





## Non-linear optical properties of surfaces: Extraction of the signal

Nicolas Tancogne-Dejean and Valérie Véniard

Laboratoire des Solides Irradies, Ecole Polytechnique CNRS 91128 Palaiseau, France



Young Researcher Meeting Budapest – April 2013

## Outline

- Non-linear optic and second harmonic generation
- Numerical simulation of optical properties
- Surface and super-cell
- Extraction of the signal

#### Outline

- Non-linear optic and second harmonic generation
- Numerical simulation of optical properties
- Surfaces and super-cell
- Extraction of the signal

#### Response to a perturbation

Perturbation

Response

Electric field



Polarization

Linear response

Non linear response

$$P_{i} = \epsilon_{0} \sum_{j} \chi_{ij}^{(1)} E_{j} + \epsilon_{0} \sum_{jk} \chi_{ijk}^{(2)} E_{j} E_{k} + \epsilon_{0} \sum_{jkl} \chi_{ijkl}^{(3)} E_{j} E_{k} E_{l} + \dots$$

Volume 7, Number 4

PHYSICAL REVIEW LETTERS

August 15, 1961







G. Frankel

#### Response to a perturbation

When intensity is strong enough, we get non-linear effects in materials

$$P_{i} = \epsilon_{0} \sum_{j} \chi_{ij}^{(1)} E_{j} + \epsilon_{0} \sum_{jk} \chi_{ijk}^{(2)} E_{j} E_{k} + \epsilon_{0} \sum_{jkl} \chi_{ijkl}^{(3)} E_{j} E_{k} E_{l} + \dots$$



Raman effect in optical fiber[1]



Harmonic generation [1] (Parametric optical oscillator)

#### Second harmonic generation

$$P_{i} = \epsilon_{0} \sum_{j} \chi_{ij}^{(1)} E_{j} + \epsilon_{0} \sum_{jk} \chi_{ijk}^{(2)} E_{j} E_{k} + \epsilon_{0} \sum_{jkl} \chi_{ijkl}^{(3)} E_{j} E_{k} E_{l} + \dots$$

First non-linear term



Centrosymetric material:  $\chi^{(2)} = 0$  First non-linear term:  $\chi^{(3)}$ 

#### Applications of second harmonic

generation (SHG)



Nanotubes characterization (PRB 77 125428)



Biological tissues imaging (Biophys. J. 81 493)



SHG

Nanoparticles imaging and microscopy

(C-L Hsieh PhD thesis, Caltech 2011)



Thin films and surfaces characterization (PRB 89 075110)<sub>7</sub>

## Outline

- Non-linear optic and second harmonic generation
- Numerical simulation of optical properties
- Surfaces and super-cell
- Extraction of the signal

# State of art for second harmonic generation

#### Bulk materials and interfaces

- Independent particles approximation (IPA) end of 8o's
- Calculation including local-field effect and excitonic effects (electron-hole) – TDDFT (2010) and Bethe-Salpeter Equation (2005)

#### **Surfaces**

- Some calculations in IPA since 1994
- Limited to in plane component of  $\chi^{(2)}$  (problem of local fields)

# Numerical simulation of optical properties

#### Linear response



$$\lim_{\mathbf{q}\to 0} \epsilon(\mathbf{q},\omega) = 1 - \frac{8\pi}{\Omega\omega^2} \sum_{n,n'} \sum_{\mathbf{k}}^{BZ} \frac{(f_{n,\mathbf{k}} - f_{n',\mathbf{k}})}{E_{n,\mathbf{k}} - E_{n',\mathbf{k}} + \omega + i\eta} |\hat{\mathbf{q}}\mathbf{p}_{n,n'}(\mathbf{k})|^2$$

2<sup>nd</sup> order response

$$\lim_{\mathbf{q}\mathbf{q}\mathbf{1}\mathbf{q}\mathbf{2}\to 0} \chi^{(2)}(\mathbf{q}, \mathbf{q}\mathbf{1}, \mathbf{q}\mathbf{2}, \omega) = \frac{-i}{2\Omega\omega^{3}} \sum_{n,n',n'',\mathbf{k}} \frac{\hat{\mathbf{q}}\mathbf{p}_{n,n'}(\hat{\mathbf{q}}\mathbf{2}\mathbf{p}_{n',n''}\hat{\mathbf{q}}\mathbf{1}\mathbf{p}_{n'',n} + \hat{\mathbf{q}}\mathbf{1}\mathbf{v}_{n',n''}\hat{\mathbf{q}}\mathbf{2}\mathbf{v}_{n'',n})}{(E_{n,\mathbf{k}} - E_{n',\mathbf{k}} + 2\omega + 2i\eta)}$$

$$\left[ \frac{f_{nn''}}{E_{n,\mathbf{k}} - E_{n'',\mathbf{k}} + \omega + i\eta} + \frac{f_{n'n''}}{E_{n'',\mathbf{k}} - E_{n',\mathbf{k}} + \omega + i\eta} \right]$$

Independents Particles Approximation (IPA), Long wavelength limit

## Outline

- Non-linear optic and second harmonic generation
- Numerical simulation of optical properties
- Surfaces and super-cell
- Extraction of the signal

#### Surfaces

#### Different surfaces for the same material

For example: silicium



Si(111) 7x7



Si(001) 2x1



Si(001) 4x2

## Example of surface

#### reconstruction: Si(001)2x1



## Model of surface - Super-cells







Construction of super-cell (atoms + vacuum)



Reconstruction of the surface



System with 2 surfaces

## Second harmonic generation for silicon surface



The super-cell has **inversion symmetry** 

So 
$$\chi_{super-cell}^{(2)} = 0$$

## The super-cell problem



You need to use super-cell to model surfaces

#### But

Due to super-cell, you could not compute directly the second harmonic spectrum

## Outline

- Non-linear optic and second harmonic generation
- Numerical simulation of optical properties
- Surfaces and super-cell
- Extraction of the signal

It is possible to extract the signal using the  $\tilde{p}$  instead of p [1] where

$$\tilde{p} = \frac{1}{2}(pS(z) + S(z)p)$$

$$p = \frac{im}{\hbar}[H, r]$$

Where  $\tilde{p}$  is introduced to screen the field inside the material. S(z) fonction



[1] L. Reining et al., Phys. Rev. B 50, 8411 (1994)

It is possible to extract the signal using the  $\tilde{p}$  instead of p [1] with

$$\tilde{p} = \frac{1}{2}(pS(z) + S(z)p)$$

$$p = \frac{im}{\hbar}[H, r]$$

Where  $\tilde{p}$  is introduced to screen the field inside the material.

#### Two approaches are possible:

- -screen the two impinging fields at  $\omega$  (Sz<sub>2</sub>) [1]
- -screen the emitted field at 2ω (Sz1) [2]
- [1] L. Reining et al., Phys. Rev. B 50, 8411 (1994)
- [2] B. Mendoza *et al.*, Phys. Rev. Lett. 81, 3781 (1998)

Two approaches.

Are the two approaches equivalent?

Lets compare the two approaches on an interesting component (e.g. zzz component)

Implementation in Tight-Binding for two reasons:

- Layer-by-layer analysis in tight-binding straightforward
- ➤ Rapidity of the code

Let's compare the two approaches on an interesting component (e.g. zzz component)



The two approaches give different results



Why the two approaches can give different results?

#### Possible reasons discarded:

- Convergence in number of atoms (tested up to 240 atoms)
- ➤ Convergence in k-point
- ➤ Numerical errors (tested with 3 different formula)

Some components are non-zero only by reconstruction

```
Non-reconstructed surface ( always present) :

xxz; yyz; zxx; zyy; zzz

Asymmetric dimers ( reconstructed ) :

yyx; xyy; yyz; zyy; xxx; zxx; xxz; xzz; zzx; zzz
```

We can test also the two approaches on these new components

New components : yyx; xxy; xxx; xzz; zzx

We compare the signal for the reconstructed half-slab



We compare the signal for the non-reconstructed half-slab





We compare the signal of the half-slab to the total super-cell signal



Everything seems to be like

$$\chi^{(2)}_{super-cell} = \chi_1^{(2)} - \chi_2^{(2)}$$

- When  $\chi_2^{(2)} = 0$ , we recover a semi-infinite crystal and in that case the two approaches give the same result
- What is happening with the zzz component?

#### Conclusion and Future work

#### Conclusion

- > Two approaches for extracting the signal are possible
- ➤ The two approaches give the same result in some cases and that result seems correct

#### Work in progress

> Explain the differences between the two approaches

#### Future work

- > ab initio calculations
- Local-field effects

## Thank you for your attention

