

Zener tunneling, Defects and transport in Quasi-metallic carbon nanotubes

Gaston KANE LSI, École Polytechnique, Palaiseau, FRANCE

Michele LAZZERI and Francesco MAURI

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

3 QUANTUM MASTER EQUATION (QME)

4 Zener tunneling in Quasi-metallic nanotubes

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● の Q ()

NANOTUBES BASIS

GRAPHENE PROPERTIES

Energy dispersion Near K:

$$\varepsilon(\mathbf{k}) = \pm \hbar v_F \sqrt{k_x^2 + k_y^2}$$

 $v_F \equiv$ Fermi velocity

 p_z orbitals $\Rightarrow \pi$ and π^* bands

 $\varepsilon(\mathbf{K}) = 0$ \Rightarrow Graphene is a semi-metal

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

Zener tunneling, Defects and transport in Quasi-metallic carbon nanotubes

NANOTUBES BASIS

CARBON NANOTUBES PROPERTIES

NANOTUBES BASIS

Some transport properties

Carbon nanotubes:

- * Highest current density $10^9 \text{ A}/cm^2$
- * Ballistic behavior at room temperature

Applications: interconnects or carbon-based transistor

MOTIVATIONS

ZENER TUNNELING IN NANOTUBES:

Wavevector time evolution

$$\dot{\mathbf{k}}=-e\mathbf{\mathcal{E}}/\hbar$$

${\boldsymbol{\mathcal{E}}}$ source-drain electric field

MOTIVATIONS

ZENER TUNNELING IN NANOTUBES:

Boltzmann (BTE)

$$T_z = \exp(-\pi \varepsilon_g^2 / 4\hbar v_F e \mathcal{E})$$

 ${\cal E}$ source-drain electric field Andreev PRL 99, 247204 (2007)

• semiconductor
$$\mathcal{E} = \frac{\pi \varepsilon_g^2}{4 \hbar v_F e} \sim 300 \text{ V}/\mu \text{m} \ (\varepsilon_g = 0.5 \text{ eV})$$

• Qm nanotubes

$$\mathcal{E} = \frac{\pi \varepsilon_g^2}{4\hbar v_F e} \sim 3V/\mu m \ (\varepsilon_g = 0.05 \text{ eV})$$

QUANTUM MASTER EQUATION (QME)

QME IN HOMOGENEOUS SYSTEM

homogeneous carbon nanotube system under an applied spatially uniform electric field ${\pmb {\cal E}}={\cal E}{\bf x}$

Boltzmann transport equation (BTE)

$$\frac{\partial f_{\alpha}(k)}{\partial t} - \frac{e\mathcal{E}}{\hbar} \frac{\partial f_{\alpha}(k)}{\partial k} = \frac{\partial f(k)}{\partial t} \bigg|_{\text{coll}}$$

•
$$k //$$
 tube axis (**x**), $\alpha = \pm 1$ (band index).

• $f_{\alpha} \equiv$ population, $\partial f(k)/\partial t]_{coll} \equiv$ collisions: phonons, defects...

Quantum master equation: Single electron density matrix

Density matrix: two-bands sytem

•
$$\alpha = \pm 1$$
 band index.

- $\rho_{\alpha\alpha} = f_{\alpha} \equiv \text{population}$
- $\rho_{\alpha\beta} \ (\alpha \neq \beta) \equiv \text{coherent terms}$

$$ho = egin{bmatrix}
ho_{-1-1} &
ho_{-11} \
ho_{1-1} &
ho_{11} \end{bmatrix}$$

QUANTUM MASTER EQUATION (QME)

QME IN HOMOGENEOUS SYSTEM

homogeneous carbon nanotube system under an applied spatially uniform electric field ${\pmb {\cal E}}={\cal E}{\bf x}$

Boltzmann transport equation (BTE):

$$\frac{\partial \rho_{\alpha\alpha}(k)}{\partial t} - \frac{e\mathcal{E}}{\hbar} \frac{\partial \rho_{\alpha\alpha}(k)}{\partial k} = \frac{\partial \rho(k)}{\partial t} \bigg]_{co}$$

• $\rho_{\alpha\alpha} \equiv f_{\alpha}$

Single-electron quantum master equation (QME)

$$\frac{\partial \rho_{\alpha\beta}(k)}{\partial t} - \frac{e\mathcal{E}}{\hbar} \frac{\partial \rho_{\alpha\beta}(k)}{\partial k} = G_{\alpha\beta}(\rho) + \frac{\partial \rho(k)}{\partial t} \bigg]_{\text{coll}}$$

- $G_{\alpha\beta}(\rho)$ contains the terms responsible for Zener tunneling.
- In Boltzmann model $G_{\alpha\beta}(\rho) = 0$, $\rho_{\alpha\beta} = 0$ $(\alpha \neq \beta)$.

ZENER TUNNELING IN QUASI-METALLIC NANOTUBES

Systems and Models

Two infinites carbon nanotube with a diameter d = 2 nm: a metallic tube and a Qm nanotube with a gap $\varepsilon_q = 60$ meV.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - の�?

ZENER TUNNELING IN QUASI-METALLIC NANOTUBES

PARAMETERS

- Optical phonons: only two relevant phonons (Yao et al., PRL, 84 , 2941 (2000))
 - * $\mathbf{\Gamma}$ and \mathbf{K} : $\hbar\omega_{\Gamma} = 200 \text{ meV}$ and $\hbar\omega_{K} = 150 \text{ meV}$.

* scattering lengths: $L^{\Gamma} = 451.38$ nm, $L^{K} = 183.74$ nm S. Piscanec et al., PRL, 185503 (2004)/ Lazzeri et al., PRB 73, 165419 (2006)

- Short-range impurities (neutral defects, ...)
 - * scattering lengths: $L_e = 50$ nm, $L_e = 300$ nm.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ◇◇◇

Zener tunneling, Defects and transport in Quasi-metallic carbon nanotubes

ZENER TUNNELING IN QUASI-METALLIC NANOTUBES

RESULTS

Linear regime: Zero-field conductivity σ°

 $\frac{\text{Zero-field conductivity:}}{\mathcal{E}_{SD} \equiv \text{source-drain electric}}$ field $\rightarrow 0$.

- σ^o can be derived analytically
- $\sigma^o = \sigma^o_b + \sigma^o_z$
- $\sigma_b^o \equiv \text{Boltzmann}$ (Semi-classical)
- $\sigma_z^o \equiv$ Zener contribution (Quantum)

Zener tunneling is made visible by defects.

G. Kané et al., Phys. Rev. B 86, 155433 (2012)

・ロト ・母 ・ ・ ヨ ・ ・ ヨ ・ うらぐ

Zener tunneling, Defects and transport in Quasi-metallic carbon nanotubes

ZENER TUNNELING IN QUASI-METALLIC NANOTUBES

RESULTS

Linear regime: Zero-field conductivity σ°

Broadening of the electronic bands

• $\varepsilon_k \pm \hbar \gamma_{tot}/2 \rightarrow$ fluctuations of the energy band

•
$$\gamma_{tot}(k) \equiv$$
 scattering rate.

- * Elastic.
- * Hole-phonon.
- * Electron-phonon .

Conclusion

- Zener tunneling is relevant for small doping, when the Fermi energy lies in or close to the forbidden gap ε_q .
- Zener tunneling is made visible by defects in Qm tubes.

Conclusion

Thanks for your attention

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで