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Chapter 1

Historical motivation

The initial motivation for the present thesis was the theoretical study of the color formation
phenomenon observed by Edmond Becquerel on silver chloride (AgCl) plates when exposed to
monochromatic light. This phenomenon allowed him to propose the first color photography tech-
nique and to produce the first color pictures in 1848 [1]. This process did not lead to a concrete
use due to its technical problems. It was nevertheless a first step towards color photography. The
interest for Becquerel’s technique was renewed in the years 2000s, following the discovery of pic-
tures at the Museum of Natural History in Paris. A research study then began at the CRC (Centre
de recherche pour la Conservation des Collections), a laboratory affiliated to the Museum of Nat-
ural History, in order to understand the mechanisms allowing the coloring of the material. This
was an experimental investigation, but because of the sensitivity of the material to light irradia-
tion, a project to study its optical properties by theoretical means was also designed: this project
lead to the present thesis. The initial objective was to understand, using the tools of theoretical
spectroscopy, the microscopic mechanisms allowing the phenomenon of coloring to take place.

In this Introduction, after a short report of the history of photography, we will address some
details of Becquerel’s process.

1.1 A brief history of photography

Photography, as most inventions, did not appear one day, out of nowhere to be ready to use.
Its genesis is a long process of maturation, involving many participants, and the result of the
combination of many different concepts. Even though a comprehensive view of the history of
photography is beyond the aims of this thesis (the reader is oriented to either a classic book [2],
a more recent point of view [3], or directly to a research quaterly [4]), it is still useful to highlight
the major advances in order to draw the context in which the first photography was developed. A
quick overview of the most important achievements will be given in the following.

The origin of photography is related to the question of light and its interaction with matter.
One of the pioneers was Nicéphore Niépce. His interest in photography lead him to the invention
of a process to fix an image on a support, i.e. to the creation of photography. The earliest
photographic image that still survives today, the Point de vue du Gras, taken from the windows of
the inventor in 1826, shown in Fig 1.1. His technique required a very long exposition time (from
several hours to some days) and the resulting photographs were still lacking precision and clarity,
but Niépce kept improving and testing new methods. Later, he collaborated with Louis Daguerre,
another inventor interested in photography. Nicéphore Niépce died in 1833, leaving to Daguerre
the task to improve the photographic process. In 1839, François Arago presented the works of
Louis Daguerre to the French Academy of Sciences. This year marks the begin of photography
outside the inventors’ circle. Indeed, the novel photographic technique, known as Daguerrotype,
was acclaimed by people and spread throughout the general public at great speed.
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Figure 1.1: Point de vue du Gras photographic image, taken in 1826 by Nicéphore Niépce. Today
conserved at the University of Texas, Austin, USA.

1.2 Becquerel’s first color photography

Still, the Daguerrotype was a black and white photography, so the activity among inventors and
researchers was still intense in order to achieve the fixation of colors on a support. Materials able to
change color with exposition to light had been known for a long time, but it is only in the 18th and
19th centuries that these properties began to attract the attention of scientists. Edmond Becquerel
was a physicist investigating the effects of light on materials. In his research activities, he discovered
the photovoltaic effect and studied phosphorescence and luminescence properties. Following the
works of Seebeck, Hunt and Herschel on silver chloride [5, 6], in 1848 Becquerel developed the first
color photographic process. He managed to fix the colors of the solar spectrum in a photochromatic
image (as he called it), which is represented in Fig. 1.2. He discussed this achievement in a report
presented to the French Academy of Sciences [1]. The technique developed by Becquerel was later
rarely used, since it required long duration of exposure and, more importantly, since the image
could not be stabilized. The original photochromatic image is still preserved in complete darkness.
So the rise of color photography as a popular technique will have to wait the beginning of the 20th
century with the photocromy procedure patented by the Lumière brothers [7]. Nevertheless, the
work of Becquerel raises fundamental questions on how silver chloride is able to absorb and retain
the color of the light.

Before ending this section, we would like to mention two alternative methods that also emerged
in the XIX century:

• Ducos du Hauron’s color photography, the pioneer of the three-color photography (which
later inspired the color substractive technique), patented in 1868. This technique was recently
rediscovered and studied at the ESRF synchrotron [8].

• Lippmann interference photochrome, a two-step technique to fix colors on a plate, which
awarded his inventor the Nobel prize in Physics in 1908 (at present the only Nobel prize
granted to a photography-related technique 1) [9, 10].
Though this method was also abandoned, in favor of the three-color photochromes, it has been
recently rediscovered, due to its high resolution and the impossibility to copy the obtained
image. The optically varied device that is used today to issue security documents (passports,
driving licences, badges, etc.) is based on Lippmann’s technique [11, 12].

1If we exclude the Nobel prize awarded to Dennis Gabor for the invention of holography.
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Figure 1.2: Solar spectrum, Edmond Becquerel 1848, Musée Nicéphore Niépce, Chalon-sur-Saône
(France)

1.3 What is the origin of the colors?

Becquerel explained in his report [1] the protocol to produce his photograph. A quick summary
of the process is given here: the base material is a silver plate which is combined with chlorine,
by immersion in a copper chlorine solution or by electrolysis using a hydrochloric acid solution, in
order to form a layer of silver chloride. The sensitized layer is colored by the exposition to light:
the resulting image reminds the colors of the incident light, to form directly the picture on the
photo-plate.

The physical mechanisms leading to the formation of the colors in the photochromatic picture
have been the source of many debates throughout the 19th century, but no definitive answer could
be delivered [13–16]. Two different explanations were put forward. The first one is the pigmentary
hypothesis, implying the presence of colored elements, for example impurities due to the process
used for the preparation of the material. The second one is the interference hypothesis, relying on
interference between structures at the microscopic scale, in a similar fashion as for the Lippman
photography mentioned above. This debate went on for more than 50 years and was not settled
until the beginning of the present thesis.

Recently, a research project started at the Centre de Recherche sur la Conservation (CRC) in
the National Museum of Natural History in Paris, using the experimental tools of the 21th century
to answer the question of the origin of the colors of Becquerel’s photography. This project was
carried out in the PhD thesis of Victor de Seauve [17] (started in 2015 and defended in 2018). His
study ruled out the two hypotheses mentioned before, and put forward a new explanation based
on a plasmonic origin and a photoadaptive mechanism.

The research team at CRC was able to replicate in the laboratory the procedure described by
Becquerel [1]. They could hence examine the sensitized plates in great detail, during and after
exposure to monochromatic light of various wavelengths. They found that the optical properties of
the samples evolve differently according to the exposition wavelength, see the left panel of Fig 1.3
for an example.
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Figure 1.3: Left: Absorbance of silver chloride plates reproducing Becquerel’s process, prepared by
Victor de Seauve. The plates are exposed to light of different wavelengths, shown by the dashed
lines, corresponding to different colors. The resulting absorbances are shown by the continuous
lines. The absorbance for a non-exposed (called ”sensible”) sample is also presented, shown in light
pink. Right: Dark field image of silver nanoparticles embedded in silver chloride. Both images are
taken from [18].

The study has confirmed the key role of silver chloride as the active element, excluding other
chemical components. By means of photoemission and X-ray absorption spectroscopies the team
demonstrated that the sensitized layer does not undergo chemical change. Moreover, using scanning
electron microscopy they did not find the presence of periodic structures, refuting the interference
hypothesis. Finally they could relate the changes of absorbance spectra (left panel of Fig. 1.3)
to the presence and modification of silver nanoparticles in the sample (right panel of Fig. 1.3).
This finding makes the sensitized layers similar to Ag-AgCl compounds that have been studied as
plasmonic photocatalyst [19–21]. Similar behavior of photo-adaptation has been reported also for
silver nanoparticles at the surface of TiO2 films [22–24].

It has been shown that nanoparticles are already present in the sensitized sample, at different lo-
cations: inside the AgCl grains or at their edge boundaries. The particles have plasmon resonances
at different energies because of the different environment and because of their size distribution,
which varies between 15 and 150 nm. When light is shined on the material, the nanoparticles with
resonance at the wavelength of the light get excited. The disexcitation of the nanoparticle can
happen through the transfer of electrons from the nanoparticle to the silver chloride environment.
This leads to the positive electric charging of the nanoparticle, which in turn induces the emission
of positively charges silver ions into the silver chloride. The great mobility of Ag+ ions in the AgCl
matrix allows them to recombine with the electrons, forming new nanoparticles. By repeating
this process many times, the nanoparticles change their size, and their resonance energy moves
away from the energy of the light until they can no longer absorb. The displacement of all the
transition energies away from the light frequency creates, at the macroscopic level, a depletion in
the absorption spectrum at the energy of the light. The sample thus appears with the color of the
light because the absorption rate has decreased.

At the beginning of the thesis, the plasmonic hypothesis was not yet finalized and other hy-
potheses were considered, including the possible role of defects or the involvement of self trapped
exciton in silver chloride [25, 26]. Moreover, spectroscopy experiments on AgCl are challenging for
its great sensitivity to light or X-Ray irradiation. In order to get theoretical understanding of silver
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chloride in a controlled manner, a collaboration was started between the Theoretical Spectroscopy
group at the Laboratoire des Solides Irradiés and the CRC at the Museum of Natural History.
With the new plasmonic hypothesis, the aim of the work has been shifted to the study of the key
process, the charge dynamics as response to an external perturbation, with the long-term goal to
understand the charge transfer at the interface between silver nanoparticles and silver chloride.
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Chapter 2

Silver Chloride

Besides being the key component in the first color photography in history realized by E. Becquerel
in 1848 [27], silver chloride is a versatile material, long known for a large variety of applications. For
instance, it is a reference electrode for electrochemical measurements [28], and in its nanostructured
phase it has remarkable antimicrobial properties [29–31]. Moreover, it has been recently shown
that silver clusters at AgCl surfaces form an efficient photocatalytic system [20, 32–35]. The largest
range of applications of AgCl is related to its optical properties: it is responsible for several shades
in stained glass [36], and it is widely used as photochromic material in photosensitive glasses [37].
In particular, AgCl is a crucial ingredient in photographic paper to produce the latent image[38–
40].

In this chapter we will provide a short summary of experimental results and calculations on the
electronic and optical properties of AgCl. Refs [41, 42] give an extended review of the investigations
on AgCl.

2.1 Experimental optical spectra

The photochromic properties of AgCl that make it appealing for applications are at the same time
problematic for spectroscopy experiments: its electronic and optical properties can be changed
significantly by irradiation with light [43–46], thus affecting the reliability of the measured spectra.
The main effect of X-ray or electron beams is radiolysis: the chemical decomposition by the ionizing
radiation [47–49] and partial reduction of AgCl to metallic Ag have been observed.

Information about the band gap has been extracted from optical measurements that were
performed four to five decades prior to the present work. In particular, Ref. [50] reported mea-
surements of the absorption edges of silver halides and their fine structure in 1961. From these
results, the indirect band gaps of AgCl and AgBr at different temperatures were extracted. Ex-
citonic effects were invoked to explain the observations. Later, Carrera and Brown [51] measured
the absorption coefficient of silver chloride and silver bromide in the near and extreme ultra-violet,
in two frequency ranges: between 3.5 to 6.7 eV and between 30 and 240 eV. Additional optical
absorption data are available in Ref.[52].

The spectra show a strong dependence on temperature T . Measurements of the absorption
edge as a function of temperature have been carried out in [53]. The work reports absorption,
fluorescence and photocurrent measurements on silver chloride. Results can be extrapolated to
zero temperature by fitting the measured absorption coefficient with α = α0e

−ε/T between 387 nm
and 400 nm. The indirect gap is so estimated at 3.25 eV (382 nm).

The strong temperature dependence can be seen on Fig. 2.1 for the reflectivity [54] in the left
panels, and for the extinction coefficient and index of refraction, in the right panels. Both results
show a sharpening of structures and a shift to higher energy with lower temperature. Similar trends
were observed in earlier absorption measurements [55]. The authors also point out the influence
of sample preparation, which is confirmed by results in [56].

Unfortunately, not much details can be extracted from these results. Instead, the left panel of
Fig. 2.2 shows the room temperature reflectivity results of [52], with their interpretation in terms
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Figure 2.1: Reflectivity data of AgCl at different temperatures are displayed on the left panel.
From top to bottom: room temperature (dark green), liquid nitrogen (red) and liquid helium
(black) temperature data taken from Ref. [54]. Right panels show the refraction index n and the
extinction coefficient κ for AgCl, again for different temperatures. Refraction index and extinction
coefficient figures are taken from Ref. [51].

of interband and excitonic transitions. From these measurements, the real and imaginary parts
of the dielectric function have been extracted, as given in the right panel. These results must,
however, be supposed to carry a significant error bar, both because of the room temperature and
because of the Kramers-Kronig relation applied over a limited range of frequency.

Altogether, these experimental results give precious indications concerning the optical prop-
erties of AgCl, but they do not allow one to infer precise information concerning the electron
addition and removal band gaps, nor concerning the intrinsic optical spectra of AgCl in absence of
impurities, phonons or other external influence. Therefore, predictive first principles calculations
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Figure 2.2: Reflectivity spectrum of AgCl at room temperature, taken from Ref. [52]. Right panel:
real and imaginary parts of the dielectric function, obtained via Kramers-Kronig transformation
of the reflectivity data [52].

have an important role to play.

2.2 Review of previous calculations

Theoretical simulations are a valuable tool to provide a solid benchmark and remove possible
ambiguities from experimental results. Early work was done on the basis of tight-binding models or
empirical pseudopotentials [57, 58]. Several first-principles studies [59–65] within density functional
theory [66, 67] (DFT) have focused on ground-state properties and the Kohn-Sham electronic
structure. However, these methods cannot access the band gap, a fundamental ingredient for the
optical properties. Only recently, band structure calculations using the GW approximation [68]
(GWA) within many-body perturbation theory [69] (MBPT) have yielded more reliable numbers
for the photoemission gaps [70–72]. The different results for the band gaps are summarized in
Table 2.1. They cover a broad range of values. Moreover, and most importantly, to the best of
our knowledge, MBPT studies for the optical properties of silver chloride were missing before the
work of this thesis.

Direct gap Indirect gap

LDA 3.348a, 3.34b, 2.91c, 3.10d, 0.636a, 0.65b, 0.59c, 0.96d 0.6g

2.909e, 2.8g 0.633e, 0.56f

PBE 3.094a, 3.221e 0.94a, 0.940h, 0.94i, 0.87j , 0.935e

GWA 5.05c 2.16i,2.97c, 2.62j , 2.99k

a Reference [60] f Reference [64]
b Reference [59] g Reference [65]
c Reference [71] h Reference [61]
d Reference [62] i Reference [70]
e Reference [63] j Reference [72], G0W0

f Reference [64] k Reference [72], GW0

Table 2.1: Calculated direct and indirect band gap of silver chloride. LDA stands for the local
density approximation to DFT (see Ch. 4). PBE stands for the Perdew-Burke-Ernzerhof functional.
G0W0 and GW0 are flavors of the GW approximation explained in Ch. 6.
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Chapter 3

Theoretical challenges

Describing, understanding and predicting the properties of a material from a theoretical perspective
has been a long lasting challenge. Since the introduction by Erwin Schrödinger of the equation that
carries his name, it has become possible in principle to describe the dynamics of electrons and ions
in a material: through the many-body wavefunctions of a material, one can in principle calculate
any observable and therefore, any of its properties. However, the Schrödinger equation turns out
to be impossible to solve, even numerically, when the number of electrons increases beyond just a
few, let alone when it comes to macroscopic numbers as it is the case in a typical piece of material:
even in a tiny sample used in experiments the number of electrons and ions is at least of the order
of 1023. Nevertheless, the Schrödinger equation gives a framework for elucidating the properties of
a material, including the essential ingredient, the quantum nature of electrons. Researchers over
many decades have developed theories involving simplified equations, which opens the possibility
to make predictions and comparison with experiments. These theories can be approximations to
the Schrödinger equation, or they can also be an in principle exact reformulation of the expressions
that yield a given observable, avoiding the explicit appearance of the many-body wavefunctions. A
prominent example is Density Functional Theory (DFT) introduced in Ch. 4, where ground-state
observables such as the total energy are expressed in terms of the density instead of the ground state
wavefunction. Another example is many-body perturbation theory (see Ch. 6), where observables
are expressed in terms of a one-body Green’s function or Green’s functions of higher order, and then
approximated by a perturbation expansion in the Coulomb interaction. According to the property
of interest and the material that is studied, these approaches can be more or less convenient. In
all cases however, approximations have to be made at some point to make calculations on real
materials feasible.

Here we are interested in a specific class of properties, linked to the interaction of matter with
radiation. As we have seen in the two previous chapters, we wish to understand the spectroscopic
properties of a material - here in particular, silver chloride - and of different materials put together,
such as silver nanoparticles in AgCl. The focus lies on the absorption of light. Moreover, we are
interested in the consequences, namely, on the dynamics of the charges in a material that is excited
by an external source.

The first question to be answered is the level of theory that is needed to respond to our questions
in a satisfactory way. A vast choice of approaches is available, ranging from simple models such as
effective medium theory, to advanced first principles calculations in the framework of many-body
perturbation theory. As it turns out, the calculation of absorption spectra of silver chloride alone
already constitutes a challenge for various reasons: in particular, the localized d silver states are
not well described by simple functionals used in density functional theory and time-dependent
density functional theory, the material exhibits bound excitonic states in the band gap that are
pure many-body effects, and its band structure does not fall into any class of typical band structures
that give rise to models such as the Wannier model for bound excitons. Therefore, a part of the
present work is devoted to determine the theoretical ingredients that are mandatory for a reliable
description.

Most experiments focus on the macroscopic properties, such as light absorption. However, it
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is worthwhile to elucidate what happens in the material on an atomic scale, not least because
these processes determine much of the performance of applications using the material, and this
knowledge can be crucial: for example, in solar cell applications the dynamics of charges at an
interface between semiconductors is responsible to a large extent for the quality of the device. In
the present thesis we are interested in the density changes induced by the response to an external
perturbation. This is a microscopic information that is at the origin of light absorption, but that
cannot be inferred by simply looking at absorption spectra. Theory can play a crucial role here.
However, whereas many-body effects in electronic spectra have been studied extensively, still little
is known about their impact on the microscopic charge response. It is therefore most interesting
to investigate the effect of various material characteristics and many-body contributions on this
phenomenon.

At the same time, as explained in the Ch. 1, Becquerel’s photochromatic process involves silver
nanoparticles. The dynamics of the charges at the interface between AgCl and the nanoparticles
is of critical importance for the explanation of the origin of the colors in Becquerel’s invention.
However, even within a well understood theoretical framework it will remain challenging to describe
this dynamics, as the size of the nanoparticles is beyond what is accessible with ab initio methods.
This requires an additional analysis of what is important at the interface and what can be discarded:
for example, an analysis of the importance of excitons close to the interface.

This discussion leads up to the following goals that constitute a guideline for the present thesis:

• to understand electronic excitations in AgCl in detail,

• to develop a tool to predict the dynamics of excited charges in a realistic interacting material,

• to apply this tool to AgCl, and to distinguish many-body effects from specific material
properties,

• to describe the charge dynamics at a model interface between AgCl and silver, as a first step
to the understanding of excited silver nanoparticles in an AgCl matrix.

In the following part, a summary of the theoretical and methodological approaches used in this
thesis is given. In the third part, the ab initio study of silver chloride is presented. The successes
and problems of the different approaches are highlighted and a model is presented that allows us to
overcome some of the numerical difficulties. Subsequently, we introduce our approach to study the
induced density, and we show and analyze results for silver chloride, comparing different levels of
theory. In a last chapter, an exploratory study of the interface, the problems to face, and possible
solutions are exposed. Finally, conclusions are drawn in a last part and outlooks are proposed.
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Chapter 4

Density Functional Theory

Density Functional Theory (DFT) is today the most used method [73] for tackling ground-state
properties of materials. It is an exact theory that permits one to write and calculate observables
as functionals of the electron density, instead of requiring the knowledge of the many-body wave-
function. DFT is based on the theorems demonstrated in the 60’s by Pierre Hohenberg and Walter
Kohn [66].

Let us consider a system of interacting electrons in an external potential. The Schrödinger
equation reads:∑

i

T̂i +
∑
i<j

vc(|ri − rj |) +
∑
i

V ext(ri)

ϕ(r1, r2, . . . , rN ) = Eϕ(r1, r2, . . . , rN ), (4.1)

with vc the Coulomb interaction between two electrons and T̂i and V̂ ext the kinetic term and the
external potential acting on each electron. The external potential uniquely defines the system (the
kinetic operator and Coulomb interaction are the same for every system of electrons). And since
every system in the ground state is described by a wavefunction,1 we can say that every observable
is a functional of the wavefunction of the system O = O[ϕ] = 〈ϕ|Ô|ϕ〉. What makes this equation
hard to solve for a real system is the Coulomb interaction between the electrons.

4.1 The Hohenberg-Kohn theorem

Hohenberg and Kohn instead proposed [66] (HK) and demonstrated that any observable of a
system, in its ground state, can be formally expressed as a functional of the ground state electron
density. The demonstration shows the one-to-one correspondence between the ground state density
of a system and the external potential. We do not report here the demonstration, that can be
found in the original paper [66], as well as in many books [74–76] and recent reviews [77–79].

We would like to remark the huge simplification, in principle, that the HK theorem implies.
In the Schrödinger equation approach, we have to solve the many-body equation (that scales
exponentially with the number of electrons) to find the 3N variables wavefunction ϕ(r1, r2, . . . , rN ).
Once we have the wavefunction,2 we can evaluate any observable via the expectation value of the
corresponding operator, with the wavefunction. This corresponds to a 3N -dimensional integral.
However, in the density functional formalism, every observable is a unique functional of the density
O = O[n], the electron density being a simple function of 3 variables. Let us take the example of
the total energy of a system, that can be written as

E = T [n] + Eee[n] +

∫
drVext(r)n(r) = F [n] +

∫
drV ext(r)n(r), (4.2)

1Degenerate ground states require a generalization of this concept.
2We should also consider to problem to store such a wavefunction: already in a system with 10 electrons, this

is a function of a huge number of arguments, m30, where m is the number of mesh points of space discretization.
Assuming a very rough modeling of space as a cube of 100x100x100 mesh points, the wavefunction would require
8× 1030 bytes, or 8× 1018 terabytes. That is a lot of terabytes.
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where T [n] is the kinetic energy term, and Eee[n] is the electron-electron interaction term, both
written as a functional of the density. The sum of these two terms, which are independent of the
system, is sometimes called the universal functional F [n]. The simplification is undoubtful, at least
in principle. We do not know however how the kinetic energy and the electron-electron interaction
energy depend on the density. The parallel with the Schrödinger equation approach is striking. In
the latter, the Schrödinger equation contains very well-known terms. It is in practice impossible
to solve, but if we did, we would have the many-body wavefunction. If we have the many-body
wavefunction, we can evaluate every observable, via the expectation value (again very difficultly,
for it is a 3N integral). In the density functional formalism, we know that we can write in principle
each observable as a functional of the density, that seems to be a much simpler integral, but, first,
we do not know the functional dependence on the density and second, we do not know the density.

If, by chance, we knew the expression of T [n] and Eee[n] as a functional of the density, we could
use the variational theorem and compute both the ground-state density and the ground-state total
energy, by minimizing the total energy functional of the density of Eq 4.2. We do not know the
universal functional F [n] = T [n]+Eee[n], but it turns out that this minimization strategy, permits
one to devise a very powerful procedure to tackle the many-body problem in the density functional
formalism, as demonstrated by Walter Kohn and Lu Sham in 1965 [67].

4.2 The Kohn-Sham approach

The idea of Kohn and Sham [67] (KS) was to use an auxiliary system of non-interacting electrons
that has the same density as the interacting system. As before, we refer to the literature for
the demonstration of the existence of such auxiliary system [74–76]. The introduction of this
independent particle system is obtained via minimization of the total energy functional of the
density, with the density supposed to be equal to that of a non interacting system. The obvious
advantage is that we know how to write the density of a non-interacting system: n(r) =

∑
i |ψi(r)|2.

The wavefunctions ψi are the solution of a set of equations (called the KS equations) for non-
interacting electrons: [

−1

2
∇2 + vKS([n], r)

]
ψi(r) = εiψi(r). (4.3)

The eigenvalues εi mathematically are Lagrange multipliers and cannot be formally interpreted as
addition or removal energies measured in photoemission. The KS equations constitute an enormous
advantage with respect to the many-body Schrödinger equation. They are easy to solve, similarly
to the Hartree equations, even though they require a self-consistent procedure. However, the KS
potential

vKS([n], r) = V ext(r) + vH([n], r) + vxc([n], r) (4.4)

contains, beside the external and the Hartree potential, an unknown term, the exchange-correlation

potential vxc(r) = δExc([n])
δn(r) defined as the functional derivative of the exchange-correlation energy

with respect to the density. This latter term enters the definition of the total energy

E = T0[n] + EH [n] +

∫
V ext(r)n(r)dr + Exc[n], (4.5)

and again it is the only unknown term, since we know how to write the kinetic energy of non-
interacting electrons T0 in terms of the one-particle KS wavefunctions3 and we also know the
Hartree energy. The exchange-correlation energy constitutes then the unknown of the KS approach,
just as the universal functional F [n] = T [n] + Eee[n] is unknown in the Hohenberg and Kohn
theorem. Writing down this term will permit us to have an idea of how difficult it is to evaluate
the exchange-correlation energy

Exc([n]) = F [n]− T0[n]− EH [n] = T [n]− T0[n] + Eee[n]− EH [n]. (4.6)

3Strictly speaking T0[n] is only an implicit functional of the density. We write, in fact, T0 =

−
∑

i

∫
ψ∗i (r)∇

2

2m
ψi(r)dr and, since ψi = ψi([n]) are unique functionals of the density, so is T0.
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Exc is defined as the sum of two differences: i) the difference between the kinetic energy of the
system and the kinetic energy of the auxiliary independent particle system; ii) the difference
between the electron-electron interaction and its value in the Hartree approximation. The exchange
correlation energy is then defined as everything we do not know: we strip out the independent
particle kinetic energy, because we know how to write it, from the unknown kinetic energy, and we
strip out an estimate of the electron-electron interaction, in the Hartree approximation (i.e. from
classical electrostatics), from the exact electron-electron interaction. What do we have left? The
difficult part, the extra mile to go from T0[n] to T [n], and to go from EH [n] to Eee[n]. It turns out
that to find approximations for Exc is indeed very difficult, even more difficult if we search an for
explicit functional of the density (like the Hartree energy). In spite of this intrinsic difficulty, DFT
is today widely applicable to a vast range of systems (not only in electronic structure calculations).
There are many reasons for that:

• the set of one-particle equations is a massive advantage with respect to any (many-body)
wavefunction based approach, in terms of scaling, cpu workload, memory requirements, and,
in general, in all numerical implementation aspects; this comes also from the fact that the one
particle equations are local equations, in the sense that all potentials act as multiplicative
operators4 to the one-particle wavefunctions, unlike, for instance, Hartree-Fock equations,
instrinsically non-local.

• the Exc is unknown, but it is also a small quantity, being defined (see Eq. (4.6)) as energy
differences. It is reasonable to prefer to approximate small quantities, rather than the full
universal functional F [n].

• very simple approximations (see below) are able to give qualitatively and, often, quantita-
tively very good results.

• the KS scheme, which in principle gives only the correct density, can be used as starting point
to describe even spectroscopy features, like optical absorption (via time-dependent extension
to DFT) or photoemission spectra (when coupled with Green’s functions approaches).

It is therefore not astonishing to see the funding papers of Walter Kohn among the most cited
in the overall physics literature and, in general, DFT as the method to tackle electronic structure
problem [80].

Approximations

The simplest approximation, proposed by Kohn and Sham [67], is the Local Density Approximation
(LDA). If we write the exchange correlation energy in terms of the exchange-correlation energy
density (or exchange-correlation energy per particle)

Exc =

∫
n(r)εxc([n], r)dr

we can define the LDA as

ELDA
xc =

∫
n(r)εLDA

xc (n(r))dr, (4.7)

where εLDA
xc (n(r)), evaluated at r, is the exchange and correlation energy density of the homogeneous

electron gas with density n(r). This procedure is possible because the exchange correlation energy
density for the homogeneous electron gas, though unknown as well, can be numerically evaluated
(for many densities) using Quantum Monte Carlo techniques [81]. Though extremely simple, this
approximation turns out to be very good, in particular for describing the molecules’ bond lengths
[82], or lattice constants [83], both situations in which LDA results are within 2÷ 3% with respect
to experiments.

4While this is true in KS theory, we have to consider that: i) some approximations for vxc might be non local
(see hybrid functional below); ii) the use of non-local pseudopotentials makes the external potential non-local.
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Better approximations are required, however, to describe other quantities, like bulk modulus
or cohesive energies of solids. The next generation of approximations for the exchange-correlation
density functional is represented by the generalized gradient approximation (GGA) [84], in which
the exchange correlation energy depends locally on the density and its gradient, as in Exc =∫
f(n(r),∇n(r))dr. GGA’s do not automatically improve all situations in which LDA results are

poor (for example, GGA lattice constants are in general not better than LDA results, often worse),
but they improve LDA results in many situations, like in the description of bulk moduli [85] or
cohesive energies [86].

Though not used in this thesis, we would like to mention another class of approximations,
the hybrid functionals [87], originally introduced by Axel Becke in 1993. The main idea is to
create a non-local exchange correlation potential by mixing ingredients from pure functionals of
the density with orbital dependent non-local ingredients, like the Fock exchange term. Again, the
use of a more complicated functional (much more complicated in this case) does not guarantee
an automatic improvement of the description of all quantities (lattice constants of solids are often
worse using hybrids than LDA or GGA), but some observables greatly benefit from the non-local
treatment of the exchange and correlation term: typical examples are bond dissociation energies
[88] or dipole moments [89] of molecules.

Also the band gap is an observable of the system. It is defined as a difference of ground state
total energies, and as such it is in principle given exactly by DFT. However, the functional is
unknown. A first approximation is to use Kohn-Sham DFT, and to interpret the band gap of the
KS system as the true band gap of the system. This is a strong approximation, as the Kohn-Sham
system is designed to give exactly the density, but not others observables. Therefore, even with
the exact exchange correlation potential, the band gap of the KS system will be different from
the band gap of the real system. The difference is called the derivative discontinuity [90, 91].
Again, the density functional for this quantity is unknown, although some promising attempts for
approximations exist; see, e.g. [92–94]. Therefore, others techniques have to be used to access the
band gap. However, the Kohn-Sham energies and wavefunctions can be used as starting point for
other approaches, and in particular, for calculations using the GW approximation, which will be
introduced in Ch. 7.
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Chapter 5

Time-dependent density functional
theory

The aim of this chapter is to show how to use the density functional formalism to describe spec-
troscopy quantities, like optical absorption, reflectivity, refraction indeces, etc. To this end, we will
introduce time-dependent density functional theory (TDDFT) and the linear response theory.

5.1 Time-dependent Kohn-Sham equations

In the previous chapter we have discussed DFT. The one-to-one correspondence between external
potential and electron density permits us to describe, in principle, every observable exclusively
in terms of the density. The Hohenberg-Kohn theorem however concerns only static external
potentials. While this is convenient for ground-state calculations for a system of electrons in the
static ionic potential, it is not appropriate for the description of the interaction of the same system
with external potentials that are time dependent. However, the DFT formalism has been extended
to time-dependent external potentials in the article by Runge and Gross [95] in 1984 that formalises
earlier works [96, 97] in which DFT had been already used in the time-dependent case. The
literature covering the TDDFT foundations, including the demonstrations of theorems, problems,
caveats, tricks, is very ample. We cite here a series of books [98–100] that cover however only a
small part of the vast TDDFT world. Similarly to the Hohenberg-Kohn theorem, the Runge-Gross
theorem establishes a one-to-one correspondence between a time-dependent external potential and
the time-dependent density, for a given initial state and up to a purely time-dependent function.
Similarly to the static case, a set of time-dependent Kohn-Sham equations can be derived1. In
such a way the time-dependent density can be calculated from n(r, t) =

∑
i |ψi(r, t)|

2
, where the

one-particle wavefunctions ψi are the solutions of:[
−1

2
∇2 + V ext(r, t) + vH([n], r, t) + vxc([n], r, t)

]
ψi(r, t) = i

∂ψi(r, t)

∂t
. (5.1)

Here V ext(r, t) is the time-dependent external potential (e.g. a time-dependent perturbation plus
the static ionic potential), vH([n], r, t) is the time-dependent Hartree potential, and vxc([n], r, t)
is the unknown time-dependent exchange-correlation potential. From the solution of the time-
dependent KS equations one can evaluate time-dependent observables, like the dipole operator or
an optical spectrum. In this thesis we focus on specific spectroscopic quantities that are related to
linear response functions (optical absorption, extinction coefficient, etc). It is then very useful to
analyse the TDDFT formalism from the point of view of the linear response theory that will be
introduced in the next section.

1In this case the equations are not found by minimizing an energy functional, but by searching extrema of a
time dependent action functional [96].
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5.2 Linear response theory

In order to study optical properties, the density-density response function χ, also called polariz-
ability, is particularly useful. At zero temperature, it is defined as:

χ(r, r′, t− t′) = −iθ(t− t′) 〈N | [n̂(r, t), n̂(r′, t′)] |N〉 . (5.2)

Here the expectation value of the commutator of the density operator at different times is taken with
respect to the ground-state many-body wavefunction |N〉. Adopting the Lehmann representation
in the frequency domain we can write χ as:

χ(r, r′, ω) =
∑
λ

[
ρ∗λ(r)ρλ(r′)

ω − Eλ + iη
− ρ∗λ(r′)ρλ(r)

ω + Eλ + iη

]
, (5.3)

where ρλ(r) = 〈λ| n̂(r) |N〉 is the expectation value of the density operator taken between the
many-body ground state and an excited state |λ〉. The full polarizability has poles at the excitation
energies of the many-body system ±Eλ corresponding to transitions between |N〉 and |λ〉. The
positive infinitesimal η → 0+ ensures causality.

The polarizability χ is the linear response function that relates an external potential to the
induced density, following the formula

δn(r, t) =

∫
dt′
∫
dr′χ(r, r′, t− t′)δV ext(r′, t′). (5.4)

χ is a crucial quantity: its macroscopic component is related to the loss function and to other
spectroscopic quantities. Due to the integral in the previous equation, one instead needs the entire
function χ to obtain the first-order change of the electron density δn when the electron system is
subjected to a time-dependent external perturbation. The full structure of χ will be extensively
used in Ch. 11.

We also introduce the inverse dielectric function ε−1, defined as

δV tot(r, t) =

∫
dt′
∫
dr′ε−1(r, r′, t− t′)δV ext(r′, t′), (5.5)

where the total potential (sum of the external plus induced potential δV tot = δV ind + δV ext) has
a linear dependence with the external potential. Combining Eq. (5.5) and Eq. (5.4), we obtain
schematically

ε−1 =
δV tot

δV ext
=
δV ext + δV ind

δV ext
= 1 +

δV ind

δV ext

= 1 + vc
δn

δV ext
= 1 + vcχ,

where we have used the Poisson equation for the induced potential δV ind(r, t) =
∫ δn(r′,t)
|r−r′| dr

′. We

can write this relation in real space and frequency domain:

ε−1(r, r′, ω) = δ(r− r′) +

∫
dr′′ vc(r, r′′)χ(r′′, r′, ω) (5.6)

or, for periodic systems, in reciprocal space:

ε−1
GG′(q, ω) = δGG′ +

∑
G′′

4π

|q + G′′|2
χG′′,G′(q, ω). (5.7)

This equation implies that from the polarizability χ we can directly obtain the inverse dielec-
tric function. The Appendix C summarizes the relations between the dielectric function and the
measurable quantitities connected to specific experiments such as optical absorption, reflectivity,
extinction coefficient, loss function, etc.

We then need a practical tool to evaluate the full polarizability avoiding the use of the full
many-body ground state wavefunction that enter the definition of Eq. (5.2).
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5.3 The Dyson equation for the polarizability

The density-functional formalism provides a convenient way to evaluate the full polarizability χ. In
the definition (5.2) of the full polarizability for an interacting electron system one needs to know the
complicate many-body wavefunctions. However, the same expression for an independent-particle
system is much simpler. In this case, the many-body wavefunction |N〉 becomes a single Slater
determinant and Eq. (5.3) simplifies into:

χ0(r, r′, ω) =
∑
ij

(fi − fj)
ρ∗ij(r)ρij(r

′)

ω − (εj − εi) + iη
(5.8)

where ρij(r) = ψ∗i (r)ψj(r) and εi, ψi, fi are the eigenvalues, eigenfunctions and occupation numbers
of the independent particle system, in which the electrons are subjected to an effective potential,
such as the mean-field potential of the Hartree or Hartree-Fock equation.

The Kohn-Sham scheme also yields a system of independent particles. The specific property of
this auxiliary system is that it has the same density as the real interacting system. The induced
density δn(r, t) can be then calculated in two equivalent manners:

δn(r, t) =

∫
dt′
∫
dr′ χ(r, r′, t, t′)δV ext(r′, t′) interacting system

δn(r, t) =

∫
dt′
∫
dr′ χKS(r, r′, t, t′)δV tot(r′, t′) non-interacting system.

Since the left hand sides are the same, we have∫
dt′
∫
dr′χ(r, r′, t, t′)δV ext(r′, t′) =

∫
dt′
∫
dr′χKS(r, r′, t, t′)δV tot(r′, t′)

which relates the full polarizability χ to the Kohn-Sham independent-particle polarizability χKS.
In the Kohn-Sham picture, the total potential is the KS potential of Eq. (4.4). We can rewrite,
schematically, the previous equation as

χ = χKS δV
ext + δvH + δvxc

δV ext
= χKS

(
1 +

δvH
δV ext

+
δvxc

δV ext

)
= χKS + χKS

(
δvH
δn

δn

δV ext
+
δvxc

δn

δn

δV ext

)
= χKS + χKS (vc + fxc)χ.

The last line has the form of a Dyson equation that can be solved for the polarizability χ. Here
we have introduced the exchange-correlation kernel as the functional derivative of the exchange-
correlation potential with respect to the density:

fxc(r, r′, t, t′) =
δvxc(r, t)

δn(r′, t′)
. (5.9)

With all indices the Dyson equation in the frequency domain reads:

χ(r, r′, ω) = χKS(r, r′, ω) +

∫
dr′′dr′′′ χKS(r, r′′, ω)

[
vc(r′′, r′′′) +fxc(r′′, r′′′, ω)

]
χ(r′′′, r′, ω). (5.10)

Here the independent-particle polarizability χKS has the form of Eq. (5.8), built with Kohn-Sham
ingredients. In the following, χ0 will stand for an independent particle polarizability built with
Kohn-Sham eigenvalues and wavefunctions.

Many approximations have been proposed for the exchange-correlation kernel. We mention
here some of the most common approximations in literature, which are also used in this thesis:

• the random phase approximation (RPA) where the kernel is zero fxc ≈ 0;
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• the adiabatic local density approximation (ALDA), which is space-time local and is obtained

as the derivative of the LDA vxc: fALDA
xc (r, r′, t, t′) = δ(r− r′)δ(t− t′) dvLDA

xc

dn

∣∣∣
n=n(r)

.

Both RPA and ALDA give good results for the loss function of many materials. However, for the
optical properties of solids both RPA and ALDA turn out to be poor approximations. The problem
with the ALDA kernel is related to the lack of the 1/q2 behavior that should be present in the
optical limit q → 0 of the kernel for gapped materials [101]. Indeed, this long-range component of
the kernel has been shown to be crucial in order to simulate excitonic effects [102]. The correct 1/q2

behavior has been proposed in different forms in the literature [102–105]. Two of those long-range
corrected kernels will be tested on AgCl:

• the simple static and scalar kernel with a long-range contribution of the form fxc = α/q2,
where α is a real negative number, following the recipe described in Refs. [102, 103].

• the recent bootstrap kernel [106, 107], which relates the parameter α to response functions
that can be calculated from first principles.

From the solution of the Dyson equation (5.10) for the polarizability χ, and thanks to Eq. (5.6)
or Eq. (5.7), one obtains the microscopic dielectric function, which can be used to evaluate many
macroscopic observables via appropriate average operations described in Appendix C.
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Chapter 6

Many body perturbation theory

The problems of density functional theory and its time dependent counterpart give a strong motiva-
tion for the search of other methods to access spectroscopic properties of materials. One prominent
approach is many body perturbation theory (MBPT). It relies on approximations for the one-body
Green’s function G, and for observables expressed as functionals of G. This method has the ad-
vantage that explicit expressions for many observables as functional of the Green’s function are
known. However, as it will be exposed, this comes at the expense of larger calculations, as the
Green’s function is a function of two space, spin and time arguments, whereas the density is a local
function of space and time.

As explained in Ch. (4), Kohn-Sham eigenvalues cannot be interpreted as a band structure.
However, they often give a good overview and constitute a convenient starting point for further
calculations. In the present chapter, we will present an approach in the framework of MBPT
that allows us to obtain a more meaningful band structure, by adding quasi-particle corrections
obtained in the Green’s function formalism. A more complete description of Green’s functions and
of the fundamental ingredients of MBPT can be found, e.g., in [68, 108–110].

The one-body Green’s function

The time-ordered one particle Green’s function of a system in equilibrium at zero temperature and
fixed particle number is defined as

iG(1, 2) = 〈N | T Ψ̂(1)Ψ̂†(2) |N〉 (6.1)

where Ψ̂ are field operators, the time ordering operator T is defined as:

T Ψ̂(1)Ψ̂†(2) =

{
Ψ̂(1)Ψ̂†(2) if t2 < t1
−Ψ̂†(2)Ψ̂(1) if t1 < t2

(6.2)

and |N〉 is the N -particle ground state of the system. Here, we use the compact notation 1 ≡
(r1, σ1, t1) for a space, spin, time argument. The Green’s function can be viewed as the probability
amplitude for propagation of an additional hole or electron in the system. Insertion of a complete
set of N + 1 and N − 1-particle states between the field operators and fourier transform from time
to frequency yields G in the Lehmann representation as a sum over many-body states s:

G(r, r′, ω) = lim
η→0

∑
s

Fs(r)F ∗s (r′)

ω −∆Es + iηsgn (Es − µ)
. (6.3)

Here, Es are electron addition or removal energies,

∆Es ≡ EN+1,s − EN for electron addition

∆Es ≡ EN − EN−1,s for electron removal, (6.4)
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where EN is the N -particle ground state total energy and EN±1,s are N ± 1-particle total energies
of the system in some ground - or excited many-body state s. The Dyson amplitudes Fs are defined
as

Fs ≡ 〈N |Ψ̂(r)|N + 1, s〉 for electron adition

Fs ≡ 〈N |Ψ̂(r)|N − 1, s〉 for electron removal, (6.5)

and the sign of the small imaginary part depends on the energies relative to the chemical potential
µ. Spin is not shown explicitly here and in the following.

As we can see, the poles of the one-body Green’s function are the electron addition and removal
energies. These are the energies measured in inverse and direct photoemission, respectively. An
experimental photoemission spectrum can therefore be approximately described by the spectral
function, which is proportional to the imaginary part of G.

For non-interacting electrons, the Green’s function reduces to

G0(r, r′, ω) =
∑
i

ψi(r)ψ∗i (r′)

ω − εi + iηsgn(εi − µ)
, (6.6)

where ψi and εi are the single -paricle orbitals and energies, respectively. In the single-particle
basis where G0 is diagonal, the matrix elements of the spectral function are δ-peaks, at the energies
of the single particles. In interacting systems this is no longer true, but unless the interaction is
too strong, one can still find dominant peaks in the spectral function that are remnants of the
δ-peaks of the non-interacting particles. These dominant peaks are therefore called quasi-particle
peaks. In periodic solids, the quasi-particle peaks give the band structure. Therefore, contrary to
the KS energies the one-body Green’s function gives direct access to the band structure, and we
will see in the following how it can be approximated.

Hedin’s equations

The time evolution of G is given by its equation of motion:∫
d3 [(i∂t1 − h0(1)) δ(1, 3)− Σxc(1, 3)]G(3, 2) = δ(1, 2). (6.7)

Here, h0 is the Hartree hamiltonian. The self-energy Σxc plays the role of an exchange-correlation
potential that is non-local in space, spin and time. It represents an effective interaction between
the propagating particle and the medium. The self-energy can be written as

Σxc(1, 2) = lim
V→0

i

∫
d3d4 vc(1, 3)

δG(1, 4)

δV (3)
G−1(4, 2), (6.8)

where V is a fictitious external potential applied to the system and set to zero at the end of the
calculation.

Based on this approach of functional derivatives, in 1965 Hedin [68] proposed a set of equations
allowing the calculation of the Green’s function:

G(1, 2) = G0(1, 2) +

∫
d3d4G0(1, 3)Σxc(3, 4)G(4, 2), (6.9)

Σ(1, 2) = i

∫
d3d4G(1, 4)W (3, 1+)Γ(4, 2, 3), (6.10)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
d4d5d6d7

δΣxc(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3), (6.11)

W (1, 2) = vc(1, 2) +

∫
d3d4 vc(1, 3)P (3, 4)W (4, 2), (6.12)

P (1, 2) = −i
∫
d3d4G(2, 3)G(4, 2)Γ(3, 4, 1), (6.13)
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where G0 is here the Hartree Green’s function, which can be computed from Eq. (6.7) by setting
Σxc = 0, and which has the form of (6.6). These equations link various quantities. Besides the
self-energy, they contain the screened Coulomb interaction W , the irreducible polarizability P , and
the vertex function Γ. The screened Coulomb interaction can also be written as W = vc + vcχvc,
with χ = P + Pvcχ, which makes a direct link to Ch. (5) and shows how the dielectric function
can be obtained from Hedin’s equations. Note, however, that one has to take care of the fact that
here we work with time-ordered quantities.

In principle Hedin’s equations should be solved self-consistently, but this is clearly out of reach.
Indeed, the main purpose of the equations is to design approximations for the one-body Green’s
function. Hedin proposed one of the most prominent approximations, the so called GW approxi-
mation [68], presented in the next section.

6.1 The GW approximation

The GW approximation reduces Γ to the first term δ(1, 2)δ(1, 3), which means that variations of
Σxc are neglected. With this, the equation for the self energy writes

Σxc(1, 2) = iG(1, 2)W (2, 1+), (6.14)

and the irreducible polarizability is

P (1, 2) = −iG(2, 1)G(1, 2). (6.15)

This greatly simplifies the equations as the polarizability P is given as the product of two indepen-
dently propagating particles. Since the self-energy is built with the screened Coulomb interaction,
the GW approximation contains the physics of the polarization of the system when a charge is
added or removed from the system.

In principle, even the one-body G are still governed by the fully interacting system, and it
has a complicated spectral function. An additional approximation is therefore usually made to
simplify the calculations, namely, the quasi-particle approximation. In this approximation G has
the structure of the independent-particle Green’s function G0 (Eq. (6.16)). However, now the
wavefunctions ψi are quasi-particle wavefunctions φ and the εi quasi-particle energies Ei, which
should in principle be obtained self-consistently as approximation to the GW result.

In a periodic solid, this approximation reads then

G(r, r′, ω) ≈ G0(r, r′, ω) =
∑
nk

φnk(r)φ∗nk(r′)

ω − Enk ± iη
. (6.16)

In this approximation, it is possible to rewrite Eq (6.7) to get an equation similar to the
Schrödinger equation for the quasi-particle wavefunctions φnk(r) and energies Enk [68, 111],[

−1

2
∇2 + V ext(r) + vH([n], r)

]
φnk(r) +

∫
dr′Σxc(r, r′, Enk)φnk(r′) = Enkφnk(r), (6.17)

where the self-energy Σxc plays the role of an effective non-local and energy-dependent potential.
As pointed out above, the generalized eigenvalues of Eq. (6.17) can be interpreted as addition and
removal energies, and are used to build the theoretical band structure.

The resolution of this equation requires the knowledge of Σxc, and the evaluation of Σxc requires,
in principle, the solution of Eq. (6.17), which makes the problem self-consistent. Many calculations
replace the quasi-particle wavefunctions and eigenvalues by Kohn-Sham ones. Moreover, they
evaluate the screened Coulomb interaction W using the RPA for ε−1 following Eqs. (5.8) and
(5.10). From these they compute the self energy and solve Eq. (6.17) to get the quasi-particle
energies and wavefunctions. These two approximations define the G0W0 approach [112–115].
This approach is not self consistent as the self energy is not updated with the new energies and
wavefunctions.
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A further simplification is obtained by evaluating the quasi-particle eigenvalues perturbatively
with respect to the KS ones, and by making use of the fact that the self-energy is approximately
linear around the quasi-particle energy. Using Eq. (6.17) and Eq. (4.3), this yields

Enk = εnk + Znk
[
〈Σxc(εnk)〉 − 〈vxc〉

]
, (6.18)

with the quasi-particle renormalization factor Znk =

[
1−

〈
∂Σxc(ω)
∂ω

∣∣∣
εnk

〉]−1

. Here, expectation

values are taken with the KS wavefunctions ψnk.
The G0W0 approach based on KS calculations with approximate functionals such as the LDA

or GGA has met broad success for many materials[111, 114–116], but it encounters problems when
it comes to materials with localized electrons [111, 116–120]. These are often transition metal
oxides and other correlated materials where d or f electrons are important, but as we will see, the
problem also concerns AgCl, because of the hybridisation between Ag 4d and Cl 3p electrons. These
materials require better starting eigenvalues and wavefunctions, or self-consistency. A prominent
self-consistent approach is quasi-particle self-consistent GW [117, 118] (QSGW).

In this approach, Eq. (6.17) is approximated by an effective Schrödinger equation with a static
Hamiltonian, and the resulting eigenvalues and eigenfunctions are used to build a new quasi-
particle Green’s function and screened Coulomb interaction. The procedure can be iterated to
self-consistency and often improves over G0W0 results [111, 116–120].

Intermediate calculations can also be realized, where one keeps the screening computed from
the Kohn-Sham calculation but recomputes the Green function and self energy at each iteration:
this is the GW0 approximation.

One delicate point in the evaluation of the GW self-energy is frequency integration. Since Σxc

is a product of G and W in real space and time, it becomes a convolution in frequency space,

Σxc(r, r′, ω) =
i

2π

∫
dω′ eiηω

′
G(r, r′, ω + ω′)W (r, r′, ω′). (6.19)

We have performed the frequency integration using the Godby-Needs plasmon-pole model (PPM)
[121] for the frequency dependence of the inverse dielectric function. In reciprocal space, the model
reads

ε−1
GG′(q, ω) = δGG′ +

Ω2
GG′(q)

ω2 − (ωpGG′(q)− iη)2
, (6.20)

where Ω and ωp are parameters that are fitted to two RPA calculations of ε−1, one for ω = 0 and
one for a frequency on the imaginary axis, of the order of the plasmon frequency. This fit is done
for every (q,G,G′) element of ε−1. In this way, the frequency integration in Eq. (6.19) is done
analytically.

A alternative to the PPM is the numerical calculation of the integration. These calculations
are more expensive, and we have performed them to verify that the plasmon pole model results are
correct for AgCl. The technique to realize the integral that we have used is the contour deformation
technique [122], where one chooses a contour in the complex plane that yields the result of the
frequency integral (6.19) in form of a sum over residues plus an integration on the imaginary
frequency axis.

6.2 Bethe-Salpeter equation

The many body perturbation theory allows one to compute the polarizability of a material. This
represents an alternative to the TDDFT, when the available approximations to the fxc kernel turn
out to be too crude to describe some relevant features of the material. This is the case for bound
excitons, for which none of the exchange and correlation kernels is sufficient. Bound excitons are
bound pairs of an electron and a hole, that are observed when the system is excited by an external
perturbation, such as as light.

When we consider light absorption, we are interested in neutral excitations: excitations that
do not change the total charge of the system. In an independent-particle picture, the system gets
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excited by moving an electron from the valence band to the conduction band. In the presence of
interaction, it can be seen as generating a hole and an electron interacting with the rest of the
system and with each other. Their propagation is given by the two particles Green’s function
G(2). Therefore it is crucial for the absorption to study the two particles Green’s function. More
precisely, we will look at the two-particles correlation function defined by

L(1, 2, 3, 4) = −G(2)(1, 2, 3, 4) +G(1, 2)G(3, 4), (6.21)

which is minus the two-particles Green’s function plus an uncorrelated part.
From this quantity the density-density response function χ can be obtained as

χ(r1, r2; t1 − t2) = −iL(r1, t1, r1, t1, r2, t2, r2, t2). (6.22)

As described in Appendix C, the absorption coefficients of a material can be obtained from χ.
Therefore, knowledge of the correlation function L will enable us to compute the absorption spec-
trum of a material.

Similar to the one-body Green’s function G, the two-body correlation function L obeys a Dyson
equation, called the Bethe-Salpeter Equation (BSE) [123, 124]. This equation can be derived
starting from the fact that, right as χ = δn/δV with n the density and V a local perturbation,
L = δG/δV nl with V nl a generalized non-local perturbation. Schematically, the BSE is derived by
using

L = δG/δV nl = −G(δG−1/δV nl)G = GG+G(δ(VH + Σ)/δV nl)G

= GG+G(−ivc + δΣ/δG)(δG/δV nl)G, (6.23)

where VH is the Hartree potential and the last expression has been obtained using the chain
rule for functional derivatives. The term δG/δV nl on the right side is again L. The functional
derivative of Σ has to be approximated. In the GWA and neglecting variations of the screening
upon perturbation of the system, this yields

L(1, 2, 3, 4) = L0(1, 2, 3, 4) + L0(1, 2, 5̄, 6̄) [−iv(5̄, 7̄)δ(5̄, 6̄)δ(7̄, 8̄)

+iW (5̄, 6̄)δ(5̄, 7̄)δ(6̄, 8̄)]L(7̄, 8̄, 3, 4). (6.24)

Here, barred indices are integrated over. L0(1, 2, 3, 4) = G(1, 3)G(4, 2) is the two-particle correla-
tion function in absence of interaction between the two particles, and W is the screened Coulomb
interaction, which is usually calculated in the RPA. As before, we will not consider spin in the
following.

As a further approximation, usually the quasiparticle approximation (6.16) is made for G in
L0 and the frequency dependence of W is neglected in the kernel of the BSE. In this case, one can
immediately set t1 = t2 and t4 = t3 in Eq. (6.24). In equilibrium, L depends then only on one
time difference, or one frequency after fourier transformation. Instead of solving the BSE for every
frequency, the resulting equation can be reformulated as an eigenvalue problem with an effective
electron-hole hamiltonian Hexc, where vc and W show up as effective electron-hole interactions
[125–128]. This hamiltonian is usually expressed in a basis of pairs of orbitals. In systems with
a gap at zero temperature, only pairs of an occupied and an unoccupied orbital contribute to the
absorption spectrum, so the pair corresponds to a transition |t〉. In this basis the hamiltonian
reads

〈t|Hexc |t′〉 = Etδt,t′ + 〈t| vc −W |t′〉 , (6.25)

where the energy Et is the difference between an unoccupied and an occupied quasiparticle state,
calculated in the GWA, and

〈t| vc |t′〉 = 〈n1k1n2k2| vc |n′1k′1n′2k′2〉 = 2

∫
drdr′φ∗n2k2

(r)φn1k1(r)vc(r, r
′)

φn′2k′2(r′)φ∗n′1k′1(r′), (6.26)
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〈t|W |t′〉 = 〈n1k1n2k2|W |n′1k′1n′2k′2〉 =

∫
drdr′φ∗n2k2

(r)φn′2k′2(r)W (r, r′)

φn1k1
(r′)φ∗n′1k′1(r′) (6.27)

are, respectively, matrix elements of the repulsive electron-hole (e-h) exchange interaction and of
the direct e-h interaction, which is usually attractive. Here, we have defined the transitions t :
(n1k1)→ (n2k2). Most of the time the calculations are realized with the Kohn-Sham wavefunctions
and eigenvalues. For a given q, only wavevectors k1 and k2 that differ by q contribute to χ(q).
Therefore, the basis is made of resonant transitions (v,k−q)→ (c,k) and antiresonant transitions
(c,k)→ (v,k + q), and Hexc takes a block matrix form:

Hexc =

(
R KR,A

KA,R A

)
, (6.28)

with the resonant matrix R, the anti-resonant A, and the coupling elements K. In the optical
limit q → 0, A = −R∗ and KA,R = −[KR,A]∗. The diagonal blocks A and R are hermitian
and the coupling blocks K symmetric. Therefore, neglecting the coupling terms is a significant
simplification; this is the Tamm-Dancoff approximation [129, 130] (TDA). It is usually a good
approximation for absorption spectra of solids.

In the transition basis the correlation function is given by

〈t|L(ω) |t′〉 = 〈t|
[

1

ω −Hexc + iη

]
|t′〉
(
fn′1k1

− fn′2k2

)
(6.29)

where t′ correspond to the transition (n′1k1)→ (n′2k2), and f are occupation numbers.
The solution of the eigenvalue problem HexcAλ = EλAλ yields the elements of L needed to

derive χ, and from this ε−1
M . In the TDA the result reads:

ε−1
M (ω) = 1 + lim

q→0

8π

NkΩ0q2

∑
λ

∣∣∣∑tA
t
λρ̃t(q)

∣∣∣2
ω − Eλ + iη

, (6.30)

where ρ̃t(q) are the oscillator strengths defined in Eq.(5.8).
The macroscopic dielectric function can also be calculated directly in the TDA as

εM (ω) = 1− lim
q→0

8π

NkΩ0q2

∑
λ

∣∣∣∑t Ā
t
λρ̃t(q)

∣∣∣2
ω − Ēλ + iη

, (6.31)

where Āλ and Ēλ are solutions of a modified Hexc, where the bare Coulomb interaction vc of
the electron-hole exchange does not have its long-range component vc(G = 0). Note that the
sets of Eλ and Ēλ contain both positive and negative energies. They are typically different from
the independent-particle transition energies Et. If the smallest excitation energy Ēλ is smaller
than the direct gap (i.e. the smallest Et), then the corresponding excited state of the many-body
system is called a bound exciton state, and the difference Et − Ēλ is its binding energy. The
spectrum changes also above the independent-particle gap, mostly because the coefficients Āλ mix
the previously independent transitions contained in ρ̃, which can be seen from comparison with
Eq. (5.8). These changes are also called exitonic effects.

The comparison between Eq. (6.31) and the independent-particle approximation suggests to
analyze spectra in terms of the independent transitions that contribute to a given many-body
transition λ. The strength of the eigenvectors of the excitonic hamiltonian, |Ātλ|2 as a function
of t or Et indicates how much each transition between an occupied and an empty state is mixed
into the excitonic eigenstate λ. The electron-hole correlation in real space can be examined by
investigating the e-h wavefunction,

Ψλ(rh, re) =
∑
t

Ātλφ
∗
vk(rh)φck(re). (6.32)
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In particular, one can fix the position rh = r0
h of the hole and visualize the corresponding density

distribution of the electron, n(re) = |Ψλ(r0
h, re)|2.

Finally, the partial sum over a transition range, called cumulant, and defined as

I(tmax) ≡

∣∣∣∣∣
tmax∑
t=1

Ātλρ̃t

∣∣∣∣∣
2

(6.33)

takes the phase of the coefficients and matrix elements into account. As a result of positive or
negative interference effects, the exciton λ contributes more or less to the absorption spectrum. If
the value of Eq. (6.33) for tmax →∞ is negligibly small, the exciton is said to be dark. Otherwise, if
it has a significant contribution to the absorption spectrum the exciton is called bright. Examining
the cumulant as a function of tmax gives insight into the origin of dark or bright excitons.

It is also possible to do the calculations without the Tamm-Dancoff approximation. This is
particularly important when one is interested in the full response function χ, and not just in
absorption spectra. The Hamiltonian is then non Hermitian and the expression for L is different
than in the Tamm-Dancoff approximation. Moreover, since our aim is to use χ in order to calculate
induced densities, we need all the elements of the matrix in reciprocal space, and not just the head
of the matrix to which BSE calculations are usually limited. Once the diagonalization HexcAλ =
EλAλ has been performed as usual, the full matrix χ takes the following expression [109, 131]:

χGG′(q, ω) =
∑
λλ′

∑
t Ā

t
λρ̃t(q + G)S−1

λλ′
∑
t′ Ā

t′

λ′ ρ̃t′(q + G′)

ω − Eλ + iη
, (6.34)

where the overlap matrix S is defined as

Sλλ′ =
∑
t

At∗λ A
t
λ′ . (6.35)

The result for G = G′ = 0 and q→ 0 brings us back to the absorption spectrum, where we look at
the macroscopic response to an external macroscopic perturbation. The remaining elements yield
information about the microscopic density response to a macroscopic or microscopic perturbation,
and about the macroscopic density response to a microscopic perturbation. We will use Eq. (6.34)
for the calculations of the induced density including excitonic effects.
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Chapter 7

Effective medium theory

The goal of the Effective Medium Theory (EMT) (see e.g. [132–135] for an introduction to the
general framework and some applications) is to obtain the macroscopic response function of a
composite system (such as a layered material or spheres embedded in a matrix) starting from the
knowledge of the response properties of its constituents and their geometric arrangement. The
resulting expressions are enforced by the boundary conditions of the fields at the interface between
the constituents.

Here we consider the specific case of a layered system made of slabs of two different materials
that are repeated infinitely in the stacking direction z, as shown in Fig. 7.1. The two slabs have
thicknesses l1 and l2, and their macroscopic dielectric functions are ε1 and ε2, respectively. The
aim is to obtain the macroscopic dielectric function of the whole system: D̄ = εĒ, where D̄ is
the macroscopic displacement field and Ē is the macroscopic electric field; both fields are averaged
over the entire system. In the following we will omit for simplicity the frequency dependence of
the fields: all the relations will be understood to hold for each ω.

We first consider a plane-wave electric field E⊥ whose polarization direction is perpendicular
to the stacking direction, i.e. in the plane parallel to the interface between the two slabs. In the
unit cell at the origin (and analogously in all the other unit cells), the displacement field is given

l1

l1+l2

z

0

Figure 7.1: Multilayer system with two differents materials.
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by:
D⊥(x) = ε1θ(l1 − z)E1

⊥(x) + ε2θ(z − l1)E2
⊥(x), (7.1)

with z the vertical component of the position x, E1 and D1 the electric and displacement fields,
respectively, in the first material and E2 and D2 the electric and displacement fields, respectively,
in the second material. The average of a field over a periodic system is the average in the unit cell.
The macroscopic displacement field is hence given by

D̄⊥ =
1

l1 + l2

∫ l1+l2

0

D⊥(x)dx. (7.2)

E⊥ is continuous through the interface E1
⊥(z = l−1 ) = E2

⊥(z = l+1 ). For simplicity, we assume that
the wavelength of the field λ is large compared to the thicknesses l1, l2 of the slabs. So we can
consider the field to be constant E(x) = Ē⊥. The macroscopic displacement field is:

D̄⊥ =
1

l1 + l2
(l1ε1 + l2ε2)Ē⊥. (7.3)

We thus obtain the searched relation between the macroscopic dielectric function of the whole
system ε⊥ and those of its constituents, ε1 and ε2:

ε⊥ =
l1ε1 + l2ε2
l1 + l2

. (7.4)

If l1 = l2, the macroscopic dielectric function ε⊥ = (1/2)(ε1 + ε2) is the average of the dielectric
functions of the two constituents.

We now consider a plane-wave electric field E‖ polarized along the stacking direction z, i.e.
perpendicular to the interface. In the first unit cell, we have the following relation between the
electric field and the displacement field:

E‖(x) = θ(l1 − z)ε−1
1 D1

‖(x) + θ(z − l1)ε−1
2 D2

‖(x). (7.5)

The macroscopic electric field is:

Ē‖ =
1

l1 + l2

∫ l1+l2

0

E‖(x)dx. (7.6)

In this case the displacement field is continuous at the interface, D1
‖(z = l−1 ) = D2

‖(z = l+1 ). With
the same hypothesis as before regarding the wavelength of the fields, we find the following relation

ε−1
‖ =

l1ε
−1
1 + l2ε

−1
2

l1 + l2
. (7.7)

If l1 = l2, the inverse macroscopic dielectric function ε−1
‖ = (1/2)(ε−1

1 + ε−1
2 ) is the average of the

inverse dielectric functions of the two constituents.
The EMT approach is based on the assumption that the separation between the slabs is abrupt

and that the constituent materials conserve their bulk dielectric function. There is no microscopic
effect of the presence of the interface between the two slabs. We therefore expect EMT to be better
for large slabs.
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Chapter 8

Silver Chloride : state-of-the-art
calculations

Silver chloride is the fundamental ingredient for Becquerel’s photography [136]. It hence deserves
a full ab initio study. This is not trivial: in particular, the presence of silver necessitates particular
care for its pseudopotential, and a detailed study of this topic will be presented in the first section
of this chapter1. The band structure of silver chloride is then presented using different levels of
theory. This is followed by a study of the optical properties, with time dependent density functional
theory in the third section and by solving the Bethe-Salpeter equation in the fourth section.

The aim of this chapter is to gain extensive understanding of electronic excitations in silver
chloride. Particular emphasise will be put on exitonic effects in the absorption spectrum which, as
we will see, are important to understand the observations. The calculations are a computational
challenge, and new methodology had to be developed to face this challenge.

8.1 Pseudopotentials

Core electrons make the density and wavefunctions quickly vary close to the center of the atoms.
With the codes that will be used the wavefunctions are decomposed in a plane wave basis: the
description of these wavefunctions would require an unaffordably large plane-wave cutoff Gmax. We
thus explicitly take into account only the valence electrons and use pseudopotentials to represent
the cores. The pseudopotentials used are of Troullier-Martins [138] type for both species, silver
and chlorine. We have generated the pseudopotential using the FHI98PP package [139]. We used
LDA functional in the Perdew-Wang parametrization [140] with scalar relativistic corrections.

The ground-state configuration of Ag is

1s22s22p63s23p64s23d104p65s14d10 or [Kr]5s14d10.

However, pseudopotentials are usually created in a slightly ionized state of the atom [141]. More-
over, it is generally established that spectroscopy calculations require valence shells to be complete,
because of the strong spatial overlap between electrons in the same shell and the consequent strong
exchange effects [142–144]. Here we use the atomic configuration

1s22s22p63s23p64s23d104p64d10

to create the pseudopotential of silver, with the 4spd-shell 4s24p64d10 in the valence, which corre-
sponds to a singly ionized atom.

Different cutoff radii, where the true wavefunction in the atom matches the pseudo-wavefunction,
were tested for the different orbitals. For a smaller cutoff radius, the pseudopotential is more ac-
curate but also more expensive, i.e. ”harder”. To illustrate this, a soft pseudopotential and a

1This chapter as well as chapters 9 and 10 are summarized in a submitted paper First-principles study of
excitons in the optical spectra of silver chloride, Arnaud Lorin, Matteo Gatti, Lucia Reining, Francesco Sottile
(preprint [137])
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Figure 8.1: Logarithmic derivatives for a soft (left) and a hard (right) pseudopotential for silver,
evaluated at r = 3.4 Bohr.

hard pseudopotential are compared. In Fig. 8.1, the logarithmic derivative for the wavefunctions
corresponding to the two pseudopotentials is shown. In the left panel the logarithmic derivative
of the soft pseudopotential is plotted, while in the right panel the logarithmic derivative of the
hard pseudopotential is shown. The soft pseudopotential is defined with cutoff radii of 1.6 a.u.
for the s, 2.1 a.u. for the p and 1.8 a.u. for the d component. For the hard pseudopotential the
cutoff radii were set to 0.9 a.u. for the s, 2.3 a.u. for the p, and 1.5 a.u. for the d component,
obtaining satisfactory logarithmic derivatives and excitation energies. The red and black curves
represent the pseudopotential in a semi-local and separable form, respectively [139]. The blue
curves are the all-electron reference. The separable form is the one used in the following. The soft
pseudopotential reproduces badly the all-electron calculation, particularly for the s states around
0 Hartree, where the divergence of the dashed red and dashed black curves are not aligned with
the blue curve. The s state is the local reference component, used to represent higher momentum
states. This bad description of the states close to 0 Hartree is problematic because they are the
states that will form the conduction bands together with the silver p states and chlorine s states.
The hard potential solves this problem as can be seen from the right panel of the figure: the
divergences are well described by the pseudopotential. Moreover preliminary calculations with the
soft pseudopotential predicted AgCl to be a metal, which is not correct. The hard pseudopotential
does not have this problem. It gives a good description of silver at the expense of smaller cutoff
radii and thus an increase of the cutoff energy needed to describe it.

Chlorine does not present the same difficulty, and we have created the pseudopotential using an
atomic configuration of 1s22s22p6 for the core and 3s23p4.53d0.5 for the valence electrons. Cutoff
radii were 1.6 a.u. for s and p components and 1.8 a.u. for the d component.

8.2 Ground-state properties

With these pseudopotentials it is now possible to carry out ground state calculations for silver
chloride with DFT-LDA. First, the convergence with respect to the cutoff energy is studied, fol-
lowed by the evaluation of the theoretical lattice parameter. All ground state and band structure
calculations are carried out using the Abinit package [145].

Silver chloride has a face centered cubic crystal structure with one variety of atom in the
octahedral sites of the other, similarly to sodium chloride. The lattice parameter used for the
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Figure 8.2: Left: convergence of the total energy with respect to the energy cutoff. For the total
energy the difference to the total energy with a cutoff of 150 Hartree is shown, in order to ease the
reading. The total energy at this cutoff is 4394.9875 eV. Right: total energy and indirect band
gap calculated in KS-LDA as function of the lattice parameter.

convergence study and in the rest of this thesis is the experimental one [146, 147], aexp = 5.55
Å. Concerning the convergence with respect to the k-point grid we find that the total energy is
converged within 1 meV for a 8×8×8 Monkhorst-Pack k-point grid [148]. On the left hand side
of Fig. 8.2 is shown the convergence of the total energy with respect to the cutoff energy. We see
that below a cutoff of 150 Hartree the total energy changes rapidly while above 150 Hartree the
behavior of the total energy changes and evolves slower than previously. A cutoff of 150 Hartree
yields then results that are converged up to 2.5 meV. Achieving an even better convergence would
require a much larger cutoff since the curve evolves very slowly above 150 Hartree. In the following
the cutoff energy is set to 150 Hartree. This high cutoff is needed because of the strongly localized
semi-core 4s and 4p states of silver.

The total energy calculation as a function of the lattice parameter a, shown in the right panel
of Fig. 8.2, yields the equilibrium value of a = 5.35 Å. The LDA underestimates hence the lattice
parameter with respect to the experimental value [146, 147] aexp = 5.55 Å at room temperature 2,
in agreement with earlier calculations [59, 60, 63, 65]. For our discussions, we accept an error bar
for transition energies of 0.1-0.2 eV. The uncertainty induced on transition energies by the error
in the lattice constant lies well within this limit. This is illustrated in Fig. 8.2, where the total
energy and indirect band gap as a function of the lattice parameter are shown. In the following
the experimental lattice parameter will be used.

The charge density is plotted in Fig. 8.3. The intensity is dominated by the electrons around
silver with its 10 4d electrons and the semi-core electrons.

8.3 Kohn-Sham band structure

The converged results for AgCl are used to compute the band structure of the material. Since we
are dealing with a non-magnetic material, here and in the following we omit spin, which will only
lead to prefactors.

The band structure of silver chloride computed along different high symmetry lines is shown in
Fig. 8.4. Two approximations to the exchange-correlation potential are used: the Local Density
Approximation (LDA) and the Generalized Gradient Approximation (GGA) of Perdew-Burke-
Ernzerhof [84]. The two band structures are quite similar. The main effect of the GGA is an
opening of the gap by about 0.35 eV with an almost rigid shift of the conduction bands with
respect to the valence bands, which compares well with others results in the literature [60, 63]. For
this reason, only the LDA results will be described in more detail.

2The lattice parameter decreases at lower temperature: Lawn [149] finds a value of 5.51Å at 83K
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Figure 8.3: Charge density of silver chloride in the [100] plane passing through the atoms. The
chlorine atoms are represented by the green dots while the silver atoms are represented by the grey
dots.

The top valence is located at L and the bottom conduction at Γ. The minimum gap of 0.56 eV
is indirect between these two points. The minimal direct gap, with the 8 × 8 × 8 k-point grid,
is located in the ΓK direction, at around 2/9 of the distance from Γ, its value is 2.78 eV. The
direct gap at Γ is 2.86 eV. These different values compare well with other LDA results reported in
Tab. 2.1.

No inverse photoemission experiments are available for silver chloride. Therefore it is not
possible to have a direct estimation of the experimental quasi particle gap. The values of the
gaps have to be extracted from optical experiments [42] and Raman spectroscopy [41, 150]. The
direct gap can be estimated from the onset of the absorption spectrum. In optical experiments,
the indirect gap is not accessible directly as the photon does not carry enough momentum to
allow such a transition. However the transition can take place with the help of phonons, in the
so-call phonon assisted absorption [41, 42]. This process gives rise to a tail decaying toward low
energy in the spectra and presents a specific behavior with the temperature. However, optical
experiments do not give direct access to the quasi-particle band gap as one should also take into
account the binding energy of the excitons, that may be formed in the absorption process. This
issue is addressed in Sec. 8.7 and Chap. 10. However, independently of this problem, the LDA
and the GGA gaps are drastically smaller than the experimental values. The experimental direct
optical gap is [51] 5.1 eV, while the experimental indirect gap is 3.25 eV [50, 150].

Earlier theoretical studies [41, 42, 57, 151, 152] have found that Ag+ 4d and Cl− 3p ionic states
have similar energy in the crystal, leading to strong hybridization in the valence band. While their
mixing is zero at Γ, it is strong elsewhere, notably at L. This k-dependent hybridization and the
strong p − d repulsion cause the upward curvature of the top-valence bands at Γ (i.e. a negative
hole effective mass) and make AgCl an indirect semiconductor. On the contrary, in the alkali
halides, which share the same rocksalt crystal structure, the ionic energy levels are well separated,
leading to a much larger ionic character of the compounds and a direct band gap.

Our calculations, as shown by the band structure in Fig. 8.4 and the projected density of states
(PDOS) in Fig. 8.5, confirm this picture. While Cl 3s states are located at ∼ -15 eV (not shown),
the valence band region includes 8 bands. They are very close to each other at the Γ point, where
from the bottom to the top we count 3 degenerate Ag t2g states3, 2 degenerate Ag eg states, and 3
degenerate Cl 3p states. The hybridization between Ag 4d and Cl 3p increases moving away from
the Γ point towards the top and the bottom of the valence bands at the L point, where Ag 4d and

3The crystal field at Ag site has a cubic point symmetry (Oh).

40



Silver Chloride : state-of-the-art calculations Results

W L Γ X W K Γ

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9
E

n
er

g
y
 (

eV
)

ε
F

W L Γ X W K Γ

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

E
n
er

g
y
 (

eV
)

ε
F

Figure 8.4: Kohn-Sham band structure of silver chloride. Left: LDA calculation, right: GGA
calculation. The main difference is a rigid increase of the gap by 0.35 eV in the GGA.

Cl 3p are strongly mixed. Their interaction gives rise to dispersive bands. Instead, three Ag 4d
bands, which are not dispersive between Γ and L, remain at the center of the valence manifold,
giving rise to a pronounced sharp peak in the PDOS. Finally, the lowest conduction band has a
delocalized Ag 5s and Cl 4s character at the Γ point [64] and mixed Ag 5s - Cl 3p elsewhere.

Fig. 8.5 compares the calculated PDOS with the photoemision spectra measured by Tejeda et
al. [151] and Mason [153]. The two experimental spectra were taken at the same photon energy
but their shape shows a quite strong difference, notably around −4 eV. Mason’s experiment is
realized at 83 K, while Tejeda et al.’s experiment is done at room temperature. Mason mentions
the formation of photolytic silver at room temperature, but not at the surface, region probed by the
XPS. This illustrates the experimental problems encountered with AgCl. The top valence energy is
set to 0 for all curves. The width of the valence band is 6 eV for both experimental spectra, close to
the LDA width of 5.3 eV. Both spectra also show a main peak at -3.1 eV and a shoulder just below
the top valence as well as a shoulder (peak for Mason) at -4.5 eV. These photoemission spectra
mainly probe Ag 4d state as can be understood from the photoionization cross-sections [154] for
photons with hν = 1486.6 eV. The photoemission spectrum is thus mostly given by the PDOS of
silver d states. We find that the shoulder just below the top valence band is correctly described
by the LDA calculation, the shoulder at -4.5 eV (peak for Mason) is also reproduced by the LDA
calculation, but not at the correct energy. The main peak can be attributed to the non dispersive
band at the center of the band structure. These states are poorly described by the LDA, as there
is a difference of 1 eV between the LDA peak in the d state PDOS and the main peak in the
photoemission spectra. The difficulty to describe localized states such as d states as well as giving
correct gaps, is known a problem of the KS-LDA approach. The results can be improved by using
many body perturbation theory, for example in the GW approximation, as we will discuss next.

8.4 Many-body perturbation theory: G0W0 and QSGW band
structures

Kohn-Sham eigenvalues should not be interpreted as electron addition or removal energies. A
correct description of such quasi-particle energies can be obtained from the poles of the one-body
Green’s function, for which good estimates are often obtained using the GW approximation for the
self-energy introduced in ch. 6. Different flavors of this approximation exist. As we will discuss in
the following, their choice is important in the case of AgCl. All GW calculations have been realized
with the Abinit package [155]. In the next subsection the G0W0 approximation is considered.
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Figure 8.6: Band structure of silver chloride computed with LDA (continuous line) and G0W0.
The G0W0 results are represented by the dots. The dashed lines represent a rigid shift of the
conduction band by 1.9 eV.

G0W0

The G0W0 calculation has been realized using a 4 (4×4×4) MP k-point grid. The screening was
computed with 5000 planewaves to describe the wavefunctions; 550 bands were included in the
calculation and the size of the dielectric matrix was set to 1500 G vectors. The self-energy was
computed with a cutoff of 4000 planewaves for the wavefunctions and 820 bands were included in
the calculation. The band structure of silver chloride evaluated in G0W0 is shown in Fig. 8.6. The
top of the valence band is aligned to zero.

The G0W0 band structure looks similar to the KS-LDA one, up to an almost rigid shift of
1.8-1.9 eV of the conduction bands. For illustration, the dashed curve shows this rigid shift of
1.9 eV of the lowest conduction bands in KS-LDA.

This size of the band-gap opening is in agreement with the value of 1.75 eV recently obtained
by Zhang and Jiang [72] in a G0W0 full-potential linearized augmented plane wave calculation
starting from a KS-GGA band structure. Instead, van Setten et al [70] reported a much smaller
G0W0 correction to the KS-GGA gap: 1.25 eV. The reason for this large discrepancy should not be
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Figure 8.7: Band structure of silver chloride computed with LDA and QSGW. The QSGW are
represented by the crosses. The dot-dashed lines represent a rigid shift of the conduction band by
3 eV.

ascribed to inaccuracies in the pseudopotentials [72], but rather to an underconvergence problem:
their automatized algorithm employed only 155 bands (compared to 820 in the present work).
On the contrary, Gao et al.[71] found a much larger G0W0 correction starting from KS-LDA, i.e.
2.38 eV, and had to include up to 2500 empty bands in the G0W0 calculation. A similar situation
was previously encountered in other materials like ZnO [156–158] and TiO2 [159], where semicore
electrons have to be explicitly included in the GW calculation. The origin of the problem in those
calculations was identified [158, 159] with the use of the f -sum rule in the Hybertsen-Louie [112]
plasmon pole model (PPM), which was adopted also by Ref. [71] for AgCl. Indeed, also in the
present case our results obtained with the Godby-Needs PPM agree (within 0.2 eV at most) with
the accurate contour-deformation (CD) calculation that avoids any PPM (see Tab. 8.1). As a
final validation, we have also employed the effective energy technique [160] (EET) that accounts
approximately for all empty states and allows reaching convergence much more easily than the
traditional sum-over-states scheme. Using the EET (here used within the PPM) the values for the
band gaps are once again in agreement within 0.1 eV (see Tab. 8.1). This suggest that our careful
pseudopotential calculations are of similar quality as the all-electron calculations of Ref. [72].

The G0W0 indirect band gap is now 2.4 eV and the direct gap at Γ is 4.6-4.8 eV. Both are
still smaller than the experimental optical gaps (see Tab. 8.1). However, in situations with large
pd hybridization as for AgCl, the LDA starting point may not be reliable [118]. At the same time,
also the large corrections obtained within the G0W0 scheme question the first-order perturbative
approach itself.

QSGW

In order to overcome the problem of the KS-LDA starting point and assess the G0W0 perturbative
scheme, we have performed QSGW calculations which are based on a quasi-particle self-consistent
scheme as explained in Ch. 6. The new band structure is shown in Fig. 8.7; again, top-valence
bands are aligned. At first sight, there is no drastic change in the dispersion of the valence and
conduction bands. However, a closer look shows that, whereas the G0W0 valence bands were
essentially on top of the KS-LDA ones, QSGW results slightly increase – by 0.1 eV – the valence
bandwidth and push the narrow Ag 4d bands down by 0.5 eV, leading to a better agreement
with photoemission results [151, 153]. The most obvious change is the almost rigid shift of the
conduction bands with respect to KS-LDA, which has passed from 1.9 eV in G0W0 to 3.0 eV, as
indicated by the dot-dashed line in Fig. 8.7.

With this shift, the indirect gap becomes 3.7 eV while the direct band gap is 5.9 eV. The fact
that band gaps now seem to be overestimated with respect to experiment (see Tab. 8.1) may have
two reasons. First, the self-consistent RPA screening in QSGW is too weak, which brings results
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Indirect Direct
LDA 0.56 2.78

G0W0 (PPM) 2.4 4.8
G0W0 (CD) 2.4 4.6

G0W0 (EET) 2.4 4.7
QSGW 3.7 5.9

evQSGW 3.2 5.7
GW0 2.7 4.8

Absorption onset (Exp.) 3.25 5.13

Table 8.1: Direct and indirect photoemission gaps of AgCl calculated in different approximations
compared to experimental (Exp.) absorption onsets from optical measurements (Refs. [50, 51])
which provide a lower bound due to excitonic effects (see Sec. 8.7 and Ch. 10).
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Figure 8.8: Electron energy loss spectra of silver chloride. Dashed lines are the experimental results
normalized in two different ways. The loss function, -Im ε−1 computed within RPA is shown by the
black solid line. The dotted blue curve shows the data as measured, including a carbon capping.

too close to Hartree-Fock [111, 118, 120, 161]. Second, the experimental optical gaps are affected
by excitonic effects (see Sec. 8.7 and Ch. 10).

We have also performed a QSGW calculation where only the QP eigenvalues are calculated self-
consistently, while the QP wavefunctions are constrained to remain the KS-LDA orbitals. This
further calculation is named ’evQSGW’ in Tab. 8.1. It gives band gaps that are intermediate
between the G0W0 and the full QSGW results, illustrating the impact of the change of the wave-
functions on the band structure. Finally, we have tested the effect of the update of the screened
Coulomb interaction W : a QSGW calculation, in which we keep the W fixed at the level of the
RPA-LDA, named ’GW0’ in Tab. 8.1. The resulting gap (direct 4.8 eV and indirect 2.7 eV) is closer
to the G0W0 value than to the QSGW one. In the QSGW calculation in AgCl the modification of
the screened interaction W is hence a critical effect.
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8.5 Electron Energy Loss Spectra: experiment and simulation

Since W seems to play a key role, it is interesting to examine it directly. This can be done by
studying the loss function, which is the imaginary part of the inverse dielectric function. It can be
measured directly using Electron Energy Loss Spectroscopy (EELS).

No data were available at the beginning of this thesis, but an opportunity to acquire EELS
data on pure silver chloride appeared during a Scanning tunneling electron microscopy experiment
at the Laboratoire de Physique des Solides (LPS) in Orsay [162]. Our collaborators from the CRC
were investigating the surface plasmons of silver nanoparticles embedded in, or on top of, silver
chloride. This opportunity was used to realize an experiment of electron energy loss spectroscopy
on silver chloride which I attended. A location of the sample was selected for its absence of silver
nanoparticles and the measurement was realized also on a second position to verify the resulting
spectra. A further complication was the sample capping by a carbon layer, used to protect the
sample from radiation damage. Therefore, for the presence of this carbon layer the measured
data could not be used directly. To get rid of the carbon contribution a spectrum of the carbon
deposit alone was also measured.Since the effective medium theory (Ch. 7) tells us that the inverse
dielectric functions of each material add up, it is possible to subtract the carbon contribution
if the relative normalization of the two spectra is separately known. Fig. 8.8 shows the results
of the experiment as well as the RPA calculation of the Loss function -Im ε−1(q → 0, ω) with
LDA energies and wavefunctions. Two ways of normalization have been used: a normalization
aligning the maximum of the elastic peaks at ω = 0, named ”Experiment 1” in the figure, and a
normalization by the total intensity of each spectrum, named ”Experiment 2” in the figure. The
experimental curves are then scaled by an arbitrary factor. The spectra are cut at the low energy
part is characterized by the elastic peak, which is not usable. The measured data (dotted blue
curve) are also represented with an arbitrary normalization.

The two experimental curves are quite similar in their shape for energies higher than 5 eV,
showing that the method of normalization might not be important. Theory gives good results
at low energy: the peak at 16 eV is correctly described and the shoulders at lower energy in the
experimental spectra are also present in the RPA spectrum. At higher energy, the RPA spectrum
has a peak at 21 eV, which is at 19 eV in the experimental spectra. However, the RPA spectrum
lacks intensity in this energy range, and above 33 eV it does not agree with experiment.

It should be noted that the calculation of the dielectric function has been realized with vanishing
momentum, but in this kind of experiment the flux of electrons is localized in a fraction of space.
Therefore, the experimental EELS spectrum is the result of an integration over many momenta.
The dielectric function for larger momentum transfer is known to be shifted toward higher energy.
This might explain the different behavior at high energy.

Overall, the RPA based on Kohn-Sham ingredients compares quite well with experiment, al-
though this comparison remains rather qualitative, in particular in view of issues with the nor-
malization of the experimental spectra, and because the experiment is not momentum resolved.
Moreover, the presence of the elastic peak and the lack of resolution does not allow us to discuss
in detail the lower energy part of the spectrum. Therefore, we move in the following to optical
spectra.

8.6 Absorption spectrum within time-dependent density functional
theory

As explained in Ch. 5, absorption spectra can in principle be obtained using time dependent density
functional theory in the linear response regime or solving the Bethe-Salpeter equation. Since the
time dependent density functional approach is computationally much cheaper, we will first examine
to which extent it could be used to describe optical spectra of AgCl.

The linear response TDDFT calculations were carried out using the DP code [163]. Convergence
for both absorption and the extinction coefficient over a frequency range of 0 to 10 eV was reached
using 2048 shifted k points [164], 965 plane waves for the wavefunctions, 59 G vectors for the
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polarizability matrix including crystal local field effects (see Appendix C), 13 occupied bands, and
20 unoccupied bands.
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Figure 8.9: Extinction coefficient of AgCl as a function of energy. The RPA calculation based on
the KS-LDA band structure (black solid curve) is compared to experimental data from Ref. [51]
measured at 4 K (red curve), at 90 K (blue curve) and at room temperature (orange curve).

Fig. 8.9 shows the extinction coefficient κ(ω) = Im
√
εM (ω) where εM is the macroscopic dielec-

tric function (see Appendix C ). We compare the RPA result (black curve) with three experiments
at different temperatures: 4 K (red curve), 90 K (blue curve), 300 K (orange curve). The spec-
tra have been measured up to 6.7 eV in Ref. [51]. The wider range at room temperature has
been obtained by combining results from different sources. The shape of the measured spectra is
strongly affected by temperature: the very sharp peak at the onset of the spectrum around 5.1 eV
is clearly visible only at low temperatures, while the room-temperature spectrum is much broader.
Since our calculations do not include the effect of temperature, comparison to the low-temperature
experiment should be more meaningful. Still, keeping this fact in mind, also the room temperature
experiment gives important indications. Overall, the RPA and experimental spectrum at 300 K
are similar. However, the absorption onset is underestimated in the RPA, by more than 1 eV.
Moreover, the RPA entirely misses the sharp feature at the onset of the low-temperature exper-
imental result. The underestimate of the onset is a common problem in KS-RPA spectra [128].
Since in the RPA the exchange-correlation kernel fxc = 0 and since, as explained in Ch. 5, only
short-range components of vc contribute to optical spectra, the onset is determined by the inter-
band transitions in χ0, as can be seen from Eq. (5.8) and Eq. (5.10). It suffers therefore both
from the use of the LDA, and from the fact that even the exact KS band gap would be smaller
than the measured band gap. The results do not change when fxc is taken into account within
the adiabatic local density approximation (ALDA): in Fig. 8.10 the ALDA (dashed green curve)
is hardly distinguishable from the RPA (black curve). The ALDA can neither lead to a significant
opening of the optical gap, nor to a significant change in the spectral shape.
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Figure 8.10: Comparison between the extinction coefficient of AgCl measured at 4 K with several
TDDFT approximations. Since the energy range is limited to 3-7 eV, these spectra have been
calculated with only 4 conduction bands.

It is well established [101, 102] that the ALDA suffers from the absence of a long-range con-
tribution that in nonzero-band-gap materials would diverge as 1/q2 in the long wavelength limit,
q → 0. The exact xc kernel should contain such a contribution. Several suggestions exist in lit-
erature how to include a long-range component in fxc [102–105] (see Ch 5). All kernels of this
family start from a χ0 built with a quasiparticle band structure from GW or similar approaches,
instead than from a KS one. A simple static and scalar fxc with a long-range contribution can then
simulate the effects of the electron-hole interaction by shifting spectral weight to lower energies.

In order to simulate these missing excitonic effects, we have examined the long-range kernel [102]
of type α/q2, where the band-gap opening at the QSGW level is accounted for by a scissor corection
of 3.0 eV. The result is given by the pink curve in Fig. 8.10. The value of α = −0.94 has been
obtained from Eq. (4) of Ref. [103] using an experimental dielectric constant of AgCl [165] ε∞ = 4.
In contrast to the ALDA, the long-range kernel does shift the spectral weight to lower energies
with respect to the QSGW-RPA result (violet curve), where fxc = 0. However, the spectral onset
remains the same, overestimating the experimental result, and the sharp peak is still missing. A
larger value of |α| in the long-range kernel α/q2 would enhance the excitonic effects. However, in
order to reproduce the sharp experimental peak, we should increase the strength |α| to very large
values, which would completely destroy the spectrum. For example, the dotted curve in Fig. 8.10
is obtained with α = −3.5. Note that its overall intensity is divided by a factor 5 in the plot, while
all spectral features at higher energies have collapsed. This failure of static long-range kernels is
confirmed also by similar approaches, such as the recent bootstrap kernel [106, 107] (see the blue
curve in Fig. 8.10, obtained with the implementation of Eq. (5) of Ref.[107]).

Therefore, we can conclude that TDDFT with the presently available simple approximations
does not give a good description of the optical properties of AgCl, and in particular, of the strong
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Figure 8.11: Comparison between the experimental extinction coefficient of AgCl from Ref. [51] at
different temperatures and MBPT calculations (with 2084 k points): G0W0-RPA obtained with
1.9 eV scissor correction (pink dashed line), G0W0+BSE obtained with the full RPA screening
matrix WGG′(q) (black solid line) or using only its diagonal contribution (black dashed line).

excitonic effects that should explain the remaining discrepancy between theory and experiment.
For this reason, we have to move on to a full description in the framework of MBPT, by solving
the Bethe-Salpeter equation as explained in Ch. 6.

8.7 Absorption spectrum within the Bethe-Salpeter equation

All BSE calculations have been performed using the EXC code [166]. As input, we use the KS band
structure corrected by a scissor shift taken from our GW calculation. We have verified that this
reproduces well the effect of the true GW corrections. In the following we will refer to G0W0+BSE
for BSE calculations that use a scissor correction of 1.9 eV, determined from the G0W0 band
structure4. In a similar way, a scissor correction determined from the QSGW band structure will
be used with a BSE calculation and will be referred to as QSGW+BSE.

The results presented in this section are based on a full G0W0+BSE calculation with 2084
shifted [164] k-points, 8 occupied and 6 unoccupied bands. To obtain the spectra εM (ω), we have
used the Haydock iterative scheme [167, 168], instead of generating eigenvalues and eigenvectors of
the electron-hole hamiltonian. The LDA-RPA screened Coulomb interaction W is used to account
for the electron-hole attraction.

Fig. 8.11 shows the extinction coefficient for G0W0+RPA and G0W0+BSE. The G0W0+RPA
designates an RPA calculation that employs a scissor correction to reproduce the G0W0 band struc-
ture. The onset of the spectrum (pink dashed line in Fig. 8.11) underestimates the experimental

4The effect of using the full G0W0 has been tested and does not change the result at low energy.

48



Silver Chloride : state-of-the-art calculations Results

threshold and does not show a pronounced peak at low energy: it merely shifts the LDA-RPA spec-
trum to higher energy. The electron-hole interaction in the BSE shifts oscillator strength to lower
energies, and a peak forms (black solid line in Fig. 8.11). However, the G0W0+BSE spectrum is
now at an even lower energy and the excitonic peak is much too weak with respect to experiment.

BSE calculations in solids are often done by neglecting the off-diagonal elements of the screening
matrix [126, 128] WGG′(q) that represents the direct electron-hole interaction. This is not an issue
when the electron-hole pair is delocalized enough to justify a space-averaged screening. The first
excitonic peak in AgCl is influenced by this approximation: taking into account the full spatial
details of screening (solid black line in Fig. 8.11) reduces the peak intensity by about 10% with
respect to the approximation of diagonal screening (dashed black line in Fig. 8.11). Still, the
difference is small compared to the discrepancy to experiment.

The G0W0+BSE calculation remains qualitative for several reasons. First, as pointed out
above, the G0W0 band structure from an LDA starting point is not reliable for AgCl. Second, the
spectrum is also strongly dependent on the Brillouin zone sampling, and a k-point convergence
test performed with a reduced number of conduction bands shows that a set of 6912 k points is
needed instead of 2084 employed here. While the first issue could be solved by using the QSGW
band structure as a starting point for the BSE calculation, the main computational problem would
still remain the setting up of the full screening matrix WGG′(q) that should be calculated self-
consistently for too many q points.

In order to overcome this problem, we will complement the first principles calculations with a
model screening, where the parameters of the model are fitted to the ab initio results. The next
chapter will be devoted to the exploration of the model, which turns out to be a powerful tool to
get reliable results.
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Chapter 9

Model screening

The BSE calculation of the absorption spectra using fine k-point grids can become prohibitive,
because the screening has to be computed for all q = k − k′, the differences between k-points.
However, as it will be shown below, the convergence of the screening can mostly be achieved on
a coarse grid. It should therefore be possible to use a model for the dielectric function using the
information on a rough q-point grid to interpolate the dielectric function on a finer q-point grid.

9.1 Model dielectric function

Many models have been proposed for the dielectric function [169–180]. In particular, for bulk
semiconductors a successful model was suggested in Ref. [181]. It represents the static dielectric
function as

ε(q) = 1 +
1

1
ε(q→0)−1 + α

(
q
qTF

)2

+ q4

4ωp

, (9.1)

where qTF = 2(3n̄/π)1/6 and ωp =
√

4πn̄, with n̄ the average density. α is a parameter set to
1.563, following Ref. [181]. This model dielectric function only gives the diagonal in reciprocal
space, but, as we will see, it is sufficient for the present purpose.

Although the model is very simple, its use requires care. First, the “average density” should not
be the average density of all electrons, but only of those valence electrons that participate to the
screening. This difference is well defined in a simple semiconductor such as silicon, but less obvious
in materials like AgCl with electrons of different character in the valence bands. Since the model
screening depends strongly on the density, comparison of the model results with various choices
for the valence density to an, even not fully converged, ab initio calculation in a few q points is
sufficient to see that the screening is determined by the electrons in the 8 upper valence states, i.e.
the Ag 4d and Cl 3p electrons. To include some of the remaining, more tightly bound, electrons
in the average density would clearly lead to overscreening. We therefore use the model with an
average density n̄ = 0.056 Bohr−3. A second issue is the dielectric constant at q → 0, which is
an important ingredient in the model, as we will explain in the following. In a fully non-empirical
scheme, its value has to be obtained from the ab initio calculations.

9.2 Analysis of the model with silicon and silver chloride

Let us first examine some general properties of the static dielectric function. For this purpose,
KS-LDA calculations were performed for a prototype semiconductor, bulk silicon. The finer the
grid, the more wavevectors q are available at which the dielectric function can be computed since
we require q = k − k′. The calculations are done both including and excluding the commutator
of the position operator r̂ with the non-local part of the Hamiltonian [182]. This commutator
affects only the calculation at q → 0 as it only appears in the calculation of the dipole matrix
elements at q → 0. The origin of non-local part of the Hamiltonian can be the non-local part
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Figure 9.1: Bulk silicon: Static dielectric function as a function of wavevector q, for different
k-point grid sizes. Plus (circle) symbols are results from calculations including (excluding) the
commutator with the non-local pseudopotential. In the insert: zoom on q = 0.

of the pseudopotential (this is the case here) or a non-local self-energy. Fig. 9.1 shows the static
dielectric function of silicon as a function of q.

At non-vanishing momentum one can see the anisotropy of the material, as the points are not
aligned along a line, but several points coexist for the same momentum size. One can also see
that the anisotropy is not large as the points are still distributed around the same curve with
small deviation. The points for the coarse k-point grids are already well converged. The situation
is different for q → 0. First, even when the commutator is taken into account, the convergence
is more difficult than at non-vanishing momentum. Moreover, when considering the calculations
without commutator the dielectric function moves further away from the converged value and, as
expected, the dielectric constant does not converge toward the correct value.

This difficulty of convergence at q → 0 is explained by the fact that at q → 0 the denominator
of the dielectric function has a factor (∆ε)3 whereas for q 6= 0 it has a factor ∆ε, where ∆ε
is the energy difference between the empty and occupied Kohn-Sham states. This enhances the
dependence on the dispersion, thus a finer sampling of the Brillouin zone is required.

At q→ 0, inclusion or exclusion of the commutator as well as the convergence of the dielectric
constant are often not problematic in fully ab initio GW or BSE calculations. In these situations,
the dielectric function enters integrals over the first Brillouin zone. In the limit of infinite number
of k points (in practice, at convergence), the contribution from q→ 0 is vanishing small. However,
when the dielectric model is used with a wrong input for the dielectric constant at q → 0, the
whole model dielectric function is wrong. This can be seen in Fig. 9.2. The left panel of Fig. 9.2
shows the static dielectric function for silver chloride computed ab initio (shown by black and red
crosses) and the associated dielectric model (shown by black and red line, respectively). We see
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that with a wrong dielectric constant (red crosses), the model dielectric function (shown by the
red line) is not correct over a large range of wavevectors.

From these results it appears that the dielectric constant at q→ 0, which is a crucial ingredient
of the model, can be problematic. I have therefore searched for a way to avoid this complication.
The idea is to rewrite the model using another wavevector q0 as input:

ε(q) = 1 +
1

1
ε(q0)−1 + α

(q2−q20)

q2TF
+ q4−(q0)4

4ωp

, (9.2)

where ε(q0) is the dielectric function at the wavevector q0. The choice of the q0 where the model
parameter should be determined is constrained: for larger q, and taking into account crystal local
field effects, the local anisotropy of the crystal induces a scattering around the function ε(q) and
therefore some arbitrariness. One therefore has to choose a value q0 that is small enough to yield
a well defined ε(q0), and large enough to converge fast with the k-point grid. In any case, for any
q0 6= 0, the problem of the commutator is avoided.
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Figure 9.2: Silver chloride, effects of the model electron-hole screening on BSE results. Left panel:
ab initio LDA-RPA (crosses) and model (solid lines) dielectric constants ε(q, ω = 0) as a function
of q. The ab initio results are obtained using 4-shifted 4×4×4 (red) or 6×6×6 (black) Monkhorst-
Pack grids of k points, corresponding to 256 or 864 k points in the full Brillouin zone, respectively.
The black cross at q → 0 also contains the correction for the non-local pseudopotential, while the
red cross does not. Model results are fitted to the ab initio results at q = 0 (respective color code)
or at q = 0.15 a.u. (blue), where results on the smaller grid are already converged. Right panel:
BSE spectra obtained with 864 shifted k-points, 8 valence and 6 conduction bands. The screening
of the electron-hole interaction is taken from the results shown in the left panel: either the diagonal
of the ab initio screened Coulomb interaction (dashed black), or the model screening fitted to the
864 k-points result at q = 0 (solid black), or to the 256 k-points result at q = 0 (red) or at q = 0.15
a.u. (blue).

This approach, as we will show subsequently, is very powerful to converge optical spectra
calculated from the BSE. As a byproduct, once the model parameters are determined this allows
one also to extrapolate the dielectric constant at q → 0. This is demonstrated in the left panel of
Fig. 9.2: the model dielectric function obtained from the fit to the coarse first-principles calculation
at q0 = 0.15 a.u. (blue curve) compares very well to the one fitted to the best first-principles
calculation at q = 0 (black curve); from the fit at q0 = 0.15 a.u. to the unconverged calculation,
one can read an RPA dielectric constant ε(q → 0) = 5.32, which compares well with the converged
ab initio result ε(q → 0) = 5.46, and which is much better than the result ε(q → 0) = 6.36 of the
unconverged ab initio calculation itself.

The right panel of Fig. 9.2 shows the absorption spectra computed within G0W0+BSE using
as screening the different models obtained in the left panel of the figure as well as the converged
full ab initio screening. The calculation is done on a 864 shifted k-point grid. We can see that the
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Figure 9.3: Silver chloride: static dielectric constant as function of momentum transfer calculated
using different levels of theory: Kohn-Sham LDA, G0W0, evQSGW and QSGW. All calculations
are done using a 4-times shifted 4 × 4 × 4 Monkhorst-Pack k-point grid and 340 bands. The
commutator with the non-local potentials (pseudopotential and self-energy, when applicable) is
neglected. The fit of the model results at q0=(-0.125,-0.125,0) in units of the reciprocal lattice
(q0 =0.15 a.u.) yields the dielectric constants.

model fitted to the dielectric constant of the unconverged dielectric function (red line) performs
poorly with respect to the ab initio screening (dashed line), giving incorrect intensity and position
for the different peaks, whereas the model from the converged dielectric function (black line) is
close to the results using the ab initio screening. The modified model fitted at q0 = 0.15 a.u. gives
an absorption close to the model from the correct dielectric function.

This shows that the model fitted at q0 6= 0 can be used to extrapolated the correct dielectric
constant at q → 0 with significantly reduced computational effort, and it confirms the efficiency of
the model fitted at q0 6= 0 in the context of BSE calculations.

9.3 The dielectric function in the different approximation

In this study the converged RPA dielectric constant is found to be 5.46, larger than the experimental
value, which is found to lie between 3.7 [183] and 3.97 [184]. Other calculations based on KS-
LDA [71] also find too large dielectric constants, similar to ours. This may be traced back to the
Kohn-Sham band gap, whose influence on the dielectric constant is in the RPA not compensated by
fxc. However, for consistency we use the RPA value in order to simulate the RPA screening. Since
over-screening leads to underestimation of the excitonic effects, we have calculated the dielectric
function also using G0W0, evQSGW and QSGW results as input for the RPA. Results are shown
in Fig. 9.3. As expected, the strongest screening is obtained in the KS-RPA, the same result as
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presented in Fig. 9.2. Self-energy corrections to the eigenvalues calculated in G0W0 open the gap
and lower the screening, with an effect that is particularly visible at smaller wavevectors. Self-
consistency on the eigenvalues further opens the gap and lowers the screening, again with a stronger
effect at smaller wavevectors. Self-consistency in the wavefunctions in QSGW enhances the trend,
with an effect that is significant at small q, but almost negligible above q ≈ 1 a.u. These ab initio
results have been obtained using a 4-times shifted 4×4×4 grid, neglecting the commutator with the
non-local pseudopotential and, in the case of the GW calculations, neglecting the commutator with
the non-local self-energy. As a result, while the differences between the various approximations are
significant but reasonable and smooth for q 6= 0, the same does not hold for q → 0. In particular,
the results are visibly discontinuous as a function of q and the dielectric constant at q → 0 is
clearly too small when GW ingredients are used. The error due to the neglect of the commutator
with the non-local self-energy is sizeable, and of opposite sign with respect to the pseudopotential
contribution. We therefore determine the screening at q0 = 0.15 a.u., and then use Eq. (9.2) to
obtain the full ε(q). This allows us to extrapolate the dielectric constants at vanishing wavevector.
As stated previously, we obtain ε(q → 0) = 5.32 in Kohn-Sham, and we find 4.15 in G0W0-RPA,
3.9 in evQSGW-RPA, and 3.25 in QSGW-RPA, respectively. The GW results are therefore closer
to the experimental range of 3.7-3.97 than the Kohn-Sham ones, and the help of the model in
avoiding the calculation of the commutators is particularly welcome.

The results for the dielectric constant, together with the EELS results in the previous chapter,
illustrate the limits of comparisons to experiment and of choosing the more appropriate level of
theory: besides the experimental uncertainties due to the limited resolution, temperature, etc, dif-
ferent aspects of the dielectric function are highlighted by different experiments. Each comparison
on its own is often rather qualitative, and more insight can be gained by combining the different
approaches. In particular, whereas the EELS spectra clearly show the positions of the dominant
collective excitations, the normalization issues prevent us from getting clear information about
intensities. The dielectric constant, on the other hand, should be a quite reliable way to quantify
whether a given theoretical approach tend to under- or overscreen.

In conclusion, by using a previously proposed model for the wavevector-dependent dielectric
constant in a modified way, we have obtained a very efficient approach to simulate the fully ab
initio screening. This allows us to perform reliable BSE calculations in an affordable way, which
we will use in the following chapter to analyze excitons in AgCl.
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Chapter 10

Excitons in silver chloride

With the model approach developed in Ch. 9, we have now the necessary tools to perform a BSE
calculation at the required level, including self-consistency in QSGW. The calculations use 6912
shifted k-points, 8 valence bands and 6 conduction bands. A G0W0-based calculation with the
same parameters is also realized for comparison.

The aim of this chapter is to present reliable BSE calculations of silver chloride, in order to
establish the importance of the electron-hole interaction, to elucidate the nature of the excitons
and to discuss the correlation between electron and hole.

10.1 Excitonic effects: role of the screening and comparison to
experiment

Calculations with different flavors of GW are realized within RPA and BSE. All spectra are cal-
culated with LDA wavefunctions. Fig. 10.1 shows the obtained absorption spectra. G0W0+BSE
and QSGW+BSE spectra differ for two reasons. First, they contain a different scissor correction:
1.9 eV or 3.0 eV to simulate the G0W0 or QSGW band gap opening, respectively. Second, the
model screening Eq. (9.1) is evaluated with the values extrapoleted to q→ 0 with the help of the
model, namely, ε(q→ 0) = 5.32 or ε(q→ 0) = 3.25 for the G0W0+BSE and QSGW+BSE spectra,
respectively. The energy of the first exciton peak (solid lines) moves from 4.4 eV in G0W0+BSE
to 5.25 eV in QSGW+BSE. By comparing the BSE spectra with the corresponding RPA results
(dashed lines), we find that the reduced screening in QSGW+BSE crucially enhances excitonic
effects with respect to G0W0+BSE. The exciton binding energy for the first peak is 0.21 eV within
G0W0+BSE and becomes 0.43 eV within QSGW+BSE. The larger redshift of the QSGW+BSE
spectra partially compensates the larger scissor correction in the QSGW-RPA result with respect
to G0W0-RPA. Most importantly, the oscillator strength of the excitonic peak is greatly increased.

Our final results for the extinction coefficient are shown in Fig. 10.2. The combined use of
the converged k-point grid and QSGW ingredients, which was made possible thanks to the model
screening, improves remarkably the comparison with experiment (red line) with respect to the
G0W0+BSE spectra (black line) in Fig. 8.11. The QSGW+BSE results (blue line) reproduce the
first sharp excitonic peak and place it at 5.3 eV, very close to the experimental peak at 5.1 eV.

Also the second prominent structure that is visible in the experiment around 6.3 eV is found
in the calculations, at 6.6 eV and 5.95 eV for QSGW+BSE and G0W0+BSE, respectively. The
intensity of the calculated spectrum is higher than the measured one. This could be due, at least
partially, to experimental uncertainties. Also the fact that here we use the LDA wavefunctions
to build the spectrum may lead to an overestimation of intensities, as has been shown in [185].
Another cause may be the scissor used, which is correct at low energy but is not as good at higher
energies.
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Figure 10.1: Absorption spectra of AgCl calculated in the RPA (dashed lines) and from the BSE
(solid lines), using scissor corrections and model screenings obtained from G0W0 (black lines) or
QSGW (blue lines).

10.2 Analysis of the exciton

In order to go beyond the information given by the absorption spectra alone and analyze the
exciton character in more detail, the diagonalization of the excitonic hamiltonian (see Eq. (6.25))
is required. This is a much heavier task than to use the Haydock algorithm to get the absorption
spectra. The parameters of the calculation have to be lowered in order for it to be achievable.
Moreover, it is not reasonable to use a non symmetric k-point grid as this would break the symmetry
of the Hamiltonian. This is not a problem for the macroscopic dielectric function calculation, where
it instead allows for a better convergence. By the way of contrast, for the analysis of the exciton,
spacial properties of the exciton are examined and it is important to maintain the symmetry of
the Hamiltonian. The calculation is realized with a four-times shifted 6 × 6 × 6 Monkhorst-Pack
k-point grid, 8 occupied bands and 6 unoccupied bands.

First, thanks to the eigenvalues obtained by the diagonalization, the origin of the exciton peaks
in the spectra can be identified. The sharp peak at the onset of the spectrum is due to a three-fold
degenerate exciton state, hereafter referred to as bright exciton. However, this is not the lowest
eigenvalue of the Hamiltonian. A two-fold degenerate exciton state is present roughly 50 meV
below the bright exciton. This exciton is not visible in the spectrum and is thus a dark exciton.

It is then possible to analyse the composition of these excitons in terms of coefficients Atλ (see
Ch. 6)that mix the vertical transition t between valence and conduction bands. In the following
we refer to the G0W0 +BSE calculation, but similar conclusions are obtained from QSGW+BSE.

We find that the transitions contributing the most for all excitons take place between the
top most valence band and bottom conduction bands. The independent-particle transition (at
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Figure 10.2: Extinction coefficient of AgCl: comparison between experimental results[51], and
G0W0+BSE and QSGW+BSE calculations.

E=4.68 eV) with the strongest weight is at the k point in the line ΓK at 2/9 of the distance from
Γ. The transition (with E=4.75) is between at the k points at 1/6 of the line ΓX. At a slightly
larger energy is the transition at Γ. A first difference between the bright and dark exciton appears
here: the bright excitons have contributions from the Γ point while the dark excitons do not. All
the k points that contribute the most lie close to the minimum direct gaps in the band structure.
In this region, around the Γ point, the valence and conduction bands are almost parallel, which
means that many transitions of similar energy can mix and favour strong excitonic effects [186,
187].

The red curves in Fig 10.3 show the cumulant sums I(tmax) (see Eq. (6.33)) for the first excitons.
The vertical bars, called weights, are the

∣∣Āλρ̃t∣∣ plotted as a function of the transition energies Et.
Due to the absolute values, the weights do not distinguish bright and dark excitons. The intensity
in the spectrum is instead the result of interference effects between the different transitions, which
is expressed by the fact that both Ātλ and ρ̃t are complex numbers. This effect can be analyzed
studying the cumulant sums. Indeed, when tmax → ∞ the cumulant gives the total intensity
of the oscillator strength of the exciton. For the two dark excitons, the order of magnitude of
the cumulant is 10−9,i.e. numerically zero, whereas for the bright excitons it is 0.01. For the
dark excitons the cumulant is always numerically zero. For the bright excitons all transitions give
a positive contribution to the sum, as a result of constructive interference. The first transition
contributes a fraction of the total oscillator strength, but transitions up to high energy contribute
to the oscillator strength.

The detailed investigation of the Āλ shows that, for the dark excitons, the coefficients at k 6= 0
are even functions of k: Āλ(k) = Āλ(−k), while for the bright excitons they are odd: Āλ(k) =
−Āλ(−k). Since for the same transitions the oscillator strengths are also odd: ρ̃(k) = −ρ̃(−k),
the products Āλ(k)ρ̃(k) interfere constructively for the bright excitons and destructively for the
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Figure 10.3: Weight (black bars) and cumulant sum (red line) of the intensity of the two dark (top
line) and three bright excitons (bottom line). The energy of the exciton is indicated by an arrow.

dark excitons. This different mixing of formerly independent transitions is a typical manifestation
of the many-body excitonic effects.

We can further contrast the character of the dark and bright excitons by examining their
electron-hole correlation function Ψλ(rh, re). Fixing the hole at position rh, its square modulus
gives the electron probability distribution in the electron-hole pair (in each case we take the sum
over the degenerate states λ). The electron-hole interaction correlates the position of the hole and
the electron, it is thus necessary to compare different positions for the hole. Since the top-valence
band has a mixed Ag 4d - Cl 3p character, two different locations for the hole are considered: close
to the Ag or close to the Cl sites. In order to avoid the nodes of the valence wavefunctions, the
hole position is slightly shifted away from the atomic sites. Therefore the electron density plots do
not have the cubic symmetry of the crystal. The corresponding electron distributions are displayed
in Figs. 10.4 and 10.5 in the color contour plots that represent a cut in the [101] plane of AgCl
passing through the atoms: the upper panels are for the hole located close to Ag atoms and the
bottom panels for the hole close to the Cl atoms; the left panels correspond to calculation using W
in the RPA (W-RPA), while the right panels to the calculation using W in the QSGW approach
(W-QSGW). The first figure shows the sum of the electron distribution for the two degenerate
dark excitons and the second one the sum of the three degenerate bright excitons. The saturation
intensity is the same in each column but it is 1.8 time larger for the dark than for the bright
exciton.

The spatial distributions obtained from W-RPA and W-QSGW are qualitatively similar. How-
ever, the W-QSGW calculation significantly increases the electron density close to the hole, consis-
tently with the fact that the self-consistent screening leads to a stronger electron-hole interaction.

The analysis of these plots reveals several aspects of the excitons. In both the dark and bright
excitons, the intensity is stronger when the hole is placed close to silver than when it is placed
close to chlorine. This difference is more evident for the dark exciton than for the bright one.
More importantly, the bright exciton is more delocalized than the dark exciton, whose envelop
has a spatial extension that is smaller than 2 unit cells. In the bright exciton, when the hole is
placed close to a Ag site, there is some intensity around silver atoms, but the electron density
is mainly localized around chlorine atoms; when the hole is instead placed close to a Cl site, the
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Figure 10.4: Electron density distribution for the two degenerate lowest-energy dark excitons. Cuts
along the [101] plane of for W RPA (left panels) and W QSGW (right panels). The hole has been
placed close to the Ag atom (top panels) and close to the Cl atom (bottom panels). Cl (Ag) atoms
are represented by green (grey) balls, while the hole position is black.

electron density is again mostly localized around chlorine atoms. It is interesting here to make
a comparison with LiF, which has the same crystal structure as AgCl. Since LiF is a wide-gap
insulator, one would expect a tightly bound electron-hole pair with the hole located at F sites and
the electron at neighboring Li sites. BSE calculations [127, 188, 189] instead have shown that the
electron charge is always localized on F atoms (and only weakly on Li atoms). In other words, the
role of Cl in the exciton of AgCl is analogous to F in LiF.

As can be seen in Fig.10.4 and Fig.10.5, the bright exciton with a hole close to chlorine and the
dark exciton with hole close to silver have a spherical shape, whereas the other two cases present an
elongated shape. An explanation for the difference between these pictures can be drawn from the
dominant single-particle transitions that give rise to each exciton. We distinguish the two possible
hole locations: When the hole is situated at a silver atom, the dark exciton is formed by the dipole-
forbidden transition Ag 3d → 4s, yielding a spherical shape to the electron distribution; instead,
the bright exciton, thanks to the Cl-Ag hybridization of the valence band, has the character of a
dipole-allowed transition Ag d→ Cl p, giving rise to an axial electron distribution. When the hole
is located at a chlorine atom, the dark exciton has the character of the dipole-forbidden transition
Cl 3p → Cl 3p and the corresponding electron distribution has an axial distribution; instead, the
character of the bright exciton is the dipole-allowed Cl 3p→ Cl 4s, which is possible thanks to the
fact that the Cl 4s contribute to the conduction band (see Fig. 8.5) around the Γ point where the
exciton is formed. This results again in a spherical shape of the electron distribution.
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Figure 10.5: Same as the previous figure for the three degenerate bright excitons.

10.3 Summary

Our Bethe-Salpeter calculations have shown the existence of bound excitons in AgCl with signif-
icant binding energy. When these calculations are performed on top of a QSGW band structure
and screening calculation, the onset of optical absorption is found close to the experimental results.

The analysis of the excitons reveals the presence of a two-fold degenerate dark exciton at lower
energy than the bright exciton, which is itself three-fold degenerate. A more detailed analysis
shows that the bright and dark excitons are composed of similar transitions, close to the gap.
However for the bright exciton, non negligible contributions come from high energy transitions.
The dark and bright excitons differ one from another, by the behavior of their mixing coefficients
under inversion: these coefficients are odd for the bright exciton and even for the dark exciton.
The correlation function gives precious insight into the nature of the exciton showing in particular
the preference of the electron to localize on chlorine in the bright exciton, independently of the
position of the hole. However, it is not obvious to deduce from the information to what extent,
and how, the exciton will influence the response of the material to an external perturbation. This
is a question that has not been addressed in an ab initio framework in the literature so far, and it
will be the topic of the next chapter.
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Chapter 11

Linear density response

The linear density-density response function of materials has been a topic of intense studies for
decades. In particular, the calculation from first principles of optical absorption spectra including
the effects of the electron-hole interaction, the excitonic effects, has seen much progress over the
last 30 years. However, much less studies are devoted to the consequences of the response of a
material to a perturbation, namely, the charge dynamics induced by a perturbation. An important
reason lies in the fact that such a study requires a description of the response on a microscopic
level, which was up to recently not possible when excitonic effects were to be included. One of the
main aims of the present thesis is to fill this gap.

This chapter is then dedicated to the study of charge dynamics in linear response. On the
methodological side, we will discuss how various ingredients combine to give the final results.
Since little is known, we will also dedicate some space to the convergence requirements of the
calculations, and elucidate what is important. We will use the results to shine new light on
the physics of the induced charge dynamics and in particular, on the effects of the electron-hole
interaction. Of major interest will be the question of how to design a perturbation in order to
be able to observe an exciton in real space and time. Beside excitonic effects, other important
questions concern the role of the long-range Coulomb interaction.

11.1 Formalism

When an external perturbation is applied to a system, the latter will be excited, going from its
original ground state to an excited state. In a one particle picture this means that electrons will
make a transition from their valence state to a conduction state, but of course, here we will work in
a many-body framework, and transitions will take place between many-body states. In any case,
on the level of the electrons the transitions are characterized by a rearrangement of the charge:
this change the charge density of the system: this is called the induced density. If the perturbation
is periodic the system will start to oscillate between the ground and excited states, while for a
sudden perturbation the system will eventually decay back to equilibrium.

We will study the induced density with different perturbations, considering silver chloride as
main target. At first, we present the equations necessary to define and compute the induced density.
In the second section, the effect of the perturbation is discussed. In the remaining sections the
induced density computed with different polarizabilities is studied.

In linear response, the induced density δn is given by

δn(r, t) =

∫∫
χ(r, r′, t− t′)V ext(r′, t′)dr′dt′, (11.1)

where χ is the polarizability of the system and V ext is the external potential applied to the system.
We work in the linear response framework throughout this thesis.

For a periodic system, Eq. (11.1) can be written in reciprocal space

δnG(q, ω) =
∑
G′

χGG′(q, ω)V ext
G′ (q, ω). (11.2)
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Fourier transforming back to real space, we get the induced density (in real space-time) as a
function of the polarizability in reciprocal space (and frequency domain):

δn(r, t) =

∫
dq

∫ +∞

−∞
dω

∑
G,G′

ei((q+G)·r−ωt)χGG′(q, ω)V ext
G′ (q, ω). (11.3)

Eq 11.1 is real in real space and time whereas χGG′(q, ω) is complex (see later). The sums run
over all reciprocal lattice vectors.

In real space and time, the external potential is also real and, by using these two properties, the
integration on the reciprocal space-frequency hyperspace can be simplified in two different ways
(see appendix B):

δn(r, t) = 2Re

∫ +∞

−∞
dω

∫
q+

dq
∑
G,G′

ei((q+G)·r−ωt)χGG′(q, ω)V ext
G′ (q, ω)

 (11.4)

= 2Re

∫ dq

∫ +∞

0

dω
∑
G,G′

ei((q+G)·r−ωt)χGG′(q, ω)V ext
G′ (q, ω)

 . (11.5)

Expression 11.5 is the one that have been coded in this thesis (see Appenix B), ant that is used in
the calculations. In order to better understand the underlying physics, it is also useful to see how
the ingredients of the polarizability enter in the construction of the induced density. This will be
particularly convenient to study the role of the transitions, of the broadening and of the level of
approximation we choose for the polarizability. Starting from the exact expression for χ (Eq 5.3),
a general expression for χ is

χGG′(q, ω) =
∑
λ

AG,λ(q)B∗G′,λ(q)

ω − Eλ + iη
. (11.6)

For example in the case of the independent-particle polarizabilityAG,λ = BG,λ = ρ̃G = 〈φc| e−i(q+G).r |φv〉,
where λ stands for a transition vk− q→ ck. We define the partial Fourier transform of AG,λ(q)
as Aλ(r,q) ≡

∑
G e

i(q+G)rAG,λ(q) and similarly for B. This definition is convenient as in the
independent-particle polarizability Aλ(r,q) = φ∗ck(r)φvk−q(r). With this general expression, a
formula for the induced density can be derived. Let us consider a real perturbation, periodic in
time, with only one frequency ω0: V ext

G′ (ω,q) = δ(ω−ω0)V ext
G′ (q). Inserting this expression for the

external potential1

δn(r, t) = 2
∑
λ

Re

(∫
dq

∫ +∞

0

dω
∑
G

ei((q+G).r−ωt)AG,λ(q)δ(ω − ω0)

ω − Eλ + iη

∑
G′

B∗G′,λ(q)V ext
G′ (q)

)
(11.7)

= 2
∑
λ

Re

(∫ ∑
G

ei((q+G).r−ω0t)
AG,λ(q)

ω0 − Eλ + iη
R∗λ(q)dq

)
(11.8)

= 2
∑
λ

Re

(∫
e−iω0t

Aλ(r,q)

ω0 − Eλ + iη
R∗λ(q)dq

)
, (11.9)

with R∗λ(q) ≡
∑

G′ B
∗
G′,λ(q)V ext

G′ (q), or, in real space:

R∗λ(q) =

∫
Ω

drB∗λ(r,q)V ext(r,q). (11.10)

1To be precise the full formula for the external potential would be V ext
G′ (ω,q) = δ(ω − ω0)V ext

G′ (q) + δ(ω +

ω0)V ext
−G′

∗
(−q) in order to keep the potential as a real quantitiy in real space. However, since the Fourier transform

of the simplified formula 11.5 spans only over positive energies, we will use only the resonant part of the perturbation.
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Finally taking the real part:

δn(r, t) = 2

∫ ∑
λ

∣∣∣∣Aλ(r,q)R∗λ(q)

ω0 − Eλ + iη

∣∣∣∣ cos
(
q.r− ω0t+ φλE(ω0) + φλA(r) + φλR

)
dq, (11.11)

where φλE is the phase of 1/(ω0−Eλ + iη). The phase of Aλ(r,q) is q · r +φλA(r), it has been split
because by definition Aλ(r,q) includes a phase q · r. φλR is the phase of Rλ.

If the external potential has only one momentum q0, we have a plane-wave perturbation:

δn(r, t) = 2
∑
λ

∣∣∣∣Aλ(r,q0)B∗λ(q0)

ω0 − Eλ + iη

∣∣∣∣ cos
(
q0.r− ω0t+ φλE(ω0) + φλA(r) + φλR

)
. (11.12)

Instead, if the external potential is δ(r− r0), we will have a perturbation localized in a specific
place:

δn(r, t) = 2

∫ ∑
λ

∣∣∣∣Aλ(r,q)B∗λ(r0,q)

ω0 − Eλ + iη

∣∣∣∣ cos
(
q.r− ω0t+ φλE(ω0) + φλA(r) + φλB(r0)

)
dq. (11.13)

In the following, these two perturbations (plane-wave or localized) will be used to study the
density response of AgCl.

11.2 Discussion

Equation 11.11 is quite complex, but helpful to discuss the physics of the induced density.
To first get a sense of the physical process in this equation, let us start by discussing the terms

inside the sum. Let us assume, at first, that there is only one transition in the sum and one q = q0

in the integral. This simple case of one transition in the sum can be seen as an approximation
in which we perturb the system with an energy close to one specific transition of the system that
has no other transitions with close energy. All illustrations will be done using silver chloride. For
simplification, we use the independent particle approximation (IPA), so χ → χ0. The discussion
represents however also the interacting case, where the transitions are of more complex nature.

One transition

In Eq 11.11 each transition acts like an oscillator that is excited by the perturbation. The intensity
of this oscillator is controlled by two terms: the first is the energy attenuation factor at the
denominator 1/

√
(ω − Eλ)2 + η2: the more the energy of the perturbation is close to the energy of

the transition, the easiest it is to excite the transition. In the extreme case where the perturbation
energy tends to the energy of a transition ω → Eλ this intensity seems to go to infinity, as
η is supposed to be infinitesimal. Indeed for vanishing broadening, the intensity increases as
1/(|ω − Eλ|) close to a transition. But we know that the lifetime of a perturbation is not infinite and
thus the energy of the transition has a small imaginary part that prevents the factor from diverging.
The second term is the spatial overlap term Rλ, i.e. the overlap between the wavefunction of the
transition and the perturbation as one can see from Eq 11.10: the more the perturbation overlaps
with a transition wavefunction, the more it can excite this transition. The spatial shape of the
density induced by this oscillator is controlled by the Aλ(r, q0) term. In the IPA case, this is the
product between the conduction state and the valence state of the transition at the position r in
space. Finally the cosinus term controls the evolution in time of the oscillator: we see the typical
factor of a plane wave meaning that the system oscillates with the frequency of the perturbation.
An additional phase factor is present, causing the reaction of the material to be shifted in time
with respect to the perturbation (in the case of a plane wave propagating between t=−∞ and
t=+∞ the notion of retarded or advanced is not pertinent).

The perturbation fixes some parameters in the equation: namely ω0 and indirectly, Rλ. It is
interesting to understand the effect of these parameters on the induced density. Rλ is controlled
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Figure 11.1: Response of silver chloride to a plane-wave perturbation in the independent particle
approximation, and where only one threefold degenerate transition is taken into account. Left:
Induced density represented in a 2D cut perpendicular to the direction [100] and in the plane of
the atoms. Blue means an increase in the charge density while red means a decrease. The axis is
taken such that a unit cell is shown. Atoms are represented by the colored disks: green for chlorine
atoms and black for silver atoms. Center: Induced density at r=(0,1.055,0) [a.u.] (see arrow on
the left plot) as a function of time. Time is normalized by the period of each perturbation. The
perturbation (not at scale) is represented by the black dashed line. The different full curves show
the density induced by perturbations with different energies. The induced density is multiplied by
the factor

√
(ω − E)2 + η2. Right: Minus the imaginary part of the inverse dielectric function as

a function of the energy. This is proportional to the imaginary part of the first matrix element of
the polarizability matrix, which is χ0 in the IPA used here. The arrows indicate the energies at
which the calculations presented in the middle plot were made.

by the spatial shape of the perturbation while ω0 is the energy of the perturbation. Rλ will be
described in a second part and we will first focus on the energy of the perturbation.

The energy of the perturbation is present in two terms: the phase of the cosinus and the
denominator. A change of energy will thus have two effects: a change of the phase inside the
cosinus through φλE and a change of the intensity though the denominator as discussed above. The
first effect is equivalent to a shift in time, and changing the perturbation energy would just result in
a shift in time of the induced density. In this simple case changing the energy of the perturbation
will retard or advance the response of the system and modify the global intensity of the response.
Here it should be noted that in this case the change of the transition energy or the broadening η
have similar effects on the induced density.

The effect of the choice of the perturbation energy ω for a plane wave perturbation with
wavevector q0 and frequency ω and adopting the IPA is illustrated in Figure 11.1. The system is
silver chloride and the independent-particle polarizability matrix is computed with six transitions,
three degenerate resonant transitions and the associated antiresonant transitions. The transitions
are those coming from the k = Γ point between the three degenerate top valence bands and the
bottom of the conduction band. Because of the degeneracy of the top valence bands we are forced
to take three transitions (rather than one), but this does not alter the previous conclusion, for
there is only one transition energy (and one broadening) involved. This can be understood by
rewriting Eq 11.12,

δn(r, t) = 2
cos (q0.r− ω0t+ φE(ω0) + φ(r))

|ω0 − E + iη|

∣∣∣∣∣∑
λ

Aλ(r,q0)B∗λ(q0)

∣∣∣∣∣ , (11.14)

The terms φλE(ω0) and Eλ are the same for all transitions and can be factorized out. Where E is
the energy of the transitions, φE the phase associated to the broadening, and where φ(r) is the

phase associated to
∑
λAλ(r,q0)B†λ(q0). As one can see, the sum of the degenerate transitions

forms an effective transition.

But if this effective transition acts as one for its dependence with energy, this is not the case
with regard to the perturbation shape, as for example a change of the shape of the perturbation
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could lead to a modification of the shape of the induced density whereas this is not the case for a
unique transition.

The momentum is taken as q0=(0,0.00012,0)[a.u.] in Cartesian coordinates. The polarizability
matrix is computed at several energies between 2 eV and 4 eV. The broadening is set to 0.1 eV.
To compute the induced density the number of G-vectors in the polarizability matrix is set to 893.

On the right panel we see the imaginary part of the inverse dielectric function as a function of
the energy. In the IPA, it is proportional to Im χ. The peak generated by the transitions is visible
at 2.85 eV. On the left panel we see the induced density perpendicular to the [100] direction and
in the plane of the atoms. Since the result is time dependent, the picture is just a snapshot of
a time-dependent density response evolution. The induced density is computed using Eq. (11.5).
The external perturbation is a plane wave with energy ω0 = 2.85 eV .The color scale is given
on the right side of the plot. Atoms are represented as full circle: chlorine atoms are green and
silver atoms are black. We observe that the induced density is centered around atoms and has a
recognizable shape. Indeed we can see the shape of a p state around chlorine atoms. We also note
that there is little to no intensity around silver atoms.

As discussed in chapter 8.3, the top valence states at Γ have mostly a p state nature around
chlorine while the bottom conduction state has mostly a s state nature around chlorine. This is
in agreement with the density response picture, since the spatial shape is given by the product of
the p and s wavefunctions (that gives essentially a p-like shape, seen that s is spherical), for the
valence and conduction bands, respectively.

The center panel shows the evolution of the induced density as a function of the time. The
induced density is taken at r = (0, 1.055, 0) [a.u.], shown by a red arrow on the left panel. The
induced density is multiplied by the factor

√
(ω − E)2 + η2 (where ω is the energy of the per-

turbation), in order to see all the induced densities at the same scale. The densities induced by
different perturbations are plotted. They have different energies: 2.85 eV, 2.95 eV and 3.85 eV,
respectively. These energies correspond to: i) the energy of the transition, ii) the energy of the
perturbation plus 0.1 eV (same as the broadening) and iii) the energy of the perturbation plus 1 eV
(ten times the broadening). These energies are indicated by arrows in the right panel. The dashed
line represents the external potential (not to scale). Finally the time for each curve is divided by
its period in order to be compared.

The induced density follows a sinusoide, mirroring the perturbation, with the predicted delay.
At this point in space, the induced density is in phase opposition with the perturbative potential
when the energy of the perturbation equals the transition energy. When increasing the energy
of the perturbation the phase increases as well. These phases changes are in agreement with the
theory: the phase of a transition due to the energy factor is given by

φE(ω) = − arctan

(
η

ω − E

)
. (11.15)

At ω − E=0 the phase is −π/2, at ω − E = η the phase is π/4 and at ω − E = 1 eV the phase is
0.1. The curves have the same amplitudes. This means that a change in the perturbation energy
leads to a change in the induced density correctly described by the factor

√
(ω − E)2 + η2.

In conclusion, in the case of a single transition (or multiple degenerate transitions) the change
of the perturbation energy has the effect of changing the amplitude of the oscillations and the
phase of these oscillations, as derived at the beginning of this subsection.

We will study later the effect of Rλ on the induced density.

Several transitions

In general, real materials give rise to more than one transition. One can wonder how these tran-
sitions will mix. The previous results are still valid at the level of each term, but they have to be
summed as equation 11.11 shows. Each term has a different phase, global factor and spatial shape
that will change the picture of the induced density when summed. Moreover each term will react
differently to a change of the energy or shape of the perturbation.
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Figure 11.2: Response of silver chloride to a plane wave perturbation in the independent particle
approximation, taking into account two groups of degenerate transitions with energy 3.93 and
5.74 eV. (a) Imaginary part of the dielectric function as a function of the energy. (b) Induced density
as a function of time. As in figure 11.1 the time is divided by the period T of the perturbation.
The perturbation is a plane wave with energy 5.29 eV and momentum q=(0,0.00012,0)[a.u.]. The
position at which the the density is shown is (5.7,0) bohr in the plane passing by the atoms and
perpendicular to the direction [001]. The IPA polarizability used to get the induced density is
computed with different parameters: only the transition at ω = 3.93 eV, this is represented by
the black curve, only the transition at ω = 5.74 eV, this is represented by the red curve, and
both transitions: this is represented by the blue curve. (c) 2D plot of the induced density for
the calculation with only the low energy peak (black curve in (b)). (d) same as (c) but with the
calculation with both transitions (blue curve). (e) same as (c) and (d) but taking into account
only the high energy transition (red curve). For all snapshots, the time is taken at the maximum
of the blue curve. The polarizability is calculated with the six k = L points in the Brillouin zone,
with the three top valence bands (two of which are degenerate) and the bottom conduction band.
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For a perturbation energy that lies between two transition energies (or, to be clear, in between
two peaks in the spectrum), the response of the system will be the sum of each response. If
ones changes the energy of the perturbation continuously, the induced density will move from
the induced density associated to one peak to the density associated to the other. For a system
with many transitions, the induced density will be a mix of lots of different transitions with close
energies. However, transitions far from the energy of the perturbation can still have a visible
impact if the density they induce is located at a point where no other transition induces density.

An example is shown on figure 11.2. Two different transition energies are included: 3.93
eV and 5.74 eV. The imaginary part of ε, shown on figure 11.2a, shows two peaks, but several
degenerate transitions are included at these energies. They stem from transition between the three
top valence band and the bottom conduction band at the six L points and they are all included
for symmetry reasons. The independent-particle polarizability is computed at q = (0.00012, 0, 0)
[a.u.] in Cartesian coordinates and ω = 5.29 eV. The broadening was set to 0.1 eV and the
893×893 elements of the polarizability matrix were computed. As above, the independent-particle
polarizability is used to compute the induced density. The induced density is thus the one generated
by the total perturbation instead of the external perturbation. However, the result here is general
and applies to any polarizability.

The perturbation is a plane wave with energy 5.29 eV and momentum q=(0,0.00012,0)[a.u.].
Three calculations of the polarizability are considered here: one with all transitions, one with only
the transitions with an energy of 3.93 eV and one with only the transitions with an energy of
5.74 eV. The induced density generated by these calculations is represented by the blue, black
and red curve on figure 11.2b. The 2D cuts of these cases are presented in the bottom row of
figure 11.2.

We see on panel (c) and (e) that different transitions have different spatial shape, and different
phase as can be seen in panels (b). From Eq. (11.12), one expects that the induced density will be
the sum of the induced density due to each transition. This is indeed the case as the blue curve
is the sum of the black and red curves. More generally, one can see that panel (d) is the sum of
(c) and (e). The sum of the two transitions appears as one new transition with a different phase
and different intensity. Nevertheless the comparison has to be stopped here as the behavior of the
phase and intensity of this ”new transition” is not the one seen in the previous section but rather
a mixing between each individual behavior. For a different energy the mixing between the two will
change in a non trivial way and the spatial shape will be changed.

Effect of the broadening

When considering more than one transition, the broadening used in the calculation of the polariz-
ability will play an important role. In the dielectric function, it is well known how the broadening
changes the shape of the spectrum. The effect of the broadening on the induced density, instead,
remains to be elucidated. As described in section 11.2, the phase and the amplitude of each tran-
sition changes with the broadening through the prefactor. However, this does not lead to the same
behavior as a change of the perturbation energy. This is even more important as the broadening is
usually used as a tool to allow the calculation of the dielectric function on a coarse k points grid.
The broadening is here the same for all transitions. This causes a difference with respect to the
effect of the energy of the perturbation: while a change of the perturbation energy has a different
impact on every term because it is subtracted from the transition energies, the broadening affects
all terms the same way. To understand this better, as in the previous section, silver chloride with
two groups of degenerate transitions is used to illustrate a simple case. Equation 11.12 reduces to:

δn(r, t) = 2

∣∣∣∣∣A1(r,q)R†1(q)

ω0 − E1 + iη

∣∣∣∣∣ cos (q.r− ω0t+ φ1)+2

∣∣∣∣∣A2(r,q)R†2(q)

ω0 − E2 + iη

∣∣∣∣∣ cos (q.r− ω0t+ φ2) , (11.16)

where we have not explicitly shown the effect of summing over degenerate states, already discussed
in Sec.11.2.
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The induced density is the sum of the two transitions and when the broadening varies, the
denominator will change as well as the phase in the cosinus (by virtue of Eq. (11.15)). There are
different regimes for this sum: i) one term negligible with respect to the other, ii) both of the same
order of magnitude (with either the same prefactor sign or with opposite sign) and iii) both terms
vanishing.

Figure 11.3 shows the induced density with different broadening. The perturbation is the same
as previously: a plane wave with energy of ω = 5.29 eV and momentum q = (0, 0.00012, 0) [a.u.].
The left column shows a broadening in the vanishing limit (η = 0.001 eV). One can see on the
top left panel that the black and red curve (corresponding respectively to the low and high energy
transition) partially cancel out and share the same nodes. The two transitions are in opposition
of phase. In this case (and it would have been possible also if they were in phase), it is possible
to single out the cosinus. Of the three regimes described above, the vanishing broadening case
explores two of them: the case in which the two contributions to the induced density both vanish
(here at times t=0, t=0.5 and t=1, normalized with the period of the perturbation); and the case
in which both contributions are not negligible (in this case in opposition of phase, so to partially
cancel out the total induced density).

When the broadening increases (η = 0.5 eV), the two transitions are not in phase opposition
anymore. This is due to the fact that the phase of the low energy transition becomes smaller while
the phase of the high energy transition increases. We can notice also that intensities decreases,
but only slightly because η2 is still small compared to (ω − E)2. With this broadening, we can
explore all the different regimes in the evolution of the induced density. If we look at a position of
the induced density close to the silver atom: 1) the two contributions can have both negative sign
(at the beginning and at the end of the cycle); 2) one of the two contributions can be zero while
the other is finite; 3) the two contributions can have opposite sign and both non-zero; etc.

For large broadening (larger than the energy difference between the transitions and the energy
of the perturbation), the two terms have the same phase. The intensity is also smaller, as dictated
by the denominator. Around silver, the two transitions form a constructive sum which is visible
on the bottom right plot.

In general, each transition can have its own phase, so a vanishing broadening doesn’t necessary
mean that all transitions are in phase or in opposition of pahse. In addition, more complex systems
present of course many more transitions to sum. Nevertheless, some conclusions can be drawn:
when the broadening increases, transitions with energy lower than the perturbation energy see
their phase becoming smaller, while transitions with energy higher than the perturbation energy
see there phase becoming bigger. Of course the intensity of all transitions decreases with increasing
broadening since the intensity is smeared out. Finally, the principal effect of the broadening is
a change in the dynamics of the induced density because transitions will mix in a different way.
Therefore, the broadening has to be handled with care.

Response to different perturbations

In the previous subsections, the density induced by a plane-wave has been presented and the
effects of the perturbation energy has been discussed, both in the case of one and more than
one transitions. The broadening has also been studied. However, as stated at the beginning of
subsection 11.2, one more ingredient has to be discussed: Rλ(q). This quantity, defined as Rλ(q) =∑

GBλ∗G (q)V ext
G (q, ω), depends on the spatial shape of the external perturbation. For example a

plane wave perturbation with q0 +G0 momentum will have Rλ = δ(q−q0)Bλ∗G0
(q0), whereas for a

localized perturbation V ext(r, t) = δ(r− r0)V ext(t), the factor becomes Rλ(q) = Bλ∗(r0,q). From
equation 11.11, Rλ controls the relative intensity of each transition. The form of this term changes
completely between these two examples. This raises the question: how does this parameter affect
the induced density ? A transition with a large Rλ will be well represented in the total induced
density (if the energy term also allows it) while a zero Rλ would completely suppress this transition.
Going from a delocalized potential to a localized one thus might have important effects as the Rλ
of each transition changes. Indeed, Bλ∗(r0,q) might be zero while Bλ∗G0

might have a large value,

70



Linear density response Results

0 0.2 0.4 0.6 0.8 1
Time

-4e-04

-2e-04

0

2e-04

4e-04

In
d

u
ce

d
 d

en
si

ty
 [

a.
u

.]

ω=3.929 eV
ω=5.743 eV
Both peaks

 η = 0.001 eV

0 0.2 0.4 0.6 0.8 1
Time

-4e-04

-2e-04

0

2e-04

4e-04

In
d

u
ce

d
 d

en
si

ty
 [

a.
u

.]

ω=3.929 eV
ω=5.743 eV
Both peaks

 η = 0.5 eV

0 0.2 0.4 0.6 0.8 1
Time

-4e-05

-2e-05

0

2e-05

4e-05

In
d

u
ce

d
 d

en
si

ty
 [

a.
u

.]

ω=3.929 eV
ω=5.743 eV
Both peaks

 η = 10 eV

0 2 4 6 8 10
[bohr]

0

2

4

6

8

10

[b
o
h
r]

-2.0e-04

-1.5e-04

-1.0e-04

-5.0e-05

0.0e+00

5.0e-05

1.0e-04

1.5e-04

2.0e-04

0 2 4 6 8 10
[bohr]

0

2

4

6

8

10

[b
o
h
r]

-1.6e-04

-1.2e-04

-8.0e-05

-4.0e-05

0.0e+00

4.0e-05

8.0e-05

1.2e-04

1.6e-04

0 2 4 6 8 10
[bohr]

0

2

4

6

8

10

[b
o
h
r]

-1.2e-06

-9.0e-07

-6.0e-07

-3.0e-07

0.0e+00

3.0e-07

6.0e-07

9.0e-07

1.2e-06

Figure 11.3: Response of silver chlorine to a plane wave perturbation in the independent parti-
cle approximation, with the same transitions as in the previous figure, and with polarizabilities
computed with different broadening. Top row: Induced density as a function of time (normalized
with the period of the perturbation) at r = (6.05, 0, 0) Bohr, close to a silver atom, in the plane
passing by the atoms and perpendicular to the [001] direction. The black curve represents the
polarizability computed with only the low energy peak, the red curve the calculation with only the
high energy peak and the blue curve represents the calculation with both peaks. The bottom line
presents the 2D plot of the induced density in the plane passing by the atoms and perpendicular
to the [001] direction. The induced density generated by each peak individually is presented on
figure 11.2. The different columns differ by the broadening used in the polarizability calculation.
The left figure shows a calculation with η = 0.001 eV, the center figure shows a calculation with
η = 0.5 eV and the right figure shows a calculation with η = 10 eV. All snapshots were taken at
t=0.2 fs (that corresponds to t=0.26 T).

Figure 11.4: 2D plot of the induced density in the plane passing by the atoms and perpendicular
to the [001] direction. The response is computed using the two groups of degenerate transitions.
The broadening is η = 0.5 eV, corresponding to the center panel in Fig 11.3. The induced densities
shown are taken at different time, expressed in unit of the period of the plane wave, leading to
different ways of summing the two transitions. Left: the two degenerate transitions adds (t=0.05),
center left: the low energy transition cancels (t=0.13), center right: the two transitions substract
from each other (t=0.26), right: the high energy transition cancels (t=0.43).
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causing the transition to either appear or disappear. In this subsection, an illustration of the effects
of Rλ will be presented.

In the case of a one transition system Rλ only brings an overall factor:

δn(r, t) = 2

∣∣∣∣∣Aλ(r,q)R†λ(q)

ω0 − Eλ + iη

∣∣∣∣∣ cos
(
q.r− ω0t+ φλE(ω0) + φλA(r) + φλR

)
(11.17)

where q is the momentum transfer of the transition. In this situation it is not possible for Rλ to
change the spatial distribution of the induced density, given by Aλ(r,q), but only to change its
global intensity and the phase in the cosinus. We will thus focus on systems with more than one
transition. What do we expect? For a localized perturbation, knowing that Bλ∗(r,q) is linked to
the overlaps between the valence and the conduction states of the transition at r, only transitions
with non vanishing overlap at the position of the perturbation will be visible and transitions with
vanishing overlap at this position will have no intensity. For example in silver chloride, if the
perturbation is localized around silver, only transitions from and to states localized around silver
will be visible. This does not mean that it is not possible to observe induced density outside silver,
as this is controlled by Aλ(r), but it requires the same transition to have overlapping tail even far
from silver.

This is different for the case of a delocalized perturbation, where the intensity is proportional
to the Fourier component of the overlap which has the same momentum as the perturbation. For
vanishing momentum, this overlap gives the dipole operator2.

In the following, we will indeed investigate the effects of these two extreme cases, a delocalized
plane-wave perturbation and a localized external potential. For a plane wave perturbation, with
only one q+G component, small and large momentum can be considered. A localized perturbation
can be modeled by a Dirac delta function. However, since we consider the perturbation in reciprocal
space, a cutoff has to be set in the Fourier transform

δ(r− r0) = 1/(2π)3
∑
G

∫
dqei(q+G)·(r−r0). (11.18)

This Fourier transform contains a sum of reciprocal lattice vectors, which controls to the degree
of localization: the more G’s, the more localized, the more δ-like will be the perturbation. The
integral over q, instead, influences the periodicity of the perturbation (using only one q means a
perfect periodicity of one unit cell; taking the integral over 4 q’s corresponds to taking a periodicity
of 4 unit cells, and so on). The convergence over both values has to be checked.

Let us compare the induced density generated by the different perturbations for silver chloride,
evaluated with 256 symmetric k-points, 8 valence bands and 27 conduction bands. The polarizabil-
ity is computed at ω0 = 2.86 eV, corresponding to the energy of the lowest transition3. Figure 11.5
shows the effect of three different perturbations (upper panels) on the induced density (lower pan-
els) of AgCl . We have a plane wave perturbation in the left column, a perturbation localized close
to an atom with a periodicity of one unit cell (only one q taken into account in Eq. (11.18)) in the
center column, and a perturbation still localized but a periodicity of four unit cells (integral done
over four q point in Eq. (11.18)) on the right. The position of the localized perturbation is set to
be close to a chlorine atom (r = (0, 1.0, 0) a.u.), not at the exact position of the atom, because
there the density vanishes and no response is expected in the material (see section 11.3). The plot
associated to the plane-wave perturbation has only on color because the plane-wave momentum is
vanishing, corresponding to infinite wavelength. The densities resulting from these perturbations
are quite different.

The planewave perturbation, although homogeneous in space, creates a response with structure
at the level of atoms. The perturbation localized with one unit cell periodicity (center) creates

2This restriction does not apply in the case of localized perturbation, which means that dipole forbidden tran-
sitions can contribute to the induced density for localized perturbation.

3The energy of the lowest transition does not have to be that of the direct gap, because transitions at q 6= 0 can
contribute to the induced density. This lowers the minimum transition energy in materials with indirect band-gap,
for instance in AgCl with transitions between Γ and L.
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Figure 11.5: Response of silver chlorine to perturbations with different localization, in the inde-
pendent particle approximation. Top: 2D cut of the perturbations used to compute the induced
density, in the plane passing by the atoms and perpendicular to the [001] direction. Bottom: 2D
cut in the same plane, of the induced densities generated with the corresponding perturbation on
the top. Chlorine atoms are depicted in green, silver in black. Left column: Plane wave perturba-
tion with transfered momentum of 0.00012 Bohr−1. Center column: Localized perturbation with
one unit cell periodicity. Right column: Localized perturbation with four unit cell periodicity.
The calculation of the polarizability was realized with 256k points in the Brillouin zone, 8 valence
bands and 27 conduction bands.

density where the intensity is now concentrated in a peak close to chlorine. The perturbation
is defined as V ext(r, t) =

∑
R δ(r − r0 + R)eiωt or V ext

G (q, ω) = δ(ω − ω0)δ(q)eiG·r0 , which is
equivalent to summing all the terms in G,G′ in eq 11.5, but not doing the integral over q (we
use only the χ0(q = [0, 0001, 0, 0.0001]). The induced density presents a larger intensity than
in the delocalized case (note the changing scale) and a strong response peak occurs close to the
chlorine atoms, at the position of the perturbation. The induced density around chlorine and silver
changes. While for the planewave perturbation the induced density was symmetric around each
atom and oriented in the direction of the momentum, the localization forces the polarization of the
material toward the position of the perturbation. This cause the density around chlorine to become
asymmetric. Another notable difference is the shape of the induced density around the silver atom
(now more a d-like orbital shape). Because the induced density has the same periodicity as the
perturbation, there are only two different atoms, and thus no other behavior can be expected.
We see here the effect of the reorganization of the different transitions: while for the plane wave
perturbation, transitions oriented in directions other than its momentum were suppressed, for the
localized perturbation all transitions with intensity at the position of the perturbation were added.

If we now add a sum over q in the first Brillouin zone (see Eq. (11.18)), we increase the
periodicity of the perturbation, and obtain the right column in the figure, with a 4-unit periodicity.
The sum over reciprocal vectors is the same as previously and is realized for all BZ vectors. The
induced density is localized around the center atom. Around the center chlorine and the silver
atoms below and above it, the density is similar to the one-unit periodicity case, but further away
it is vanishing rapidly. The induced density around the atoms is oriented towards the perturbation.

In this example, we saw that the form of the potential, through Rλ(q) is a crucial parameter
for the shape and intensity of the induced density. The change of Rλ causes a reorganization of
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the relative intensity of the transitions. Still one of the parameters has been arbitrarily decided:
this is r0, the position at which the perturbation is localized. One can wonder what is the effect
of this parameter on the induced density. One can expect an important effect: for instance, the
excitation of a region with few electrons will have a smaller response than that of a region with
many electrons.

Figure 11.6: Response of silver chlorine to perturbations localizated close to silver and close to
chlorine, in the independent particle approximation.The energy of the perturbation is ω=2.855 eV.
Top: perturbation localized close to chlorine, bottom: perturbation localized close to silver. On
the left hand side, the induced density is plotted on a 2D plot in the plane passing by the atoms
and perpendicular to the [001] direction, the time of the snapshot is set to zero, that is to say at
the maximum of the perturbation. On the middle column the induced density with respect to time
at two different positions is plotted, one is close to the chlorine atom (black) and the other is close
to the silver atom (red). On the right hand side the 2D plot of the perturbation is shown with the
same cut in space and at the same time as the plots in the left panel.

We now consider two different localizations: one close to silver and one close to chlorine. The
energy of the perturbation is set to 2.86 eV. Each of these perturbations will gives a different
induced density. The results are shown in figure 11.6. The first row shows the results for a per-
turbation localized around chlorine (r0 = (0, 1.05, 0) [a.u.]), this is the same result as the previous
figure with a different color scale. The second line shows the results for a perturbation localized
around silver (r0 = (0, 6.29, 0) [a.u.]). The image is quite different, showing that indeed the induced
density is sensitive to the position of the localization. There is an asymmetric localization around
silver as in the previous case.

To conclude this section, we have seen the interplay of the various ingredients entering the
induced density formula: the perturbation energy, the broadening, the shape of the perturbation
and the localization. All these considerations will be used for the next step: the study of the induced
density when we describe the system with different levels of approximation for the polarizability.

74



Linear density response Results

-6

-5

-4

-3

-2

-1

 0

 1

 0  1000  2000  3000  4000  5000  6000  7000

ρ
(r

)

G-vectors

x=0 Bohr
x=0.524 Bohr
x=1.048 Bohr

x=2.097 Bohr
x=3.145 Bohr
x=4.193 Bohr

x=5.242 Bohr

-2

 0

 2

 4

 6

 8

 10

 0  500  1000  1500  2000  2500  3000  3500  4000

ρ
(r

)

G-vectors

x=0 Bohr
x=0.524 Bohr
x=1.048 Bohr

x=2.097 Bohr
x=3.145 Bohr
x=4.193 Bohr

x=5.242 Bohr

Figure 11.7: ρ̃(r) =
∑Gmax

G eiG.rρ̃(G) as a function of Gmax. Calculations are made for different
positions r. The left panel shows a transition between top valence and bottom conduction at
k=(0.49,0.23,0.11). The right panel shows a transition between top valence and bottom conduction
at k = Γ.

11.3 Independent particle response

While in the previous section the major ingredients to the density response were discussed qualita-
tively, we will now elucidate the effect of calculating the polarizability on different levels of theory.
Change of polarizability has strong effects on the dielectric function: the inclusion of the long range
part of the coulomb potential in the polarizability creates plasmons, the short range contributions
are responsible for crystal local field effects (see Appendix C), and the inclusion of the electron-hole
interaction (through the Bethe-Salpeter equation) generates excitons. In this section we will focus
on the simplest polarizability: the independent-particle polarizability. Results will be discussed
for the real material AgCl. Therefore we start with a convergence study.

Convergence with respect to the size of the matrix

The density response calculation (through equation 11.5) presents a sum over G and G′, the
reciprocal lattice vectors. As mentioned before, in practice a cutoff is applied to these otherwise
infinite sums. The two parameters (constrained by the size of the polarizability matrix as a
maximum) control two elements in the induced density:

• The sum over G (the first index of χGG′) controls the spatial resolution of the induced
density as it is the inverse Fourier transform. It must have a cutoff large enough to give a
correct description of the induced density at the scale we are interested in.

• The sum over G′ (the second index of χGG′) has to be large enough to include all of the
perturbation Fourier components, or at least enough terms such that the induced density is
converged to the precision we require. This is important in the cases of a plane wave with a
very large momentum, as the corresponding G needs to be in the matrix, and for a localized
perturbation, where its Fourier components are all non vanishing. This corresponds to the
correct description of the term Rλ.

According to equation 11.6, for χGG′ the dependence on G and G′ appears through AG

and BG. In the case of the independent-particle polarizability, both terms equal the ρ̃. For other
polarizabilities, they are related to the mixing of ρ̃. We can then expect to have similar convergence
behaviour independently of the χ.

An example of the convergence of ρ̃ in real space with respect to the number of plane waves in
the inverse Fourier transform is shown in figure 11.7. In the left panel we show the ρ̃ corresponding
to the overlap between the top valence band and the bottom conduction at k = (0.49, 0.23, 0.11)
as a function of the cutoff used in the inverse Fourier transform. The different curves show the
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Figure 11.8: Induced density for a plane wave perturbation with vanishing momentum. The system
is silver chloride with 8 valence bands and 30 conduction bands. The k-point grid is a 8×8×8 MP
symmetric grid. Different sizes of matrix are used in the calculation of the induced density. Left:
89 G-vectors, center: 283 G-vectors, right: 2975 G-vectors. All induced densities are taken at the
same time, t=0.6 fs. The plots are a 2D cut in the plane passing by the atoms and perpendicular
to the [001] direction.

overlaps at different positions in space expressed in reduced coordinates. On the right panel, a
similar plot is shown for k = Γ. The chlorine atom is located at r = 0 while the silver atom is
located at r = 5.242 Bohr. Different behaviors can be observed. First, not all points converge
with the same number of G’s. The case r = 5.24, corresponding to the position of the Ag atom, is
particularly bad. The overlaps are more difficult to converge close to atoms as the wavefunctions
vary quickly around them. In general the convergence can be easy to achieve for some transitions
and quite difficult for some other as we can see comparing the left and right panels of Fig.11.7,
showing the convergence for two different k-points. Of course, in practice, it is impossible to carry
out this detailed study for each transition in a real material. Nor it is pertinent, for, as we have seen
in the previous section, not all transitions have the same importance. It is instead more convenient
to look directly at the convergence of the induced density with respect to the G-vectors.

Figure 11.8 shows the convergence of the first G sum in the induced density. The perturbation
is a plane wave with vanishing momentum and ω0 = 2.86eV. In this calculation we use a 8×8×8
k-point MP symmetric grid, 8 valence and 30 conduction bands. We see that structures around
chlorine are already formed with 89 G-vectors, whereas structures around silver require at least
283 G-vectors. If we increase the number of G’s, we increase the intensity and change the fine
details (without changing the overall picture). In the following, the sum will always run over the
2975 G-vectors.

For the second sum, convergence will be studied with a localized perturbation, around chlorine
in this case (but localization around silver would have the same convergence behaviour). This is
because the second parameter in the sum (G′) has no effect if only a plane wave at q + G is used
as perturbation.

Fig. 11.9 shows, then, the induced density with a different degree of localization of the per-
turbation. The system is the same as considered previously, the perturbation is taken such that
the periodicity is eight unit cells. With 89 G-vectors (left plot) the induced density is already
well converged except for small structures which are not yet formed. With 2913 G-vectors, small
structures appear, particularly around the perturbation. To show more quantitative results, a
1D cut is made in the 2D induced density plot, in the vertical direction and passing through the
perturbation. Results are shown in figure 11.10. Around r=0, where we apply the perturbation,
a strong peak goes to large negative values and, diverges with increasing number of G-vectors,
for we are simulating a delta peak. Besides this quite unphysical point, the overall picture can be
correctly interpreted as the density induced by a very localized perturbation: we can, for instance,
see that the induced density goes to zero close to the atoms (indicated by colored arrows), as seen
in Fig. 11.7.
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Figure 11.9: Response of silver chloride to a localized perturbation close to a chlorine atom, at
r0 = (0, 1.05)[a.u] in the coordinate of the 2D cut and with vanishing momentum and energy
ω0 = 2.855 eV. Top row: induced density in the 2D plan passing by the atoms and perpendicular
to the [001] direction. The parameters are the same as for the figure 11.8. Different matrix sizes are
used in the calculation of the induced density. Left: 89 G-vectors, right: 2913 G-vectors. Bottom
row: corresponding perturbation.

Convergence with respect to the periodicity of the potential

In the following we will deepen the discussion of the localization of the perturbation, already
mentioned in section 11.2 and illustrated in figure 11.5. To be fully localized a perturbation must
have an infinite period corresponding to an integral over the first Brillouin zone. This integral has
to be discretized, which leads to periodicity of the perturbation (and of the induced density). This
periodic perturbation can be thought of as the sum of a non periodic perturbation with replicas
shifted by multiples of the period. As we use linear response, the density induced will be the sum
of the density induced by each replica of the perturbation. This is sufficient to simulate a localized
perturbation as long as the induced density replica do not significantly overlap, for it would falsify
the results.

We test then perturbations with larger and larger periodicity, (including more and more q-
vectors in the calculation), in order to check this effect. Fig. 11.11 shows localized perturbations
with different periodicity and their associated induced density.

The left panel, with periodicity of two unit cells, presents the described problem: the pertur-
bation replica are too close and the induced density overlaps. By comparing with the calculation
with the largest periodicity, only the density around the center chlorine and around the first silver
neighbor is correct. When increasing the periodicity, the induced density changes significantly.
The comparison with the largest periodicity shows that the density is correct until the fourth
closest neighbor of the central chlorine. With this periodicity, we already have a good image of
the induced density. This shows that, in the case studied here, the induced density decays quickly
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Figure 11.10: Induced density along a line. The line is taken in the vertical direction in the
previous figure and at x = 0, it passes through chlorine and silver atoms at positions indicated by
the green and black arrows, respectively. The induced density is computed with different number
of G-vectors: 89 G-vectors in black (the left hand side of Fig. 11.9), 965 G-vectors in red, 1962
G-vectors in blue and 2913 G-vectors in cyan (the right hand side of Fig. 11.9).

with the distance to the perturbation. We will come back to this point in a comparison with the
homogeneous electron gas in section 11.4.

Results for different perturbations

In this subsection, we use converged values for all parameters and present results for different
perturbations.

Plane-wave perturbation

We start by considering the case of a plane-wave perturbation.
Figure 11.12 shows the induced density for two different momentum transfers (q0 → 0 and

q0 = (1/2, 0, 1/2), in reduced lattice units) and two perturbation energies: in the left column we
have vanishing energy ω0 = 0, while in the right column the energy is taken equal to the first
excitation energy, i.e. ω0 = 2.86 eV for q0 = 0 and ω0 = 1.98 eV for q0 = (1/2, 0, 1/2),

Several behaviors can be noticed: i) first of all, we see much bigger response at finite momentum,
the maximum intensity around silver is 0.67 with a perturbation with finite energy, whereas it is
2.8 10−4 close to silver for a perturbation with vanishing momentum; ii) by looking at the right
panels, we see that the induced density around the silver atom has an overall bigger intensity, at
both momenta; iii) at vanishing momentum transfer, the induced density around silver has similar
shape for both energies. By the way of contrast, close to chlorine, at vanishing energy, there is no
intensity and only some induced density far from the atom is visible. At ω0 = 2.86 eV, the intensity
around chlorine is quite different and has the shape of a p state. The transition corresponding to
this energy is a transition at the Γ point.

Localized perturbation

Figure 11.13 shows the induced density for a localized perturbation at two positions: close to
chlorine and close to silver. The calculation are made in the static limit and at ω0=2.855 eV.
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Figure 11.11: Induced density by a localized perturbation with periodicity over different number
of unit cells. Left: periodicity over two unit cells, center: periodicity over four unit cells, right:
periodicity over eight unit cells .

For silver and chlorine the reaction of the system at the position of the localization is in phase
opposition to the potential. This is why the induced density is shown at t=0 fs, this is the point
where it is maximal. We see that the induced density is mainly localized around the perturbation
and decreases quickly when going away from it. This can be seen in Fig 11.14, which shows a cut
of the induced density along the line passing through the perturbation, localized around chlorine
(left panel) and silver (right panel). We see that the decrease is faster in the static limit than
at ω0=2.86 eV. We also see that the response of the system is stronger when the perturbation is
localized around silver than around chlorine. Fig. 11.13 shows that the induced density has mostly
a d shape around silver and a p shape around chlorine. These orbitals are oriented in the direction
of the perturbation, testifying of a polarization of the material.

79



Results Linear density response

Figure 11.12: Response of silver chloride to plane-wave perturbations. The polarizability used is
the independent-particle one. The left and center column show the induced density in a 2D plan
passing by the atoms and perpendicular to the [001] direction. The left column shows the induced
density for ω = 0 eV and the center column shows it for ω = 1.98 eV and ω = 2.86 eV, for the
q = 0 and q = (1/2, 0, 1/2), respectively. The right column shows the induced density as a function
of time, at two positions, one close to chlorine and the other close to silver, indicated by arrows
on the 2D cuts. Top: vanishing momentum. Bottom: plane wave perturbation with momentum
q = (1/2, 0, 1/2) in the reduced basis. For the top center panel, the snapshot is taken at t=0.66fs,
corresponding to the time where the dahed red and dashed black curve cross in the top right panel.
The others snapshots are taken at t=0fs.

11.4 Response in the Random phase approximation

The independent-particle polarizability alone does not give a good description of the response of
a material. Indeed the changes in the Hartree potential have to be taken into account when the
system reacts and the density changes. This has two main effects: the long range part of the
coulomb interaction creates the plasmon excitation in the inverse dielectric function, while the
other components of the coulomb interaction are responsible for the local field effects. As shown
previously, the local field effects are negligible in the spectra. Strong changes due to the long-range
component are expected to occur when a plasmon forms but also at other energies. This effect is
present in the polarizability through the mixing of the independent-particle transitions.

Plane-wave perturbation

Figure 11.15 compares the induced density for independent particle and RPA polarizabilities using
plane wave perturbations. Calculation at different energies and momenta have been realized. The
principal change induced by the RPA is a strong reduction of the intensity of the response, while
the shape remains similar. Also the phase slightly changes.

The reduction of the intensity can be easily understood: in the RPA, χ = χ0 + χ0vχ = χ0ε−1.
This means that the external potential is screened, leading to an effective perturbation that is
weaker than the external one.
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Figure 11.13: Response of silver chloride to localized perturbation. The induced densities are
represented in a 2D plan passing by the atoms and perpendicular to the [001] direction. Top: the
perturbation is localized around a chlorine atom. Bottom: the perturbation is localized around
silver. The left panels show calculations with static perturbation and right panel show calculations
for perturbation energy of ω = 2.855eV. The snapshots are taken at t=0, when the external
perturbation and the density response are at their maximum.
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Figure 11.14: Induced density from Fig 11.13, along the line in the vertical direction and at
x = 0, passing through chlorine and silver atoms at positions indicated by the green and black
arrows, respectively. Left: perturbation localized at r=1.0 bohr, close to a chlorine atom. Right:
Perturbation localized at r=5.8 bohr, around a silver atom. The density induced by a static
perturbation is represented in black, while density induced by a perturbation with energy ω =
2.855eV is represented in red.
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Figure 11.15: Response of silver chloride to plane-wave perturbations with different momenta
and energies in the independent particle approximation and the random phase approximation.
The left and center column show the induced density in a 2D plan passing by the atoms and
perpendicular to the [001] direction. The left column presents the induced density computed
with the independent particle polarizability wile the center column presents the induced density
computed with the RPA polarizability. The right column compares the independent-particle and
RPA induced density as a function of time at two positions, one close to silver and the other close to
chlorine atoms. Theses positions are chosen because they are a local maximum close to each atom.
The first row shows a perturbation with vanishing momentum and energy, the second row shows
a perturbation with vanishing momentum and ω = 2.85 eV. The third row shows a perturbation
with momentum q = (1/4, 0, 1/4) and vanishing energy. The last row shows a perturbation with
momentum q = (1/4, 0, 1/4) and energy ω = 1.98 eV.
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Figure 11.16: Response of silver chloride to localized perturbations with different energies and
localized at different position in the independent particle approximation and the random phase
approximation. Left column presents the induced density computed with IP polarizability. The
center column presents induced density computed with the RPA polarizability. The first and
second rows show a perturbation at zero frequency and localized close to the chlorine atom and
to the silver atom, respectively. The third and fourth rows show a perturbation taken at ω = 2.85
eV, localized close to the chlorine atom and to the silver atom, respectively.
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Figure 11.17: Induced density from Fig 11.16 for a perturbation localized around a chlorine atom
along the line in the vertical direction and at x = 0, passing through chlorine and silver atoms at
positions indicated by the green and black arrows, respectively. The black curve corresponds to
the calculation with χ0 and the red curve corresponds to the calculation with χ. Left ω = 0, right:
ω = 2.855eV and ω = 2.858eV.
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Figure 11.18: Induced density from Fig 11.16 for a perturbation localized around a silver atom
along the line in the vertical direction and at x = 0, passing through chlorine and silver atoms at
positions indicated by the green and black arrows, respectively. The black curve corresponds to
the calculation with χ0and the red curve corresponds to the calculation with χ. Left ω = 0, right:
ω = 2.855eV.

Localized perturbation

We now turn to localized perturbations. Figure 11.16 shows the difference between χ0 and χ for
a perturbation localized around chlorine or silver with both χ0 and χRPA. The response of the
system at the position of the localization is in phase opposition to the potential. The first difference
to note is that the induced density is more localized in the case of the RPA than in the case of χ0,
as we can see comparing left and right columns. Figure 11.17 shows a cut along the [010] direction
of the induced density for χ0 and χ. The perturbation is localized around chlorine. The figure
shows clearly that the intensity decreases when going from χ0 to RPA, and that the RPA response
decays faster than the independent particle one, especially for ω 6= 0. Figure 11.18 shows the same
thing, but for a perturbation localized on the silver atom. Globally, we have a more localized and
weaker response of the system around the perturbation with RPA than with χ0. However, the
changes are smaller that one would naively expect by comparing the spectra of χ0 and of the RPA
(see for exemple Fig. 8.9). In order to understand whether these trends are specific features of
AgCl or whether they can be understood on the basis of more general arguments, we will make a
short excursion to the homogeneous electron gas (HEG).
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Figure 11.19: Response of the homogeneous electron gas with a density corresponding to rs = 1.6:
density induced by a localized perturbation situated at r=0 Bohr, as a function of the distance
to the perturbation. The frequency of the perturbation is ω = 0 (left), ω = 0.75 EF = 14.7 eV
(middle), and ω = 1.33 EF = 26 eV (right panel).

Comparison with the homogeneous electron gas

In the HEG, the independent particle polarizability is given [190] as

χ0(q, ω) = N
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+

)))
, (11.19)

where q̄= q/kF , v± = ω/qvF ± q/2kF and N=mkF /2π
2~2, with vF the Fermi velocity and kF the

Fermi momentum. The Fermi energy EF is defined as k2
F /2 in atomic units. Note that because

the system does not have a periodic potential, q runs over the full momentum space and χ0 and
χ are functions, not matrices. In particular, the RPA polarizability reads

χ(q, ω) =
χ0(q, ω)

1− vqχ0(q, ω)
. (11.20)

Fig 11.19 shows the response of the HEG to a localized perturbation, comparing results obtained
with χ0 and χ, respectively. The parameter rs is set such that it corresponds to the density in
silver chloride, considering that only valence electrons, and not semi core electrons, contribute
to the screening density. This correspond to rs ' 1.6 Bohr. The different panels are results
for different frequencies of the external perturbation. Since we have analytic expressions for the
response functions, we can perform the full integration over momentum space and simulate the
effect of a perfectly localized, δ-function perturbation, located at r = 0. As expected, the response
is maximal at r = 0 where χ0 diverges, followed by an oscillatory response at larger distances.
The oscillations of the induced density are known as Friedel oscillations. They have a period π/kF
[191].

Because of the quite high density (small rs), the system is strongly screening the perturbation.
This screening is due to the density close to the perturbation, whereas after a distance of more
than a few (less than 10) Bohr there is only little induced density, especially at ω = 0. The RPA
has globally a tendency to reduce the induced density with respect to the independent-particle
response, which, as explained earlier for AgCl, can be understood by the fact that one can express
the RPA response to an external potential as χRPAV ext = χ0ε−1V ext, which means that the RPA
sees an effective perturbation that is screened with respect to the external one. It should be noted
that this also changes the shape of the effective perturbation; for example, for a localized external
potential ε−1V ext may be more extended than V ext alone. The extension of the induced density
over a few Bohr and the reduction by the RPA observed in the HEG reproduce the tendencies
observed in AgCl (see Sec.11.3), which means that these can be explained by an effect of the
average density.

The response at the highest frequency, in the right panel, is much less localized and shows
a new oscillation, of longer wavelength. To understand this phenomenon, it is useful to look at
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Figure 11.20: Response of the homogeneous electron gas with a density corresponding to rs = 1.6:
minus the imaginary part of the polarizability as a function of frequency. The independent particle
polarizability is shown in black, the RPA polarizability in red, and the ALDA result in blue. The
polarizability is computed at different momentums: 0.1 kF in the left panel, 0.36 kF in the middle
panel and 0.56 kF in the right panel. The position of the RPA (ALDA) plasmon peak is indicated
by the red (blue) triangle.
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Figure 11.21: Response of the homogeneous electron gas with a density corresponding to rs = 1.6:
Minus the real and imaginary part of the polarizability as a function of momentum, at different
frequencies. The independent particle polarizability is shown in black, the RPA polarizability in
red, and the ALDA result in blue. The position of the RPA (ALDA) plasmon peak is indicated
by the red (blue) triangle.

the spectra of the response functions. These are shown in Fig. 11.20 as function of frequency for
different momentum transfers, and in Fig. 11.21 as function of momentum transfer for different
frequencies. At first sight, Fig. 11.20 might suggest that the response functions are similar.
However, note that the intensity of the imaginary part of χ0 is scaled by a q-dependent factor
in order for the spectrum to fit in the graph: the spectrum of χ0 is more intense by orders of
magnitude, especially at small q. Moreover, the red triangle on the frequency axis above ω = EF
indicates the position of a sharp plasmon that occurs in the RPA, but is absent in χ0. It cannot
be seen in the figure because the latter contains no extra broadening. It is, however, an important
ingredient for the screening.

At ω = 0, the real part of χ0 is much larger than that of χRPA for small wavevector, whereas
at larger wavevector the two curves join. Since our perturbation is localized, all wavevectors are
integrated, and finally the screening change of the RPA with respect to χ0 remains moderate. For
a frequency ω where the dispersing plasmon frequency ωp(q) yields a solution qp to the equation
ω = ωp(qp), instead, the induced density will be dominated by the response function at qp, which
means that it oscillates with the period corresponding to qp. As the figures show, there is, for
example, a plasmon solution for ω = 1.33 EF , which is qp = 0.36 kF . This means that the period
of the induced oscillation is 2π/(0.36kF ), about 6 times longer than the Friedel oscillation of period
π/kF , which is indeed what Fig. 11.19 shows. However, this result will be important for the exciton
in AgCl, as we will see later. Since there is no plasmon in χ0, no such oscillations are induced
in the independent-particle response. We do not have a clear plasmon resonance in the frequency
range studied in AgCl (see Fig. 8.8); for this reason, we could not observe this phenomenon for the
plasmon in our material.
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Finally, we can try to use use the HEG in a different way to imagine what might happen when
the electron-hole interaction is included in the calculations. Although this will be done in the next
section using the BSE for AgCl, we can get an idea by simply looking at some TDDFT results,
approximated in the ALDA. In this case, the Coulomb interaction that appears in the RPA is
reduced by a negative constant fxc, since the new kernel of the Dyson equation is vc + fxc instead
of vc (see Eq. (5.10)), and fxc is just a negative number in the ALDA. We would therefore expect
that the ALDA counter-balances the effect of the RPA. Moreover, since the Coulomb interaction
decreases with increasing q, the relative effect of the ALDA should increase for larger wave vector,
whereas it should not be visible for vanishing q, where the Coulomb interaction diverges. The
blue curves in the spectra confirm this scenario. Moreover, the ALDA changes the position of
the plasmon resonance, moving it, for a given q, to slightly lower energy. Vice versa, for a given
frequency ω the ALDA qp where ω = ωp(qp) is larger than the RPA one, because the plasmon
dispersion is ωp(q) ≈ ωp(q = 0) + αq2 with α > 0. This leads to a more rapid oscillation of the
induced charge in real space, which can indeed be observed in Fig. 11.20.

In AgCl, the electron-hole interaction creates a sharp bound exciton peak, which also has
dispersion. The HEG has no gap, and therefore no bound exciton. However, we may expect a
situation similar to the plasmon in the HEG: for a given energy in the range of the excitonic
transitions, a certain wavevector should dominate the response, which will then lead to long-range
induced density. The next section will explore to which extent this is true.

11.5 Effects of the electron-hole interaction on the induced density

In this section we study the effects of the electron-hole interaction on the induced density in AgCl
and compare it to the induced density due to χ0 and χRPA. In is known that the Bethe-Salpeter
equation changes the transition energies, and also mixes the transitions. We thus expect a different
picture of the induced density.

The BSE induced densities are calculated as explained in Ch. 5. The BSE calculations are
G0W0+BSE calculation, meaning that the screening used is the RPA one and a scissor is of 1.9 eV
is used in order to emulate the G0W0 correction to the Green function. As studied previously,
getting a converged dielectric function with BSE requires a dense grid of k-points and a large
number of valence and conduction bands. Moreover to calculate the full polarizability in a BSE
calculation is a difficult task, because in our implementation the excitonic Hamiltonian has to be
fully diagonalized. Finally no shifted grid can be used to help the convergence as the effect on
the induced density is unknown. It is important to converge the polarizability matrix because, in
addition to the need of many transitions at different energies to get a convergence with respect to
the energy, the induced density of a single exciton needs an accurate description of the eigenvector
(the Aλcv factor) to form this exciton. Thus a convergence of the induced density was realized with
respect to the grid size and the number of bands included in the calculation, in order to confirm
the validity of the results presented in the following. However, calculations of the induced density
with BSE require the diagonalization of the excitonic Hamiltonian, a time consuming calculation,
and even more so when this have to be done for many momenta. The convergence parameters are
thus a trade off between convergence and limitation. The parameters used in the following are 8
valence bands, 8 conduction bands and a 4× 4× 4 MP k-point grid.

Effect of the electron hole interaction

Inverse dielectric function

The imaginary part of the inverse and direct dielectric function at q→ 0 are plotted in figure 11.22.
RPA and BSE calculations are presented. For the inverse dielectric function, at low energy, the
two spectra are similar, the main difference is a shift of roughly 0.3 eV at low energy. At higher
energy, we observe a shift of the energy and a modification of the peak’s intensity: the intensity
increases when going from RPA to BSE. This is in contrast with what is happening for the real and
imaginary part of the dielectric function, shown on the center and right panel where, especially
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Figure 11.22: Left: Imaginary part of the inverse dielectric function. Center: real part of the
dielectric function, right: imaginary part of the dielctric function. Two calculations are realized:
a RPA calculation, shown in black, and a BSE calculation, shown in red.

in the imaginary part, one can see a crossover of the curves. Most importantly, one can see the
formation of the exciton at low energy. Similar observations can be made for the real part of the
dielectric function with a global shift and a change of intensity at all energies. Let us now see how
this influences the induced density.

The energies used for the perturbation in the following are 0, and 4.776 eV for RPA and 4.541 eV
for BSE. The low energy corresponds to the first transition visible in the respective spectrum with
a small broadening of η = 0.01 eV.
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Figure 11.23: 2D cut of the induced density computed with different polarizabilities. The left
column shows the induced density using the RPA polarizability and the center column show the
induced density using the BSE polarizability. The right column shows the evolution in time of
the induced density at two different positions. The perturbation is a plane wave with vanishing
momentum oriented in the vertical direction. Two energies are used in this calculation: ω = 0 on
the top row, while the bottom row shows the case in which ω = ωexcit, the lowest optically allowed
excitation. In RPA ωexcit = 4.77 eV, while in BSE ωexcit = 4.54 eV. The momentum transfer is
q→ 0.

88



Linear density response Results

In figure 11.23 are shown 2D cuts of the induced density. The left hand-side shows the induced
density computed with RPA and the right hand-side shows the induced density using the BSE.
The shape of the induced density are similar for RPA and BSE. The intensity of the response of
the system is larger for BSE than for RPA. This is valid both at vanishing and finite perturbation
energy. This is in agreement with the expectation from the HEG, where the fxc counteracts the
effect of the RPA.
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Figure 11.24: 2D cut of the induced density computed with different polarizabilities. The left
column shows the induced density using the RPA polarizability and the right column shows the
induced density using the BSE polarizability. The right column shows the evolution in time of
the induced density at two different position. The perturbation is localized around chlorine. Two
energies are used in this calculation. The first energy is ω = 0 and is shown on the top row and the
second is the energy of lowest optically allowed transition: 4.78 eV in RPA and 4.54 eV in BSE.

Figure 11.24 shows the induced density for a localized perturbation. Similarly to what has
been done previously, figure 11.25 shows a 1D cut of the induced density in the vertical direction.
At ω=0, the RPA and BSE induced densities look similar (also confirmed by the left panel of
Fig. 11.25). The intensity for the BSE polarizability increases slightly with respect to the RPA
polarizability.

One might find these results quite disappointing: whereas the exciton dominates the optical
spectrum, it does not seem to have a significant impact on the induced charge. However, the
analysis of the HEG tells us that major changes in the density response are found when one looks
in the vicinity of a sharp resonance which, in the case of the HEG, was the plasmon. Here in AgCl,
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Figure 11.25: 1d cut of the induced density from fig.11.24. Left: ω = 0, right: energy of the lowest
optically allowed transition. The time is set to 0 fs.

the exciton may play a similar role, since it also constitutes a sharp, dispersing resonance in the
response function. This can only be seen when the broadening is much smaller than the exciton
binding energy, which explains our choice of η = 0.02 eV for this study. The second row of Fig.
13.24 shows the induced density when the frequency of the perturbation hits a resonance, here at
q=0.

As in the case of the HEG plasmon, when hitting the exciton resonance the induced density
exhibits a dramatic change, extending over the whole range of the picture. This is also highlighted
by the line cut in Fig. 13.25. It only happens in the BSE calculation, since of course the RPA does
not produce the bound exciton. A similar phenomenon is seen when the perturbation is localized
around silver, as shown in Figure 13.26. Also note the detailed structure of the induced density,
which always shows strong intensity on silver atoms with a characteristic d-shape, independently
of the position of the perturbation.

In conclusion, this chapter contains a detailed analysis of methodological aspects, the rich phe-
nomenology and its physical origin for the density induced by an external perturbation. Although
silver chloride is far from the homogeneous electron gas, the HEG could be used to understand
much of the observations. In particular, we could highlight the important changes induced by sharp
resonances in the response function, which leads, in the case of a bound exciton, to an induced
charge of very long range.

This is a pioneering study, since the effect of the electron-hole interaction on the induced density
had not been analyzed in an ab initio framework. Therefore, much remains still to be done, in
particular, exploring the dispersion of the exciton, and possible consequences on other properties
of the material. This is left for future work.

Some videos of the real space time dependent induced densities can be found at https://etsf.
polytechnique.fr/people/arnaud/density_movies.
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Figure 11.26: 2D cut of the induced density computed with different polarizabilities. The left
column shows the induced density using the RPA polarizability and the right column shows the
induced density using the BSE polarizability. The perturbation is localized around silver. Two
energies are used in this calculation. The first energy is ω = 0 and is shown on the top row and
the second is the energy of the lowest optically allowed transition: 4.78 eV in RPA and 4.54 eV in
BSE.
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Chapter 12

Ag-AgCl heterostructures

As summarized in the Introduction (see Ch. 1), the colors of Becquerel’s photography can be ex-
plained in terms of excitation and disexcitation processes involving Ag nanoparticles embedded
in AgCl. In this context, a key question that should be addressed is what happens to the elec-
tronic charge at the interface between the Ag nanoparticles and AgCl when the electrons in the
nanoparticles are excited by the light.

This question has a relevance that goes well beyond Becquerel’s photography. Indeed, it is
related to the general phenomenon of charge dynamics at the interfaces of different materials, which
takes places in many other important situations, such as in photovoltaic devices. Therefore, the
present study was driven also by the goal of developing a new theoretical tool of wider applicability.
This methodological goal has required to build and study a simple model Ag-AgCl interface.

In this chapter, the electronic and dielectric properties of a model Ag-AgCl heterostructure
will be presented on the basis of DFT and TDDFT calculations. How ab initio calculations can
be simplified thanks to the effective medium theory will be further discussed. Finally, an outlook
will be given on the calculation of induced charges at the interface.

12.1 Which Ag-AgCl interface?

The size of the nanoparticles observed in Becquerel’s photochromatic images is of the order of 5
to 150 nm. It is hence clear that a fully ab initio description of those images is out of reach, and
probably not even very useful. On the other side, the large size of the nanoparticles implies that
one can safely model the interface between the Ag nanoparticles and AgCl as the interface between
two planar surfaces of Ag and AgCl. Indeed, the electronic excitations at the interface between
the real Ag nanoparticles and AgCl are expected not to depend strongly on the curvature of the
nanoparticles in the real material, which can be neglected altogether. In the present computational
scheme that makes use of periodic boundary conditions, this amounts to study a heterosystem made
of two slabs, one of silver and the other of silver chloride, repeated infinitely. Each slab is also
infinitely extended in the plane perpendicular to the stacking direction.

The following two issues need to be addressed in order to study this Ag-AgCl heterostructure.
First, the lattice parameters of bulk Ag and AgCl do not match. Here the goal is to identify
and model the simplest possible Ag-AgCl interface. Possible atomic relaxation or reconstruction
effects are a whole subject of study on their own, beyond the scope of the present investigation.
As a pragmatic solution to this issue, the lattice parameters and crystal structure of silver will be
adapted in order to match those of silver chloride while still making sure that the main spectroscopic
features of silver can be found in this model material. Second, the system under study is fully
periodic: an infinite number of images of the two slabs are stacked on top of each other. This can
produce spurious interactions between different slabs, which has to be avoided.
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Figure 12.1: Different crystal structures studied here: (a) silver, (b) silver chloride and (c) silver in
the silver chloride lattice: chlorine atoms are replaced by silver atoms everywhere. Silver (chlorine)
atoms are grey (green).
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Figure 12.2: Left: LDA band structure of silver within its ground-state fcc crystal structure. Right:
LDA band structure of silver within the crystal structure of silver chloride.

12.2 Silver with AgCl crystal structure

We will first compare the electronic properties of bulk Ag in its equilibrium crystal structure with
a model silver in which silver atoms are located in the lattice of AgCl (see Fig. 12.1). In practice,
this corresponds to replacing all Cl atoms of AgCl by Ag atoms. The aim of this study is to test
if this model structure still provides a reasonable description of the electronic properties of real
silver.

Silver has a fcc crystal structure with lattice constant a = 4.0855 Å. The nearest-neighbor
distance is 2.8889 Å, while the mean electronic density is 0.0587 Å−3. In the silver chloride
structure, instead, the lattice constant is a = 5.550 Å and the nearest neighbor distance is 2.775 Å.
The mean electronic density of this artificial silver thus becomes 0.0468 Å−3, i.e. 20 % lower.

Band structure

The band structures of fcc silver and silver with the silver chloride crystal structure are shown in
Fig. 12.2. The calculations are done within the LDA, using a 10×10×10 k-point grid, a smearing
of 0.01 Hartree and a cutoff energy of 150 Hartree.

Silver is metallic with both crystal structures (the Fermi energy is set to 0 in both cases). We
further observe that going from the equilibrium fcc to the AgCl crystal structure, the lowest empty
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Figure 12.3: Density of states of silver in two different crystal structures. The black curve is fcc
silver and the red curve is silver in the AgCl crystal structure. The Fermi energy is set to zero for
both calculations.

bands are lowered and the fully occupied bands are slightly shifted upwards. The width of the
occupied Ag 4d bands is reduced by 0.9 eV.

Density of states

The computed DOS for the two crystal configurations is plotted in Fig 12.3. Both calculations are
done on a 18 × 18 × 18 Monkhorst-Pack grid of k-points with 4 shifts, with a 0.01 Ha smearing
and a cutoff energy of 150 Ha.

In the DOS we can identify a common feature for both structures, in the energy region between
-7 eV and -2 eV, which corresponds to silver 4d states. The width of these Ag 4d states is smaller for
the silver chloride structure than for the silver fcc crystal structure. Overall, the electronic structure
remains qualitatively similar. We can therefore conclude that even though the atomic structure is
strongly altered, the electronic properties of silver in the AgCl lattice are still a reasonable model
to qualitatively describe real fcc silver, allowing for much simpler simulations of the Ag-AgCl
interface.

12.3 The Ag-AgCl interface: electronic properties

The Ag-AgCl heterostructure is obtained alternating silver and silver chloride slabs. The Ag-AgCl
layers are stacked along the [100] direction of AgCl (see Fig. 12.4). The primitive 2D unit cell of
the AgCl layers is formed by 2 atoms: one Ag and one Cl. Each Ag layer has the same lattice as
AgCl, with Ag at all sites. Also the distance between the two slabs of Ag and AgCl is set equal to
the distance between the silver chloride layers.

One question that will be addressed is how many layers are needed in each slab in order to
avoid spurious interactions between periodic replicas.

Evolution of the density of states with the number of layers

In this part we study the dependence of the density of states of the heterostructure on the number of
layers in each slab. These DOS will be compared to the DOS of bulk silver chloride and bulk silver.
In order to take into account the increasing number of states, the DOS of each heterostructure
is normalized to the total number of layers per slab, while the DOS of silver and silver chloride
is normalized such that the sum of their integrals is the same as integral of the DOS of the
heterostructures.

Figures 12.5 and 12.6 show the density of states of the heterostructures for different numbers
of layers, from 6 to 14. In each case, half of the number of layers is Ag and the other half is AgCl.
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Figure 12.4: Heterostructure made of 6 layers, 3 of silver chloride and 3 of silver. The top layer is
a repetition of the bottom layer.

In these comparisons, the first problem that arises is how to align the energy scales of the
different DOS. Since Ag and the Ag-AgCl heterostructures are metallic, their Fermi energy can be
simply set to zero. AgCl instead is insulating: the zero of the energy scale could be set anywhere
inside the gap. We will align the Ag 4s semicore level of AgCl to the corresponding 4s level of Ag.
With this aligment, the zero of the energy scale for AgCl turns out to be 1.0 eV above the top of
the valence band.

The left panel of Fig. 12.5 shows an extended overview of the DOS, with the main features
located at the following energies: the Ag 4s semicore levels at -90 eV, the Ag 4p at -55 eV, and
the Cl 3s at -16 eV. The right panel of Fig. 12.5 shows a zoom on the valence band starting at -6
eV.

Fig. 12.6 compares the Ag 4s semicore levels at -90 eV (left panel) and Ag 4p at -55 eV (middle
panel). In each case we observe three peaks. As the number of layers increases, the peak at
lowest binding energy (i.e. on the right hand side of the plot) gains intensity, the middle peak
loses intensity, and the highest binding energy peak (i.e. on the left hand side of the plot) has
no significant change in intensity after the 8 layer structure. At the same time we observe a
shift of the peak energies. These variations are due to the fact that silver is located in different
environments. The first situation is silver surrounded only by silver atoms; the second case is silver
surrounded by chlorine atoms; the third one is silver at the interface, a situation that corresponds
to a combination of the first two environments.

For these semicore states, the DOS of bulk silver and silver chloride (dashed and solid grey
lines) match well the DOS of the heterostructures. For both the 4s and 4p states, the peaks of
bulk silver overlap with the peaks at highest absolute energy of the heterostructure, meaning that
these states are due to Ag surrounded by Ag. The 4s and 4p peaks of AgCl match the corresponding
low absolute energy peaks of the heterostructures (note that 4s states have been aligned), meaning
that those peaks are due to Ag surrounded by Cl. The feature between the two peaks in the DOS
of the heterostructure hence originates from the mixed environment of Ag. Its relative intensity
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Figure 12.5: Density of states of the heterostructure for different number of layers normalized to
the number of layers. Right: Zoom on the valence band.
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Figure 12.6: Density of states of the heterostructure for different number of layers. (Left) Ag 4s
semicore states, (center) Ag 4p, and (right) Cl 3s states.

is reduced as the number of layers increases, since the fraction of atoms at the interface decreases
with respect to the total numbers of atoms.

On the contrary, comparing the DOS of bulk silver and silver chloride with the DOS of the
heterostructures for the Cl 3s states (see right most panel in Fig. 12.6), we do not observe the
appearance of new peaks. As a matter of fact, the close environment of chlorine is the same at the
interface or in the bulk. Still we find a small shift to lower energies and a small increase of the
width of this core level with increasing number of layers.

For the valence band (see right panel of Fig. 12.5) there is also a shift (0.2 eV between 6 layers
and 14 layers) and a change in intensity of the different peaks: the peak at -5 eV increases while
the peak at -3 eV loses intensity.

To make a detailed analysis of the valence band, in Fig. 12.7 we take the difference between
the sum of the DOS of bulk Ag and AgCl and the DOS of the heterostructures with slabs of 6
layers (left panel), 10 layers (middle panel), and 14 layers (right panel). Overall we see that the
sum of silver and silver chloride DOS (black lines) is able to reproduce correctly the shape of the
DOS of the heterostructures. The agreement is better for the heterostructure with 14 layers than
for the one with 6 layers: by increasing the number of layers the heterostructure tends to the sum
of two bulk systems. The difference plots shown in the bottom part of each panel evidences the
effect of the interface between Ag and AgCl. We find that the shape of the curves is qualitatively
similar in the three cases.

Electronic density distribution at the Ag-AgCl interface

We now analyse the distribution of the electronic density in the heterostructure. To this end, we
take the difference of the density of the Ag-AgCl heterostructure with the density of bulk silver on
the Ag side of the slab and with the density of bulk silver chloride on the AgCl side of the slab.
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Figure 12.7: Density of states for the heterostructure (red lines), bulk Ag (dashed lines), bulk
AgCl (grey thin lines) and the sum of Ag and AgCl (black lines). The heterostructure is made of
6 layers (left panel), 10 layers (middle panel), and 14 layers (right panel).

Figure 12.8: Difference between the electronic density of the heterostructure and the electronic
density of bulk silver (in the top half of the slab) or bulk silver chloride (in the bottom half of the
slab). The vertical direction is the stacking direction. The heterostructure has a total number of
6 layers (left panel), 8 layers (middle panel), and 10 layers (right panel). The color key goes from
red (positive difference) to blue (negative difference), with a maximum at 0.04 and a minimum at
-0.04 a.u.
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Figure 12.9: Valence and conduction band structure of the system with 6 layers. Left is pure silver
chloride, right is pure silver and middle is the heterostructure
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Figure 12.10: Valence and conduction band structure of the system with 8 layers. Left is pure
silver chloride, right is pure silver and middle is the heterostructure.

The three panels of Fig 12.8 show the result for the heterostructures with 6, 8 and 10 layers,
respectively. In each panel, the vertical direction is the stacking direction and the interface at the
center separates the Ag slab (on the top) from the AgCl slab (at the bottom). Since the two slabs
are periodically repeated, also the atoms at the top and at the bottom of each panel form other
Ag-AgCl interfaces. Positive density differences are represented in red, while negative differences
are represented in blue. The maximum of the color scale is +0.04 and the minimum is -0.04.

On the silver (top) side, atoms at the interface facing a chlorine atom get more electronic charge,
while atoms facing silver atoms lose a fraction of electronic density. On the silver chloride (bottom)
side, chlorine atoms at the interface get some charge in the direction towards the interface, while
silver atoms at the interface lose electronic density. From the shape of the density differences we
can identify a change of the occupation of the Ag 4d orbitals. The variations are more pronounced
and extend deeper on the silver side. Those variations decay fast with the distance from the
interface: two or three layers are enough to reach the bulk limit where the density difference is
zero (green areas in the plots).

Band structure of the heterostructure

To conclude the analysis of the electronic properties of the heterostructure, in Figs. 12.9, 12.10,
and 12.11 we compare the band structures of the heterostructures with 6 layers, 8 layers, and 10
layers, respectively, with the band structures of the slabs of Ag or AgCl with the same number of
layers. For pure AgCl the zero of the energy axis has been set such that the 4s state of AgCl and
of the heterostructures are aligned.

In all the cases the band structures of the heterosystems can be matched with those of the two
components separately. It becomes evident that some empty bands of pure AgCl become occupied
in the heterostructure.
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Figure 12.11: Valence and conduction band structure of the system with 10 layers. Left is pure
silver chloride, right is pure silver and middle is the heterostructure.

12.4 Dielectric properties: ab initio calculations

In this section we will study the macroscopic dielectric function of the heterostructure. The
calculations will be done within the RPA as a function of the number of Ag and AgCl layers in
the slabs, and by varying the momentum transfer q. The RPA spectra will be also compared to
calculations done within the ALDA.

The calculations are carried out with a 8×8×4 grid of k points. The cutoff for the representation
of the wavefunctions is set to 220 eV, while the cutoff of the dielectric matrix is 30 eV. All empty
bands up to an energy of 24 eV above the Fermi level are included in the calculations.

Dependence on the number of layers

We first consider heterostructures where the number of silver layers is equal to the number of silver
chloride layers. The total number of layers is 2, 4, 6, 14, and 20.

The real and imaginary parts of the macroscopic dielectric function, together with the loss
functions are plotted in Fig 12.12. Two momentum transfers, q = (1/4, 0, 0) and q = (1/2, 0, 0),
within the plane parallel to the interface are considered: their size is 0.21 Å−1and 0.42 Å−1for the
left and right columns, respectively.

For the heterostructure with only one silver and one silver chloride layer, the imaginary part of
the macroscopic dielectric function (top panels) has a structure on the low energy side around 2.5
eV that is is strongly damped by increasing the number of layers. At the same time, the energy
of the main peak moves towards higher energy. Also by increasing the momentum transfer the
spectral weight is shifted to larger energy. In the largest heterostructures with 10 Ag and 10 AgCl
layers, the main peak for the larger q (top most right panel) is located at 7.5 eV. At the same
momentum transfer, by increasing the number of layers a second structure also develops on the
high energy side of the main peak. Its energy and intensity oscillate as a function of the number
of layers. Its position finally converges to 9.7 eV for the largest heterostructure.

The oscillations of the real parts of the macroscopic dielectric function (middle panels), through
the Kramers-Kronig relations, reflect the peaks in the imaginary parts. Their crossings with the
zero axis are useful to identify plasmon resonances in the loss functions (bottom panels). Interband
transitions characterise the loss function in the energy range between 0 and 10 eV, whereas a
plasmon peak is located at around 10 eV for larger systems (e.g. for the 7-7 and 10-10 layers).

Figure 12.13 shows the spectra for a momentum transfer perpendicular to the interface. Its size
is q = 0.15 Å−1. In this direction the variations as a function of the number of layers are larger.
The imaginary part of the dielectric function for small slabs has a main peak at low energy (1.2
eV for the 1 Ag - 1 AgCl structure), which disappears when the size of the system increases. A
new peak emerges at 2.5 eV for the 2 Ag - 2 AgCl structure and moves to 3 eV for the largest
structures.

In order to simulate an Ag nanoparticle embedded in AgCl, we should also consider the depen-
dence of the spectra on the number of AgCl layers keeping fixed the number of silver layers. A
thickness of 2.5 nm corresponds to 10 layers of Ag. The calculated imaginary parts of the macro-
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Figure 12.12: Imaginary (top panels) and real parts (middle panels) of the macroscopic dielectric
function and loss functions (bottom panels) calculated as a function of the number of layers in
each slab. The momentum transfer is in the plane of the layers: q = (1/4, 0, 0) for the left column
and q = (1/2, 0, 0) for the right column.
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Figure 12.13: Imaginary part (left) and real part (middle) of the macroscopic dielectric function
and loss function (right panel) as a function of the number of layers. The momentum transfer is
perpendicular to the interface and has a size q = 0.15Å−1.
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Figure 12.14: Imaginary part of the macroscopic dielectric function as a function of the number
of AgCl layers for a number of Ag layers equal to 10. The in-plane momentum transfer is q =
(1/2, 0, 0).

scopic dielectric function as a function of the number of AgCl layers are represented in Fig. 12.14
for a in-plane momentum transfer q = (1/2, 0, 0). For comparison, the spectra for the pure silver
and silver chloride systems are also plotted (see dotted and dashed lines, respectively). As ex-
pected, the spectrum of the heterostructure tends to the one of pure silver when the number of
silver chloride layers goes to zero and to the one of pure silver chloride when the it is very large. We
see that 20 layers of silver chloride are enough to get a result that is close to bulk silver chloride.

Dependence on the momentum transfer

The dependence of the spectra on the momentum transfer has also been studied for the heterostruc-
ture with 10 layers of silver and 8 layers of silver chloride.

Fig. 12.15 shows the macroscopic dielectric function for different q oriented parallel to the
interface. We observe a decrease of the intensity of the real and imaginary parts of the dielectric
function with increasing q, together with a blueshift and a broadening of the peaks. Plasmon peaks
in the loss function are visible within 5 and 10 eV for q = (1/4, 0, 0) and q = (1/2, 0, 0) but get
damped for larger q.

The macroscopic dielectric function for momentum oriented perpendicular to the interface is
plotted figure 12.16. Similar conclusions can be drawn in this case.

ALDA

Finally, Fig. 12.17 compares spectra within the RPA and the ALDA for q = (1/2, 0, 0). In the
ALDA the peaks in the imaginary part of the dielectric function are slightly shifted towards low
energy and their intensity is increased. This is a typical effect of the ALDA kernel with respect
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Figure 12.15: (Left) Real and (center) imaginary parts of the macroscopic dielectric function and
(right) loss function for a heterostructure with 10 Ag layers and 8 AgCl layers as a function of
momentum transfer parallel to the interface.
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Figure 12.16: (Left) Real and (center) imaginary parts of the macroscopic dielectric function and
(right) loss function at q=(1/2,0,0) for a heterostructure with 10 Ag layers and 8 AgCl layers as
a function of momentum transfer perpendicular to the interface.
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Figure 12.17: (Left) Real and (center) imaginary parts of the macroscopic dielectric function and
(right) loss function for a heterostructure with 10 Ag layers and 8 AgCl layers: RPA results (black
lines) are compared with ALDA (red lines).

to the RPA. In view of the difficulty of ALDA to describe AgCl (see Ch. 8), it would be desirable
to use the BSE. However, calculations for the heterostructure were out of reach with the available
computational resources. We therefore consider in the following a simplification of the calculations.

12.5 Effective Medium Theory

Large systems have a high computational cost, which even in TDDFT scales typically as N4,
where N is the number of atoms. It is then reasonable to wonder whether other computational
approaches allow for similar results without the need for a full ab initio calculation. A convenient
model for the dielectric properties of heterostructures is the Effective Medium Theory (EMT),
which has been introduced in Chapter 7.

We test here the validity of the EMT by comparing it with fully ab initio calculations. Different
directions and sizes of momentum transfers for various heterostructures will be examined.
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The EMT spectra are obtained from the macroscopic dielectric function εM (q, ω) of the artificial
bulk of silver and silver chloride computed within TDDFT. Silver is simulated on a 12 × 12 × 12
Monkhorst-Pack grid of k points with 4 shifts, with a cutoff energy of 743 eV and 67 empty bands
corresponding to an energy of 65 eV above the Fermi level. The size of the dielectric matrix in
reciprocal space has a cutoff of 156 eV. Silver chloride is calculated on a 8× 8× 8 Monkhorst-Pack
grid of k points with 4 shifts, with a cutoff energy of 743 eV and 67 empty bands corresponding to
an energy of 70 eV above the Fermi level. The size of the dielectric matrix in reciprocal space has
a cutoff of 195 eV. The ab initio results for the heterostructures are those dicussed in the previous
section.

We will follow the same pattern as in the previous section: we will analyse RPA results as a
function of the number of layers and of the momentum transfer. Moreover we will discuss the effect
of local fields and we will compare the RPA with the ALDA.

Dependence on the number of layers

We first compare the EMT prediction with ab initio calculations on heterostructures of increasing
size for equal number of silver and silver chloride layers. In this configuration, the EMT spectra
do not depend on the thickness of the slabs. We expect the EMT to become more accurate when
the number of layers is larger, since the microscopic details of the interface become less important.
From this analyis we can assess the range of the validity of the EMT model.

Figure 12.18 shows the results for the real and imaginary parts of the dielectric function (left
and middle panels, respectively) and the loss function (right panel) for an in-plane momentum
transfer q = (1/2, 0, 0). The already discussed ab initio calculations are compared with the EMT
prediction (yellow lines). Results for bulk silver (dotted lines) and silver chloride (dashed lines)
are the input for the EMT calculation.

The spectra for the imaginary part of the dielectric function (middle panel) overlap quite well:
peaks are at similar position and their intensities are close. The biggest discrepancy is found for the
heterostructure with 1 Ag and 1 AgCl layer: its spectrum deviates from the others at both the low-
energy and high-energy sides of the 7.5 eV main peak. Moreover, with increasing number of layers
the ab initio calculations lead to an increase of the 7.5 eV peak, which is slightly underestimated in
EMT. Comparing the spectra for the two bulk materials with the ones for the heterostructures, we
can conclude that the main peak at 7.5 eV originates from electron-hole transitions inside silver,
while the peak at 9.7 eV is due to transitions inside silver chloride.

Also for the real part of the dielectric function (left panel) the EMT is in good agreement for all
systems larger than 1 Ag and 1 AgCl layer, though at large energies the EMT intensity is slightly
larger than all ab initio spectra. This discrepancy can be explained as an underconvergence of the
ab initio calculations with respect to the numbers of bands, which is much more demanding than
for the imaginary part of the dielectric function. As a consequence, the same differences are also
visible for the loss function (right panel) for energies above 10 eV, where the EMT intensity is
lower than the ab initio spectra.

The same behavior is found also for momentum transfer q = 0.15 Å−1perpendicular to the
interface (see Fig. 12.19). Also in this case, large deviations from the EMT spectra are found only
for the 1 Ag - 1 AgCl heterostructure. They are already largely reduced for the 2 Ag - 2 AgCl,
showing a very fast convergence towards the EMT result.

From this analysis we can conclude that the EMT is reasonably accurate already starting from
a heterostructure as small as the one made of 2 Ag and 2 AgCl layers. Thanks to the EMT, we can
also assign the main peak in the imaginary part of the dielectric function to electronic transitions
in silver, whereas the high energy peak is due to transitions in silver chloride.

Therefore, we can safely use the EMT to predict trends and analyze results where the ab
initio computation becomes too expensive. As a representative example, Figure 12.20 shows the
results for a heterostructure with 10 Ag layers and an increasing number of AgCl layers. The
agreement between the EMT prediction (dashed lines) and ab initio results (solid lines) is good
for the smallest systems, where the latter could be fully converged in the same energy range. For
the largest systems, instead, the computational cost of the ab initio becomes too large and the
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Figure 12.18: (Left) Real and (center) imaginary parts of the macroscopic dielectric function and
(right) loss function for heterostructures of increasing number of Ag and AgCl layers and in-plane
q = (1/2, 0, 0): ab initio spectra are compared to the EMT prediction. Results for bulk silver
chloride (dashed lines) and silver (dotted lines) used as input in the EMT calculation are also
shown.
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Figure 12.19: (Left) Real and (center) imaginary parts of the macroscopic dielectric function
and (right) loss function for heterostructures of increasing number of Ag and AgCl layers and
momentum transfer perpendicular to the interface q = 0.15 Å−1. Ab initio spectra are compared
to the EMT prediction. Results for bulk silver chloride (dashed lines) and silver (dotted lines) used
in the EMT calculation are also shown.
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Figure 12.20: (Left) Real and (center) imaginary parts of the macroscopic dielectric function and
(right) loss function for heterostructures made of 10 Ag layers and increasing number of AgCl layers
for in-plane q = (1/2, 0, 0): ab initio spectra (solid lines) are compared to the EMT prediction
(dashed lines).

differences with the EMT become noticeable. The EMT can be effectively used to bridge this
computational gap.

Dependence on the momentum transfer: role of local fields

In this section we aim to assess the accuracy of EMT for different momentum transfers and at the
same time discuss the impact of local fields on the spectra.

Ab initio calculations for a heterostructure made of 10 Ag and 8 AgCl layers were already
discussed in Fig. 12.15 and 12.16 for in-plane and out-of-plane momentum transfers, respectively.
The summary of the comparisons with the corresponding EMT results is now shown in Figs. 12.21
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Figure 12.21: (Left) Real and (center) imaginary parts of the macroscopic dielectric function and
(right) loss function for a heterostructure with 10 Ag and 8 AgCl layers as a function of in-plane
momentum transfers: ab initio spectra (solid lines) are compared to the EMT prediction (dashed
lines).
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Figure 12.22: (Left) Real and (center) imaginary parts of the macroscopic dielectric function and
(right) loss function for a heterostructure with 10 Ag and 8 AgCl layers as a function of momentum
transfers perpendicular to the interface: ab initio spectra (solid lines) are compared to the EMT
prediction (dashed lines).

and 12.22. The agreement is overall good, with differences that in an absolute scale are larger at
small than at large momentum transfers, when the spectra also tend to become more flat.

In Figs. 12.23, 12.24, 12.25, and 12.26 for in-plane momentum transfers, and Figs. 12.27, 12.28
and 12.29 for out-of-plane momentum transfers, we make a more detailed comparison between
EMT predictions (red lines) and ab initio results (black lines). In each case, also the spectra for
bulk silver and silver chloride are shown, which are the inputs for EMT. In the top rows of all
those figures local field effects are included in the calculations, while they are not included in the
bottom rows. In the latter case the EMT spectra are obtained from calculations for bulk Ag and
AgCl that also neglect local fields.

For all in-plane momentum transfers, the agreement between EMT and ab initio calculations
is very good when local fields are neglected. When local field effects are included, the agreement
is slightly worse. Especially at smaller momentum transfer, the spectral weight in Im ε calculated
ab initio is at higher energies than that of Im ε in EMT. To see this better, Fig. 12.30 shows Im ε
at q = (1/4, 0, 0): results of EMT with and without local field effects are essentially on top of
ab initio results obtained without local field effects, because the local field effects in the single
constituents are small. However, local field effects shift spectral weight of the ab initio result of
the heterostructure to higher energies, such creating some discrepancy between this and the EMT
result. Visibly, the EMT is not able to correctly describe additional local field effects due to the
presence of the interface when q is in plane. The effect is stronger at smaller wavevectors. For
the momentum transfers perpendicular to the interface, instead, without local fields the agreement
remains good only for large momentum transfers whereas it is bad for small q. In this case, only
when local fields are explicitly taken into account, EMT and ab initio calculations agree.

How can we understand these findings? Local field effects are linked to inhomogeneities in the
density response. In the direction perpendicular to the interface, there are two different sources
of local fields: the microscopic inhomogeneity inside the Ag and AgCl slabs separately, and the
inhomogeneity due to the presence of two different media with different electronic density.
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Figure 12.23: (Left) Real and (center) imaginary parts of the macroscopic dielectric function
and (right) loss function for a heterostructure with 10 Ag and 8 AgCl layers for q = (1/4, 0, 0),
with q = 0.212 Å−1. Ab initio spectra (black lines) are compared with EMT results (red lines).
Spectra for bulk silver (dotted lines) and silver chloride (dashed lines) are also reported. (Top row)
Calculations with local fields included; (Bottom row) Calculations without local fields.

In ab initio calculations with inclusion of local fields both effects are accounted for, whereas
a calculation without local fields does not take into account either effect. EMT results for q per-
pendicular to the interface, instead, always implicitly take into account the discontinuity between
the two slabs, because the inverse dielectric functions are summed, while the local fields due to
inhomogeneities inside the slabs are considered or neglected depending whether the input bulk
results also consider or neglect them.

In the direction perpendicular to the interface, the local fields due to the presence of the
discontinuity between the two material is the strongest effect. Therefore the EMT results, which
in the perpendicular direction always account for this non-negligible effect, do not agree with ab
initio spectra that neglect local fields, while the comparison is much better when they are included
in the ab initio calculations. These findings are consistent with those of a study of the macroscopic
dielectric constant og superlattices in [192]. Finally, in the in-plane direction, EMT sums ε, not
1/ε. Therefore EMT and ab initio calculations agree when local fields are neglected. When they
are included, instead, EMT only includes the local fields of the constituents,but does not reflect
those due to the presence of the interface. Since silver and silver chloride have a very different
polarizability, the resulting discrepancy with ab initio calculations can be observed.

107



Results Ag-AgCl heterostructures

-1

0

1

2

3

4

5

6

0 5 10 15 20

R
e

 ε

Energy (eV)

10 Ag 8 AgCl
AgCl

Ag
Effective medium theory

 0

 1

 2

 3

 4

 5

 6

 0  5  10  15  20

Im
 ε

Energy (eV)

10 Ag 8 AgCl
AgCl

Ag
Effective medium theory

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  5  10  15  20

Im
 ε

-1

Energy (eV)

10 Ag 8 AgCl
Effective medium theory

-1

0

1

2

3

4

5

6

7

0 5 10 15 20

R
e

 ε

Energy (eV)

10 Ag 8 AgCl
AgCl

Ag
Effective medium theory

 0

 1

 2

 3

 4

 5

 6

 0  5  10  15  20

Im
 ε

Energy (eV)

10 Ag 8 AgCl
AgCl

Ag
Effective medium theory

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  5  10  15  20

Im
 ε

-1

Energy (eV)

10 Ag 8 AgCl
AgCl

Ag
Effective medium theory

Figure 12.24: (Left) Real and (center) imaginary parts of the macroscopic dielectric function
and (right) loss function for a heterostructure with 10 Ag and 8 AgCl layers for q = (1/2, 0, 0),
with q = 0.424 Å−1. Ab initio spectra (black lines) are compared with EMT results (red lines).
Spectra for bulk silver (dotted lines) and silver chloride (dashed lines) are also reported. (Top row)
Calculations with local fields included; (Bottom row) Calculations without local fields.
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Figure 12.25: (Left) Real and (center) imaginary parts of the macroscopic dielectric function and
(right) loss function for a heterostructure with 10 Ag and 8 AgCl layers for q = (5/4, 0, 0), q =
1.060 Å−1. Ab initio spectra (black lines) are compared with EMT results (red lines). Spectra for
bulk silver (dotted lines) and silver chloride (dashed lines) are also reported. (Top row) Calculations
with local fields included; (Bottom row) Calculations without local fields.
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Figure 12.26: (Left) Real and (center) imaginary parts of the macroscopic dielectric function
and (right) loss function for a heterostructure with 10 Ag and 8 AgCl layers for q = (9/4, 0, 0),
with q = 1.907 Å−1. Ab initio spectra (black lines) are compared with EMT results (red lines).
Spectra for bulk silver (dotted lines) and silver chloride (dashed lines) are also reported. (Top row)
Calculations with local fields included; (Bottom row) Calculations without local fields.
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Figure 12.27: (Left) Real and (center) imaginary parts of the macroscopic dielectric function
and (right) loss function for a heterostructure with 10 Ag and 8 AgCl layers for q = (0, 0, 9/4)
with q = 0.150 Å−1. Ab initio spectra (black lines) are compared with EMT results (red lines).
Spectra for bulk silver (dotted lines) and silver chloride (dashed lines) are also reported. (Top row)
Calculations with local fields included; (Bottom row) Calculations without local fields.
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Figure 12.28: (Left) Real and (center) imaginary parts of the macroscopic dielectric function
and (right) loss function for a heterostructure with 10 Ag and 8 AgCl layers for q = (0, 0, 9/2)
with q = 0.300 Å−1. Ab initio spectra (black lines) are compared with EMT results (red lines).
Spectra for bulk silver (dotted lines) and silver chloride (dashed lines) are also reported. (Top row)
Calculations with local fields included; (Bottom row) Calculations without local fields.
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Figure 12.29: (Left) Real and (center) imaginary parts of the macroscopic dielectric function
and (right) loss function for a heterostructure with 10 Ag and 8 AgCl layers for q = (0, 0, 9)
with q = 0.600 Å−1. Ab initio spectra (black lines) are compared with EMT results (red lines).
Spectra for bulk silver (dotted lines) and silver chloride (dashed lines) are also reported. (Top row)
Calculations with local fields included; (Bottom row) Calculations without local fields.
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Figure 12.30: Imaginary parts of the macroscopic dielectric function for a heterostructure with 10
Ag and 8 AgCl layers for q = (1/4, 0, 0). Ab initio calculations with local fields (black line) and
without local fields (blue line) compared with EMT results computed with local fields (red line)
and without local fields (green line). The curves are the ones displayed in Fig. 12.23.
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Figure 12.31: (Left) Real and (center) imaginary parts of the macroscopic dielectric function and
(right) loss function for a heterostructure with 10 Ag and 8 AgCl layers for q = (1/2, 0, 0). Ab
initio RPA (black lines) and ALDA (red lines) spectra are compared with EMT results (blue lines).
ALDA spectra for bulk silver (dashed lines) and silver chloride (dotted lines) are also reported.

ALDA

The previous conclusions based on the RPA are confirmed also when both ab initio and EMT
calculations are performed within the ALDA. In the EMT, this requires that input results for bulk
silver and silver chloride are also obtained within the ALDA. Fig. 12.31 shows an example for an
in-plane momentum transfer q = (1/2, 0, 0). The EMT spectra (blue lines) are in agreement with
the ALDA results (red lines): as for the previous analysis small deviations in the high energy part
of the spectra can be attributed to convergence problems in the ab initio calculations, whereas the
discrepancy of the peak at 7.5eV is due to the deficiency of EMT for the description of the local
field effects discussed above. In the ALDA, this discrepancy remains, but no additional problem
appears. Therefore, we can conclude that EMT is capable to take into account the effect of the
ALDA kernel with respect to the RPA spectra (black lines in Fig. 12.31 ).

111



Results Ag-AgCl heterostructures

12.6 Combining the Bethe-Salpeter equation with the effective
medium theory

In the previous sections we have concluded that the EMT is able to describe reasonably well the
dielectric function of the Ag-AgCl heterostructure. This result has been assessed at the level of both
the RPA and the ALDA. We have validated the idea to use EMT to replace ab initio calculations
that are out of reach from the computational point of view. In particular, a BSE calculation for the
whole Ag-AgCl heterostructure, especially with a large number of layers, is computationally too
heavy. Within the EMT approach, we can instead make predictions for the dielectric properties of
the heteorstructures on the basis of accurate calculations for the bulk materials alone, which are
computationally feasible.

For bulk silver it has been shown that the standard static BSE gives a similar absorption
spectrum at q → 0 as the RPA [193]. Therefore, we will also assume that for silver the RPA is
a sufficient level of approximation and that BSE calculations, to a first approximation, are not
needed. For silver chloride, instead, excitonic effects have been extensively discussed in Ch. 10 on
the basis of the BSE and will be taken into account also within the EMT.

Fig. 12.32 shows the result of EMT and ab initio calculations for q = (1/2, 0, 0) in the 10 Ag
- 10 AgCl heterostructure. As already discussed in the previous section, also here we find that at
the level of the RPA the EMT (red line) agrees reasonably well with the ab initio simulation of
the whole heteostructure (black line) besides the shift of the oscillator strength in the ab initio
calculations due to local field effects. We can therefore try to adopt the EMT approach also to
obtain a valid prediction of the result of a BSE calculation.

Here we compare the EMT-BSE spectrum (blue line), obtained combining the RPA spectrum for
Ag and the BSE spectrum for AgCl, with the EMT-RPA calculation (red line) obtained combining
RPA inputs. The differences between these two spectra arise from excitonic effects, analogously to
the difference between the ab initio RPA and BSE spectra (dashed and dotted lines, respectively)
for bulk AgCl. We find that in the heterostructure excitonic effects at low energies are much
smaller than for bulk AgCl and within the error bar of the EMT. The reason is that below 5
eV, where AgCl has a strong excitonic effect, its spectrum is buried under a strong absorption
of silver. The main peak around 7.5 eV, instead, is clearly increased by the excitonic effects. A
careful discussion is needed at this point, since this increase is similar to the discrepancy between
the ab initio and EMT results on the RPA level, in other words, it lies within the error bar of
the EMT in this frequency range. However, as we have analyzed earlier, that discrepancy is due
to a problem on the level of local field effects. The difference between RPA and ALDA, instead,
was well described by the EMT. We can therefore suppose that EMT also captures the difference
between RPA and the solution of the Bethe-Salpeter equation, even though the RPA-EMT and
BSE-EMT results themselves have some error. In the future, a combination of BSE-EMT with ab
initio RPA might therefore be developed to simulate heterorstructures including excitonic effects.
For now, in order to move on to the charge dynamics, and taking into account that no strong effect
of a bound exciton is suggested by our results on the heterostructure, we will perform calculations
on the RPA level.

12.7 Induced density in the heterostructure

Now that the optical properties of the heterostructure are understood, we can try to apply the
methods developed in the previous chapter for the calculation of the induced density. The system
used for this study is a heterostructure made of 3 layers of silver and 3 layers of silver chloride.
This is a preliminary work and studies for larger structures still need to be done.

In the previous sections, it has been shown that the optical properties are quite different
when the transfered momentum is oriented perpendicular of parallel to the interface. We expect
similar behavior with the induced density. In order to verify that, calculations with in plane and
perpendicular momenta have been realized.

Fig. 12.33 shows the effect of a plane wave with a momentum perpendicular to the interface.
Two different perturbation energies are used: one energy in the gap at 0.44 eV where one expects
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Figure 12.32: (Left) Real and (center) imaginary parts of the macroscopic dielectric function and
(right) loss function for a heterostructure with 10 Ag and 10 AgCl layers for q = (1/2, 0, 0). Ab
initio RPA calculations for the whole heterostructure (black lines) are compared with EMT-RPA
(red lines) and EMT-BSE (blue lines) spectra. Calculations for the bulk materials are also shown:
AgCl within the RPA (dashed lines) and the BSE (dotted lines) and bulk Ag (dotted lines).

the perturbation to only excite silver transitions, and a transition above the gap at 4.45 eV, where
both systems can be excited. The wavelength of the perturbation is two unit cells, i.e. q=(0,0,1/2).
The induced density is oriented in the direction of q in both cases. In the snapshot at low energy,
the response is dominant in silver chloride whereas it is weak in silver. This remains true at all
times. It is at first sight surprising, since the frequency of the perturbation is inside the gap of
AgCl. However, it can be explained by the effect of screening. When the calculation is done using
χ0 instead of χRPA, it appears that the induced density is situated at the surface. The Coulomb
interaction in RPA has then the effect of screening this induced density. The screening is efficient
on the silver side, which is a metal, but not efficient on the silver chloride side, a semi conductor.
The response of the system is then concentrated on the silver chloride side. At the second energy,
the density is induced on both sides of the interface. One can see that the response on the silver
side of the interface is different when the atom is above a silver atom than when it is above a
chlorine atom.

Fig. 12.35 shows the density response of the heterosystem to a plane wave which propagates in
the plane of the interface. For the two energies, intensity is present on both sides. The intensity
is oriented in the direction of the momentum. We observe that the interface has an effect on the
induced density: the induced density close to the interface is oriented toward the interface.

In conclusion, in this chapter the question of the interplay between silver chloride and a silver
nanoparticle in spectra and induced density was tackled. Approximations to the problem have been
introduced, namely, a heterosystem with a model interface and the use of effective medium theory.
Concerning optical and loss spectra the effective medium theory was used and compared with the
full ab initio calculations. This approximation turned out to be quite good even for thin layers.
It allows us to take into account excitonic effects without solving the BSE in the heterostructure.
Finally, first ab initio calculations for the induced density have been presented on the RPA level.
Interesting trends were found, in particular for a wavevectors perpendicular to the interface, where
the difference of screening in silver and silver chloride leads to an unexpected distribution of the
induced density. In the future, more calculations will have to be done to investigate this point.
It will also interesting to combine EMT with the calculation of the induced density, in order to
include excitonic effects in AgCl in an efficient way.
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Figure 12.33: Density response to a plane wave perturbation with momentum perpendicular to the
interface. The momentum is q=(0,0,1/2) in reduced reciprocal lattice coordinates. The top line
shows the calculation with an energy of ω = 0.44 eV and the bottom line shows the calculation
with an energy of ω = 4.45 eV . The potential is shown on the left panel and the induced density
is shown on the right panel. In each line, potential and density snapshots are taken at the same
time. Calculations are performed in the RPA.
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Figure 12.34: Same as Fig. 12.33, with ω=0.44 eV but using χ0 instead of χRPA.
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Figure 12.35: Density response to a plane wave perturbation with momentum in the plan of the
interface. The momentum is q=(1/6,0,0) in reduced reciprocal lattice coordinates. The top line
shows the calculation with an energy of ω = 0.99 eV and the bottom line shows the calculation
with an energy of ω = 4.05 eV . The potential is shown on the left panel and the induced density is
shown on the right panel. In each line, potential and density snapshots are taken at the the time.
Calculations are performed in the RPA.
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Chapter 13

Conclusions and outlook

The project for this thesis was born out of the challenge to understand Becquerel’s first color
photography, posed by the Museum for Natural History in Paris. As it often happens in research,
the work on the initial question gave rise to new challenges. Indeed, while researchers of the
Museum came up with a reasonable explanation to solve the enigma shortly after the start of this
thesis, the question of how a material responds to an external perturbation on a microscopic scale
when interaction effects are important became more general and important. Therefore, this work
has led to three main outcomes. On the materials side, silver chloride, the fundamental ingredient
for Becquerel’s photography as well as for many other applications such as other techniques of
photography, or photocatalysis, has been studied using state-of-the-art ab initio methods. This
required some methodological development to make calculations feasible. Second, no approach
to describe the charge dynamics due to an external perturbation in presence of excitonic effects
could be found in the literature, but our study showed that excitons in AgCl are important.
Therefore, much effort has been invested into the development of a tool that would make the
charge dynamics accessible. Finally, the explanation for Becquerel’s photography highlighted the
importance of charge dynamics at the interface between AgCl and silver nanoparticles, which led
to an exploratory study of a model interface.

Results for the electronic structure and spectroscopic properties of silver chloride are presented
in Ch. 8. Although AgCl is a bulk material with a simple crystal structure, getting reliable results
turned out to be a challenge on its own, for several reasons. The presence of the silver 4d states
in the valence region required the creation of a pseudopotential including the entire atomic shell
4spd in the valence, which also means that calculations had to be performed with a high cutoff.
Moreover, the d states are localized, and they are not well described by standard functionals of
DFT, such as the LDA. Therefore the Kohn-Sham band structure is not a very good starting
point for the GW calculation of quasi-particle energies and the screening, and the GW had to be
performed self-consistently. In the optical spectra of AgCl important excitonic effects due to the
electron-hole interaction were found. In principle, optical spectra can also be computed using time-
dependent DFT, but none of the available functionals that we have examined could describe these
excitonic effects in AgCl. Therefore, the solution of the Bethe-Salpeter equation (BSE) turned out
to be mandatory in order to obtain realistic optical spectra.

The BSE calculations are cumbersome, and the results of Ch. 8 showed that convergence
with respect to the Brillouin zone sampling could not be achieved in a straightforward way. The
bottleneck was the calculation of the screened Coulomb interaction as a function of wave vector
q for many q, as required by the k-point grid. We therefore investigated in Ch. 9 the possibility
to use a model screening. We showed that results were not satisfactory when the model is used
in a standard way, and we found that the problem is related to the fact that the model takes as
input the dielectric constant at vanishing wave vector, which is difficult to converge and which
requires the cumbersome calculation of a commutator with the non-local pseudopotential, and the
non-local self-energy in QSGW. We therefore proposed a modified version of the model that takes
as input the dielectric constant at a non-vanishing wave vector. Our results show that this leads
to efficient and reliable calculations of BSE spectra. Moreover, we showed that the model could
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be used to predict the values of the macroscopic dielectric constant with reduced computational
effort.

Using this approach, we obtained in Ch. 10 our final results for the absorption coefficients of
AgCl with a band structure and screened electron-hole interaction obtained from QSGW. The
spectra are in good agreement with experiment, much better than spectra based on the non self-
consistent G0W0 approach used on top of the LDA. This highlights the need for a self-consistent
GW calculation. Analysis of the spectra revealed a rich structure. The main exciton peak at
the onset is formed by a three-fold degenerate bright exciton, while a two-fold degenerate dark
exciton, which cannot be observed in the optical absorption spectrum, is present at lower energy.
Our analysis showed that dark and bright excitons mostly stem from the same independent-particle
transitions, which are mixed in different ways, with constructive or destructive interference for the
bright or dark excitons, respectively.

Diagonalizing the electron-hole Hamiltonian gives access to the electron-hole correlation func-
tion. Its analysis shows that a hole close to a silver atom leads to a strong redistribution of the
electron density, whereas the effect is much weaker when the hole is close to a chlorine atom.
When the QSGW screening is used, the localization around the hole is enhanced with respect to a
calculation with RPA screening. This is interesting, as it might have consequences for the coupling
of electronic excitations in AgCl to the lattice, or for the migration of charge between AgCl as a
substrate, and molecules adsorbed on its surface.

The density change induced by an external perturbation was explored in Ch. 11. Since this is a
new topic for ab initio calculations in the many-body framework, the principles and technical details
had to be settled before moving on to the results for silver chloride. Different levels of theory were
used for the calculation of the polarizability. The effect of the inclusion of the Coulomb interaction
in the RPA were shown to be minimal for energies close to the gap. Instead, the inclusion of
the electron-hole interaction has much stronger effects for energies close to the absorption onset,
where the strong excitionic peak is situated. However, this effect could be observed only for a
localized perturbation. The main effect of the electron-hole interaction is to delocalize the induced
density. We could explain this scenario as due to the sharp isolated excitonic transitions in the gap,
which, at a given energy, favor a response with a well-defined wave vector, similar to the plasmon
resonance in the homogeneous electron gas.

Finally, the question of the charge dynamics between silver nanoparticles and a silver chloride
matrix was tackled in Ch. 12. The interface betwen a nanoparticle and silver chloride was mod-
eled using a heterostructure made of slabs of silver and silver chloride. This supposes that the
nanoparticles are large enough for the interface to be considered as planar. We first investigated
the spectra of this structure. In particular, we showed how the presence of silver weakens the
exciton in AgCl. Preliminary calculations of the induced density were performed in the RPA. To
go beyond, we have investigated the reliability of effective medium theory, and shown that it is
very efficient to describe spectra.

As we have seen throughout this thesis, the link between trends in spectra and in the microscopic
density response of the system to an external perturbation is not always obvious, and more work is
needed to translate our findings for the spectra of heterostructures into reliable approximations for
the charge dynamics. In particular, it will be interesting to see to which extent effective medium
theory can also be used to simplify calculations of the induced charge. The observation of dynamics
phenomena with interaction between the bulk systems and the interface may require larger system.
Therefore, investigation in this direction still remain to be done. It could be interesting to use
other localized perturbations, in order to see if they have effects on the induced density and if
charge transfer can be observed between silver and silver chloride.

Finally, the effects of the electron hole interaction on the induced density, explored in silver
chloride, deserves a deeper examination in the case of metal/AgCl interface and other materials.
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Appendix A

Symmetry properties of χ0

The independent-particle polarizability χ0 has been introduced in Ch. 5. Here we will illustrate
some of its symmetry properties1. In terms of single-particle orbitals, energies and occupation
numbers χ0 can be written as

χ0
G,G′(q, ω) =

∑
l,j,k

〈l,k| e−i(q+G)r |j,k + q〉 〈j,k + q| ei(q+G′)r |l,k〉
ω − (εj,k+q − εl,k) + iη

(flk − fjk+q). (A.1)

In the general case χ0
G,G′(q, ω) is a matrix in the reciprocal lattice vectors G and G′, and a

complex function of the first-Brillouin zone vector q and frequency ω. Its symmetry properties are
connected to the properties of the electron system.

• A resonant transition is defined as a transition with a positive energy, i.e. a transition
from a valence state |v,k〉 to a conduction state |c,k + q〉; at the opposite, an antiresonant
transition is a transition from a conduction band to a valence band. For a transition from the
valence state |v,k〉 to the conduction state |c,k + q〉, the associated antiresonant transition
is the transition from |c,k + q〉 to |v,k〉. Resonant transitions have a positive factor coming
from the occupation numbers, whereas for antiresonant transitions this factor is negative.
Equation (A.1) contains both these transitions. This guarantees that:

χ0
G,G′(q, ω) = [χ0

−G,−G′(−q,−ω)]∗. (A.2)

This property is important as it enforces the fact that the Fourier transform of χ0
G,G′(q, ω)

is real.

• Time reversal is a symmetry of the electron system as long as the Hamiltonian is Hermitian
(e.g. without a magnetic field). It links the wavefunction and its energy at one point k in the
Brillouin zone to the one at the opposite point −k. In this situation, the following property
holds:

χ0
G,G′(q, ω) = χ0

−G,−G′(−q, ω). (A.3)

• The inversion symmetry is also a symmetry relating k and−k. When the crystal has inversion
symmetry, χ0 is a symmetric matrix:

χ0
G,G′(q, ω) = χ0

G,G′(q, ω). (A.4)

Moreover the matrix elements 〈l,k| e−i(q+G)r |j,k + q〉 are real.

• In a crystal a symmetry Rt acts on a space-dependent function f(x) as follows:

Rtf(x) = f(R−1(x− t)) (A.5)

1The same properties would hold also for the full polarizability χ. Here we study χ0 for simplicity.
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where t is the translation and R the rotation associated with the symmetry. If Rt is a
symmetry of the system, then χ0 obeys the following relation:

χ0
G,G′(Rq, ω) = ei(G

′−G).tχ0
R−1GR−1G′(q, ω) (A.6)

In the limit q→ 0, further relations hold for the polarizability χ0:

χ0
0,G(−q, ω) = −χ0

0,G(q, ω) (A.7)

χ0
G,0(−q, ω) = −χ0

G,0(q, ω) (A.8)

χ0
G,G′(−q, ω) = χ0

G,G′(q, ω) (A.9)

χ0
0,0(−q, ω) = χ0

00(q, ω). (A.10)

A.1 Analytical proofs

Let us write χ0 in a more practical way2:

χ0
G,G′(q, ω) =

∑
cvk

ρ̃cvk,q(G)ρ̃cvk,q(G
′)∗

ω − (εc,k+q − εv,k) + iη
(fvk − fck+q) (A.11)

with

ρ̃vkck+q(G) = 〈vk| ei(q+G)r |ck + q〉 (A.12)

and

ρ̃∗vkck+q(G) = 〈ck + q| e−i(q+G)r |vk〉 = ρck+qvk(−G). (A.13)

Hermicity

Let us demonstrate the first property (A.2):

[χ0
GG′(q, ω)]∗ =

∑
cvk

ρ̃vkck+q(G)∗ρ̃vkck+q(G
′)

ω − (εc,k+q − εv,k)− iη
(fvk − fck+q)

= −
∑
cvk

ρ̃ck+qvk(−G)ρ̃∗ck+qvk(−G′)
−ω − (εv,k − εc,k+q) + iη

(fvk − fck+q)

=
∑
cvk

ρ̃vk+qck(−G)ρ̃∗vk+qck(−G′)
−ω − (εc,k − εv,k+q) + iη

(fvk+q − fck)

=
∑
cvk

ρ̃vkck−q(−G)ρ̃∗vkck−q(−G′)
−ω − (εc,k−q − εv,k) + iη

(fvk − fck−q)

= χ0
−G−G′(−q,−ω).

At the third line c and v have been swapped and at the last line the transformation k → k− q was
applied. So for this relation to be valid, the sum has to include resonant and antiresonant terms.
Here both v and c run over all bands. This proves the relation (A.2) and implies that χ0 is real in
real space and time:

χ0(r, r′, t− t′) =

∫∫
dωdq

∑
G,G′

ei(q+G)rχ0
GG′(q, ω)e−i(q+G

′)r+iω(t−t′). (A.14)

2For simplicity, the vector notation is omitted here.
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[χ0(r, r′, t− t′)]∗ =

∫∫
dωdq

∑
G,G′

e−i(q+G)r[χ0
GG′(q, ω)]∗ei(q+G

′)r−iω(t−t′)

=

∫∫
dωdq

∑
G,G′

ei(q+G)r[χ0
−G−G′(−q,−ω)]∗e−i(q+G

′)r+iω(t−t′)

=

∫∫
dωdq

∑
G,G′

ei(q+G)rχ0
GG′(q, ω)e−i(q+G

′)r+iω(t−t′)

= χ0(r, r′, t− t′).

The property (A.2) has been used between the second to last and last lines. This demonstrates
that χ0(r, r′, t− t′) is real.

Time reversal

The time reversal operator is defined as

T φck(r, t) = φck(r,−t), (A.15)

where φ is a single particle wavefunctions. Let us assume the Hamiltonian to be Hermitian.
Applying the time reversal operator T to the Schrödinger equation gives:

iT ∂φ
∂t

(r, t) = T Ĥ(t)φ(r, t)

−i∂φ
∂t

(r,−t) = Ĥ(t)T φ(r, t)

i
∂(T φ)∗

∂t
(r, t) = Ĥ(t)(T φ(r, t))∗.

So T φ = φ∗. The time reversal operator applied on a wave function yields its complex conjugate.
In a crystal with time reversal symmetry, the conjugated wave function is also a solution of the
Schrödinger equation with the same energy but opposite k vector:

φ
∗
ck(r, t) = φc′−k(r, t)
εck = εc′−k
fck = fc′−k.

(A.16)

In the case of non-degenerate states, the previous relations hold directly between ck and c − k
For degenerate states, one should consider a linear combination of the degenerate states. As a
consequence of time-reserval symmetry one has:

ρ̃vkck+q(G) = 〈vk| ei(q+G)r |ck + q〉

=

∫
φ∗vk(r, t)φck+q(r, t)e

i(q+G)r

=

∫
φv′−k(r, t)φ∗c′−(k+q)(r, t)e

i(q+G)r

= ρ̃c′−(k+q)v′−k(G).
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Using this relation for χ0 we indeed obtain the relation (A.3):

χ0
GG′(q, ω) =

∑
cvk

ρ̃vkck+q(G)ρ̃∗vkck+q(G
′)

ω − (εc,k+q − εv,k) + iη
(fvk − fck+q)

=
∑
cvk

ρ̃c′−(k+q)v′−k(G)ρ̃∗c′−(k+q)v′−k(G′)

ω − (εc′,−(k+q) − εv′,−k) + iη
(fv′−k − fc′−(k+q))

=
∑
cvk

ρ̃ck−qvk(G)ρ̃∗ck−qvk(G′)

ω − (εc,k−q − εv,k) + iη
(fvk − fck−q)

=
∑
cvk

ρ̃vkck−q(−G′)ρ̃∗vkck−q(−G)

ω − (εc,k−q − εv,k) + iη
(fvk − fck−q)

= χ0
−G′−G(−q, ω).

The third line has been obtained by using the transformation k → −k and the bands have been
reordered. Transitions from k to k+q and from -k to -k+q will be needed for this relation to hold.

Inversion

The inversion symmetry is defined by

Iφ(r) = φ(−r). (A.17)

If the inversion is a symmetry of the system one hasIφck(r, t) = φck(−r, t) = φc′−k(r, t)
εck = εc′−k
fck = fc′−k

and

ρ̃vkck+q(G) =

∫
φ∗vk(r, t)φck+q(r, t)e

i(q+G)r

=

∫
φ∗v′−k(r, t)φc′−(k+q)(r, t)e

−i(q+G)r

= ρ̃v′−kc′−(k+q)(−G).

Combining this property with the time reversal symmetry we get:

ρ̃vkck+q(G) = ρ̃c′k+qv′k(−G) = ρ̃∗v′k′ck+q(G). (A.18)

If the states are not degenerate, then ρ̃vkck+q(G) is real. This for χ0 implies that:

χ0
GG′(q, ω) =

∑
cvk

ρ̃∗vkck+q(G)ρ̃vkck+q(G
′)

ω − (εc,k+q − εv,k) + iη
(fvk − fck+q)

=
∑
cvk

ρ̃∗c′k+qv′k(−G)ρ̃c′k+qv′k(−G′)
ω − (εc′,k+q − εv′,k) + iη

(fv′k − fc′k+q)

=
∑
cvk

ρ̃∗v′kc′k+q(G
′)ρ̃v′kc′k+q(G)

ω − (εc′,k+q − εv′,k) + iη
(fv′k − fc′k+q)

=
∑
cvk

ρ̃∗vkck+q(G
′)ρ̃vkck+q(G)

ω − (εc,k+q − εv,k) + iη
(fvk − fck+q)

= χ0
G′G(q, ω).

The χ0
GG′(q, ω) matrix is hence symmetric.
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Numerical proofs

In this subsection, we numerically check the different symmetry properties of χ0 found in the
previous section.

To this end, I firstly created a fictitious electron system with no symmetry and I computed the
irreducible polarizability χ0 for 1 conduction band and 1 valence band at two k-points k1 6= −k2.
Then χ0 could be numerically evaluated at q = ±(k1−k2), i.e. at q = (−0.5, 0,−0.5) or (0.5, 0, 0.5)

In Figs. A.1,A.2,A.3, A.4 the real and imaginary parts of the G = (1, 1, 0) and G′ = (1, 0, 0)
elements of χ0 are plotted as a function of ω in the following 4 combinations: χ0

GG′(q), χ
0
G′G,

χ0
−G−G′(−q) and χ0

−G′−G(−q).

• Fig. A.1: χ0 with no antiresonant terms and no time conjugate terms. χ0 does not have any
symmetry.

• Fig. A.2: χ0 with antiresonant terms and no time conjugate terms. χ0 is hermitian.

• Fig. A.3: χ0 with no antiresonant terms and time conjugate terms. χ0 has the time-reversal
property (A.3)

• Fig. A.4: χ0 with antiresonant terms and time conjugate terms. χ0 has the time-reversal
property (A.3)

In all cases, the numerator of χ0 is not real. This implies that the real and imaginary parts of
χ0 do not behave as ω−∆E

(ω−∆E)2+η2 and η
(ω−∆E)2+η2 , respectively.
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Figure A.1: Real (left) and imaginary (right) parts of χ0 without antiresonant terms and without
time conjugate terms. G = (1, 1, 0), G′ = (1, 0, 0), q = (−0.5, 0,−0.5).
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Figure A.2: Real (left) and imaginary (right) parts of χ0 with antiresonant terms and without time
conjugate terms. G = (1, 1, 0), G′ = (1, 0, 0), q = (−0.5, 0,−0.5).
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Figure A.3: Real (left) and imaginary (right) parts of χ0 without antiresonant terms and with time
conjugate terms. G = (1, 1, 0), G′ = (1, 0, 0), q = (−0.5, 0,−0.5).
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Figure A.4: Real (left) and imaginary (right) parts of χ0 with antiresonant terms and time conju-
gate terms. G = (1, 1, 0), G′ = (1, 0, 0), q = (−0.5, 0,−0.5).
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Code details

In order to create the (real space, real time) induced densities that we see in Chapters 11 and 12, we
use a post-processing tool, called SRden.py [194], written in Python, that reads the polarizability
files issued by Dp [163] or Exc [166]. The development of this code, starting from previous results
obtained by Igor Reshetnyak, Ralf Hambach and Giulia Pegolotti, was part of this thesis.

The execution of this tool is very simple

user@host:~$ python SRden.py -i <inputfile>

A typical input file for the script follows:

real_time= True # Fourier transform in real time

save_real_time= True # Save the real time results

savemem = True # Save memory by reading chi on the fly and not once at the begining

qlistfile=[

"_0.0001_0.0_0.0",

"_0.0001_0.0001_0.0",

"_0.0_0.0_-0.5",

"_0.0_-0.25_-0.5",

"_0.0_-0.5_-0.125",

"_-0.125_-0.125_0.0",

"_-0.125_-0.125_-0.125",

"_-0.125_-0.125_-0.5",

"_-0.125_0.25_0.375",

]

filelist=[]

for i in qlistfile:

filelist.append("../"+i+"/chi0"+i+".dat")

outfile_name=’85k’

#REAL SPACE PARAMETERS

NUM = (200,200,1); # Number of point in the real space

nx= 01.0;ny=01;nz=0.5

ax=10.4830; # [bohr]

ay=10.4830; # [bohr]

az=10.4830; # [bohr]

DIM=np.array(
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[[ -0.5*ax , (-0.5+nx)*ax ], # in experimental coordinates [bohr]

[ -0.5*ay , (-0.5+ny)*ay ],

[ 0 , nz*az ]]);# only relevant for atoms drawn

cut = ’xy’

#TIME PARAMETERS

nt= 0

t_resol = 0.005 # nt has priority

Tbeg= 0.000

Tend= 1.600

diag=’full’ # diag or full, take the diagonal part of the matrix or not,

# default=full

#Number of G to include (cutoff of the matrix)

npwmat = 2975

#real_part=’energy’ # Choose ’energy’ for simplifying the calculation

#with energy or ’momentum’ for simplifycation with q

# Use the symmetry V(q,omega) = V(-q,-omega)*, only need chi for (q,omega)

#pot_form=’from_file’ # ’time_loc’ will localise in time > exp(i*2Pi*E*t0)

#pot_form=’space_loc’ # ’time_loc’ will localise in time > exp(i*2Pi*E*t0)

pot_form=’use_vpert’

x0= [0.1,-0.1,0.1]

#x0= [0.,0.,0.]

g_pert=65 # Add the first gmax G vector (no need to be closed shell),

# negative values will add all the G available

#List directly in energy

Elist=[2.855]

# Enter directly (q,G,E,V)

Vpert=[]

Vpert.append([[0.0001,0.0000,0.0001],[0,0,0],2.855,1.0+0j])

t_plot=[56]

r_ind=[[0,8,0],[0,82,0],[74,9,0]]

verboselevel = 2

The first parameter is a flag for choosing among different types of calculations and output. The
filelist parameter contains the path to the polarizability files. outfile_name gives the root for
the names of the output files. The grid of real points at which the calculation is realized is set up
by the parameters DIM, which gives the minimum and maximum value of the grid in each direction
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(in Bohr) and NUM, which gives the number of points for each direction. The grid can be either a
3D cube or a 2D plan by setting up one of the values of NUM to one. The time grid is defined by
Tbeg, Tend, both in femtosecond, and either nt, the number of points between the two values or
by t_resol, the interval between two points. nt has priority and t_resol is only used if nt is not
defined. A cutoff to the size of the matrix can be applied with the parameter npwmat; this helps
to reduce calculation time when the matrix is too large. If set to None, its value is the size of the
matrix in the file.

The perturbation VG(q, ω) is given in reciprocal space and frequency domain. The perturbation
is controlled by pot_form. Different options are possible for this parameter: i) ’from_file’ will
try to open the file pot.dat to read the potential; ii) ’use_vpert’ generates a potential from scratch
by reading the parameter Vpert, which is a table of elements in the form (q,G,ω,VG(q, ω)); iii)
’space_loc’ is used to generate a potential localized at x0, it takes all frequencies given in E_list,
all wavevectors given in q_list and the first G_pert reciprocal vectors1 found in the polarizability
file (negative value automaticaly include all reciprocal vectors); the amplitude given to each triplet
(G,q,ω) of parameters is then used as ei(q+G)·x0 ; iv) it also exists the possibility, given by parameter
time_loc, for a potential localized in time at t0, but it is not exploited in this thesis.

Once the perturbation is generated (or read from file), the induced density is calculated via
Eq. (11.5) (path chosen via the flag real_part). The code takes advantage of the spatial symmetres
of the crystal.

diag gives the possibilty to do the calculation with or without the diagonal elements of the
polarizability matrix.

Also some output parameters are defined: t_plot gives the time at which we want to take a
snapshot of the time-dependent induced density (it produces a 2D-cut in a file .eps); r_ind selects
a position in space, for which the evolution of the induced density is plotted as a function of time
(for instance, Fig. 11.1 middle panel is obtained with this option).

Finally, it is possible to save the calculated data (and read them /modify them again), thanks
to the flag save_real_time.

1The reciprocal vectors are sorted by increasing length
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Spectroscopic quantities

A plane wave propagating in vacuum can be described in terms of the oscillating electric field
E(r, t) = E0e

i(q·r−ωt). In the case of prapagation in matter, the formula would slightly change, to
describe the damping of the wave, as in

E(r, t) = E0e
i(ω
√
εq̂·r−ωt). (C.1)

where we suppose that the dielectric function of the medium is ε, and that the medium is non-
magnetic. In general ε is a complex function of the energy, and it enters in the macroscopic
constitutive equation D = εE, with D and E representing the macroscopic electric displacement
and the total electric field, respectively.1 The following definitions apply

√
ε complex refractive index (C.2)

n = Re{
√
ε} refraction index (C.3)

κ = Im{
√
ε} extinction coefficient (C.4)

Im{ε} absorption coefficient (C.5)

−Im

{
1

ε

}
loss function (C.6)

and are used throughout the thesis. An important point here is the connection between all these
macroscopic quantities with their microscopic equivalent calculated in Chapters 5 and 6. Follow-
ing Refs.[195–197] we define the macroscopic dielectric function as the average operation of the
(reciprocal space) microscopic quantity

εM (q, ω) =
1

ε−1
G=G′=0(q, ω)

, (C.7)

where the macroscopic dielectric function (here the macroscopic is highlighted by the pedix M ) is
the ε that appears in Definitions (C.2) – (C.6). In general, ε−1

00 6= 1
ε00

. The equality only holds in
homogeneous media. The difference reflects the so-called crystal local field effects.

In the specific case in which the plane wave has a vanishing momentum (this the typical case
for visible light, with a wavelength of the order of hundreds of nanometers, i.e. much bigger than
the unit cell of a crystal), Eq. (C.7) becomes

εM (ω) = lim
q→0

1

ε−1
00 (q, ω)

, (C.8)

which is normally used for optical absorption and related quantities.

1Mathematically, ε is a rank-2 tensor for it depends both on the direction of D and E.
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[58] J. S.-Y. Wang, M. Schlüter, and M. L. Cohen. “The electronic structure of AgCl. Energy
bands, densities of states, and charge densities”. In: physica status solidi (b) 77.1 (1976),
pp. 295–300 (cit. on p. 11).

[59] X. Ma et al. “The Role of Effective Mass of Carrier in the Photocatalytic Behavior of
Silver Halide-Based Ag@AgX (X=Cl, Br, I): A Theoretical Study”. In: ChemPhysChem
13.9 (2012), pp. 2304–2309 (cit. on pp. 11, 39).

[60] T. Benmessabih et al. “Computational study of AgCl and AgBr semiconductors”. In: Phys-
ica B: Condensed Matter 392.1 (2007), pp. 309 –317 (cit. on pp. 11, 39).

[61] B. Amrani, F. E. H. Hassan], and M. Zoaeter. “First-principles study of rock-salt AgClxBr1-
x alloy”. In: Physica B: Condensed Matter 396.1 (2007), pp. 192 –198 (cit. on p. 11).

[62] A. Zaoui, M. Ferhat, and J. Hugel. “Ab initio investigation of the electronic structure of
AgCl”. In: Superlattices and Microstructures 38.1 (2005), pp. 57 –68 (cit. on p. 11).

[63] C. Okoye. “Full-Potential Study of the Electronic Structure of Silver Halides”. In: physica
status solidi (b) 234.2 (2002), pp. 580–589 (cit. on pp. 11, 39).

[64] P. K. de Boer and R. A. de Groot. “Conduction Band of the Photographic Compound
AgCl”. In: The Journal of Physical Chemistry A 103.26 (1999), pp. 5113–5115 (cit. on
pp. 11, 41).
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[122] S. Lebègue et al. “Implementation of an all-electron GW approximation based on the pro-
jector augmented wave method without plasmon pole approximation: Application to Si,
SiC, AlAs, InAs, NaH, and KH”. In: Phys. Rev. B 67 (15 2003), p. 155208 (cit. on p. 28).

[123] H. A. Bethe and E. E. Salpeter. “A RELATIVISTIC EQUATION FOR BOUND STATE
PROBLEMS”. English. In: Phys. Rev. 82 (2 1951), pp. 309–310 (cit. on p. 29).

[124] G. Strinati. In: Rivista del Nuovo Cimento 11 (1988). and references therein, p. 1 (cit. on
p. 29).

[125] W. Hanke and L. J. Sham. “Many-Particle Effects in the Optical Excitations of a Semicon-
ductor”. In: Phys. Rev. Lett. 144.5 (1979), pp. 387–390 (cit. on p. 29).

[126] S. Albrecht et al. “Ab Initio Calculation of Excitonic Effects in the Optical Spectra of
Semiconductors”. In: Phys. Rev. Lett. 80.20 (1998), pp. 4510–4513 (cit. on pp. 29, 49).

[127] M. Rohlfing and S. G. Louie. In: Phys. Rev. B 62 (2000), p. 4927 (cit. on pp. 29, 61).

[128] G. Onida, L. Reining, and A. Rubio. “Electronic excitations: density-functional versus many-
body Green’s-function approaches”. In: Rev. Mod. Phys. 74 (2 2002), pp. 601–659 (cit. on
pp. 29, 46, 49).

[129] I. Tamm. “Relativistic Interaction of Elementary Particles”. In: J. Phys. (USSR) 9 (1945),
p. 449 (cit. on p. 30).

[130] S. M. Dancoff. “Non-Adiabatic Meson Theory of Nuclear Forces”. In: Phys. Rev. 78 (4
1950), pp. 382–385 (cit. on p. 30).

[131] I. Reshetnyak. “Computing optical properties and photo-emission spectra : a new starting
point ”. Theses. Ecole Polytechnique, Sept. 2015 (cit. on p. 31).

[132] In: () (cit. on p. 33).

[133] J. C. M. Garnett and J. Larmor. “XII. Colours in metal glasses and in metallic films”. In:
Philosophical Transactions of the Royal Society of London. Series A, Containing Papers
of a Mathematical or Physical Character 203.359-371 (1904), pp. 385–420. eprint: https:
//royalsocietypublishing.org/doi/pdf/10.1098/rsta.1904.0024 (cit. on p. 33).

[134] D. J. Bergman. “The dielectric constant of a composite material: A problem in classical
physics”. In: Physics Reports 43.9 (1978), pp. 377 –407 (cit. on p. 33).

[135] V. Agranovich and V. Kravtsov. “Notes on crystal optics of superlattices”. In: Solid State
Communications 55.1 (1985), pp. 85 –90 (cit. on p. 33).

[136] V. de Seauve et al. “Replication and study of the colouration of Edmond Becquerel’s pho-
tochromatic images”. In: Journal of Cultural Heritage (2020) (cit. on p. 37).

[137] A. Lorin et al. “First-principles study of excitons in the optical spectra of silver chloride”.
In: (2020). arXiv: 2009.08699 [cond-mat.mtrl-sci] (cit. on p. 37).

[138] N. Troullier and J. L. Martins. “Efficient pseudopotentials for plane-wave calculations”. In:
Phys. Rev. B 43 (3 1991), pp. 1993–2006 (cit. on p. 37).

143

http://dx.doi.org/10.1103/PhysRevLett.93.126406
http://dx.doi.org/10.1103/PhysRevLett.93.126406
http://dx.doi.org/10.1103/PhysRevLett.96.226402
http://dx.doi.org/10.1103/PhysRevB.74.045102
http://dx.doi.org/10.1007/128_2013_460
http://dx.doi.org/10.1007/128_2013_460
http://dx.doi.org/10.1103/PhysRevLett.62.1169
http://dx.doi.org/10.1103/PhysRevLett.62.1169
http://dx.doi.org/10.1103/PhysRevB.67.155208
http://dx.doi.org/10.1103/PhysRevB.67.155208
http://dx.doi.org/10.1103/PhysRevB.67.155208
http://books.google.com/books?vid=ISSN0031-899X
http://books.google.com/books?vid=ISSN0031-899X
http://dx.doi.org/10.1103/PhysRev.78.382
http://dx.doi.org/10.1098/rsta.1904.0024
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1904.0024
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1904.0024
http://dx.doi.org/https://doi.org/10.1016/0370-1573(78)90009-1
http://dx.doi.org/https://doi.org/10.1016/0370-1573(78)90009-1
http://dx.doi.org/https://doi.org/10.1016/0038-1098(85)91111-1
http://dx.doi.org/https://doi.org/10.1016/j.culher.2020.02.016
http://dx.doi.org/https://doi.org/10.1016/j.culher.2020.02.016
http://arxiv.org/abs/2009.08699
http://dx.doi.org/10.1103/PhysRevB.43.1993


Appendix BIBLIOGRAPHY

[139] M. Fuchs and M. Scheffler. “Ab initio pseudopotentials for electronic structure calculations
of poly-atomic systems using density-functional theory”. In: Computer Physics Communi-
cations 119.1 (1999), pp. 67 –98 (cit. on pp. 37, 38).

[140] J. P. Perdew and Y. Wang. “Accurate and simple analytic representation of the electron-gas
correlation energy”. In: Phys. Rev. B 45 (23 1992), pp. 13244–13249 (cit. on p. 37).

[141] G. B. Bachelet, D. R. Hamann, and M. Schlüter. “Pseudopotentials that work: From H to
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Titre: Propriétés électroniques du chlorure d’argent: l’influence des excitons sur la dynamique des charges

Mots clés: Excitations électronique, Ab initio, Propriétés optiques

Résumé: En 1848, Edmond Becquerel proposa une
des toutes premières techniques de photographie en
couleur. Ce procédé suscita parmi la communauté sci-
entifique de nombreux débats sur l’origine des couleurs
observées. En 2019, Victor de Seauve, dans une thèse
au Muséum National d’Histoire Naturelle à Paris, a ap-
porté de nombreuses clarifications, proposant une nou-
velle explication. Le facteur clé de cette explication
est la dynamique des charges, en réaction à la lu-
mière, dans un composé de chlorure d’argent (AgCl)
qui contient des nanoparticules d’argent. L’objectif de
la présente thèse est de participer à cet effort de com-
préhension en apportant un éclairage théorique. La pre-
mière question concerne le niveau de théorie nécessaire
pour décrire correctement les propriétés électroniques
et optiques d’AgCl. Nos calculs ont montré que seule
la solution de l’équation Bethe-Salpeter peut décrire le
spectre optique d’AgCl, car ce spectre est dominé par
un fort pic d’absorption dû à un exciton lié. De plus,
le calcul doit s’appuyer sur une structure de bandes
qui est déterminée de manière auto-cohérente dans un
calcul GW, très lourd numériquement. Afin de pou-
voir réaliser le calcul dans le cadre de l’équation de
Bethe-Salpeter, une fonction diélectrique modèle a été

utilisée et améliorée. Les résultats de nos calculs
décrivent bien les spectres mesurés, et nous ont per-
mis d’analyser et d’interpréter les observations. Dans
l’hypothèse avancée par l’équipe du Muséum, la lumière
excite une nanoparticule d’argent, ce qui provoque un
transfert de charges à l’interface entre la nanoparticule et
AgCl. Avec l’objectif de pouvoir étudier ce phénomène,
une approche numérique pour accéder à la dynamique
des charges induites par une perturbation externe a été
développée. Cette approche a en particulier permis
de montrer qu’un état excitonique lié influence la dy-
namique des charges de façon très importante. Enfin,
nous avons effectué une première modélisation du trans-
fert de charge aux interfaces entre une nanoparticule
d’argent et AgCl, en étudiant une hétéro-structure sim-
plifiée. Nous avons montré le changement du spectre
de AgCl dû au voisinage de l’argent métallique et validé
l’utilisation de la théorie des milieux effectifs pour décrire
ces changements. Des calculs de la densité induite par
des perturbations périodiques ont été réalisés. Ces cal-
culs restent lourds, et l’étude se poursuivra avec l’idée de
combiner les calculs ab initio avec la théorie des milieux
effectifs.
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Abstract: In 1848, Edmond Becquerel proposed one of
the first techniques of color photography. This technique
raised a long-standing debate in the scientific community
concerning the origin of the observed colors. In 2019,
Victor de Seauve, during his thesis at the Muséum Na-
tional d’Histoire Naturelle in Paris, could clarify some im-
portant issues, proposing a new explanation. The aim
of the present thesis was to participate in this effort of
comprehension, by adding theoretical insight. The first
question is which level of theory one may adopt in order
to correctly describe the electronic and optical properties
of AgCl. Our calculations show that only the solution of
the Bethe-Salpeter equation is able to describe the opti-
cal spectrum of AgCl, since the spectrum is dominated
by a strong peak at the absorption onset, due to a bound
exciton. Moreover, the calculation has to be based on
a band structure that results from a self-consistent GW
calculation. In order to make the Bethe-Salpeter calcu-
lations possible, a previously proposed model dielectric
function was used in an improved way. Our results well
describe the measured absorption spectra, and enable

us to analyse and interpret the observations. In the hy-
pothesis brought forward by the team at the Museum, the
light excites a silver nanoparticle, followed by a trans-
fer of charge at the interface between the nanoparticle
and AgCl. In order to be able to study this phenomenon,
we have developed a numerical approach describing the
charge dynamics due to an external perturbation. In
particular, this approach has allowed us to show that a
bound exciton influences the charge dynamics signifi-
cantly. Finally, we have set up a first model meant to
simulate the charge transfer between a silver nanopar-
ticle and AgCl, based on a simplified heterostructure.
We have shown how the absorption spectrum of AgCl
changes due to its neighbourhood to the silver metal,
and how these changes can be described by the effec-
tive medium theory. Calculations of the density induced
by a periodic perturbation have been carried out.These
calculations remain cumbersome, and the study will con-
tinue with the idea to combine ab initio calculations with
effective medium theory.
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