How to accurately get the polarisability from an impurity model?

Sophie Chauvin^(1,2,3), Lucia Reining^(1,3), Silke Biermann^(2,3)

⁽¹⁾Laboratoire des Solides Irradiés, Ecole polytechnique, France
 ⁽²⁾Centre de Physique Théorique, Ecole polytechnique, France
 ⁽³⁾European Theoretical Spectroscopy Facility (ETSF)

Dynamical mean field theory

Many-body perturbation theory

Overview

- I. Introduction to correlated materials: the Mott transition
- 2. Dynamical Mean Field theory (DMFT)
- 3. Extended DMFT (EDMFT)
- 4. EDMFT and the Hubbard dimer

Correlated materials

• Localised orbitals: 3d, 4f, ...

Transition metals, transition metal oxides, f-electrons (rare earths, actinides, their compounds)

• Hubbard model $\mathcal{H} = -t \sum_{\langle i,j \rangle,\sigma} (c_{i,\sigma}^{\dagger} c_{j,\sigma} + c_{j,\sigma}^{\dagger} c_{i,\sigma}) + t \sum_{i} n_{i\uparrow} n_{i\downarrow}$

I electron per site

 $t \gg U$: kinetic energy dominates

 $U \gg t$: repulsion dominates

Correlated materials

from Kotliar and Vollhardt, Physics Today (2004).

vendredi 30 mai 2014

Our motto

• The many-body Hamiltonian: $\mathcal{H} = \sum_{i=1}^{N} \left(-\frac{\hbar^2 \nabla_i^2}{2m} - Ze^2 \sum_{\mathbf{R}} \frac{1}{|\mathbf{r}_i - \mathbf{R}|} \right) + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|}$

10²³ interacting particles!

• The many-body wave function: $\psi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N)$ we cannot even store the information!

• Focus on reduced quantities		DFT	Green's function approaches	Impurity Green's function
Green's function: propagation of an electron	Physical system	Interacting electrons	Interacting electrons	Interacting electrons
	Physical quantity	Local density $n(oldsymbol{r})$	Green's function $G(oldsymbol{r},oldsymbol{r}';t,t')$	Local Green's function $G_{ii}(t,t^{\prime})$
	Experiment	Structural properties, phonons	Angle-resolved photoemission	Direct and inverse photoemission

Dynamical Mean-Field Theory

• Introduce a dynamical mean field

Extended Dynamical Mean-Field Theory

- Not included in DMFT:
 - long-range interactions v_{ij} ,
 - effects from other bands
- Describe dynamical screening $\epsilon(\omega)$, could affect Mott transition
- Effective, dynamical (screened) Coulomb interaction

 $Un_in_i \longrightarrow \mathcal{U}(\tau - \tau')n_i(\tau)n_i(\tau')$

Basic variables: electron propagation AND screening (G and W)
Local point of view

H. Kajueter, PhD (1996). For a pedagogical introduction, see S. Florens PhD (2003), and Th. Ayral, *Phys. Rev. B* (2013)

Example: the Hubbard dimer

• Can we make EDMFT construction more apparent?

The Hubbard dimer Intermediate results

- Interpretation:
 - Site I in effective bosonic medium
 - Elementary process:

$$t \sim G_{12}^{-1} \sim G_{21}^{-1}; \quad \mathcal{G} = G_{22}$$

Perspective: Integrate out boson...

Conclusions

- DMFT: an effective single-site problem (or «effective atom») to reproduce the local part G_{ii} (electron propagation)
- EDMFT: transforms long-range interactions into effective local dynamical interaction to reproduce the local quantities G_{ii} and W_{ii} (electron propagation and screening)
- Explicit construction on Hubbard dimer: work in progress