

Non-linear optical properties of surfaces: Extraction of the signal

Nicolas Tancogne-Dejean and Valérie Véniard

Laboratoire des Solides Irradies, Ecole Polytechnique CNRS 91128 Palaiseau, France

Young Researcher Meeting Budapest – April 2013

Outline

- Non-linear optic and second harmonic generation
- Numerical simulation of optical properties
- Surface and super-cell
- Extraction of the signal

Outline

- Non-linear optic and second harmonic generation
- Numerical simulation of optical properties
- Surfaces and super-cell
- Extraction of the signal

Response to a perturbation

Perturbation

Response

Electric field

Polarization

Linear response

Non linear response

$$P_{i} = \epsilon_{0} \sum_{j} \chi_{ij}^{(1)} E_{j} + \epsilon_{0} \sum_{jk} \chi_{ijk}^{(2)} E_{j} E_{k} + \epsilon_{0} \sum_{jkl} \chi_{ijkl}^{(3)} E_{j} E_{k} E_{l} + \dots$$

Volume 7, Number 4

PHYSICAL REVIEW LETTERS

August 15, 1961

G. Frankel

Response to a perturbation

When intensity is strong enough, we get non-linear effects in materials

$$P_{i} = \epsilon_{0} \sum_{j} \chi_{ij}^{(1)} E_{j} + \epsilon_{0} \sum_{jk} \chi_{ijk}^{(2)} E_{j} E_{k} + \epsilon_{0} \sum_{jkl} \chi_{ijkl}^{(3)} E_{j} E_{k} E_{l} + \dots$$

Raman effect in optical fiber[1]

Harmonic generation [1] (Parametric optical oscillator)

Second harmonic generation

$$P_{i} = \epsilon_{0} \sum_{j} \chi_{ij}^{(1)} E_{j} + \epsilon_{0} \sum_{jk} \chi_{ijk}^{(2)} E_{j} E_{k} + \epsilon_{0} \sum_{jkl} \chi_{ijkl}^{(3)} E_{j} E_{k} E_{l} + \dots$$

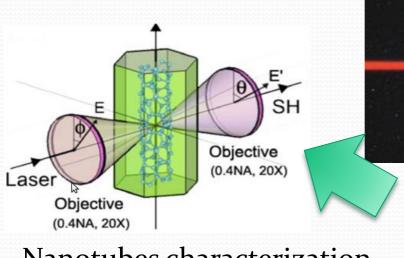
First non-linear term



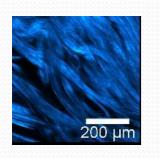
Centrosymetric material: $\chi^{(2)} = 0$ First non-linear term: $\chi^{(3)}$

Applications of second harmonic

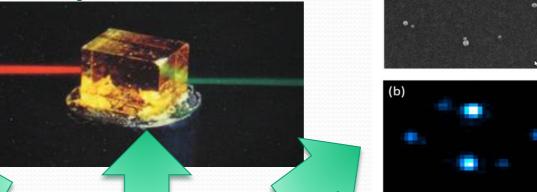
generation (SHG)



Nanotubes characterization (PRB 77 125428)



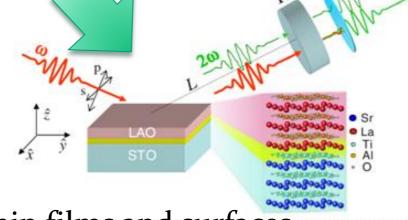
Biological tissues imaging (Biophys. J. 81 493)



SHG

Nanoparticles imaging and microscopy

(C-L Hsieh PhD thesis, Caltech 2011)



Thin films and surfaces characterization (PRB 89 075110)₇

Outline

- Non-linear optic and second harmonic generation
- Numerical simulation of optical properties
- Surfaces and super-cell
- Extraction of the signal

State of art for second harmonic generation

Bulk materials and interfaces

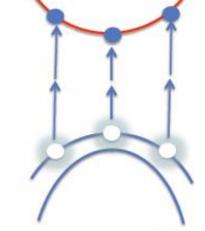
- Independent particles approximation (IPA) end of 8o's
- Calculation including local-field effect and excitonic effects (electron-hole) – TDDFT (2010) and Bethe-Salpeter Equation (2005)

Surfaces

- Some calculations in IPA since 1994
- Limited to in plane component of $\chi^{(2)}$ (problem of local fields)

Numerical simulation of optical properties

Linear response



$$\lim_{\mathbf{q}\to 0} \epsilon(\mathbf{q},\omega) = 1 - \frac{8\pi}{\Omega\omega^2} \sum_{n,n'} \sum_{\mathbf{k}}^{BZ} \frac{(f_{n,\mathbf{k}} - f_{n',\mathbf{k}})}{E_{n,\mathbf{k}} - E_{n',\mathbf{k}} + \omega + i\eta} |\hat{\mathbf{q}}\mathbf{p}_{n,n'}(\mathbf{k})|^2$$

2nd order response

$$\lim_{\mathbf{q}\mathbf{q}\mathbf{1}\mathbf{q}\mathbf{2}\to 0} \chi^{(2)}(\mathbf{q}, \mathbf{q}\mathbf{1}, \mathbf{q}\mathbf{2}, \omega) = \frac{-i}{2\Omega\omega^{3}} \sum_{n,n',n'',\mathbf{k}} \frac{\hat{\mathbf{q}}\mathbf{p}_{n,n'}(\hat{\mathbf{q}}\mathbf{2}\mathbf{p}_{n',n''}\hat{\mathbf{q}}\mathbf{1}\mathbf{p}_{n'',n} + \hat{\mathbf{q}}\mathbf{1}\mathbf{v}_{n',n''}\hat{\mathbf{q}}\mathbf{2}\mathbf{v}_{n'',n})}{(E_{n,\mathbf{k}} - E_{n',\mathbf{k}} + 2\omega + 2i\eta)}$$

$$\left[\frac{f_{nn''}}{E_{n,\mathbf{k}} - E_{n'',\mathbf{k}} + \omega + i\eta} + \frac{f_{n'n''}}{E_{n'',\mathbf{k}} - E_{n',\mathbf{k}} + \omega + i\eta} \right]$$

Independents Particles Approximation (IPA), Long wavelength limit

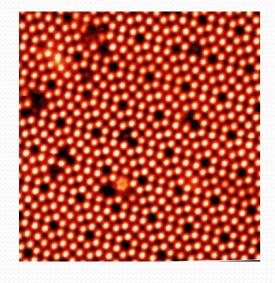
Outline

- Non-linear optic and second harmonic generation
- Numerical simulation of optical properties
- Surfaces and super-cell
- Extraction of the signal

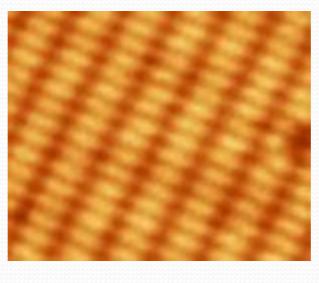
Surfaces

Different surfaces for the same material

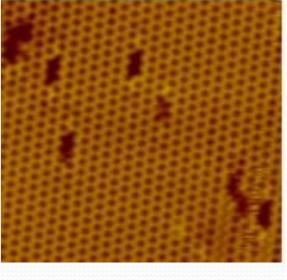
For example: silicium



Si(111) 7x7



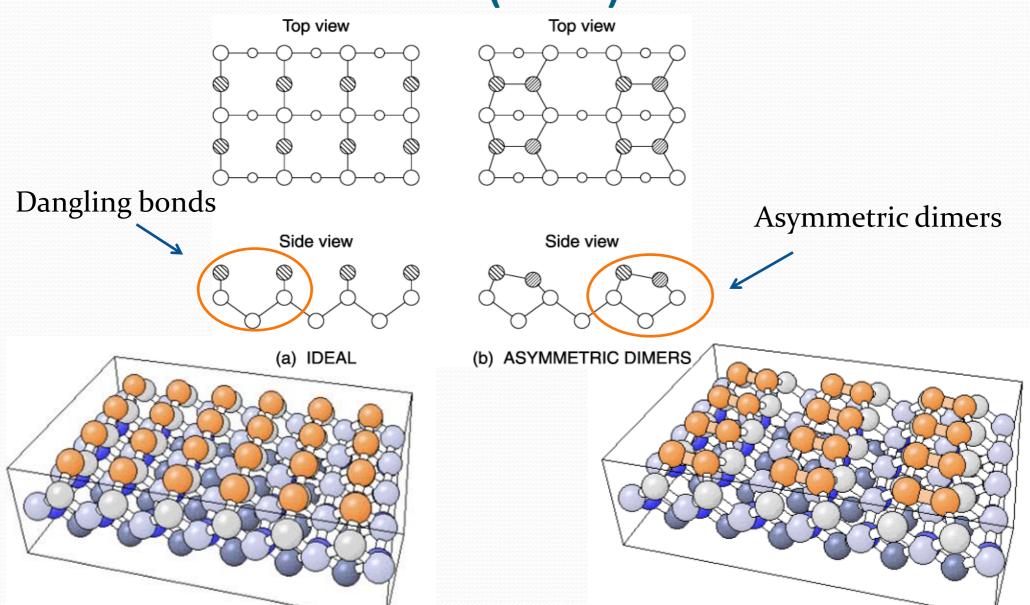
Si(001) 2x1



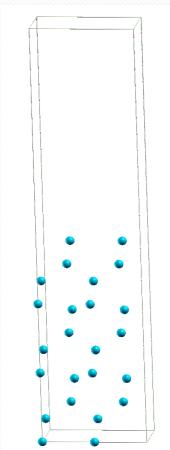
Si(001) 4x2

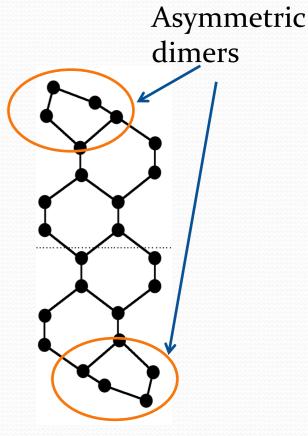
Example of surface

reconstruction: Si(001)2x1



Model of surface - Super-cells



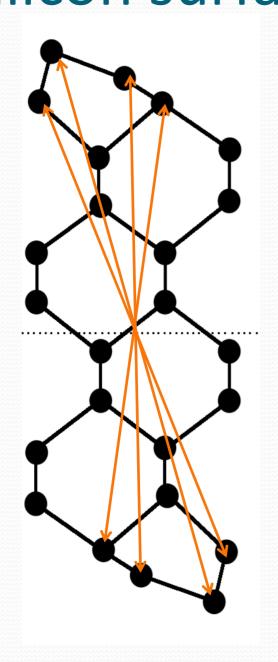


Construction of super-cell (atoms + vacuum)

Reconstruction of the surface

System with 2 surfaces

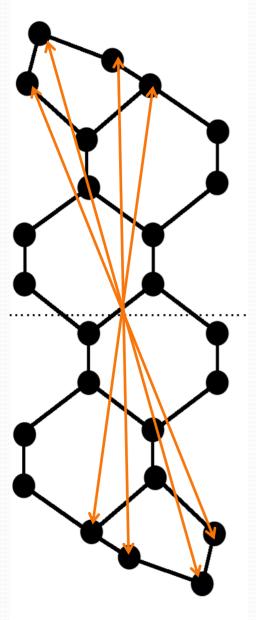
Second harmonic generation for silicon surface



The super-cell has **inversion symmetry**

So
$$\chi_{super-cell}^{(2)} = 0$$

The super-cell problem



You need to use super-cell to model surfaces

But

Due to super-cell, you could not compute directly the second harmonic spectrum

Outline

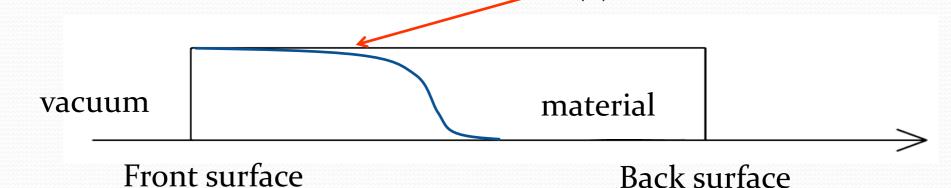
- Non-linear optic and second harmonic generation
- Numerical simulation of optical properties
- Surfaces and super-cell
- Extraction of the signal

It is possible to extract the signal using the \tilde{p} instead of p [1] where

$$\tilde{p} = \frac{1}{2}(pS(z) + S(z)p)$$

$$p = \frac{im}{\hbar}[H, r]$$

Where \tilde{p} is introduced to screen the field inside the material. S(z) fonction



[1] L. Reining et al., Phys. Rev. B 50, 8411 (1994)

It is possible to extract the signal using the \tilde{p} instead of p [1] with

$$\tilde{p} = \frac{1}{2}(pS(z) + S(z)p)$$

$$p = \frac{im}{\hbar}[H, r]$$

Where \tilde{p} is introduced to screen the field inside the material.

Two approaches are possible:

- -screen the two impinging fields at ω (Sz₂) [1]
- -screen the emitted field at 2ω (Sz1) [2]
- [1] L. Reining et al., Phys. Rev. B 50, 8411 (1994)
- [2] B. Mendoza *et al.*, Phys. Rev. Lett. 81, 3781 (1998)

Two approaches.

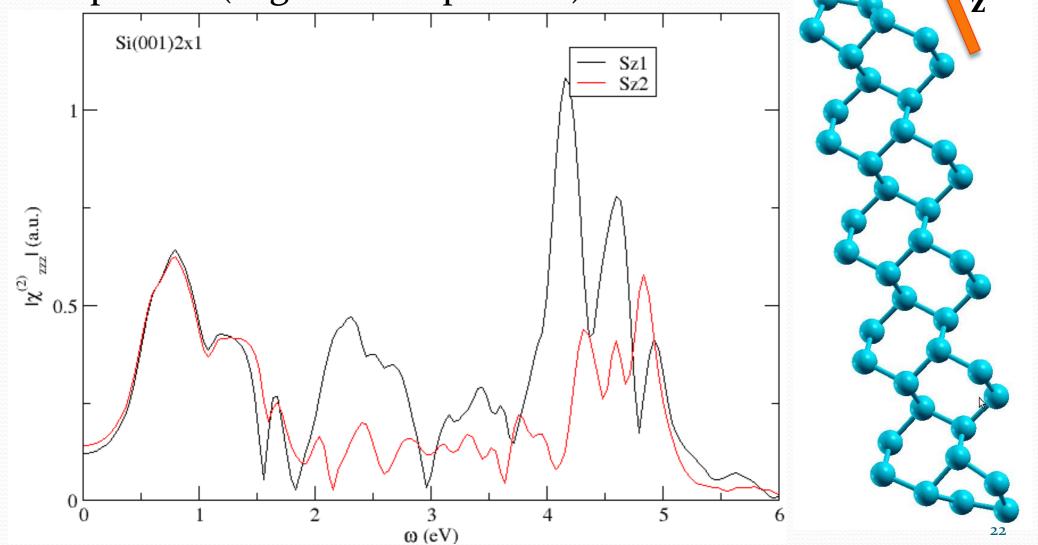
Are the two approaches equivalent?

Lets compare the two approaches on an interesting component (e.g. zzz component)

Implementation in Tight-Binding for two reasons:

- Layer-by-layer analysis in tight-binding straightforward
- ➤ Rapidity of the code

Let's compare the two approaches on an interesting component (e.g. zzz component)



The two approaches give different results

Why the two approaches can give different results?

Possible reasons discarded:

- Convergence in number of atoms (tested up to 240 atoms)
- ➤ Convergence in k-point
- ➤ Numerical errors (tested with 3 different formula)

Some components are non-zero only by reconstruction

```
Non-reconstructed surface ( always present) :

xxz; yyz; zxx; zyy; zzz

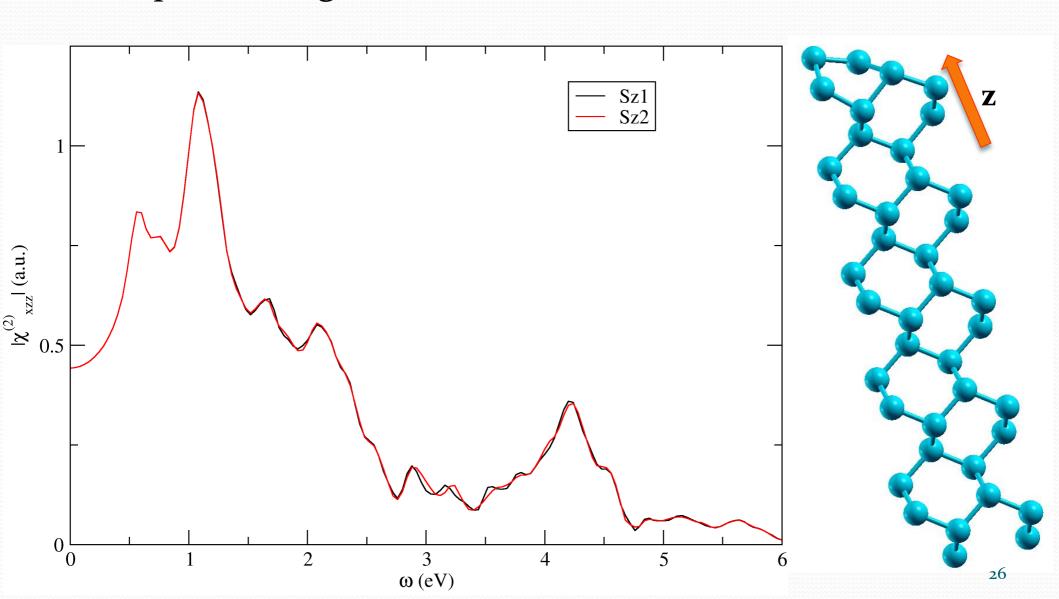
Asymmetric dimers ( reconstructed ) :

yyx; xyy; yyz; zyy; xxx; zxx; xxz; xzz; zzx; zzz
```

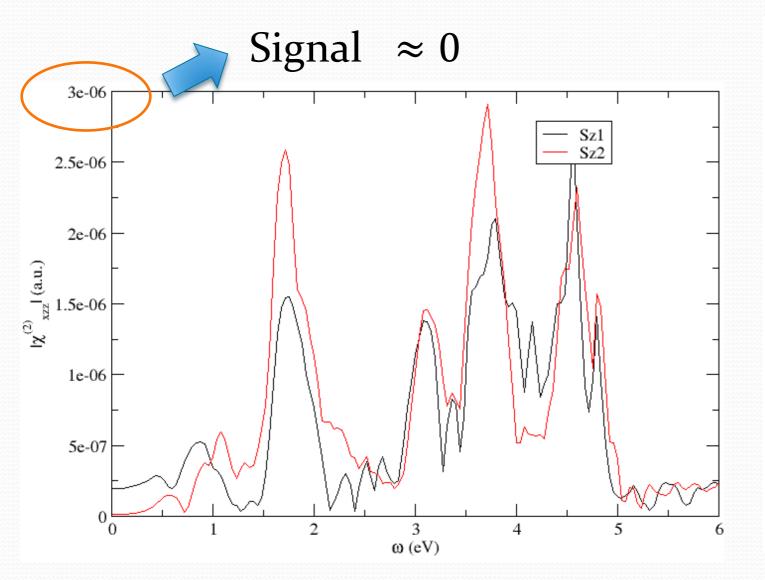
We can test also the two approaches on these new components

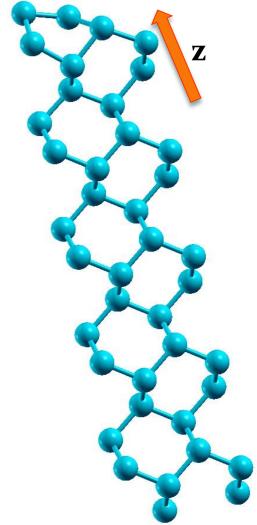
New components : yyx; xxy; xxx; xzz; zzx

We compare the signal for the reconstructed half-slab

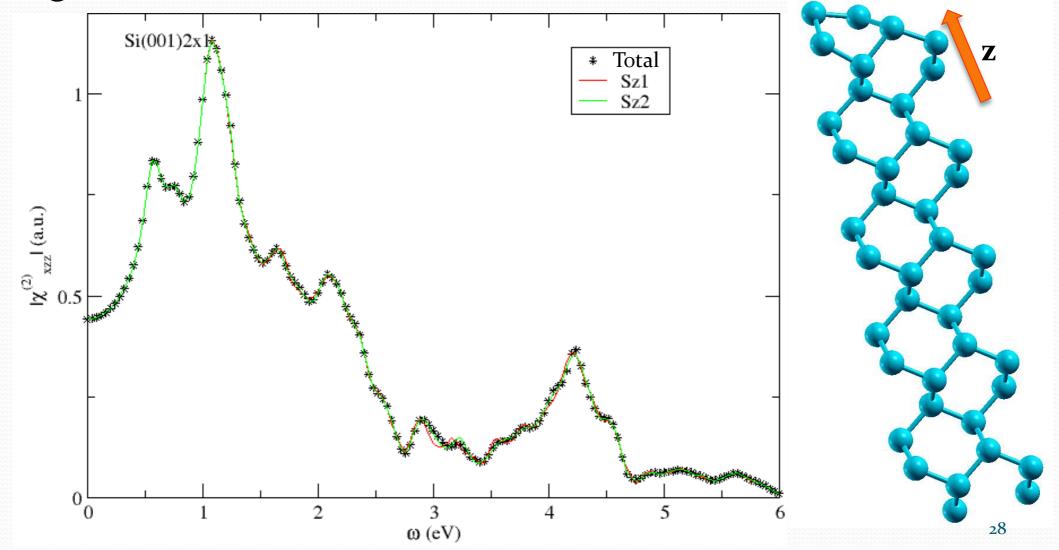


We compare the signal for the non-reconstructed half-slab





We compare the signal of the half-slab to the total super-cell signal



Everything seems to be like

$$\chi^{(2)}_{super-cell} = \chi_1^{(2)} - \chi_2^{(2)}$$

- When $\chi_2^{(2)} = 0$, we recover a semi-infinite crystal and in that case the two approaches give the same result
- What is happening with the zzz component?

Conclusion and Future work

Conclusion

- > Two approaches for extracting the signal are possible
- ➤ The two approaches give the same result in some cases and that result seems correct

Work in progress

> Explain the differences between the two approaches

Future work

- > ab initio calculations
- Local-field effects

Thank you for your attention

