b. b b b b b b b b b

r r

b b b b b b b

b b b b r

b b b **b** b b

 $\mathbf{L}_{\mathbf{m}}$ $\mathbf{L}_{\mathbf{m}}$

r r r

 $\mathbf{L}_{\mathbf{m}}$ b

b b r

 L_{\bullet} by $\mathbf{L}_{\mathbf{m}}$ $\mathbf{L}_{\mathbf{m}}$ $\mathbf{L}_{\mathbf{L}}$ h. b. b. b $\mathbf{L}_{\mathbf{L}}$

r bbb b

Zener tunneling, Defects and transport in Quasi-metallic carbon nanotubes

Gaston KANE LSI, École Polytechnique, Palaiseau, FRANCE

Michele LAZZERI and Francesco MAURI

IMPMC, Université Pierre et Marie Curie, Paris, FRANCE

- [Quantum Master Equation \(QME\)](#page-8-0)
- [Zener tunneling in Quasi-metallic nanotubes](#page-10-0)

 $\mathsf{L}_{\textsc{Nanotubes Basis}}$ $\mathsf{L}_{\textsc{Nanotubes Basis}}$ $\mathsf{L}_{\textsc{Nanotubes Basis}}$

Graphene properties

(b) Brillouin zone (BZ)

(a) Lattice

Energy dispersion Near K :

$$
\varepsilon(\mathbf{k}) = \pm \hbar v_F \sqrt{k_x^2 + k_y^2}
$$

 $v_F \equiv$ Fermi velocity

 p_z orbitals $\Rightarrow \pi$ and π^* bands

K ロ X K 個 X X 差 X X 差 X 2 → 2 V 2 ① 2 → 2 V 2 ①

 $\varepsilon(K)=0$ ⇒ Graphene is a semi-metal

4

 $\mathsf{L}_{\textsc{Nanotubes Basis}}$ $\mathsf{L}_{\textsc{Nanotubes Basis}}$ $\mathsf{L}_{\textsc{Nanotubes Basis}}$

CARBON NANOTUBES PROPERTIES

 $\mathsf{L}_{\textsc{Nanotubes Basis}}$ $\mathsf{L}_{\textsc{Nanotubes Basis}}$ $\mathsf{L}_{\textsc{Nanotubes Basis}}$

SOME TRANSPORT PROPERTIES

Carbon nanotubes:

- ∗ Highest current density 10^9 A/cm²
- ∗ Ballistic behavior at room temperature

Applications: interconnects or carbon-based transistor

4 ロ > 4 団 > 4 ミ > 4 ミ > ニ シ 9 Q Q

\blacksquare MOTIVATIONS

ZENER TUNNELING IN NANOTUBES:

$$
\dot{\mathbf{k}} = -e\boldsymbol{\mathcal{E}}/\hbar
$$

 $\mathcal E$ source-drain electric field

\blacksquare MOTIVATIONS

ZENER TUNNELING IN NANOTUBES:

Tunneling Probability $T_z = \exp(-\pi \varepsilon_g^2/4\hbar v_F e \mathcal{E})$

 $\mathcal E$ source-drain electric field Andreev PRL 99, 247204 (2007) • semiconductor $\mathcal{E} = \frac{\pi \varepsilon_g^2}{4 \hbar v_\text{F} e} \sim 300 \ \text{V}/ \mu \text{m} \ (\varepsilon_g = 0.5 \ \text{eV})$

• Qm nanotubes
\n
$$
\mathcal{E} = \frac{\pi \varepsilon_g^2}{4\hbar v_F e} \sim 3V/\mu \text{m} \ (\varepsilon_g = 0.05 \text{ eV})
$$

 \blacksquare [Quantum Master Equation \(QME\)](#page-8-0)

QME in homogeneous system

homogeneous carbon nanotube system under an applied spatially uniform electric field $\mathcal{E} = \mathcal{E} \mathbf{x}$

Boltzmann transport equation (BTE)

$$
\frac{\partial f_{\alpha}(k)}{\partial t} - \frac{e\mathcal{E}}{\hbar} \frac{\partial f_{\alpha}(k)}{\partial k} = \frac{\partial f(k)}{\partial t} \bigg]_{\text{coll}}
$$

•
$$
k \text{ // tube axis } (\mathbf{x}), \alpha = \pm 1 \text{ (band index)}.
$$

• $f_{\alpha} \equiv$ population, $\partial f(k)/\partial t$ _{coll} \equiv collisions: phonons, defects...

Quantum master equation: Single electron density matrix

Density matrix: two-bands sytem

- $\alpha = \pm 1$ band index.
- $\rho_{\alpha\alpha} = f_{\alpha} \equiv$ population
- $\rho_{\alpha\beta}$ $(\alpha \neq \beta) \equiv$ coherent terms

$$
\rho = \begin{bmatrix} \rho_{-1-1} & \rho_{-11} \\ \rho_{1-1} & \rho_{11} \end{bmatrix}
$$

4 ロ > 4 団 > 4 ミ > 4 ミ > ニ ミ - 9 Q Q

[Quantum Master Equation \(QME\)](#page-9-0)

QME in homogeneous system

homogeneous carbon nanotube system under an applied spatially uniform electric field $\mathcal{E} = \mathcal{E} \mathbf{x}$

Boltzmann transport equation (BTE):

$$
\frac{\partial \rho_{\alpha\alpha}(k)}{\partial t} - \frac{e\mathcal{E}}{\hbar} \frac{\partial \rho_{\alpha\alpha}(k)}{\partial k} = \frac{\partial \rho(k)}{\partial t} \bigg]_{\text{coll}}
$$

• $\rho_{\alpha\alpha} \equiv f_{\alpha}$

Single-electron quantum master equation (QME)

$$
\frac{\partial \rho_{\alpha\beta}(k)}{\partial t} - \frac{e\mathcal{E}}{\hbar} \frac{\partial \rho_{\alpha\beta}(k)}{\partial k} = G_{\alpha\beta}(\rho) + \frac{\partial \rho(k)}{\partial t} \bigg]_{\text{coll}}
$$

- $G_{\alpha\beta}(\rho)$ contains the terms responsible for Zener tunneling.
- In Boltzmann model $G_{\alpha\beta}(\rho) = 0$, $\rho_{\alpha\beta} = 0$ ($\alpha \neq \beta$).

4 ロ X 4 団 X 4 ミ X 4 ミ X ミ = X 9 Q Q

[Zener tunneling in Quasi-metallic nanotubes](#page-10-0)

Systems and Models

Two infinites carbon nanotube with a diameter $d = 2$ nm: a metallic tube and a Qm nanotube with a gap $\varepsilon_q = 60$ meV.

[Zener tunneling in Quasi-metallic nanotubes](#page-11-0)

PARAMETERS

- Optical phonons: only two relevant phonons (Yao et al., PRL, 84, 2941 (2000))
	- $*$ **Γ** and **K**: $\hbar \omega_{\Gamma} = 200$ meV and $\hbar \omega_{\rm K} = 150$ meV.

 $*$ scattering lengths: $L^{\Gamma} = 451.38$ nm, $L^{\mathsf{K}} = 183.74$ nm S. Piscanec et al., PRL, 185503 (2004)/ Lazzeri et al,. PRB 73, 165419 (2006)

- Short-range impurities (neutral defects, ...)
	- $∗$ scattering lengths: $L_e = 50$ nm, $L_e = 300$ nm.

KOX KOX KEX KEX E YORO

[Zener tunneling, Defects and transport in Quasi-metallic carbon nanotubes](#page-0-0)

[Zener tunneling in Quasi-metallic nanotubes](#page-12-0)

 $-R_{\text{ESUTTS}}$

LINEAR REGIME: ZERO-FIELD CONDUCTIVITY σ°

Zero-field conductivity: $\mathcal{E}_{SD} \equiv$ source-drain electric field $\rightarrow 0$.

- \bullet σ ^o can be derived analytically
- $\sigma^o = \sigma_b^o + \sigma_z^o$
- $\sigma_b^o \equiv$ Boltzmann (Semi-classical)
- $\sigma_z^o \equiv$ Zener contribution (Quantum)

メロメ メタメ メミメ メミメン 毛

Zener tunneling is made visible by defects.

G. Kan´e et al., Phys. Rev. B 86, 155433 (2012)

[Zener tunneling, Defects and transport in Quasi-metallic carbon nanotubes](#page-0-0)

[Zener tunneling in Quasi-metallic nanotubes](#page-13-0)

 $-R_{\text{ESUTTS}}$

LINEAR REGIME: ZERO-FIELD CONDUCTIVITY σ°

Broadening of the electronic bands

• $\varepsilon_k \pm \hbar \gamma_{tot}/2 \rightarrow$ fluctuations of the energy band

- $\gamma_{tot}(k) \equiv$ scattering rate.
	- ∗ Elastic.
	- ∗ Hole-phonon.
	- ∗ Electron-phonon .

K ロ X x 何 X x を X x を X を → つんぐ

 $\mathsf{L}_{\text{Conclusion}}$ $\mathsf{L}_{\text{Conclusion}}$ $\mathsf{L}_{\text{Conclusion}}$

- ¹ Zener tunneling is relevant for small doping, when the Fermi energy lies in or close to the forbidden gap ε_a .
- 2 Zener tunneling is made visible by defects in Qm tubes.

 $L_{\text{Conclusion}}$ $L_{\text{Conclusion}}$ $L_{\text{Conclusion}}$

Thanks for your attention

K ロ X K 個 X X 差 X X 差 X 2 → 2 V 2 ① 2 → 2 V 2 ①

$L_{\text{Conclusion}}$ $L_{\text{Conclusion}}$ $L_{\text{Conclusion}}$

メロトメタトメ ミドメミド ニミーのなび