Analysis

Time Dependent Density Functional Theory

Introduction and Applications

Francesco Sottile

Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF)

Tegernsee, 22 July 2009

- Motivations
- Linear Response Approach

- Motivations
- Linear Response Approach

Motivations

Linear Response Approach

Analysis

Why Density Functional

$$\Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N)$$

$$\downarrow$$

$$G(\mathbf{r}_1, \mathbf{r}_2)$$

$$\downarrow$$

$$\rho(\mathbf{r})$$

Time Dependent Density Functional Theory

Why Density Functional: an old strategy

$$\Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N)$$

$$\downarrow$$

$$G(\mathbf{r}_1, \mathbf{r}_2)$$

$$\downarrow$$

$$\rho(\mathbf{r})$$

Density Functional ... Successfull ?

TABLE I: Physical Review articles with more than 1000 citations through June 2003. PR, Physical Review; PRB, Physical Review B; PRD, Physical Review D; PRL, Physical Review Letters; RMP, Reviews of Modern Physics.

	#	Av.		
Publication	cites	Age	Title	Author(s)
PR 140, A1133 (1965)	3227	26.7	Self-Consistent Equations Including Exchange and	W. Kohn, L. J. Sham
			Correlation Effects	
PR 136 , B864 (1964)	2460	28.7	Inhomogeneous Electron Gas	P. Hohenberg, W. Kohn
PRB 23, 5048 (1981)	2079	14.4	Self-Interaction Correction to Density-Functional	J. P. Perdew, A. Zunger
			Approximations for Many-Electron Systems	
PRL 45, 566 (1980)	1781	15.4	Ground State of the Electron Gas by a Stochastic	D. M. Ceperley, B. J. Alder
			Method	
PR 108, 1175 (1957)	1364	20.2	Theory of Superconductivity	J. Bardeen, L. N. Cooper, J. R. Schrieffer
PRL 19, 1264 (1967)	1306	15.5	A Model of Leptons	S. Weinberg
PRB 12 , 3060 (1975)	1259	18.4	Linear Methods in Band Theory	O. K. Andersen
PR 124 , 1866 (1961)	1178	28.0	Effects of Configuration Interaction on Intensities	U. Fano
			and Phase Shifts	
RMP 57, 287 (1985)	1055	9.2	Disordered Electronic Systems	P. A. Lee, T. V. Ramakrishnan
RMP 54, 437 (1982)	1045	10.8	Electronic Properties of Two-Dimensional Systems	T. Ando, A. B. Fowler, F. Stern
PRB 13, 5188 (1976)	1023	20.8	Special Points for Brillouin-Zone Integrations	H. J. Monkhorst, J. D. Pack

S. Redner http://arxiv.org/abs/physics/0407137

Density Functional ... Successfull ?

TABLE I: Physical Review articles with more than 1000 citations through June 2003. PR, Physical Review; PRB, Physical Review B; PRD, Physical Review D; PRL, Physical Review Letters; RMP, Reviews of Modern Physics.

	#	Av.		
Publication	cites	Age	Title	Author(s)
PR 140, A1133 (1965)	3227	26.7	Self-Consistent Equations Including Exchange and	W. Kohn, L. J. Sham
			Correlation Effects	
PR 136 , B864 (1964)	2460	28.7	Inhomogeneous Electron Gas	P. Hohenberg, W. Kohn
PRB 23, 5048 (1981)	2079	14.4	Self-Interaction Correction to Density-Functional	J. P. Perdew, A. Zunger
			Approximations for Many-Electron Systems	
PRL 45, 566 (1980)	1781	15.4	Ground State of the Electron Gas by a Stochastic	D. M. Ceperley, B. J. Alder
			Method	
PR 108, 1175 (1957)	1364	20.2	Theory of Superconductivity	J. Bardeen, L. N. Cooper, J. R. Schrieffer
PRL 19, 1264 (1967)	1306	15.5	A Model of Leptons	S. Weinberg
PRB 12 , 3060 (1975)	1259	18.4	Linear Methods in Band Theory	O. K. Andersen
PR 124 , 1866 (1961)	1178	28.0	Effects of Configuration Interaction on Intensities	U. Fano
			and Phase Shifts	
RMP 57, 287 (1985)	1055	9.2	Disordered Electronic Systems	P. A. Lee, T. V. Ramakrishnan
RMP 54, 437 (1982)	1045	10.8	Electronic Properties of Two-Dimensional Systems	T. Ando, A. B. Fowler, F. Stern
PRB 13, 5188 (1976)	1023	20.8	Special Points for Brillouin-Zone Integrations	H. J. Monkhorst, J. D. Pack

S. Redner http://arxiv.org/abs/physics/0407137

Large field of research concerned with many-electron systems in time-dependent fields

- absorption spectra
- energy loss spectra
- X scattering
- high-harmonic generation
- photo-emission

Large field of research concerned with many-electron systems in time-dependent fields

- absorption spectra
- energy loss spectra
- X scattering
- high-harmonic generation
- photo-emission

Large field of research concerned with many-electron systems in time-dependent fields

- absorption spectra
- energy loss spectra
- X scattering
- high-harmonic generation
- photo-emission

Large field of research concerned with many-electron systems in time-dependent fields

Large field of research concerned with many-electron systems in time-dependent fields

- absorption spectra
- energy loss spectra
- X scattering
- high-harmonic generation
- photo-emission

Large field of research concerned with many-electron systems in time-dependent fields

Large field of research concerned with many-electron systems in time-dependent fields

- absorption spectra
- energy loss spectra
- X scattering
- high-harmonic generation
- photo-emission

- Motivations
- Linear Response Approach

System submitted to an external perturbation

Time Dependent Density Functional Theory

System submitted to an external perturbation

$$egin{aligned} V_{tot} &= arepsilon^{-1} V_{ext} \ V_{tot} &= V_{ext} + V_{inc} \end{aligned}$$

$$\mathbf{E} = \varepsilon^{-1} \mathbf{D}$$

Time Dependent Density Functional Theory

$$V_{tot} = arepsilon^{-1} V_{ext}$$

 $V_{tot} = V_{ext} + V_{ind}$
 $\mathbf{E} = arepsilon^{-1} \mathbf{D}$

System submitted to an external perturbation

$$egin{aligned} V_{tot} &= arepsilon^{-1} V_{ext} \ V_{tot} &= V_{ext} + V_{inc} \end{aligned}$$

$$\mathbf{E} = \varepsilon^{-1} \mathbf{D}$$

Time Dependent Density Functional Theory

$$V_{tot} = arepsilon^{-1} V_{ext}$$

 $V_{tot} = V_{ext} + V_{inc}$

$$\mathbf{E} = \varepsilon^{-1} \mathbf{D}$$

$$egin{aligned} V_{tot} &= arepsilon^{-1} V_{ext} \ V_{tot} &= V_{ext} + V_{inc} \end{aligned}$$

$$\mathbf{E} = \varepsilon^{-1} \mathbf{D}$$

$$egin{aligned} V_{tot} &= arepsilon^{-1} V_{ext} \ V_{tot} &= V_{ext} + V_{inc} \end{aligned}$$

$$\mathbf{E} = \varepsilon^{-1} \mathbf{D}$$

$$egin{aligned} V_{tot} &= arepsilon^{-1} V_{ext} \ V_{tot} &= V_{ext} + V_{inc} \end{aligned}$$

$$\mathbf{E} = \varepsilon^{-1} \mathbf{D}$$

Definition of polarizability

 $\begin{array}{rcl} \text{not polarizable} & \Rightarrow & V_{tot} = V_{\text{ext}} & \Rightarrow & \varepsilon^{-1} = 1 \\ polarizable & \Rightarrow & V_{tot} \neq V_{\text{ext}} & \Rightarrow & \varepsilon^{-1} \neq 1 \end{array}$

Time Dependent Density Functional Theory

Francesco Sottile

Definition of polarizability

not polarizable \Rightarrow polarizable

 \Rightarrow

$$V_{tot} = V_{ext} \implies \varepsilon^{-1} = 1$$
$$V_{tot} \neq V_{ext} \implies \varepsilon^{-1} \neq 1$$

Definition of polarizability

not polarizable \Rightarrow polarizable \Rightarrow

$$egin{array}{lll} V_{tot} = V_{ext} &\Rightarrow & arepsilon^{-1} = 1 \ V_{tot}
eq V_{ext} &\Rightarrow & arepsilon^{-1}
eq 1 \ arepsilon^{-1} = 1 + v \chi \end{array}$$

χ is the polarizability of the system

Definition of polarizability

 \Rightarrow

$$V_{tot} = V_{ext} \Rightarrow \varepsilon^{-1} = 1$$

$$V_{tot} \neq V_{ext} \Rightarrow \varepsilon^{-1} \neq 1$$

$$\varepsilon^{-1} = 1 + 1$$

χ is the polarizability of the system

Vχ

Polarizability

interacting system $\delta n = \chi \delta V_{ext}$ non-interacting system $\delta n_{n-i} = \chi^0 \delta V_{tot}$

Polarizability

interacting system $\delta n = \chi \delta V_{ext}$ non-interacting system $\delta n_{n-i} = \chi^0 \delta V_{tot}$ Single-particle polarizability

$$\chi^{0} = \sum_{ij} \frac{\phi_{i}(\mathbf{r})\phi_{j}^{*}(\mathbf{r})\phi_{i}^{*}(\mathbf{r}')\phi_{j}(\mathbf{r}')}{\omega - (\epsilon_{i} - \epsilon_{j})}$$

hartree, hartree-fock, dft, etc.

🦠 G.D. Mahan Many Particle Physics (Plenum, New York, 1990)

Polarizability

Polarizability

interacting system $\delta n = \chi \delta V_{ext}$ non-interacting system $\delta n_{n-i} = \chi^0 \delta V_{tot}$ \uparrow

Density Functional Formalism

 $\delta n = \delta n_{n-i}$

$$\delta V_{tot} = \delta V_{ext} + \delta V_{H} + \delta V_{xc}$$

Polarizability

$$\chi \delta V_{\text{ext}} = \chi^0 \left(\delta V_{\text{ext}} + \delta V_H + \delta V_{\text{xc}} \right)$$
$$\chi = \chi^0 \left(1 + \frac{\delta V_H}{\delta V_{\text{ext}}} + \frac{\delta V_{\text{xc}}}{\delta V_{\text{ext}}} \right)$$
$$\frac{\delta V_H}{\delta V_{\text{ext}}} = \frac{\delta V_H}{\delta n} \frac{\delta n}{\delta V_{\text{ext}}} = v\chi$$
$$\frac{\delta V_{\text{xc}}}{\delta V_{\text{ext}}} = \frac{\delta V_{xc}}{\delta n} \frac{\delta n}{\delta V_{\text{ext}}} = f_{\text{xc}}\chi$$

with **f_{xc} = exchange-correlation kernel**

Time Dependent Density Functional Theory

Polarizability

$$\chi \delta V_{ext} = \chi^0 \left(\delta V_{ext} + \delta V_H + \delta V_{xc} \right)$$
$$\chi = \chi^0 \left(1 + \frac{\delta V_H}{\delta V_{ext}} + \frac{\delta V_{xc}}{\delta V_{ext}} \right)$$
$$\frac{\delta V_H}{\delta V_{ext}} = \frac{\delta V_H}{\delta n} \frac{\delta n}{\delta V_{ext}} = v\chi$$
$$\frac{\delta V_{xc}}{\delta V_{ext}} = \frac{\delta V_{xc}}{\delta n} \frac{\delta n}{\delta V_{ext}} = f_{xc}\chi$$

with f_{xc} = exchange-correlation kernel

Time Dependent Density Functional Theory

Polarizability

$$\chi \delta V_{ext} = \chi^0 \left(\delta V_{ext} + \delta V_H + \delta V_{xc} \right)$$
$$\chi = \chi^0 \left(1 + \frac{\delta V_H}{\delta V_{ext}} + \frac{\delta V_{xc}}{\delta V_{ext}} \right)$$
$$\frac{\delta V_H}{\delta V_{ext}} = \frac{\delta V_H}{\delta n} \frac{\delta n}{\delta V_{ext}} = v\chi$$
$$\frac{\delta V_{xc}}{\delta V_{ext}} = \frac{\delta V_{xc}}{\delta n} \frac{\delta n}{\delta V_{ext}} = f_{xc}\chi$$

$$\chi = \chi^{0} + \chi^{0} \left(\mathbf{v} + f_{xc} \right) \chi$$

with **f_{xc} = exchange-correlation kernel**

Polarizability

$$\chi \delta V_{ext} = \chi^{0} \left(\delta V_{ext} + \delta V_{H} + \delta V_{xc} \right)$$

$$\chi = \chi^{0} \left(1 + \frac{\delta V_{H}}{\delta V_{ext}} + \frac{\delta V_{xc}}{\delta V_{ext}} \right)$$

$$\frac{\delta V_{H}}{\delta V_{ext}} = \frac{\delta V_{H}}{\delta n} \frac{\delta n}{\delta V_{ext}} = v\chi$$

$$\frac{\delta V_{xc}}{\delta V_{ext}} = \frac{\delta V_{xc}}{\delta n} \frac{\delta n}{\delta V_{ext}} = f_{xc}\chi$$

$$\chi = \left[1 - \chi^{0} \left(v + f_{xc} \right) \right]^{-1} \chi^{0}$$
with f_{xc} = exchange-correlation kernel

Polarizability

$$\chi \delta V_{ext} = \chi^{0} \left(\delta V_{ext} + \delta V_{H} + \delta V_{xc} \right)$$

$$\chi = \chi^{0} \left(1 + \frac{\delta V_{H}}{\delta V_{ext}} + \frac{\delta V_{xc}}{\delta V_{ext}} \right)$$

$$\frac{\delta V_{H}}{\delta V_{ext}} = \frac{\delta V_{H}}{\delta n} \frac{\delta n}{\delta V_{ext}} = v\chi$$

$$\frac{\delta V_{xc}}{\delta V_{ext}} = \frac{\delta V_{xc}}{\delta n} \frac{\delta n}{\delta V_{ext}} = f_{xc}\chi$$

$$\chi = \left[1 - \chi^{0} \left(v + f_{xc} \right) \right]^{-1} \chi^{0}$$
with f_{xc} = exchange-correlation kernel

Polarizability χ in TDDFT

• DFT ground-state calc. $\rightarrow \phi_i, \epsilon_i \quad [V_{xc}]$ • $\phi_i, \epsilon_i \quad \rightarrow \quad \chi^0 = \sum_{ij} \frac{\phi_i(\mathbf{r})\phi_j^*(\mathbf{r})\phi_i(\mathbf{r}')\phi_j(\mathbf{r}')}{\omega - (\epsilon_i - \epsilon_j)}$ • $\frac{\delta V_{ii}}{\delta n} = v$ • $\frac{\delta V_{xc}}{\delta n} = f_{xc}$ variation of the potentials • $\chi = \chi^0 + \chi^0 (v + f_{xc}) \chi$

Polarizability χ in TDDFT

- DFT ground-state calc. $\rightarrow \phi_i, \epsilon_i \quad [V_{xc}]$
- $\phi_{i}, \epsilon_{i} \rightarrow \chi^{0} = \sum_{ij} \frac{\varphi_{i}(\epsilon_{j}, \varphi_{j}(\epsilon_{j}), \varphi_{j}(\epsilon_{j}), \varphi_{j}(\epsilon_{j}))}{\omega (\epsilon_{i} \epsilon_{j})}$
 - variation of the potentials
- $\chi = \chi^0 + \chi^0 (v + f_{xc}) \chi$

Polarizability χ in TDDFT

- **1** DFT ground-state calc. $\rightarrow \phi_i, \epsilon_i \quad [V_{xc}]$ **2** $\phi_i, \epsilon_i \quad \rightarrow \quad \chi^0 = \sum_{ij} \frac{\phi_i(\mathbf{r})\phi_j^*(\mathbf{r})\phi_i^*(\mathbf{r}')\phi_j(\mathbf{r}')}{\omega (\epsilon_i \epsilon_j)}$ **3** $\frac{\delta V_H}{\delta \alpha} = V$ **4** $\frac{\delta V_{xc}}{\delta \alpha} = f_{xc}$ **4** variation of the potentials
- $\chi = \chi^{0} + \chi^{0} (v + f_{xc}) \chi$

Polarizability χ in TDDFT

• DFT ground-state calc. $\rightarrow \phi_i, \epsilon_i \quad [V_{xc}]$ • $\phi_i, \epsilon_i \quad \rightarrow \quad \chi^0 = \sum_{ij} \frac{\phi_i(\mathbf{r})\phi_j^*(\mathbf{r})\phi_i^*(\mathbf{r}')\phi_j(\mathbf{r}')}{\omega - (\epsilon_i - \epsilon_j)}$ • $\frac{\delta V_H}{\delta n} = \mathbf{v}$ • $\frac{\delta V_{xc}}{\delta n} = \mathbf{f}_{xc}$ variation of the potentials • $\chi = \chi^0 + \chi^0 (\mathbf{v} + f_{xc}) \chi$

Polarizability χ in TDDFT

• DFT ground-state calc. $\rightarrow \phi_i, \epsilon_i \quad [V_{xc}]$ • $\phi_i, \epsilon_i \quad \rightarrow \quad \chi^0 = \sum_{ij} \frac{\phi_i(\mathbf{r})\phi_j^*(\mathbf{r})\phi_i^*(\mathbf{r}')\phi_j(\mathbf{r}')}{\omega - (\epsilon_i - \epsilon_j)}$ • $\frac{\delta V_H}{\delta n} = \mathbf{v}$ • $\frac{\delta V_{xc}}{\delta n} = f_{xc}$ variation of the potentials • $\chi = \chi^0 + \chi^0 (\mathbf{v} + f_{xc}) \chi$

Analysis

Theoretical Spectroscopy

$$\chi(\mathbf{r},\mathbf{r}',\omega) \to \chi_{\mathbf{c},\mathbf{c}'}(\mathbf{q},\omega) \to \varepsilon_{00}^{-1}(\mathbf{q},\omega)$$

Energy Loss Function = $-\text{Im}\left\{\varepsilon_{00}^{-1}(\mathbf{q},\omega)\right\}$

Absorption = Im
$$\left\{ \frac{1}{\varepsilon_{00}^{-1}(\mathbf{q},\omega)} \right\}$$

🚺 TDDFT

- Motivations
- Linear Response Approach

2 Applications (ELS)

3 Analysis

EELS of Graphite

Some good results ... (graphite)

🚺 A.Marinopoulos *et al.* Phys.Rev.Lett **89**, 76402 (2002)

Time Dependent Density Functional Theory

Inelastic X-ray Scattering

TD-LDA on IXS of Silicon

Inelastic X-ray Scattering

TD-LDA on IXS of Silicon

H-C. Weissker et al., Physical Review Letters 97, 237602 (2006)

Semi-core states

L-edge of Silicon

Luppi *et al.* Phys. Rev. B **78**, 245124 (2008)

EELS of LiF : many-body effects (beyond TDLDA)

$\mathbf{q} = 0.5\Gamma X$

A.Marini *et al.*, PRL **91**, 256402 (2003).

Prediction

ELS of Hafnium Oxide

Zobelli and Sottile, work in progress.

TDDFT

- Motivations
- Linear Response Approach

Why the numerical approach is important

Analysis

ELS of Hafnium Oxide

Zobelli and Sottile, work in progress

Analysis

ELS of Nanotubes via Graphene analysis

Kramberger *et al.*, Phys. Rev. Lett. **100**, 196803 (2008)

EELS of nanotubes: plasmon dispersion

Kramberger *et al.*, Phys. Rev. Lett. **100**, 196803 (2008)

EELS of nanotubes: plasmon dispersion

Analysis

Graphic tools: 'see' the plasmons or the excitons

E=9eV

E=30eV

ELNES of BN

Nitrogen Edge

ELNES of Cu

Numerical simulations

ab-initio calculations

- DFT ground-state calculations (LDA)
- Independant Particles polarizability: χ^0
- RPA Full polarisability: $\chi = \left[1 \chi^0 v\right]^{-1} \chi^0$
- Dielectric function $\varepsilon^{-1} = 1 + v\chi$
- energy loss function $-Im\{\varepsilon^{-1}(\mathbf{q},\omega)\}$

Analysis

Independent particle picture

 \implies given by χ^0 : interpretation in terms of **band-transitions**

Independent particle picture

Μ

Analysis

RPA: random phase approx.

- given by χ:
 no interpretation by
 band-transitions
- contributions from K
- mixing of transitions

Analysis

RPA: random phase approx.

- given by χ:
 no interpretation by
 band-transitions
- contributions from K
- mixing of transitions

Plasmon dispersion

