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Chapter 1

Introduction

Computational materials design reflects the dream to create new materials with de-
sired properties in a guided way. This properties like color, conductivity, magneti-
zation.. are the result of collective behaviors of particles and in order to understand
it and be able to predict it we find ourselves in front of a many body problem.

From quantum mechanics we know that the state of an electron is completely
specified by the wave function which is the solution of Schrödinger’s equation. This
is true also for an interacting electrons and so in principle, we need the many body
wave function ψ(r1, r2, r3, ..., rn, œ, t) for a complete description of the system. This
function depends on the position of Avogadro’s number of electrons, which makes
it impossible to be calculated numerically and stored. However in practice we just
deal with observables, i.e. expectation values 〈ψ|O |ψ〉 =

∫
ψ∗OψdNr. Taking the

integral means that efforts have been made to calculate too detailed information (the
wave function) which is not economical and even impossible because of the size of
the Hamiltonian matrix to diagonalize for many body system.

Density Functional Theory (DFT) comes as a solution to this problem, it tells
us that the external potential, and therefore all observables, are functionals of the
ground state density however the exact functionals are of course not known. Follow-
ing the Kohn-Sham scheme, a system of interacting electrons can be transformed to a
fictitious system of non-interacting electrons that has the same density of the ground
state as the real system. The price to pay is that the effective potential of this new sys-
tem contains an unknown part which we called the exchange-correlation potential.
From DFT we know that this potential is a functional of the ground state density
and much effort goes into the design of suitable approximations. In the Homoge-
neous electrons gas this potential has been already numerically calculated using the
quantum Monte-Carlo method.

In my internship I have tried to explore a new strategy of approximation :"Con-
nector theory", and I used it in order to profit from the calculation done in the ho-
mogeneous electron gas and approximate the exchange correlation potential in real
systems identified by their density. In the first part I will talk about the theoretical
framework of my internship then I will introduce the idea of the "connector" and
why it’s a promising theory and finally I will give and discuss my result as an appli-
cation of this theory in the approximation of the exchange correlation potential.
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Chapter 2

Theoretical framework

In this chapter, I will present the concepts and the methods that I have been used during
my internship. I will start by the many electron problem which is the origin of the problem.
Next, I will introduce density functional theory (DFT) as a solution from point of view of
principle. I will discuss what makes this theory useful in practice and what are its limits.
Finally, I will talk about the time dependent DFT, its standard approximation and the prob-
lems encountered by it.
In all the rest of my report equations are written in the Hartree units : e2 = h̄ = me = 1
where e is the electron charge and me its mass.

2.1 Many electron problem

One of the most important purpose of condensed matter physics is to understand the
electronic properties of metals this type of problem contains of order 1023 particles.
In quantum mechanics the Hamiltonian of a system with N electrons and M nuclei
can be written as :

Ĥ = −∑
i

∇2
i

2
−∑

I

∇2
I

2MI
+

1
2 ∑

i 6=j

1∣∣ri − rj
∣∣ + 1

2 ∑
I 6=J

ZI ZJ∣∣RI − Rj
∣∣ −∑

i,I

ZI

|ri − RI|
,

where electrons and their positions are denoted by i and ri, nucleus by I and RI .
MI is the I-th nucleus mass and ZI its atomic number. The first two terms represent
the kinetic energy of electrons and nuclei. The next two terms represents electron-
electron interaction and nucleus-nucleus interaction. The last term represent the
electron-nucleus interaction which we will denote by Vext.
The evolution of the system is described by the Schrödinger equation :

Ĥψ({R}, {r}) = Eψ({R}, {r})

This equation can be solved analytically at most for two electrons and numerically
for very few electrons, that’s why we have to adopt approximations. As a first step
we can consider the Born-Oppenheimer approximation, assuming that the motion
of atomic nuclei and electrons in a molecule can be decoupled. Indeed the time scale
of electrons is much shorter than the one of nuclei and so the latter can be frozen in
their equilibrium positions. This yields to simpler Hamiltonian :

H =
N

∑
i
(
∇2

i
2

+ Vext
(
ri)
)
+

1
2 ∑

i 6=j

1∣∣ri − rj
∣∣
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But we still need to find the wave function of N ∼ 1023 electrons which is impos-
sible! In practice we are interested in observables i.e., integrated variables, and the
question arises if there is a way to extract this observables without finding the many
electron wave function?

2.2 Density functional theory

The density functional theory (DFT) comes as a solution to the many-electron prob-
lem. According to this theory, the electronic density is the minimum and the suffi-
cient information that we need to calculate all ground state observables. it is based
on two theorems by Hohenberg-Kohn [5].

HK theorem I The ground state expectation value of any physical observable of a
many-electron system is a unique functional of the electronic density n(r).

HK theorem II The total energy functional has a minimum at the exact ground
state density n(r).

These theorems introduce the electronic density as the key variable of the system
which is much simpler than the many body wave function. They prove the existence
of the functionals of the ground state observables but they say nothing how to find
them, which is not interesting from practical point of view. What makes DFT useful
is the Kohn-Sham method [11].

2.2.1 Kohn-Sham method

The Kohn-Sham (KS) method is a reformulation of the many electron problem. The
idea of this method consists of introducing a fictitious system of non interacting
electrons subjected to an effective external potential, VKS, with the property that it
yields the same density as the real interacting system. Therefore the Hamiltonian of
this fictitious system (KS system) can be written as :

HKS = −1
2
∇2 + VKS(r)

The ground state density of the KS system is then obtained from the eigenfunctions
ϕi of this Hamiltonian :

n(r) =
N

∑
i
|ϕi(r)|2.

This density , according to the second HK theorem, is the minimum of the total
energy functional which can be expressed as:

EKS[n] =
∫

drn(r)Vext + T[n] + EH [n] + Exc[n],

with T[n] is the kinetic energy functional which can be calculated as :

T =
N

∑
i
〈ϕi| −

∇2
i

2
|ϕi〉 .
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EH [n] is the Hartree energy which is the result of the electrostatic interaction between
electrons:

EH [n] =
1
2

∫ ∫
drdr′

n(r)n(r′)
|r− r′| .

Exc[n] is the unknown part in the total energy functional, it encompasses the ex-
change correlation effects i.e., the electron-electron interaction beyond the electro-
static one.

Minimizing the energy functional of the KS system EKS[n] with the constraint
that it yields the same ground state density as the real system implies :

δ(EKS[n]− εi
∫

dr′n(r′))
δn(r)

= 0.

In this way one can write a Schrödinger-like equation :

(−∇
2

2
+ Vext +

δEH [n]
δn(r)

+
δExc[n]
δn(r)

)ϕi(r) = εi ϕi(r).

Or :

(−∇
2

2
+ VKS(r))ϕi(r) = εi ϕi(r),

with VKS(r) = Vext(r) +
δEH [n]
δn(r) + δExc[n]

δn(r) = Vext(r) + VH [n](r) + Vxc[n](r).

In conclusion, the many body problem is reformulated to the problem of solv-
ing a set of self-consistent single-particle Schrödinger equations which is possible
in practice. However, since we don’t know the expression of Exc[n], the exchange
correlation (xc) potential Vxc[n](r) is unknown and at this level we must make ap-
proximations.

2.2.2 Approximation of the exchange correlation potential

As it has been shown in the previous section, using DFT in KS scheme, the cen-
tral quantity that needs to be approximated is the xc potential functional Vxc[n].
The standard and the most used approximation is the local density approximation
(LDA). It was presented in the same paper in which the KS method was developed
[11]. In the case of the xc potential the LDA suggests to take it from a homogeneous
electron gas (HEG), as a model system, with a density nh equal to the local density
of the real system n(r), this yields :

VLDA
xc [n](r) = VHEG

xc (nh = n(r)),

where VHEG
xc (nh) is the xc potential of the homogeneous electron gas, which is cal-

culated and tabulated using methods based on the wave function. The Figure 2.1
illustrates how the LDA approximate the xc potential.

For a real system with a slowly varying density, the system can be seen locally
as a HEG and then using the LDA is reasonable, which justify its success. However,
this approximation fails to describe a various phenomena. For example, the problem
of image potential [4].
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FIGURE 2.1: LDA scheme. Here we show how tu use the LDA to
approximate the xc potential. First we read the density at some point
r0 in the the real system (left side graph) which is a number. Then we
construct a HEG with a density equal to this number. In the table of
the xc potential of HEG (right side graph) we determine Vxc[n](r) at

the point r0

2.3 Time dependent density functional theory

The time dependent density functional theory (TDDFT) is the extension of the static
DFT to the case of time-dependent external potentials. it’s based on the Runge-Gross
theorems :

RG theorem I The expectation value of any physical time-dependent observable
many-electrons system is a unique functional of the time-dependent electron density
n(r, t) and of the initial state ψ0.

RG theorem II The Hamiltonian action :

A =
∫ t1

t0

〈ψ(t)| i ∂

∂t
− H(t) |ψ(t)〉 .

has a stationary point corresponds to time-dependent Schrödinger equation with the
initial condition ψ(t = 0) = ψ0.

Similarly to DFT, TDDFT proves the existence of functionals without determin-
ing them. In order to make it useful in practice, we can extend the KS method to this
case and build a time dependent KS system. This yields :

(−∇
2

2
+ VKS(r, t))ϕi(r, t) = i

∂

∂t
ϕi(r, t),

with n(r, t) = ∑N
i |ϕi(r)|2. In analogy to the static case :

VKS(r, t) = Vext(r, t) + VH [n](r, t) + Vxc[n](r, t).

Since the xc potential Vxc[n](r, t) is unknown we have to adopt approximations.

2.3.1 Adiabatic local density approximation

The simplest and the widely used approximation in TDDFT calculation is the adi-
abatic local approximation (ALDA). Using this approximation for the xc potential,
means that at each instant t we take for Vxc[n](r, t) the xc potential calculated in LDA
with density n(r, t) :

VALDA
xc (r, t) = VLDA

xc (n(r, t)).



Chapter 2. Theoretical framework 6

Note that this approximation is local both in space and time. Although studies
have shown that the ALDA is able to describe properly a limited range of time-
dependent physical systems [8], it exhibits serious deficiencies in the description of
long range charge transfer [9], and the description of dynamical processes where the
density changes significantly in time.
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Chapter 3

Connector strategy

In physics, we usually want to calculate certain observables which contain a limited amount
of information about the system. In principle, if we know every single detail about the system
we can extract any information we want. However this way of dealing with the problem is
not optimal and it is expensive in term of computation because we need to redo it for every
system. In this internship, I have explored a different approach. It is based on the idea that
the interaction effects are to some extent universal. The idea is to represent the real system by
a model one which is simpler and which contains all parts of interaction including the non
trivial one. In order to import results from calculations done in the model system into the real
one we do approximations. The LDA, introduced in chapter 2, is an example. Although there
are justifications for existing approximations, they don’t start from an exact formulation,
and they are therefore not systematic. In this chapter we introduce a general strategy which
is an exactifying and generalization of these approximations i.e., an exact mapping between
the model system and the real one. The task of this internship was to explore some general
properties, which we discuss in this chapter, and to give the illustrations in chapter 4.

3.1 General connector theory

Suppose that we want to calculate a quantity Q(x, [F]) in a real system that depends
on the variable x and the function F. Suppose also that this quantity can be expressed
in a simpler way Q̃(p) in a model system in which the calculations are done, stored
in tables and targeted by a parameter p. Now we want to profit from the model cal-
culation for the real system. The question is whether one can choose the parameter

FIGURE 3.1: Schematic summary of the connector approach. The ta-
bles inside the model system are the results of advanced calculations
that can be done in this system because it is simpler. These results are
targeted by the parameter p. The prescription how to use them in the

real system, is the connector
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p in order to get the same quantity in the real system i.e.:

Q(x, [F]) = Q̃(p). (3.1)

The prescription of how to import the quantity Q̃ to the real system is what we
call "the connector". The enormous advantage of such a procedure is that the most
complicated part of calculation is done only once and forever in the model system.

The exact way to import the quantity Q is to solve the equation 3.1 for p :

p = Q̃−1(Q(x, [F])). (3.2)

This is not necessarily possible. it is so only if the function Q̃ fulfills the following
conditions:

• It has an inverse, ie., Q̃−1 exists. it is not mandatory that the inverse is unique.
Not uniqueness means that we have the possibilty to use more than one con-
nector.

• It is onto, ie., the values of Q(x, [F]) that are to be covered must fall into the
domain of the function Q̃. Else the connector will not be physical and for
example divergence may appear in the quantity of interest.

3.2 Is that possible for the exchange correlation energy

According to the DFT we know that the exchange correlation energy Exc[n] is a func-
tional of the density, however the expression of its universal functional is unknown.
This quantity was computed in the case of the homogeneous electrons gas by Ceper-
ley and Alder [1] using quantum Monte Carlo-method which deals directly with the
wave function and gives results that are considered to be benchmarks. Taking the
homogeneous electron gas as a model system, in this section we explore whether
it is possible to import the quantum Monte Carlo results to a real system using the
general connector theory.

The exchange correlation energy can be expressed as a sum of local contributions
weighted by the local density, Exc[n] =

∫
d3rn(r)εxc(r). The local contribution εxc(r)

can be separated into two parts, the density of the exchange energy εx(r) and the
density of correlation energy εc(r).

3.2.1 Exchange energy

In the homogeneous electron gas (HEG), the density of the exchange energy can be
written as [3] :

εh
x = −3

4
(

3
π
)

1
3 (nh)

1
3 ,

where nh is the density of the HEG. If we want to import εh
x to a real system we need

to invert εh
x. This yields :

nh(εx(r, [n])) = −64
9

π(εx(r, [n]))3, (3.3)

where εx(r, [n]) is the exchange energy in the real system. The range of εx(r, [n])
is ]−∞, 0] which implies nh(εx(r, [n])) ≥ 0, so the inverse does exist and it is well
defined.
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3.2.2 Correlation energy

In the case of the HEG, an analytical expression for the correlation energy density
has been proposed by Chachiyo [2]. It is a function of a density parameter 1 rs =

( 4
3 πnh)

1
3 , and it is of the form :

εh
c = a ln

(
1 +

b
r s

+
b
r2

s

)
with a = ln(2)−1

2π2 and b = 20.4562557. This expression derived from many-body per-
turbation theory is valid for the full range of densities and it shows good agreement
with the quantum Monte Carlo results, to within 2 milli-hartree.

So we have accurate results that are well described in the model system. The
question now is if it is possible to use them to calculate εc(r, [n])in any real system.
To answer we need first to invert the function εh

c , this gives :

rs(εc(r, [n])) =
2

−1 +

√
1− 4( 1−e

εc(r,[n])
a

b )

or, in terms of the density nh :

nh(εc(r, [n]) =
3

4πrs3 =
3

32π
(−1 +

√
1 + 4(

e
εc(r,[n])

a − 1
b

))3. (3.4)

Since a < 0 and εc(r, [n]) ≤ 0⇒ e
εc(r,[n])

a − 1 ≥ 0⇒ nh(εc(r, [n]) > 0. This means
that the inverse does exist and it is well defined, and so it is, in principle, possible to
use the general connector strategy to profit from calculation done in the HEG.

The conclusion of this section gives a positive answer to the possibility of using
the general connector strategy for the exchange correlation energy. This is interesting
from the point of view of principle but it is useless in practice because both equation
3.3 and 3.4 require the expression of the exchange correlation energy i.e., εx(r, [n])
and εc(r, [n]) which we are looking for! That is why we have to do approximations
on this quantities and it is precisely at this level where the utility of the connector
strategy appears.

3.3 Approximations

3.3.1 General discussion

Before starting to approximate the exchange correlation energy. Let us first go back
to our general discussion. As we have seen through the example of the previous
section finding an exact solution to the equation 3.1 is useless because it needs an
explicit formula for the quantity Q which is unknown. That’s why we must make
approximations to find the connector p. This implies:

papprox = Q̃−1
approx(Qapprox(x, [F])). (3.5)

1Known as the Wigner-Seitz radius
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At this point and since we know the exact 2 function of Q̃, one can say : why we use
an approximated one in equation 3.5 ? To answer this question, we note first that
using the exact function Q̃, i.e. calculating papprox = Q̃−1(Qapprox), would be equiva-
lent to make the approximation directly to Q. Then we can forget for the story of the
connector from the beginning. However, when we make the same approximation to
both Q and Q̃, as we did in equation 3.5, this involves an error canceling which is
expected a better connector and so better results.

3.3.2 The error canceling

The connector strategy, as it has been shown in [7] and [10], is a promising theory.
The main reason behind this success is probably the fact that it involves an error can-
celing. To illustrate what we mean by that, we take a very simple example. Suppose
that we make the same approximation to a quantity Q and Q̃ and this approxima-
tion makes an error of factor two i.e., Qapprox = 2Q and Q̃approx = 2Q̃ . To find the
connector we have to solve for p the following equation :

Q̃approx(p) = Qapprox(x, [F])⇔ 2Q̃(p) = 2Q(x, [F])⇔ p = Q̃−1(Q(x, [F]).

As it has been shown in this example, we started from an approximation and we
end up with an exact connector due to error canceling.

Now, let us take a more realistic example. Considering a finite real system with
a density n(r), the Hartree potential VH, which is our quantity Q, can be written as :

VH(r) =
∫

dr′
n(r′)
|r− r′| . (3.6)

Suppose that we don’t know how to calculate this integral and in order to sim-
plify it, we make the approximation of constant interaction : 1

|r−r′| ≈ c.

• If we make the last approximation directly in the quantity of interest we find :

Vdirect
H (r) = c

∫
dr′n(r′). (3.7)

• Now we want to use the connector strategy. As model system we choose a
sphere of HEG of radius R. The condition to find the connector is :

VH(r) = ṼH ⇔
∫

dr′
n(r′)
|r− r′| = nh

∫
R

dr′
1

|r− r′| ,

where ṼH is the Hartree potential in the HEG and nh its density.
Using the approximation 1

|r−r′| ≈ c and equation 3.5 we get :

nh(r, [n]) = Ṽ−1
H,approx(VH,approx(r)) =

3
4πR3

∫
dr′n(r′) = n̄.

2We consider the interpolation of the results of advanced calculations, like quantum Monte Carlo
in the last section, as exact
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With this connector we import the Hartree potential from the calculation done
in the HEG. Therefore the resulting potential is :

Vconnector
H (r) = n̄

∫
R

dr′
1

|r− r′| . (3.8)

In this example we can see that the result of making the approximation in the
expression of the connector (equation 3.8 ) is not the same as making it directly on the
potential (equation 3.7). Another important remark is that the result of the connector
strategy is much better. Indeed the dependence on 1

|r−r′| of the Coulomb interaction

is completely absent in the Vdirect
H while it is present in Vconnector

H . In addition, the
equation 3.8 suggests to represent the real system as a HEG with a density equal
to the average of the density of the real system n̄ which is more reasonable than
equation 3.7.



12

Chapter 4

Approximating the exchange
correlation potential

In this chapter we apply the connector strategy to approximate the central quantity in DFT
calculations which is the exchange correlation (xc) potential. We compare our results to
the standard and the most used approximation, namely the LDA, and we explain why our
strategy goes beyond it.

4.1 Linear approximation

As we have seen in chapter 3, in order to find a connector we have to apply an
approximation to the quantity of interest, both in the HEG and in the real system.
Here we choose a first order linear expansion.

4.1.1 Exchange correlation kernel

We know from DFT that, for a given real system, the xc potential is a functional
of the density of this system which, in TDDFT, can also be time-dependent. In the
following, we perform a first order expansion of the xc potential in the vicinity of
some constant density n̄ :

vxc[n] = vxc[n̄] +
∫

d3r′dt′δn(r’, t′)
δvxc(r, t)
δn(r’, t′)

|n̄ ≡ vxc[n̄] + ∆vxc(r, t)[n, n̄].

Defining δvxc(r,t)
δn(r’,t′) |n̄ ≡ fxc(r− r′; t− t′)[n̄] 1 :

∆vxc(r, t)[n, n̄] =
∫

d3r′dt′δn(r′, t′) fxc(r− r′; t− t′)[n̄]. (4.1)

The quantity fxc(r− r′; t− t′)[n̄] is known as the xc kernel. In our case this func-
tional is evaluated at a constant density n̄. This means that we are in a HEG and
that’s why it is translational invariant in space and time. M.Panholzer et al. [7]
propose a non-adiabatic and non-local approximation to this kernel which was tab-
ulated for a wide range of wave-vectors and frequencies. In the rest of the chapter
we will profit from this calculation, and explore what happens when the results are
imported to a non homogeneous system using the connector strategy.

Remarks :
1Since n̄ is constant we can write fxc(r− r′; t− t′; n̄) but we choose to keep the general notation
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FIGURE 4.1: The xc kernel tabulated
by Martin et et al.[7] in a HEG of
density nh = 3.73 × 10−3. The fig-
ure shows the xc kernel as a function
of energy at momenta starting from
q = 0.2k f to q = 2k f in steps of 0.2k f .
k f is the Fermi wave vector and wp is

the plasmon frequency

• The kernel is wave vector and frequency
dependent in the Fourier transform. This
is the result of non-locality in both space
and time.

• The kernel is, in general, complex, with
real and imaginary parts related via
Kramers-Kronig.

• The tabulated kernel, as we can see in Fig-
ure 4.1, can have poles related to the fre-
quency of the plasmons 2 as it is explained
in [7].

• Making the local approximation is equiv-
alent to taking a kernel that does not de-
pend on the wave-vector.

• Making the adiabatic approximation is
equivalent to taking a kernel that is
frequency-independent, which together
with the local approximation, removes all
features of the tabulated one.

4.1.2 Design of the connector

Our aim is to make use of the tabulated kernel in
order to design the connector, which tells us the
density of the HEG that we should use to map
the xc potential from the HEG to the real system.

Equation 4.1 can be written for a crystal as :

∆vxc(r, t)[n, n̄] =
1
V ∑

G,G′
∑
q

∫ dw
2π

ei(q.r−wt)eiG.rδnG′(q, w) f xc
G,G′(q, w)[n̄],

(4.2)
where f xc

G,G′,w(k) ≡ f xc(k + G, k + G′, w) and G, G′ are reciprocal lattice vectors, k
lies in the first Brillouin zone (BZ)and V is the total volume of the system.

Since n is constant the kernel is diagonal reciprocal space:

f xc
G,G′(q, w)[n̄] = f xc

G,G′(q, w)[n̄]δGG′ .

This yields :

∆vxc(r, t)[n, n̄] = ∑
G

∫
1BZ

d3q
(2π)3

∫ dw
2π

ei(q.r−wt)eiG.rδnG(q, w) f xc
G (q, w)[n̄].

Or :

∆vxc(r, t)[n, n̄] =
∫ d3k

(2π)3

∫ dw
2π

ei(k.r−wt)δn(k, w) f xc(k, w)[n̄]. (4.3)

2collective oscillation of electrons
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In the case of the homogeneous electron gas vxc is a function of the constant density
nh and so:

∆vh
xc(n

h) =
dvxc

dn
|n̄(nh − n̄) = f xc

h (n̄)δnh, (4.4)

Where f xc
h (n̄) = f xc

h (k → 0)[n̄] = f CODP(0)[n̄]. Here, f CODP(k)[n̄] is the Fourier
transform of the static xc kernel of Corradini et al., which corresponds in this limit to
the kernel of M.Panholzer et al. [7]
Now let us determine the density nh that we should use in the model system i.e. the
homogeneous gas so that ∆vh

xc(nh) = ∆vxc(nh), using the equation 4.3 and 4.4 we
get :

nh = n̄ +
1

f CODP(0)[n̄]

∫ d3k
(2π)3

∫ dw
2π

ei(k.r−wt)δn(k, w) f xc(k, w)[n̄]. (4.5)

4.1.3 Discussion

From equation 4.5, if the kernel fxc is constant in the k-space (short range in r) we
get the LDA, since the kernel drops out and the Fourier transform of the density
appears. If fxc ∼ δ(k) (constant is r space) we get the average density as connector.
Since fxc lies in between, we expect a result that interpolates between these limits. if
fxc is constant in ω (instantaneous in time), we get the adiabatic approximation. If it
is ∼ δ(ω), again the average survive.

4.2 Examples :

The internship was too short to apply the new expression in real systems. Therefore
we use in the following some model cases for illustrations.

4.2.1 Static case :

We will first consider a static density, which is modulated in real space.

Cosinus density

Let us consider for example, in the static case, a crystal with the following density:

n(r) = A + B cos(a.r),

where B ≤ A are positive constants, and a is a vector of the reciprocal space.
Taking A = n̄, the density in the vicinity of which we perform the expansion.

This means that we make the variation around the middle of our initial density,
which is not the unique choice. So we have :

δn(r) = B cos(a.r).

Performing the Fourier transform we get :

δn(k) = (2π)3 B
2
[δ(k + a) + δ(k− a)].
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FIGURE 4.2: Comparison between LDA and connector strategy. For
slowly varying density in space the results are close

Calculating nh from equation 4.5 :

⇒ nh
r = n̄ +

1
f CODP(0)[n̄]

∫ d3q
(2π)3 eik.rδn(k, 0) f xc(k, 0)[n̄]

⇒ nh
r = n̄ +

1
f CODP(0)[n̄]

∫
d3k eik.r B

2
[δ(k + a) + δ(k− a)] f xc(k)[n̄]

⇒ nh
r = n̄ +

1
f CODP(0)[n̄]

{B
2
[
e−ia.r f xc(−a)[n̄] + eia.r f xc(a)[n̄]

]
}

The kernel f xc[n̄] is evaluated at the constant density n̄, it’s the kernel of a homo-
geneous gas where all directions are equivalent and so f xc(k)[n̄] = f xc(|k|)[n̄], this
yields :

nh
r = n̄ +

f xc(|a|)[n̄]
f CODP(0)[n̄]

[B cos(a.r)] (4.6)

The static xc kenel is real and negative, so the term f xc(|a|)[n̄]
f CODP(0)[n̄] is positive and thus

the connector nh
r proposed by equation 4.6 is a well behaved density. We should also

note that nh
r depends on r while nh is the density of a HEG which must be constant.

This means that with this connector, we have to use a different HEG at each point in
space.

Limit cases:

• Homogeneous density (trivial), B→ 0 : ⇒ nh(r) = n̄

• Density with high frequency oscillations: from the tabulated f xc(k) we have for
|k| >> 6 : f xc(k) → 0 and so : B cos(a.r) f xc(a) → 0, we recognize again the
homogeneous density case

• LDA, ie., nh(r) = n(r): we match the LDA for f xc(a) ≈ f CODP(0). This is true
for small a Figure 4.2 it’s coherent with the success of the LDA in the limit of
slowly varying density

Mid range case:
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FIGURE 4.3: Comparison between LDA and connector strategy. For
fast varying density in space, our connector is an average-like of the

LDA

For 0 < |a| < 6 i.e., the case of a system with a density that doesn’t vary slowly
like a homogeneous system and does not vary fast either, we find a non trivial con-
nector which is a kind of an average of the local density as shown in Figure 4.3, this
result is qualitatively correct because in our approximation we include the non-local
effect in the space, which means that we take into account the fact that the xc po-
tential at some point r0 is affected by the environment around this point. This is
completely absent in the LDA and that’s why it fails to describe some problem like
image potentials as seen in chapter 2.

Analyzing this example we can see that the connector strategy succeeds to give
systematic approximations and the LDA can be derived as a particular one. Of
course , the example cannot tell us how good the approximation will be in practice.

4.2.2 Time dependent case

Studying the interaction of many-electron systems with time dependent external
electromagnetic fields is very interesting for several technologies like : photovoltaics
and photocatalysis. As we have seen in chapter 2, TDDFT is the theory of choice that
describes this kind of interaction. This implies that we need to approximate the time
dependent xc potential, which is a challenge. The canonical way to deal with this
problem in almost all TDFT calculations is to use the adiabatic approximation as we
have seen in chapter 2.

In this section we consider an example of a density that depends on time due to
some perturbation. Then using the connector strategy we explore an approximation
to the xc potential and we compare our results to the ALDA ones.

Cosinus density in permanent perturbation

We consider a time dependent version of the density used in the first example of the
static case :

n(r) = A + B cos(a.r−ω0t).

We take A = n̄ and then:
δn(r) = B cos(a.r−ω0t).
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Performing the Fourier transform, we get:

δn(k, ω) = (2π)4[
1
2

B
(
δ(a− k)δ(ω−ω0) + δ(a + k)δ(ω0 + ω)

)
] (4.7)

Putting equation 4.7 in our general equation 4.5 :

nh(r, t) f xc
h (n̄) = n̄+

∫
d3k

∫
dωei(k.r−ωt)[

1
2

B
(
δ(a− k)δ(ω−ω0)+ δ(a + k)δ(ω0 +ω)

)
] f xc(k, ω)[n̄],

Or :

nh(r, t) = n̄+
1

f CODP(0)[n̄]
[
1
2

B
(
ei(a.r−ω0t) f xc(a, ω0)[n̄]+ ei(−a.r+ω0t) f xc(−a,−ω0)[n̄]

)
].

In the time-dependent case the xc kernel is complex. Its real part is even and its
imaginary part is odd with respect to ω. This implies :

nh(r, t) = n̄+
B

2 f CODP(0)[n̄]
(Re f xc(a, ω0)2 cos(a.r−ω0t)+ i Im f xc(a, ω0)2i sin(a.r−ω0t)).

nh(r, t) = n̄+
B

f CODP(0)[n̄]
(Re f xc(a, ω0) cos(a.r−ω0t)− Im f xc(a, ω0) sin(a.r−ω0t))

(4.8)
This can be written as :

nh(r, t) = n̄ +
B|| f xc(a, ω0)||

f CODP(0)[n̄]
cos(a.r−ω0t + θ) (4.9)

where θ = arg( f xc(a, ω0)).

From equation 4.8 and for ω0 = 0 the imaginary part of th xc kernel, which
contains the non adiabatic effects, vanishes and then we get the result of the static
case (equation 4.6).

The connector that we found in equation 4.9 has the same period as the real den-
sity. For small value of |a| and ω0, i.e., a system with small inhomogeneity and
slowly varying density with time, the real part of the xc kernel is equal approxi-
mately to the static xc kernel and the imaginary part is negligible. That’s why our
approximation matches the ALDA as shown in Figure 4.4a.

For a quickly varying density w.r.t time, (i.e w0 is large enough), the imaginary
part of the xc kernel becomes significant and a difference with respect to the ALDA
appears as shown in Figures [4.4a,4.4c,4.4e].

We can see in this figures a phase shift comparing to the ALDA and a resonance
at a particular frequency. This is a sign of the non-adiabaticity also called "memory
effects". These effects which are completely neglected in the ALDA, are captured in
our case via the xc kernel. This difference is qualitatively coherent with the fact that
adiabatic approximations fails to describe dynamical processes where the density
changes significantly in time [6].
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(A) (B)

(C) (D)

(E) (F)

FIGURE 4.4: Comparison between my result and ALDA ones. con-
nector density nh (left) and xc potential (right) as a function of the
time. At fixed a = 0.2k f . The parameter ω0 have been chosen as fol-
lows: top, ω0 = 0.6 where we see the matching; middle, ω0 = 1.2,

bottom, ω0 = 2.2 where phase shift and resonance appear.
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Chapter 5

Conclusion and outlook

In this internship we have introduced "connector strategy" which is a way to make
exact and generalize methods that are based on importing quantities from simpler
models into real systems.

First we have explored the possibility of applying this strategy in an exact way.
We have considered the exchange-correlation energy density of the Kohn-Sham scheme
of DFT. We have found a positive answer: in this case it is in principle possible to
obtain from the homogeneous electron gas the value of the quantity of interest in the
real system. Next, starting from the exact connector theory, we have introduced an
approximation to the exchange-correlation potential that is based on a linear expan-
sion approximation. The advantages of our approach are twofold : On one hand, the
possibility to use an advance non-local and non-adiabatic exchange correlation ker-
nel[7]. On the other hand the error canceling that derives directly from the connector
strategy itself.

The resulting approximation has been compared to two widely used approxima-
tions within DFT and TDDFT: the LDA in the static case and the ALDA in the time
dependent case.

We obtained results that are qualitatively better than the ones of other approx-
imation and they reflect the feature of the systematic approximation. Indeed, con-
sidering the example of a periodic density we could derive the LDA when the local
density is slowly varying. When the variation of the local density is fast, our ap-
proach propose a more reasonable connector, which is similar to an average-density
approximation and hence encompasses an effect of non-locality in space..

For the time-dependent case and for a density that changes significantly in time
we note two interesting features that makes our approximated exchange correlation
potential completely different from the ADLA . The first was a phase shift which
was the consequence of including the memory of the system. The second remark is
the fact that we could observe a resonance at a particular frequency.

Of course the results of these particular examples does not guarantee anything
for real systems but they provide good motivation that the connector strategy is
promising and that approximations can be found that work better than the LDA
and the ALDA.. This is also the outlook of my intership that lasts until September,
I intend to see if the connector strategy will succeed to describe Rabi oscillation.
This is an exact resolved problem and so I will have the opportunity to compare my
future result to the exact solution and see if it will go beyond the ALDA. Another
problem that I plan to consider is the step structure that appears in the exchange
correlation potential in the case of dissociation of molecules and which is missed by
the LDA [8].
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Finally, the more general outlook is to combine the connector strategy presented
in this manuscript with a state-of-the-art approach based on Green’s function for-
malism to develop functionals for observables.
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