped nanowires and based on semi-empirical tight binding approach
[42]. Impurity surface segregation strongly affects the conductance with re-
spect to the undoped Sinw. Boron or phosphorus single doping leads to
significantly different conductance properties in wires compared to bulk; in
particular, single P- doped wires subdue to a drop of conductance due to
a strong resonant backscattering that reduces the mobility of carriers at
selected energies.

The idea of this thesis comes form the fact that very few and/or not con-
clusive theoretical studies exist on the role played by single and co- doping
on the optical properties of Sinc and in particular on Sinw [43]. In particular
our aim is to focus the attention on the role played by simultaneous substi-
tutional impurities like Boron and Phosphorus on the electronic and optical
properties of these nanostructured systems, finding out what does also re-
ally change in the electronic structures and in the optical response when
we move from 3D confined nanodots to 2D confined nanowires by a first
principle calculations. Absorption and emission spectra will be calculated
within a Many-Body approach by means of the GW self energy corrections
and excitonic effects in order to bring out the most reliable study to shed
more light on the possibility to engineer and tune the emission of light from
codoped Silicon nanostructures.

1.4 Physical Properties of undoped SiNC

Silicon nanocrystals are quasi 0- dimensional nanosized system that can be
synthesized in different ways. Deposition techniques from silane decomposi-
tion in gas phase or from laser ablation permit to obtain Sinc with accurate
size and concentrations. Other techniques such as the chemical vapor depo-
sition (CVD) or the ion implantation produce Sinc embedded in an Oxide
matrix compatible with integrated circuits (IC) applications. They have
crystalline structure that preserve most of the symmetry properties of the
infinite bulk crystal, and can be treated as spherical [44] or facetted [45] nc.
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• due to the quantum confinement they have quasi-direct energy gap
with discrete quantized energy level with respect the indirect be-
haviour of bulk Silicon; the energy gap can be considered direct at
the Γ k-point due to the band folding; it decreases with the increas-
ing of the nc diameter approaching to the bulk limit value as the size
augment.

• the Sinc present a breakdown of the k-conservation rule: the spatial
confinement of electrons and holes increases the uncertainty of their
crystal momentum thus allowing optical transition which don’t require
the mediation of phonons as instead happen in indirect band gap semi-
conductor.

• Sinc are able to emit light after being excited with optical laser. In
particular this photoluminescence emission of light (PL) is enhanced
when dealing with Sinc ranging from 1 to 5 nm of diameter (dispersion
in size). From several experimental works, it comes out that Sinc
are characterized by a Stokes shift between absorption and emission
processes. This phenomenon could be related to the relaxation that
the nanocrystals subdue after the optical excitation process. This
amount of difference between the absorption and emission energies
is a decreasing function of the nc diameter: it’s bigger for smaller
nanocrystals, while it tends to be negligible when the size increase
toward the bulk limit.

• several theoretical works have been realized in the last decade con-
cerning the simulation of isolated-free standing hydrogenated Si na-
nocrystals [44, 46, 47, 48, 45, 49, 50, 51]. Through different approach
(DFT-LDA, Time Dependent DFT, Quantum Montecarlo, Real Space
approach) these nanocrystals have been studied in order to understand
and reproduce the electronic and optical features of Porous Silicon
which has been demonstrated to be constituted, as prepared, by a ro-
bust network of interconnected Si nanostructures that move from the
nanowires to the nanocrystals size as the porosity increases. Moreover,
after the demonstration that light emission can be achieved both from
aged Porous Silicon samples and from Si nanocrystals embedded in an
oxide (SiO2) matrix [52, 15], several work has been realized in order
to bring out which role plays the oxygen at the surface on the optical
features [53, 20, 54, 55, 56, 57, 45] by comparing theoretical results
with the experimental outcomes. In particular, among the numerous
calculations done, the more sophisticated tend to go beyond the simple
DFT-LDA approach related to total energy calculation of the Ground
State but aspire to shed some more lights on the study of the Excited
State, by taking explicitly into account the electron-hole interaction
through different kind of approach, such as Green function approach,
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Constrain DFT scheme or Time Dependent DFT.

1.5 Physical Properties of undoped SiNW

Silicon nanowires are quasi one-dimensional systems. As for Silicon na-
nocrystals several growth techniques exist, and for each of them different
applications can be realized. The most common fabrication technique is
the Vapor-Solid-Liquid (VSL) growth, in which a metal particle is used to
catalyze the growth reaction of the nanowires. The main effects of low di-
mensionality are:

• size scaling of the optical gap. The effect of uni-dimensional spatial
confinement of carriers along the two direction perpendicular to the
wire axis determines that electrons holes are free to move all along the
wire axis. This determines an opening of the band gap which varies
as a function of the wire diameter. The optical properties instead,
don’t depend so much on the wire diameter, but indeed on the wire
orientation. This anisotropic behaviour could help in the identification
of the different wires grown in a sample.

• as already said for Silicon nanocrystals, the Silicon nanowires present
a direct optical gap, due to the band folding of the energy bands on
the axis of the nanowires.

• Sinw show strong electron-hole interaction effects when compared to
the bulk compounds. As before, the spatial confinement of the carriers
along the wire axis, determines a strong overlap of their wavefunctions
that results in an increasing of the interaction effects. It has been found
that strong bounded exciton present a binding energy 103 times bigger
with respect to the corresponding value in bulk Silicon.



2
Density Functional Theory

Queremos la luz, para nosotros nada
queremos la luz, para todos todo.

La lunga notte, Cisco

Since this work concerns of theoretical simulations of real (or that pretend
to be almost real!) systems for ponderable technological application, we
adopt the most used and efficient technique to deal with success in this
kind of study. To understand the electronic ground-state properties of the
systems we have taken benefit of ab initio approach based on the density
functional theory (DFT) scheme. But, although the well known and tested
efficiency of DFT, we had to recourse to the Many-Body Perturbation
Theory (MBPT) to treat in the proper way the excited-state features, that
means charged and neutral excitations, such as optical absorption and
emission.

Thus this section will pursue with a brief description of some important and,
of course, well known features of DFT and MBPT scheme implemented in
the ab initio computer codes used in the present work to investigate our
systems of interest.

2.1 The Many-Body Problem

One of the principal aim of condensed matter physics and quantum chem-
istry is the theoretical study of the electronic properties. To understand
the behaviour of systems ranging from atoms, molecules and nanostructures
to more complex bulk systems, the resolution of the Schrödinger equation
has become the fundamental and the main task of the many-body prob-
lem. Since the Coulomb or electrostatic interaction between electrons is
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very strong, the analytical solution of this equation is possible only for a
small number of very simple systems and in particular numerical solutions
could be found only for a few number of atoms and molecules. The main
and computational demanding problem lies in the many-body nature of the
Hamiltonian H that governs the evolution of any systems composed by elec-
trons (labelled by coordinates (position and spin) {ri}, momenta pi, mass
mi) and atomic nuclei (represented by coordinates {RI} and momenta PI

with mass MI and atomic charge ZI):

H
[
{r,p} {R,P}

]
=

N∑

i=1

pi
2

2mi
+

M∑

i=1

PI
2

2MI
+

∑

I<J

e2

|ri − rj|
+

−
∑

i<j

ZI e
2

|ri − RI|
+

∑

I<J

ZI ZJ e
2

|RI − Rj|

and that is also applied to the many-body wavefunctions

ΨMB = ({r1, ..., rn} ; {R1...,RN})

describing the eigenstates of the complex real system, in terms of electrons
and atoms contributions through a many-body secular equation

Ĥ
(
{ri}, {RI}

)
ΨMB

(
{ri}, {RI}

)
= Etot ΨMB

(
{ri}, {RI}

)
(2.1)

Due to the huge number of interactions involved this problem is enor-
mously complex to resolve and also nowadays very tough also for the most
powerful supercomputer. Thus the physics and chemistry community has
been obliged to find some approximation that worked to simplify the task.
The first one, exploited by M. Born and M. J. Oppenheimer during 1927,
introduces a hierarchy of approximation due to different scales of energy.
The so called Born-Oppenheimer or adiabatic approximation [58] tends in
fact to decouple the nuclear and the electronic degrees of freedom. Since
electrons move much faster than nuclei it can be assumed that electrons
are in the lowest energy state for the given nuclear configuration: electrons
and nuclei moves on different energy and time scale so that electrons follow
adiabatically the slow ”motion” of nuclei.

Thus, according to the Born-Oppenheimer Approximation, we can separate
the electronic variable from the nuclei ones factorizing the many-body wave-
function into two contributes:

ΨMB ⋍ ΨBO = ϕ({r}, {R}) Φ({R}) (2.2)

Then the secular eigenvalues equation Eq. [2.1]

(Te + TI + Vee + VIe + VII ) ΨMB({ri}, {RI}) = Etot ΨMB({ri}, {RI})
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(where the sum terms have been replaced by T for the kinetic energy and
V for the potential energy) can be separated into two coupled equations

[
Te + Vee + VIe

]
ϕ({r}, {R}) = E ({R}) ϕ({r}, {R})[

TI + VII + C ({R})
]

Φ({R}) = Etot Φ({R}) (2.3)

This means that now the properties of electrons depend on the nuclei
coordinates {RI} in a parametric way: since the nuclei (or ions) are
supposed to be frozen we can see that the ionic potential enter as a
parameter in the equation for electrons Eq. [2.3] and the electrons in
the ionic counterpart equation via the adiabatic parametric energy term
C ({R}), which represents a sort of electronic glue for the lattice. Note that
the energy term CR, called adiabatic diagonal correction, is an operator
that acts on the nuclear wave function Φ({R}) and is generally quite small
and is mostly neglected altogether.
Once the electron equation has been separated by the ionic counterpart,
there’s still another open question blinking on the paper: how to resolve
the electron eigenvalues equation from the quantum theory point since it
describes (with the Vee) interactions between 1023 electrons per material
and the index of the wavefunction ϕ({r}, {R}) runs over N -electrons?
We have again to deal with a ”many-body Schrödinger equation”!

Several models have been proposed during the last century to treat in a
simply but proper way this new formidable ”many-body task” of interacting
electrons. Most of this approximate theories concerns with finding a good
single-particle approximation for the Coulomb term.
The earliest attempt is due to D. R. Hartree in 1928 [59]. The main features
of the Hartree approximation are:

• the non local Coulomb potential is replaced by a local Coulomb poten-
tial (Hartree potential) averaged by all the electrons of the systems

VH =

j=1∑

N

∫
d3r′ ϕ∗

j (r
′)ϕj(r

′)
1

| r − r′ | =

∫
d3r′ ρ(r′)

1

| r − r′ |
(2.4)

• the many-body electron wavefunction ϕ({r}, {R}) is separated into
a product of N single-particle function satisfying a one-electron
Schrödinger equation.

ϕ({r}, {R}) ⋍ ϕH = ϕi(r1) ϕi(r2) ϕi(r3) ... ϕi(rj) (2.5)

Although the Hartree approximation gives reasonable results, it miss the
effect of exchange and correlation between electrons (that are partially
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cancelled each other) and also doesn’t take into account the Pauli exclusion
principle, so neglecting the spin component effect.

Taking into account Fermi-Dirac statistic the wavefunction can be describe
as a Slater’s determinant of single-particle wavefunction, in order to treat
the wavefunction as anti-symmetric with respect to any interchange of two
electrons,

ϕ({r}, {R}) ⋍ ϕHF =
1√
N !

det [ϕi (rj) ]

it’s possible to go beyond the Hartree potential obtaining the so called
Hartree-Fock method where an additional non local spin-dependent ex-
change term appears in the Hamiltonian [60]:

∫
d3r′ Vx(r, r

′) ϕi(r
′) = −

Noccup∑

j=1

∫
d3r′ ϕ∗

j (r
′)

1

| r − r′ | ϕj(r)ϕi(r
′) (2.6)

In this new approach the exchange contribution Vx is now treated ex-
actly and improves the total energy predictions for atoms and molecules
although fails describe solid state systems, such as insulators for which
the energy gap is overestimated. What the Hartree-Fock methods miss
is the correlation between electrons with different spin and therefore the
screening. One possibility to go beyond Hartree-Fock approximation is done
in the configuration interaction (CI) scheme [61]. In this method a set of
Slater determinants is considered as a basis for many-body wavefunction,
but the number of configurations scales very rapidly with the number of
electrons making the method extremely demanding (linear combination of
the determinants are considered to describe the lowest-lying state, but the
increasing number of configurations with increasing number of electrons
means that only systems with a few number of electrons can be calculated
with high accuracy).
All these method belong to the class of mean field approximation: all
the electrons experience an ”averaged” potential due to the electrostatic
interaction with the charge density formed by all other electrons in the
systems.

A different approach was adopted by Thomas and Fermi (1927-1928) [62, 63]
who proposed to cast the many-body problem into a semiclassical variational
framework in which the degrees of freedom of the systems were condensed
into the electron density n(r) only. Extensions of this method were suggested
by Dirac (1930) [64] introducing the exchange interaction between electrons
as a functional of the density, and by Slater who introduced correlations
effects. These were the basis for the development of the Density Functional
Theory.
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2.2 Another brick in the wall: a brief DFT survey

Although in the Thomas-Fermi model is possible to introduce correction
(such as exchange and correlations effects or gradient density with the ex-
tension of Dirac) that can lead to really good results, it can’t be considered
that a first simpler version of the density functional theory. The first the-
oretical foundation of Density Functional Theory (DFT for friends!) was
introduced in 1964 by P. Hohenberg and W. Kohn in a famous paper [65]
that was worth the Nobel Prize for Chemistry to Kohn in the 1998. They
demonstrated that all the electronic properties of the system in its non-
degenerate ground-state (GS) configuration can be completely described
by its electron density n(r); moreover the total energy and the potentials
can be described as functional of the electron density n(r) only.
One year later, in 1965, moving from the H-K theorem, W. Kohn and L.
J. Sham provided a self-consistent scheme in order to map the interacting
many-body problem into a set of non interacting single particle equation re-
formulating the mean-field method into a variational principle on the basis
of the electron density only [66]. The first milestones of Density Func-
tional Theory can therefore considered the Hohenberg-Kohn theorem and
the Kohn-Sham equations.

The Hohenberg-Kohn theorem

The Hohenberg-Kohn (H-K) theorem succeeded to demonstrate that the
properties linked to the electronic structure of a system in its fundamental
non-degenerate ground-state are completely and univocally described by its
electronic ground-state density n(r). The theorem asserts that:

”the ground-state density n(r) of a bound system of interacting electrons in
some external potential v(r) determines this potential uniquely”

where uniquely means ”up to an additive constant” (defined in the
Hohenberg-Kohn paper, uninteresting) and in the case of degenerate ground-
state, the lemma refers to any ground-state density n(r). Taking into ac-
count a N-electron system interacting in presence of an external potential
Vext(r), the Hamiltonian results

Ĥ = T̂ + V̂ext + Ŵ

a sum of a kinetic term

T̂ = − 1

2

N∑

i

∇2
i

an electron-electron interaction Coulomb potential term

Ŵ =
1

2

∑

i6=j

vij ( |ri − rj | )
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and a term representing the interaction with the external potential Vext(r)

V̂ext =
N∑

i

vext (ri)

the ground-state many-body wavefunction can be defined as ϕ(r1. . . ϕN )
and the ground-state electronic density (supposed to be non-degenerate) is

n(r1) = N

∫
ϕ∗(r1. . . ϕN ) ϕ(r1. . . ϕN ) dr2. . . drN

The H-K theorem asserts that ϕ and Vext
1 are univocally determined by

the electronic density n(r) only and they’re called unique functional of the
electronic charge density. From the eigenvalues equation

Ĥ |ϕ(r) 〉 = EGS |ϕ(r) 〉(
T̂ + V̂ + Ŵ

)
|ϕ(r) 〉 = EGS |ϕ(r) 〉 (2.7)

although T and W are univocally specified through the H-K theorem, on the
other hand, the potential v, supposed in the original paper [65] to be local,
bounded and spin-independent, can be considered an element of the V en-
semble containing all the external potential that generate a non-degenerate
ground-state for the system. Each v can be related to a ground-state wave-
function ϕGS to which belong a unique electronic charge density nGS(r):

nGS(r) = 〈ϕGS | n̂(r) |ϕGS 〉

All the densities that satisfy this relation belong to the ensemble N and
are called v-representable because are ground-state electronic densities of the
hamiltonian Ĥ = T̂+Ŵ+V̂ obtained from different vext =

∫
v(r)n(r) dr ∈

V . It’s possible to construct a map between a set of external potential v(r)
and the corresponding ground-state densities n(r) through:

G : v(r) → |ϕ(r) 〉

and since the H-K theorem shows that G is surjective and injective, thus
biunivocal and fully invertible:

G−1 : n(r) → v(r) + c

the ground-state density could be considered the basic variable in the elec-
tronic problem. The application G is surjective for construction but to prove
that is also injective one can shows that two different systems subjected to
two external potentials that differ only for a constant, v(r) 6= v′(r)+ c they

1From now on the external potential will be simply indicated by v
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cannot have the same electronic density for the ground-state, n(r) = n′(r)
leads to an absurdum.
This implies that the ground-state expectation value of any physical observ-
able is a unique functional of the ground-state electron density n(r):

〈ϕ[n]| Ô |ϕ[n] 〉 = O[n]

In particular according to these findings we can define the total energy of the
N -electron system as the expectation value calculated on the ground-state
wavefunction |ϕ〉:

E[n(r)] =
〈
ϕ[n]

∣∣ Ĥ
∣∣ϕ[n]

〉

and defining the universal functional FHK [n]:

FHK [n] =
〈
ϕ[n]

∣∣ (T̂ + Ŵ )
∣∣ϕ[n]

〉
(2.8)

the total energy become:

Ev[n(r)] =

∫
v(r)n(r) d r + FHK [n] (2.9)

It is worth pointing out that FHK [n] is a universal functional because it
doesn’t depend on the external potential and it is the same density functional
for atoms, molecules and solids since in all cases Ŵ is the Coulomb repulsion
between the electrons and T̂ their kinetic energy.
The second part of the H-K theorem establish that through a reformulation
of the Rayleigh-Ritz variational principle in term of the electron density
n(r) is possible to minimize the Ev[n] functional in the class of the regular
functions n(r) satisfying the condition

∫
n(r) d r = N for the exact ground-

state density [67]. The minimization process leads to

E = minñ(r)Ev[ñ] = minñ(r)

{ ∫
v(r)ñ(r)dr + F [ñ]

}
(2.10)

where here ñ(r) refers to all functions of the v − representable class cited
above. The minimum is attained when ñ(r) coincides with the n(r) ground-
state density for a non-degenerate case; for a degenerate case, instead, ñ(r)
is only one of the ground-state densities. The constraint on the number of
particles (that assures the conservation) is resumed with

δE[n(r)]

δn(r)
= µ. (2.11)

where µ mathematically defined as a Lagrange multiplier represents the
chemical potential of the system.
The formidable problem of finding the minimum of 〈Ψ̃ | H | Ψ̃〉 with respect
to the 3N− dimensional trial function Ψ̃ has been transformed into the
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seemingly trivial problem of finding the minimum of Ev[ñ] with respect to
the three-dimensional trial function ñ(r). However the main difficulty in
the determination of the ground-state density is the form of the functional
Eq. [2.8]: fixed the external potential vext(r) the lack of a proper analytical
definition of the FHK [n] functional leads straight the use of approximations
for the minimization of Ev[ñ(r)] for the calculation of Etot and n(r).

The Kohn-Sham equations

A particulary important strategy to solve the problem of the practical DFT
implementations was introduced by Kohn and Sham [66].
They considered an auxiliary system of N non-interacting electrons sub-
jected to an effective potential vKS

eff (r) and described by the Hamiltonian:

ĤKS = T̂KS + v̂KS
eff . (2.12)

by moving from the initial Hartree formulation of the Schrödinger equation
for noninteracting electrons in the external potential veff and from the H-K
minimal principle. According to the theorem of Hohenberg and Kohn, for a
non-interacting N -particle system, the energy is a functional of the density:

Es[n] = Ts[n] +

∫
vs(r)ñ(r)dr (2.13)

The central assertion used in establishing the Kohn-Sham scheme is the
following: ’ ’for any interacting system, there exists a local single
particle potential vks(r) such that the exact ground-state density
n(r) of the interacting systems is equal to the ground-state density
of the auxiliary system ñ(r), i.e. that n(r) = ñ(r)”.

We limit our discussion to non degenerate systems, for a more general
approach see [67].
Minimizing the energy functional for the Kohn-Sham system of N -
independent particles, with the constrain on the number of electrons and
considering that the density ñ(r) must be constructed for an independent-
particle system (one-single Slater determinant), we obtain a set of equations:

[
− ~

2

2m
∇2 + vs(r)

]
ϕi(r) = ǫiϕi(r) (2.14)

The density has a unique representation in term of the (lowest) N single-
particle orbitals:

n(r) = ñ(r) =
N∑

i=1

| ϕi(r) |2 (2.15)
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where the constraint on the density became equivalent to the orthonormality
of the wavefunctions: ∫

drϕ∗
j (r)ϕi(r) = δij (2.16)

Once the existence of a potential vs(r) generating a given interacting density
n(r) is assumed, the uniqueness of vs(r) follows from the Hohenberg-Kohn
theorem.
Thus the single-particle orbitals are unique functional of the density: n(r),
φi(r) = φi([n(r)]) and the non interacting kinetic energy Ts[n(r)] is a
unique functional of n(r) as well.

Starting from the interacting system subject to an external potential v(r)
we can rewrite the total energy functional of Eq. [2.9] splitting FHK [n] as:

FHK [n] =
1

2

∫ ∫
drdr′

n(r)n(r′)

|r − r′| + Ts[n] + Exc[n] (2.17)

and obtaining in this way:

Ev[n] = Ts[n] +

∫
dr v(r)n(r) +

1

2

∫ ∫
dr dr′

n(r)n(r′)

|r − r′| + Exc[n] (2.18)

where we have inserted three terms in FHK [n] such as:

• the Hartree energy term 1
2

∫ ∫
drdr′ n(r)n(r′)

|r−r′| describing interaction be-
tween electrons

• the kinetic energy Ts of the non-interacting system

• the term Exc[n] called exchange-correlation energy and unfortu-
nately still unknown, defined as

Exc[n] = FHK [n] − 1

2

∫ ∫
drdr′

n(r)n(r′)

|r − r′| − Ts[n] (2.19)

but from Eq. [2.8] we can see that Exc consists of a potential and a
kinetic part:

Exc[n] =

(
W [n]− 1

2

∫ ∫
drdr′

n(r)n(r′)

|r − r′|

)
+

(
T [n]+Ts[n]

)
(2.20)

The Hohenberg and Kohn variational principle ensures that Ev[n] is sta-
tionary for small variations of δn(r) around the minimum density n(r):

δEv[n] = E[n+ δn] − E[n] = 0
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∫
δñ(r)

{
v(r) +

δ Ts[ñ]

δñ(r)
+

1

2

∫
ñ(r)

| r − r′ |dr
′ +

δ Exc[ñ]

δñ(r)
− µ

}

ñ≡n

dr = 0

(2.21)

Applying the Euler-Lagrange equations

δTs[n(r)]

δñ(r)
+ v(r) +

1

2

∫
ñ(r′)

|r − r′|dr
′ +

δ Exc[n(r)]

δn
− µ = 0 (2.22)

introducing an exchange-correlation potential vxc defined as:

vxc(r) =
δExc[n]

δn(r)
.

and an effective potential

vKS
eff (r) = v(r) +

1

2

∫
n(r′)

|r − r′|dr
′ + vxc(r)

one can finally get the so called self-consistent Kohn-Sham (KS) equa-
tions [66]: {

− 1

2
∇2 + vKS

eff (r) − εKS
i

}
ϕKS

i = 0 (2.23)

where the εKS
i and ϕKS

i are the Kohn-Sham respectively eigenvalues and
eigenvectors. It can be observed that since

N∑

i

εi =
∑

i

〈ϕi | −
1

2
∇2 + veff (r) | ϕi〉 =

= Ts[n(r)] +

∫
veff n(r)dr =

= Ts +

∫
v(r)n(r) dr +

1

2

∫
n(r)n(r′)

|r − r′| drdr
′ +

+

∫
vxc(r)n(r)dr (2.24)

and

Ev[n] = Ts +

∫
v(r)n(r)dr +

1

2

∫
n(r)n(r′)

| r − r′ | drdr
′ + Exc[n]

then the total energy of the interacting system can be expressed in this way:

Etot = Ts[n] +

∫
vext(r)n(r) d r +

1

2

∫
n(r)n(r′)

|r − r′| drdr
′ + Exc[n] =

N∑

i

εi −
1

2

∫
n(r)n(r′)

|r − r′| drdr
′ + Exc[n] −

∫
vxc(r)n(r) d r (2.25)



Another brick in the wall: a brief DFT survey 35

If one neglects the Exc and the vxc terms altogether, the KS equations
(2.2, 2.23, 2.25) reduce to the self-consistent Hartree equations. The same
must holds also for the non-interacting systems and we can write:

0 = δEs[n] = Es[n+ δn] − Es[n] = δTs +

∫
dr δn(r)vKS(r) (2.26)

This leads to the final expression as seen above:

vKS
eff (r) = vext(r) +

∫
dr′

n(r′)

|r − r′| + vxc(r) (2.27)

The Kohn-Sham formalism relies on the link between an actual N electrons
system and a fictitious non-interacting counterpart through the potential
vxc(r). Hence, vxc(r) contains essential information about many-body cor-
relations which Many-Body Perturbation Theory describes [68, 69] in terms
of non local dynamical terms.

It may be realized that the mapping between ground-state densities and
Kohn-Sham potentials vKS [n](r) depends on n(r) in a very peculiar and
sensitive way. In fact the actual functional relation between n(r) and vxc(r)
is highly non-analytical: small or even infinitesimal changes in the density
may induce substantial variations in the xc potential. It is highly non
local, i.e. changes in the density at a given point r may induce substantial
variations of the xc potential at a point r′.

The KS equation can be regarded as the exact formalization of the Hartree
scheme: with the exact Exc and vxc all the many-body effects are completely
taken into account by principle, and the main effort of DFT lies in the
practical usefulness of ground-state when the good approximation (simply
to use but accurate) for the xc functional is found.
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Some remarks:

1. the Hartree potential gives an exact estimation of the exchange poten-
tial but tends to neglect the correlation effects between electrons of the
system: for that reason the Hartree equations tend to underestimate
the total energy;

2. the KS equation, instead, take into account both the effects of exchange
and correlation contained in the Exc[n] functional;

3. the effective single-particle potential Veff can be regarded as a unique
external potential which leads for noninteracting particles, to the same
density n(r) as that for the interacting electrons in the physical exter-
nal potential v(r);

4. the initial N -electron many-body problem (very computational de-
manding) is simplified to a set of n single-particle equations describing
a fictitious system of noninteracting electrons with electron density of
the real system of interacting electrons;

5. the single-particle KS wavefunction ϕKS
i (r) are considered ”density

optimal” while the Hartree-Fock wavefunction ϕHF
j are ”total energy

optimal” because their normalized determinant leads to the lowest
ground-state energy attainable with a single determinant

Within the Kohn-Sham scheme the problem of the interacting system is
now simpler, but it is still not solved: it is necessary, in fact, to find a good
approximation for the exchange-correlation energy Exc.
Once a good approximation for Exc is obtained, the Kohn-Sham equations
must be solved self-consistently and then it is possible to obtain the ground-
state density of the interacting system and its total energy, as depicted in
Fig. 2.1.

2.2.1 The form of Exc

Since there’s no exist an exact analytical expression for the Exc functional,
the total energy calculations require some approximations for it. In the next
section I’ll fix the attention on three of these approximations that are used in
this work: the Local Density Approximation (LDA), the Local Spin Density
Approximation and the Generalized Gradient Approximation.

The Local Density Approximation

According to this approximation, disclose to be the simplest and most used
one, the xc functional is defined as a local function of the density of a
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Figure 2.1: The main Self-Consistent Algorithm

homogeneous electron gas:

Exc =

∫
dr ǫhom

xc

(
n(r)

)

where ǫhom
xc is the exchange-correlation energy per electron of the homoge-

nous and uniform electron gas. Taking into account an interacting homo-
geneous electron gas, we can say that the exchange-correlation energy per
electron is in this case a function of the density and not a functional since
the density is constant for this kind of system: thus ǫxc[n(r)] → ǫxc(n(r))
and multiplying for the number of electron we get Exc[n] = Nǫxc(n(r)). In
the Local Density approximation, the inhomogeneous electron gas is handled
in the same way: the exchange-correlation energy is the sum of the contri-
bution of each portion of the non uniform gas as it was local uniform.
Thus the exchange-correlation potential become:

vLDA
xc (r) =

∂Exc[n]

∂n(r)
=
∂

∫
ǫxc(nr)n(r)dr

∂n(r)
=

∂[n(r)ǫxc(r)]

∂n(r)
= ǫxc(nr) + n(r)

(
∂ǫxc(n)

∂n

)

n(r)

≡ µxc(n(r)) (2.28)

where µxc(n(r)) is the exchange-correlation contribution to the chemical
potential for an uniform system. The approximation is said to be local be-
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cause ǫxc(r) depends from the local value of the density n(r) in the r position
only. The LDA works well for systems with a slowly varying density and has
proven very successful for calculation of ground-state properties. The lat-
tice constants are predicted within ∼ 1 %, the bulk modulus, the dissociation
energy of molecules, the ionization energy of atoms within ∼ 10 % of experi-
ment, while the cohesive energy is quite generally overestimated, as a result
usually attributed to the predicted under bindings of atoms within LDA. On
the other hand the LDA fails in the estimation of the fundamental energy
gap for semiconductors and insulator, usually underestimated by 30 - 50 %,
although the relative position of the valence band energies for bulk materials
agree well with photoemission experiments [70]. The two contributions to
Exc, the exchange and the correlation energy respectively within ∼10 % and
2 times bigger, tends to compensate and cancel. Thanks to Eq. [2.28] the
Etot of Eq. [2.25] can be expressed in this way:

Etot =
N∑

i

εi −
1

2

∫
n(r)n(r′)

|r − r′| drdr
′ +

∫
n(r)

[
ǫxc(n(r)) − µxc(n(r))

]
d r

(2.29)
where the contribution ǫxc can be exactly derived taking into account the
wavefunction of the homogeneous electron gas as a Slater determinant of
plane waves:

ǫxc(nr) =

[
3

4

(
3

π

)1/3

e2

]
n(r)1/3 = −0.458

rs
e2

where e2 is the radius of the sphere containing one electron given by
(4π/3)r3s = n−1. The correlation term, derived by Wigner in 1938,

ǫxc(nr) = − 0.44

rs + 7.8

was corrected with better precision by David Ceperley and Ben Alder in
1980 [71] through Monte Carlo methods.

As remarked above, the LDA is expected to be useful only for density
varying slowly on the scales of the local Fermi wavelength λF and Thomas -
Fermi wavelength λTF and, nevertheless, it gives good results for atoms and
molecules. The reason lies in the fact that LDA satisfies a sum rule which
expresses the normalization of the exchange-correlation hole. This means
that with an electron in r, the conditional electron density n(r, r′) of the
other electrons is depleted near r in comparison with the average density
n(r′) by the hole distribution nh(r′; r) which integrates to 1. The success of
LDA lies then in

• the exchange-correlation energy is well determined by the spherical
average of the exchange-correlation hole;
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• the Local Density Approximation describes with accuracy this kind of
spherical average;

• there’s a systematic cancellation between the errors as a consequence
of the charge conservation in the sum rule;

LDA energy functional suffers for the self-energy interaction: the exchange
part of the functional does not cancel exactly the self-energy interaction of
the Hartree term. This leads to a wrong asymptotic behaviour of the xc
potential for finite systems (it goes exponentially to zero instead as 1

r ) [72].
There have been several attempts to go beyond the LDA approximation
[73]: the next class of functionals, in which we can consider the GGA
[74], solve some of the problem present in the LDA, but they are just
analytical semi-local approaches. The novel meta-GGA include further
non-analytical and non local behaviour through the explicitly appearance
of the Kohn-Sham wavefunctions, but both GGA and meta-GGA have the
wrong asymptotic behaviour.
Another class of energy functionals are the orbital functionals, in the so
called optimized effective potential (OEP), or optimized potential method
(OPM) [75, 76, 77]. Two example of these orbitals are the exact-exchange
(EXX) and the self-interaction corrected SIC-LDA functionals [78, 78, 79].
In the exact exchange method the exchange contribution Ex[n] is treated
exactly and also the SIC-LDA cancel the Hartree energy part which
contribute to the self-interaction, and vanishes for one-electron systems.

But the ”Spin Doctor” says.....

One improvement with respect to the LDA can be achieved with the imple-
mentation of polarization in spin, in the so called Local Spin Density Approx-
imation (LSDA), in particular for systems that are subjects to an external
magnetic field, or are polarized, or where the relativistic effects are impor-
tant. The main motivation is due to the fact that the exchange-correlation
hole is very different for the electrons with parallel and anti-parallel spins,
and that LSD probably gives a better and correct description of the spheri-
cally averaged exchange-correlation hole. In this approximation, developed
in early seventies from Von Bart and Hedin [80] and then implemented by
Gunnarson and Lundqvist [81], the density is now spin-polarized with two
contributions: n↑(r) and n↓(r). Considering an N -electrons Hamiltonian
coupled with the magnetic field ~B(r) and the spin ŝ [79]

Ĥ = T̂ + V̂ee +
∑

i

v(ri) − 2µ
∑

i

~B(ri)̂s
i
z (2.30)

the density can be defined now as

nσ(r) =
∑

σ

fασ| φασ(r) |2
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with fασ occupation number between 0 and 1 and the energy like functionals
of the spin polarized densities n↑(r) and n↓(r) such as:

Ẽ = T [n↑, n↓]+U [n]+Exc[n
↑, n↓]+

∫
dr v(r)n(r)−2µ

∫
dr ~B(r)

∑

σ

σnσ(r)

and minimizing the above functional with respect to the density nσ(r)
through the application of a generalized Hohenberg-Kohn variational prin-
ciple it’s possible to achieve a set of Kohn-Sham like equation that held for
the spin polarization:

{
− 1

2
∇2 + vσ

eff (r)

}
φασ = εσi φασ (2.31)

with an effective potential

Veff (r) = vext(r) +
1

2

∫
n(r′)

|r − r′|dr
′ + V σ

xc(r)

where the exchange-correlation potential is

V σ
xc

([
n↑, n↓

]
; r

)
=

δ

δnσ(r)
Exc

[
n↑, n↓

]
(2.32)

and the direct Coulomb potential is

u
(
[n]; r

)
=

δ

δ n(r)
U [n] =

∫
dr′

n(r′)

|r − r′| (2.33)

Spin density functional calculation would yield exact results of the exact
Exc[n

↑, n↓] were known and used; in the local spin density approximation
one recovers

ELSD
xc [n↑, n↓] =

∫
dr n(r) ǫxc

(
n↑(r), n↓(r)

)
(2.34)

where again ǫxc

(
n↑(r), n↓(r)

)
is the exchange-correlation energy per particle

of an electron gas with uniform spin densities n↑, n↓. It has worth underline
that this approximation becomes exact when the spin densities vary slowly
enough on the scale of the local Fermi wavelength and screening length [79,
80].

One step beyond: Gradient Expansion and GGA

A natural way to go beyond the LDA is to extend the exchange-correlation
functional with terms containing the gradients of the density. Through the
inclusions of these gradients, variations and changes in the density can be es-
timated and measured leading to a possible improvement of the results. The
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Gradient Expansion offers systematic corrections to LSD electron densities
that vary slowly over space and might appear to be a natural step beyond
LSD. In the original papers of Hohenberg-Kohn and Kohn-Sham [65, 66] is
already presented a gradient expansion based on the polarizability of the
homogeneous electron gas. For densities n(r) varying slowly over space and
having weak variations so n(r) = n0 + ∆n(r), it’s possible to expand the
density around the point r taken to be the origin:

n(r) = n+ ∇i n(r) ri +
1

2

∑
∇ij n(r) rirj + . . . (2.35)

substituting this expansion in the expression of Exc it leads after some math-
ematical manipulation to the gradient expansion

Exc = ELDA
xc +

∫
G2(n) (∇n)2 d r+

∫ [
G4(n) (∇2n)

2
+ . . .

]
dr+ . . . (2.36)

where G2(n) is the universal functional appearing in the Kohn-Sham equa-
tions 2.17 defined as G[n] = Exc[n] + Ts[n]. The terms of the series above
can be resumed as:

E
(0)
xc =

∫
ǫ
(
n(r)

)
n(r) dr (LDA) (2.37)

E
(1)
xc =

∫
f1

(
n(r), |∇n(r)|

)
n(r) dr (GGA) (2.38)

E
(2)
xc =

∫
f2

(
n(r), |∇n(r)|

)
∇2n(r) dr (2.39)

(2.40)

Here the E
(0)
xc corresponds to the LDA level and requires the independently

one variable calculated function n(r), while the E
(1)
xc is the so called Gen-

eralized Gradient Approximation (GGA) which requires the independently
calculated function of two variables, n(r) and |∇n(r)|.
According to J.P. Perdew and S. Kurth [82] a first measure of inhomogeneity
can be obtained through the reduce density gradient

s =
|∇n|
2kFn

=
|∇n|

2 (3π2)1/3 n4/3
=

3

2

(
4

9π

)1/3

|∇rs| (2.41)

which measures how fast and how much the density varies on the scale of
the local Fermi wavelength 2π

kF
. Then, defining a second kind of length scale,

the screening length 1/ks
2 and therefore another reduce density gradient

t =
|∇n|
2ksn

=
(π

4

)1/2
(

9π

4

)1/6 s

r
1/2
s

(2.42)

2In high-density limit (rs → 0) the screening length is the only important length scale
for the correlation hole, (1/ks ∼ r172)
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it’ s possible to write the functional Ts[n],Ex[n] ( exchange energy) and
Ec[n] (correlation energy) under a uniform density scaling [83] through a
gradient expansion

Ts[n] = As

∫
d rn5/3 [1 + αs2 + . . .] (2.43)

Ex[n] = Ax

∫
d rn4/3 [1 + µs2 + . . .] (2.44)

Ec[n] = Ax

∫
d rn [ǫunif

c (n) + β(n)t2 + . . .] (2.45)

neglecting terms of higher order than |∇n|2, what comes out is the second-
order gradient expansion called Gradient Expansion Approximation (GEA).
The(GEA) scheme assumes that the exchange-correlation functional de-
pends locally on the density and on the density gradient and in
particular even if the form of the expansion is easy to find, harder is to
find out the expression for the coefficient that appear in Eq. [2.45]. The
GEA is however found to give not so fairly accurate results with respect
to the one provided by LDA. The Local Spin Density Approximation to
Exc (leading term in the gradient correction) provides good and realistic
results for atoms, molecules and solids; but when introducing the second-
order correction, which is the next naturally correction in the expansion, the
approximation of Exc gets worse. There are two main answer: the former is
that the realistic electron density is not so close to a slowly varying density
and the latter is that the GEA does not satisfy many exact constraints, such
as for example the exchange-correlation hole sum rule. From this point of
view the second-order generalized gradient approximation (GGA) to Exc al-
ready defined in Eq. [2.40], can be write in a suitable way in order to correct
the improper long-range behaviour of the exchange-correlation hole in GEA
and to satisfy the sum rule. The GGA is schematically written

EGGA
xc =

∫
f
(
n, |∇n|, ∇2n

)
n(r) dr (2.46)

and with respect to LDA and LSD tends to improve total energies, atomiza-
tion energies, energy barriers and structural energy differences; GGA also
tends to soft bonds sometimes correcting and sometimes overcorrecting the
LSD results, but nevertheless GGA gives a better description of density
inhomogeneity better than LSD, as depicted in Table 7.3 . The first second-
order gradient expansion was derived in 1968 by Ma and Brueckner [84];
then several different and interesting attempts followed in the next years by
many contributors, since the 1991 when Perdew and other [85] introduce
into the GEA the real space cutoffs u(r + u) and uc(r) for the exchange
and the correlation that tends to improve GEA upon LSD at small u and
tends to correct the spurious large-u values behaviour, providing this way a
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Property LSD GGA

Ex 5% (not negative enough) 0.5%
Ec 100% (too negative) 5%
bond length 1% (too short) 1% (too long)
structure overly favors close packing more correct
energy barrier 100% (too low) 30% (too low)

Table 2.1: Typical errors for atoms, molecules and solids from self-consistent
Kohn-Sham calculations within LSD and GGA approximation in the form de-
picted in this section.

powerful nonempirical scheme to construct GGA. The Perdew-Wang 1991
(PW91) functional an analytical fit to the numerical GGA described in [85]
designed to satisfy the exact conditions described above; it is for most pur-
poses equivalent to the ”GGA made simple” scheme proposed by Perdew,
Burke and Ernzerhof (PBE) [74] in the same year. Ideally the approximate
Exc functional should have a non-empirical derivation, be universal to work
well at the same time with diverse system and be simple and accurate in
order to facilitate its implementation in practical calculations. Since LSD
and empirical-GGA have these structures, the aim of PBE was to retain all
the correct features of LSD while adding others, such as for example the
real-space cutoff scheme of PW91. The correlation energy can be written as

EGGA
c [n↑, n↓] =

∫
drn

[
ec(rs, ζ) +H(rs, ζ, t)

]
(2.47)

where ec is the correlation energy per electron, rs is the Seitz radius (n =
3/4πrs

3 = kF
3/3π2) - the radius of a sphere which contains on average one

electron, ζ = n↑(r)−n↓(r)
n↑(r)+n↓(r)

is the spin polarization factor and t = |∇n|
2φksn is a

generalization of reduced density gradient Eq. [2.42] with

φ(ζ) =
1

2

[
(1 + ζ)2/3 + (1 − ζ)2/3

]

a spin-scaling factor. IfH(rs, ζ, t) is supposed to assume the following ansatz

H(rs, ζ, t) =
( e2
a0

)
γ φ3 ln

{
1 +

β

γ
t2

[ 1 + A t2

1 + A t2 + A2 t4

] }
(2.48)

where

A =
β

γ

[
exp

{ −ǫunif
c

γ φ3 e2/a0

}
− 1

]−1
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the PBE functional will satisfy the properties of

1. in slowly varying limit (t → 0) H tends to second-order gradient
expansion

H →
( e2
a0

)
β φ3 t2

2. in rapidly varying limit (t → ∞)

H → −ǫunif
c

making the correlation vanish, since the sum rule for the correlation
hole density nc

∫
drnc(r, r + u) = 0 is satisfied only for nc = 0 3

3. under uniform scaling to high-density, that means n(r) →
λ3 n(r)forλ → ∞ since rs → 0 as λ−1and t → ∞ as λ1/2, the
correlation energy must scale to a constant cancelling the logarithmic
singularity of ǫLSD

c in the high density limit.

Then the GGA exchange correlation part Ex will be:

EGGA
x =

∫
d rn ǫunif

x (n)Fx(s) (2.49)

with ǫunif
x = −3e2 kF 4/π and Fx(0) = 1 to recover the correct uniform gas

limit. Then, to recover and visualize better the gradient corrected non
locality behaviour it’ s more useful to write

EGGA
xc [n↑, n↓] ≈

∫
d rn(r)

(
− c

rs
Fxc(rs, ζ, s)

)
(2.50)

where c = (3/4π)(9π/4)1/3 and −c/rs = ǫx(rs, ζ = 0) is the exchange
energy per electron of a spin-unpolarized uniform electron gas.

Generalized Gradient Approximations generally lead to improved bond
angles, lengths and energy; in particular the strengths of hydrogen bonds
and other weak ones between closed shell systems are significantly better
reproduced than by local density calculations, in particular at a modest
additional computational cost. The PBE functional, that remedies to some
lack of the PW91, is nowadays the most popular GGA functional; it can be
presented as a first principle functional since it’ s constructed from known
limits of the homogeneous electron gas and scaling relations and it doesn’t
contain any parameters.

3For example, in the electron density tail of a finite system, the contribution of the
exchange energy density and the potential is bigger than the correlation counterparts in
reality, but not in LSD.
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2.2.2 The Meaning of Kohn-Sham eigenvalues

Fake plastic Kohn-Sham eigenvalues?

The question arise spontaneously: which meaning have the eigenvalues once
resolved the Kohn-Sham single-particle equations? Although the Density
Functional formalism has been developed to achieve the ground-state
properties, in many cases this scheme is also use to get results related to
the excited-state properties of the systems. This means the possibility to
interpret the calculated eigenvalues as excitation energies related to the
addition or removal of an electron to the system.

In the Hartree-Fock method the eigenvalues have a physical meaning and
are treated exactly as real excitation energy through the Koopmans’ theo-
rem [86] that proof how eigenvalues can be considered as addition and/or
removal energies:

ǫHF
i = E(n1, . . . , ni, . . . , nN ) − E′(n1, . . . , ni − 1, . . . , nN ) (2.51)

It’ s clear from the above relation that the Hartree-Fock eigenvalue ǫHF
i

defined as an energy difference between the total energy of the N -electron
system E and the energy of the N − 1-electron E′ (n1, . . . , nN are the elec-
trons occupation numbers), is associated to the energy required to remove
an electron from the orbital i. The theorem requires that the orbitals don’t
relax each time the occupation number ni is changed; this condition holds in
general in systems of non-interacting electron, where the eigenvalues of the
one-electron Schrödinger equation describe the energies necessary to remove
an electron from the occupied orbitals or to add one to the empty ones. Un-
fortunately the same doesn’t happen in DFT, since there’s no analogous to
the Koopmans’ theorem and due to fact that Kohn-Sham eigenvalues (ǫKS

i )
enter the formalism as Lagrange multipliers in Eq. [2.11] to satisfy the re-
quest of orthogonality of the ϕi(r) orbitals, they don’t have any physical
meaning. The only KS eigenvalue that has an unambiguous meaning in the
exact DFT is the energy related to the highest occupied orbital (HOMO).
The Janak’ s theorem [87], in fact, asserts that in the exact DF formalism
the definition of

ǫi(n1, . . . . . . , nN ) =
∂ E

∂ ni

and of the total energy difference such as

E(n1, . . . , ni, . . . , nN ) − E(n1, . . . , ni − 1, . . . , nN ) =

=

∫ 1

0
dn ǫi(n1, . . . , ni + n− 1, . . . , nN )(2.52)

have formal justification only when refers to the ground-state of the system
with N and N −1 particles, where N =

∑
ni. In this regime ǫKS

i represents
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the ionization potential [88, 89, 90, 91], i.e. the energy required to remove
the topmost electron. Despite these theoretical limitations, the usage of the
Kohn-Sham eigenvalue differences to discuss excitation energies became a
common procedure in practice, and they have been demonstrated to rep-
resent trends in excitation energies. Solving the KS equations is the most
common way to predict electronic Bloch’s band structure of real interacting
solids: ǫ(k) would represent the general shape of the excitation energies, but
the curves tend to be shifted by an almost k-independent amount respect
to the correct values given by experiments.
Trying to calculate it, as a difference between the Kohn-Sham eigen-
values, leads to a seriously underestimation of the fundamental band
gap [89, 92, 93, 94, 95, 96].

Mind the gap! - an XC discontinuity issue

Since these one particle KS eigenvalues are used to evaluate the spectra of the
solids without any formal justification, several discrepancies have been found
between the calculated band gaps within XC functional approximation and
the experimental measured gaps. In particular huge differences arise for
semiconductors and insulators: the KS energy gap calculated within the
Local Density Approximation are underestimated by 30-50% with respect
to the band gap observed in the optical spectrum, as shown in Table [2.2].
This failure involves not only LDA but every sort of approximation that go
beyond, and as Perdew and Levy have shown [89], an explicit connection
between the Kohn-Sham gap ǫKS

g and the exchange-correlation functional
used exists implying therefore the add of some corrections.

LDA many-body Expt.
GW [97]

Diamond 3.9 5.6 5.48 [98]
Silicon 0.5 1.19 1.17 [98]
Germanium < 0 0.75 0.744 [98]
LiCl 6.0 9.1 9.4 [99]

Table 2.2: Results for the fundamental energy gap calculated for different ma-
terials in LDA and within the many-body Green function approach compared
with the experimental values. All energy in eV.

To better understand the problem, it’s worth pointing out that the band
gap is defined in term of the ionization potential (IP) and electron affinity



Another brick in the wall: a brief DFT survey 47

(EA):

IP = −
(
EN − EN−1

)
= ǫv (2.53a)

EA = −
(
EN+1 − EN

)
= ǫc (2.53b)

where IP = ǫv is the energy required to remove an electron in the state v
from the system, while EA = ǫc is the energy required to add an electron
in the state c to the system and EN is the total energy of the system with
N electrons. The band gap is defined as the difference between the largest
addition energy and the smallest removal energy of an electron:

Egap = IP − EA =
[
EN−1 − EN

]
−

[
EN − EN+1

]

= EN+1 + EN−1 − 2EN (2.54)

This gap is defined as quasi-particle gap Eqp while the optic gap is defined
as

Eopt = Eqp − ∆Eeh
b (2.55)

since it takes into account the interaction between electron and hole pairs
created during the optical excitation process, as it will be discussed in
Sec. [3].
The band gap could be also defined as

Egap = εLUMO − εHOMO

where the HOMO (Highest Occupied Molecular Orbital) equals −IP
and LUMO (Lowest Unoccupied Molecular Orbitals) is −AE. In the
Hartree-Fock scheme, where the system states are described by single Slater
determinants, the energy gap ( εLUMO − εHOMO ) would yield to the real
energy gap in solids; since the single determinant doesn’t provide a good
description of the energy states (it neglects the effect of polarization related
to the addition or removal of an electron), the HF energy gap results
inadequate and it tends generally to overestimate the band gaps. In finite
system the band gap can be addressed as HOMO-LUMO energy difference,
while for extended system this doesn’t hold. The above definition of Egap

in Eq. [2.54] represents the onset of the continuum of optical transitions in
solids where the gap is direct (it means that the lowest empty state and he
highest occupied state have the same k vector).

The reason of the inaccuracy of the DFT-LDA in predicting the band gap of
several materials arises from the discontinuity of the XC potential, a patho-
logical non-analytical behaviour of the xc energy functional that enters di-
rectly in the calculation of the energy gap. Since the band gap can be written
in terms of the changes in the total ground-state energy of the system after
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addition or removal of an electron, via exact DFT-KS eigenvalues, it can be
also related to the meaning of quasi-particle band gap:

Egap = εKS
N+1(N + 1) − εKS

N (N) (2.56)

where εKS
N+1(N+1) is the energy of the highest occupied KS orbital of theN+

1 electron system, and εKS
N (N) is the highest level of the N electron system

(in exact DFT both can be considered as HOMO and formally correct) [88].
For a non interacting system the gap can be obtained directly in terms of
difference between orbital energies of the N electron system

EKS
gap = εKS

N+1(N) − εKS
N (N) (2.57)

where εKS
N+1(N + 1) it has been replaced by εKS

N+1(N). It comes out that
the quasi-particle gap Egap defined above in Eq. [2.56] differs from the gap
EKS

gap defined in Eq. [2.60] for the N electron system, by an amount defined
as ∆xc:

Egap − EKS
gap = εKS

N+1(N + 1) − εKS
N (N) − εKS

N+1(N) + εKS
N (N) =

= εKS
N+1(N + 1) − εKS

N+1(N) = ∆xc (2.58)

Thus the gap can be defined as

Egap = εKS
N+1(N) − εKS

N (N) +
[
εKS
N+1(N + 1) − εKS

N+1(N)
]

= EKS
gap + ∆xc

(2.59)
where EKS

gap is the usually called DFT band gap, that corrected by the
amount ∆xc gives the true quasi-particle band gap. The ∆xc quantity is
related to the difference between the energies of the (N + 1)-th orbitals of
the KS system that correspond to the neutral and ionized electron system.
∆xc is called the discontinuity of the exchange-correlation potential and it’
s related to the non analytical behaviour of the exchange-correlation po-
tential when the number of particles of the system varies, as schematically
illustrated in Fig. 2.2, [100, 101]. This discontinuity can be defined in terms
of Vxc (the exact DFT exchange-correlation potential)

∆xc = V (N+1)
xc (r) − V (N)

xc (r) (2.60)

since Vxc is the only part of the DFT potential that can be a non-analytical
functional of the charge density when the number of particle is varied. The
addition or removal of an electron in a system, infact, causes infinitesimal
variations in the density, and the DFT eigenvalues are consistently altered.
In a system withN >> 0 the chemical potential (Fermi energy or for metallic
systems the minimum energy required to add or remove an electron) is given
by the DFT eigenvalue of the highest occupied level:

µN =
∂ Etot

N

∂ N
= εKS

N (N)
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Figure 2.2: Illustration of the significance of ∆xc within a sketch of the Kohn-
Sham band structure of a semiconductor. The exact KS DFT one-electron
energies are shown in the form of a band structure for the N (left) and N +
1 (right) particle system. After the addition of an electron into the empty
conduction band, the whole band structure shifts up a quantity ∆xc.
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In metals IP = EA = µN = εKS
N (N), while in semiconductors there’ s an

energy gap and since IP 6= EA, the energy required to remove an electron
is not the same needed to add another electron to the system. Following
Perdew and Levy [89], the Eq. [2.53b] can be rewritten in terms of the
chemical potential of Eq. [2.11] like

IP = −µN (N − δ)

EA = −µN (N + δ) (2.61)

thus the energy gap become Egap = IP − EA = µN (N + δ) − µN (N − δ)
where δ represents the change in the number of particle when adding or
removing an electron. Through the definition of µ in DFT, (it enters in KS
scheme first of all as a Lagrange multiplier, as shown in Eq. [2.11] ) it leads
to

Egap = −δ Ev[n]

δ n−
+
δ Ev[n]

δ n+
=
δ Ts

δ n+
− δ Ts

δ n−
+
δ Exc

δ n+
− δ Exc

δ n−
(2.62)

where n− = N − δ and n+ = N + δ with δ → 0. For a non-interacting
system,

Egap = EKS
gap =

δ Ts

δ n+
− δ Ts

δ n−

while for an interacting one the contribution given byExc should be included,

Egap = EKS
gap +

δ Exc

δ n+
− δ Exc

δ n−
= EKS

gap + ∆xc

To note δ Exc

δ n+
− δ Exc

δ n−
= C, where C is a positive constant that represents the

discontinuity of the right and left derivatives when the number of electron
increases or decreases jumping from N+δ to N−δ. Then the contribution to
the band gap can be divided into two components, the KS gap EKS

gap and the

∆xc; an improve in LDA would yield better values for EKS
gap and a improved

description of the Vxc potential will give a better estimation of the amount
∆. In particular if ∆ were zero ( or very close to zero) the difference between
the calculated Egap and the DFT-LDA gap ELDA

gap would arise just from lim-
itation in the local density approximation. Nonetheless, LDA has revealed
a good approximation when calculating total energies and densities of bulk
semiconductors, and improvements upon LDA have been demonstrated to
change the KS energy gap only very little. For counterpart, the ∆ amount
represents a significant part in the correct estimation of the LDA energy
gap, up to the 80% fraction of the whole LDA error for semiconductors and
insulators, as depicted in Table 2.3 [102].
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Si GaAs AlAs Diamond

∆xc 0.58 0.67 0.65 1.12

Band Gaps:
KS-LDA 0.52 0.67 1.37 3.90
G0W0 1.24 1.58 2.18 5.33
Expt. 1.17 1.63 2.32 5.48

Table 2.3: The xc discontinuity ∆xc and the calculated and experimental band
gap for semiconductors and insulators (all values in eV).

2.3 The Plane Wave Pseudopotential approach

The Density Functional is a very efficiently scheme to calculate the total
energy of solids through the iteratively solution of the Kohn-Sham equa-
tions. Since the numerical resolution of this procedure is very computa-
tional demanding, the Density Functional formalism can be setup into the
so called plane wave pseudopotential approach, consisting in the expansion
of the Hamiltonian Ĥ into a plane wave (PW ) basis set and in the intro-
duction of the pseudopotential approximation to remove the contribution of
the core electrons from the calculation in order to render the computation
of the total energy easier and less expensive.

Plane wave expansion

The plane wave basis set expansion in solids take advantage of the periodicity
of the crystal lattice. According to the Bloch’s theorem the secular equation
with the Hamiltonian operator ĤKS derived from the solution of the Kohn-
Sham equation [2.29]

(
− ~

2

2m
∇2 + Vion(r) + VH(r) + Vxc(r)

)
ψkn = ǫkn ψkn

is expanded over a complete and orthogonal set of plane waves

〈r |k + G〉 =
1

Vol
ei(k+G)· r

to assume a particularly simple form, where n is the band index, k Bloch’s
vector in the Brillouin Zone and G the reciprocal lattice vectors. Due to the
periodicity of the crystal, the Bloch’s theorem asserts that also the single
particle wavefunction describing the electronic states of the system can be
expanded in a discrete set of plane waves at each k-points:

ψkn(r) =
∑

G

cG(kn) eiG · r eik· r (2.63)
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where the coefficient Cg have to be determined through the diagonalization
of the KS Hamiltonian in the new basis set:

∑

G′

HGG′(k) cG′(kn) = ǫkn cG(kn) (2.64)

where

HGG′(k) =
1

2m
| k+G |2 δG,G′+Vion(k+G,k+G′)+Vh(G−G′)+Vxc(G−G′)

(2.65)
In this way the kinetic energy is diagonal and the potentials are described
in terms of their Fourier transforms, in particular, VH and Vxc are local in
space and don’t depend explicitly from k but only from the vectors of the
reciprocal lattice through the relation G − G′. To note that if the crystal
has a center of inversion which is chosen as the origin, the secular equation
is real, otherwise it’s necessary complex.

The Hamiltonian to diagonalize is a matrix whose size is determined by the
number of elements, hence by the number of vectors G included in the expan-
sion, that in principle are infinite when concerning with a periodic crystal.
The coefficients cG(kn) with small kinetic energy (~2/2m) |k + G|2 give a
more important contribution in the expansion than those with larger kinetic
energy; also in the calculation of the density n(r) =

∑
kn |ψkn(r)|2 f(εkn)

only the lowest eigensolutions are needed, converging as the dimension N
of the secular equation matrix. Nevertheless, since the diagonalization time
increase as N3, one needs some limitation to the size of the matrix: thus
the plane wave basis set can be truncated neglecting the plane waves having
kinetic energy greater than the value imposed by some particular energy cut-
off. This kinetic energy cutoff, applied to an infinite basis set, is expressed
by

1

2
|k + G |2 ≤ Ekin

and renders the plane wave expansion finite and discrete, but at the same
time, introduce some kind of errors in the final computed total energy. In-
creasing the cutoff energy the magnitude of the errors will be reduce, improv-
ing total energy convergence but slowlying down the computational time.
It’s worth pointing out that since PWs are extended waves, they can’t well
reproduce localized functions such as the charge density around the nuclei
or even worse the orthogonalization wiggles of inner core states. In order to
describe features varying on a length of scale δ, one needs PW components
up to q ∼ 2π /δ, that in a solid means ∼ 4π (2π/δ)3/ΩBZ (in Diamond,
fcc lattice, PWs ∼ 250,000 are too much for practical use). The number of
plane waves Npw scales like

Npw ∝ Ω (Ecutoff )3/2
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Figure 2.3: Schematic illustration of a supercell geometry (a) for defect vacancy
in a bulk crystal, (b) for a surface and (c) for an isolated molecule. The supercell
boundaries are depicted by the dotted line.

Periodic Supercells

Since one deals with periodic infinite systems, in which holds the Bloch’s
theorem, is convenient to simulate the systems with a periodically repeated
fictitious supercell. Periodic boundary condition are applied to the supercell
in order to be reproduced throughout space accordingly to the periodicity
of the systems along the three directions. The system cell is now large by
construction: the primitive cell of the material is repeated ni times along the
lattice vector a1,a2,a3, leading to cell of n1 × n2× n3 ×N0 atoms (where N0

is the number of atoms in the primitive cell). Accordingly, the Brillouin Zone
(BZ) is reduced by a factor of ni in the respective directions. The cell can
be either the primitive unit cell of a crystal or a large supercell containing
a sufficient number of independent atoms to mimic locally an amorphous, a
liquid, but also a solid with point defect, surfaces or isolated molecules as
illustrated in Fig. 2.3. When dealing with such a systems, slabs, isolated
molecules or cluster and solids with point defects, is important to make the
supercell big enough in order to leave sufficient vacuum space around to
avoid interaction between the periodic neighboring replica [103, 104].

Brillouin Zone K-point sampling

Through the plane wave expansion basis set the ”sum over the Brillouin
zone k-points” is mandatory when calculating the charge density n(r) in a
periodic system and the related summation is made over an infinite number
of k-points:

n(r) =
∑

k

∑

i

|ψk ,i(r) |2

When assuming the Born-Von Karman periodic boundary conditions
ψ (r + LR) = ψ(r) (where L = L1 L2 L3 equals the numbers of cells of
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the crystal) the discrete sum become an integration over the BZ and the
electronic states are allowed only for a set of k-points whose density is pro-
portional also to the volume of the solid. Through the Bloch theorem the
electronic state to calculated moves from infinite to a finite amount for a
infinite number of k-points. For insulator and semiconductors it has been
shown that the integral can be approximated by a discrete sum over an good
number of k-points. Symmetries can help to reduce the number of points:
only one k-point is assigned to represent a so called star ( the set of k-points
equivalent by symmetry) with a weight wi proportional to the number of
k-points in the set. Thus the infinite sum over the BZ is replaced by a
discrete sum over a set of points {ki} and weights wi:

1

L

∑

k

fk(r) →
∑

i

wi fki
(r)

The particular set of k-points are called ”special points” and can be ob-
tained through different methods such as Chadi-Cohen [105] or Monkhorst-
Pack [106] that afford to calculate total energy and electronic potential with
accuracy over a very small set of k-points. For counterpart, metals require
more k-points for an accurate sampling over the BZ of the Fermi surface;
thus one can use the tetrahedron method or a Gaussian broadening to treat
properly fractional occupation of metals.

Ab initio Pseudopotentials

The potential experienced by an electron in condensed aggregate of atoms
can be divided into two main terms: the nuclei interaction potential and the
electron-electron interaction potential. Moreover also the electrons can be
separate into two regions with different characteristics: the region near the
nuclei, the core region, contains the innermost tightly bound core electrons,
which respond very little to the presence of neighboring atoms and do not
play a significant role in the chemical bindings of atoms, and the outermost
remaining region in the atom containing the valence electrons which really
determines the chemical bindings of atoms, especially in metals and semicon-
ductors. Thus the core electrons can be ignored reducing the atom to a ionic
core that interacts via an effective potential with the valence electrons: this
is the frozen core approximation. Thus the KS equation are resolved with
a new effective potential interaction where the common all electrons-nuclei
interaction is replace by a ”fictitious” interaction between valence electrons
and ionic core. This interaction that approximate the potential felt by the
valence electrons is called pseudopotential and was first introduced by
Enrico Fermi in the 1934 [107], then developed around the 60-70’s through
the empirical pseudopotential and the ab initio pseudopotential formulation
by Phillips and Kleinman [108].
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The valence wavefunction have total energy higher than the core states and
in the core region the valence electrons are far less likely to be found. How-
ever since they experience the same Coulomb potential there and they must
therefore have an even higher kinetic energy, the states are here described as
very rapidly oscillating wavefunctions as a consequence of the strong ionic
potential in this region. These oscillations are at the origin of the orthog-
onality between the core wavefunctions and the valence wavefunctions
which is required by the exclusion principle:

∫
drψc,k(r)∗ ψv,k(r) = 0 (in

the core region the oscillations have to interweave in order to give a vanishing
integral).

The pseudopotential formalism has grown out of the Orthogonalized
Plane Waves (OPW) methods developed in 1940 [109] by Herring and
in which the valence wave functions are expanded in a set of a plane waves
(PW) which are orthogonalized to all the core wavefunctions |ψc 〉 . In this
approach the rapid oscillations of the wavefunction in the core region are
compensated via a plane wave expansion in the interstitial regions among the
nuclei. Since the core states |ψc 〉 are rapidly oscillating around the nuclei,
the valence wavefunctions |ψv 〉 will have strongly oscillations to guarantee
the orthogonality with respect the |ψc 〉 core. Then, to describe these rapid
oscillations a great number of plane waves are needed with a huge computa-
tional effort. However, if the core states don’t appear in the calculation one
can substitute the valence wavefunction with some pseudowavefunctions
identical to the real wavefunction and with no nodes beyond some cutoff
radius rc (r < rc).
Defining the normalized plane wave |k 〉 as

|k 〉 =
1√
Ω
eikr

the OPW χ is defined as a plane wave PW to which have been subtracted
the core orthogonality wiggles in the core region in order to be orthogonal
to all the core wavefunctions ψcore

|χ 〉 = |k
〉
−

core∑

c

ac |Ψc(r)
〉

= |k 〉−
∑

c′

|ψc′
〉〈
ψc′ |k

〉
= (1− P̂)|k

〉
(2.66)

The valence wavefunction can be therefore expanded over the obtained OPW
basis set

|ψk,v 〉 =
∑

G

av
k+G |χk+G 〉 (2.67)
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with the orthogonality condition of the PW with all the core states:

〈Ψc |χ 〉 = 〈Ψc|k 〉 −
core∑

c′

〈Ψc |Ψc′ 〉ac′ = 0

⇒ 〈Ψc|k〉 − δcc′ ac′ = 0

⇒ 〈Ψc|k 〉 =

core∑

c

ac (2.68)

Then substituting the explicit expression of OPW |χ 〉 in the expansion of
valence wavefunction one gets

|ψk,v 〉 =
∑

G

av
k+G

[
|k 〉−

∑

c

|ψc

〉〈
ψc |k+G

〉 ]
= (1− P̂) |k+G〉 (2.69)

where G is the sum over the reciprocal lattice vectors that can be truncated
through the introduction of the cutoff energy. Defining a pseudowave-
function ϕps

k like

|ϕps
k 〉 =

∑

G

av
k+G |k + G 〉 (2.70)

we get

|ψk,v 〉 = |ψk,v 〉 +

core∑

c

av
c |ψc 〉 = (1 − P̂) |ϕk 〉 (2.71)

One can see that the ”real” valence wavefunction can be expressed as the
sum of two terms: (i) a smooth function, the pseudowavefunction and (ii)
an oscillating term that results from the orthogonalization of the valence to
the inner core orbitals. Then, applying Ĥ to the valence states ψk,v gives

Ĥ|ψk,v 〉 = Ev |ψk,v 〉
Ĥ (1 − P̂) |ϕps

k 〉 = Ev (1 − P̂) |ϕps
k 〉

Ĥ |ϕps
k 〉 − Ĥ P̂ |ϕps

k 〉 = Ev |ϕps
k 〉 − Ev P̂ |ϕps

k 〉
[
Ĥ + (Ev − Ĥ )P̂

]
|ϕps

k 〉 = Ev |ϕps
k 〉 (2.72)

where defining Ĥ + (Ev − Ĥ )P̂ = Hps as pseudohamiltonian gives

[
Ĥ + (Ev − Ĥ )P̂

]
|ϕps

k 〉 = Ĥ + (Ev − Ĥ )
∑

c

|ψc 〉 〈ψc |ϕps
k 〉

= Ĥ +
∑

c

[
Ev − Ec

]
|ψc 〉 〈ψc |ϕps

k 〉 (2.73)

Finally it results

[
Ĥ +

∑

c

[
Ev − Ec

]
|ψc 〉 〈ψc|

]
|ϕps

k 〉 = Ev|ϕps
k 〉 (2.74)
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from which it can be possible to extract the form of the pseudopotential
Vps

V ps = V +
∑

c

[
Ev − Ec

]
|ψc 〉 〈ψc (2.75)

The pseudopotential described here follows the formulation gives by
Phillips and Kleinman [108] and can be view as a in term of with the fol-
lowing main characteristics:

• it is spatially non local since it’s depends on r and r′ and it uses
different components in relation to different channels ℓ of angular mo-
mentum and it is energy dependent since it depends on the eigenenergy
of the state one wishes to find;

•
{∑

c

[
Ev − Ec

]
|ψc 〉 〈ψc

}
can be considered as a short-ranged repul-

sive correction to the ”real” long-ranged attractive potential V : near
the core both parts completely cancel each other and the whole poten-
tial is ”well-behaved” and weaker than the true potential near the core
according to the Phillips-Kleinman cancellation theorem; this implies
also that the pseudowavefunctions are smooth and not oscillate in
the core region, as schematically shown in Fig. 2.4 .

• there exists also a normalization problem: although the valence pseu-
dowavefunction |ϕps

k 〉 is globally normalized it doesn’t reproduce ex-
actly the norm of the real wavefunction outside the core region. From
the condition 〈ψv|ψv〉 = 1 holds

1 = 〈ϕps
k |ϕps

k 〉 − 2
∑ 〈ψc|ϕps

k 〉〈ϕps
k |ψc〉 +

∑
c |〈ψc|ϕps

k 〉|2

(2.76)

⇒ 〈ϕps
k |ϕps

k 〉 = 1 +
∑

c |〈ψc|ϕps
k 〉|2

this difference has to be connected with the so called orthogonality
hole. The lack of charge density between the valence and the core
regions produces this non norm-conservation behaviour giving rise to
errors and serious problem in the self-consistent calculations.

Since in this thesis work we had used the norm-conserving pseudopoten-
tial to treat properly the optical features and the ultrasoft pseudopotential
that allows to manage systems with several hundreds of atoms per unit cell
in order to the structural and electronic properties, a brief resume of their
main features will follow.

Norm-Conserving pseudopotential

The norm-conservation idea was introduce for the first time by Topp and
Hopfield [110] in 1974 in the context of empirical pseudopotential and then
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Figure 2.4: How the ”pseudo” appears : all-electron wavefunction and poten-
tial (solid lines) and pseudopotential and pseudowavefunction (dashed lines).
The cutoff radius at which the all-electron and pseudo- wavefunction match is
labelled by rc

incorporated into the ab initio formulation by Hamman, Schlüter and Chi-
ang [111] in 1979 and then refined by Bachelet, Hamman and Schlüter [112]
in 1982. Generically the modern pseudopotentials are obtained inverting
the Schrödinger radial equation for a given reference configuration applied
to the all-electron (AE) wavefunction decomposed into a radial Rℓ and a
spherical Yℓ,m (spherical harmonic) part and resolved in a self-consistently
way:

ψAE(r) =
∑

ℓ,m

RAE
ℓ Yℓ,m(Ω)

(
− ~

2

2m

d2

dr2
− l(l + 1)

2mr2
+ V AE

KS (r)

)
rRAE

ℓ (r) = ǫAE
ℓ r RAE

ℓ (r) (2.77)

where V AE
KS is the KS self-consistent one electron potential containing all the

screening effects related both to core and valence electrons

V AE
KS [nAE ](r) = −Z

r
+ VHartree(r) + Vxc[n

AE ](r) (2.78)

Then the ”pseudization” process can be applied according to the following
quite general important conditions:



The Plane Wave Pseudopotential approach 59

1. the valence all-electron and pseudopotential eigenvalues have to be
equal for a fixed initial atomic configuration:

ǫAE
ℓ = ǫps

ℓ (2.79)

2. the all-electron and the pseudo- wavefunction assume the same values
beyond a certain critical core cutoff radius rc(ℓ), which is strongly
dependent by each angular momentum component ℓ:

RAE
ℓ (r) = Rps

ℓ (r) for r > rc(ℓ) (2.80)

in particular the pseudowavefunctions originating from the solution of
the radial Schrödinger equation must be nodeless to guarantee smooth-
ness and free of unwanted wiggles;

3. the spatial integrals for the all-electron and pseudo- charge density
must give the same value for each radius r beyond rc(ℓ): this means
that the pseudowavefunctions are forced to assure the same norm as
the true real wavefunction. This condition guarantees norm conserva-
tion, the aim of this kind of pseudopotential.

∫ r

0
r′

2 | RAE
ℓ (r′) |2 dr′ =

∫ r

0
r′

2 | Rℓ(r
′) |2dr′ r > rc(ℓ) (2.81)

According to these features, through the analytical inversion of the radial
Schrödinger equation one obtains the screened pseudopotential :

wps
scr,ℓ(r) = ǫℓ −

ℓ(ℓ+ 1)

2r2
+

1

2 r Rps
ℓ (r)

d2

d r2
[
r Rps

ℓ (r)
]

(2.82)

The screened pseudopotential wps
scr,ℓ(r) contains the effects due to the valence

electrons in VHartree and Vxc that have to be subtracted to yield:

wℓ(r) = wps
scr,ℓ(r) − VHartree[n

ps](r) − Vxc[n
ps](r) (2.83)

From the setting of the cutoff radius depends the quality of the pseudopo-
tential. The smallest possible value is determined by the location of the
outermost nodal surface of the true all-electron wavefunctions. For cutoff
radius close to the minimum, the pseudopotential is realistic and very
strong. For large cutoff radius, the pseudopotential is smooth and almost
angular momentum independent, but therefore too unrealistic. A smooth
potential leads to a fast convergence of plane wave basis calculation.

The main features of the norm-conserving pseudopotentials are:
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• transferability: the needs to describe accurately the behaviour of the
valence electrons in several different chemical environments; this holds
when the logarithmic derivative and the energy first order derivative
of the all-electron and pseudo- wavefunctions must be equal for each
r values beyond rc(ℓ) according to the identity:

−2π
[(
r Rℓ(r)

)2 d

dǫ

d

dr
ln Rℓ(r)

]

r
= 4π

∫ r

0
[Rℓ(r) r]

2 dr (2.84)

and it assures that the scattering properties of the ionic core are well
reproduce like in the true all-electron atoms.

• non locality: due to construction there’s an explicit dependence on
the components of the angular momentum ℓ that can be expressed
in terms of projection operator and angular coordinates in real space
where non locality behaviour is fully revealed:

V ps =
∑

ℓ,m

| ℓm 〉V ps
ℓ 〈 ℓm | =

∑

ℓ

P̂ℓ V
ps
ℓ

=
∑

ℓ,m

|Yℓ m(Ω) 〉 V ps
ℓ (r) 〈Yℓm(Ω′) | (2.85)

Outside the core radius the potentials Vℓ are identical for all the angu-
lar momentum components of the wavefunction (this means non local).
But Kleinman and Bylander found out the definition semi-local (sl),
for the pseudopotential Vℓ which depends on the angular momentum
but not on | r | and | r′ | separately;

• separability: Kleinman and Bylander (KB) rewrote the semi-local
potential into a separable form in order to reduce the computational
cost. First the semi-local potential can be separated into a long-range
(local Coulombian tail) and a short-range components:

wps(r r′) = wlocal(r) +
∑

ℓ

∆wℓ(r)
ℓ∑

m=−ℓ

Y ∗
ℓm(r′)Yℓm(r)δ(r − r′)

︸ ︷︷ ︸
nonlocal

(2.86)

where ∆wps
ℓ,nl(r) = wps

ℓ − wps
local (2.87)

and then the KB potential assumes the form:

wKB(r, r′) = wlocal(r) +
∑

ℓ

∆wKB
ℓ (r, r′) =

= wlocal(r) +
∑

ℓ

ℓ∑

m=−ℓ

ϕps
ℓm(r)∆wℓ(r)∆wℓ(r

′)ϕps
ℓm(r′)

∫
d3r∆wℓ(r) |ϕps

ℓm(r) |2

(2.88)
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The wps
ℓ,nl(r) is the ℓ angular momentum dependent component of any

non local pseudopotential, while wloc is a arbitrary component that
can be use as a reference to produce accurate and transferable pseu-
dopotentials. The KB potential is a norm-conserving pseudopotential
that uses a single basis state for each angular momentum component
of the wave function projecting each spherical harmonic component
onto a single basis set. The pseudopotential in the form of Eq. [2.85]
scales as Npw ×Npw while in the KB separable form of Eq. [2.88]like
16Npw lnNpw.

Ultrasoft pseudopotentials

In 1990 David Vanderbilt [113] developed a new class of pseudopotential
in order to treat systems, such as transition metals, first-row elements or
large-scale electronic structure problems, requiring hard pseudopotentials
to ensure transferability and demanding impractically large plane wave ba-
sis sets. These new potentials are called ultrasoft pseudopotentials since the
aim consists in a ”relaxation or softening” of the norm-conservation rule
and of the standard orthonormality constraint of atomic orbitals, then re-
sulting in a wavefunction which can be expanded using a much smaller plane
wave basis set, as shown in Fig. 2.5. The orbitals are allowed to be as soft
as possible within the core region, and due to a energy cutoff lower than
the common values for the norm-conserving pseudopotentials, this yields to
a rapidly converging plane wave expansion due to . Nonetheless, the ul-
trasoft pseudopotential must recover the same scattering properties of the
all-electron potential expressed in terms of transferability and logarithmic
derivative. The orthonormality is recovered by introducing a generalized
overlap operator which depends on the ionic positions. The all-electron
density is obtained by adding to the square modulus of the orbitals an
”augmentation charge” localized in the core region.
The first step consists in supplying the ”lack of charge density” in the core
region through an augmented charge Qnm:

Qnm(r) = ψ†
n

AE
ψm

AE − φ†n
US
φm

US (2.89)

that corrects the charge density recovering the full valence value in this way:

n(r) =
∑

i


|φUS

i |2 +
∑

nm,I

QI
nm(r)〈φUS

i |βI
n〉〈βI

m|φUS
i 〉


 (2.90)

The atomic pseudopotential is separated into a local Vloc and a nonlocal
Vnloc part. The non local potential is written in the separable form, as a
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Figure 2.5: ”True” pseudowavefunction strongly peaked inside the core region
(solid line) and ”ultrasoft” pseudowavefunction modified in Vanderbilt’s scheme
(dashed line).
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sum of projectors.

V US(r) = Vloc(r) + Vnloc(r)

V US
nloc =

∑

nm

D(0)
nm|βn〉〈βm |

with |βn〉 =
∑

m

[
εAE
m − (T + Vloc)

]
|φUS

m 〉
〈φUS

m | [εAE
m − (T + Vloc)] |φUS

n 〉 (2.91)

and D(0)
nm = 〈φUS

n | [εm − (T + Vloc)] |φUS
n 〉 + εmQnm −

∫
Vloc(r

′)n(r′)dr

(2.92)

The local part (obtained removing the screening of Hartree and xc) within
the core region is smooth, while the non local term is localized within the
cutoff radius part since the β-projectors are limited to the core region itself.
The orbitals are postulated to obey generalized orthogonality constraints
〈ψn| Ŝ|ψn〉 = δ, with the non local overlap operator Ŝ given by:

Ŝ = 1 +
∑

nm

|βn〉〈βm| (2.93)

then the KS equation is generalize in this way Ĥ|φUS
i 〉 = εiŜ|φUS

i 〉 and the
hamiltonian becomes

Ĥ = −~
2∇2

2m
+ Veff (r) +

∑

nm,I

DI
nm|βI

n〉〈βI
m|

where the KS effective potential Veff = Vnloc +Vloc +VHartree +Vxc contains
both the local and the non local part.
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2.4 Excited states in DFT

The Hohenberg-Kohn theorem asserts that the ground-state density
determines the external potential. In this scheme it’s also possible to
connect the ground-state density with any excited state, thus conside-
ring an excited-state energy as a functional of the ground-state density,
allowing in principle DFT to calculate excitation energies. The ∆SCF
is a method where the ground-state scheme is applied to calculate both
excited and ground state as energy differences: practically, it’s based on
the energy difference between two self-consistent-field (SCF) calculations.
The application of the DF formalism to the excited state can be justified if
applied to the lowest-lying state for a given set of quantum numbers [114].
As example, the ionization potential IP and electron affinity AE of a N
electron system can be derived through a ∆SCF calculation as difference
in total energy between two self-consistent calculations [115], as shown in
Sec. [2.2.2]. This method take into account the relaxation effects induced
by the removal or addition of an electron to the system. ∆SCF can yield
good results when it is possible to simulate the excitations occupying just
one-particle orbital; this immediately excludes the possibility to describe
those excitations that are not easily described in terms of isolated single
particle transitions. Furthermore, this method works in finite systems,
but not in infinite ones. This because the main contribution in ∆SCF is
the Hartree relaxation, that for extended system is negligible and other
contributions, not described in this method, come out.

To describe neutral excitations [116, 117, 118, 118, 119, 120], ∆SCF yields
to consider two different electronic configurations γi for the system, one for
the ground state ~γgs and another one for the excited state ~γexc:

• initial state: Ground State

~γgs =

{
γi = 1 i = 1, ..., N
γi = 0 i > N

• final state: Neutral Excited State

~γexc =

{
γi = 1 i = 1, ..., (h− 1), (h+ 1), ..., N and i = e (e > N)
γi = 0 i = h and i > N, i 6= e

In the last configuration a particle-hole pair is considered in the system
promoting an electron from the valence band (i=h) to a conduction band
(i=e). For this reason the method is also called constrained DFT. The
excitation energy of the many-electron system, for which the excited state
should be well described by single-orbital transitions, is the difference in
total energy, between two self-consistent calculation with the occupations
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described above, i.e.:
Eexc = E~γexc

− E~γgs
(2.94)

and this should then give the optical gap since the initial and final states
are still neutral.





3
Many Body Perturbation Theory:

”a stairway to heaven”

E questo é il fiore del partigiano,
morto per la libertà.

Bella Ciao, canzone della Resistenza

3.1 Theoretical Spectroscopies

Why the search for excited state calculation has become one of the most
important and thought challenge of the theoretical solid state research?
The answer lies in the aim to developed theoretical instruments, day by
day more powerful than the preceding ones, to understand the interaction
between the scanning probe sources (electrons, light, X-rays, lasers, and
other modern photon sources) and the matter in order to study materials,
ranging from solids to atoms, from surface to nanoscale systems. The aim
is the simulation through these theoretical tools of the electronic excitations
and, in general, of the all experimental spectroscopy techniques in order
to achieve a complete set of theoretical spectroscopy devices in order to
predict with accuracy and to explain the experimental data (ellipsometry,
EELS, Raman, IR, NMR, X-Ray, ARPES e ARPIES, STS, I/V transport,
etc.).

In general it’s not sufficient to calculate ground-state properties in order
to interpret or predict results of experiments like photoemission, electron-
energy loss, absorption, etc. Direct and inverse photoemission spectroscopies
concern the study respectively of the occupied and empty states of the sys-
tem, evaluating the energy of the photoelectron excited in or out the sample:

67
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this means that the consequent electron excitations leave the initial neutral
N -electron system with N−1 electron (direct photoemission, in Fig. 3.1(a))
or with N + 1 electron (inverse photoemission, in Fig. 3.1(b)). This excita-
tions changing the number of electrons from N → N ± 1 and leaving the
system in a charged state, are called charged excitations. On the other side,

(a) Direct photoemission: it offers a way to
experimentally investigate the occupied electronic
state. A monochromatic radiation (hν) is ab-
sorbed by the sample, and a photoelectron from
the valence band is emitted with energy Ek into
the vacuum.

(b) Inverse photoemission: investigation of
empty states. An electron with energy Ek is in-
jected into the system in the conduction band and
a photon hν is therefore emitted as a consequence
of the relaxation of the electron.

Figure 3.1: Charged excitations

spectroscopy techniques based on Optical Absorption (in Fig. 3.2(a)) and
on energy loss (such as EELS) (in Fig. 3.2(b)),for example, take advantage
of electronic neutral excitations which don’t change the number of electrons
of the system. This means, in case of optical absorption, that the excited
electron is just promoted from the valence to the empty states remaining
within the sample, in contrast to what happen for the photoemission, as
depicted above. In case of EELS, the electrons are scattered inelastically by
the sample and lose their energy with the creation of collective electronic
excitations called plasmon, longitudinal collective excitation that cannot be
excited optically by transverse photons. Electron energy loss spectroscopy
can be applied via different electronic microscopes, like TEM or SEM.

3.1.1 External Perturbation and dielectric function

The charged and neutral excitations of a system are related to the response of
the system to an external perturbation represented by photons or electrons.
From the theoretical point of view the interaction between the electromag-
netic field generated by the probe and the matter can be treat as a weak
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(a) Optical Absorption: a photon hν ab-
sorbed by the sample excite an electron from the
valence to the conduction band.

(b) Electron Energy Loss Spec-

troscopy:based on the inelastic scattering of
electrons by the system under investigation.

Figure 3.2: Neutral excitations

classical perturbation to the quantum mechanical system. The electromag-
netic field described through the vector potential A and the scalar potential
φ, enters in the interacting hamiltonian via the change of the velocity ope-
rator p̂:

∑

i

1

2
p̂2

i →
∑

i

1

2

(
p̂i ·

e

c
A

)2

(3.1)

and working in the Coulombian gauge or velocity gauge(∇ ·A = 0), setting
the scalar potential φ = 0 for no external sources, neglecting the non-linear
effects, one gets the interacting hamiltonian

Ĥint → −e
c

∑

i

A(ri, t) · p̂i (3.2)

that can be treated as a weak perturbation within time-dependent pertur-
bation theory. The vector potential A can be written through the Fourier
transform in a plane wave form:

A(r, t) = A0e
i(q·r−ωt) + c.c. (3.3)

where the Coulomb gauge is satisfied if k · A0(ω) = 0, so that A0(ω) is
perpendicular to k, and the wave is transverse.

In the time-dependent perturbation theory, the probability per units of
time and volume for a transition at frequency ω is, at first order and for
weak fields:

W (ω) = 2π
∑

c,v,k,k′

|〈ck′|1
c
A · p̂|vk〉δ(εc(k′) − εv(k) − ω) (3.4)
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where |ck′〉 and |vk〉 denotes the single-particle Bloch states.
In the previous expression we have to calculate the matrix elements of the
perturbation between the Bloch states:

ǫ̂ · 〈ck′|eiq·r · p̂|vk〉,

where A = A0ǫ̂.
This expression can be simplified in many cases, expanding the exponential
eiq·r as:

eiq·r = 1 + (iq · r) +
1

2
(iq · r)2 + . . .

Since the wavelength q of light is small (∼ 5 ·10−2 nm−1) and the wavefunc-
tions have a slowly dependence on k, it is possible to calculate the matrix
elements in the dipole approximation, in this way only vertical transitions
are taken into account and since p̂ = ṙ = −i∇:

ǫ̂ · 〈ck|p̂|vk〉 = −iǫ̂ · 〈ck|∇|vk〉 = ǫ̂ · 〈ck|ṙ|vk〉 (3.5)

Now applying the Heisenberg equation of motion to the variable r, we have:

ṙ = (i)−1
[
r, Ĥ0

]
(3.6)

where Ĥ0 is the unperturbed hamiltonian. If only local terms are present in
H0:

〈ck|ṙ|vk〉 = (i)−1〈ck|rĤ0 − Ĥ0r|vk〉 = (i)−1(εv(k) − εc(k))〈ck|r|vk〉 (3.7)

It is possible to derive now the relation between Eq. (3.4) and the optical
properties of the system.
Optical properties can be described by the complex macroscopic dielectric
function εM = ε1 + iε2 and the complex refraction index N = n+ ik =

√
ε

where n is the ordinary refraction index and k is known as the extinction
coefficient.
Thus the absorption coefficient α of a incident electromagnetic wave in the
sample is related with Im {εM} in this way:

α(ω) =
ωW (ω)

u c
n

=
ω

nc
ε2(ω) (3.8)

where u is the average energy density defined as u =
n2A2

0
ω2

2πc2
and c

n is the
speed of light in the matter.
Then it is possible to obtain for the imaginary part of the macroscopic
dielectric function:

ε2(ω) =
4π2

ω2

∑

c,v,k

|ǫ̂ · 〈ck|p̂|vk〉|2δ(εc(k) − εv(k) − ω) (3.9)
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If the one-electron Hamiltonian Ĥ0 contains non-local terms, in particular
when there’s a non-local component in the pseudopotential term, additional
term must be included in Eq. (3.9) for the calculation of the spectrum:

ṙ = v =
−i~∇
m

+
i

~
[VNL, r] (3.10)

In this way the length formula and the velocity formula differs only for
the non-local commutator between VNL and r̂ operator [121]. In case of a
longitudinal perturbation, the imaginary part of the macroscopic dielectric
function is:

ε2(ω) = 4π2 lim
q→0

1

q2

∑

c,v,k

∣∣∣ 〈ck + q|eiq·r | vk〉
∣∣∣
2
δ(εc(k+q)− εv(k)−ω) (3.11)

which is valid also in the case of non-local pseudopotential. Furthermore
the gauge invariance between the two different approaches has been demon-
strated [122].

Linear Response of Optical Spectra

When the systems are investigated through spectroscopies the response to
the external perturbation used as a probe (being electrons for EELS or pho-
ton for optical absorption or photoemission for example) can be described in
terms of the linear response approximation [123, 124]. The external pertur-
bation potential Vext(r) induces a response of the system in terms variation
of charge density and the total potential

δρind(r, t) =
∫
dr′ dt′ χ(r, r′ ; t− t′)Vext(r

′, t′)

Vtot =
∫
dr′ ǫ−1(r r′; t− t′)Vext(r

′) (3.12)

The total potential is screened because it contains the external potential
contribution and the potential due to the polarization of the system induced
by the external perturbation:

Vtot = Vext + Vind (3.13)

where Vind(r, t) =
∫
dr′ ρind(r′,t)

| r−r′ | (3.14)

The χ function is called full reducible polarizability (i.e. the ρind is sensible
to the bare external potential Vext) and together with the irreducible polar-
izability P are response functions describing how the ”polarization cloud”
around the particle responds to the external perturbation, as in Fig. 3.3.
The irreducible polarizability connects the induced charge density with the
total potential:

ρind(r, t) =

∫
dr dt′ P (r, r′ , t− t′)Vtot(r

′, t′) (3.15)
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Figure 3.3: The response of a polarizable medium to an external potential: the
perturbation acts on the point charge in r0, inducing a potential δVext that
creates an induced charge δρind acting again on the point charge. The wiggle,
the polarizability, shows it response function.

Looking at the perturbed system in its ground state, the perturbation im-
plies a redistribution of the charge (read wavefunction), that means depletion
of charge (holes) or accumulation of charge (electrons) in some places. This
creation of electron-hole pairs, with consequent polarization of the medium,
is reflected by the following equations

ε−1(r, r′;ω) = δ(r − r′) +

∫
dr

′′

v(r − r
′′

)χ(r
′′

, r′;ω) (3.16)

ε−1(r, r′;ω) = δ(r − r′) −
∫

dr
′′

v(r − r
′′

)P (r
′′

, r′;ω) (3.17)

where v(r− r
′′

) is a bare Coulomb interaction. When P is zero, the system
is not polarizable and hence the total potential is equal to the external one;
otherwise P is in general and on the average negative, acting against the
external potential. The two polarizability are related in this way, through a
Dyson-like equation

χ = P + P v χ (3.18)

that, introducing the Coulomb modified interaction term v̄G(q),

v̄r(q) =

{
0 G = 0
vG(r) = 4π

|q+G |2
G 6= 0.

become

χG,G′ = PG,G′ +
∑

G
′′

PG,G′′ v̄G′′ χG
′′ ,G′ + PG,0 v0 χ0,G′ (3.19)
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Figure 3.4: Measurable quantities varying on a macroscopic scale. The average
is done over distances large compared to the cell diameter but small compared
to the wavelength of the external perturbation.

The ”real” quantity measured in spectroscopy is a macroscopic average
(ǫM (ω)) of the microscopic dielectric function ǫm(r, r′ ω), that appears in
the Eq. [3.17]. The microscopic quantities, like total or induced fields, are
rapidly varying quantities over the atomic scale and are averaged on a scale
that is large with respect to the crystal lattice cell dimension and smaller
than the wavelength of the perturbation, see Fig. 3.4. In the case of the
dielectric function the correct quantity to average is ε−1(r, r′;ω) since one
is concerned with the total potential Vtot = ǫ−1 Vext for a given external
potential and not vice versa. According to Adler and Wiser [125, 126], in
a periodic system the macroscopic dielectric function εM (ω), in reciprocal
space is related to the zero-th element of the inverse microscopic dielectric
matrix εG,G′(q, ω)

εM (ω) = lim
q→0

1

ε−1
G=0,G′=0(q, ω)

, (3.20)

where q denotes a vanishing wave vector with direction q̂ belonging to the
first Brillouin zone and G and G′ represent elements of the reciprocal Bra-
vais lattice of the crystal; the limit q → 0 correspond to the dipole ap-
proximation of Eq. [3.9]. The off-diagonal term in the dielectric matrix
εG,G′(q, ω) reflects the non-homogeneity of the space and taking into ac-
count the off-diagonal terms corresponds to include the so called local field
effects [127, 128, 129, 130]. All these off-diagonal elements contribute to the
’head’ of the inverse dielectric matrix,

εG,G′ =




G = G′ = 0 G = 0
(head) (wing)

G′ = 0 G, G′ 6= 0
(wing) (body)




For homogenous media the microscopic dielectric matrix is a function of
| r − r′ | and therefore εG,G′(q, ω) is diagonal in reciprocal space and the
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macroscopic dielectric function is calculated directly:

εM (ω) = lim
q→0

εG=0,G′=0(q, ω), (3.21)

otherwise it depends explicitly on the position r and r′ and, as said before,
the matrix is not diagonal, and εM (ω) should be calculated through the
complete inversion of the microscopic function. In this case all the elements
of the matrix contribute to one element of its inverse, reflecting then the
effects of local fields arising when there are inhomogeneities in the system
at the microscopic scale. Taking into account the local fields implies to
consider the realistic situation in which the scanning spectroscopy probe
impinging the sample in r affects the system inducing a perturbation
in r′, thus generating differences between what one observes in r with
respect to the same measured in r′. Since the microscopic fields are
averaged over a region occupied by the electron, the contribution to this
average will be greater from those parts of the unit cell where the electron
is more easily polarized. The macroscopic field is obtaining a spatial
average of the microscopic quantity over the unit cell, resulting then an un-
weighed averaged field differ from the local field, which is weighted averaged.

Moreover it is possible to show that another exact formulation of the macro-
scopic dielectric function [131, 132, 133] is possible, where the inclusion of
the local field is done straightforwardly by the insertion of the polarizability
P̄ :

εM = 1 − lim
q→0

[
v0(q)P̄G=0,G′=0(q, ω)

]
(3.22)

The matrix P̄G,G′(q, ω) is the so called modified polarizability, and satisfies
the Dyson-like screening equation with the irreducible polarizability P and
the modified Coulomb interaction v̄ introduced in Eq. [3.1.1]:

P̄ = P + P v̄P̄ (3.23)

Through the modified polarizability the local fields are included in a straight-
forward manner in the calculation of εM :

εM (ω) = 1− lim
q→0

[
vG=0(q)

(
1 − PG=0,G′=0(q, ω) v̄G=0(q)

)−1
PG=0,G′=0(q, ω)

]

(3.24)
Neglecting of local fields in Eq. [3.22] means not considering v̄G(q) in
Eq. [3.23], and is equivalent to set:

εM (ω) = lim
q→0

[
1 − vG=0(q)PG=0,G′=0(q, ω)

]
= lim

q→0
εG=0,G′=0(q, ω) (3.25)

The modified polarizability P̄ includes a correct inversion of the dielectric
matrix and at the same time it gives a formal representation very similar to
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that of Eq. [3.25]. Another point we want to stress is that the inclusion of
the local field effects is independent of the different levels of approximation
that we use to calculate absorption spectra.
The simplest approximation for the polarizability is the random phase ap-
proximation (RPA), that consists to consider the zero-th order in the ex-
pansion of P, that means to put P = P 0, where P= is the polarizability for
the non interacting electronic system. The RP approximation implies that
the polarization is due only to the creation of an electron-hole pair, propa-
gating independently, thus neglecting excitonic interaction between the two
particles. In RPA the electronic transitions in the optical absorption spectra
are treated as independent [122]. Moreover, when adding local fields, if the
matrix inversion is properly taken into account, the independent transition
mix: even if no electron-hole interaction is included in P , there is an effective
electron-hole interaction term showing up in εM [131].

3.1.2 Electronic Spectra in practice

Within the KS-DFT scheme is possible to achieve a first example of elec-
tronic spectra following the recipes give in the section before. The macro-
scopic quantity measured to evaluate the optical absorption is the photoab-
sorption cross section σph(ω):

σph(ω) =
4πω

c
Im {α(ω)} (3.26)

Since the dynamical polarizability α(ω) is defined as

α(ω) = −
∫
dr, dr′ Vext(r, ω)χ0(r, r′;ω)Vext(r

′, ω) (3.27)

then, σph is proportional to the imaginary part of χ, polarization function,
which is related to the macroscopic averaged dielectric function in this way,
ǫM = 1 − vχ0. The photoabsorption cross section is then directly propor-
tional to the imaginary part of the χ response function and then to the
imaginary part of the macroscopic dielectric function

σph(ω) ∝ lim
q→0

ω

c
Im

{
v(q)χ0(q,q′;ω)

}
(3.28)

in the long wavelength limit q → 0. For what concern EELS, when an
electron impinges the sample, it loses energy by exciting electron-hole pairs,
plasmons etc. The energy loss is given by the imaginary part of the integral
of the potential generated by the electron and his induced charge. The
external potential Vext due to the scattered electron leads to a momentum
transfer q expressed by the loss function

L(ω) ∝ −Im
{ ∫

dr dr′ e−iqr χ(r, r′;ω) eiqr′
}
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representing the energy loss by the electron per unit of time during the
scattering process and which results in the end proportional to the imaginary
part of the inverse of the macroscopic dielectric function εM :

L(ω) ∝ − e

π2

∫
dr

1

q2
Im

{
ω

εM (q, ω)

}
(3.29)

Considering the Independent Particle RPA framework in which the elec-
tronic transition are considered vertical and independent one gets:

Abs ∝ Im {ε} = Im
{
1 − vχ0

}
= −v Im

{
χ0

}
(3.30)

EELS ∝ −Im
{
ε−1

}
= −v Im

{
χ0

1 − vχ0

}
=

ε2
ε12 + ε22

(3.31)

and with χ0 in the IP-RPA approach defined as

χ0 = 2
∑

c,v

| 〈φKS
c | e−iq r |φKS

v 〉 |2

ω (ǫc − ǫv) + iη
(3.32)

3.2 Quasiparticles and Green Functions approach

The excitations of system of strongly interacting particles can often be de-
scribe in terms of quasiparticles. In solids a ”bare” electron repels other elec-
trons via Coulomb potential that can be represented as a ”positively charged
polarization cloud” surrounding the electron. This screening ”cloud” added
to the ”bare” electron contributes to the quasiparticle picture of electrons (as
in Fig. 3.5), no more simple particles, but now quasi-particles weakly inter-
acting with the neighbors via a screened Coulomb potential. Quasiparticle
has a finite lifetime since are only approximate eigenstates of the N -electron
Hamiltonian. The energy difference between quasiparticle and the bare par-
ticle is usually described by the self energy Σ which account for all the
exchange and correlation effects beyond the Hartree approximation. The
self-energy is a non-local, energy-dependent, and in general non-Hermitian
operator. The quasiparticles obeys to a Schroedinger-like equation, named
quasiparticle equation written as:
[
−1

2
∇2 + Vext(r) + VH(r)

]
ψ(r, ω)+

∫
dr′ Σ(r, r′, ω)ψ(r′, ω) = E(ω)ψ(r, ω)

(3.33)

The one-particle Green function is defined as:

iG(1, 2) = 〈N | T̂
[
ψ̂(x1t1) ψ̂

†(x2t2)
]
|N〉 =

=

{
〈N | ψ̂(x1t1) ψ̂

†(x2t2) |N〉 for t1 > t2 electron

−〈N |ψ̂†(x2t2) ψ̂(x1t1) |N〉 for t2 > t1 hole
(3.34)
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Figure 3.5: A strong-interacting particles system can be mapped onto a KS non-
interacting particle system (left side) or onto a weakly-interacting quasiparticle

system (right side) through a Green functions equation.

where (x1, t1) = (r1, ξ1, t1) = 1 and (x2, t2) = (r2, ξ2, t) = 2 . T̂ is the Dyson
time-ordering operator and ψ̂(x) is the field operator in the Heisenberg rep-
resentation, |N〉 denotes the ground state of the interacting many-particle
system. The one-particle Green’s function is called fermionic propagator
since it describes the propagation of a fermion: for t2 > t1, gives the prob-
ability amplitude that a hole created at (x1, t1) will propagate to (x2, t2)
and for t1 > t2 the probability amplitude that an electron added at (x2, t2)
will propagate to (x1, t1). The physical interpretation relates immediately
with direct photoemission and inverse photoemission processes, because it
describes the propagation of an electron or a hole in a many-electron sys-
tem. The knowledge of the one-particle Green’s function gives observable
properties of large interest:

• The expectation value of any single-particle operator in the ground
state of the system;

• The ground-state energy of the system;

• The one-electron excitation spectrum of the system:

* Ei(N + 1) − E(N) = εN+1
i → conduction bands

* E(N) − Ei(N − 1) = εN−1
i → valence bands

For non interacting systems, the equation of motion, of the one-particle
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Green’s function G0(xt,x1t1) is:
[
i
∂

∂t
− h(x)

]
G0(xt,x1t1) = δ(x − x1)δ(t− t1). (3.35)

In general, the equation of motion for an interacting ”two particle” Green
function is
[
i
∂

∂t1
−

(
−1

2
∇2

1 + Vext(1) + VH(1)

) ]
G(1, 2)−

∫
d3 Σ(1, 3)G(3, 2) = δ(1, 2)

(3.36)
Then introducing a new mass operator M including the whole many-body
interaction (self-energy and Hartree potential) that Σ = M − VH one gets

[
i
∂

∂ t1
+

1

2
∇2

1 − Vext

]
G(1, 2) −

∫
d3M(1, 3)G(3, 2) = δ(1, 2) (3.37)

where, applying the condition Σ = 0, comes out the equation for the non-
interacting Green function G0:

[
i
∂

∂t1
−

(
−1

2
∇2

1 + Vext(1) + VH(1)

) ]
G0(1, 2) = δ(1, 2) (3.38)

The Green function satisfies also a Dyson-like [134, 135] equation that yields
combining Eq.s [3.36] and [3.38]:

G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3) Σ(3, 4)G(4, 2) (3.39)

3.2.1 Quasiparticle representation and Spectral Function

Through the ”resolvent theory” [136, 137] 1 the Green function can be ex-
pressed in terms of the quasiparticle wavefunctions and energies via its spec-
tral function A thus clarifying its physical relevance. The spectral represen-
tation of G in the frequency domain is:

G(r, r′, ω) =
∑

i

Ψi(r, ω)Ψ∗
i (r

′, ω)

ω − ǫi(ω)
(3.40)

where the quasi-particle eigenvalues ǫi(ω) are in general complex: the real
part has the physical meaning of the energy required to excite the system,
while the imaginary part is associated to the dumping of the excited state
and therefore to its lifetime. This is strictly related to the imaginary part
of the Green function, called spectral function:

A(r, r′, ω) = − 1

π
Im

{
G(r.r′, ω)

}
(3.41)

1Given (z −L) |u〉 = |f〉, with L differential operator, the Green function is the inverse of
the associated homogenous equation, G(z) = (z − L)−1
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Figure 3.6: Schematic representation of the spectral function A with its
Lorentzian broadening, compared with the delta of the independent-particle
spectral function.

The spectral function A is an important quantity strictly linked with the
photoemission experiment; for a non-interacting G0 green function the spec-
tral function is a series of δ-functions centered at the eigenvalues of the non-
interacting electronic Hamiltonian. For a diagonal element of the spectral
function of the full G(1,2) we have

A(ω) =
1

π

∑

i

Im [Σ(ω)]

| ω − εi −Re [Σ(ω)] |2 + | Im [Σ(ω)] |2
(3.42)

Evaluating this relation within the quasiparticle approximation, the spectral
function results to have Lorentzian shape peaked on the eigenenergy E = ǫi+
Re {Σ}+ i Im {Σ}, as in Fig. 3.6, whom physical meaning is the excitation
energy ω = E = ǫ+ ∆ω:

A(ω) =
Γ

(ω − ε− ∆ω)2 + Γ2
=

Γ

(ω − E)2 + Γ2
(3.43)

The width of the peak (no longer a delta) represents the inverse of the
lifetime of the corresponding quasiparticle. Physically the inverse and direct
photoemission spectroscopies offer a method to measure experimentally the
spectral function which therefore assumes also the meaning of density of
states per unit of energy for the empty and occupied bands. [68, 138].
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3.2.2 An ”alchemic circle”: the Hedin’s pentagon

In order to solve numerically the problem of an interacting many-electron
system, one-particle equations are very often used: for example the Kohn-
Sham equations, the Hartree-Fock equations, the quasi-particle equations.
The main difference among these lies in the description of the many-body
interaction which in the Hartree-FocK theory is described through an ex-
change potential vx, in DFT through an exchange-correlation potential vxc

and in the Green’s function approach the self-energy operator Σ contains the
information on the electron-electron interaction. The self-energy is a more
complicated object with respect to vxc or vx. In fact it is energy dependent,

Figure 3.7: Sketch of the coupled integral Hedin equation.

non-local in space and non Hermitian. In 1965, Lars Hedin proposed an
expansion of Σ in term of the Coulomb screened potential W , via a scheme
of five coupled integral equations (see Fig. 3.7):

• Vertex function

Γ(1, 2, 3) = δ(1, 2)(2, 3)+

∫
d(4, 5, 6, 7)

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5) Γ(6, 7, 3)

(3.44)

• Irreducible polarizability

P̃ (1, 2) = −i
∫
d(3, 4)G(1, 3) Γ(3, 4, 2)G(4, 1+) with 1+ = (r1, σ1, t1+δ)

(3.45)

• Screened interaction

W (1, 2) = v(1, 2) +

∫
d(3, 4) v(1, 3) P̃ (3, 4)W (4, 2) (3.46)
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• Self energy

Σ(1, 2) = i

∫
d(3, 4)G(1, 3+)W (1, 4) Γ(3, 2, 4) (3.47)

• Dyson equation

G(1, 2) = G0(1, 2) +

∫
d(3, 4)G0(1, 3) Σ(3, 4)G(4, 2) (3.48)

At this point we want to obtain from these equations the response functions
of the system to the external perturbation. The inverse dielectric function
is given as:

ǫ−1(1, 2) =
δV (1)

δw(2)
, (3.49)

ǫ−1(1, 2) = δ(1, 2) +

∫
d 3v(1, 3)

δρ(3)

δw(2)
(3.50)

and we can define the response function or reducible polarizability as:

χ(1, 2) =
δρ(1)

δw(2)
(3.51)

which gives the change in the charge density upon a change in the external
potential.
The polarization function or irreducible polarizability is defined instead as
the change in the charge density upon a change in the total potential:

P (1, 2) =
δρ(1)

δV (2)
. (3.52)

Then it is possible to write the dielectric matrix and the inverse dielectric
matrix as:

ǫ−1(1, 2) = δ(1, 2) +

∫
d 3v(1, 3)χ(3, 2), (3.53)

ǫ(1, 2) = δ(1, 2) −
∫
d 3v(1, 3)P (3, 2), (3.54)

where the relation between the two response functions is:

χ(1, 2) = P (1, 2) +

∫
d3 d4P (1, 3) v(3, 4)χ(4, 2). (3.55)

Finally, we show the relation of the screened potential with the irreducible
and reducible polarizabilities:

W (1, 2) =

∫
d 3 ε−1(1, 3)v(3, 2)

= v(1, 2) +

∫
d 3d 4v(1, 3)P (3, 4)W (4, 2)

= v(1, 2) +

∫
d 3d 4v(1, 3)χ(3, 4)v(4, 2) (3.56)
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3.2.3 The GW Approximation

This approximation (GWA) consists in a shortcut of the Hedin’s equations
pentagon, avoiding the calculation of the vertex function set to unity. Thus
the self energy is calculated as the product of the self-consistent single-
particle propagator G0 and the self-consistent dynamically screened interac-
tion W . The GWA corresponds to the first iteration of the Hedin equations,
that means to neglect the higher-order vertex corrections, and can be in-
terpreted as the first-order term of the expansion of the self-energy Σ in
relation to the screened interaction:

Γ(1, 2, 3) = δ(1, 2)δ(1, 3), (3.57)

and the polarizability becomes

P (1, 2) = −iG(1, 2+)G(2, 1). (3.58)

This is the so called Random Phase Approximation (RPA) for P : the po-
larizability is the product of two one-particle Green’s functions. A form for
the screened Coulomb potential W can be obtained, finally giving the lowest
order contribution in W to the self energy:

P 0(1, 2) = −iG0(1, 2)G0(2, 1+) (3.59)

W 0(1, 2) = v(1, 2) +

∫
d(3, 4)v(1+, 3)P 0(3, 4)W 0(4, 2) (3.60)

Σ(1, 2) = iG0(1, 2)W 0(1+, 2) (3.61)

This self-energy ΣGWA = G0W 0 is used to calculate the quasi-particle
energies through the quasi-particle equation; in practical calculations the
one-particle Green function is calculated as the independent particle Green
function G0 and in the zeroth order for Γ it is possible to obtain: P ,W and
Σ. Starting from the initial KS eigenvalues one gets

Eqp
i = εKS

i + 〈φLDA
i | Σ(Eqp) − V LDA

xc | φLDA
i 〉 (3.62)

where the Eqp appear also as argument of the self-energy itself which ex-
panded in Taylor series, at the first-order term around the εKS

i

〈Σ(Eqp)〉 = 〈Σ(εKS)〉 + (Eqp
i − εKS

i )〈∂Σ(ω)

∂ω
〉
ω=εKS

i

+O
[
(Eqp

i − εKS
i )

2
]

(3.63)
gives the GW corrections (at the first-order) with respect to the KS energies:

Eqp
i − εKS

i =
〈Σ(εi)〉 − 〈Vxc〉

1 − 〈∂Σ(ω)
∂ω 〉

ω=εKS
i

= Zi [〈Σ(εi)〉 − 〈Vxc〉] (3.64)
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The standard GW approximation represents a valid tool to estimate the
Σ obtaining accurate results for excitation energies and quasi-particle band
gaps of solids [139, 140, 141, 142]. In order to go beyond, fully or partial
self-consistent GW calculation can be performed [143, 144, 145, 146, 147,
148, 149, 150, 151, 142].

3.3 The Bethe-Salpeter approach: an effective

Two-Particle Equation

Starting from the Hedin’s equation it is possible to obtain a four-point equa-
tion for the polarizability and the problem can be reformulate in terms of an
eigenvalue problem with an effective Hamiltonian describing the excitonic
interaction. For a more detailed derivation of the two-particle Hamiltonian
see:[131, 132] .
The starting point is the irreducible polarizability of Eq. (3.45) in GW ap-
proximation which contains, through the vertex function, an intrinsic four-
point quantity:

δΣ(1, 1, 1′)

δG(2, 2′)
=
δ(iG(1, 1′)W (1, 1′))

δG(2, 2′)
=

= i
δG(1, 1′)

δG(2, 2′)
W (1, 1′) + iG(1, 1′)

δW (1, 1′)

δG(2, 2′)
, (3.65)

where the term iG(1, 1′) δW (1,1′)
δG(2,2′) is usually neglected.

To describe the propagation of an electron-hole pair we need four-point quan-
tities, and so it is convenient to define the four-point screened interaction
as:

W (1, 1′; 2, 2′) = W (1, 1′)δ(1, 2)δ(1′, 2′), (3.66)

and the four-point independent particle polarizability:

P 0(1, 1′; 2, 2′) = −iG(1′, 2′)G(2, 1). (3.67)

It is possible to insert Eq (3.65) in the Eq (3.45) and a generalized four-point
irreducible polarizability is obtained as:

P (1, 1′, 2, 2′) = P0(1, 1
′, 2, 2′)+

−
∫
P0(1, 1

′, 3, 3′)W (3, 3′, 4, 4′)P (4, 4′, 2, 2′) d 3 d 3′ d 4d 4′, (3.68)

where only the attractive screened interaction W appears.
With the same considerations, we can obtain a generalized four-point form
for the modified polarizability and for the response function:

4χ =4 P +4 P 4v4χ,
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4P̄ =4 P +4 P 4v̄4P̄ .

Also the Coulomb potential now is a four-point quantity and the same holds
also for the modified Coulomb potential:

v(1, 1′, 2, 2′) = v(1, 2)δ(1, 1′)δ(2, 2′). (3.69)

The explicit form for the response function is:

χ(1, 1′, 2, 2′) = P0(1, 1
′, 2, 2′) +

∫
P0(1, 1

′, 3, 3′)×
[
v(3, 3′, 4, 4′ −W (3, 3′, 4, 4′)

]
P (4, 4′, 2, 2′) d 3 d 3′ d 4d 4′, (3.70)

while the modified polarizability is:

P̄ (1, 1′, 2, 2′) = P0(1, 1
′, 2, 2′) +

∫
P0(1, 1

′, 3, 3′)×
[
v̄(3, 3′, 4, 4′ −W (3, 3′, 4, 4′)

]
P̄ (4, 4′, 2, 2′) d 3 d 3′ d 4d 4′. (3.71)

The only difference between the Eqs. (3.70) and (3.71) is the long range tail
of the Coulomb potential which is responsible for the local-field effects [131].
The macroscopic dielectric function with the inclusion of the electron-hole
interaction is:

εM (ω) = 1 − lim
q→0

[
vG=0(q)

∫
drdr′e−iq(r−r′)4P̄ (rr, r′r′;ω)

]
, (3.72)

where now P̄ has been contracted to a two-point quantity.
Actually the creation and the annihilation of the electron-hole pairs can
be considered simultaneous and the interaction instantaneous. Taking into
account the translational invariance in time it is possible Fourier transform
to the frequency space:

χ(1, 1′, 2, 2′) = χ(x1t1,x1′t
+
1 ,x2t2,x2′t

+
2 ) = χ(x1,x1′ ,x2,x2′ , t2 − t1)

→ χ(x1,x1′ ,x2,x2′ , ω)δ(x1 − x1′)δ(x2 − x2′).

Another approximation commonly used: is the energy dependence of the
screened potential is neglected and one assumes W (ω) = W (ω = 0) [152].
Equation (3.71) for the modified polarizability has a Dyson-like form, just
considering the lowest order of the interaction kernel.
It is possible to invert the polarizability for each frequency ω, but this is
very often too demanding. The problem of inverting the matrix can be
transformed in an eigenvalue problem, where the electron-hole interaction
is described through an effective two-particle Hamiltonian.
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The one-particle models can not describe the presence in the experimental
spectra of resonance-like structures at low frequency (bound-excitons) and
usually may lead too low optical absorption intensities [131]. It is then
necessary to include the electron-hole interaction in the calculations. We
first assume that the excited state can be obtained by a coherent linear
superposition of vertical single-pair excitations plus corrections of higher
order:

|E〉 =
∑

c,v,k

Acvkâ
†
ck ˆavk|0〉 + |C〉. (3.73)

|E〉 is an eigenstate of an ”unknown” excitonic Hamiltonian and the exci-
tonic energy Ω can therefore be calulated as:

Ĥ|E〉 = Ω|E〉. (3.74)

Considering only the linear part of |E〉 in the single-particle transition, it is
also possible to write |E〉 on the basis of single-particle orbitals:

Ψ(r, r′) =
∑

cvk

ψqp
ck(r)ψqp∗

vk (r′). (3.75)

The excitation energies are the solutions of an eigenvalue problem and
it is necessary to find a form of the effective two-particle hamiltonian of
Eq. (3.74).
In order to derive the form of the Hamiltonian of the eigenvalue problem of
Eq. (3.74) the first step is to change the basis of the quantity we are deal-
ing with and consider as a new basis that of a single-particle eigenfunctions
φn(x).
In this basis any four point quantity is:

S(x1,x1′ ,x2,x2′) =
∑

(n1,n′
1
)(n2,n′

2
)

φ∗n1
(x1)φn′

1
(x1′)φn2

(x2)φ
∗
n′

2
(x2′)S(n1,n′

1
)(n2,n′

2
), (3.76)

the modified polarizability now becomes:

P̄(n1,n′
1
)(n2,n′

2
) = P̄ 0

(n1,n′
1
)(n2,n′

2
)+

P̄ 0
(n1,n′

1
)(n3,n′

3
)Ξ(n3,n′

3
)(n4,n′

4
)P̄(n4,n′

4
)(n2,n′

2
), (3.77)

where the interaction kernel is defined as:

Ξ(n1,n′
1
)(n2,n′

2
) =

−
∫
dx1dx1′φn1

(x1)φ
∗
n′

1
(x1′)W (x1,x1′)φ

∗
n2

(x1)φn′
2
(x1′)+

+

∫
dx1dx1′φn1

(x1)φ
∗
n′

1
(x1)v(x1,x1′)φ

∗
n2

(x1′)φn′
2
(x1′). (3.78)
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The independent-particle response function polarizability is:

χ0 (n1,n′
1
)(n2,n′

2
) = δ(n1,n2)(n′

1
,n′

2
)

fn′
1
− fn1

En′
1
− En1

− ω
(3.79)

and fn are the occupation numbers.
The modified polarizability takes the form [131]:

P̄(n1,n′
1
)(n2,n′

2
) = (H2p − Iω)−1

(n1,n′
1
)(n2,n′

2
)
(fn′

2
− fn2

) (3.80)

where H2p is:

H2p
(n1,n′

1
)(n2,n′

2
)

= (En′
1
− En1

)δ(n1,n2)(n′
1
,n′

2
) + (fn1

− fn′
1
)Ξ(n1,n′

1
)(n2,n′

2
).

(3.81)

At this point we can apply an identity which holds for a system of eigenvec-
tors and eigenvalues of a general, non hermitian matrix, that is:

(H2p − Iω)−1
(n1,n′

1
)(n2,n′

2
)
=

∑

µ,µ′

A
(n1,n′

1
)

µ M−1
µ,µ′A

∗ (n1,n′
1
)

µ′

(Eµ − ω)
, (3.82)

A
(n1,n′

1
)

µ and Eµ are obtained solving the following eigenvalue problem:

∑

(n1,n′
1
)(n2,n′

2
)

Hexc
(n1,n′

1
)(n2,n′

2
)A

µ
(n2,n′

2
)
= EµAµ

(n1,n′
1
)
. (3.83)

The overlap matrix Mµ,µ′ between the eigenstates (which are in general non
orthogonal) can be written as:

Mµ,µ′ =
∑

(n1,n′
1
)

A
(n1,n′

1
)

µ A
∗ (n1,n′

1
)

µ′ . (3.84)

The polarizability is obtained solving Eq. (3.83), it is possible to obtain the
polarizability and therefore the macroscopic dielectric function.
Considering a two-point contraction of the polarizability in real space and
Fourier transforming, the macroscopic dielectric function becomes:

εM = 1 − lim
q→0

v0(q)
∑

µ,µ′

∑

(n1,n′
1
)

〈n1|e−iqr|n′1〉A
(n1,n′

1
)

µ ×

M−1
µ,µ′

∑

(n2,n′
2
)

〈n′2|eiqr′ |n2〉A∗(n2,n′
2
)

µ′

(fn′
2
− fn2

)

(Eµ − ω)
. (3.85)

This expression can be simplified analyzing the form of the effective Hamil-
tonian H2p

(n1,n′
1
)(n2,n′

2
)
.
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The index n1 = (n,k) contains the information of the band (valence or con-
duction) and of the k point which labels the corresponding single-particle
state, but considering that we are dealing only with vertical transitions, that
is k is fixed, from now on we will omit this index.
In what follows we will use this notation:

• (n1, n
′
1):

– unoccupied state: v1,v1′

– occupied state :c1,c1′

• (n2, n
′
2):

– unoccupied state: v2,v2′

– occupied state : c2,c2′

the matrix representation of the two-body Hamiltonian H2p
(n1,n′

1
)(n2,n′

2
)

is:




v2, c2 c2, v2 v2, v2′ c2, c2′

v1, c1 H2p
(v1 c1)(v2 c2) Ξ(v1 c1)(c2 v2) Ξ(v1 c1)(v2 v2′ )

Ξ(v1 c1)(c2 c2′ )

c1, v1 −Ξ(c1 v1)(v2 c2) −H2p
(c1 v1)(c2 v2) −Ξ(c1 v1)(v2 v2′ )

−Ξ(c1 v1)(c2 c2′ )

v1, v1′ 0 0 (Ev1′
− Ev1

)δ(v1,v2)(v1′ ,v2′ )
0

c1, c1′ 0 0 0 (Ec1′ − Ec1)δ(c1,c2)(c1′ ,c2′ )




In the definition of H2p
(n1,n′

1
)(n2,n′

2
)

there are δ(n1,n2)(n′
1
,n′

2
); which is the

identity in the transition basis, and (fn1
− fn′

1
), which is different from

zero only for those transitions for which (n1, n
′
1)=(occupied,unoccupied) or

(n1, n
′
1)=(unoccupied,occupied).

Despite the simplifications, the form of the H2p is quite complicated, but it
is interesting to note that in the polarizability appears: (fn′

2
− fn2

).
(fn′

2
−fn2

) contributes only for the terms corresponding to (v2 c2) and (c2 v2),

then we can obtain Hexc,2p
(n1,n′

1
)(n2,n′

2
)
:




H2p resonant
(v1 c1)(v2 c2) Ξcoupling

(v1 c1)(c2 v2)

−
[
Ξcoupling

(v1 c1)(c2 v2)

]∗
−

[
H2p resonant

(v1 c1)(v2 c2)

]∗




TheH2p resonant is Hermitian and corresponds to positive absorption energy,
while −

[
H2p resonant

]∗
is the anti-resonant part, and gives the de-excitations

energies [152]. In the calculations of optical spectra the coupling part of the
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matrix is often neglected (Tamm-Dancoff approximation).
In this approximation the eigenvalue problem can be rewritten as:

∑

(v2 c2)

Hexc,2p resonant
(v1 c1)(v2 c2) Aµ

(v2 c2) = Eexc
µ Aµ

(v1 c1), (3.86)

and finally Eq. [3.85] can be simplified:

εM = 1 − lim
q→0

v0(q)
∑

µ

∑

(v1 c1)

|〈v1|e−iqr|c1〉A(v1 c1)
µ |2

Eexc
µ − ω − iη

(3.87)
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esercita nelle forme e nei limiti della
Constituzione

Constituzione Italiana, Art. 1

In this section we will present and comment the results obtained through
the computer numerical simulations realized during my three year of PhD
fellowship. The numerical simulation have been realized through several
ab initio DFT code within the plane-wave pseudopotential approach, such
as Pwscf [153], VASP [154, 155] and Abinit [156] for what concern the
total energy calculation part. On the other side, the optical features of the
system have been investigated through different codes, like SELF [157] and
EXC [158]. Due to the very huge computational cost of the simulations, the
total energy and the many body optical calculations have been performed
on supercomputing machines located at the CINECA computing center in
Bologna and at CICAIA center in the University of Modena and Reggio
Emilia.

4.1 Model System

This chapter is devoted to the description of 0-dimensional Silicon crystal,
commonly called Silicon nanocrystals (Sinc). The Sinc described in this
work are spherical nanocrystals isolated in vacuum and doped simultane-
ously with substitutional impurities of Boron and Phosphorus. Starting
point of this study are the undoped Sinc, free-standing nanocrystals built
up by considering all the bulk Silicon atoms contained in a sphere centered

89
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Figure 4.1: Schematic representation of the supercell approach. The supercell
is represented by the continuous grey line and the atoms by the spheres (top
view). The Sinc into account is the Si147H100. As one can see the physical
nanocrystal is in the center of the image, while nc appearing in the corners are
fictitious replicas introduced by the supercell approach.

on a Si ion; they show an almost spherical shape, the typical tetrahedral
coordination of bulk Silicon for the Si-Si bond distances and have Td point
group symmetry of the typical diamond-structured bulk materials.

The present work takes into account different nanocrystals with diame-
ters ranging from 1.1 nm up to 1.79 nm, in order to simulate almost re-
liable systems through the progressively increasing of dimensions. The un-
doped Sinc considered, the Si35H36 (d=1.10 nm), Si87H76 (d=1.5 nm),
Si147H100 (d=1.79 nm) are passivated at surface with hydrogen to saturate
all the possible dangling bonds and to exclude possible effects of surface
states and surface reconstruction. The single and codoped Sinc, instead,
are obtained from the above nanocrystals with the insertion of one or two
impurities, a donor atom (such as Phosphorus) and an acceptor one (like
Boron) placed in substitutional site after the removal of the corresponding Si
atom. All the Sinc are treated as isolated free standing nanocrystals placed
into simple cubic supercells, with side varying from 40 a.u. up to 45 a.u.,
according to the nc diameter (respectively the former for the Si35H36 and
the later for the Si87H76 and Si147H100 ) in order to leave enough vacuum (at
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least 6 Å) around each neighboring nanocrystals to avoid any Coulombian
interaction between the periodic replica, as shown in Fig. 4.1. The band
folding in the Brillouin Zone and the flattening of the bands into discrete
levels without any k-dispersion due to the quantum confinement along the
3 coordinate directions, allow to sample the Brillouin Zone only with the
single Γ (0,0,0) k-point.

The total energy calculation, have been performed using an energy cut-
off of 30 Rydberg (Ry), treating the structural relaxation with ultrasoft
Vanderbilt pseudopotential in order to manage large supercells with a huge
number particles up to 512 atoms, while the optical properties have been cal-
culated via norm-conserving pseudopotential in the formulation of Perdew
and Zunger [79]. The application of ultrasoft pseudopotential for optical
calculations is problematic both for the relaxation of the norm conserva-

tion and also for the presence of the non-local commutator p̂ = i
~

[
Ĥ, r̂

]

that does not permit an accurate and an easy computing description. The
XC functional used is GGA in the formulation of Perdew-Burke-Ernzerhof
(PBE) [74] very similar to the PW91 pseudopotential (see Section 2.2.1).

4.2 Formation Energy

When defects are present or created in the materials, the systems subdue
a perturbation. In our case defects are represented by acceptor and donor
impurities, such as Boron (B) and Phosphorous (P) respectively, substitu-
tionally inserted in the hydrogenated Sinc. Our aim is to understand which
configuration is more stable when one or two impurities are inserted, and in
practice to evaluate what amount of energy is required to sustain the dop-
ing process. A theoretical useful tool is the Formation Energy (FE) defined,
according to the paper of Zhang and Northrup [159], and applied in several
others papers [160, 161, 162] with the following formulation:

∆EFE = E (Sin−l−kBkPlHm)−E (SinHm)+ (k+ l)µSi − k µB − l µP, (4.1)

The k and l index can be 0 or 1, thus one has an un-doped, a single B- or
P-doped Sinc or a B and P co-doped Sinc. The Formation Energy of neutral
B and/or P impurities can be defined as the energy required to insert one
B and/or one P atom within the cluster after removing one (or two) Si
atoms (depending on single doping or co- doping) which are transferred to
the chemical reservoir, assumed to be bulk Si. Here we’re calling Formation
Energy the amount ∆FE even if this is just an energy difference ∆FE =
Ef2

− Ef1
, between the formation energy of the pure undoped Sinc

Ef1
= E (SinHm) − nµSi −mµH (4.2)
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and the Formation Energy of the doped nanocrystals (with one or two im-
purities)

Ef2
= E (Sin−l−kBkPlHm) − (k + l)µSi − k µB − l µP −mµH (4.3)

To evaluate this amount ∆FE one has just to perform total energy calculation
of the system energy E (with and without impurities) and of the chemical
potentials for each of the atomic species involved in the formula [4.1]: µSi is
the total energy per atom of bulk Si, µB the total energy per atom in tetra-
gonal B50 for the Boron impurity, as in [163] and µP the chemical potential
in Orthorhombic Black Phosphorus for P impurity, as in [164]. Since the
quantity ∆FE is independent by the number of atoms of the nanocrystals,
it can be calculated and compared for several Sinc of different size, giving
a measure of the stability of the single and co- doped Sinc with respect
to several parameters, such as the dimensions, the number of the chemical
species and the relative position of impurities within the nanocrystals.

4.3 What about doping Silicon Nanocrystals?

The semiconductors doping has represented since the 70’s a valid and cheap
technique to increase the number of carriers of the system. This holds for
Silicon in particular because of its intense application in the traditional mi-
croelectronics field. Hundreds of papers investigating doping Bulk Silicon are
present in the literature, but none of them since last 10 years has concerned
the possibility to dope Silicon based nanostructures. In particular, prelimi-
nary research works have been presented in international scientific journals
by the experimental group of Minoru Fujii since 1998, indicating the way to
achieve stimulated emission of visible light from small Silicon nanocrystals
single and co doped simultaneously with Boron and Phosphorous [33, 41]
embedded in an oxide matrix. From the experimental point of view, these
works represent one of the first attempt to investigate the role played by
the insertion of III-V impurities in Silicon structure at the nanoscale, in
particular focusing the attention on the optical features for possible opto-
electronic applications. Others recent attempts to investigate the doping at
the nanoscale have been performed on different systems such as CdSe and
ZnSe colloidal nanocrystals by Galli [165], Erwin [166], Chelikoswky [161]
but only in the early 90’s several experimental and theoretical investigations
have been performed at the same time about the possibility of inserting im-
purities in small system, demonstrating that this is possible but nonetheless
extremely difficult also for modern techniques. To the best of our knowledge
very few theoretical works exist in literature concerning impurity states in
Silicon-based systems related to the work made by Fujii. In [167] an empiri-
cal LCAO calculation of the activation energies of hydrogenic impurities in
nanocrystalline Si is discussed, while quantum confinement in P-doped Sinc
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is analyzed in [168] by Melnikov and Chelikowsky, using a real-space ab ini-
tio pseudopotential density functional method. Very few works exist about
doping on Silicon nanostructures but none of them, since now, concerns the
codoping [168, 169, 170, 160, 171]. Our investigation focused on the effect
of codoping of Silicon nanocrystals, results to be innovative and precursor
with respect to other theoretical investigations of this research field.

(a) The impurity is moved from the
center toward the ”subsurface” position
within the Sinc.

(b) Formation energy for a neutral impurities as a func-
tion of the impurity position, labelled from 1 to 6,
within the nanocrystals.

Figure 4.2: Formation Energy path for a B- single doped Sinc (from [160]).

The theoretical investigation on the simultaneously doping with Boron and
Phosphorous described in this thesis work, takes place by the new and
interesting considerations about the single doping reported in their paper
by Cantele and Degoli [160]. In their work the authors studied the effects
on the Sinc stability after the insertion of single impurities of B, P and Al
taking into account several nc with different diameter. The FE for neutral
impurity, calculated from Eq. [4.1], has been evaluated as a function of the
distance of the impurity from the nanocrystals center. By considering one
among the biggest nanocluster studied, the Si146BH100, the impurity has
been moved from the center toward the surface positions through different
substitutional sites, as shown in Fig.4.2(a). It comes out that the FE
strongly decreases when the impurity occupies the substitutional sites in the
first Silicon layer below the surface (as in Fig.4.2(b)) suggesting that these
positions correspond to a stable configuration for the doped Sinc. Moreover
the FE decreases with the increasing of the Sinc size, demonstrating that for
larger systems the insertion of a substitutional impurity is more convenient
and gives rise to an increase of stability. Next, the FE has been calculated
with relaxed and unrelaxed bond lengths in order to bring out the effect of
the Sinc relaxation on the FE. It comes out that this doesn’t really affect
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the stability of the system: the FE still decreases with the increasing of
dimensions maintaining an almost linear scaling while the relaxation just
around the impurity determines a rigid downward shift of FE toward lower
energy.

Due to these considerations about the single impurity Formation Energy
in the paper by Cantele and Degoli [160], we decide to codope the Sinc
inserting simultaneously the Boron and Phosphorous impurities in the first
Silicon layer below the surface, as shown in Fig. 4.3. In this configuration the
impurities are placed in each Sinc at the largest possible distance according
to the diameter of the nanocrystals and to the condition to occupy substi-
tutional site in the first layer below the hydrogenated surface, as depicted
from the following resuming Table 4.1:

Diameter DBP

(Å) (Å)

Si33BPH36 11 3.64
Si85BPH76 15 10.60
Si145BPH100 17.9 13.59

Table 4.1: Diameter and impurity-impurity distance for the codoped Sinc con-
sidered in this work.
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(a) Si33BPH36

(b) Si85BPH76 (c) Si145BPH100

Figure 4.3: Codoped Silicon Nanocrystals. Yellow (gray) balls represent Si
atoms, while the white (small grey) balls are the hydrogens used to saturate
the dangling bonds. Boron (magenta) and Phosphorus (dark brown) impurities
have been located at subsurface position in substitutional sites on opposite sides
of the nanocrystals.
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4.4 Codoping: Structural Properties

In this section we’re going to examine how the structural properties are in-
fluenced by the presence of two substitutional impurities with respect to the
undoped hydrogenated Sinc and the single doped ones. After the insertion
of impurities the Sinc have been relaxed to achieve the most reliable geo-
metric configuration corresponding to the absolute minimum of total energy.
We observe that the insertion of one and/or two impurities gives rise to

Si87H76 Si86BH76 Si86PH76 Si85BPH76

Bond Å Bond Å Å Å

Si-Sis 2.355 B-Sis 2.036 2.021
Si-Sis 2.355 B-Sis 2.036 2.021
Si-Sii 2.363 B-Sii 2.014 2.034
Si-Sii 2.363 B-Sii 2.014 2.034

Si-Sis 2.355 P-Sis 2.294 2.295
Si-Sis 2.355 P-Sis 2.294 2.295
Si-Sii 2.363 P-Sii 2.380 2.331
Si-Sii 2.363 P-Sii 2.380 2.331

Table 4.2: Bond lengths around the impurities site for the undoped Si87H76

nanocrystals and the single- and codoped ones (diameter 1.50 nm). B and P
impurities have been substitutionally located at subsurface positions (see Fig.
4.3(b)). Sis and Sii refer to two surface and two inner Si atoms around this site
respectively.

variations in the bond lengths focalized in particular around the impurity
sites, involving in particular the impurity-Si bonds. In Table 4.2, Table 4.3
and Table 4.4, are reported the relaxed bond lengths around the impurities
for each of the Sinc, Si33BPH36 , Si85BPH76 , Si145BPH100 . Comparing the
bond lengths of the single doped nc with those of the undoped one, we can
see from Table 4.2, that the insertion of one impurity in the singled doped
nc, determines an important structural relaxation around the impurity site:
the initial Td symmetry (ref. to Sec. 4.1) of the undoped Sinc turns into
the C2v symmetry. More specifically this leads to a local structure with two
shorter and two longer Si-impurity distances with respect to the two surface
and two inner Si atoms. The more significant relaxation with respect to
the undoped nanocrystals is found for the single trivalent atom (B, 2.036
Å and 2.014 Å with respect to 2.355 Å and 2.363 Å) than for the single
pentavalent one (P, 2.294 Å and 2.380 Å with respect to 2.355 Å and 2.363
Å). The amount of relaxation around the impurity sites is directly related
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Si35H36 Si34BH36 Si34PH36 Si33BPH36

Bond Å Bond Å Å Å

Si-Sis 2.300 B-Sis 2.093 2.035
Si-Sis 2.300 B-Sis 2.022 2.026
Si-Sis 2.300 B-Sis 2.022 2.026
Si-Sii 2.361 B-Sii 2.008 2.007

Si-Sis 2.300 P-Sis 2.366 2.303
Si-Sis 2.300 P-Sis 2.365 2.302
Si-Sis 2.300 P-Sis 2.364 2.297
Si-Sii 2.361 P-Sii 2.310 2.334

Table 4.3: Bond lengths around the impurities site for the undoped Si35H36

nanocrystals and the single- and codoped ones (diameter d= 1.10 nm). B
and P impurities have been substitutionally located at subsurface positions (see
Fig. 4.3(a)). Sis and Sii refer to three surface and one inner Si atoms around
this site respectively.

to the impurity valence.

For what concerns the codoping, instead, one can see from the same tables,
that the differences among the four impurity-Si bond lengths are smaller
with respect to the single-doped case (the Si-B bonds differ of about 1.08%
in the single-doped case and only 0.64% in the co-doped case, whereas this
variation in the case of P reduces from 3.61% to 1.54%). Thus, if carriers
in the Sinc are perfectly compensated by simultaneously n- and p-type im-
purities doping, an almost Td configuration, in which the four impurity-Si
bonds are practically the same, is recovered. Moreover looking at Table 4.3
and Table 4.4 where are reported the bond lengths for the Si33BPH36 and
Si145BPH100 respectively, one can see that a lowering of the symmetry
with respect to the Si87H76 -based nanocrystals occurs for the smaller and
larger nanoclusters. In this two cases the impurity-Si bond lengths present
a differ trend with respect to the Si85BPH76 : there are now two shorter
bonds with the same value, one longer and one with another little different
value. In spite of these light structural modifications occurring around the
impurity sites, the possibility to achieve the Td symmetry for codoped com-
pensated Sinc is achieved also for the smaller and the larger nanocrystals,
demonstrating that this behaviour is independent of the Sinc size. The dif-
ferent relaxation trend in the two nanocrystals among the Si-B and Si-P
bond lengths, leading to the lowering of symmetry, can be related to the
different Silicon neighborhood experienced by the impurities. In the case of
Si35H36 (blowup in Fig. 4.4) and Si145BPH100 (blowup in Fig. 4.5), the im-
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Si147H100 Si146BH100 Si146PH100 Si145BPH100

Bond Å Bond Å Å Å

Si-Sis 2.356 B-Sis 2.029 2.016
Si-Sis 2.356 B-Sis 2.029 2.016
Si-Sis 2.356 B-Sis 2.063 2.018
Si-Sii 2.369 B-Sii 2.009 2.022

Si-Sis 2.356 P-Sis 2.310 2.306
Si-Sis 2.356 P-Sis 2.310 2.306
Si-Sis 2.356 P-Sis 2.372 2.338
Si-Sii 2.369 P-Sii 2.321 2.321

Table 4.4: Bond lengths around the impurities site for the undoped Si147H100

nanocrystals and the single- and codoped ones (diameter d = 1.79 nm). B and
P impurities have been substitutionally located at subsurface positions (see Fig.
4.3(c)). Sis and Sii refer to three surface and one inner Si atoms around this
site respectively.

purities in the first layer below the surface are bonded to one inner Si atom
and to three surface Si atoms passivated with one and two hydrogen while
in Si85BPH76 the impurities have two surface Si atoms and two inner core
Si neighbors (see blowup in Fig. 4.5): to that the impurity sites experience
a different relaxation, with a different amount of bond softening.

After the investigation on the effect of dimension and chemistry on the
structural relaxation, we focus the attention on the effect played by the
impurity-impurity distance on the structural modification when two impu-
rities are simultaneously present in the same nanocluster, comparing the
impurity-Si distances to the corresponding Si-Si ones for the undoped nc.
We consider the biggest nanocrystals reported here, the Si147H100 , and by
keeping fixed the Boron in a subsurface position, we moved the Phospho-
rus through substitutional sites all along the first subsurface Silicon layer,
as schematically depicted in Fig. 4.6. For each of the impurity sites occu-
pied by the Phosphorous and labelled by position by II, III, V-a, V-b, VI-a,
VI-b, VIII-a, VIII-b, IX-a, IX-b and X, where the roman number refers sim-
ply to the positions evidenced in Fig. 4.6, a different configuration has been
achieved and for each of them energy and structural minimization have been
performed through ab initio calculations. Then, for each minimized config-
uration, the relaxed B-P and the corresponding Si-Si distances have been
calculated. These values are reported in Fig.4.7 where are also compared
with the corresponding relaxed Si-Si distances of a 6 × 6 × 6 supercell bulk
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Figure 4.4: Blow up of the bond lengths around the impurity sites in codoped
Si33BPH36 . The ”S” label indicates surface Silicon atoms bonded to the impu-
rity, while the ”i”refers to the inner Si atoms. In yellow are Si atoms, in white
the H ones at surface.
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Figure 4.5: Blow up of the bond lengths around the impurity sites in codoped
Si145BPH100 (left side) and Si85BPH76 (right side). The ”S” label indicates
surface Silicon atoms bonded to the impurity, while the ”i”refers to the inner Si
atoms. In yellow are Si atoms, in white the H ones at surface.
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Figure 4.6: ”Phosphorus impurity path” in Si145BPH100. Phosphorus atom
(dark brown) exploring several substitutional sites (labelled by number) while
Boron atom (magenta) fixed: both atoms are in first Si layer below the surface
shell.
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Figure 4.7: Boron-Phosphorus substitutional site distances in the Si145BPH100

nanocrystal (blue circles) and the corresponding Si-Si distances in the undoped
Si147H100 nanocrystal (cyan squares) compared to the bulk Silicon corresponding
distances (red diamonds).

Silicon. Since the bulk Silicon distances are considered as reference, values
above the dashed line correspond to an increase of the B-P distance, while
values below correspond to a reduction. Thus, since the displacement of the
B-P distance values with respect to this line is really small, one can conclude
that only weak modification occur in the codoped distances with respect to
the bulk. On going from the undoped nanocrystals, where the distances are
practically the same as in bulk Silicon, to the codoped ones we note a very
small shrinkage of the impurity-impurity distances with respect to the pre-
vious Si-Si distances. This shows, once again, that if carriers in the Sinc are
perfectly compensated by simultaneous doping, the starting undoped Sinc
undergoes practically no geometry distortion. In Table 4.5 are resumed the
relaxed B-P distances for the codoped Sinc of different dimensions consid-
ered here.
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Cluster B-P Distance Neighbors index
(Å)

Si33BPH36

B,P @I shell 3.5646 2nd

Si85BPH76

- B,P @ I shell (1) 10.5940 VIII

Si145BPH100

B,P @I shell
13,594 X
13.286 IXb

12,2022 IXa

11,9254 VIIIb
11,3159 VIb
11,2973 VIIIa
9,9503 VIa
7,9056 Vb

6,9328 Va

4,3970 III
3.68 II

Table 4.5: Relaxed B-P distances for codoped Sinc.

4.5 Codoping: Formation Energy

The structural modifications introduced by the presence of one or two impu-
rities discussed in the previous section, affect also the stability of the system
and have to be carefully taken into account when dealing with different kind
of single and co- doped Silicon nanocrystals. The stability of doped systems
has been evaluated through the calculation of the Formation Energy (FE),
defined in Sec. 4.2, as the energy required to insert neutral impurities of
B or/and P substitutionally within the hydrogenated Silicon nanocrystals
SinHm [44] by removing an equivalent number of Si atoms, and depicted in
Eq. [4.1]. In order to clarify which are the parameters that play a crucial role
in the determination of the Formation Energy, we have performed a series
of total energy calculations considering: i) single-doped and codoped nano-
crystals, ii) nanocrystals of different sizes, iii) impurities located in different
sites and iv) variable impurity-impurity distance within the same nanocrys-
tal. First of all our aim is to understand which kind of doping is more easier
to realize, by comparing in Fig.4.8 FE for B and P single and co- doped Sinc,
for each size of Sinc considered here. To note that in this figure the B and P
impurities have been placed in the Sinc as second neighbors, since this choice
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Figure 4.8: Formation energy for single-doped and codoped Si-nanocrystals. In
the codoped nanocrystals the impurities are placed as second neighbors in the
first subsurface shell (see text). B and P single-doped and B-P codoped nano-
crystals are considered. Green triangles are related to Si35H36, blue diamonds to
Si87H76 and red circles to Si147H100 based nanocrystals. The lines are a guide
for eyes.
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corresponds to the nearest possible distance between the two impurities for
the Si33BPH36-nc in Fig. 4.3(a), and the Si145BPH100-nc (see the position
labelled II in Fig. 4.6). After geometry relaxation the distances between B
and P impurities are DBP = 3.56 Å, DBP = 3.64 Å and DBP = 3.68 Å for
the Si33BPH36, Si85BPH76 and Si145BPH100 nanocrystals, respectively, as
shown in Table 4.5.
From Fig. 4.8 it is clear that simultaneous B and P doping strongly reduces
(of about 1 eV) the Formation Energy with respect to both B or P single-
doped cases and that this reduction is similar for Sinc of different size. Thus
while B or P single doping is very costly (in particular, the formation energy
increases with decreasing nanocrystals size, in agreement with previous cal-
culations [168, 160]) B and P codoping results much easier to obtain and
almost independent on the nanocrystals size. The important point here is
that Sinc can be more easily simultaneously doped than single-doped; this is
due to both the charge compensation and the minor structural deformation
subdue by the Sinc.
Moreover we performed more calculations exploring different configuration
of codoped impurities, in order to investigate in details the dependence
of FE on the distance between impurities and on the Sinc dimension. In
Fig. 4.9 has been compared the FE for the single and co- doped Si87H76 and
Si147H100 nanocrystals with impurities placed at two different distances:
first the impurities are second neighbors in both the nc (as in previous
Fig. 4.8), the minimum possible distance considering only substitutional
subsurface position (relaxed DBP =3.64 Å and 3.68 Å respectively) and
then the impurities are placed at the largest possible distance according
to the dimension of the Sinc, that means after the relaxation, DBP =10.60
Å for Si85BPH76 and DBP =13.29 Å for Si145BPH100 respectively. It’s
worth pointing out that for both the nanocrystals considered when the
impurity-impurity distance is reduced, the Formation Energy decreases of
0.2-0.3 eV and assumes negative values. This fact demonstrates that a
stronger interaction between n- and p- type impurities leads to a strong
reduction in the Formation Energy, so that codoping results easier to realize
when the dopants are closer each other. The amount of Formation Energy
reduction is about the same for each considered nanocrystals, and thus, as
shown in Fig. 4.8, it’s almost independent by the nanocrystals size. Since
the FE used here is calculated as a difference between the total energies of
the nanocrystals with and without impurities (see Eq.[ 4.1], negative values
of FE obtained for the codoped Sinc in Fig. 4.9 means that the calculated
total energies of the codoped nanocrystals are bigger in absolute value
than the total energies of the single doped nc. More negative are these
FE values, more the codoped nanocrystals are likely to be obtained during
the formation process with respect the single doped ones under the same
growth conditions.
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Figure 4.9: Formation Energy of Si87H76 and Si147H100 single-doped and
codoped nanocrystals, with impurities placed within the codoped nanocrystals
at two different distances: a large (dashed lines) and a small one (solid lines)
(see text). Red circles refer to Si87H76-nc and blue squares to Si147H100-nc.
The lines are a guide for eyes.

Nonetheless, regarding again Fig. 4.8, it comes out that the smallest B- and
P- single doped nc, the Si34PH36 and Si34BH36 , present the greater positive
FE values with respect to the other single doped cases. This suggests that
the single doping in small clusters results to be more difficult to realize and
more unfavorable than in other cases. This aspect is in good accord with
the conclusion asserted by Dalpian and Chelikowsky [161]: the increase in
the formation energies of these impurities with the decrease of the nc size is
a clear evidence that single doping small nanocrystals is more difficult com-
pared to single doping bigger systems, such as bulk for example. Dalpian
and Chelikowsky define self-purification a possible intrinsic property of na-
nocrystals, consisting in the exclusion of dopants from small nanocrystals,
that follows the increase of Formation Energy. This confirms the fact that
substitutional impurities are more stable in subsurface position just below



Codoping: Formation Energy 107

the surface, contributing then to shed more light on the most preferred po-
sition of single dopants within the nanocrystals. From the experimental
works, the doped and codoped Sinc are described such as embedded in an
glass Boron and/or Phospho- silicate glass matrix. One possible hypothesis
one the location of impurities is that the dopants could prefer to migrate at
the interface between the nanocrystals and the silica matrix, according to
the intrinsic difficulty of impurities to diffuse into small Sinc, that therefore
constrains the impurities to be relegate in the interface region. The nanocry-
stals dimensions can be an important parameter to manage with the doping
process like the structural modifications which can also affect the stability
of the system as demonstrated by the work of Ramos et al. [169, 170] where
the FE of single doped impurities strongly varies by moving from spherical
to faceted Sinc.
Nevertheless, our investigation on the codoping Sinc, demonstrates how the
simultaneous insertion of donor and acceptor impurities within Sinc is more
suitable than single doping, and that the amount of reduction of FE is prac-
tically size independent; although only spherical Sinc are here considered,
we can think concerning the codoping that the faceted Sinc present a similar
behaviour in which the size and shape have assume reduce importance with
respect to the singled doped cases studied in [170].
Then, in order to investigate more in details the dependence of the For-
mation Energy on the impurity-impurity distance, we focus our attention
on the biggest codoped Si145BPH100, trying to trace a ”Formation Energy
path” by progressively increasing the B-P distance. To do this we kept
fixed the B atom in a subsurface position and moved the P atom through
different substitutional site along the first subsurface shell, as schematic
shown in Fig. 4.6 and already explained in the previous Section 4.4. For
each different configuration, we performed total energy DFT calculation
in order to evaluate opto-electronic properties and Formation Energy as a
function of the B-P distance within the nanocrystal.

The results of these calculations are shown in Fig. 4.10 and Fig. 4.11 where
two interesting effects are evidenced. From Fig. 4.10 we observe an aug-
mentation in FE with the increase of the Boron-Phosphorus distance within
the nanocrystal, as depicted in Fig. 4.10, where is reported the FE for each
of the different impurity configuration as a function of the B-P distance in
terms of the distance (in Angstrom) and of the neighbors site index labelled
in Roman numbers. Some interesting consideration could be done.
The first is that FE assumes negative values for impurity between the site II
(3.68 Å) and site VI (9.95 Å) while going up with the distance, FE becomes
bigger and positive. This change from negative to positive values, can lead
to the definition of a ”critical impurity distance”: below such value, the
interaction between Boron and Phosphorus is stronger and it gives rise to a
reduction of FE meaning that codoping results more favorable and increase
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the stability of Sinc, while, above this value, the Coulomb interaction tends
to be more screened and therefore to be quenched leading to a minor influ-
ence on the FE then reducing the stability of the impurity complex within
the nanocrystals.

Figure 4.10: Formation Energy as a function of the Boron-Phosphorus distance.
Roman numbers refer to the positions of the P atom (see Fig. 4.6). The dotted
and dashed lines connect two categories of impurity sites, where the surrounding
surface Si atoms are bounded to the same number of passivating H atoms.

These outcomes are supported also by Fig. 4.11, in which we report the
values of the Formation Energy for three nanocrystals different in size
and with impurities located in the subsurface shells at different distances.
As before, it appears clear that the distance between impurities plays a
fundamental role on the decrease of the Formation Energy. Below a given
impurity-impurity distance the Formation Energy assumes negative values
for each nc size. Moreover we see that the Formation Energy shows the
minimum value when the impurities are located at the minimum possible
distance in each codoped Sinc apart from the different diameter size.
Indeed the impurity-impurity distance seems to play a major role on the
FE with respect to the nanocrystals size, since the Formation Energy
values are similar for similar impurity-impurity distances independently of
the nanocrystals dimension. The small difference between the Si85BPH76 ,
the Si33BPH36 and the Si145BPH100 is due to the different neighborhood
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Figure 4.11: Formation Energy as a function of Sinc size and impurity-impurity
distance. For the three different considered Sinc one has the following nc diam-
eters (d) and impurity-impurity distances (DBP): Si33BPH36 d= 1.10 nm and
DBP = 3.56 Å (site II); Si85BPH76 d= 1.50 nm and DBP = 2.00 Å (site I), DBP

= 3.64 Å (site II), DBP = 10.60 Å (site VIII); Si145BPH100 d= 1.79 nm and
DBP = 3.68 Å (site II), DBP = 4.40 Å (site III), DBP = 6.93 Å (site V-a), DBP

= 7.91 Å (site V-b), DBP = 9.95 Å (site VI-a), DBP = 11.32 Å (site VI-b),
DBP = 11.30 Å (site VIII-a), DBP = 11.93 Å (site VIII-b), DBP = 12.20 Å (site
IX-a),DBP = 13.29 Å (site IX-b), DBP = 13.59 Å (site X).

experienced by the impurities in the three cases (see Tables I, II and III).

The second other relevant point is the possibility to identify two distinct
trends for the Formation Energy depicted in Fig. 4.10, that can be related
to the type of Silicon cage surrounding the P dopant site. One can group
(dotted line) together the cases in which the P impurity is located in the
positions labelled II, VI-b and X with respect to the B impurity (see Fig.
4.6). In these positions two of the surface Si atoms bounded to the P
impurity present two passivating H atoms instead of one, the situation
that actually dominates in all other configurations; it’s thus possible to say
that a different number of capping H atoms influences the Formation Energy.
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Many other calculations has been done on the biggest Si145BPH100 codoped
nanocrystals with impurities located at the center of the nanocrystals in
order to shed more lights on the most favorable dopants sites. Different B
and P impurity configurations have been investigated taking into account
cases with impurities placed like near neighbors and second neighbors at
the center of the nc. It comes out that the inner substitutional sites are
not among the most stable positions for impurities, since they give rise to
positive Formation Energy values: near neighbors B-P impurities give a FE
equals to 0.18 eV, while when B and P are second neighbors the FE decreases
a little bit but still remaining positive around 0.08 eV. Moreover when the
P is located at the center of the nc while the B is substituted in the first
subsurface layer the FE diminishes again at the value of 0.018 eV, close to
zero but positive, confirming once again that the most favorite positions for
both Boron and Phosphorus are the subsurface sites.



5
Back to the future:

OptoElectronics

Son morto con altri cento,
son morto ch’ero bambino
passato per il camino,
e adesso sono nel vento.

Auschwitz, Francesco Guccini

In this new section we present the calculated optoelectronic features of the
B and P codoped Silicon nanocrystals. The aim is to understand the role
played by the simultaneously presence of substitutional acceptor and donor
impurities such as Boron and Phosphorous , on the electronic structure
of the nanocrystals and to investigate how this features can be manipulated
and engineered by simply handling with impurity position within the system.
As already depicted in the Introduction, the main goal of this research would
be the full comprehension of the mechanism that rule the emission and the
tuning of visible light from the doped and codoped Sinc, yet experimentally
observed by the group of Minoru Fujii. From the theoretical point of view
this will contribute enormously to the research on Silicon nanocrystals for
photonic applications.

5.1 Electronic Properties

Here, as the title preventively suggests, are described the electronic proper-
ties of the single and co- doped Sinc. The semiconductors doping is nowa-
days a well established technique used to inject and manage the numbers
of carriers in semiconductors systems, or to shift insulator system into se-
miconductors through the insertion of donor and/or acceptor impurities. It

111
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has been proof that when impurities are present or later inserted in semi-
conductors, new discrete electronic levels arise due to the impurities within
the band gap [172]. The dopants are classified by their chemical valence.
In particular, in the tetrahedral elemental semiconductor, impurities with
valence charge greater than four are considered as donors (like elements
from V group, P, As, N) while impurities with valence lower than four are
called acceptors, such as the elements from III group like B, Al. This is
what happens also in Silicon, the most popular semiconductor among the
tetravalent ones, as depicted by Fig. 5.1. The donors dopants posses an
extra electron which doesn’t participate to the chemical tetravalent bond-
ing and it’s relatively free to move throughout the crystal. On the other
hand, the acceptors atoms, need an extra electron to complete the tetrava-
lent coordinate bonding of the elemental crystalline environment; thus the
unsaturated bond may migrate throughout the crystal and in this way it can
be depicted as an hole. The semiconductors with an insignificant number of

Figure 5.1: Chemical valence of the dopants inserted into a tetrahedral semi-
conductor, here bulk Silicon. Atoms from III group like Boron become acceptors

while atoms from V group, such as Phosphorus, are defined as donors.

carriers can be consider almost pure and are called intrinsic. The number of
charge carriers is therefore determined by the properties of the material itself
instead of the amount of impurities; moreover in intrinsic semiconductors
the number of electrons and the number of holes are equal. Instead, when
an amount of dopants impurities is inserted into a semiconductor, which
results to be doped, the semiconductor is called extrinsic. The electron and
hole carrier concentrations of the semiconductor at thermal equilibrium are
then changed. Dominant carrier concentrations in an extrinsic semiconduc-
tor classify it as either an n-type or p-type semiconductor. The electrical
properties of extrinsic semiconductors make them essential components of
many electronic devices. The donor and acceptor impurities considered here
are called shallow since they give rise to discrete energy level close to the
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conduction and valence band edge respectively as shown in Fig. 5.2.

Figure 5.2: Energy levels of acceptors and donors in the semiconductor band
diagram, placed near the conduction EC and valence EV band edge. The shal-
low donor energy level ED and the acceptor energy level EA have respectively
ionization energies Ed and Ea.

The main idea behind this work is to demonstrate from a theoreti-
cal point of view but supported by the experimental evidences (see
Fujii[41, 33, 36, 40, 32, 38]) that the traditional doping of bulk semicon-
ductor can be also applied to nanostructured system in order to control
not only electrical properties but especially the optical features of these
innovative systems. The possibility to achieve visible light and to tune its
spectrum just playing with the doping of the Sinc represents a new and
groundbreaking combination of a traditional well established technique
with one of the newest class of nanosized system which should be still
deeply investigate at all.

Free standing undoped hydrogenated Silicon nanocrystals show an electronic
structure constituted by discrete energy levels as a consequence of the quan-
tum confinement effect, as demonstrated by numerous works realized in
the last 15 years [51, 173, 117, 174, 47, 44]. The undoped Sinc have a
semiconductor-like band gap that varies according to the variations of the
dimensions of the nanocrystals. The introduction of dopant atoms within
the Silicon nanocrystals has been demonstrated to produce a behaviour sim-
ilar to the doping bulk semiconductor, with the creation of discrete impurity
states near the conduction and valence band edge.
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B, P Single doped Nanocrystals

All the data regarding the electronic structures calculated are obtained, as
for the geometric structure, using Vanderbilt ultrasoft pseudopotential with
GGA exchange-correlation functional.
First of all we’re going to resume what happens when only one impurity
(Boron or Phosphorous ) is present within the Sinc. In Fig. 5.3 and in
Fig 5.4 are reported the energy levels calculated at Γ for the two different
size of Sinc; only the levels corresponding to the highest occupied molec-
ular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO),
the HOMO-1 and LUMO+1 states are shown. According to the previous
considerations about the formation energy and thus on the more preferred
impurity position within the Sinc, here the impurities are single doped in
the first layer below the surface, as one can see from Fig.5.5 where the lo-
calization of HOMO and LUMO states is shown. As for bulk Silicon, the
impurities inserted give rise to new shallow electronic levels near the band
edge. The Boron dopant gives rise to an impurity level close the valence
edge, while the Phosphorous atom gives rise to a level localize just be-
low the conduction band edge. As reported in Fig. 5.3 and Fig. 5.4 these
Kohn-Sham impurity levels become more shallow as the size of Sinc increase,
thus when the quantum confinement is reduced and the dimensions tend to
the bulk limit. The HOMO (Highest Occupied Molecular Orbital) level of

Figure 5.3: Calculated energy levels at the Γ point for the Si35H36 , the
Si34BH36 and Si34PH36 single doped Sinc. The alignment has been performed
locating at the same energy the fully occupied levels with the same type of
localization.

single doped nanocrystals contains only one electron and the Kohn-Sham
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energy gap is defined for the single doped nc as the energy difference be-
tween the highest occupied level (HOMO) that is partially filled and the
lowest unoccupied one (LUMO) which is empty. The presence of donor or
acceptor states lowers the above defined energy gap (EG) with respect the
corresponding undoped Sinc and the changes in the electronic structure are
directly related to the impurity valence. Since the impurity level is semi-
occupied it leads the single doped Sinc to have an odd numbers of electrons
with respect the undoped ones and to become a metallic system. Performing
spin-polarized calculations it has been demonstrated that the impurity level
with the lower energy is always occupied by the unpaired electron (spin-up
or spin-down) while the level with higher energy is not occupied [170]. Some

Figure 5.4: Calculated energy levels at the Γ point for the Si87H76 , the
Si86BH76 and Si86PH76 single doped Sinc. The alignment has been performed
locating at the same energy the fully occupied levels with the same type of
localization

light differences arise between spin-up and spin-down energy calculations,
and in particular the amount of discrepancy between spin-up and spin-down
states depends slightly by the Sinc size: for small nc the splitting is more
pronounced while for bigger the differences tend to become negligible [170].
Nonetheless the actual calculations on the B and P singled doped Sinc are
in fair good agreement with other similar investigation on the single doping
Sinc made by Zhou and Brus [171, 175].

The insertion of a single impurity into the nc perturbs then not only the
electronic structure, but also the localization of the HOMO and LUMO
orbitals of the Sinc, with respect to the undoped counterpart, as depicted
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in Fig. 5.5. The HOMO and LUMO orbitals of the undoped Sinc are spread
all over the entire cluster, as confirmed by previous work on hydrogenated
nanocrystals[44]; in the single doped cases, instead, the HOMO is strongly
focused on the Boron and Phosphorous impurity sites, while the LUMO
is delocalized over the all Silicon inner core of the nc, thus recovering the
typical behaviour of the undoped hydrogenated Sinc. Due to the strong
localization of the impurity level, for example, in the case of Si86BH76 the
defect level is located just 0.28 eV above the valence band reducing the
above defined energy gap from 2.59 eV (the value for the undoped Sinc)
to 2.31 eV. In Si86PH76 the defect level is located just 0.28 eV below the
conduction band so that the energy gap is only 0.28 eV. It is interesting to
note that the experimental substitutional donor binding energy for P in bulk
Si is about 33 meV, while the experimental acceptor energy for B in Si is 45
meV,[176] showing how, in the case of nanocrystals, the combined effects of
both quantum confinement and weak screening tend to “transform” shallow
impurities in “deep” centers [168, 160, 177].
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Figure 5.5: The HOMO (left column) and LUMO (right column) square mod-
ulus contour plots calculated for the B and P single doped Si35H36- (upper
panel) and Si87H76- (lower panel) based nc.The isosurfaces correspond to 10%
of the maximum value.
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B and P Codoped Nanocrystals

When the Boron and Phosphorous dopant atoms are simultaneously in-
serted within the Sinc, the single perturbations related to the presence of
an acceptor and a donor impurity sum and the system recover a semicon-
ductor character. It means that new electronic levels due to the simul-
taneous codoping and related to the different character of the III and V
group dopants, arise into the energy gap of the Sinc which is fully occupied.
This can be clarified from Fig. 5.6 where we show the electronic levels for

Figure 5.6: Calculated energy levels at the Γ point for the Si87H76 , Si86BH76 ,
Si86PH76 and Si85BPH76 nc. The alignment has been performed locating at
the same energy the fully occupied levels with the same type of localization.

the Si87H76- based nc, the single doped (as in the previous section) and
the codoped Si85BPH76. Again only the HOMO, LUMO, HOMO-1 and
LUMO+1 orbital states are reported (see Fig. 5.7) and the alignment has
been realized locating at the same energy the states with the same kind of
electronic occupations and with the same type of localization. It comes out
that now on going from the pure to the codoped nc, the HOMO and LUMO
states tend progressively to localize around the two impurity sites (bottom
panel of Fig. 5.7): thus the HOMO is mainly focused around the Boron
impurity, the acceptor, while the LUMO is centered around the Phosphorus
impurity, the donor site. Thus we can associate HOMO and LUMO states
to the new impurity levels, and we have to remember that the codoped nc
we’re dealing is compensated by the presence of a donor and an acceptor
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at the same time, with valence levels completely double occupied. The new
HOMO and LUMO impurity states arise within the energy gap, determining
a strong reduction from 2.5867 eV (undoped Sinc) to 1.8228 eV (codoped
Sinc).

The same trend is realized for the codoped Si33BPH36 with respect to the
Si35H36, where the energy gap of the codoped Sinc is strongly reduced by
an amount of about 1 eV as depicted in Fig. 5.8 where energy levels at Γ
are depicted for the smallest single and codoped nc.

It worth pointing out how the distance between the two impurities within
the Sinc could influence the electronic structure. Thus on going from the
smallest to the biggest nanocrystals we decide to investigate the electronic
properties as a function of the impurity-impurity distance. Several config-
urations of codoped nc with coupled impurities inserted in the first Silicon
layer below the surface (following the consideration on the FE of the pre-
vious section) with different distance between the Boron and the Phos-
phorous atoms have been investigate. To better understand how the B-P
distance could really influence the electronic properties, we take into account
one of the biggest Sinc, the Si145BPH100 codoped with the impurities placed
one time at the largest possible distance in the first subsurface Silicon layer
(DBP=13.29 Å) and the second time at the lowest possible distance such
as second neighbors just below the surface (DBP=3.69 Å) and then we cal-
culate the corresponding electronic structures as shown in Fig. 5.9. From
the figure it comes out that when the two impurities are at the larger dis-
tance (corresponding to site X) the energy gap EG is strongly lowered with
respect to the undoped Si147H100 moving from 2.30 eV to 1.63 eV; moreover
when the impurities are closer each other, thus second neighbors (configu-
ration labelled by site II), the EG enlarges to 2.03 eV, keeping always lower
than the value of the undoped Sinc. A possible explanation is that when
impurities are brought closer each other, the Coulomb interaction becomes
stronger so that the energy gap becomes larger. Boron and Phosphorus feel
each other like a B-P complexes with a gap opening recalling the DFT-LDA
calculated gaps for the Boron Phosphide bulk system: direct gap ( Γ → Γ )
3.3 eV, indirect gaps ( Γ → X ) 2.2 eV, and ( Γ → ∆ ) 1.2 eV, as described
in [178]. These behaviors are corroborated by the calculated HOMO and
LUMO wave functions. Fig. 5.10 shows the square modulus contour plots of
the HOMO and LUMO states of the two Si145BPH100 nanocrystals with dif-
ferent B-P distances. The top panel shows the contour when the impurities
are at a large distance while the bottom panel is that with the impurities
at short distance. It clearly appears from these contours that on going from
the case with well separated impurities to the that with close impurities, the
overlap between the HOMO, strongly centered on the Boron atom, and the
LUMO, mainly localized on the Phosphorus atom, strongly increases.

Moreover, the detailed influence played by the mutual B-P distance on
the electronic structure of codoped Sinc, has been carried out by looking at
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Figure 5.7: The HOMO (left column) and LUMO (right column) square mod-
ulus contour plots calculated for the Si86BH76 (top panel), Si86PH76 (middle
panel) and Si85BPH76 (bottom panel). The isosurfaces correspond to 10% of
the maximum value

the changes in the electronic levels for each of the impurities configurations
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Figure 5.8: Calculated energy levels at the Γ point for the Si33BPH36 ,
Si34BH36 , Si34PH36 and Si35H36 nc. The alignment has been performed locat-
ing at the same energy the fully occupied levels with the same type of localiza-
tion.

within the Si145BPH100 nanocrystal (see Fig. 4.6) as done before for the
formation energy. In Fig. 5.11, the trend of the HOMO-LUMO energy
gap with respect to distance between impurities within the Si145BPH100 is
reported. What comes out is that the mutual impurity distance deeply
affects not only the formation energy (as in Sec. 4.2) but also the energy gap
of the semiconductor nanocrystals. As one can see, the EG strongly decreases
almost linearly with the increase of the impurity distance; moreover, also in
this case we can figure out the presence of two different trends related to the
different surface region experienced by the P atom in the sites II, VI-b and
X, with respect to the other ones (see also Fig. 4.10 and related discussion).
Fig. 5.11 points out how, at least in principle, it is possible to tune EG as
a function of the impurity-impurity distance. It is easy to predict that for
Sinc larger than those considered here it would be possible by codoping to
obtain a energy gap even smaller than whose of bulk Si.

Moreover, by keeping constant the impurity-impurity distance between B
and P for each dimension of the Sinc considered, it’s possible to see how the
energy gap depends by the Sinc size. By placing the B and P impurities
like second neighbors in substitutional subsurface position in all the different
Sinc, it come out how its in principle possible to tune and modulate the elec-
tronic gap by moving from the undoped to the codoped Sinc. From Fig. 5.12
it can be see how the undoped EG is strongly reduced in the presence of
codoping. In particular also looking at the numerical values in Table 5.1,
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Figure 5.9: Calculated energy levels of the undoped Si147H100 (left panel),
codoped Si145BPH100 with an impurity-impurity distance DBP = 13.29 Å (cen-
tral panel), codoped Si145BPH100 with an impurity-impurity distance DBP =
3.68 Å (right panel). The alignment has been done locating at the same energy
the fully occupied levels with the same type of localization. Site X and Site II
are referred to Fig. 4.6. H stands for HOMO, L for LUMO.

the EG of the codoped Sinc appear to be shifted toward lower values with
respect to the corresponding undoped ones. The amount of shift is stronger
for smaller nanocrystals, 0.65 eV for Si33BPH36 , 0.30 eV for Si85BPH76 and
0.27 eV for Si145BPH100, but it tends to saturate when the diameter of the
Sinc exceeds some threshold value (here the Si87H76diameter). The same
quantum confinement effect trend (i.e. larger gap for smaller nanocrystals)
is observed for both the undoped and the codoped cases. The energy gap
trend depicted in Fig. 5.11 and Fig. 5.12 can be directly connected with
the experimental outcomes by Fujii and coworkers [38, 36, 37] who found
photoluminescence peaks centered in the 0.9-1.3 eV energy region: we can
therefore argue that Sinc playing a role in the experiment should have di-
mensions of the order of few nanometers, as shown from the EG decreasing
trend in Fig. 5.11. This foregone conclusion is consistent with the experi-
mental outcomes [38, 36, 37] that indicates an average nanocrystals diameter
of about 5 nm. The possibility to modulate and control at pleasure the elec-
tronic structure, in particular the possibility to tune the energy gap of the
Sinc just by the modulation of codoping, discloses several new routes for
electronic and optoelectronic applications.
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(a)

(b)

HOMO LUMO

Figure 5.10: From the top to the bottom: the HOMO (left) and LUMO (right)
square modulus contour plots calculated for Si145BPH100 (atom colors same as
in Fig. 4.3). The impurities are located on opposite sides of the nanocrystal, at
distance DBP = 13.29 Å (a) or as second neighbors, with an impurity-impurity
distance DBP = 3.68 Å(b). The isosurfaces correspond to 10% of the maximum
value.
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Figure 5.11: The HOMO-LUMO energy gap as a function of the distance
between the B and P impurities within the Si145BPH100 nc. Roman numbers
refer to the positions of the P atom (see Fig. 4.6). The dashed and dash-dotted
lines connect the two subsets of impurity sites in which the surrounding surface
Si atoms are bonded to the same number of passivating H atoms.
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Figure 5.12: Comparison between energy gaps of the undoped (black triangles)
and the codoped (red circles) nanocrystals as a function of the nanocrystal
radius. Impurities are located in the first shell below the surface, as second
neighbors. The impurity-impurity distances are 3.56 Å, 3.64 Å, and 3.68 Å for
Si33BPH36, Si85BPH76, Si145BPH100 respectively. The lines are a guide for the
eye.

Starting nc d (nm) EG undoped (eV) EG codoped (eV)

Si35H36 1.10 3.51 2.86
Si87H76 1.50 2.59 2.29
Si147H100 1.79 2.30 2.03

Table 5.1: HOMO-LUMO gap (EG) for Si35H36, Si87H76, Si147H100 and the
corresponding codoped Si33BPH36, Si85BPH76, and Si145BPH100. Impurities
are second neighbors. The impurity-impurity distances are 3.56 Å, 3.64 Å,
and 3.68 Å, for Si33BPH36, Si85BPH76, and Si145BPH100 respectively. d is the
nanocrystal diameter.

5.2 Optical Properties

The optical features of these codoped Sinc will be examined in this section by
investigating how the absorption and the emission spectra can be affected
and modulated by the codoping. In particular optical spectra performed
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first in the Independent Particle Random Phase Approximation (IP-RPA)
and next in the Many Body Perturbation Theory approach(GW-BSE) (see
Sec.3) will be compared in order to bring out the effect of local field and
many body correction. In the RPA approach the absorption has been calcu-
lated as the imaginary part of the dielectric function ǫ2(ω) expressed through
the ”classical” Fermi golden rule [179]. To understand the role of dimen-
sionality and impurity distance and to show the importance of including
many-body effects in the optical spectra, we are going to present first the
result of a IP-RPA optical response for various codoped nanocrystals diffe-
rent in dimensions and in impurity location (see Sec. 5.2.2), and next, we
will present a complete study of a codoped Sinc where we go beyond the
single-particle approach within the GW-BSE framework (see Sec. 5.2.4).

5.2.1 Computational details

For all the calculations performed norm-conserving pseudopotentials have
been used, without the inclusion of the non local commutator [VNL, r].
Since it has been demonstrated that this term affects only the intensity
of the absorption peaks in the spectrum without changing their positions,
the commutator can be therefore neglected without loosing physical infor-
mation. All the calculations performed are not spin-polarized. However
it should be noted that single-particle calculations for undoped Sinc
done by Franceschetti and Pantelides [116] within the local spin-density
approximation, show that the singlet-triplet splitting is significantly smaller
than the Stokes shift [170].

The nanocrystals optical response is evaluated for both the ground and
the excited state relaxed geometries computing the imaginary part of the
dielectric function (ǫ2(ω)) through the well known Fermi golden rule, as
expressed in Eq.[ 3.11]. To the best of our knowledge, the present work is
the first up to now which takes care to study and understand the mecha-
nisms that govern not only the absorption but in particular the emission
process from codoped Sinc. As remarked in the Introduction, the control of
emission of light from Silicon nanostructures is important to realize photonic
devices integrated with the traditional electronic dispositive. Therefore,
the study of emission process leads to the knowledge of excited states both
for extended or confined system; in particular the theoretical framework
that permits to treat and to manage with the excited states is still under
debate and upgrading. Approaches within the Many Body Perturbation
Theory that permit to treat the many body effects by calculating the self
energy correction via the GW approximation and to evaluate the role of
local field and exciton effect through the solution of Bethe-Salpeter equa-
tion, are still very computing demanding and supported by huge calculation.
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In this work we decide to go beyond the GS calculation and to simulate
also the excited state of our systems combining together two well known
approaches in order to carry out a first estimation of the emission process
without dealing for the moment with calculations based on Green Functions.
The combination of a Constrain DFT (∆SCF) approach with the cal-
culation of the imaginary part of the dielectric function ǫ2(ω) with also
the inclusion of the many body effects, has led to an almost reliable and
physical treatment of the excited state [44, 47, 119, 117]. The emission
spectra have been calculated using the relaxed atomic positions of the
excited state combined with the electronic occupation of the ground
state. The excited state is characterized by an electronic configuration
in which the highest occupied single-particle state (HOMO) contains
a hole (h), while the lowest unoccupied single-particle state (LUMO)
contains the corresponding electron (e), thus simulating the creation of a
electron-hole pair under excitation, as shown in Fig. 5.13(b), according

(a) Left panel: schematic representation of the
ground and excited state in the configuration
space. It’s possible to see the difference between
the absorption and the emission process, com-
monly named Stokess shift.

(b) Neutral optical excitation (ab-
sorption process) with the creation
of an electron-hole pair which recom-
bine radiatively (emission), and the
corresponding relaxed GS and EXC
geometries.

Figure 5.13: Schematic representation of the one-particle excitation process in
a codoped Sinc.

to the Constrained-DFT approach (∆SCF) [114]. After excitation, due
to the change in the charge density and in presence of the electron-hole
pair, relaxation occurs until the atoms reach a new minimum energy
configuration called relaxed geometry of the excited state. The new atomic
positions modify the electronic spectrum, implying that the levels involved
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in the emission process change. This model assumes that the relaxation
under excitation is faster than the electron-hole recombination. The
difference between the absorption and emission energies due to the different
atomic positions represents the nanocrystals Stokes shift [116, 57], that is
schematically depicted in Fig. 5.13(a).

It’s worth pointing out that now the emission spectrum can be expressed as
an absorption spectrum calculated in new structural geometry, that means
to calculate the emission exactly as the imaginary part of dielectric function
(ǫ2(ω)), thus like an absorption, but with the electronic occupation of the
ground state and the relaxed structural geometry of the excited state. It
should be noted that although ǫ2(ω) should only be used for calculating
the nanocrystals absorption coefficient, it can also be used to get a first
approximation for the emission spectra, simply because the emission can
be viewed as the time reversal of the absorption, whose main features are
also those of the emission spectra as one can see from the Fermi golden
rule [179]. To note that for the first time, the electron-hole interaction is
here considered in the emission geometry via a ∆SCF scheme, while since
now excitation of nanoclusters has been studied calculating pair-excitation
energies [115, 119, 117]. It is worth mentioning that the photoluminescence
spectra can be derived using the well known Van Roosbroeck and Shock-
ley [180] relation which, again, involves the imaginary part of the dielectric
function, ǫ2(ω). However, such a calculation requires the knowledge of the
electron and hole populations, at the working temperature, in the LUMO
and HOMO states respectively. The populations, in turn, depends on the
actual dynamics in the excitation and emission processes, including the
non radiative electron-hole recombination. In this work, nevertheless, we
have not considered any particular dynamics so that our emission spectra
contains only the information related to both the transition energies and
the oscillator strengths.

In the second part of the section, we have gone beyond the single-particle
approach including in the calculation of the optical response of the system
the many body effects, through the computation of the GW self energy
correction and the application of the Bethe-Salpeter equation in order to
treat properly the two body electron-hole interaction (see Sec. 3). Since the
inclusion of the self energy correction, the local field effects and excitonic
interaction makes the calculation very tough and very computationally de-
manding, we take into account these many body effects (for the moment)
only for the Si33BPH36 the smallest Sinc considered here.
We have included the self-energy corrections by means of the GW approx-
imation [181]. In a successive step, excitonic effects are include solving the
Bethe-Salpeter equation [131]. A further advantage of this procedure is that
the inhomogeneity of the system is taken into account by properly includ-



Optical Properties 129

ing local fields effects [182, 183] This approach, in which many-body effects
are combined with a study of the structural distortion due to the impurity
atoms in the excited state, allows a precise determination of the Stokes shift
between absorption and emission spectra [57].

5.2.2 Absorption and Emission: RPA results

The modifications induced in the electronic levels of the Sinc when adding
donor and acceptor impurities are reflected also in the optical features of
single and co- doped nanocrystals. What we expect is that with the arising
of new impurity states within the energy gap, new interesting transitions
could be originated.

”To dope or to codope?”

What is the best solution between the doping and codoping to obtain inter-
esting and new optical features?
With reference to the electronic structure of the doped and codoped Sinc
based on the Si87H76-reference cluster, in Fig. 5.14 are reported the IP-
RPA absorption spectra of the B and P singled doped cluster, Si86BH76 and
Si86PH76 , compared with the corresponding spectra of the undoped
Si87H76 reference nc. With respect to the undoped nc, the presence of a
single impurity within the nanocrystals determines new optical transitions
arising in the lower part of the energy spectrum, both in the case of B- or
P- single doping as in Fig. 5.14. New strong peaks appear in the infra-red
region below the absorption onset of the undoped Sinc due to the interband
and also intraband transitions that involve the B and P impurity states and
the Si energy levels. These new optical features in the absorption spectrum
can be important for the possible applications in the field of infrared or also
in Raman lasers technology [184]. Unfortunately this kind of single doped
Silicon Nanocrystals are very inefficient for the emission properties since,
due to the breakdown of the k-conservation rule in Si nanocrystals makes
Auger processes significantly more efficient than in the bulk: a kinematic
temperature dependent threshold for the Auger process known for bulk is
absent in nanocrystals. Therefore, the branching ratio between rates of ra-
diative and non-radiative Auger processes can significantly exceed the bulk
value: the crystallites containing a shallow impurity are dark as reported by
Kovalev et al. [39].
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Figure 5.14: Calculated imaginary part of the dielectric function (ǫ2(ω)) for the
single doped Si86BH76 (blue line) and Si86PH76 (red line) compared with the
undoped Si87H76 (black line) case. A Gaussian broadening of 0.1 eV has been
applied.
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The simultaneously insertion of two impurities thus render the Sinc
compensated: since no semi-occupied energy level now exist, the shallow
impurity energy levels arising within the gap will be then shown to be
responsible of new interesting optical features. In Fig. 5.15 we can see

Figure 5.15: Comparison between the undoped Si87H76 (solid line) and the
codoped Si85BPH76 (dashed line) single-particle absorption spectra. The im-
purities are at a distance of 10.60 Å. Arrows indicate the energy gaps. The
calculated energy levels for the codoped nanocrystal are shown in the inset. A
Gaussian broadening of 0.1 eV has been applied. H stands for HOMO, L for
LUMO.

the comparison between the IP-RPA absorption spectrum of the undoped
Si87H76 and the codoped Si85BPH76 with impurities placed at a distance
of 10.60 Å. With respect to the single doped cases before, one can see
that now several optical transitions arise below the absorption onset of the
undoped nanocrystal. In particular due to the presence of both n- and
p- type impurities, the overall valence electrons result to be compensated.
The absorption onset of the codoped Sinc is shifted toward lower energies,
with a consequent enhancement of the intensity of the transitions around
the 2.0 eV. These new transitions are due to the presence of new HOMO
and LUMO states localized on the impurities, as described in Sec. 5.1 (see
for example Fig. 5.10). The inset of Fig. 5.15 clarifies how the peak located
in the 2.0-2.2 eV energy region is related to contributions that involve the
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HOMO-1, HOMO to LUMO, LUMO + 1 transitions; it should be noted
that for all these levels the wavefunctions are predominantly localized on
the impurities. If we compare these results with those of a single-doped
Sinc [185], we note that the simultaneous presence of both impurities
naturally suppresses all the absorption energy structures present in the
infrared region (below 1 eV) of the single-doped spectra, thus giving new
chance for an efficient emission of light in the visible range as confirmed by
the experimental outcomes by Minoru Fujii [37, 36, 33, 41].
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Figure 5.16: Single-particle absorption spectra of Si33BPH36 (black solid line),
Si85BPH76 (red dashed line), and Si145BPH100 (dash-dotted blue line). In all
cases the impurities are second neighbors. The impurity-impurity distances are
3.56 Å, 3.64 Å, and 3.68 Å for Si33BPH36, Si85BPH76, Si145BPH100 respec-
tively. Arrows indicate the energy gaps. In the inset a zoomed view of the
spectra onset. No Gaussian broadening has been applied.

Role of dimension and B-P distance

After this outcomes about the different effects between single doping and
codoping, our aim will be the investigation of the role played by the di-
mensions and by the impurity distance on the optical features, in analogy
to what has been done for the electronic properties. The role of the Sinc
dimensions on the absorption spectrum is shown in Fig. 5.16 where is re-
ported the absorption onset for the three different nanocrystals size with
impurities located at the same distance. The Si33BPH36 , Si85BPH76 and
Si145BPH100 , with diameters of 1.10 nm, 1.50 nm and 1.79 nm respectively,
present substitutional impurities located as second neighbors with corre-
sponding distances of 3.56 Å, 3.64 Å and 3.68 Å. Looking at the figure two
main aspects emerge:

• on increasing the nanocrystals size the absorption gap is strongly re-
duced (see arrows in Fig. 5.16). This trend well agrees with the quan-
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tum confinement effect of the Sinc already highlighted in several work
on hydrogenated Sinc (see for example [44]): the energy gap and the
absorption one decrease as the dimension of the Sinc increase, since
they coincide for the biggest nc, toward the bulk limit. This is trend
also confirms the experimental results of Fujii, according to them, the
average dimension of codoped Sinc that contributes to emit light in
the visible range is around 5 nm;

• an increase of the Sinc diameter (i.e. a decrease of the impurity weight
with respect to the total number of atoms, thus we can say a lowering
of ”concentration”) results in a lowering of the intensity for the transi-
tions that involve the impurities. This can probably be related to the
quenching of the effect that spatial confinement on the localization in
real space of the impurity wavefunction involved in the transition; in
smaller Sinc due to the better overlap between the electron and hole
envelop function, it should be expected infact strong enhancement of
e-h interaction.

Going on, another interesting investigation has been the comprehension
of the role played by the impurity-impurity distance on the absorption spec-
trum, done following the same approach used adopted for the electronic
properties. The absorption spectrum of the Si145BPH100 has been calculated
by varying the distance between impurities, placing the P atom on sites II,
III, IX, and X respectively (see for comparison Fig. 4.6). The IP-RPA ab-
sorption spectrum at issue are reported in Fig. 5.17 where in particular the
attention is focused on the onset in order to the shape of the peaks change
near the absorption edge. Here a shift of the absorption gap to lower energy
on increasing the distance between the impurities is observed (see arrows
in Fig. 5.17). Moreover, also the intensity is affected by the impurity dis-
tance. The intensity gets lower when the impurities are at a larger distances,
whereas stronger transitions arise when the impurities are closer due to the
increased overlap between HOMO and LUMO states which are mainly lo-
calized on the impurity site (as demonstrated previously). Nonetheless the
optical transitions near the band edge (indicated by arrows in Fig. 5.17) ex-
hibit weaker oscillator strengths, as sign that to these transitions contribute
also states around the energy gap, such as HOMO-1 and LUMO+1.
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Figure 5.17: Single-particle absorption spectra of Si145BPH100 Sinc with impu-
rities placed at different distances (see the inset). Arrows indicate the energy
gaps. Roman numbers refer to the sites occupied by the P atom with respect
to the B one (see Fig. 4.6). No Gaussian broadening has been applied.

5.2.3 Absorption, Emission and Stokes Shift: IP-RPA re-

sults

Here are presented and discussed the results for both absorption and emis-
sion spectra and the consequent Stokes Shift calculated for two codoped
Sinc. The Stokes shift, as already defined, represents the difference between
the absorption and the emission gap. As already depicted in Fig. 5.13(a), we
report here in Fig. 5.18 a more detailed scheme of a Stokes shift relaxation.

The quantity ǫAex and ǫBex represent respectively the Absorption and the Emis-
sion gap as defined via a Constrain DFT-∆SCF approach used in preceding
work [44, 119, 117, 116, 186] to estimate with success these quantities with-
out using the Green Function approach. In these papers it has been demon-
strated that treating the HOMO-LUMO gap for the ground and the excited
state as the proper absorption and the emission energies respectively leads
to wrong results, in particular for smaller nanocrystals, since in particular
the GS HOMO-LUMO gap tends to be always smaller than the absorption
energy while the EXC HOMO-LUMO gap tends to assumes larger values
than the emission energy.
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Figure 5.18: Schematic representation of a Stokes shift relaxation. In position
(1), the cluster is in its electronic ground state, and the atomic geometry is
relaxed to its lowest energy configuration. On absorption of a photon, the
nanocluster undergoes a vertical electronic excitation from (1) to (2). Once
in the excited electronic state, the atomic geometry of the cluster relaxes to a
lower energy configuration [from (2) to (3)]. Finally, the excited electron and
hole recombine via another vertical transition, (3) to (4). The Stokes shift is
defined as ǫAex − ǫBex .

Nevertheless in this work we will refer to the HOMO-LUMO gap of the
Ground and Excited State as the ”absorption and emission gap”. Since the
computation of the absorption and emission energies {ǫAex and ǫBex} are very
time consuming and computationally demanding. We decided for sake of
simplicity to used the HOMO-LUMO gaps amounts to indicate absorption
and emission energies, being aware of the discrepancies but considering also,
as shown in [44], that the error made tends to reduce as the dimensions
of the Sinc increase, thus leading our values close to the ”correct ∆SCF”
absorption and emission energies.

The calculations have been performed for two Sinc of different sizes,
taking, in the larger Sinc, the impurities located at different distances.
In the Si33BPH36-nc, the impurities are placed like second neighbors, as
the possible largest distance within the Sinc (DBP =3.56 Å), while in the
Si85BPH76 the impurities are at the minima (DBP =2.00 Å) and largest dis-
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Si33BPH36 Si85BPH76

d (nm) 1.10 1.50

DBP (Å) 3.56 2.00 10.60
Abs. (eV) 2.77 2.32 1.75
Ems. (eV) 1.78 2.20 1.36
∆ (eV) 0.99 0.12 0.39

Table 5.2: Absorption and emission energy gaps (and their difference, 5th row)
calculated as HOMO-LUMO differences in the ground and the excited relaxed
geometries configuration, respectively. The results are obtained within the DFT
single-particle approach. d is the nanocrystal diameter, DBP is the distance
between impurities and ∆ the calculated Stokes shift between absorption and
emission energy gaps.

tance (DBP =10.6 Å) within the Sinc, in order to point out the effect on
the emission spectra in particular. As shown in Table 5.2, both the absorp-
tion and emission HOMO-LUMO energies are affected by nc dimensions
and impurity-impurity distance. With regard to the first parameter, we
note that the Stokes shift strongly depends on the size showing a strong
decrease on increasing the diameter of the Sinc. This is due to the fact that
for larger nanocrystals the excitation determines a minor distortion of the
geometry. Concerning the second parameter, we see that the Stokes shift
tends to slightly increase with B-P distance although this effect is small if
compared with the lowering due to the increase of the Sinc dimensions. The
comparison between these results and the ones previously obtained for un-
doped clusters (0.92 eV for the Si35H36-nc [44] and 0.22 eV for the Si87H76-nc
[117]) confirm that the Stokes shifts is mainly determined by the nanocry-
stals size, but that nevertheless it depend slightly on the presence of the
impurities and also on their mutual distance. This trend is corroborated by
Fig. 5.19 in which the absorption and emission onset for the Si85BPH76 nc
are shown for the two different kind of impurity configuration.
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The HOMO-LUMO transition (absorption gap) in Si85BPH76 (1.75 eV,
bottom panel) is almost dark when the two impurities are far apart and
becomes instead allowed (2.32 eV, top panel) when their distance decreases.
As discussed before, this oscillator strength enhancement in the absorption
spectrum is a consequence of the character of the HOMO and LUMO states
in the two cases, both highly localized on impurity sites, but subjected to a
different overlap.
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(a) B and P atoms are at the smallest possible distance, DBP =2.00 Å .

(b) B and P atoms are at the largest possible distance DBP =10.60 Å .

Figure 5.19: Single-particle imaginary part of the dielectric function for the
codoped Si85BPH76 nanocrystal in the ground (black-solid line) and in the ex-
cited (red-dashed line) geometries. A Gaussian broadening of 0.1 eV has been
applied.
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The emission (red-dashed lines in Fig. 5.19) spectra is red shifted with
respect to the absorption (black-solid lines in Fig. 5.19) toward lower energy
values. This red shift is a consequence of the geometry relaxation in the ex-
cited state due to the excess energy necessary for promoting of an electron
in the LUMO level. The amount of Stokes shift is strongly influenced by
the size and the B-P distance. Increasing the dimension of the Sinc, the
Stokes shift decreases according to the same trend figured out for the un-
doped hydrogenated Sinc[44]. At the same time, looking at Fig. 5.19, the
Stokes shift strongly decrease when impurity are brought closer (DBP =2.0
Å), since in this case the emission gap become more similar to the absorp-
tion energy. Nonetheless in both cases the presence of two Boron and Phos-
phorous impurities determines in emission an intensity enhancement of the
HOMO-LUMO transition, whose peak position moves in energy spectrum
according to the distance at which the impurities are placed: increasing the
B-P distance leads to a more strong shift of the emission peak toward lower
energies. This result fits very well the experimental results of the work of
Minoru Fujii, which shows that introducing shallow n− and p− type impu-
rities within the Sinc, it’s possible to tune the photoluminescence (PL) of
the nc, in particular below the Silicon bulk-band-gap PL value [38].
It’s worth pointing out that only with a ”simple” single-particle RPA ap-
proach the results presented here are in really fair agreement with the exper-
imental outcomes of Minoru Fujii [38, 37, 36]. The shift of the emission peak
toward lower energies well represents the analogous shift of the PL peak be-
low the bulk band gap limit obtained by the experimental setup of Fujii and
coworkers. In particular we recover the real possibility to control and tune
the emission by playing with dimensions of Sinc, and most important with
the distance and the position of impurities inside the nanoclusters.
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5.2.4 Absorption, Emission and Stokes shift: Many-Body

results

In order to give a complete description, within the many-body framework, of
the codoped Sinc response to an optical excitation, we consider both the self-
energy corrections by means of the GW method to obtain the quasiparticle
energies and the excitonic effects through the solution of the Bethe-Salpeter
equation. The effect of local fields is also included, to take into account the
inhomogeneity of the systems.

The heavy GW-BSE calculation is made considering a 50 a.u. lattice
parameter large FCC supercell in order to reduce the number of plane
waves. For the GW calculation have used the non self-consistent G0W0 ap-
proach within the RPA plasmon pole approximation. through a planewave-
frequency space code. The correlation part of the self-energy Σc has been
calculated using 10081 plane waves, while 49805 plane waves have been
used for the exchange part Σx. Then, the full excitonic Hamiltonian has
been diagonalized considering more than 8000 transitions using the EXC
code [158]. The complete matrix calculation WG,G′(q; ω) have been diago-
nalized by using 4573 G vectors while the calculation without coupling has
been performed using a 6975 plane wave basis set.

Since the GW-BSE calculation [158] are very computing demanding, we
have only considered the smaller codoped nanocrystal Si33BPH36 (see Fig.
4.3(a)). In this particular cluster, we found that Local fields effects are, al-
though not negligible, of minor importance with respect to GW and excitonic
effects. It is anyway essential to include all of them (LF and many-body)
in order to get the final converged spectrum shown in Fig. 5.20. In order to
carry out emission spectra calculations, we use the excited state geometry
and the ground state electronic configuration. As already noted before, in
this case ǫ2(ω) corresponds to an absorption spectrum in a new structural
geometry. In other words, we consider the emission as the time reversal of
the absorption.[?, 57] Thus, the electron-hole interaction is here considered
also in the emission geometry.

Fig. 5.20 shows the calculated absorption and emission spectra fully in-
cluding the many-body effects. The electron-hole interaction yields signifi-
cant variations with respect to the single-particle spectra (see for a compar-
ison Fig. 5.19), with an important transfer of the oscillator strength to the
low energy side. Moreover, in the emission spectrum the rich structure of
states characterized, in the low energy side, by the presence of excitons with
largely different oscillator strengths, determines excitonic gaps well below
the optical absorption onset. Thus the calculated emission spectrum results
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Figure 5.20: Absorption (black-dashed line) and emission (red -solid line)
many-body spectra of Si33BPH36.

to be red shifted to lower energy with respect to the absorption one. This
energy difference between emission and absorption, the Stokes shift, can be
lead back to the relaxation of the Sinc after the excitation process.

The new important features that appear in the emission many-body spec-
tra are related to the presence of both B and P impurities as showed by
Fig. 5.21, which gives the real-space probability distribution |ψexc(re, rh)|2
for the bound exciton as a function of the electron position re when the hole
is fixed in a given rh position. In this case the hole is fixed on the Boron
atom (labelled by the white X) and we see that the bound exciton is mainly
localized around the Phosphorus atom.
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Figure 5.21: Excitonic wave function of Si33BPH36 (atom colors as in
Fig. 4.3(a)). The grey isosurface represents the probability distribution
|ψexc(re, rh)|2 of the electron with the hole fixed on the B impurity.

This confirms the consideration pointed out in the experiments: the com-
pensated doping helps to localize the carriers further and to increase the
probability of a quasi-direct electron-hole radiative recombination with in-
tense emission of light, such as represented by the strong excitonic peak
in emission spectrum of Fig. 5.20. From Table 5.3, it can be seen that the
single-particle DFT results strongly underestimate the absorption and emis-
sion edge with respect to the GW+BSE calculation, in which the excitonic
effect are taken exactly into account. This means that, in this case, the
cancellation between GW gap opening (which gives the electronic gap) and
BSE gap shrinking (which originates the excitonic gap) is only partial [187].

The difference between the GW electronic gap and the GW+BSE optical
excitonic gap gives the exciton binding energy Eb. We note the presence
of exciton binding energies as big as 2.2 eV, which are very large if com-
pared with bulk Si (∼ 15 meV) or with carbon nanotubes[188, 189] where
Eb ∼ 1 eV, but similar to those calculated for undoped Sinc [57] of similar
size and for Si and Ge small nanowires [190, 191].

The differences between full many-body calculations and single-particle
results are of 0.55 eV and 0.41 eV for absorption and emission energy gaps
respectively, and of 0.14 eV between the two Stokes shifts. It is interesting to
note that the HOMO-LUMO transition in the emission spectrum at 2.20 eV
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Si33BPH36 DFT GW GW+BSE

Abs. (eV) 2.80 5.52 3.35
Ems. (eV) 1.79 4.37 2.20
∆ (eV) 1.01 1.15 1.15

Table 5.3: Absorption and Emission energies calculated as HOMO-LUMO
energy difference within the single-particle DFT, the many-body GW and the
GW+BSE approaches. ∆ is the calculated Stokes shift between absorption
and emission energy gap. The 2.20 eV energy corresponds to an almost dark
transition.

is almost dark while an important excitonic peak is evident at about 2.75 eV
(see Fig. 5.20), again red-shifted with respect to the first absorption peak.
As expected, what comes out is the importance of fully taking into account
the many-body aspect of the problem in order to overcome the limits of the
single-particle approach.

To resume, the main effort of the work presented since now is to shed more
light on the possibility to tune the electronic properties of the Sinc playing
with the codoped impurities to achieve a well defined technique that per-
mits to engineer at the end the absorption and the emission of radiation
of these nanocrystals. The doping technique, commonly used to modify
the electronic properties to achieve better conductivity and high performing
transport features, has been here converted into a method to improved and
speed up the possibility to engineer the optical features instead, in partic-
ular to tune the emission of light from Silicon-based nanostructures which
can be used for technological innovative application, in optoelectronic and
telecommunications.
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Multidoping... is better

Vagar mi fai co’ miei pensieri su l’orme
Che vanno al nulla eterno; e intanto fugge,
questo reo tempo, e van con lui le torme
delle cure onde meco egli si strugge;
e mentre io guardo la tua pace, dorme
quello spirto guerrier ch’entro mi rugge.

Alla Sera, Ugo Foscolo

In this section we’ll investigate how the formation energy, the electronic
and optical features of the Silicon nanocrystals can be influenced by the
insertion of more impurities, in the specific by adding one, two or three
more impurities with respect the initial codoped nanocrystal.

6.1 The systems

We called this insertion of several impurities multidoping. This proce-
dure tends to simulate a heavy doping with compensated B and P impu-
rities and it’s similar to what is done in the bulk Silicon wafers in tradi-
tional microelectronics to improve or tune transport and optical properties
[192, 193, 194, 195]. Now the multidoping has been realized on Silicon nano-
crystals in order to investigate the role played by heavy doping with B and
P and also the effect of a variation of impurity concentration on the stability
and on the electronic and optical feature of the Sic. The starting codoped
nc configuration is the most stable one found in the previous section, where
the B and P impurities are placed like second neighbors at a distance of
DBP =3.68 Å, in site II with reference to Fig. 4.6. Then more dopant atoms
have been added to the yet codoped Sinc in order to achieve a Sinc with

145
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Figure 6.1: Some compensated multidoped nc with an even number of impu-
rities: Si143H100:BBPP-nc (left side) and Si143H100:BBBPPP-nc (right side).
Yellow balls represent Si atoms, while the white balls are the H atoms used
to saturate the dangling bonds. P atoms are dark brown and B atoms are
magenta.

three impurities as in Fig. 6.2 or four or six impurities such as depicted in
Fig. 6.1.

Then one single impurity has been added in order to produce an excess
of dopants for each species: an excess of Boron with two B atoms and
one P atom in the Si144BBPH100 or an excess of Phosphorus with two
P atoms an one B atom in the Si144BPPH100. In the end we obtain the
Si143BBPPH100 and the Si1413B3PH100 by adding respectively two B and
two P atoms, in the former case and three B and three P dopants in the
later one. These Sinc containing two and three pairs of n− and p− type
impurities are compensated as the Si145BPH100. For what concern this last
Sinc, one configuration with the two B-P pairs are placed within the nc at
a distance of Dpairs=12.11 Å, and the other one in which the two pairs are
found at a distance of Dpairs=13.59 Åin order to understand which effect
the mutual position can bring about.
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Figure 6.2: The uncompensated multidoped nc with an odd number of im-
purities: Si144H100:BPP-nc (left side) and Si144H100:BBP-nc (right side).
Yellow balls represent Si atoms, while the white balls are the H atoms used
to saturate the dangling bonds. P atoms are dark brown and B atoms are
magenta.

6.2 Structural properties and Formation Energy

The insertion of one or more impurities in the already codoped Sinc deter-
mines no relevant modification in the geometry of the nanocrystal. Adding
one or two more impurities within the codoped Sinc, it results in a general
lowering of the Formation Energy, both for nanocrystal with an even and
odd number of dopants atoms as shown in Fig. 6.3 where the FE of the single
doped, codoped and multidoped Si147H100-based nanocrystal are reported
for comparison. It can be seen that the nanocrystal with an odd number
of impurities (one or three) have always the highest positive FE values with
respect to the Sinc with an even number of dopants shared in equal part
of n− and p− type impurities. In particular the uncompensated Sinc with
impurities, Si144BBPH100 and the Si144BPPH100, presents FE values lower
with respect the uncompensated single doped nc. Thus, although the doping
with one or three impurities results to be less favorite and preferred with
respect the doping with an even number of compensated impurities, it seems
more easier to produce an excess of Boron or Phosphorous in an already
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Figure 6.3: Formation Energies for single, co- doped and multidoped Si na-
nocrystals. In red are reported the FE for compensated Sinc (with an even
number of impurities), in black are shown the FE for Sinc with an odd number
of impurities.

doped Sinc, than in a undoped hydrogenated Silicon nanocrystal.

As shown from Table 6.1 it is evident that the Sinc with an even number
of impurities infact assume lower values then the others. The FE becomes
more negative as the number of n− and p− type dopant pairs increase:
the Si1413B3PH100 infact presents the smallest negative Formation Energy
value among all the cases take into account. This suggests that by aug-
menting the impurity concentration, or better, increasing the number of
compensated donor-acceptor B-P pairs in the nanocrystal, it should more
easier to multidope the nanocrystals. Moreover also the distance between
the B-P impurity pairs influence the Sinc stability: increasing the distance
between the B-P pairs the FE values decrease, assuming more negative val-
ues. As confirmed by the numerical values in Table 6.1, as in the case of
simple codoping, multidoping is much easier to realize when the impurity
are in even number inside the nanocrystal, in order to have same number of
donor and acceptor dopant atoms; furthermore, increasing the stability of
the doped nc by adding more impurities, cancel out also the possible depen-



Structural properties and Formation Energy 149

Cluster Formation Energy Energy Gap
(eV) (eV)

Si146BH100 1.11 2.08
Si146PH100 0.74 0.13
Si145BPH100 -0.32 2.03
Si145BPH100 0.15 1.59
Si144BBPH100 0.84 2.02
Si144BPPH100 0.58 0.15
Si143BBPPH100

DBPpairs=12.11 Å -0.42 1.97
DBPpairs=13.59 Å -065 2.01

Si1413B3PH100 -0.97 1.92

Table 6.1: Formation Energy and Energy Gap (see text) for the Single Doped,
Codoped and the Multidoped Silicon nanocrystals.

dence of the Formation Energy on the impurity position within the Silicon
layers of the nc. By mapping through an atom-probe tomography the con-
centration of heavily doped Boron atoms within Si nanostructures volumes
[196], it results that B atoms in great excess tend to segregate to the grain
boundaries, also producing small impurity clusters; this confirms our finding
on the decreasing of FE when more impurities are close each other, in par-
ticular the values found for the Si1413B3PH100-nc. The gain in stability of
the Sinc with the increase of the number of impurities inserted, reflects also
a permanent difficulty in the control and estimation of the real number of
impurities inside the nc during all the experimental steps of doping process.
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6.3 Electronic structure

Here we investigate how the electronic levels are influenced by adding one
or two more impurities to the yet codoped Si145BPH100-nc. Looking at
the electronic structure in Fig. 6.4, the two Si-nc with three impurities,
present a similar behavior to those corresponding to B or P single-doped
Si-nc, depicted in the previous section of the thesis. Every new dopant
inserted gives raise to a new impurity level, which is half occupied. From
theoretical and experimental works in literature, it is well known that large
concentrations of donors and acceptors in a semiconductor cause a reduction
of the forbidden gap [?] and the so-called ”band tailing” effect due to the
random impurity distribution of donors and acceptors that forms a broad
band near the energy gap edge [195, 194].

Figure 6.4: Comparison between the electronic levels the Γ point for the
codoped Sinc and the uncompensated multidoped nc with an odd number of
impurities. Left: Si145BPH100-nc (DBP =13.28 Å). Middle: Si144BBPH100-nc.
Right: Si144BPPH100-nc. Alignment has been performed locating at the same
energy the fully occupied levels with the same type of localization.

Thus looking at Table 7.3 we see that the HOMO-LUMO energy differ-
ence for the nanoclusters with an odd number of impurity atoms are very
similar: 2.02 eV for the Si144BBPH100-nc with respect to 2.08 eV for the B
single doped case (Si146BH100), and 0.15 eV for the Si144BPPH100-nc with
respect to 0.13 eV for the P single doped case (Si146PH100) respectively.
Besides, another time, when the impurities are compensated, as in the
case of Si143BBPPH100-nc, the system becomes semiconductor: now the
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Figure 6.5: Comparison between the electronic levels the Γ point for
the compensated multidoped nc with an even number of impurities.
Left: Si143BBPPH100-nc (Dpairs=12.11 Å). Middle: Si143BBPPH100-nc
(Dpairs=13.59 Å). Right: Si141BBBPPPH100-nc. Alignment has been per-
formed locating at the same energy the fully occupied levels with the same
type of localization.

HOMO contains again two electrons, and the value of the energy gap (1.97
eV) is between the two EG values associate to the two opposite codoped
configuration for the Si145BPH100 with impurities located at different
distance (2.03 eV for impurities closer each other and 1.59 eV for impurities
at the opposite side of the Si-nc). Furthermore regarding Fig. 6.5, where
are compared the multidoped Sinc with an even number of impurities, with
two or three B-P impurity pairs, one can see that the energy gap remains
practically constant with respect to the distance between the B-P impurity
pairs (in the Si143BBPPH100) and also with respect to the increasing of the
number of compensated B-P impurity pairs.

In from Fig. 6.6 are reported the HOMO and LUMO states square modulus
for the compensated multidoped Sinc. Once again it is confirmed the trend
already depicted in the case of codoped compensated Sinc: the HOMO state
is mainly localized on the Boron impurity site, while the LUMO states is
principally centered around the Phosphorus atom. Nonetheless there are
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some differences due to the excess of impurities. It comes out that when
impurities of the same valence kind are coupled along the nanocrystal di-
ameter the impurity wavefunctions tend to be localized on the two impurity
sites. This is what happen in the Si143BBPPH100-nc (DBPpairs=13.59) (mid-
dle panel) where due to this sort of particular ”coupling” of the B and P
atoms of the two pairs, the HOMO states is spread along the B-B direction,
while the LUMO state is delocalized along the direction linking the two
P atoms. On the opposite case, where two dopants with different valance
charge are on the same linking diameter, the two wavefunction interferes
destructively leaving the HOMO and LUMO mainly focused respectively on
the B and P atom of the two pairs, as shown in the first panel of Fig. 6.6.
This particular behaviour is confirmed by the localization of orbitals in the
Si1413B3PH100-nc where due to the constructive overlapping among the im-
purity states related to the P atoms, the LUMO state is spread all over the
three impurity sites within the nc.
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6.4 Optical Absorption

The calculated optical absorption spectrum of Si143BBPPH100nc has
been compared in Fig. 6.7 with the corresponding spectra of the
Si145BPH100 codoped with impurities placed at two different distances
within the nanocrystal, at site II and site IX with reference to the
”Si145BPH100 impurity path” of Fig. 4.6. For what concern the two codoped
Si-nc we observe a shift of the absorption onset toward lower energy on in-
creasing the distance between impurities. It is worth pointing out that when
impurities are at larger distance the transition intensities near the band
edges become weaker due to a small oscillator strengths. When, instead,
impurities are closer each other due to the strong localization of HOMO and
LUMO on the impurity sites, the transitions near the band edge are more
intense and involve in particular the Homo-1, Homo, Lumo and Lumo+1
levels. The multidoped Si143BBPPH100-nc shows an onset which is inter-
mediate in energy between the two codoped cases, now the stronger optical
transitions are far from the HOMO-LUMO gap and peaked in the 2.0-2.2
eV energy region, thus involving transitions between levels within the va-
lence and the conduction band. The particular localization of HOMO and
LUMO states depicted in the section before can offer a possible explanation.
Due to the low overlap between the HOMO and LUMO state due to the in-
terference among the impurity states, the optical transitions result almost
dark and unfavored. We can think that when the dopant atoms with same
charge valence couple an enhancement of the collective impurity state arise,
leading as in the two cases of Fig. 6.6 to a better overlap of HOMO and
LUMO states and thus to an increase of oscillator strength of transitions
that involves levels around the band edge.

Moreover, as explained in [195], in heavily compensated doped Silicon the
relative decrease in intensity of direct transitions can be due to the screen-
ing of the electron-dopants interaction by the compensating impurities and
charge carriers; this screening can partially block the momentum transfer to
the impurities thus leading to a quenching of the intensity of the direct no-
phonon mediated optical transition involving the impurity levels, as infact
appear also in the spectrum in Fig. 6.7.
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Figure 6.6: HOMO and LUMO square modulus contour plots calculated
for the compensated multidoped Sinc. Upper panel: Si143BBPPH100-nc
(DBPpairs=12.11). Middle panel: Si143BBPPH100-nc (DBPpairs=13.59).
Lower panel: Si1413B3PH100-nc. The isosurfaces correspond to 20% of the
maximum value.
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Figure 6.7: The imaginary part of the dielectric function ǫ2(ω) for the
Si145BPH100 Si-nc with impurities placed at different distances and for the mul-
tidoped Si143BBPPH100-nc (see the inset). Arrows indicate the HOMO-LUMO
energy gaps. The roman number refer to the site occupied by the P atom
with respect to the B one (see Fig. 4.6). The arrows indicate the absorption
thresholds.
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Codoped Silicon Nanowires

Ramble on,
And now’s the time,
the time is now
To sing my song.

Ramble on, Led Zeppelin

The Silicon Nanowires (Sinw) are semiconducting one-dimensional (1D)
nanostructures which are attracting in the last years increasing interest for
potential nanoelectronic and nanophotonic applications. Among all the one-
dimensional nanostructures, such as the carbon nanotubes or nanowires, the
Silicon nanowires offer the biggest advantage to be compatible with the ex-
isting silicon-based microelectronics. Moreover the possibility to tailor their
electronic properties by changing thickness, orientation, surface morphol-
ogy and doping is another important point in their favor [34, 35]. Several
ab-initio studies on Si-nw are present in the literature. They are mainly
concentrated on H-passivated or pristine Si-nw and demonstrate the depen-
dence of the energy band gap from the wire diameter and from the surface
morphology [12, 197, 198, 199, 200, 191]. Instead, few investigations have
been dedicated to the influence of the electronic and transport properties
from doping [201, 43]. In particular, due to the application in electronic
devices, the main efforts have been devoted to the study of B and P single
doped Si-nw, while only one ab-initio study has investigated the BP codop-
ing [43]. For this reason, in complete analogy with the Si-nc, here is resumed
the systematic analysis performed on the effect of the Boron and Phospho-
rous codoping on Sinw, concentrating not only on the structural properties
but also on how doping influences the electronic and optical properties.
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7.1 The systems

The Silicon Nanowires considered here are isolated wires passivated at sur-
face with hydrogen in analogy with the nanocrystals and oriented along the
[110] direction. Their geometrical structure is the same used by M. Bruno
and coworkers [191, 190] in their study of the electronic and optical prop-
erties of undoped Silicon and Germanium nanowires. The same nanowires
structures have been previously described in the work by Filonov et al. [202].
It comes out that there are two main parameters defining the structure of a
nanowire:

• linear cross section l : the maximum linear distance between two
bulk atoms belonging to the same plane; as depicted in Fig. 7.1 is then
possible to characterize wires grown along different directions with the
same parameter l.

Figure 7.1: Unit cell projections onto the basis plane of the [110] oriented
nanowire. Yellow ball are Silicon atoms, the white one the hydrogens. Si atoms
labelled with the red X belong to the same atomic plane. As described in [202],
the value of the linear cross section reported is l=0.8 nm.

• effective diameter d :

d = 2

√
A

π

where A is the cross section of the wire. One point of investigation
infact will deal with the scaling of the electronic and optical features
with respect the effective diameter of the nanowire and with the com-
parison with experimental evidence.
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Here Silicon nanowires with two different values of linear cross section take
into account: one with l=0.8 nm, as depicted in Fig. 7.2, and the other a
little bit bigger with l=1.2 nm, as in Fig. 7.4, in order to investigate also the
dependence on the dimensions and therefore on the increasing of the number
of atoms. All the Sinw are passivated at the surface with hydrogen as done
previously with the silicon nanocrystals and as free standing nanowires, are
stuck within large supercell with a sufficiently portion of vacuum interposed
between the period replicas.

• Silicon Nanowire (l=0.8 nm) - Si16H12 The Si16H12 nanowire is
constituted by 16 Si atoms and 12 H atoms in the unit cell and a linear
cross section of l=0.8 nm . The direction of growth is along the [110]
as one can see in Fig. 7.3

• Silicon Nanowire (l=1.2 nm) - Si30H16 The Si30H16 nanowire has
a larger cross section with 30 Si atoms and 16 H atoms in unit cell, as
in Fig. 7.4. The [110] growth direction is shown in Fig. 7.5.

For what concern the computational details, the DFT-total energy cal-
culations have been performed through the Quantum Espresso package [?],
while the many-body calculations have been carried out using this time the
optic code SELF [157] developed in Rome in Tor Vergata. In table 7.1
are shown the details of the total energy calculations for the two kind of
nanowires.

Si16H12 Si30H16

diameter 8 Å 12 Å
unit cell (Bohr) 7.19× 40.68× 40.68 7.19× 50× 50
Energy cutoff 30 Ry 30 Ry
k-point mesh 16× 1× 1 8× 2× 2
shift k 0.5 1 1 0.5 1 1

Table 7.1: Technical details of the ground state calculations performed on
the nanowires.

In this work we moved from the previous outcomes by Bruno, Palummo,
Ossicini et al. [191, 190] related to the study of electronic and optical fea-
tures of undoped Silicon and Germanium nanowires, and we add one or two
simultaneously impurities of Boron and/or Phosphorous in substitutional
sites within the nanowires.

To the best of our knowledge the majority of works combining impurities
and Silicon nanowires have been related since now to modify the conductivity
features for transport applications, like recent studies conduct by Fernandez-
Serra and Xavier Blase [201, 42], Riccardo Rurali [199] and coworkers and
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(a) Top view (b) Side view

(c) Wire view along growth direc-
tion (the unit cell is repeated 3
times).

Figure 7.2: Undoped Hydrogenated Silicon Nanowire structure with l=0.8 nm
and one single unit cell considered. The yellow balls are Si atoms, while the
white are the surface Hydrogens.

Figure 7.3: Growth direction along the [110] direction of the Si16H12 nanowire.
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(a) Top view

(b) Side view (c) Wire view along growth direction
(the unit cell is repeated 3 times).

Figure 7.4: Undoped Hydrogenated Silicon Nanowire structure with l=1.2 nm
and one single unit cell considered. The yellow balls are Si atoms, while the
white are the surface Hydrogens.

Figure 7.5: Growth direction along the [110] direction of the Si30H16 nanowire.
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other theoretical and experimental groups [203, 204] demonstrate; in partic-
ular all these works concern the single doping with Boron or in alternative
Phosphorous inserted in several substitutional sites within these Sinws. Aim
of this work is otherwise the investigation of how the insertion of one or two
impurities within the Sinw could be functional to engineer new character-
istics such as optical features and emission light for optical and photonic
devices, a domain almost forbidden for bulk silicon.

Among the many paper concerning the role played by single B or P doping
on Sinws and although the major of them have been published in the last
years [205, 206, 203, 199, 204, 201, 42] none of them deal with the B and
P codoping. Since now to the best of our knowledge the only work dealing
with the B and P codoping nanowires has been realized by the Belgian
group from Antwerpen: this group through an ab initio DFT approach has
investigated the possibility to insert simultaneously n- and p- type impurities
in substitutional sites within Silicon [43] and Germanium nanowires [207],
evaluating Formation Energy and electronic properties of codoped Sinw with
two different cross section, l=1.2 nm and l=1.6 nm.

7.2 Formation Energy

We evaluate the stability of codoped Sinw by moving from the previous
considerations made for codoping the Silicon nanocrystals, and moreover
motivated by the analysis work made by Peelaers and Peeters [43] in which
they evaluate what impurity substitutional sites lower the formation energy
of the wire, increasing thus the stability of the codoped Sinw.

The fact that the more stable impurity position concerning the B and
P codoped nanocrystals, are substitutional sites in the first Silicon layer
below the surface, also holds for the Silicon nanowires as demonstrated by
Peelaers et al. [43] in Fig. 7.6. To calculate the Formation Energy they
have exactly followed the same approach used in the present thesis work,
calculating the FE via Eq.[ 4.1], and as one can see from Fig. 7.6(a) the
nanowires have the same orientation but bigger diameter with respect the
corresponding described here. What comes out from this analysis confirm
our previous findings, that both single or codoped the impurities are more
stable in substitutionally sites in the first layer below the surface; moreover,
from Fig. 7.6(b) it comes out that the stability of singled doped Sinw increase
not only when they are below the surface, but also when the nanowire unit
cell is increased by two or even better three times with respect the single
one, thus determining a strong lowering of the FE with respect the previous
situations as a consequence of minor interaction between the impurities.

Due to these last observations, we focus our attention on exploring dif-
ferent possible combination of B and P substitutional impurities for the
smallest nanowire considered here, l=0.8 nm. By moving from the more
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(a) Single unit cell of Sinw by Peelaers and Peeters. (a) the
1.2 nm wire (16 Si atoms and 12 H atoms) corresponds to the
0.8 nm Sinw described in the present work. (b) the 1.6 nm
wire consists of 4 Si atoms and 20 H atoms.

(b) Formation Energy as a function of
the position of impurity with reference to
Fig. 7.6(a). Single doped cases for the
biggest 1.2 nm Sinw.

(c) Formation Energy as a function of the position of
impurity with reference to Fig. 7.6(a). Codoped cases
for the biggest 1.2 nm Sinw.

Figure 7.6: Figures illustrating the data on the Formation Energies explained
in the work by Peelaers, Peeters et al.[43] on B-P codoping Silicon Nanowire.



164 7. Codoped Silicon Nanowires

stable impurity sites for the single doped cases corresponding to the sub-
stitutional sites just below the surface and illustrated in Fig. 7.7 we decide

Top view Wire growth direction [110]

B doped

P doped

Figure 7.7: One unit cell single doped Sinw (l=0.8 nm) with B and P impurities
in substitutional sites in the first layer below the surface. On the left column is
reported the nanowire cross section while on the right column the nanowire is
oriented along the [110] growth direction; magenta atom is Boron, dark-brown
is Phosphorus.

how to codoped the nanowires. Several impurity configuration have been
explored in order to bring out how the mutual position of the two simulta-
neous impurities in the first layer below the surface affects the stability and
then the electronic structure of the nanowires. In Fig. 7.8 are reported four
different type of configuration for the codoped l=0.8 nm Sinw.

In the first panel the B and P are both subsurface like second neighbors
(DBP =4.29 Å) while in the second and third panels the impurities are placed
like near neighbors keeping the B fixed in the subsurface layer and putting
the P atom one time in the center of the Sinw (DBP =1.95 Å) and the other
one in a surface substitutional site (DBP =2.17 Å). In the fourth panel the
B is in a substitutional site at the surface, the P instead in a subsurface site
like near neighbors as before, and maintaining the same mutual distance as
the previous case (DBP =2.17 Å).

Thus, from Table 7.2 where the Formation Energy and the energy gap
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Top view Wire growth direction [110]

B,P Ishell

P center-B Ishell

P surf-B Ishell

B surf-P Ishell

Figure 7.8: One unit cell B-P codoped Sinw (l=0.8 nm): several impurity
configuration are explored (see text for details).
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Nanowire DBP Formation Energy Direct Energy Gap
(l=0.8 nm) (Å) (eV) (eV)

Si15BH12 1.13 1.4
Si15PH12 0.66

Si14BPH12

B and P subsurface 4.3 0.41 0.08
P center, B subsurface 1.95 0.10 0.63
P surface, B subsurface 2.17 -0.05 0.97
B surface, P subsurface 2.17 -0.28 1.24

Table 7.2: Formation Energy and Energy Gap (see text) for the single doped
and the codoped (see Fig. 7.8 nanowires (l=0.8 nm)).

for single and codoped Sinw are reported, one can see that as for the Sinc,
the single doping is less favored than the codoping, in good agreement with
the previously theoretical prediction in [43]. Nonetheless, what’s result to be
new and interesting with respect the work [43], is that for the smallest Sinw
we considered here (l=0.8 nm) the most stable sites for B and P impurities
were not the subsurface positions. In this cases, infact, the FE is strongly
lowered with respect the case in which the two impurities are simultaneously
in substitutional sites below the surface, where it is 0.41 eV. As from the
numerical values of Table 7.2 and as sketched in Fig. 7.9, the FE moves
from a small positive value (0.1 eV) when the P atom occupies a Si core
substitutional site (in Fig. 7.9 position label by 1) to a negative one (-
0.05 eV) when the P impurity is substitutionally placed surface site and
passivated by hydrogen (position 1). Furthermore, with respect to this last
configuration, when the mutual position of B and P are exchanged (last
panel of Fig. 7.8), FE becomes again more negative assuming the smallest
value (-0.28 eV) since now.

Some observations could be done. There’s no linear dependence between
the strong decrease of FE from 0.41 eV to -0.28 eV and the B-P impurity
distance, but nevertheless when the mutual distance decreases under
a certain value, the stability of the codoped nanowires increases, thus
demonstrating once again that more closed are the n- and p- type dopants
more the wire gains stability form the formation of a B-P impurity complex.
It’s also worth mentioning that the negative FE values found when a
P or B atom is passivated at surface with hydrogen are corroborated
by the experimental evidence by the work of Fukata [206, 205] which
demonstrate how the impurities tend to be substitutionally doped in
the Si core of the nanowires where they can be activated, but also that
when the doped Sinw are passivated with hydrogen impurities, Boron in
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Figure 7.9: Formation Energy for BP codoped l=0.8 nm Sinw as a function
of the distance between the two impurities. The FE is calculated for each step
of the ”Phosphorus impurity path”: the B impurity (magenta) is frozen in a
subsurface site, while the P atom occupies different substitutional sites labelled
each time by 1, 2 or 3. The lines are guide for eyes.
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particular, tend to form strong complexes with H, called passivation centers.
Moreover, the experimental work [205] confirm that B preferentially segre-
gate at the edge boundary region of the Sinw, rather than in the Si core sites.

Moreover the discrepancy between the positive FE value and the one found
in the other paper [43] for the codoped Sinw with impurities in the first layer
below the surface depends on the different dimension of Sinw considered in
the two cases: here the FE energy has been calculated for the l=0.8 nm Sinw,
while in the other work the Sinw take into account has a larger diameter of
1.2 nm. Taking into account the larger Sinw with cross section l=1.2 nm
codoped with B and P in subsurface position at a distance of 3.65 Å the
corresponding FE results to be -0.28 eV, thus confirming an increase in
stability when the nanowire cross section increase in well agreement with
the theoretical prediction by Peelaers et al. and moreover demonstrating
that small nanowires are more difficult to codoped than the bigger one, such
as for the Silicon nanocrystals. Supported by the reduction of FE for bigger
wire diameter, we can say that codoping impurity in the first layer below
the surface, as done here, borders more a sort of shell-doping [204] than a
traditional doping to insert impurities within the nanowires.

The possibility that the FE of codoped Sinw with subsurface BP decreases
with the augmentation of the nanowires dimension, could be guess by taking
a nanowire unit cell two, three and four times bigger than the one unit cell
considered in this cases, as shown in Table 7.10. In Table 7.3 are collected
the FE values for this bigger unit cell nanowires (l=0.8 nm) with BP im-
purities kept almost at the same distance in the first subsurface layer for
each situation. As depicted in Fig. 7.10 where bigger unit cell are reported,

Nanowire DBP Formation Energy Direct Energy Gap
(l=0.8 nm) (Å) (eV) (eV)

Si14BPH12 1 unit cell 4.3 0.41 0.08
Si30BPH24 2 unit cell 4.35 -0.15 1.1
Si46BPH36 3 unit cell 4.2 -0.6 1.43
Si62BPH48 4 unit cell 4.35 -0.64 1.51

Table 7.3: Formation energy and energy gap codoped nanowires (l=0.8 nm)
with two, three and four times bigger than the single unit.

increasing the unit cell corresponds to increase the overall number of atoms
within the cell and, furthermore, this translates for the codoped Sinw to a
decrease of the concentration of the impurity number with respect the total
number of the Silicon atoms within the wire. Thus what comes out is that
first codoping big nanowires is easier than codoping smaller one and that a
lowering of the impurity concentration results in a gain of stability for the
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X direction Wire Growth

Cell 2U

Cell 3U

Cell 4U

Figure 7.10: Bigger unit cell nanowires. Cell 2U: double unit cell. Cell 3U:
three times unit cell. Cell 4U: four time unit cell.
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codoped Sinw.
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7.3 Electronic Properties

The insertion of n- and p- type impurities tends to drastically change the
features of the electronic structure of the Silicon nanowires, in a much more
pronounced way with respect the Silicon nanocrystals counterpart. The
dopants within the Sinw act as shallow impurities and, as already described
for the nanocrystals, new electronic states whose character is directly related
to the valence of the impurity, arise near the band edge. In several previous
works, theoretical and experimental, has been shown and established that
undoped pure Silicon nanowires are semiconductors systems, with a direct
band gap at the zone center with respect Germanium nanowires and also
bulk Silicon which have indirect gaps. This is due to a quantum confinement
effect of the charge carriers, as for the nanocrystals, but now in the plane
orthogonal to the wire axis, determining an opening of the band gap. With
respect to the nanocrystals, the Sinw present energy band and not discrete
energy levels, due to a quantum confinement effect along only two direction.
The particularity of the band energy gap EG of the Silicon nanowires (such
as for the Genw) are two:

- the energy gap decreases monotonically with the increasing of the
wire’s diameter;

- the band gap depends strongly on the orientation of the wires: in
particular the [110] orientation gives rise to the smallest energy gap
among all the other, probably because the quantum confinement effects
are much more stronger in [100]- and [111]- oriented wires [190, 191].

The undoped [110] Si16H12 (l=0.8 nm) considered here presents a direct band
gap at the Γ as shown by Fig. 7.11: the DFT-GGA gap is 1.66 eV bigger
than the corresponding Si bulk value, but in really good agreement with
other EG from the literature for the same wire diameter and orientation.

As said, the simultaneously insertion of B and P dopants leads to a clear
band gap reduction although it retains a minimum gap at Γ like in the pure
Sinw as depicted in Fig. 7.12. The DFT-GGA band gap of the codoped
Sinw result to be at Γ 0.08 eV in perfect agreement with the value found in
the work by Peelaers [43].

Moreover taking into account the ”Phosphorus impurity path” depicted
above in Fig. 7.9, it’s interesting to note that as the formation energy tends
to decrease the direct band gap enlarge from 0.08 eV (in the case with the
highest positive FE value) to 0.97 eV (the most stable one) as shown graph-
ically from the band structures plots in Fig. 7.13. From Table 7.2 the direct
band gap increases by an amount of 0.9 eV undergoing from the codoped
BP in subsurface sites, to the nanowire with B subsurface and P at surface.
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Figure 7.11: Electronic band Structure of the undoped 0.8 nm diameter [110]
Si16H12 nanowire in one-dimensional Brillouin zone along the wire axis. The
band gap is direct at the Γ k-point.

Figure 7.12: Electronic band Structure of the 0.8 nm diameter Si[110] nanowires
in one-dimensional Brillouin zone along the wire axis. The black (dashed )line
is related to the undoped wire, the red (solid) line refers to the codoped wire.
In the figure the 0 refers to the Fermi Level of the considered wires. Impurities
are in subsurface position (DBP =4.29 Å).
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Figure 7.13: Phosphorous path: electronic band Structure of the codoped
0.8 nm diameter Si[110]nanowire with B subsurface and P atom occupying
different sites: P subsurface position, DBP =4.3 Å, (red solid line); P at sur-
face DBP =2.17 Å(green dash-dotted line); P at center DBP =1.95 Å(magenta
dashed line). In the figure the 0 refers to the Fermi Level of the considered
wires.
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The band gap behaviour can be understood by looking at the spatial
localization at the Γ k-point of the Highest Occupied Molecular Orbital
(HOMO) and the Lowest Unoccupied Molecular Orbitals (LUMO) within
the nanowires. In Fig. 7.14, 7.15, 7.16 are shown the square modulus
contour plots, with isosurface corresponding to 20% of the maximun value,
for the codoped 0.8 nm codoped wire considered before.

From Fig. 7.14 we can see that the HOMO and LUMO orbitals of un-
doped and B or P single doped Sinw present the same features which came
out for the Sinc. Thus HOMO and LUMO are spread all over the Silicon
core cross section of the wire, while, for the single doped Sinw, HOMO is
mainly centered on the impurity site, whereas LUMO maintains the same
kind of localization of the pure hydrogenated Sinw; this respects the trend
highlighted in the theoretical work by Singh et al. [203] where it’s depicted
the localization of the charge density in n- and p- type single doped Sinw
for different diameters and different surface morphologies, thus confirming
an universal orbital localization behaviour in presence of single impurities.
When, instead,the B and P impurities are simultaneously inserted in the first
silicon layer subsurface, see first column of Fig. 7.15, HOMO and LUMO
are localized on the two dopants site respectively, determining as a conse-
quence the strong reduction of the band gap at the Brillouin zone center.
Nonetheless the localization of the wavefunction square modulus can change
in the codoped Sinw according to whose substitutional sites are occupied by
the dopants atoms. In Fig. 7.16 and in the right column of Fig. 7.15 this
variation of orbital localization is shown for different substitutional site oc-
cupied by the Phosphorous atom. When the two impurities are no more
contemporary in subsurface substitutional sites, it changes the spatial lo-
calization of HOMO orbital, which results now centered on the Silicon core
of the wire apart from the sites occupied by the P dopant. Furthermore,
from Fig. ?? when the two impurities are near neighbors, the LUMO is fo-
cused on the B-P complex formed. This behavior can be at the origin of
the strong reduction in Formation Energy, as a sort of modulation doping or
a Boron-Phosphorus linear chain ”decorating” the wire and deeply altering
the peculiar electronic and thermodynamic features of the undoped Si wire.
Thus playing with impurity positions can be a way to modulate, to tune
the electronic structure of the Silicon nanowire. Another way to do that
and here a little bit investigated is what happen when are increased the
dimensions of the wire by augmenting the unitary cell. As already reported
by numerical values in Table 7.3 as the dimension of the wire unit cell in-
crease, the band gap at Γ of the BP codoped wires tends to increase. This
monotonic increasing trend is represented in Fig. 7.17, where the direct band
energy gap is plotted with respect to the different unit cell, that means with
respect to the total number of atoms within each unit cell. The increasing
of two, three, fourth times the unit cell correspond physically to reduce the
fraction of impurities with respect to the overall number of Silicon atoms,
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Undoped B doped P doped

HOMO top

LUMO top

HOMO wire

LUMO wire

Figure 7.14: HOMO and LUMO square modulus contour plots calculated for
undoped and single doped Sinw (l=0.8 nm). Columns: undoped (left); B
subsurface (middle); P subsurface (right). Horizontal: the [110] top view (first
two panels) and the [110] direction view (last two panels) of the HOMO and
LUMO orbitals respectively.
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BP@Ishell Pcentr-BIsh

HOMO top

LUMO top

HOMO wire

LUMO wire

Figure 7.15: HOMO and LUMO square modulus contour plots calculated for
codoped Sinw (l=0.8 nm). Columns: BP subsurface (left); P at center, B sub-
surface (right). Horizontal: the [110] top view (first two panels) and the [110]
direction view (last two panels) of the HOMO and LUMO orbitals respectively.
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P Ishell- B surf P Surf - B Ishell

HOMO top

LUMO top

HOMO wire

LUMO wire

Figure 7.16: HOMO and LUMO square modulus contour plots calculated for
codoped Sinw (l=0.8 nm). Columns: P subsurface , B at surface (left); P at
surface, B subsurface (right). Horizontal: the [110] top (first two panels) and
the [110] direction view (last two panels) of the HOMO and LUMO orbitals
respectively.
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thus to a reduction of impurity concentration. Thus from Fig. 7.17 it can
be seen that the band gap increases with the augmentation of the unit cell,
thus with the lowering of impurity concentration within the cell, approach-
ing asymptotically to the undoped band gap limit represented by the dashed
black line placed at 1.67 eV. Thus we can see that there are many way to
induce with the codoping a modification of the electronic structure of the
Silicon nanowire.
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Figure 7.17: DFT-GGA direct band gap calculated at the Γ point with respect
Single Unit cell, double unit cell, third unit cell and fourth unit cell nanowire
(l=0.8 nm). The red dotted line is a guide for eyes. The black dashed line is the
undoped band energy gap (EG=1.67 eV), constant for each unit cell considered.
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7.4 Optical Features

Here we take into account the main results achieved for the optical features
of the codoped Sinw. We considered the 0.8 nm wire with the four different
unit cell size and 1.2 nm wire with single unit cell. The absorption spectra
have been calculated with the Independent-Particle RPA approach applying
the simple Fermi Golden rule to estimate the Imaginary part of the dielec-
tric function, ε2(ω), as already describe in Section 3 by the Eq.[ 3.11]. In
Fig 7.18 is reported the optical absorption spectrum for the 0.8 nm undoped
and codoped (B and P subsurface) nanowires for a single unit cell, obtained
within the single-particle RPA approach. Due to the depolarization effect
which makes the wire almost transparent in the visible region for light po-
larized perpendicularly to the wire axis [190, 191], only the spectrum for
light polarized along the wire axis is shown, together with the spectrum
obtained for the corresponding pure Si-nw. The indirect character of the
high-valence and low-conduction energies states is confirmed here for the
pure Si-nw. The codoped Sinw, instead, shows an intense absorption peak
in correspondence of the absorption edge at 0.08 eV, due to the high over-
lap between the HOMO and LUMO orbitals which are strongly localized on
the Boron and Phosphorous impurity states respectively. The effect of the
impurity states affects deeply the absorption spectrum of the codoped Sinw,
revealing a quasi-continuous absorption behaviour typical of a metallic sys-
tem; in particular an absorption edge is lower than the related undoped one
and also than the bulk Silicon band gap limit.

Furthermore, the absorption spectra of the other codoped 0.8 nm Sinw
here discussed, reveal a different behaviour.

In Fig. 7.19 and Fig. 7.20 are reported the absorption spectra of the other
single unit cell codoped Sinw (0.8 nm) which are more stable due to lower
and negative formation energy values. In Fig. 7.19 are reported the absorp-
tion spectra of codoped Sinw where P impurity is moved from the center
toward surface and subsurface position, while the B atom is kept fixed in a
subsurface site. When P impurity occupies substitutional sites at the center
or at the surface, the absorption thresholds are very close each other located
at higher values with respect the B-P at Ishell codoped case. Unfortunately
there are any interesting and appreciable absorption peaks near the absorp-
tion edge, indicating that the main absorption features here resemble the
indirect character of the undoped Sinw and that in particular the presence
of impurity states do not change so much the spectrum. The same happen
when one of the two impurities is in a substitutional site at the surface of the
nanowire: in Fig.7.20 again there aren’t any intense absorption structures
around the two absorption edge (blue and cyan line). Thus Phosphorous or
Boron in a surface site gives rise to the same effect, very similar to a deple-
tion of intense and significative optical transitions in the region below 1.75
eV. This effect can be related to the presence of surface states due to the
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Figure 7.18: The imaginary part of the dielectric function ǫ2(ω) for the [110]
oriented Si nanowires (l=0.8 nm). The black solid line is related to the undoped
wire, the red solid line refers to the codoped wire, with impurities in the first layer
below the surface (DBP =4.3 Å). The arrows indicate the absorption thresholds.
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Figure 7.19: The imaginary part of the dielectric function ǫ2(ω) for the [110]
oriented Si nanowires (l=0.8 nm). Red solid line: B and P in subsurface position
(DBP =4.3 Å). Green solid line: P at center, B subsurface (DBP =1.95 Å). Blue
solid line: P at surface, B subsurface (DBP =2.17 Å). The arrows indicate the
absorption thresholds.
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Figure 7.20: The imaginary part of the dielectric function ǫ2(ω) for the [110]
oriented Si nanowires (l=0.8 nm). Red solid line: B and P in subsurface position
(DBP =4.3 Å). Blue solid line: P at surface, B subsurface (DBP =2.17 Å). Cyan
solid line: P subsurface, B at surface (DBP =2.17Å). The arrows indicate the
absorption thresholds.



184 7. Codoped Silicon Nanowires

presence of a surface impurity that renders the low-energy transition dark
and unfavorable.

Figure 7.21: The imaginary part of the dielectric function ǫ2(ω) for the [110]
oriented codoped Si nanowires with l=0.8 nm (DBP =4.3 AA) and l=1.2 nm
(DBP =3.64 AA) . The impurities are both in the first layer below the surface.
The arrows indicate the absorption thresholds.

In Fig. 7.21 is shown the comparison between the 0.8 nm codoped
nanowire and the 1.2 nm codoped one with impurities in the first layer
below the surface. It can be seen that the impurities states, due to B and P
dopants, presents within the gap, have a slight influence of the optical spec-
trum that shows very small peaks in the optical region below 2.5 eV and
no more the intense peak at 0.08 eV in the codoped 0.8 nm wire; moreover
the absorption spectrum of the codoped wire, above 2.5 eV, remains simi-
lar to the corresponding spectrum of the undoped wire, showing the main
absorption peak at about 4.5 eV.

Increasing the size unit cell for the 0.8 nm wire, it comes out, as depicted
in Fig. 7.22, that increasing the size of the wire unit cell the absorption
threshold don’t change so much. By considering a unit cell two, three and
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four times bigger along the wire growth direction [110], the absorption edge
tends to be blue shifted towards higher energy with respect to the codoped
single unit cell nanowire. As before, no intense transition peaks can be
recognized for the bigger cell wire below 2 eV. A possible explanation can be
related by considering the variation dopants concentration in each Sinw unit
cell: when the unit cell enlarges, the concentration of impurities decrease
thus producing an optical response of the codoped Sinw more similar to the
response of an undoped Sinw.

Figure 7.22: Increasing unit cell size: imaginary part of the dielectric function
ǫ2(ω) for the [110] oriented codoped Si nanowires (l=0.8 nm) with B and P in
the first layer below the surface. The arrows indicate the absorption thresholds.
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7.4.1 Many Body Absorption Spectra

Here the absorption spectrum of the codoped 0.8 nm wire with B and P in
subsurface substitutional position (see top panel in Fig. 7.8) has been calcu-
lated with the introduction of the many body effects, namely the self-energy
and the excitonic effects [131]. In order to overcome the well known under-
estimation of the DFT-GGA band gap (in any local or semilocal approxima-
tion for the exchange-correlation potential) with respect to the experiments,
the self energy corrections have been calculated within the standard G0W0

approach, leading thus to a better definition of the band gap in terms of
quasi-particle energy:

EQP
g = EDFT

g + ∆EGW
g

As has been discussed in the literature (see for instance [208]), the use of a
truncated Coulomb potential in the many-body calculations, when dealing
with isolated systems in the supercell approach, is really an important
point to reach a good accuracy in the final results. In fact, in the case of
low-dimensional non periodic nanostructures, such as the wires, it prevents
the interaction between the replica and allows the use of one-dimensional
k-point samplings. The converged parameters of present GW calculations,
performed in a simulation cell with a vacuum region of about 18Å, are the
following: a uniform one-dimensional grid of 16 k-points, a kinetic-energy
cut-off of 5 Ry and a sum over the unoccupied states up to about 20 eV
above EF in the correlation part of the self-energy, Σc, while a kinetic-
energy cut-off of 10 Ry in the calculation of exchange part of the self-energy
Σx.

Before to carry out the calculation for the codoped Si nanowire, we per-
formed it in the corresponding undoped nanowire. In this way the GW
correction to the minimum direct band-gap results to be 1.8 eV. This value
is in a reasonable good agrement with previous self-energy calculations on
the same pure hydrogenated Si-NW [200, 191]. As a general comment, it
is important to point out here, that this quasi-particle correction is bigger
than the corresponding value in bulk silicon (about 0.7 eV). Moreover it is
nowadays clear that the self-energy corrections tend to decrease toward the
bulk value, as the wire diameter is enlarged.
Afterwards we performed the same calculation for the codoped Sinw. in
this case the minimum direct gap opens of 1.6 eV with respect to the DFT
value, showing, at least in the studied case, a slight dependence from the
doping. GW calculations (in the same simulation cell) without the use of
a truncated coulomb potential take to quasi-particle gaps 0.3 smaller, both
for the pure and for the codoped wire. This difference is clearly due to the
long-range replica interactions which persist when the cylindrical cut-off is
not used, but in any case confirms their slight dependence from the doping.
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When the quasi-particles states are known, absorption spectrum can be
calculated by including also the excitonic effects that take into account the
interaction between an electron and hole pair by resolving the Bethe-Salpeter
equation and including only the resonant part of the excitonic hamiltonian.
The diagonalization of the excitonic hamiltonian has been performed using
1000 G vectors for the screened interaction W, 5000 G for v̄ on 40 bands
(half occupied, half empty). In Fig. 7.23 is reported comparison between the
imaginary part of the dielectric function of the BP codoped [110] oriented
Sinw (l=0.8 nm) calculated in the GW quasiparticle approximation without

Figure 7.23: Optical Absorption spectra of [110] oriented codoped Si nanowires
(l=0.8 nm) with B and P in the first layer below the surface. Black dashed
line quasiparticle (GW) absorption spectrum and red solid line quasiparticle +
excitonic effect (BSE+LF) spectrum.

the inclusion of excitonic effects (black dashed line) and by including e-
h interaction and local field effects by solving the BSE equation (red solid
line), with the inclusion also of the cut-off on the Coulombian potential. The
quasiparticle effect is the opening of the gap that shift toward higher energies
at 1.70 eV the main peak centered around the band edge in the previous IP-



188 7. Codoped Silicon Nanowires

RPA spectrum of Fig. 7.18. When instead excitonic effects are included the
electron-hole interaction tends to close the gap again: the excitonic effect
tends again to compensate the GW correction and to cancel partially the
quasiparticle effect, thus recovering almost the same peak position around
the band gap, now located at 0.28 eV. For this kind of small diameter (0.8
nm) wire, the binding energy of the exciton is of the order of 1.3 eV much
bigger then the value for bulk Ge and Si, which is around 60 meV and of
the same order of magnitude of the binding energies of the corresponding
undoped wire, which is 1÷2 eV.



Conclusions

Il sogno di una persona sola rimane un
sogno... quello di tante persone insieme é la
realtà che comincia.

Subcomandante Marcos

The theoretical study performed through ab initio calculations and
illustrated in this thesis work represents the summary of my research
activity achieved during the last three year of PhD fellowship in Modena.
The research illustrated is a first study on the effect play by the codoping
with donor and acceptor impurities on Silicon Nanocrystals and Nanowires
and it is part of a bigger field of study on the electronic and optical
properties of the Silicon Nanostructures with different kind of passivation
and surface termination that aim to carry out more information on the
possibility to achieve light and stimulated amplified emission from these
nanosized Silicon based systems.

This basic research thesis work, conduced under the smart and careful su-
pervision of Stefano Ossicini and Elena Degoli, is proud to illustrate from a
theoretical point of view and for the first time, how the insertion of compen-
sated impurities into small Silicon nanostructures can drastically modifies
their properties contributing thus to shed some more know-how on the pos-
sibility to realize sustainable emission of light from Silicon nanostructures
for optoelectronic applications. To that, briefly are resumed what we have
understand about the doping and the codoping in nanosized Silicon:

• Doping nanostructures is not easy to achieve, but possible.
The insertion of impurities in Silicon nanostructures in both nanocry-
stals and nanowires is difficult. In particular the Formation Energy
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(FE) (Sec. 4.2) carries the information that codoping is easier to
realize with respect to single doping; when two impurities are simulta-
neously present, due to the charge compensation between the B and P
dopants, in both nanocrystals and nanowires the FE assumes negative
values that means an increase in the stability of the codoped system.
Single doping depends strongly by the systems dimensions since the
FE decrease with the size, thus is more difficult to single dope small
nanostructure than the bigger one. Moreover, the most favorable po-
sitions for the two impurities (here Boron and Phosphorus) have been
demonstrated to be the substitutional sites in the first Silicon layer
below the surface, both for the nanocrystals and the nanowires.

- Silicon nanocrystals: due to the charge compensation the
codoping reveals to be almost independent by the nanocrystals
size; moreover the stability increases when the impurities are
closer each other such as second neighbors, in order to increase
their Coulomb interaction;

- multi-doped nanocrystals: inserting more impurities, thus
augmenting the concentration of dopants within the same
nanocrystal lowers more the FE, thus increasing the stability of
the multi-doped nanocrystals. This should be related to a vari-
ation in the screening between the embedded dopants that can
increase their mutual interaction. In particular an even number
of doped compensated impurities leads always to the minor and
more negative value of FE.

• Electronic Properties can be tuned from the corresponding
undoped structures counterparts. The simultaneously insertion
of compensated donor and acceptor impurities such as Boron and
Phosphorus gives rise to the formation of new bound electronic impu-
rity states near the band edge, both in nanocrystals than in nanowires
which deeply alter the overall electronic structure with respect the
corresponding undoped system.

- the energy gap is direct at the Γ k-point and it is strongly reduced
by the new impurity levels. The energy gap can be tuned just
playing with the distance between impurities: in same the biggest
nanocrystals it shrinks as the B-P distance augments, also below
the undoped nc value and the bulk Si band gap.

- the energy gap of codoped nanocrystals and nanowires is rigid
shifted toward lower energies with respect to the undoped coun-
terparts; nevertheless, it maintain a decreasing trend with the
enlarging of the size, approaching to the bulk limit.

- both in nanocrystals and nanowires, there is a strong localization
of HOMO and LUMO orbitals on the impurity sites: HOMO is
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focused on the Boron site, while the LUMO is centered on the
Phosphorus site.

- in nanowires, the simultaneously insertion of B and P in smaller
nanowires considered, gives rise to a strong reduction of the direct
band gap and to an almost flattening of the band structure around
the Γ point;

- in the multi-doped nanocrystals, the addition of more impurities
determines as in codoped nc new impurity states around the va-
lence and the conduction edge, with a reduction of the energy
gap. Nonetheless as the number of inserted impurities increase
the amount of gap shrinking tends almost to saturate toward a
constant value.;

• Promising new optical features close to the experimental out-
comes. The insertion of single impurities gives rise to new intense
optical transitions in low energy range, below the absorption edge of
the undoped nanocrystals and also below the bulk Silicon band gap
limit. Nevertheless these transitions in single doped nanostructures
have been demonstrated to be almost dark. Indeed, when two simulta-
neously compensated impurities are inserted within nanocrystals and
nanowires, new ”radiative” not-forbidden transition arise in the ab-
sorption and emission spectra.

- Absorption spectra: the IP-RPA calculations show that the ab-
sorption edge is strongly lowered with respect to the undoped
absorption spectrum both for nanocrystals and nanowires; in par-
ticular increasing the size of the system shifts the absorption onset
toward lower energies, in particular in the visible energy range.
Several states around the gap edge are involved in these transi-
tions. The many body calculations (performed on the smallest
nanocrystal and nanowire among the all considered in the study)
confirm this trend also with the inclusion of the local field con-
tribution.

- Emission spectra: it has been proposed an efficient scheme to
calculate the emission spectra combining a Constrain DFT ap-
proximation with the Green function approach (GW+BSE). For
the first time in the emission spectrum is take into account also
the electron-hole interaction, thus leading to treat in a rough but
realistic way the emission spectrum as an estimation of the pho-
toluminescence. To that the calculation show an intense Stokes
shift between emission and absorption: several intense excitonic
peaks appear in the low energy part of the emission spectra in
the visible range, in really good agreement with the experimen-
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tal outcomes of Fujii [36, 37], thus confirming the possibility to
achieve light emission by codoping Silicon nanocrystals.

Future Perspective

Considering the conclusions achieved an important preliminary basic step
for a deeper investigation on the role of doping to engineer the electronic and
optical features of Silicon Nanocrystals and Nanowire, here on the following
I present my main expectations for future research outcomes, on many of
which theoretical investigation within our group is still begun:

1. to study radiative and non-radiative lifetime of the electron-
hole pair recombination in codoped Silicon nanocrystals and nanowires
from first principle, including also the many-body effects in terms of
excitonic hamiltonian and self-energy corrections;

2. to investigate from a first principle approach gain and stimulated
emission in Silicon nanostructures. For the first time a simple ” four
level” model will give the possibility to expand book-learning know-
ledge about the microscopic origin of optical gain in Silicon Nanocrys-
tal, expanding the investigation also to nanowires and to codoped Si-
based nanostructures;

3. to study codoped Silicon nanostructures embedded in a Sili-
con Dioxide (SiO2) matrix, thus approaching the simulation to the
experimental systems setup;

4. to include in the study of codoped Silicon nanowire the effects of the
wire-wire interaction as yet done for undoped Si nanowire, in order
to better simulate the interconnected structure of nanowires by which
the Porous Silicon is made up and that contain impurities introduced
during the hydrofluoric acid etching process.

Federico Iori

Modena, 6 Novembre 2007
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[111] D. R. Hamann, M. Schlüter, and C. Chiang, Norm-Conserving Pseu-
dopotentials, Phys. Rev. Lett. 43(20), 1494–1497 (Nov 1979).

[112] G. B. Bachelet, D. R. Hamann, and M. Schluter, Pseudopotentials
that work: From H to Pu, Phys. Rev. B 26(8), 4199–4228 (Oct.
1982).

[113] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized
eigenvalue formalism, Phys. Rev. B 41(11), R7892–R7895 (Apr. 1990).

[114] R. O. Jones and O. Gunnarsson, The density functional formalism,
its applications and prospects, Rev. Mod. Phys. 61(3), 689–746 (July
1989).

[115] R. W. Godby and I. D. White, Density-Relaxation Part of the Self-
Energy, Phys. Rev. Lett. 80(14), 3161–3161 (Apr. 1998).

[116] A. Franceschetti and S. T. Pantelides, Excited-state relaxations and
Frank-Condon shift in Si quantum dots, Phys. Rev. B 68(03), 033313
(July 2003).

[117] A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, Com-
putational Studies of the Optical Emission of Silicon Nanocrystals,
J. Am. Chem. Soc. 125, 2786–2791 (2003).

[118] F. Mauri and R. Car, Firts-Principles Study of Excitonic Self-Trapping
in Diamond, Phys. Rev. Lett. 75(17), 3166–3169 (1995).

[119] H.-C. Weissker, J. Furthmüller, and F. Bechstedt, Excitation Energies
and Radiative Lifetimes of Ge1−xSix Nanocrystals: Alloying Versus
Confinement Effects, Phys. Rev. Lett. 90(8), 085501 (Feb 2003).

[120] F. Iori, E. Degoli, R. Magri, I. Marri, G. Cantele, D. Ninno, F. Trani,
O. Pulci, and S. Ossicini, Engineering silicon nanocrystals: Theoretical
study of the effect of codoping with boron and phosphorus, Physical
Review B (Condensed Matter and Materials Physics) 76(8), 085302
(2007).



Bibliography 211

[121] A. F. Starace, Length and Velocity Formulas in Approximate
Oscillator-Strength Calculations, Phys. Rev. A 3(4), 1242–1245 (Apr.
1971).

[122] R. D. Sole and R. Girlanda, Optical properties of semiconductors
within the indipendent-quasiparticle approximation, Phys. Rev. B
48(16), 11789–11795 (1993).

[123] J. Tauc, editor, The Optical Properties of Solids, 1966.

[124] N. H. R. Kubo, M. Toda, Statistical Physics II, volume 31 of Springer
Series in Solid-State Sciences, Springer-Verlag, 1978.

[125] S. L. Adler, Quantum Theory of the Dielectric Constant in Real Solids,
Phys. Rev. 126(2), 413–420 (Apr. 1962).

[126] N. Wiser, Dielectric Constant with Local Field Effects Included,
Phys. Rev. 129(1), 62–69 (Jan. 1963).

[127] S. Baroni and R. Resta, Ab Initio calculation of the macroscopic
dielectric constant, Phys. Rev. B 33(10), 7017–7021 (May 1986).

[128] N. E. Brener, Random-phase-approximation dielectric function for
diamond, with local field effects included, Phys. Rev. B 12(4), 1487–
1492 (Aug. 1975).

[129] M. S. Hybertsen and S. G. Louie, Ab initio static dielectric matrices
from the density-functional approach. I. Formulation and application
to semiconductors and insulators, Phys. Rev. B 35(11), 5585–5601
(Apr. 1987).

[130] M. S. Hybertsen and S. G. Louie, Ab initio static dielectric matrices
from the density-functional approach. II. Calculation of the screening
response in diamond, Si, Ge, and LiCl, Phys. Rev. B 35(11), 5602–
5610 (Apr. 1987).

[131] G. Onida, L. Reining, and A. Rubio, Electronic excitations:
density-functional versus many-body Green’s-function approaches,
Rev. Mod. Phys. 74(2), 601–659 (Apr. 2002).

[132] G. Bussi, Effects of the Electron-Hole Interaction on the Optical Prop-
erties of Materials: the Bethe-Salpeter Equation, Phys. Scr. T109,
141–151 (2004).

[133] O. V. Dolgov, D. A. Kirzhnits, and E. G. Maksimov, On an admissible
sign of the static dielectric function of matter, Rev. Mod. Phys. 53(1),
81–93 (1981).



212 Bibliography

[134] F. J. Dyson, The Radiation Theories of Tomonaga, Schwinger, and
Feynman, Phys. Rev. 75(3), 486–502 (Feb 1949).

[135] F. J. Dyson, The S Matrix in Quantum Electrodynamics, Phys. Rev.
75(11), 1736–1755 (Jun 1949).

[136] G. F. Roach, Green’s Functions. Introductory Theory with Applica-
tions, Van Nostrand Reinhold Co. - London, 1970.

[137] A. E. Taylor and D. C. Clay, Introduction to Functional Analysis,
Krieger Publ. Co. Malabar - Florida, 1986.

[138] A. S. Kheifets, V. A. Sashin, M. Vos, E. Weigold, and F. Aryasetiawan,
Spectral properties of quasiparticles in silicon: A test of many-body
theory, Phys. Rev. B 68(23), 233205 (Dec. 2003).

[139] M. S. Hybertsen and S. G. Louie, Spin-orbit splitting in semiconduc-
tors and insulators from the ab initio pseudopotential, Phys. Rev. B
34(4), 2920–2922 (Aug. 1986).

[140] M. M. Rieger and R. W. Godby, Charge density of semiconductors in
the GW approximation, Phys. Rev. B 58(3), 1343–1348 (July 1998).

[141] P. Bokes and R. W. Godby, Conductance and polarization in quantum
junctions, Phys. Rev. B 69(24), 245420 (2004).
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