

Real space investigation of local field effects on surfaces

Nicolas Tancogne-Dejean, Valérie Véniard

Laboratoire des Solides Irradiés, Ecole Polytechnique, CNRS, CEA/DSM. European Theoretical Spectroscopy Facility

Outline

- Surfaces, Super-cells and Local Field Effects
- \triangleright Effect of the vacuum on spectra
- > 1D Real Space treatment
- Local Field Effects on Surfaces

Outline

- Surfaces, Super-cells and Local Field Effects
- \triangleright Effect of the vacuum on the spectra
- > 1D Real Space treatment
- Local Field Effects on Surfaces

Surfaces

Different surfaces for the same material (e.g. Silicon)

Si(001) 2x1

Example of surface reconstruction :

Model of surface – Super-cells Ground state calculation

Outline

- Surfaces, Super-cells and Local Field Effects
- \triangleright Effect of the vacuum on the spectra
- > 1D Real Space treatment
- Local Field Effects on Surfaces

In-plane calculations : ε_{xx}

ETSF Young Researcher Meeting - Roma - May 2014 11 11

Renormalized in-plane calculations : ε_{xx}
50

ETSF Young Researcher Meeting - Roma - May 2014 12

Out-of-plane : ε_{ZZ}

Renormalized out-of-plane : ε_{zz}

ETSF Young Researcher Meeting - Roma - May 2014

Renormalized spectra (to slab volume)

ETSF Young Researcher Meeting - Roma - May 2014

RPA calculations in TDDFT

In-plane calculations : ε_{xx}

ETSF Young Researcher Meeting - Roma - May 2014 16

RPA calculations in TDDFT

Renormalized in-plane calculations : ε_{xx}

ETSF Young Researcher Meeting - Roma - May 2014 17

RPA calculations in TDDFT Out-of-plane : ε_{zz}

ETSF Young Researcher Meeting - Roma - May 2014

Result of the analysis

IPA : Can be renormalized to the volume of the slab

Abs. Vs EELS

$$
Abs = -v_0 Im{\chi_{00}}
$$

EELS = -v₀Im $\left\{\frac{\chi_{00}}{1 - v_0 \chi_{00}}\right\}$

$$
v_0 \chi_{00} \alpha \frac{1}{V}
$$

When
$$
V \rightarrow \infty
$$
, $\frac{Abs}{EELS} \rightarrow 1$

 ε_{zz} converges to the plasmon of silicon

RPA calculations in TDDFT Out-of-plane : ε_{zz}

ETSF Young Researcher Meeting - Roma - May 2014

Where does normalization come from?

\triangleright In momentum space, $\chi^{(0)}$ is explicitly normalized to the volume

Explains the behavior of IPA calculations

Where does normalization come from?

- \triangleright In momentum space, $\chi^{(0)}$ is explicitly normalized to the volume
- \triangleright In real space, $\chi^{(0)}$ is not normalized to the volume

$$
\chi^{(0)}(\mathbf{r}, \mathbf{r}', \omega) \triangleq 2 \sum_{i,j} (f_i - f_j) \frac{\phi_i(\mathbf{r}) \phi_j^*(\mathbf{r}) \phi_i^*(\mathbf{r}') \phi_j(\mathbf{r}')}{E_i - E_j - \omega - i\eta}
$$

Computing Local Field Effects in real space could solve the problem of normalization

Outline

- Surfaces, Super-cells and Local Field Effects
- \triangleright Effect of the vacuum on the spectra
- \rightarrow 1D Real Space treatment
- Local Field Effects on Surfaces

Real Space and supercell

 The slab is periodic in x and y-directions. We can define a 2D Fourier Transform

$$
(x, y, z) \to (q_x + G_x, q_y + G_y, z) = (q_{||} + G_{||}, z)
$$

Approximation : One can neglect in-plane LFE

$$
G_{\parallel} = 0
$$

$$
(x, y, z) \rightarrow (q_{\parallel}, z)
$$

Silkin, *et al.* PRL 93, 176801 (2004)

This eases calculation for surfaces

Real Space and supercell

Dyson-like equation becomes

$$
\chi(z, z'; \mathbf{q}_{||}) = \chi^{(0)}(z, z'; \mathbf{q}_{||}) + \int \chi^{(0)}(z, z_1; \mathbf{q}_{||}) v(z_1, z_2; \mathbf{q}_{||}) \chi(z_2, z'; \mathbf{q}_{||})
$$

with v , 2D-Fourier transform of the Coulomb potential given by

$$
v(z, z'; \mathbf{q}_{\parallel}) = 2\pi \frac{e^{-q_{\parallel} |z - z'|}}{q_{\parallel}}
$$

Outline

- Surfaces, Super-cells and Local Field Effects
- \triangleright Effect of the vacuum on the spectra
- > 1D Real Space treatment
- Local Field Effects on Surfaces

Roadmap for computing ϵ

Computational Details

\triangleright 32 atoms 8x16x1 shifted k-point grid \triangleright 800 G_z vectors $\rightarrow \Delta z \approx 0.2$ Bohr \triangleright q_{\parallel} = 10⁻³ [reduced coordinates]

ETSF Young Researcher Meeting - Roma - May 2014 31

ETSF Young Researcher Meeting - Roma - May 2014 32

ETSF Young Researcher Meeting - Roma - May 2014

Out-of-plane component and vacuum

Independence from the amount of vacuum

ETSF Young Researcher Meeting - Roma - May 2014 34

Out-of-plane component and vacuum

Independence from the amount of vacuum

ETSF Young Researcher Meeting - Roma - May 2014 35

Conclusion and Future work

Conclusion

- $\geq 1D$ real space treatment of LFE
- Out-of plane RPA response

Work in progress

- Formulation in momentum space and without approximation
- Second Harmonic Generation from surfaces in RPA

Thank you for your attention

Application to surfaces

Coulomb potential in our case of interest :

$$
v(z, z'; \mathbf{q}_{||}) = 2\pi \frac{e^{-q_{||} |z - z''|}}{\sqrt{\frac{q_{||}}{\Delta}}}
$$

Divergent at $q_{||} = 0$

Question : How to compute ε_{zz} with a $q_{||}$?

is a tensor

The dielectric function is a tensor, independently of the level of approximation used in its calculation

For instance, choosing $\vec{q} = q \vec{e}_x$, $\vec{q}\,\vec{\epsilon}\vec{q} = q^2 \epsilon_{xx}.$ And if $\vec{q} = q_x \vec{e}_x + q_z \vec{e}_z$, $\vec{q}\,\vec{\epsilon}\vec{q} = q_x^2 \epsilon_{xx} + q_z^2 \epsilon_{zz} + 2q_x q_z \epsilon_{xz}.$

is a tensor

The dielectric function is a tensor, independently of the level of approximation used in its calculation

For instance, choosing $\vec{q} = q \vec{e}_x$, $\vec{q}\,\vec{\epsilon}\vec{q} = q^2 \epsilon_{xx}.$ And if $\vec{q} = q_x \vec{e}_x + q_z \vec{e}_z$, $\overrightarrow{q}\overrightarrow{z}\overrightarrow{q}$ = $q_x^2\varepsilon_{xx} + q_z^2\varepsilon_{zz} + 2q_xq_z\varepsilon_{xz}$. \setminus Can be computed due to a non-zero q_{\parallel} Contains ε_{zz}

Obtaining ε_{zz} in our model

From simple algebra one can obtain ε_{zz} from the combination of 3 calculations :

$$
\begin{aligned}\n\triangleright \vec{q} &= q \vec{e}_x \\
\triangleright \vec{q} &= q_x \vec{e}_x + q_z \vec{e}_z \\
\triangleright \vec{q} &= q_x \vec{e}_x - q_z \vec{e}_z\n\end{aligned}
$$