Ab Initio calculations of electronic excitations Carbon Nanotubes and Graphene layer systems

Francesco Sottile

Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF)

Strasbourg, 27 August 2008

Outline

- Introduction
- 2 Electron Energy Loss Spectroscopy
 - Linear response within DFT
- 3 Applications: Nanotubes and Graphene
- Perspectives

Outline

- Introduction
- 2 Electron Energy Loss Spectroscopy
 - Linear response within DFT
- 3 Applications: Nanotubes and Graphene
- Perspectives

Introduction

- Theoretical Spectroscopy Group (ETSF)
- Results on Nanotubes and Graphene:

Coordinator: Christine Giorgetti

Ralf Hambach

Xochitl Lopéz

Federico Iori

V.Olevano, A. Marinopoulos, L. Reining, F. Sottile

Experiments: Thomas Pichler group (Dresden)

Outline

- Introduction
- 2 Electron Energy Loss Spectroscopy
 - Linear response within DFT
- 3 Applications: Nanotubes and Graphene
- Perspectives

Energy Loss Function

$$\frac{\mathit{d}^{2}\sigma}{\mathit{d}\Omega\mathit{d}E}\propto\operatorname{Im}\left\{ \varepsilon^{-1}\right\}$$

Outline

- Introduction
- 2 Electron Energy Loss Spectroscopy
 - Linear response within DFT
- Applications: Nanotubes and Graphene
- Perspectives

System submitted to an external perturbation

$$V_{tot} = arepsilon^{-1} V_{ext}$$
 $V_{tot} = V_{ext} + V_{ind}$

$$\mathbf{E} = \varepsilon^{-1}\mathbf{C}$$

System submitted to an external perturbation

$$V_{tot} = \varepsilon^{-1} V_{ext}$$

$$V_{tot} = V_{ext} + V_{ind}$$

$$\mathbf{E} = \varepsilon^{-1} \mathbf{D}$$

System submitted to an external perturbation

$$V_{tot} = arepsilon^{-1} V_{ext}$$

$$V_{tot} = V_{ext} + V_{ind}$$

$$\mathbf{E} = \varepsilon^{-1} \mathbf{D}$$

Definition of polarizability

$$\begin{array}{lll} \text{not polarizable} & \Rightarrow & V_{tot} = V_{\text{ext}} & \Rightarrow & \varepsilon^{-1} = 1 \\ & \text{polarizable} & \Rightarrow & V_{tot} \neq V_{\text{ext}} & \Rightarrow & \varepsilon^{-1} \neq 1 \\ & & & \varepsilon^{-1} = 1 + v\chi \end{array}$$

Definition of polarizability

$$\begin{array}{lll} \text{not polarizable} & \Rightarrow & V_{tot} = V_{\text{ext}} & \Rightarrow & \varepsilon^{-1} = 1 \\ & \text{polarizable} & \Rightarrow & V_{tot} \neq V_{\text{ext}} & \Rightarrow & \varepsilon^{-1} \neq 1 \\ & & & & & & & & & & & & & & & & & \\ \end{array}$$

Definition of polarizability

$$\begin{array}{lll} \text{not polarizable} & \Rightarrow & V_{tot} = V_{ext} & \Rightarrow & \varepsilon^{-1} = 1 \\ & \text{polarizable} & \Rightarrow & V_{tot} \neq V_{ext} & \Rightarrow & \varepsilon^{-1} \neq 1 \\ & & \varepsilon^{-1} = 1 + \nu \chi \end{array}$$

Definition of polarizability

$$\begin{array}{lll} \text{not polarizable} & \Rightarrow & V_{tot} = V_{ext} & \Rightarrow & \varepsilon^{-1} = 1 \\ & \text{polarizable} & \Rightarrow & V_{tot} \neq V_{ext} & \Rightarrow & \varepsilon^{-1} \neq 1 \\ & & & \varepsilon^{-1} = 1 + v\chi \end{array}$$

Polarizability

interacting system
$$\delta n = \chi \delta V_{\text{ext}}$$

non-interacting system $\delta n_{n-i} = \chi^0 \delta V_{\text{tot}}$

Polarizability

interacting system $\delta n = \chi \delta V_{\rm ext}$ non-interacting system $\delta n_{n-i} = \chi^0 \delta V_{tot}$ Single-particle polarizability

$$\chi^{0} = \sum_{ij} \frac{\phi_{i}(\mathbf{r})\phi_{j}^{*}(\mathbf{r})\phi_{i}^{*}(\mathbf{r}')\phi_{j}(\mathbf{r}')}{\omega - (\epsilon_{i} - \epsilon_{j})}$$

hartree, hartree-fock, dft, etc.

S.D. Mahan Many Particle Physics (Plenum, New York, 1990)

Polarizability

interacting system $\delta n = \chi \delta V_{\rm ext}$ non-interacting system $\delta n_{n-i} = \chi^0 \delta V_{\rm tot}$

$$\chi^{0} = \sum_{ij} \frac{\phi_{i}(\mathbf{r})\phi_{j}^{*}(\mathbf{r})\phi_{i}^{*}(\mathbf{r}')\phi_{j}(\mathbf{r}')}{\omega - (\epsilon_{i} - \epsilon_{j})}$$

Polarizability

interacting system
$$\delta n = \chi \delta V_{ext}$$
 non-interacting system $\delta n_{n-i} = \chi^0 \delta V_{tot}$

Density Functional Formalism

$$\delta n = \delta n_{n-i}$$

$$\delta V_{tot} = \delta V_{ext} + \delta V_H + \delta V_{xc}$$

Polarizability

$$\chi \delta V_{\text{ext}} = \chi^{0} \left(\delta V_{\text{ext}} + \delta V_{H} + \delta V_{\text{xc}} \right)$$

$$\chi = \chi^{0} \left(1 + \frac{\delta V_{H}}{\delta V_{\text{ext}}} + \frac{\delta V_{\text{xc}}}{\delta V_{\text{ext}}} \right)$$

$$\frac{\delta V_{H}}{\delta V_{\text{ext}}} = \frac{\delta V_{H}}{\delta n} \frac{\delta n}{\delta V_{\text{ext}}} = v\chi$$

$$\frac{\delta V_{\text{xc}}}{\delta V_{\text{ext}}} = \frac{\delta V_{\text{xc}}}{\delta n} \frac{\delta n}{\delta V_{\text{ext}}} = f_{\text{xc}} \chi$$

with $f_{xc} = exchange-correlation kernel$

Polarizability

$$\chi \delta V_{\text{ext}} = \chi^{0} \left(\delta V_{\text{ext}} + \delta V_{H} + \delta V_{\text{xc}} \right)$$

$$\chi = \chi^{0} \left(1 + \frac{\delta V_{H}}{\delta V_{\text{ext}}} + \frac{\delta V_{\text{xc}}}{\delta V_{\text{ext}}} \right)$$

$$\frac{\delta V_{H}}{\delta V_{\text{ext}}} = \frac{\delta V_{H}}{\delta n} \frac{\delta n}{\delta V_{\text{ext}}} = v\chi$$

$$\frac{\delta V_{\text{xc}}}{\delta V_{\text{ext}}} = \frac{\delta V_{\text{xc}}}{\delta n} \frac{\delta n}{\delta V_{\text{ext}}} = f_{\text{xc}} \chi$$

with $f_{xc} = exchange-correlation kernel$

Polarizability

$$\chi \delta V_{\text{ext}} = \chi^{0} \left(\delta V_{\text{ext}} + \delta V_{H} + \delta V_{\text{xc}} \right)$$

$$\chi = \chi^{0} \left(1 + \frac{\delta V_{H}}{\delta V_{\text{ext}}} + \frac{\delta V_{\text{xc}}}{\delta V_{\text{ext}}} \right)$$

$$\frac{\delta V_{H}}{\delta V_{\text{ext}}} = \frac{\delta V_{H}}{\delta n} \frac{\delta n}{\delta V_{\text{ext}}} = v\chi$$

$$\frac{\delta V_{\text{xc}}}{\delta V_{\text{ext}}} = \frac{\delta V_{\text{xc}}}{\delta n} \frac{\delta n}{\delta V_{\text{ext}}} = f_{\text{xc}}\chi$$

$$\chi = \chi^0 + \chi^0 \left(v + f_{xc} \right) \chi$$

with $f_{vc} = exchange-correlation kernel$

Polarizability

$$\chi = \chi^{0} \left(1 + \frac{\delta V_{H}}{\delta V_{ext}} + \frac{\delta V_{xc}}{\delta V_{ext}} \right)$$

$$\frac{\delta V_{H}}{\delta V_{ext}} = \frac{\delta V_{H}}{\delta n} \frac{\delta n}{\delta V_{ext}} = v\chi$$

$$\frac{\delta V_{xc}}{\delta V_{ext}} = \frac{\delta V_{xc}}{\delta n} \frac{\delta n}{\delta V_{ext}} = f_{xc}\chi$$

$$\chi = \left[1 - \chi^{0} \left(v + f_{xc} \right) \right]^{-1} \chi^{0}$$

 $\gamma \delta V_{\rm ext} = \gamma^0 \left(\delta V_{\rm ext} + \delta V_{\rm H} + \delta V_{\rm YC} \right)$

Electron Energy Loss Spectroscopy

Polarizability

$$\chi \delta V_{\text{ext}} = \chi^{0} \left(\delta V_{\text{ext}} + \delta V_{H} + \delta V_{\text{xc}} \right)$$

$$\chi = \chi^{0} \left(1 + \frac{\delta V_{H}}{\delta V_{\text{ext}}} + \frac{\delta V_{\text{xc}}}{\delta V_{\text{ext}}} \right)$$

$$\frac{\delta V_{H}}{\delta V_{\text{ext}}} = \frac{\delta V_{H}}{\delta n} \frac{\delta n}{\delta V_{\text{ext}}} = v\chi$$

$$\frac{\delta V_{\text{xc}}}{\delta V_{\text{ext}}} = \frac{\delta V_{\text{xc}}}{\delta n} \frac{\delta n}{\delta V_{\text{ext}}} = f_{\text{xc}} \chi$$

$$\chi = \left[1 - \chi^0 \left(v + f_{xc}\right)\right]^{-1} \chi^0$$

with $f_{xc} = exchange-correlation kernel$

- **1** DFT ground-state calc. $\rightarrow \phi_i, \epsilon_i$ [V_{xc}]
- $\begin{array}{c|c}
 & \frac{\sigma V_H}{\delta n} = V \\
 & \frac{\delta V_{xc}}{sc} = f_{xc}
 \end{array}$ variation of the potentials

- **1** DFT ground-state calc. $\rightarrow \phi_i, \epsilon_i$ [V_{xc}]
- $\underbrace{ \frac{\frac{\partial V_H}{\delta n} = v}{\frac{\delta V_{xc}}{\delta n} = f_{yc}} }_{ \text{variation of the potentials}}$

- **1** DFT ground-state calc. $\rightarrow \phi_i, \epsilon_i$ [V_{xc}]
- $\underbrace{\begin{array}{c}
 \frac{\delta V_H}{\delta n} = V \\
 \frac{\delta V_{XC}}{\delta -} = f_{XC}
 \end{array}}_{\text{variation of the potentials}$

- **1** DFT ground-state calc. $\rightarrow \phi_i, \epsilon_i$ [V_{xc}]
- $\underbrace{ \frac{\delta V_H}{\delta \hat{n}} = v}_{\frac{\delta V_{xc}}{\delta \hat{n}} = \mathbf{f_{xc}}$ variation of the potentials

- **1** DFT ground-state calc. $\rightarrow \phi_i, \epsilon_i$ [V_{xc}]
- $\underbrace{\begin{array}{c} \frac{\delta V_H}{\delta N_{xc}} = v \\ \frac{\delta V_{xc}}{\delta n} = f_{xc} \end{array}}_{\text{variation of the potentials}}$

RPA and other approximations

•
$$f_{xc} = \begin{cases} \frac{\delta V_{xc}}{\delta n} \\ \text{"any" other function} \end{cases} f_{xc} = 0 \mapsto \text{RPA}$$

Local field effects

$$\chi = \left(1 - \chi^0 v\right)^{-1} \chi^0 \quad ; \quad \chi^0_{\mathbf{G}\mathbf{G}'}$$

Linear Response Approach

RPA and other approximations

•
$$f_{xc} = \left\{ egin{array}{l} rac{\delta V_{xc}}{\delta n} \\ ext{"any" other function} \end{array}
ight. f_{xc} = 0 \mapsto \mathsf{RPA} \end{array}$$

Local field effects

$$\chi = \left(1 - \chi^0 v\right)^{-1} \chi^0 \quad ; \quad \chi^0_{\mathbf{GG}}$$

Linear Response Approach

RPA and other approximations

•
$$f_{xc} = \begin{cases} \frac{\delta V_{xc}}{\delta n} \\ \text{"any" other function} \end{cases} f_{xc} = 0 \mapsto \mathsf{RPA}$$

Local field effects

$$\chi = (1 - \chi^0 v)^{-1} \chi^0$$
 ; $\chi^0_{cc'}$

Outline

- Introduction
- Electron Energy Loss SpectroscopyLinear response within DFT
- 3 Applications: Nanotubes and Graphene
- Perspectives

Actual work at the Theoretical Spectroscopy Group

- EELS of semiconductors
- IXS and CIXS of semiconductors and metals.
- EELS of nanotubes and graphene layers
- EELS and IXS of strongly correlated systems (Hf, V oxydes)
- RIXS spectroscopy

European Theoretical Spectroscopy Facility User projects

Actual work at the Theoretical Spectroscopy Group

- EELS of semiconductors
- IXS and CIXS of semiconductors and metals
- EELS of nanotubes and graphene layers
- EELS and IXS of strongly correlated systems (Hf, V oxydes
- RIXS spectroscopy

Spectroscopy Facility

User projects

EELS of nanotubes: plasmon dispersion

Questions

- theoretical understanding of electronic excitations of SWNT plasmon dispersion
- SWNT and graphene. Strong connection and analysis

EELS of nanotubes: plasmon dispersion

VA-SWCNT diameter: 2nm nearly isolated

Kramberger, Hambach, Giorgetti, Rümmeli, Knupfer, Fink, Büchner, Reining, Einsarsson, Maruyama, Sottile, Hannewald, Olevano, Marinopoulos, Pichler, Phys. Rev. Lett. **100**, 196803 (2008)

2nm is big!!

linear dispersion reminds us the *Dirac*

EELS of nanotubes: plasmon dispersion

2nm is big!!

linear dispersion reminds us the *Dirac* cone

Numerical simulations

ab-initio calculations

- DFT ground-state calculations (LDA)
- Independant Particles polarizability: χ^0
- RPA Full polarisability: $\chi = \left[1 \chi^0 v\right]^{-1} \chi^0$
- Dielectric function $\varepsilon^{-1} = 1 + v\chi$
- energy loss function $-\text{Im}\{\varepsilon^{-1}(\mathbf{q},\omega)\}$

Independent particle picture

energy loss in graphene (in-plane, q = 0.41Å)

 \implies given by χ^0 : interpretation in terms of band-transitions

Independent particle picture

energy loss in graphene (in-plane, q = 0.41Å)

RPA: random phase approx.

energy loss in graphene (in-plane, q = 0.41Å) — IPA π – π * at K **RPA** - Im ε^{-1} (arb. u.) 8 10 energy loss (eV)

- given by χ : no interpretation by band-transitions
- contributions from K

RPA: random phase approx.

energy loss in graphene (in-plane, q = 0.41Å) — IPA π – π * at K RPA - Im ε^{-1} (arb. u.) without "K" 8 10 energy loss (eV)

- given by χ : no interpretation by band-transitions
- contributions from K
- mixing of transitions

Plasmon dispersion

- Graphene can be studied to get quantitative information about VA-SWNT
- Vice-versa is also true!
- Bulk (bundled) nanotubes can be studied using double layer graphene
- High q measurements are applicable to probe intrinsic properties of individual objects within bulk arrays.

- Graphene can be studied to get quantitative information about VA-SWNT
- Vice-versa is also true!
- Bulk (bundled) nanotubes can be studied using double layer graphene
- High q measurements are applicable to probe intrinsic properties of individual objects within bulk arrays.

- Graphene can be studied to get quantitative information about VA-SWNT
- Vice-versa is also true!
- Bulk (bundled) nanotubes can be studied using double layer graphene
- High q measurements are applicable to probe intrinsic properties of individual objects within bulk arrays.

- Graphene can be studied to get quantitative information about VA-SWNT
- Vice-versa is also true!
- Bulk (bundled) nanotubes can be studied using double layer graphene
- High q measurements are applicable to probe intrinsic properties of individual objects within bulk arrays.

Outline

- Introduction
- Electron Energy Loss SpectroscopyLinear response within DFT
- 3 Applications: Nanotubes and Graphene
- Perspectives

Ab initio simulation of electronic excitations

Advantages and limits

- √ reliable
- √ predictive
- × cumbersome

Actual developments in the group

- multiwall nanotubes stacking of graphene layers (1 postdoc)
- towards more complex systems strongly correlated (2 postdocs)
- different spectroscopies (X-ray?) (1 postdoc
- spatial resolution EELS (PhD thesis)

Ab initio simulation of electronic excitations

Advantages and limits

- √ reliable
- √ predictive
- × cumbersome

Actual developments in the group

- multiwall nanotubes stacking of graphene layers (1 postdoc)
- towards more complex systems strongly correlated (2 postdocs)
- different spectroscopies (X-ray ?) (1 postdoc)
- spatial resolution EELS (PhD thesis)

Perspectives

Discontinuity of the loss function

- energy loss $S(\mathbf{q}, \omega)$ in graphite (AB)
- q along c-axis
- for multiple Brillouin zones
- discontinuity:
 - → dispersion
 - → peak vanishes

Discontinuity of the loss function

- energy loss $S(\mathbf{q}, \omega)$ in graphite (AB)
- q along c-axis
- for multiple Brillouin zones
- discontinuity:
 - \rightarrow dispersion
 - $\rightarrow \ \text{peak vanishes}$