

How can ab initio simulations help the PV industry ?

Julien Vidal EDF R&D

In collaboration with A. Zakutayev, S. Lany, D. Ginley (NREL), F. DiSalvo (Cornell), R. Haight (IBM Yorktown), S. Delbos (IRDEP)

Plan

- Thin film solar cells
- Pros and cons of discovery of new materials, an industrial view
- Project Cu-N: new materials
- Project SnS: a rediscovered material
- Project CZTS: a promising material ?
- Conclusion and perspectives

THIN FILM SOLAR CELLS

3

Design of the solar cells

Absorbing layer materials

What is the most critical property for an absorber material ?

Absorbing layer materials

What is the most critical property for an absorber material ?

Counterexample: silicon

The most important quantity for the absorber is carrier lifetime (in Si millisecond)

Other important quantities: *moderate p-type doping, low minority carrier effective mass, stability under operating conditions, good light absorbing capability.*

Absorbing layer materials

Best Research-Cell Efficiencies

PROS AND CONS OF DISCOVERY OF NEW MATERIALS

8

Pros: commonly publicized motivations

Socio-economical interest in finding new materials with desired properties:

- Indium/Tellurium is rare/expensive preventing the large deployment of CIGS and CdTe-based solar modules.
- Good for the economy !!!!! Lower price for PV modules
- **<u>Consequences</u>**: new PV thin film absorbers such as SnS, CZTS, Fe₂S

New properties and potentially new physics → new materials:

- Recent discovery of topological states at the surface of HgTe and Bi₂Se₃
- <u>Consequences</u>: lots of theoretically predicted new topological insulators , few of them actually realized experimentally.

Kesong Yang et al., Nature materials, 11,614, (2012)

Lot of research initiatives to develop the search for new materials but is it really necessary ?

Cons: not so publicized critics

• New design could overcome shortage of elements

Ultra thin CIGS solar cell → improved light management , new back contact → new materials !!!

Z. Jehl Li Kao et al., Progress in Photovoltaics, 20, 582, 2012

Cons: not so publicized critics

• New design could overcome shortage of elements

• Micro solar cell under concentration \rightarrow 0D system

No concentration+regular thin film: 16% !!! 475 x concentration+micro cell: 21.3 % !!!

M. Paire *et al.,* Journal of Renewable Sustainable Energy, 5, 011202 (2013) M. Paire *et al.*, Energy and Environmental Science, 4, 12, 4972 (2012)

Device design vs desired properties

New design: Hot Carrier Solar cells

Desired properties for the absorber: long lifetime of LO phonons

Ross 1982, Wurfel 1998

Search for the optimal absorber in HCSC

Current flow chart: top-down

What about bottom up ?

CU-N PROJECT

16

Design and Physical intuitions

Design chosen: thin film solar cells

- p-type doping: 10¹⁶-10¹⁷ cm-3 with no recombination centers.
- High optical absorption in the visible range.
- Good collection properties *i.e.* effective mass

Physical intuition

• Defect immunity and p-doping of CIGS stems from structure of the valence.

Design and Physical intuitions

• Physical intuition

• Defect immunity and p-doping of CIGS stems from structure of the valence.

Raebiger et al., PRB, 76, 045209, (2007) Zakutayev et al., submitted (2013)

Tuning the Cu-X bonding

• How to tune Cu-X valence width ?

- Match the energy of **p-orbital of X** to the the energy of **d-orbital of Cu**
- Best match: <u>Cu-N</u>

Nitrides and PV ?

- Serious game player in high efficiency multijunction solar cell
- With respect to CIGS thin film designs ??

Sanity check: design principle at work

Cu₃N surface show no surface states.

GaN surface shows couple of surface states.

Formation energy of defects in Cu₃N

- No deep level in the gap
- p-type doping is achievable despite V_N and O_N
- Transition levels confirmed in conductivity measurements.

First case: CuTaN₂

Cu →

Yang M. et al., accepted in Energy and Environmental Science, 2013

First case: CuTaN₂

23

RDE

Is CuTaN₂ PV-interesting ?

Kinetic stability of CuTaN2: T-dependent XRD and TGA

Is CuTaN₂ PV-interesting ?

Band structure and absorption properties

E_g is indirect at 1.3 eV with a direct transition at 1.5 eV

Is CuTaN₂ PV-interesting ?

Band structure and absorption properties

High optical absorption at 1.5 eV !!!!

Second case: CuSrN

• Thermodynamically stable *i.e.* $\Delta H_f < 0$ and wr to binary and ternary compounds.

 $\Delta \mu_{Cu} \left(eV \right)$

-1.5

CuSrN stable under (N,Cu)-rich and Sr-poor growth conditions

CuSrN only ternary stable (so far) because has to find a balance between attractivity of N with the second cation X and the formation enthalpy of the binary X_kN_l.

A unique crystal structure → extraordinary conduction properties !!

• Electronic properties: direct band gap (E_g=1.03 eV) with an optical transition at 1.3 eV !!!

• Ambipolar doping achievable ranging from *moderate p-type*

• to highly doped n-type: HOMOJUNCTION !!!

IRDEF

PROJECT SNS

32

SnS: an « old » PV material

•What makes SnS attractive?

- ✓ Earth abundant inexpensive elements
- ✓ Band gap near optimal (often quoted as 1.3 eV direct gap)
- ✓ Synthesis methods:

Solution-based, physical vapor, chemical vapor

- ✓ "Buffer layer" issue:
 - ✓ Homojunction: ambipolar dopability (G. Yue *et al.,* J. Mater. Chem.
 22, 16437, 2012)
 - ✓ Tunable window layer (Sinsermsuksakul et al., APL, 102, 053901, 2013)

APPLIED PHYSICS LETTERS 100, 032104 (2012)

Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS

Julien Vidal,¹ Stephan Lany,^{1,a)} Mayeul d'Avezac,¹ Alex Zunger,^{1,b)} Andriy Zakutayev,^{2,c)} Jason Francis,² and Janet Tate² ¹National Renewable Energy Laboratory, Golden, Colorado 80401, USA ²Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA

Band structure of SnS

- Band gap of 1.07 eV is indirect
- Effective masses:

Minority carriers (electrons): $m_{\perp}^* = 0.5 m_{e_{\perp}} m_{\parallel}^* = 0.2 m_{e_{\perp}}$ Majority carriers (holes): $m_{\perp}^* = 1.5 m_{e_{\perp}} m_{\parallel}^* = 0.3 m_{e_{\perp}}$

• ALD-grown SnS oriented either \perp or \parallel to substrate (P. Sinsermsuksakul *et al.,* Adv. En. Mat., 1, 1116 (2011)) \rightarrow Different collection length when buffer tuned ?

Optical absorption: theory and experiments

Band gap (E_g) vs absorption threshold (E_{abs})

- E_g determines max. V_{OC} (V_{OC} E_g = 0.3 eV (GaAs) to 0.6 eV (CdTe))
- E_{abs} determines photon collection (J_{SC})

Measured and calculated optical absorption spectra

- Experiment
- --- GW (independent particle)
- GW (+ excitonic effects)

Theory includes direct-allowed transitions, but no phonon-assisted or disorder-induced indirect or forbidden transitions

- Effective absorption threshold: E_{abs} ~1.5 eV lies ~0.4 eV above E_g
- Small V_{oc} obtained in practice 0.3 eV despite new buffer (except for SnS NW)

Defect formation energy

- Sn-vacancies (V_{Sn}) are native p-type dopant
- Deep defects (V_S, Sn_S) acting as recombination centers form under S-rich conditions

From defect formation energy to carrier concentration

Defect formation energy	$\Delta H = \Delta H_{\mathrm{D},q}$	(μ, Ε _F)	
Defect concentration	$c_{\rm D} \approx N_{\rm site} \times e$	$\exp(-\Delta H/kT)$	
Electron/hole density	$c_e = \int f_{\rm FD}(E - E)$	$-E_{\rm F}$) $g(E) {\rm d}E$	
Charge neutrality	$-c_e + c_h + \Sigma$	$\sum \left[q \cdot c(D^q)\right] = 0$	
Self-consistent solution	∆H(<mark>E</mark> _F)	$c_{\rm D}(\Delta H)$	E _F
pO_2 dependence of μ_0 (ideal gas)	$\begin{array}{ll} \Delta \mu_{\rm O}(\textbf{\textit{T}}, \textbf{\textit{P}}_{0}) &= \label{eq:phi_o} \\ \Delta \mu_{\rm O}(\textbf{\textit{T}}, \textbf{\textit{P}}) \end{array}$	$\sum_{n=1}^{\infty} [H_0 + \Delta H(T)] - \frac{1}{2} = \Delta \mu_0(T, P_0) + \frac{1}{2}$	T ·[S ₀ +∆S(T)] kTln(P/P ₀)

High conc.	Account for competition of defects and host atoms for N _{site}		
	Association/dissociation of <i>defect-clusters</i> (law of mass action)		
Direct	Given $\Delta H(\mu)$, find concentrations c_{D}		
Inverse	Given a target concentration, find ΔH (i.e., find μ)		

Are defect formation energy good enough ?

Transition levels were the main concern but absolute formation energies display large variations too !!!

Unification of hybrid and DFT formation energy

- Compounds heat of formation should be corrected by a fitting mechanism FERE
- For shallow defects, GW corrections must be added
- Sanity check: GW corrections must give the right ionization energy.
- Conclusion: HSE06 and DFT can be made equivalent

H. Peng, et al., PRB, 88, 115201 (2013)

Carrier concentration and PV assessment

- $p = 10^{14} 10^{17} \text{ cm}^{-3} \text{ due to } V_{\text{Sn}}$
- Sulfur-rich growth is desired to avoid deep centers (V_s, Sn_s): Reduced V_{oc}
- Trade-off with growth temperature

PROJECT CZTS

41

Cu₂ZnSnS₄ (CZTS)

- Based on the compound CuInS₂, replace 2 In by 1 Sn and 1 Zn.
- Historically, CZTS was thought to be the same as CIGS.

BUT

Phase diagram is much more complex due to binary and ternary compounds.

- ZnS is very stable and always present in thin films.
- SnS tends to evaporate and forms detrimental voids.
- Efficiency of devices has been limited to 11% under wet process while the best CIGS-based devices are made in vacuum.

How to compute a phase diagram?

Competing binary and ternary compounds

- \checkmark **Cu-Sn-S**: Cu₂SnS₃, Cu₄SnS₄, Cu₄SnS₆, Cu₄Sn₇S₁₆
- \checkmark *Cu-S*: Cu₂S, Cu₉S₅, Cu₇S₄, CuS, CuS₂
- \checkmark **Sn-S**: SnS, SnS₂, Sn₂S₃

√ ZnS

Ab initio-calculated phase diagram

- ✓ Define the deviation of the chemical potential w.r.t. standard ref.
- $\checkmark\,$ Preventing formation of competing phases with condition
- ✓ Allowing formation of CZTS

$$a\Delta\mu_A + b\Delta\mu_B + c\Delta\mu_X < \Delta H_f(A_aB_bX_c)$$

$$2\Delta\mu_{Cu} + \Delta\mu_{Zn} + \Delta\mu_{Sn} + 4\Delta\mu_{S} = \Delta H_{f}(CZTS)$$

Phase diagram of CZTS

Defect formation energy at A

Defect formation energy at B

CONCLUSIONS AND PERSPECTIVES

47

Conclusions and perspectives

- Search for new materials allow to understand better existing champion materials.
- Technological applications and material properties are narrowly linked.
- PV is not about light absorption, famous counterexample being Si.
- Apparent harmless change of a material can have deep consequences like CZTS.
- Explore the unexplored without any industrial or economical constraints because it can shine light on the existing phenomenon

