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Chapter 1
Introdution and overview
A semiondutor heterostruture is an arti�ial material, basially obtained by epi-taxial growth and/or hemial ething of two or more di�erent semiondutors. Thesize redution ahieved in one, two or three dimensions in heterostrutures at thenanosale level leads to eletroni ground and exited states widely di�erent fromthose of the bulk rystals, and has opened the way to a new generation of optoele-troni and photoni devies.If we onsider the evolution of an eletroni state from a bulk rystal to a nanos-truture, essentially three phenomena our. First, the band-o�sets at the interfaesat as e�etive potential barriers, whih on�ne the arriers, both the eletrons andthe holes, in one, two or three dimensions. Seond, for an arti�ial periodi system,e.g. a superlattie, the superell is made up by joining a number N of primitive ellsof the underlying bulk latties. Hene, in the reiproal spae N k-points in theBrillouin zone of the bulk are folded onto the same k-point in the smaller Brillouinzone of the nanostruture, and the arti�ially superimposed potential indues a ou-pling between previously independent bulk states. Third, the arti�ial ombinationof di�erent materials usually leads to a redution of the originally higher symmetryof the onstituent bulk materials.Quantum on�nement and on�nement-indued mixing a�et the energy and thedimensionality of eletroni levels, the lowering in the rystal symmetry is responsi-ble for the removal of level degeneraies. In pratie, to take advantage of all thesemodi�ations in the eletroni states, we have to onsider how they are reeted in7



8 Chapter 1. Introdution and overviewmodi�ations of the quantities of interest. In partiular, the optial properties areof the utmost importane, as they lie at the basis of many new tehnologial appli-ations. Among the already well-established appliations we an ite the multiplequantum well (MQW) lasers [1, 2℄, the quantum asade lasers [3℄, the Shottkybarriers [1, 2℄, the modulation-doped heterostrutures [1, 2℄, like the high eletronmobility transistors (HEMT). Dieletri superlatties are developed for their non-linear properties, whih indue e�ets suh as the optial bistability or the nonlinearfrequeny onversion [4℄. Those e�ets are also found in semiondutor heterostru-tures based on GaAs, whih has by itself important nonlinear optial properties [5℄.The optial bistability has for instane been observed in a photoexited GaAs/AlAssuperlattie [6℄. In searh of new optial soures, in GaAs/oxidized-AlAs super-latties the optial anisotropy has been exploited to ahieve phase mathing forseond-harmoni generation, the enhaned dieletri ontrast has produed a break-through in the onstrution of Bragg reetors for MQW lasers and miroavitiesand birefringent waveguides have been proposed [7℄.Let us analyze more in details the physial e�ets involved in the appliationsmentioned above. Interband absorption spetra of bulk tetrahedral semiondutors(like Silion, GaAs, AlAs, : : :) are dominated by two prominent features, denotedE1 and E2 [8, 9℄. The E1 peak originates from band-to-band transitions along the� � L diretion, where valene and ondution bands are nearly parallel: this re-sults in a M1-type ritial point, i.e. a saddle point in the joint density of states,whih also gives a strong exitoni harater to the transition. The E2 peak, in-stead, has ontributions from di�erent parts of the Brillouin zone, but mainly froma region entered around the speial point (34 ; 14 ; 14) (in units of 2�=a, where a isthe lattie onstant). Starting from a basi level of analysis, in a nanostruture theon�nement of the arriers, as the simplisti exerise of the partile in a box anteah, leads to a blue shift and a sharpening of the absorption peaks. In addition,removal of level degeneraies an indue the subdivision of the transitions in groups,leading to splittings of the absorption peaks. In the past, most experimental inves-tigations have foused on the energy region of the fundamental gap, whih is easilyaessible by photoluminesene and photoluminesene exitation spetrosopiesand yields a variety of interesting physial phenomena related to bound exitoni



9states. Relatively few studies of on�nement e�ets on high-energy transitions havebeen presented. Blue shifts and splittings of the E1 and E2 transitions were mea-sured in GaAs/AlAs superlatties [10, 11℄. More reently, a quantum on�nementindued shift of E1 and E2 was measured in Ge nanopartiles embedded in a glassymatrix [12, 13℄. Conerning theory, on�ned eletroni levels lose to band edges,exitoni e�ets and the resulting optial properties an be alulated rather simplyand aurately by the envelope-funtion method [14℄. The theoretial problem ofdetermining optial spetra of semiondutor heterostrutures in the whole visibleregion is muh more omplex and beyond the reah of e�etive-mass methods, as itrequires a desription of the e�ets of on�nement and oupling on eletroni statesin the whole Brillouin zone.Yet, there is still a remarkable e�et of the redution of symmetry to be onsid-ered, whih obliges us to move to a deeper level of analysis of the problem. Theoriginal point group of most of the bulk semiondutors whih onstitute the studiedheterostrutures is the ubi group of the diamond or zin-blend struture, whihyields an isotropi optial response of the medium. The lowering in the rystalsymmetry gives rise to an optial anisotropy in the real part of the dieletri on-stant (birefringene) and in the imaginary part (absorption anisotropy or dihroism).Even at zero-frequeny, birefringene an be large, like in nanostrutured silion sur-faes [15℄, or of moderate amplitude, as in GaAs/AlAs superlatties [16℄, where italso shows a non-trivial dependene on the superlattie period. The basi piturein terms of transitions between one-eletron states, mainly used up to now, ignoresontributions from many-body e�ets whih may play a ruial role, and whih tendto be espeially important when the sale of the system is redued and the inhomo-geneity of the medium is more pronouned. Self-energy and eletron-hole interation(i.e. exitoni) e�ets an have a signi�ant ontribution to the absorption spetraof even simple bulk semiondutors. The former orrets the ground state exhange-orrelation potential, the latter desribes the variations of the exhange-orrelationpotential upon exitation. Of ourse, there are also ontributions stemming fromvariations of the Hartree potential, inluding the so-alled loal �eld e�ets, whihexpress the fat that these variations reet the harge inhomogeneity of the re-sponding material. Therefore, loal �eld e�ets an be of moderate importane,



10 Chapter 1. Introdution and overviewompared to the exhange-orrelation ontributions, in the absorption spetra ofsimple bulk semiondutors, but show up inreasingly when one onsiders moreinhomogeneous systems.Most of the today tehnologially interesting systems are strongly inhomoge-neous, and their potential appliations might even be based on their inhomogeneity- superlatties are one of the best examples. As a �rst onlusion, we an nowdesignate the nearly lattie-mathed GaAs/AlAs superlatties as the ideal proto-type systems for the understanding of arti�ial strutures. Many referene dataare available, sine their optial properties have been thoroughly investigated bothexperimentally [10, 17, 18℄ and theoretially [19, 20, 21, 22, 23, 24, 25℄. In thisthesis we will study the eletroni states all over the Brillouin zone and the optialproperties, with a speial are for the optial anisotropy, of two spei� kinds ofsystems: (GaAs)p/(AlAs)p superlatties and free-standing GaAs layers, whih aresimulated by (GaAs)p/(vauum)p superlatties. Both these systems onsist in theperiodi alternation of layers of two di�erent materials (or also an empty lattie)with an original zin-blend struture. Eah layer is omposed by the same numberp of (001) planes: 2p planes ompose the superell. An example of GaAs/AlAstetragonal superell is shown in Fig. 1.1 on page 11. Besides the obvious hoie ofGaAs/AlAs systems, the motivation for studying GaAs/vauum superlatties is toanalyze how on�nement e�ets at in a system where the eletroni states are trulyon�ned in GaAs layers, even at high energies. In GaAs/AlAs superlatties, in fat,the band strutures of the two onstituents far away from the fundamental bandedges are rather similar and strong banding e�ets our in short-period strutures,i.e. the eletroni states beome deloalized along the superlattie. A omparisonbetween the two systems should therefore eluidate the respetive roles of quantumon�nement and superlattie band formation in determining the optial properties.However, free-standing GaAs �lms are not only an ideal model system, and theyan be produed by hemial ething [26℄. Moreover GaAs/vauum superlatties analso be a model for superlatties made of GaAs and a wide-gap oxide, like Al2O3 oroxidized AlAs (AlOx).GaAs/AlAs superlatties have been the subjet of various theoretial studies.Most of the approahes well established for bulk band struture alulations reveal



11

Figure 1.1: Tetragonal superell for a (GaAs)2=(AlAs)2 (001) superlattie. Red small irlesindiate As atoms, blue irles and green irles indiate respetively Ga and Al atoms.



12 Chapter 1. Introdution and overviewsome weaknesses, when applied to a low-dimensional system. A ompletely satisfa-tory method should desribe aurately, all over the Brillouin zone, both intervalleyoupling and on�nement e�ets, in systems of any sale, onstituted by few-atomto million-atom superells. In literature, only the eletroni struture of very-short-period (GaAs)p/(AlAs)p superlatties has been alulated from �rst priniples byDensity Funtional Theory (DFT) and norm-onserving pseudopotentials (see Se-tion 3.5). DFT alulations bene�t of a high degree of preision, whih annot bereahed by empirial alulations. Nevertheless, the omputation time grows rapidlywith the number p of monolayers, making the method impratial for large sale sys-tems. Thus, many empirial methods have been developed in the last deades tostudy large-sale superlatties (see Setion 2.1). While reahing a simpli�ation ofthe problem, they often fail to desribe orretly all the physial e�ets involved.Conerning the optial properties, only a few alulations of absorption spetrafor very-small period superlatties exist. Moreover, very few information is knownabout the dieletri properties and the anisotropy at zero frequeny of GaAs/AlAssuperlatties. First, the refrative index has been neither measured nor alulated,and it is ommonly estimated from the dieletri onstants of bulk GaAs and AlAsin the framework of the e�etive medium approah [27℄. This lassial theory mayfail for small period superlatties, where the deloalization of the eletroni statesover the superlattie implies that the use of the bulk dieletri onstants is notjusti�ed anymore. In fat, theoretial alulations have shown for ultrathin (001)(GaAs)p/(AlAs)p SL's that an average medium model annot explain the behav-ior from p=1 to p=3 [11℄. Seond, the hange in the refrative index with lightpolarization { the stati birefringene { has been measured for large period (001)(GaAs)p/(AlAs)p SL's and a remarkable drop has been observed (see Fig 4.9 on page90) as the period dereases. This behavior has been suggested to depend on loal�elds [16℄. Ab initio methods for ultrathin SL's [11℄, and a semi-empirial approahfor larger ones [28℄, have been applied negleting loal �eld e�ets and did not a-ount for the observed value of the birefringene, nor for its derease with dereasingp, even qualitatively.After having de�ned the systems we are going to study, and after larifying thereasons for their interest and the variety of physial phenomena that they show, we



13want to disuss the objetives of this thesis work. We aim at attaining:(i) A detailed analysis of the eletroni band struture of superlatties; in parti-ular a omprehension of how di�erent physial e�ets, i.e. on�nement, super-lattie potential-indued ouplings, lowering of rystal symmetry, inuene theevolution from the bulk eletroni states to the superlattie states.(ii) An insight in the advantages and disadvantages and an instrutive omparisonof two powerful models for eletroni alulations in solids, namely the pseu-dopotential Linear Combination of Bulk Bands (LCBB) method [29℄ and theDensity Funtional Theory (DFT), used in the Loal Density Approximation(LDA), with norm-onserving pseudopotentials and a plane wave basis set. The�rst of them is based on a semi-empirial parameterization of the pseudopoten-tial, whih involves a �tting on experimental data, the seond relies ompletelyon �rst priniples. Conerning the LCBB method, we have developed a odebased on this method to study superlattie states and optial properties.(iii) A detailed determination of the dieletri properties of superlatties, both inthe isotropi approximation and onsidering the anisotropy harater of thedieletri tensor for polarizations along the growth and in-plane diretions. Wewill fous on the behavior under on�nement of the peaks in the absorptionurves and on the anisotropy of the optial response, in partiular alulatingthe dieletri tensor omponents and the zero-frequeny birefringene. Theseproperties will be analyzed as a funtion of the superlattie period p. Oneagain, the disussion will follow the two parallel roads of a semi-empirial anda �rst-priniple Time-Dependent DFT (TDDFT) approah to the problem.The two methods will be applied, on one hand, within the same approxima-tion, to judge the onsisteny of the orresponding results. On the other hand,we will try to di�erentiate the alulations in order to ast light on all the pos-sible physial e�ets presented above. As a �rst step, we will disuss to whatextent on�nement and folding-indued modi�ations on the eletroni statesare suÆient in reproduing experimental data. This kind of analysis will bearried out in a semi-empirial independent-partile approah. Afterwards, wewill ompare the obtained results with totally analogous independent-transition



14 Chapter 1. Introdution and overviewab initio alulations. Then, we will introdue loal �eld e�ets in the ab initioTDDFT alulations, to understand whether they give a relevant ontributionto the optial anisotropy, as it an be expeted intuitively. We will �nallyonjeture, in view of the obtained results, how many-body e�ets an furtherontribute to the results. We will test two di�erent approximations (RPA andTDLDA) for the inlusion of the exhange-orrelation ontributions. To in-lude quasi-partile and exitoni e�ets, within a many-body Green's funtionformulation is out of reah for present omputational tools, exept for very-thinsuperlatties.(iv) An innovative investigation of the optial spetra of bulk GaAs and AlAs sys-tems. The appliation of an improved TDDFT model reently elaborated byReining et al. [30℄ and up to now only applied to Si bulk rystals, allows toinlude the many-body e�ets in the optial spetra in a omputational veryeÆient way. We will establish if it sueeds in reproduing, besides Si spetra,bulk GaAs and AlAs spetra as well. The ontinuum exiton e�et is knownto be onsiderably strong in this kind of systems. An appliation to superlat-ties is at the moment premature; nevertheless the quality of the results willbe disussed also in view of a future appliation to heterostrutures.The thesis is organized as follows. In Chapter 2 we introdue the LCBB semi-empirial tehnique and we apply it to alulate bulk (i.e. GaAs and AlAs) andsuperlattie (i.e. GaAs/AlAs and GaAs/vauum) band strutures. The DensityFuntional Theory formalism for ground state alulations is desribed and appliedin Chapter 3. The results obtained in the two di�erent approahes are ompared atthe end of the Chapter 3. In Chapter 4 and 5 we present, respetively, the semi-empirial and ab initio alulations of the dieletri properties, with a partiularinterest in the optial anisotropy. Chapter 6 ontains the summary and the dis-ussion of the present �ndings, also in view of extensions of this work. Finally, inAppendix A we disuss some basi approximations and in Appendix B we presenta desription of the semi-empirial and norm-onserving ab initio pseudopotentials.



Chapter 2
Semi-empirial alulations ofsuperlattie band strutures
The �rst step to fae the tasks just presented in the introdution to our work, is thesearh for a reliable approah to the eletroni state alulations for quantum nanos-trutures. Although the problem is more general, we are interested in fousing onthe study of (GaAs)/(AlAs) and (GaAs)/(vauum) superlatties, grown in the [001℄diretion. In the present and the following hapters, we will analyze two di�erenthoies among the big variety of methods developed within the independent-partilesheme. At the end of the next hapter we will be able to ompare the band stru-tures obtained by means of the two di�erent methods. Here we start dealing withsemi-empirial alulations. We will present a rapid overview of the empirial/semi-empirial methods usually adopted in literature, underlining their advantages anddisadvantages. Then, we will motivate the hoie of one of this methods, namelythe Linear Combination of Bulk Bands (LCBB) method [29, 31℄. In partiular, wewill explain the details of the formalism and how we have applied it to build a om-putational ode. The appliation of the method requires the availability of goodsemi-empirial pseudopotentials. The proedure to onstrut semi-empirial atomipseudopotentials is disussed in Appendix B. Finally, the alulated superlattieband strutures will be ompared to the experiment and to the onstituent bulkband strutures. It is espeially interesting to disuss how the bulk states evolveinto the superlattie ones. 15



16 Chapter 2. Semi-empirial alulations of superlattie band strutures2.1 The hoie of an empirial modelA method is alled empirial when the eletroni Hamiltonian (see Appendix A),whih haraterizes the physial system, depends on a set of parameters, to be �t-ted on experimental data. In this sense, we will see that it is more orret to de�nethe method we apply semi-empirial, beause the �tting proedure onsiders alsonumerial data oming from �rst-priniple alulations. If one aims at approahingomplex large sale systems, �rst priniple parameter-free tehniques often reahtheir limits: these kind of alulations are not feasible, beause of pratial ompu-tational limitations in time and in memory. In these ases, the hoie of one amongthe many existing empirial or semi-empirial tehniques represents a low omputa-tional ost solution to investigate, with satisfying reliability, some partiular aspetsof the problem. It must be lear from the beginning that, to keep reasonably lowthe number or �tting parameters, it is neessary to give up reahing a too highpreision in band struture alulations, espeially far from the band gap and thehigh symmetry points. To ompete with the ab initio quasi-partile alulations anempirial method should involve a small omputational e�ort and allow to studyvery large sale systems.In order to develop and improve the empirial tehniques, a onsiderable e�orthas been devoted in the last 15 years to go beyond the \standard model", i.e.the k � p envelope-funtion approah [32, 33, 14℄. The envelope funtion methodrepresents the highest degree of simpli�ation of the problem: it substitutes the truemirosopi potential and the real band struture with simpler onstant potentialsand paraboli bands. In a way whih reminds the k �p model for a bulk rystal, therepresentation for the Bloh superlattie states  i;q is made of bulk eigenfuntionsin k0, nun;k0 (r) eik0�ron, (usually k0 = � = 0): i;q(r) = Xn;GSL (i;q)n;GSLh un;�(r) eiGSL�ri eiq�r ; (2.1)where GSL are superlattie reiproal lattie vetors and n is the bulk band index.This type of representation suggests an intuitive riterion to selet the band indiesn to inlude in the �nite sum in Eq. (2.1): only the bulk states not too far in energyfrom the searhed state  i;q are physially important. While eminently suessful indesribing states in wide quantum wells, this approah enounters strong limitations



2.1. The hoie of an empirial model 17in modeling small systems with more omplex geometries, like short/medium periodsuperlatties, wires and dots. The band struture far from k0 annot be reproduedin a satisfatory way, as it already happened in a k � p alulation for a bulk solid,unless an extremely high number of basis funtion are onsidered. The mixing e�etsbetween states labelled by k-points onneted by a nanostruture reiproal vetor,and thus oupled by the mesosopi periodiity of the superlattie potential, are notaounted for and must be introdued arti�ially. As a result, the appliation ofthis method is advised only if one is interested in the dispersion of a single bandedge of the heterostruture, whih originates from states of the bulk material omingfrom a region lose to the seleted point k0. On the other hand, exitoni e�etsand external �elds an be easily modeled to be inluded, as an approximation, inalulations. The more sophistiated and aurate k � p generalizations, whih aninlude multiband oupling throughout all the Brillouin zone, have been disussedin many reent works (see for example Ref. [34, 35, 36, 37℄). A semi-quantitativedesription of superlatties has been obtained by Dandrea and Zunger [21℄ within avirtual-rystal approximation. This model represents a further step in the diretionof relating the superlattie levels to those of their onstituents.The searh for improvements is intended to avoid the drasti solution of a \diretdiagonalization", whih gives aurate results, but is, from a omputational point ofview, as expensive as the ab initio approahes. The diret diagonalization approahomes from an antitheti starting point: it onsists in expanding the nanostruturewave funtions on a large basis, usually made of plane waves or loalized atomistates. The empirial tight-binding model [38, 39, 40, 41℄ expresses the ioni po-tential V (r) of the nanostruture as a superposition of atomi empirial potentials.The nanostruture wave funtions are expanded on a set of loalized atomi orbitals.The variational exibility of the basis is quite limited and the alulations usuallydo not inlude more than the seond or third nearest-neighbor interations. Theomputational time is fairly high for an empirial method: the dimension of the ba-sis sales as the number N of atoms of the ell, in its turn the diagonalization timesales as N3, making the method impratial already for a system made of a fewthousands of atoms. A more exible basis is o�ered by a plane wave set, to be usedin onnetion with atomi empirial pseudopotentials (EPM) [42, 20℄. Nevertheless,



18 Chapter 2. Semi-empirial alulations of superlattie band struturesthe hoie of a deloalized basis set does not hange the limit size of 103 atoms. Theadvantage of these two methods, in omparison to the standard envelope funtionmodel, is the ability to study a system haraterized by whatever omplex geometry,without losing symmetry information.The Linear Combination of Bulk Bands (LCBB) method, proposed some yearsago by Wang, Franeshetti and Zunger [29℄ allows a gathering of the advantages ofmany di�erent methods. This approah has proved to be able to fae the problemof the eletroni struture all over the Brillouin zone, for a nanostruture made ofup to million atoms superells, haraterized by any geometry. In fat, it needs asmall omputational expense and inludes naturally all the folding and on�nemente�ets. As the name of the method suggests, it onsists in expanding the eletroniwavefuntions of the nanostruture as a linear ombination of the eigenfuntions ofthe bulk onstituent materials. Unlike tight-binding or standard plane wave expan-sions, a basis of bulk states allows to pre-selet intuitively the physially importantstates whih may mix in the formation of the nanostruture state, hene the dimen-sion of the basis an be redued as muh as to make possible to approah large salesystems. By ontrast with the k�p envelope funtion method, o�-� states un;k 6=0eik�rare diretly onsidered, permitting a orret treatment of multiband on�nement-indued ouplings within the Brillouin zone, without the need for a large basis ofk = 0 bulk states. Moreover, a tehnique whose starting points are the bulk states isthe most suitable tool to understand how the bulk states evolve into the superlattieones, allowing to study further whih e�ets ontribute to the di�erenes betweenthe optial spetra of the superlatties and their onstituent bulk materials. Allthese motivations have lead us to hoose the semi-empirial LCBB method.2.2 The Linear Combination of Bulk Bands methodThe LCBB method, as presented in Refs. [29, 31℄ an be easily applied to everykind of nanostruture. Although more general, from now on we restrit the presen-tation of the formalism to (A)p/(B)p superlatties, made of alternating layers of twodi�erent materials haraterized by an original zin-blend struture, grown in thediretion [001℄. In pratie, two spei� kinds of periodi systems have been studied:



2.2. The Linear Combination of Bulk Bands method 19(GaAs)p/(AlAs)p and (GaAs)p/(vauum)p superlatties, with a superlattie periodp ranging from 4 to 20. We hoose to onstrain the width d = pa of the A layersto be equal to the width of B layers. In GaAs/vauum superlatties a is simplythe experimental GaAs lattie onstant, whereas in GaAs/AlAs superlatties a isthe average of the experimental lattie onstants of the the almost lattie-mathedGaAs and AlAs rystals. In fat, the lattie mismath is so small (about 0.15%[43℄) that it an be negleted for our purposes, thus allowing to use the strain-freeformalism [31℄.Aording to the LCBB approah, the superlattie eletroni wave funtions areexpressed as linear ombinations over band indies n and wave vetors k = q+GSL 1of full-zone Bloh eigenstates of the onstituent bulk materials: i;q(r) = X�=A;B Nb;NGSLXn;GSL (i;q)n;GSL;� u�n;q+GSL(r) ei(q+GSL)�r : (2.2)In the expression (2.2) the �rst sum runs over the two onstituent bulk materials,A=GaAs and B=AlAs,vauum, the seond sum runs over the band indies n andthe superell reiproal lattie vetors GSL, belonging to the �rst Brillouin zone ofthe underlying bulk lattie. Beause of the superell periodiity, the superimposedsuperlattie potential mixes up only bulk states labelled by k = q + GSL vetorswhih di�er by a superlattie reiproal lattie vetor GSL: the number of oupledstates is hene always equal to 2p, beause exatly 2p vetors GSL are ontained inthe f Brillouin zone. The maximum dimension of the basis set is then given by2p multiplied by the number Nb of seleted bulk bands indies. The lassi�ationof the bulk states by means of the band index n and the dispersion of the bandsas a funtion of k allow an intuitive seletion of the bands to be retained in thebasis: the physially relevant states belong to energy bands lose in energy to thesuperlattie states we are interested in alulating. For example, if one is aiming atstudying the optial absorption in an energy range lose to the gap, the bulk statesto be inluded in the basis are those lose to the optial gap. We know that, for eahindependent point k = q+GSL, the bulk eigenfuntions of type � form an in�niteorthonormal set. In the ideal ase of an in�nite representation for the superlattie1From now on we will indiate with q a reiproal spae vetor inside the tetragonal Brillouin zone of thesuperlattie, with k a vetor inside the bulk Brillouin zone, with GSL a superlattie reiproal lattie vetor whihis ontained inside the �rst Brillouin zone of the underlying bulk lattie, and with G a bulk reiproal lattie vetor.



20 Chapter 2. Semi-empirial alulations of superlattie band strutureswavefuntions, it would be equivalent to use the bulk set of type A or B, whereasit would be an error to merge them in a unique set, whih would obviously yieldan overomplete basis. Nevertheless, using a small set of bulk eigenfuntions, it ismore onvenient to reate a mixed set of A and B eigenstates, provided that theresulting basis is orthonormalized before being used.Loal semi-empirial ontinuous atomi pseudopotentials have been piked outfrom literature [44℄ to build the pseudopotential term in the one-partile Hamilto-nian. These pseudopotentials have been used to perform all the semi-empirial bandstruture alulations, �rst for the bulk onstituent materials and then for the het-erostrutures. A detailed desription of the pseudopotential method is presented inAppendix B. Sine the adopted pseudopotentials are designed for a kineti-energyuto� of 5 Ry, [44℄ bulk eigenfuntions are expanded on a plane wave basis settrunated at about 60 plane-waves at eah k-point:��n;k(r) = 1p
 XG B�n;k(G) ei(k+G)�r ; (2.3)where 
 is the bulk f ell volume. This means that, as a onsequene, also thesuperlattie states are a linear ombination of the same small set of plane waves.However, the method is muh more powerful than a simple diret diagonalizationon the plane wave basis, beause the �rst diagonalization step onerning the bulkonstituents furnishes a set of onveniently weighted plane waves to fae the moreomplex superlattie problem. Instead, a standard plane wave expansion wouldrequire a muh larger plane wave basis, whose dimension would ontinue growingproportionally to the number of atoms in the superell. At this stage we have deidedto neglet the spin-orbit interation, even if it is possible to inlude it, as explainedin Ref. [44℄. In Figs. 2.2 and 2.3 we show the band strutures of GaAs and AlAsalulated with these pseudopotentials. More details are disussed in the followingsetion.Moving �nally to the superlattie one-partile Hamiltonian, we observe that thepseudopotential term is built as a superposition of sreened, spherial atomi loalpseudopotentials v�:H = ��h2r22m +X� XR2DL v� (r�R� d�) W� (R) ; (2.4)



2.2. The Linear Combination of Bulk Bands method 21where R is a f diret lattie (DL) vetor and d� the displaement of the atom oftype � in the bulk primitive ell. The index � an assume four di�erent values for aGaAs/AlAs superlattie, beause an As atom in the GaAs environment is onsidereddi�erent from an As atom in the AlAs environment. In ase of GaAs/vauumsuperlatties only three onstituents are admitted: Ga, As (in GaAs environment)and empty lattie sites. To preserve a orret desription of interfaes in GaAs/AlAssuperlatties, an As atom bound to two Al and two Ga atoms has been attributeda symmetrized pseudopotential, whih is the average of the As pseudopotentialfuntions in GaAs and AlAs environments.The weight funtionW� (R) selets the atom basis whih lies on eah lattie site,de�ning the geometrial details and the symmetry of the struture: in the vauumlayers its value is zero. In the following alulations we assume ideal sharp interfaes,whih are desribed by a step-like weight funtion W� (R). However, the interfaialroughness, whih is always present in real samples, an be easily simulated by asegregated pro�le of W� (R), as disussed in Ref. [29℄. The Hamiltonian matrixelements on the bulk basis set are given byh�0; n0;G0SL + qjH j�; n;GSL + qi = XG;G0 hB�0n0;G0SL+q(G0)i�" �h22m jq+GSL +Gj2 ÆGSL;G0SL ÆG;G0 +X� v�(jGSL +G�G0SL �G0j)ei d��(GSL+G�G0SL�G0) W�(GSL �G0SL) #hB�n;GSL+q(G)i : (2.5)They depend on the Fourier transform of the pseudopotentials (i.e. a ontinuumform fator) v� (r): Z
 dr ei(GSL+G)�r v�(r) = 
 v�(jGSL +Gj) ; (2.6)and the Fourier transform of the weight funtion W� (R):W�(GSL) = 1Np XR2DL W�(R) eiGSL�R ; (2.7)where Np equals the number of bulk lattie points in the rystal volume.It is evident that the few disrete pseudopotential form fators (i.e. the Fouriertransform oeÆients of the pseudopotential v� (r), evaluated at the smallestG ve-



22 Chapter 2. Semi-empirial alulations of superlattie band struturestor shells of the reiproal lattie), whih are suÆient to alulate the bulk bandstruture, are no longer enough to obtain the matrix elements for the superlattieHamiltonian. The Fourier transform (2.6) is needed at all the superlattie reiproallattie vetors GSL. When the superlattie period p grows, the superlattie reipro-al lattie beomes denser and denser and, in the limit of an in�nitely large superell,we need to know the Fourier transform of the pseudopotential v� (x) for all the realvalues x = jG+GSLj, as a ontinuum funtion. We use the ontinuous-spae fun-tions v� (x) proposed by M�ader and Zunger [44℄. Details on the onstrution ofthe semi-empirial pseudopotentials and a table of the parameters an be found inAppendix B. In Ref. [44℄, the empirial parameters of the pseudopotential funtionare adjusted in order to �t both the measured eletroni properties of bulk GaAsand AlAs and some DFT-Loal Density Approximation (LDA) results for superlat-ties. This last requirement is the reason why we have alled these pseudopotential\semi-empirial", instead of simply \empirial". It has been veri�ed that the wavefuntions of bulk and p=1-superlattie systems alulated with these pseudopoten-tials are lose to those obtained in rigorous �rst priniples LDA alulations [44℄.These pseudopotentials are adjusted to reprodue the experimental GaAs/AlAs va-lene band o�set (0.50 eV). As bulk and superlattie energy levels are provided inthe same absolute energy sale, their eigenvalues an be ompared diretly. TheFourier transform of the weight funtion W� an be alulated analytially in thease of abrupt interfaes. Its expression reveals a proportionality to the inverse ofthe superlattie period p [45℄:W�(GSL) = 14p pXl=1 2 ei(l�1)�jp � = Ga, As (in GaAs) ; (2.8)W�(GSL) = 14p 2pXl=p+1 2 ei(l�1)�jp � = Al,As (in AlAs) ; (2.9)W�(GSL) = 0 � = empty lattie site ; (2.10)where GSL = � + 2�pa (0; 0; j) j 2 (�p; p℄ : (2.11)As a result, the oupling between bulk wavefuntions oming from k-points in thef Brillouin zone onneted by a superlattie vetor GSL beomes less relevant asthe superlattie period p grows. Moreover, a di�erent behavior for even or odd p is



2.3. From bulk to superlattie states 23deteted.2.3 From bulk to superlattie statesThe �rst step to study the superlattie band strutures by the LCBB method is thealulation of the bulk energy levels and eigenfuntions all over the Brillouin zone.The dispersions of the energy levels along the high symmetry diretions in the fBrillouin zone, for GaAs and AlAs rystals, are shown respetively in Figs. 2.2 and2.3. The energy zero is �xed at the top of the valene band of GaAs, for both GaAsand AlAs band strutures. This hoie is meant to emphasize the advantages o�eredby the semi-empirial pseudopotentials parametrized in Ref. [44℄: the eletronienergies extrated by the diagonalization of the Hamiltonian (2.5) lie on an absoluteenergy sale, thus the energy levels of GaAs and AlAs an be diretly omparedand the di�erene between the highest oupied levels of the two materials at �gives the 0.5 eV valene band o�set without further adjustments. The �t of s-likeondution-band edges at the high symmetry points �, X, L is exellent, espeiallyin the ase of GaAs. Yet, we will notie that the error remains relevant, even 0.7eV with respet to the experiment for the p-like GaAs �15 (see Tables 3.2 and3.3). The numeri values of the energy levels at the high symmetry points will befurther disussed in the omparative tables mentioned above, after the presentationof the analogous ab initio band struture alulations in Setion 3.5. It is worthremembering that the semi-empirial pseudopotential implemented here is loal,whereas the norm-onserving pseudopotential aounts for non-loal ontributions.Hene it is expeted that the quality of �rst priniple band struture is higher.Starting from a bulk basis set to expand the superlattie wavefuntions obligesto think about the way in whih the bulk states ouple to evolve to the superlattiestates. The ubi symmetry of the bulk latties is redued when the superlattie isbuilt and the growth diretion z is no longer equivalent to the orthogonal in-planediretions x and y. The ideal struture for a lattie-mathed system with abruptinterfaes is a simple tetragonal Bravais lattie, with a superell de�ned by the basisvetors (1; 1; 0)a=2, (�1; 1; 0) a=2, (0; 0; 1) pa, where a is the bulk lattie onstant.The reiproal lattie is also simple tetragonal, with basis vetors (1; 1; 0) (2�)=a,
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Figure 2.1: Brillouin zone for simple tetragonal (GaAs)p=(AlAs)p and (GaAs)p=(vauum)p (001)superlatties, inluded in bulk onventional ubi ell. The �gure shows high symmetry pointspositions.(�1; 1; 0) (2�)=a and (0; 0; 1) (2�)=(pa). The �rst Brillouin zone is shown in Fig. 2.1.Superlattie high symmetry points are distinguished from their bulk ounterpartsby putting a bar over the symbol. An additional symmetry point �L is de�ned asfollows: �L = �X if p is even, �L = �R if p is odd. The most important zin-blendk-points are folded onto superlattie points as follows:�;(jpXz)j=�p+1;p �! �� ;Xy;(jpXz)j=�p+1;p �! �M ;L111;(jpXz)j=�p+1;p �! �L : (2.12)In the ase of a ommon anion struture like (GaAs)p=(AlAs)p the point group isD2d,otherwise it is C2v: the latter is the ase of (GaAs)p=(vauum)p superlatties [46℄. InFig. 2.1 we show the tetragonal Brillouin zone and the high-symmetry-points. Firstof all, we onsider the ase of GaAs/AlAs superlatties, where two di�erent bulkmaterials onstitute the alternating layers. We an observe that GaAs and AlAsband strutures are very similar, thus we do expet to still be able to reognize
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Figure 2.2: Bulk band struture of a GaAs rystal along the high symmetry diretions, obtainedby the semi-empirial pseudopotentials of Ref. [44℄. The energy zero is taken at the valene bandmaximum of bulk GaAs.



26 Chapter 2. Semi-empirial alulations of superlattie band struturesin the superlattie band dispersion the harateristi features present in the bulkdispersions. However, omparing diretly the GaAs/AlAs band dispersion, showne.g. in Fig. 2.6, with the bulk band strutures in Figs. 2.2 and 2.3 is misleadingand annot reveal these expeted similarities. Before being instrutively ompared,the two band struture must be referred to the same Brillouin zone. The tetragonalsuperell ontains 2p bulk f Wigner-Seitz ells, as a onsequene, in the reiproalspae the tetragonal Brillouin zone is ontained in the bulk otahedron Brillouinzone (see Fig. 2.1). The bulk states outside the superlattie tetragonal Brillouinzone an be folded into it, by adding tetragonal reiproal lattie vetors. Theresult is a 2p times denser band dispersion along the tetragonal symmetry dire-tions. The (GaAs)2p band struture showed, for p=10, in Fig. 2.4 is ompletelyequivalent to the more usual piture in Fig. 2.2. We remember that in the bulk frystal the diretions [001℄ and [100℄ are equivalent, hene the bulk band dispersionis the same along the ��- �M and ��- �Z lines. Now, if we ompare the (GaAs)20 bandstruture in the tetragonal Brillouin zone with the (GaAs)10/(AlAs)10 superlattieband struture in Fig. 2.6, we are struk by their similarity. However, they are notequal, beause beside the onsequenes of folding, also oupling e�ets our whena superlattie is built. Starting from a simple perturbation piture, when the super-lattie potential is swithed on, it ouples the previously independent bulk bands,relative to the same superlattie point q, but oming from non-equivalent pointsq+GSL in the bigger f Brillouin zone. The e�et is an overall modi�ation of theenergy levels. In partiular, sine the superlattie potential has a lower symmetry,it an remove level degeneraies. It is time to observe that there are some slight,but relevant, di�erenes in the bulk band strutures of GaAs and AlAs: they di�erwith regard to the �rst ondution band. The ondution minimum of GaAs is in�, the minimum of AlAs is in X instead. Thanks to the absolute energy sale, wean ompare diretly the distane in energy of the two edges, whih measures only0.2 eV. Moreover, we know that the bulk k-points � and X an be onneted bya superlattie reiproal lattie vetor GSL. Starting again from the perturbationtheory piture, we an easily see that the bulk GaAs eigenfuntions in � an bestrongly oupled to the AlAs eigenfuntions in X. This e�et is known in literatureas �-X oupling and has remarkable onsequenes on the properties of the minimum
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Figure 2.3: Bulk band struture of AlAs along the high symmetry diretions, obtained by thesemi-empirial pseudopotentials of Ref. [44℄. The energy zero is always taken at the valene bandmaximum of bulk GaAs, hene the valene band o�set between GaAs and AlAs is 0.5 eV.
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Figure 2.4: Bulk band struture of a (GaAs)20, i.e. p=10, obtained by folding the GaAs bandsin Fig. 2.2 along the high symmetry diretions of the tetragonal Brillouin zone. The energy zerois taken at the valene band maximum of bulk GaAs. The dotted top valene band is the Fermilevel.



2.3. From bulk to superlattie states 29ondution state in �� at di�erent superlattie sizes [45, 47, 48℄. The oupling be-tween ��(�1) and ��(X1;3) states, i.e. the lowest superlattie ondution states at��, whih ome respetively from � and X band-edge states of the onstituent bulkmaterials (see the state labels in Figs. 2.2 and 2.3), leads to a reiproal repulsionbetween these two levels. Sine all zin-blend X states lie higher in energy than theGaAs � ondution minimum, this symmetry oupling pushes down the ��(�1) state,ontrasting the upward shift due to on�nement. This ompetition between poten-tial symmetry and kineti energy e�ets results in a non-monotoni �� (�1) =�� (X1)splitting for small p. For large periods, symmetry indued repulsions rapidly attenu-ate, as the weight funtion W� beomes smaller, and on�nement e�ets dominate,even though they also derease as the well width grows. All this determines thetransition form a pseudo-diret (i.e. �� (X1) is the ondution minimum) to a diret(i.e. �� (�1) is the ondution minimum) gap at a superlattie period p = 11 � 1[49℄.We have also determined (see the table in Fig. 2.5) the eletron e�etive massesm� from the de�nition: E(k)� E0 = �h2 jk� k0j22m� ; (2.13)where E0 is the energy of the band extreme at k0 and k must not be too far fromk0, in order to validate the paraboli approximation. The quality of the obtainede�etive masses is partiularly important, in view of desribing orretly anotherimportant e�et, besides the mixing e�ets: the arrier on�nement. We give inFig. 2.5 a shemati image of the on�nement of an eletron in a multilayered stru-ture. We onsider an eletron in a ondution band (but the same onsiderationsare valid for a hole in a valene band) in a GaAs/AlAs superlattie, lying in a statewhih omes from a bulk band edge state: it an be represented by a partile ofmass m� whih feels a retangular potential, given by the level alignment of the bulkenergy bands along the growth diretion z (see the shemati piture in Fig. 2.5).This orresponds to nothing more than the simple quantum mehani exerise of apartile in a periodi repetition of boxes. The AlAs layers at as barriers for thearriers (both eletrons in ondution band and holes in valene band), on�ned inthe wells made of GaAs. The result is a shift of both the valene and the ondutionenergy levels, whih makes the gap wider. The e�etive mass values are related to
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2.4. Calulated superlattie eletroni levels 31the urvature of the bands: the semi-empirial pseudopotentials give satisfatorye�etive masses if ompared to experiments, as disussed in Ref. [44℄.Conerning GaAs/vauum superlatties, the same onsiderations are valid, ex-ept for the fat that there are no AlAs states and thus only GaAs states an mixwith eah other. For the vauum barriers are ideally in�nite in height, on�nemente�ets are signi�antly stronger and, aordingly, the band gaps are wider than inGaAs/AlAs systems. If we now ompare the GaAs band struture in the tetragonalBrillouin zone with the GaAs/vauum superlattie band struture in Fig. 2.7, theystill show similar dispersions. However, as the GaAs/vauum superlattie has onlyhalf the number of eletrons if ompared to the bulk GaAs, also the superlattieband struture has only half the number of bulk bands.2.4 Calulated superlattie eletroni levelsFinally, we show the results of the appliation of the method LCBB to the single-partile band strutures of (001) (GaAs)p/(AlAs)p and (GaAs)p/(vauum)p super-latties. In pratie, the period d = pa has been varied from 4a to 20a. We do notonsider smaller superells beause the superlattie eletroni states di�er more andmore from bulk states while the layer width dereases, making the expansion on thebulk states less reliable.In the ase of a GaAs/vauum superlattie we deide to inlude the 4 valenebands and the 4 lowest ondution bands in the basis set. In the ase of a GaAs/AlAssuperlattie the roughest seletion is to take both GaAs and AlAs bulk states at eahmixed k and n, orthonormalizing at the end the basis set obtained. As GaAs andAlAs band strutures are very similar exept for the lowest ondution band (seeagain Figs. 2.2 and 2.3 and details of alulation below), we have veri�ed that it isenough to inlude only GaAs states for n from 1 to 8 together with the 5th band ofAlAs (i.e. the lowest ondution band). The resulting set must be orthonormalized.It an easily be seen that the �nal dimension of the basis is always small (40� 9 forthe largest superell). When a suÆiently large number of bulk states is used as abasis set for the LCBB method, the results must onverge to those obtained witha diret diagonalization of the Hamiltonian for the orresponding number of plane



32 Chapter 2. Semi-empirial alulations of superlattie band strutureswaves. A omparison of LCBB results with the onventional superell approah waspresented in Ref. [29℄. Here we have performed a onvergene test, whih onsistsin alulating the energy levels with four di�erent bulk basis sets of inreasing size.Seleted results are shown in Tab. 2.1 for (GaAs)10/(AlAs)10 and (GaAs)6/(AlAs)6superlatties. As far as valene states are onerned, dependene of the energy levelson the basis set is below 10�3 eV; for the lowest ondution levels the dependeneon the basis set is generally below 0.05 eV, and falls below 10�2 eV when the 5thband of AlAs is inluded in the basis. The results of Tab.2.1 justify the use of basis3), namely n = 1 to 8 for GaAs and n = 5 for AlAs.Table 2.1: Comparison of energy levels (in eV) at the symmetry points for (GaAs)n/(AlAs)nsuperlatties with period n = 6 and n = 10. We show highest valene levels and lowest ondutionlevels: the energy zero is taken at the valene band maximum. Four di�erent hoies are onsideredfor the basis set: 1) �ve GaAs bands for n from 1 to 5, no AlAs bands; 2) eight GaAs bands for nfrom 1 to 8, no AlAs bands; 3) eight GaAs bands for n from 1 to 8, the 5th band of AlAs; 4) eightGaAs bands for n from 1 to 8, four AlAs bands for n from 5 to 8.basis valene band maximum ondution band minimum�� �Z �R �M �X �� �Z �R �M �Xn=101) 0.0000 -0.0004 -0.8992 -2.1127 -0.8992 1.8318 1.8303 2.0069 1.9048 2.00632) 0.0000 -0.0004 -0.8990 -2.1129 -0.8990 1.8173 1.8190 2.0057 1.9014 2.00493) 0.0000 -0.0004 -0.8990 -2.1131 -0.8990 1.7949 1.8008 1.9911 1.8588 1.98814) 0.0000 -0.0003 -0.8985 -2.1130 -0.8985 1.7884 1.7957 1.9904 1.8590 1.9874n=61) 0.0000 -0.0118 -0.8488 -2.0968 -0.8489 1.9766 1.9940 2.1730 1.9961 2.15612) 0.0000 -0.0115 -0.8481 -2.0970 -0.8482 1.9526 1.9567 2.1694 1.9940 2.15353) 0.0000 -0.0115 -0.8481 -2.0973 -0.8482 1.9062 1.9109 2.1451 1.9618 2.10534) 0.0000 -0.0113 -0.8468 -2.0967 -0.8468 1.9042 1.9098 2.1440 1.9626 2.1043In Figs. 2.6 and 2.7 we show the superlattie energy bands for p=10: the ele-tron energy levels are plotted along the highest symmetry lines in the tetragonalBrillouin zone. All trends in the superlattie states obtained by LCBB method wereshown to be reprodued [29℄, with a surprising auray (10-20 meV) and a small
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Figure 2.6: Band struture of a (GaAs)10=(AlAs)10 (001) superlattie along the high symmetrydiretions. The length of the ��� �Z line is multiplied by ten for larity. The energy zero is takenat the bulk GaAs valene band maximum.



34 Chapter 2. Semi-empirial alulations of superlattie band struturesomputational e�ort, down to thin superlatties and up to large periods. Sine 2pk-points in the f Brillouin zone are always folded onto the same point q in thesmaller tetragonal Brillouin zone, the number of oupied superlattie bands is 2ptimes the number of bulk bands for GaAs/AlAs, p times the number of bulk bandsfor GaAs/vauum superlatties. The dispersion along the diretion ��- �M is similarto the dispersion along the diretion �-X in the bulk, while the other two diretions��- �R and ��- �X have no ounterpart in the band strutures of Figs. 2.2 and 2.3. InGaAs/AlAs, the dispersion along the growth diretion ��- �Z is muh smaller than inthe other diretions, as expeted for superlattie minibands; in GaAs/vauum thebands along ��- �Z are at as tunneling through the vauum has a negligible e�et.We have disussed how the main di�erenes in the superlattie band struturesompared to the bulk (ompare again to Fig. 2.4) an be interpreted in terms ofzone folding and quantum on�nement e�ets; it is also interesting to ompare theband strutures of the two superlatties. The superlattie gaps are larger than thebulk gaps: in partiular the GaAs/vauum gaps are larger than the GaAs/AlAsones, as a result of a stronger on�nement; moreover the superlattie band gapwidths inrease as the superlattie period dereases. The lowering in the rystalsymmetry is responsible for the removal of level degeneraies: as an example in theGaAs/AlAs D2d superlattie the threefold degenerate valene states at � (spin-orbitis negleted) are split in a twofold-degenerate and a non-degenerate state, while inthe GaAs/vauum C2v superlatties the degeneray is ompletely removed.In GaAs/vauum bands we learly see the appearane of states lying in the for-bidden energy gaps. The lowest one lies in the gap from -10 to -6 eV, while two otherones lie in the optial gap from 0 to about 2 eV. A fourth state an be reognized at-5 eV around the point �M , while in other regions of the Brillouin zone it resonateswith the energy bands. Indeed, four surfae states or resonanes are expeted fromthe presene of two dangling bonds at the two interfaes of eah GaAs layers. Wean identify the surfae states by studying the behavior of the probability j j2 to�nd an eletron along the growth diretion z, averaged over the in-plane x; y o-ordinates. Taking as an example the ondution miniband states at �, where thepotential pro�le is haraterized by 0.5 eV deep wells in GaAs layers, we observe(see Fig. 2.8) that an eletron in a surfae state (j = 39 in the exempli�ed ase)
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Figure 2.7: Band struture of a (GaAs)10= (vauum)10 (001) superlattie along the high symmetrydiretions. The energy zero is taken at the bulk GaAs valene band maximum. The uppermostoupied band is number 40 (dotted).
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-10 -8 -6 -4 -2 0 2 4 6 8 10Figure 2.8: Planar averaged probability along the growth diretion z to �nd an eletron at � inthe 36th and the 39th band of a (GaAs)10=(vauum)10 (001) superlattie.has a high probability to be loalized on the surfae and a deaying probability toenter the GaAs layer; on the other hand an eletron in a bulk state (j = 36 in the�gure) has an osillating probability to be found in the GaAs layers. Both statesare obviously evanesent in vauum. From the position of the uppermost oupiedband (j = 40) it follows that GaAs/vauum superlatties have a metalli behavior:this is an artifat of the model, as our aim is to simulate insulating multilayers madeof GaAs and a wide-gap oxide or H-saturated free standing �lms. When alulatingoptial spetra, we will get rid of the problem by exluding surfae states as initialor �nal states in interband transitions. This simulates the formation of interfae



2.4. Calulated superlattie eletroni levels 37states or defets in a GaAs/oxide superlattie, whih would saturate the danglingbonds. The surfae resonane annot be easily eliminated, but it produes smalle�ets on the spetra, sine it lies deep in the valene band.In this hapter we have disussed the LCBB approah to study the superlattieband strutures. This approah, whih expands the eletroni states of the superlat-tie in the basis of bulk states, alulated by semi-empirial pseudopotentials, is foundto be adequate and pratial for superlatties haraterized by medium to intermedi-ate periods. It has revealed to be partiularly suitable for alulating how the bandstrutures of the bulk materials are modi�ed when an arti�ial on�ning potential isapplied. We have written a omputational ode to alulate the eletroni states insuperlatties. We have applied the ode to study the evolution of a bulk state into asuperlattie state, gaining a lear insight on the role played by the on�nement, thebulk states-oupling and the redution of the symmetry, all involved in the formationof a superlattie. The superlattie gaps result larger: in partiular the GaAs/vauumgaps are larger than the GaAs/AlAs ones. Moreover, the superlattie gaps beomelarger when the on�nement inreases, as a onsequene of the size redution. Thelowering in the rystal symmetry and the mixing of bulk states indue a modi�ationof the energy levels and remove level degeneraies.
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Chapter 3
Ab-initio alulations ofsuperlattie band strutures
In this hapter we present our seond hoie for band struture alulations of bulkand nanostruture semiondutor systems. We move from the semi-empirial ap-proah to a well-known �rst priniple theory: the Density Funtional Theory (DFT).If ompared to the LCBB method presented in the previous hapter, the �rst strik-ing di�erene in the ab initio DFT approah is the total absene of experimentalinputs. Within a pseudopotential approah, starting from the mere knowledge of theatomi numbers, atomi pseudopotentials an be �tted to alulations for the iso-lated atoms. Next, an hypothesis on the geometri struture of the system is all weneed to build up the Hamiltonian operator. The most stable struture an be foundamong all the di�erent hypothesized strutures, by searhing for the minimum of thealulated total energy. It is evident that the development of ab initio tehniques hasgiven a muh stronger preditive harater to the theory of eletroni properties inthe matter. Details on the proedure we have followed to onstrut norm-onservingab initio pseudopotentials an be found in Appendix B. In the following setions,at �rst, we will present the fundamentals of the Density Funtional Theory. Theyare intended to be a pratial guide to aompany the immediately suessive ex-position of our results, namely the eletroni ground state properties and the bandstrutures of bulk (i.e. GaAs and AlAs) and superlattie (i.e. GaAs/AlAs) systems.We have analyzed the strutural properties and the eletroni band strutures of39



40 Chapter 3. Ab-initio alulations of superlattie band struturesGaAs and AlAs rystals. Results in agreement with both the experiment and anal-ogous alulations existing in literature are a reassuring proof about the quality ofthe norm-onserving pseudopotentials we have built. In addition, a good bulk banddispersion is promising onerning the quality of further alulations of the optialresponse. However, we are essentially interested in (GaAs)p=(AlAs)p superlatties.For superlatties with a very short period, the expansion over bulk states beomesunreliable (unless using a very large basis) and LCBB alulations have not beenpushed to periods p smaller than 4. Some results for the band struture of small tomedium size (1 � p � 8) systems will be presented in the last setion. Analogous abinitio alulations are available in literature only for the smallest periods p. Thus,we will fous on the omparison of the DFT band struture for the superlattieperiod p=8 to the orresponding semi-empirial band struture.We will adopt atomi units, as it is usually done in literature: �h = e2 = me = 1.The spin and spae oordinates are abbreviated by x � (r; �).3.1 Density Funtional TheoryThe Density Funtional Theory (DFT), in the Kohn-Sham formalism, provides apowerful omputational sheme, whih allows to determine exatly the ground-stateproperties even of omplex systems of interating partiles, simply solving a single-partile-like equation. Let us onsider a system made of N fermions (let us say ele-trons), interating with eah other via the Coulomb potential v (ri; rj) = 1= jri � rjj.The system experienes an external potential w(r), whih is supposed at the mo-ment to be time-independent. In the spei� ase of eletrons in an in�nite periodisolid, this external potential is due to the Coulomb interation between eletronsand ion ores, �xed on the lattie sites. The Hamiltonian operatorH = T +W + V= NXi=1 ��12r2ri + w (ri)�+ 12 NXi 6=j v (ri; rj) (3.1)is the main ingredient in the time-dependent Shr�odinger equation, whih determinesthe time evolution of the system:H (x1;x2; : : : ;xN)	 (x1;x2; : : : ;xN ; t) = i�	(x1;x2; : : : ;xN ; t)�t : (3.2)



3.1. Density Funtional Theory 41The stationary states are the eigenstates of the time-independent Shr�odinger equa-tion: H (x1;x2; : : : ;xN ) (x1;x2; : : : ;xN) = E (x1;x2; : : : ;xN) : (3.3)An analytial solution of the Eq. (3.3) is not feasible, exept for some extremelysimple model systems. Among the variety of possible approahes to takle theproblem, Thomas and Fermi [50, 51℄ were the �rst to designate the harge density� (r), instead of the many-body wavefuntion, as the basi quantity to desribethe ground state properties of the system. The advantage is evident: the eletrondensity, � (r) = N Z dx2 : : : Z dxN � (r;x2; : : : ;xN) (r;x2; : : : ;xN) ; (3.4)is muh easier to manage: it redues the degrees of freedom from 3N to 3 and it isa measurable physial quantity.3.1.1 The Hohenberg-Kohn theoremThe formal bases of DFT are the theorems formulated in 1964 by Hohenberg andKohn [52℄. The original proof is valid for a non-degenerate ground state and aw-representable partile density, i.e. the ground state density belongs to a systemwhih undergoes an external loal potential w. For the proofs of the theoremsand their generalization (to, e.g., degenerate ground states, bosons, non-adiabatisystems, magneti systems, fully relativisti systems, superonduting systems, N -representation of the partile density, et. : : :) we suggest to see Ref. [53℄. Here wepresent the physial ontents of the original theorems.1st HK Theorem: Let us onsider a system of N eletrons, desribed by theHamiltonian: H = NXi=1 ��12r2ri + w (ri)�+ 12 NXi 6=j v (ri; rj) : (3.5)The eletrons are thus subjeted to an external potential w (r) and the groundstate harge density is �0(r). If we substitute the potential w0 (r) for the po-tential w (r) in 3.5 and we observe that the new eletron density �00(r), relativeto the ground state, is equal to �0(r), then w (r) and w0 (r) an only di�er by



42 Chapter 3. Ab-initio alulations of superlattie band struturesa onstant: w0 (r) = w (r) + onst : (3.6)2nd HK Theorem: Let us de�ne the energy funtional of the density E [�℄ in theform E [�℄ = hN j � 12r2ri + 12 NXi 6=j v (ri; rj) jNi+ Z w (r) � (r) dr= F [�℄ + Z w (r) � (r) dr ; (3.7)where F is a universal funtional of the density. One the external potentialw (r) has been �xed, the energy funtional E [�℄ has its minimum, the groundstate energy E0, at the physial ground state density �0 (r):E0 = E [�0℄ : (3.8)The �rst theorem states that there is a bijetive relation between the externalpotential w (r) (to within a onstant) and the ground state density � (r): this impliesthat the Hamiltonian is ompletely desribed by knowing the ground state density,thus all the ground state properties of the N-eletrons system (e.g. the total energy)are funtionals of � (r). The Hohenberg-Kohn (HK) theorems have the limitedpurpose to prove that a universal funtional of the eletron density exists, theydo not derive its atual expression. A diret minimization of the funtional (3.7)is usually not appliable, beause no good expression for the kineti energy as afuntional of � is known, exept for simple metals. The Kohn-Sham (KS) sheme,a reformulation of the theory based on the KS orbitals instead of the mere density,is the starting-point of most of the atual alulations.3.1.2 The Kohn-Sham shemeThe variational sheme proposed by Kohn and Sham [54℄ is an useful tool to larifythe physial ontents of the theory. Let us onsider the system of N interatingeletrons, desribed by the Hamiltonian (3.1):H = T +W + V :



3.1. Density Funtional Theory 43We introdue now an auxiliary system omposed by N non-interating partiles inan external potential W 0, desribed by the one-partile Hamiltonian H 0:H 0 = T +W 0 : (3.9)The KS sheme is based on the hypothesis that it exists suh a loal potential W 0,that makes the ground state eletroni density �0(r) of the non-interating systemequal to the ground state eletroni density �(r) of the interating system:� (r) = �0 (r) : (3.10)It is lear that if a non-interating system with the required harateristis exists,then, aording to the HK theorems, it must be unique. At the moment, we assumethat it is always possible to �nd suh a potentialW 0; its existene is formally provedfor w-representable densities (see Ref. [55℄) and generalized to N -representable den-sities (see Ref. [53℄). The harge density of the non-interating system an be ex-pressed as a sum of single-partile harge densities; this holds also for the real hargedensity thanks to the equality (3.10):� (r) = �0 (r) = NXi=1 j�i (r)j2 : (3.11)The sum inludes the eigenfuntions �i relative to the N lower eigenvalues, omingfrom the solution of the Shr�odinger equation for the non-interating system:��12r2ri + w0 (r)��i (r) = �i�i (r) : (3.12)The HK funtional assoiated to the auxiliary system is:E 0 [�℄ = T 0 [�℄ + Z w0 (r) � (r) dr ; (3.13)where also the kineti energy of the non-interating eletrons T 0 [�℄ is a funtionalof the density �(r) , as a onsequene of the fat that the eigenfuntions �i arefuntionals of the density:T 0 [�℄ = NXi=1 Z ��i (r) ��12r2ri��i (r) dr : (3.14)We an now rewrite the HK funtional for the real system in a more pro�table way:E [�℄ = T 0 [�℄ + 12 Z dr Z dr0� (r) � (r0) v (r; r0) + Z w (r) � (r) dr+ Ex [�℄ : (3.15)



44 Chapter 3. Ab-initio alulations of superlattie band struturesThe kineti energy T 0 [�℄ is now the kineti energy of a non-interating eletron gasand the seond term gives the Coulomb energy due to the lassi interation of aneletron gas of density �(r). By omparing the expression (3.7) and (3.15), we geta de�nition for the funtional Ex, whih aounts for the many-body exhange andorrelation e�ets among eletrons:Ex [�℄ = F [�℄� 12 Z dr Z dr0� (r) � (r0) v (r; r0)� T 0 [�℄ : (3.16)The form of the still unknown external potential W 0 an be �xed minimizing theenergy funtional E [�℄ in (3.15), by imposing that his �rst variation vanishes:ÆE [�℄ = 0 : (3.17)It results that the searhed potential for the non-interating system is a funtionof the real external potential, the Coulomb potential and the so alled exhange-orrelation (x) potential:w0 (r) = w (r) + Z dr� (r0) v (r; r0) + vx ([�℄; r) ; (3.18)where the x potential is de�ned asvx ([�℄; r) = ÆEx [�℄Æ� (r) : (3.19)If we now introdue the potential w0 from Eq. (3.18) into the Shr�odinger equation(3.12), we obtain the Kohn and Sham equations:heffKS �i = ��12r2 + w0��i = �i �i : (3.20)The KS equations (3.20) and the expression of w0(r) (3.18) have both a funtionaldependene on �(r), whih imposes a simultaneous self-onsistent solution. Theexhange-orrelation term is a funtional of the density, loal in spae, whih makesthe resolution of the equations easier than the solution of e.g. analogous Hartree-Fok equations. Looking at the form of the one-body potential w0(r), we an seethat the external ioni attrative potential w is modi�ed by the sreening due to theinteration between harges: this suggests to interpret it as the e�etive potentialfelt by one eletron in the mean �eld reated by the other eletrons. Thanks toits onstrution, the e�etive potential w0(r) of the non-interating system gives the



3.1. Density Funtional Theory 45orret density �(r) of the interating system. This quantity, together with the totalenergy of the eletron system, has a real physial meaning within the KS sheme.The solutions of the KS equations, i.e. the one-partile wavefuntions �i and theeigenvalues �i, are instead, stritly speaking, nothing more than the eigenstatesand energy levels of the non-interating system. We remark that the HK theoremsonern only the ground state properties of stationary systems: it is not orret toextrat from the DFT, at least without further formal justi�ations, any informationabout the exited states or about time-dependent transitions. Nevertheless, we willsee that the theory has proved to be a good basis for a perturbation approah andfor time-dependent extensions, aiming at treating this kind of problems.This sheme allows in priniple the exat determination of the ground state en-ergy. In pratie, it is inevitable to make an approximation for the x potential.The exhange-orrelation funtional is a universal funtional, in the sense that oneit is known for a model system, it an be simply transferred to all the others sys-tems with the same internal interation potential, whatever the external �eld is.Unfortunately, there are no solved models for arbitrary densities � (r). The onlyavailable solution is the extremely aurate alulation for the eletron jellium atthe onstant density � (r) = �0 [56, 57, 58℄. Being the exhange-orrelation energyEx in general unknown, the possibility to desribe physial systems relies on thee�etive substitution of a simple and realisti approximation for this funtional.3.1.3 The Loal Density ApproximationThe Loal Density Approximation (LDA) onsists in expressing the funtional de-pendene of the exhange-orrelation energy on the density with a simple dependeneon the loal value of the density. It is de�ned by:ELDAx [�℄ = Z � (r) �x (� (r)) dr ; (3.21)where �x is the exhange-orrelation energy for a partile in an interating ho-mogeneous eletron gas, whih is known with a very satisfatory preision frommany-body Monte Carlo numerial simulations [56, 57, 58℄. The orrelation energyourring in our alulations has been parametrized as follows [57℄:�homx [� (r)℄ = = (1 + �1prs + �2rs) ; (3.22)



46 Chapter 3. Ab-initio alulations of superlattie band struturesfor rs � 1, where � (r) = �43�r3s��1 ; (3.23)and  = �0:14230 ; �1 = 1:05290 ; �2 = 0:3334 : (3.24)Sine the LDA is exat in ase of homogeneous systems, it has been thought to besuitable to desribe those physial systems where the harge density varies slowly,like metals. This is a strong restrition, but the approximation has surprisinglyturned out to be valid in a vaster range of irumstanes, like in semiondutors.Suh an unexpeted suess is due to the fat that the LDA, even in ase of stronglyinhomogeneous systems, satis�es exatly some sum rules whih must hold for the realpair orrelation funtion of the system. In general, quantities derived by omparingtotal energies, like ground state geometries, phonon frequenies, and moments ofthe density are well reprodued [59℄ within this simple approximation. These topiswill be disussed further in Setion 3.3. There are some possible generalizations ofthe LDA: inluding a orretion dependent on the gradient of the density � (r), asalready suggested by Hohenberg and Kohn [52℄, we get the Gradient Density Approx-imation (GDA). Some other approahes beyond LDA, like the Generalized GradientApproximation (GGA) [60, 61℄, the Average-Density Approximation (ADA), andthe Weighted Density Approximation (WDA) [62℄, have been objet of inreasinginterest in the last years. However exatly satis�ed within the LDA, the sum rulesare not satis�ed within its generalizations. That's why an improvement of the LDAis not as straightforward as it might appear [59℄. It is not lear yet if it exists analternative non-loal sheme whih is able to guarantee better results if omparedto the LDA. Up to now the LDA is widely applied in literature. The extension tospin-polarized systems is alled Loal Spin-Density Approximation (LSDA). In thiswork, however, we will always deal with spin-paired eletrons.



3.2. Tehnial aspets 473.2 Tehnial aspets3.2.1 Plane wave basisWhen studying an in�nite system omposed by a repeated periodi unit, both a ellor a superell, the most natural hoie for the expansion of the wavefuntions is theplane wave representation neiG�roG2RL. In fat, aording to the Bloh theorem,the single eletron wavefuntion an be expanded as follows:�n;k (r) = 1p
eik�rXG n;k (G) eiG�r ; (3.25)where 
 is the volume of the Wigner-Seitz ell (or of the superell in ase of super-latties) and G are the reiproal lattie vetors. The wave-vetors k, lying insidethe �rst Brillouin zone, label the eletroni states together with the band index n.The hoie of a plane wave basis presents some advantages:� They simplify the evaluation of derivatives and integrals, making easier to al-ulate the matrix elements of the Hamiltonian.� They allow the appliation of Fast Fourier Transform (FFT) formalism, allow-ing to move rapidly from the diret to the reiproal spae and vie-versa.� They form a omplete and orthonormal set.� For open systems with some \vauum", like luster and surfaes or, in a futureperspetive, GaAs/vauum superlatties, it is onvenient that the set does notdepend on the atomi positions.� The trunation of the in priniple in�nite basis set is given by a uto� in energy:12 jk +Gj2 � Eutoff ; (3.26)whih is linked to the number of plane waves NPW in the basis by the relationNPW ' 
 (Eutoff)3=2 : (3.27)The ahievement of onvergene for total energy alulations an be ontrolledwithout ambiguity by inreasing the uto�.



48 Chapter 3. Ab-initio alulations of superlattie band struturesA plane wave basis set is partiularly suitable in ase of a pseudopotential approah(see Appendix B). In suh a ase only the valene wavefuntions, whih are lessloalized than the ore ones, have to be alulated. Loalized basis sets, on theother hand, should be preferred when one is interested in highly loalized eletronistates (e.g. ore atomi-like states).In our alulations, the onvergene has been ahieved working with plane wavesup to a kineti energy uto� of 25 Ry for both GaAs and AlAs bulk rystals. Con-erning the superlatties GaAs/AlAs, an higher uto� of 35 Ry is needed to ahievethe same degree of auray. We have proved that these sets guarantee an errorwithin a few meV both for the total energy and for the KS eigenvalues.3.2.2 Sets of k-points for integration over the Brillouin zoneAll sums over the allowed k-points in the Brillouin zone beome integrals in thelimit of an in�nite periodi rystal. In partiular, the entral quantity whih de�nesthe system, the harge density,� (r) = 1Nk oXn BZXk j�n;k (r)j2 ; (3.28)is transformed in: � (r) = 
(2�)3 ZBZ dk oXn j�n;k (r)j2 : (3.29)To perform a numerial alulation, in pratie, the integral must be turned bak intoa sum over a set of weighted k-points. If the funtion to be integrated, as it happensin expression (3.29), is symmetri in the reiproal oordinates, these points, alledspeial points an be hosen exploiting the symmetry properties. The introdutionof the onept of speial points is due to Baldereshi [63℄. Then, Chadi and Cohen[64℄ and, later, Monkhorst and Pak [65℄ have elaborated his idea. Their methodsare now widely used. In omparison with an arbitrary grid of points, whih doesnot reet the symmetries of the Brillouin zone, the speial points redue drastiallythe number of points needed to attain a spei� preision in alulating integrals.In the numerial omputation of harge densities for bulk f GaAs and AlAswe have performed sums over a grid of 10 speial k-points in the irreduible partof the Brillouin zone. This grid of points has been built following the proedure of



3.3. Results for ground-state properties 49Monkhorst and Pak. Regarding the superlatties, we have used the tetrahedronintegration sheme, as presented by Jepsen and Andersen [66, 67, 68℄. In that asethe biggest set whih we have employed is a set of 30 k-points in the irreduiblewedge of the tetragonal reiproal superell. The set of speial points have beenseleted to guarantee the onvergene of the total energy (the error is always smallerthan a few tenths of meV). To solve the integrals ourring in the alulations ofoptial properties, muh more points are needed, as we will preise disussing theonvergene of the spetra.3.3 Results for ground-state propertiesThe results of DFT-LDA alulations on atoms, moleules and solids (even ioniand ovalent solids), olleted in the last deades show without unertainties thatthis theory is a powerful tool to study the strutural properties of the matter.To perform ground state alulations in this thesis, we have used the pseudopotentialplane wave pakage PWSCF [69℄, originally developed by Baroni and Giannozzi.This ode omputes the eletroni band struture, the eletroni harge density andthe total energy of a periodi rystal, haraterized by a given Bravais lattie anda given spae group symmetry. The algorithm is based on DFT and relies on twobasi approximations: the frozen-ore approximation (see Appendix B) and the loaldensity approximation (though a gradient orretion is available, it has not been usedin our alulations). The use of a plane wave basis allows the transformation of thepartial di�erential self-onsistent KS equations into an algebrai eigenvalue problem,whih is solved thanks to iterative tehniques [70℄. The hoie of a plane waverepresentation, together with an eÆient use of the Fast Fourier Transform, reduesdrastially the omputational time. The PWSCF ode exploits the symmetries of thesolid, to ut down the number of operations neessary to obtain the harge densityand the total energy with a given preision. The omputation of these quantitiesallows the study of strutural (lattie onstants, bulk modulus and elasti onstants)and dynamial (zone-enter phonon frequenies) properties, the study of struturalphase transitions and the e�ets of pressure on the properties of the solids.The equilibrium strutural parameters (i.e. the Bravais lattie type and the lat-



50 Chapter 3. Ab-initio alulations of superlattie band struturestie parameters in solids) an be determined ab initio, by inspeting the minimumof the total energy. In pratial appliations, the absolute onvergene of the totalenergy is not very important. The most important quantities are the energy di�er-enes between di�erent states of the solid. Sine energy di�erenes onverge morerapidly than the energy itself, it is usually possible to obtain a preision higher thanthe total energy error (in our ase about a few meV). To illustrate this point, wehave studied two strutural properties: the lattie onstant a0 and the bulk modulusB0. These quantities are related to the urvature of the funtion E(
) around theequilibrium volume 
0. The theoretial lattie onstant has the value a0, whihorresponds to 
0, while the bulk modulus is related to the urvature of the energyurve at its minimum: B0 = �
 �2E�
2 �����
=
0 : (3.30)With respet to our bulk material, it is known that both GaAs and AlAs at zeropressure have a ubi struture, based on tetrahedral units. Phase diagrams underpressure have been studied both experimentally and theoretially [71, 72, 73, 74,75, 76, 77℄. We have therefore imposed the zin-blend struture and minimized thetotal energy as a funtion of the primitive ell volume 
. Starting from the urvesof the total energy E(
) and the pressure P (
) due to internal hydrostati stressat a non-equilibrium volume, the ohesion energy and the bulk modulus an beeasily determined, interpolating the values E(
) or P (
) with suitable equations ofstate. There are many hoies for the interpolating urves. Close to the minimumthe urve is a parabola, but the points deviate rapidly from the quadrati law and,at a large distane from a0, it is neessary to �t the points to something moresophistiated. One of the most popular �tting urves is the Murnaghan equation[78℄, whih depends on three parameters: 
0, B0, B00 (the derivative of the bulkmodulus with respet to pressure):E(
) = 
0B0B00 " 1B00 � 1 �
0
 �B00�1 + 

0 # + onst : (3.31)Often, it is preferred to adjust the pressure P, via the Birh-Murnaghan [79℄ equationof state:P = 32B0  � 

0��7=3 � � 

0��5=3!"1 + 34 (B00 � 4) � 

0��2=3 � 1!# : (3.32)
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Figure 3.1: Pressure (a) and total energy (b) of GaAs for di�erent values of the primitive ellvolume. The numerial values (irles) are interpolated, respetively, with a Birh-Murnaghanequation and a Murnaghan equation (ontinuous lines). Both the urves (a) and (b) orrespondto a uto� of 25 Ry.



52 Chapter 3. Ab-initio alulations of superlattie band struturesAn example of interpolation is illustrate in Fig. 3.1. In Table 3.1 we summarize theobtained �tting parameters, in omparison with experimental measurements andanalogous results found in literature. When the interpolating funtion is spei�edin the artiles, the values in literature has to be ompared with quantities we haveobtained by the same equations of state.We have shown these results, beause a omparison with similar ab initio alu-lations and experimental values is extremely important to evaluate the reliabilityof the norm-onserving pseudopotential that we have generated. Some tests thatan be exeuted diretly on the atom, to assess the quality of the pseudopotentials,are disussed in Appendix B. Nevertheless, after exeuting the atomi tests, a �nalvalidation is still needed: the alulation of the strutural properties for an in�nitebulk rystal is, ertainly, a proving test. An agreement within 1%-3% with theexperiment for the lattie onstant and an agreement within 5%-10% for the bulkmodulus indiate that the alulations are reliable. In our ase the agreement iseven better. In LDA the errors on the lattie onstants are systemati: all the bondstrengths are overestimated [81℄, thus alulated lattie onstants are too small.At last, before applying alulations to superlattie systems, we have reprodued theground state alulations of the bulk GaAs, hoosing to desribe the ubi struturein terms of simple tetragonal superells, like (GaAs)2, (GaAs)4, (GaAs)6, by lower-ing the symmetry of the f ubi point group. It is obvious that two di�erent viewsof the same problem must lead to the same results. Thus, the test is intended toverify that the passage from the ubi symmetry of the bulk to the tetragonal sym-metry of the superlattie does not introdue an additional font of numerial errorin alulations. This ourrene has been exluded, by heking the onvergene ofthe k-points set, assuring that the di�erene in the total energy between the f andthe tetragonal desription is less than 1 meV.3.4 Kohn-Sham eigenstates and quasi-partile statesWe are now leaving the study of strutural properties to fous on the transitionsto exited states. When dealing with an interating partile system, the easierone-partile desription an be retained at the prie to introdue the onept of



3.4. Kohn-Sham eigenstates and quasi-partile states 53
Table 3.1: Strutural parameters at zero pressure for the zin-blend struture of GaAs and AlAs:equilibrium ell volume 
0 (in r3b ), bulk modulus B0 (in kbar), and pressure derivative of thebulk modulus B00 (dimensionless). Our results are ompared with experimental measurements andanalogous ab initio alulations. GaAs AlAs
0 (r3b )Present work 297.0a 298.9a294.6b 297.2bExpt. 305.12e 306.3b;g304.89fOther theoretial works 298.1 ;e 300.7;e297.0 a;f 308.8a;fB0 (kbar)Present work 731a 743a757b 765bExpt. 754b;d 740 � 40b;gOther theoretial works 740;e 750;e708a;f 710a;fB00Present work 4.8a 4.3a4.6b 4.2bExpt. 4.5b;d 5.0 � 1b;gOther theoretial works 4.6;e 4.3;e3.36a;f 3.3a:fa Murnaghan equation of stateb Birh-Murnaghan equation of state Chebyshev polynomial �td Referene [72℄e Referene [77℄f Referene [71℄g Referene [75℄



54 Chapter 3. Ab-initio alulations of superlattie band struturesquasi-partile (QP) states. A quasi-eletron di�ers from a bare eletron beause itmoves dressed by the interation with a loud of surrounding eletrons. The sreen-ing hange its e�etive mass and makes �nite its lifetime. The quasi-partile energiesare given by the energies needed to add/subtrat an eletron to/from the system.These quasi-partile levels an be measured respetively in inverse-photoemissionor photoemission spetrosopy and an be alulated within a oherent many-bodytheory framework. The many-body problem an be approahed thanks to the Greenfuntion formalism. We will not disuss this subjet in this work. For further infor-mation about many-partile physis we suggest to read Ref. [82℄, and in partiularfor solid state appliations Ref. [83℄The one-eletron band struture is given by the dispersion of the energy level n,as a funtion of the wave-vetor k, whih varies along the high symmetry diretionsinside the �rst Brillouin zone. The exited states are not a priori aessible throughstati ground state DFT: the eigenstates �n;k and the energies �n;k, solutions ofthe KS equations, are not the \true" levels, i.e. the quasi-partile energies, of theeletron in the solid. Only the highest oupied DFT-KS eigenvalue �(N)N;DFT of anN-eletron system, if obtained with the exat x potential, equals the true ioniza-tion potential [80, 84℄, whih in ase of in�nite systems is the hemial potential �.Though a many-body alulation is the only means to alulate a ompletely reliableband struture, it is quite ommon to interpret the solutions of the KS equations tobe eletroni energies, and the results are sometimes a reasonably good representa-tion of the energy levels, in partiular onerning band dispersions. A justi�ationan be found in the orret many-body approah. In fat, the Green-funtion theoryyields a Shr�odinger-like equation for the quasi-partiles, whih is extremely similarto the KS equation. The two equations di�er for the substitution of the x po-tential for a non-loal and energy-dependent operator, alled self-energy. One anthen onsider the KS equations as an approximation of the quasi-partile equations,where the self-energy operator � �r; r0; �QPn;k� is approximated by the simpler loalx potential Vx (r). The KS orbitals �n;k are thus usually onsidered a zero-orderapproximation of the wavefuntions of the interating system. Hybertsen and Louie[85℄ have shown that this approximation has a very high preision for bulk states:���h�QPn;kj�LDAn;k i���2 ' 0:999. This result, together with the good qualitative agreement



3.4. Kohn-Sham eigenstates and quasi-partile states 55of the DFT-LDA oupied density of states with the quasi-partile alulations andthe experiments, gives a valid motivation to interpret the KS eigenstates in terms ofone-eletron wavefuntions and energies for the eletron in the solid. Nevertheless,it is well known that a DFT band struture alulation always leads to a strongunderestimation of band gaps, often by more than 50% [85, 86, 87, 88, 89, 90, 91℄.There has been an interesting dispute about the origin of this gap problem. Themore aredited idea is now that this is an intrinsi limit of DFT-KS [92, 93℄ anddoes not derive from the LDA. It is possible to show that the real gap and the KSgap are onneted by the relation:�gap = �KSgap +�x ; (3.33)where the alulated DFT-LDA gap,�KSgap = �(N)N+1;DFT � �(N)N;DFT ; (3.34)is the di�erene between the energies of the lower empty state and the higher ou-pied state of the N -eletron system and�x = V (N+1)x (r)� V (N)x (r) : (3.35)In fat, the disontinuity of order one experiened when an eletron is added an onlybe due to the exhange-orrelation term, whih is not neessarily analytial in thenumber of eletrons N , while the Hartree and the external potential are analytial.It ould be thought that �x is small and that the LDA is the main ause of theband gap error. This does not seem to be the ase, at least not for all the systems[59℄: a rigorous model for monodimensional semiondutors [94℄ shows that �x is asigni�ant fration of the energy gap. Conerning real solids, in partiular Si, GaAsand AlAs, there is evidene that the disontinuity is responsible for about 80% ofthe total error [87, 92, 95℄. It is lear that the only satisfying solution of the gapproblem goes through the many-body theory and the preise de�nition of the energygap as the di�erene in the hemial potentials of an (N + 1)-eletron system andan N -eletron system:Egap = E(N+1)tot � E(N)tot � �E(N)tot � E(N�1)tot � : (3.36)



56 Chapter 3. Ab-initio alulations of superlattie band struturesThe many-body alulations are �nally in good agreement with the experiments,but they have the disadvantage to require a very high omputational e�ort. Quasi-partile alulations are usually arried out within the GW approximation [96℄: forthis reason the di�erenes between DFT eigenvalues and quasi-partile energies arealled GW orretions. In ase of GaAs, AlAs, and some other simple materials,it has been observed that the GW orretions shift the ondution bands almostrigidly upwards 1 [86℄. This result justify the \sissor operator" approximation,whih onsists in obtaining the quasi-partile band struture within an error of0.1-0.2 eV in all the Brillouin zone, simply by adding a onstant value to all theondution band levels. It is worth reminding that this approximation is not valid forall kinds of materials. Some authors have applied the sissor operator to GaAs/AlAssuperlatties [21℄, onsidering that the energy shift for the two bulk material isalmost the same. We will get deeper into this subjet in the following setion, whilepresenting the DFT-LDA band dispersions.3.5 Bulk band struture by DFT-LDA alulationsWe are �nally ready to provide a more detailed analysis of the bulk band strutureobtained by means of the DFT-LDA, with norm-onserving pseudopotentials and aplane wave basis set. The diagonalization of the KS equations for bulk GaAs andAlAs has been done at the theoretial lattie onstants alulated in setion 3.3. InFigs. 3.2 and 3.3 we show the band strutures obtained by interpreting the Kohn-Sham eigenvalues to be eletroni energies, without applying any sissor operator.As expeted, this approximation always leads to a strong underestimation of bandgaps, even more than 50% for GaAs, while the form of the bands and their widthis orret. We know from literature (see Ref. [86℄) that GW quasi-partile energies,on the other hand, reprodue orretly experimental gaps to within 0.1 - 0.2 eV. Wean have an idea of the real band struture applying a sissor operator: in fat, ithas been proved that the GW orretions shift the ondution bands almost rigidlyin GaAs and AlAs [86℄. Displaing the GaAs and AlAs DFT-LDA ondution bandsupwards respetively by 0.8 and 0.9 eV yields an error in omparison to the GW1Beause of the LDA approximation, the valene band maximum is not exat and the atual e�et of GWorretions involve as well a slight shift downwards of the valene bands.
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Figure 3.2: Kohn-Sham LDA salar-relativisti band struture of GaAs for the valene bands andthe lowest ondution bands. The energy zero is �xed at the valene band maximum.
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3.5. Bulk band struture by DFT-LDA alulations 59results within 0.1 eV for the bands losest to the gap [86℄. In Tables 3.2 and 3.3we present the numerial values of the ab initio alulated (applying the sissoroperator) energy levels at the high symmetry points together with the empirialresults and experimental data. In the third olumn GW quasi-partile energies fromRef. [86℄ are reported, to better judge the eÆay of the sissor operator. Thespin-orbit interation is negleted in all the theoretial approahes onsidered here,whereas the measured energies present a spin-orbit splitting of the highest valenelevels. We remark again that the KS-LDA eigenvalues are onverged to within a fewmeV for both GaAs and AlAs rystals.
At last, we have ompared our results with previous DFT-LDA alulations foundin literature. We have found that a omplete equivalene of the results is not possi-ble, even within a DFT-LDA pseudopotential alulation, in a plane wave represen-tation. In fat, onsidering that it is not known how exatly the di�erent authorshave built their norm-onserving pseudopotentials and sometimes it is not spei�edif they work at the experimental or theoretial lattie onstant, it is not surprisinglyto detet di�erenes up to 0.25 eV. We �nd an overall exellent agreement to withinless than 0.1 eV with alulations of Godby et al. , both for GaAs and AlAs, inRef. [86℄. Also the agreement with Bahelet et al. in Ref. [97℄ is satisfatory. As dis-ussed in Ref. [86℄, the experimental values onerning AlAs ondution band edges,espeially the value of the gap in L, are not obtained from diret measurements andare not ompletely reliable. Moreover, we have tried to alulate the band stru-ture at the experimental lattie onstant, showing that the behavior of the ritialpoints under an hydrostati pressure is both qualitatively and quantitatively thesame as desribed by Fiorentini et al. in Ref. [98℄. In fat, being the theoretialLDA lattie onstants smaller than the experimental ones, exeuting alulationsat the experimental values means applying a negative hydrostati pressure to therystal. We observe that the gap widths in � and L beome smaller, both for GaAsand AlAs. The gap widths in X grow: this e�et is stronger for the �rst gap X1 inboth materials and it is almost negligible for the seond gap X3 in AlAs.



60 Chapter 3. Ab-initio alulations of superlattie band strutures
Table 3.2: GaAs eigenvalues at some high symmetry points as obtained in the present work bythe empirial pseudopotential method and the DFT-LDA ab initio theory. The DFT-LDA valuesare orreted by a sissor operator of 0.8 eV [86℄. Our results are ompared to GW quasi-partileenergies [86℄ and experiments. The zero of energy is at the top of the valene band. The spin-orbitinteration term is omitted in all alulations and indiated in parenthesis for experiments.Energy level EPM DFT-LDA GW Experiment�v1 -12.11 -12.90 -13.10b�v15 0.00 0.00 0.00 0.00 (-0.34)a�1 1.51 1.37 1.47 1.52a�15 4.01 4.58 4.52 4.72bXv1 -10.00 -10.45Xv3 -6.16 -6.91Xv5 -2.31 -2.72 -2.73 -2.78 (-2.85)aX1 2.02 2.12 2.08 1.98 - 2.01dX3 2.39 2.39 2.30 2.38eLv1 -10.64 -11.19Lv2 -5.98 -6.74Lv3 -0.96 -1.15 -1.11 -1.19 (-1.40)aL1 1.83 1.79 1.82 1.82 - 1.84dL3 4.84 5.46 5.41a Referene [99℄b Referene [100℄ Referene [101℄d Referene [102℄e Referene [103℄



3.5. Bulk band struture by DFT-LDA alulations 61
Table 3.3: AlAs eigenvalues at some high symmetry points as obtained in the present work bythe empirial pseudopotential method and the DFT-LDA ab initio theory. The DFT-LDA valuesare orreted by a sissor operator of 0.9 eV [86℄. Our results are ompared to GW quasi-partileenergies [86℄ and experiments. The valene band maxima are aligned. The spin-orbit interationterm is omitted in all the alulations and indiated in parenthesis for experiments.Energy level EPM DFT-LDA GW Experiment�v1 -11.67 -12.03�v15 0.00 0.00 0.00 0.00 (-0.28)a�1 3.03 2.90 3.26 3.11�15 4.21 5.11 5.05 4.34bXv1 -9.49 -10.01Xv3 -5.62 -5.52Xv5 -2.25 -2.23 -2.34 -2.30 (-2.45)dX1 2.22 2.21 2.09 2.24aX3 3.20 3.11 2.99 2.68eLv1 -10.14 -10.57Lv2 -5.59 -5.69Lv3 -0.93 -0.84 -0.88 -1.31 (-1.51)aL1 2.87 2.99 3.03 2.49 - 2.54dL3 5.00 5.57 5.48a Referene [99℄b Referene [104℄ Referene [102℄d Referene [101℄e Referene [105℄



62 Chapter 3. Ab-initio alulations of superlattie band strutures3.6 Superlattie band struture by DFT-LDA alulationsFinally, we present ab initio alulations of (001) GaAs/AlAs superlattie bandstrutures, obtained by means of the DFT-LDA, with norm-onserving pseudopo-tentials and a plane wave basis set. These alulations are formally analogous tothe alulations for bulk systems presented in the previous setion. The ubi Tdpoint group is replaed by the smaller tetragonal D2d point group and eah super-ell ontains p Ga atoms, p Al atoms and 2p As atoms (see Fig. 1.1 on page 11).The symmetry of the system is fully desribed: in partiular, the As atoms at theinterfae do not entail any arti�ial asymmetry, beause the As norm-onservingpseudopotential is independent of the environment (Ga or Al neighbors) where theAs atoms are plaed. We have studied (001) (GaAs)p/(AlAs)p superlatties with asuperlattie period p ranging from 1 to 8. The number of plane waves involved in thealulations grows as p, thus the omputational expense beomes higher and higherat large superlattie periods (as a term of omparison, on a NEC SX-5 mahine,to ompute 10 � 2p bands relative to p=1 the time needed is 2 minutes, whereasalulating the orresponding number of bands for p=8 requires a time more than100 times longer).The resolution of the KS equations for the almost lattie-mathed heterostru-tures has been done at the averaged theoretial lattie onstants. We do not needto perform a strutural minimization to determine the relaxed geometry of the ell,sine the lattie mismath is small enough to make negligible stress and strain ef-fets, whih do not a�et the band struture, as usually assumed in literature (see,e.g., [106, 107, 108, 109℄). We have however veri�ed that the total energy does nothange signi�antly when moving from the GaAs lattie onstant to the AlAs lattieonstant. Moreover, the total energy is lose to its minimum at this averaged value.In Figs. 3.4 and 3.5 we present the two extreme examples of superlattie bandsfor p=1 and p=8: all the 4� 2p valene states and the ondution states up to 8 eVare shown in the tetragonal Brillouin zone. We remind that, sine 2p k-points in thef Brillouin zone are always folded onto the same point q in the smaller tetragonalBrillouin zone, the number of oupied superlattie bands is 2p times the numberof bulk bands for a GaAs/AlAs superlattie. The p=1 superlattie (see Fig. 3.4)
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Figure 3.4: Kohn-Sham LDA salar-relativisti band struture of a (GaAs)1=(AlAs)1 (001) su-perlattie along the high symmetry diretions. The energy zero is taken at the valene bandmaximum.
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Figure 3.6: Semi-empirial LCBB band struture of a (GaAs)8=(AlAs)8 (001) superlattie alongthe high symmetry diretions. The energy zero is taken at the valene band maximum.



66 Chapter 3. Ab-initio alulations of superlattie band struturesis the more instrutive one, beause the number of bands is only doubled and the�gure is more readable and easy to ompare to the band struture in Fig. 3.2. Thisase was not studied within the semi-empirial framework, beause a desriptionin terms of bulk states is not reliable for very short period superlatties. The p=1Brillouin zone an be obtained by folding one the bulk zone. Hene, the point ��orresponds to both points � and Xz, the point �M orresponds to both points Xyand Xx, and point �R orresponds to both points Lz and L�z of the orrespondingbulk Brillouin zone. The lowering in the rystal symmetry is responsible for theremoval of level degeneraies at the high symmetry points. The spin orbit splittingis not inluded. The diret LDA band gap measures 1.1 eV: it is almost twie largerthan the bulk GaAs gap, pointing to strong on�nement e�ets. The �R1 state is theondution band minimum, in agreement with the DFT-LDA and quasi-partile re-sults reported in Refs. [44, 21℄. Following the suggestion in Ref. [21℄, we have applieda sissor operator of 0.92 eV to alulated ondution band energies and omparedour energies at the high symmetry points with analogous DFT-LDA results, avail-able only for p=1,2,3, by Dandrea et al. [21℄. The di�erenes never exeed 0.1 eV.The good agreement of short-period results suggests that also the results for largerperiods are reliable. To improve these results, quasi-partile orretions and/or alleletron and/or full relativisti ( inluding spin-orbit interation) alulations wouldbe needed.Finally, the Fig. 3.6 shows the band struture of the (GaAs)8=(AlAs)8 super-lattie, as alulated by the semi-empirial LCBB method adopted in the previoushapter. The Figs. 3.6 and 3.5 are here presented on the same sale, to allow an easyomparison of the two band dispersions. As expeted, the gap is better reproduedby the semi-empirial alulations. Exept for that, the band dispersions and widthsare surprisingly similar, both in valene and in ondution bands.In onlusions, in this hapter we have presented DFT-LDA alulations for bulkGaAs, bulk AlAs and GaAs/AlAs superlatties. By alulating the ground statesproperties of the bulk materials, we have proved the reliability of the norm-onservingpseudopotentials we have onstruted. The results for bulk LDA energy levels, afterthe appliation of a suitable sissor operator, have been ompared with orrespondingresults, whih we have obtained in the semi-empirial LCBB approah, and with



3.6. Superlattie band struture by DFT-LDA alulations 67experimental and theoretial data found in literature. The ab initio GaAs/AlAsband struture is ompared to the orresponding semi-empirial band struture andto some data available in literature for short-period superlatties. We have found anoverall agreement of all the di�erent results, whih on�rms the analysis developedin Chapter 1 and attests without doubts the high quality of the eletroni states,both semi-empirial and DFT-LDA, whih will be the basis of the optial absorptionalulations in the following hapters.
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Chapter 4
Semi-empirial alulations ofoptial properties
In a spetrosopi experiment the sample is exited from its ground state: the re-sponse to the perturbation is the objet of both experimental measurements andtheoretial alulations. A big variety of phenomena an our. In Fig. 4.1 we showthree model exitations: diret photoemission, inverse photoemission, and absorp-tion. Diret/inverse photoemission proesses are one-quasi-partile exitations: aquantum of energy h� is absorbed/emitted while an eletron is ejeted/absorbed.The ejeted/inoming eletron is supposed to be ompletely deoupled from the sys-tem after/before the proess takes plae. These kinds of experiments give insight,respetively, on the density of oupied and unoupied states. Here we are moreinterested in absorption proesses in solids. In a naive piture, the inoming ra-diation auses the transition of an eletron from an oupied state in the valeneband to an empty state in the ondution band. However, even if one uses quasi-partile instead of one-eletron states, one faes the problem that this proess isnot the simple ombination of an inverse photoemission and a diret photoemissionproess, beause the eletron does not leave the sample and ontinues interatingwith it. The eletron whih has undergone a transition to the ondution band andthe relative hole left in valene band feel eah other via a Coulomb interation: thisis the so-alled exitoni e�et, whih introdues the main omplexity in omputa-tions, sine it fores to abandon the independent quasi-partile piture, to move to69
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71a two-partile exitation piture.Nevertheless, in the study of the optial properties, independent partile shemesmaintain their usefulness, and are preliminary to full many-body treatments. Themost used approah is the semi-lassial theory of interband transitions [9, 110℄. Inthis hapter, we will disuss how to ombine it with semi-empirial band struturealulations, to gain information about the absorption spetra of semiondutor su-perlatties. This simple formalism allows to reprodue all the features present in anabsorption spetrum whih are onneted to one-quasi-partile exitations. More-over, it allows to desribe the absorption proess in terms of the intuitive oneptsof joint density of oupied and unoupied states and of transition probabilitiesfrom oupied to unoupied states.As we have already disussed in Setion 3.4, stritly speaking, eletrons in asolid are never independent partiles. In spite of this, the one-partile piture anbe retained at the prie to renormalize the single eletron energy levels by thepresene of the surrounding eletrons, de�ning the onept of quasi-partiles. Thisis suÆient only for situations where the eletron-hole interation is not important.The quasi-partiles are still desribed by a one-partile Shr�odinger-like equation,where the e�etive potential has to inlude the e�ets due to the eletron-eletroninteration. In ase of empirial/semi-empirial band struture alulations, theserenormalizations are at least partially inluded { to what extent it depends bythe omplexity of the model { thanks to the parameterization of the Hamiltonian,whih is diretly �tted to reprodue the experimental spetra. On the other hand,exitoni e�ets lead inevitably to the need of a two-partile desription of thesystem. Within an empirial/semi-empirial approah, they an be qualitativelyinluded thanks to an e�etive mass approximation [111, 112℄. Together with the so-alled loal �eld e�ets, exitoni e�ets give essential ontributions to estimate theheight of the peaks in absorption spetra. In empirial/semi-empirial alulations,however, the peak positions an be already in good agreement with experiments(within a few tenth of eV) without the inlusion of these orretions. In fat, theempirial parameters an be expressly �tted to reprodue the orret peak positions.Being mainly interested in determining the peak positions and their evolution as afuntion of the well/barrier width, we have deided, at this stage, to neglet both the



72 Chapter 4. Semi-empirial alulations of optial propertiesontributions of exitons and loal �elds. We will disuss at the end of the hapterthe limits of this approximation.One further point of interest is the birefringene. The alulations presented hereyield only the ontribution to the birefringene arising from quantum-on�nement-indued modi�ations of the eletroni states; they do not aount for the intrinsidieletri anisotropy of a multilayer, arising from di�erent boundary onditions foran eletri �eld parallel or perpendiular to the layers [113, 114℄. This seond ontri-bution to the birefringene is in fat equivalent to the inlusion of loal-�eld e�etsin the dieletri response [115, 116, 117, 118℄.In the following setion we will organize the results obtained, disussing theoptial properties of GaAs/AlAs and GaAs/vauum superlattie systems, via thealulated real and the imaginary parts of the omponents of their marosopidieletri tensor. We have written a omputational ode, whih adopts the LCBBtehnique, as presented in Chapter 2, to perform the alulations of the optialspetra. We will explain why the method sueeds in reproduing the experimentalbehavior of the peak positions under on�nement, whereas it fails to desribe thelow-frequeny optial birefringene of the GaAs/AlAs systems and, in partiular, itsbehavior as a funtion of the number of monolayers p.4.1 Semi-lassial theory of interband transitionsThe marosopi dieletri properties of a solid are intimately onneted with itsband struture: we want to disuss how the optial spetra an be reprodued, al-ready to a satisfatory extent even if at a �rst level of approximation, starting fromthe simple knowledge of the one-eletron band struture. The disussion whih fol-lows is valid for isotropi materials, like bulk zin-blend rystals, where a simplesalar dieletri funtion (more preisely its real and imaginary parts) is all we needto determine the optial response of the medium. In ase of anisotropi rystals,like superlatties, it is neessary to de�ne a dieletri tensor: the expressions wewill get for the dieletri funtions are easily adaptable for the single omponents ofthe dieletri tensor. We will deal with an eletromagneti �eld, whih is supposedweak, ating as a perturbation. The wavelength of the inoming radiation is long in



4.1. Semi-lassial theory of interband transitions 73omparison to the lattie onstant and we suppose, at the moment, that the mediuman be onsidered homogeneous. The theory is alled semi-lassial beause, whilethe Bloh eletrons are desribed as a quantum system, the radiation is treated asa lassial �eld. The ore ions are kept \frozen" in their lattie sites, thus exludingthe ourrene of phonon-assisted eletroni transitions. Undoubtedly, phonons areresponsible for broadening spetral features: these lifetime e�ets an be approxi-mately taken into aount by a small imaginary onstant added to the absorptionenergy.The omplete Hamiltonian, whih desribes an eletron in a solid in presene ofthe eletromagneti �eld, is:H = 12  v � A(r; t) !2 + V PP � �(r; t) ; (4.1)where A is the vetor potential and � the salar potential of the radiation �eld. Inthe Coulomb gauge (r �A = 0, � = 0), negleting non-linear e�ets, the eletron-radiation interation term reads:H loe�rad = �1A(r; t) � p : (4.2)The relation (4.2) is orret only if the potential is loal (the semi-empirial pseu-dopotential is loal), otherwise we need to take into aount the non-vanishing om-mutator of the non-loal term with the oordinate operator:Hnon�loe�rad = �1 (p �A(r; t) + i [Vnl; r℄ �A(r; t)) : (4.3)For an inoming plane wave haraterized by a frequeny !, the vetor potential Ahas the form: A(r; t) = A0 e ei(q�r�!t) + :: ; (4.4)where e is the polarization unitary vetor and .. indiates the omplex onjugateof the preedent term. The �rst term in (4.4) is responsible for absorption, theseond for stimulated emission.Following Bassani and Pastori Parraviini [110℄, the probability per unit timeand unit volume that a perturbation of the form H e�i!t indues a transition froman initial state jii to a �nal state jfi is given by the Fermi's golden rule:Wi!f (!) = 2� jhf jHjiij2 Æ (!f � !i � !) ; (4.5)



74 Chapter 4. Semi-empirial alulations of optial propertiesondutivity � = �1 + i�2dieletri funtion � = �1 + i�2 � = 1 + (4�i�) = (!)omplex refrative index N = n+ ik � = N2 ; �1 = n2 � k2 , �2 = 2nkabsorption oeÆient � = (2k!) = () = (!�2) = (n)reetivity at normal inidene R = [(n� 1)2 + k2℄=[(n+ 1)2 + k2℄
Table 4.1: Relationships between optial response funtions [119℄.where the sign� refers to absorption and the sign + to emission of a quantum !. Theabsorption and emission rates are the starting points to alulate whatever optialfuntion, whih desribes the response of the system to an inoming radiation. Onea omplex response funtion is known, all the others are related to it by means of therelations summarized in Table 4.1. Moreover, the real part and the imaginary partof a omplex dieletri funtion are related by a Kramers-Kronig transformation[119℄.Inserting Eqs. (4.2) and (4.4) in the matrix element of Eq. (4.5), in ase ofabsorption, we �nd:h;k0j H jv;ki = A0 h k0 j eiq�r e � p j v ki = A0 e �Mv ; (4.6)where the spatial integral, whih desribes the transition probability, ise �Mv =Xs Z
 dr e�i(k0�q)�r u�k0(r; s) e � (�ir) eik�r uv k(r; s) : (4.7)When negleting the spin-orbit interation term, the Hamiltonian operator (4.1) isindependent of spin, hene spin states are onserved in the transitions indued bythe eletromagneti radiation. Adding a fator 2 in Eq. (4.7), we an aount for thethe spin degeneraies and be free to eliminate the dependene on spin oordinates in



4.1. Semi-lassial theory of interband transitions 75the matrix element (4.7). The translational invariane of the wavefuntion periodiparts u�k0(r; s) and u�v k(r; s) imposes that, under the hypothesis of long wavelength� (q = qrad ' 0), only diret transitions, i.e. between valene and ondution stateslabelled by the same k vetor, are permitted. This seletion rule represents therespet of the momentum onservation in a periodi medium, whereas the energyonservation is expressed by the presene of the delta funtion in Eq. (4.5). Toobtain the absorption probability per unit time and per unit volume, it is neessaryto sum over all the possible initial and �nal states jn;ki, remembering that the leveloupany is desribed by the Fermi funtion fn;k. We obtain:Wabs(!) = 4� �A0 �2 Xv; Xk2BZ fvk (1� fk) ��� e �Mv ���2 Æ�!(k)� !v(k)� !� : (4.8)In a ompletely analogous way we an get the emission probability per unit timeand unit volume:Wem(!) = 4� �A0 �2 Xv; Xk2BZ fk (1� fvk) ��� e �Mv ���2 Æ�!(k)� !v(k) + !� : (4.9)The absorption oeÆient is de�ned as the oeÆient � in the relationI = I0e��d ; (4.10)whih desribes the intensity I of the radiation propagating in the medium at adistane d from the surfae: the intensity dereases from the inoming value I0on the surfae, following an exponential law. The determination of the absorptionspetra requires the knowledge of the absorption oeÆient, or equivalently, theimaginary part of the dieletri funtion � = �1 + i�2:� = !n �2 : (4.11)Here n is the real part of the refrative index. We an obtain � dividing the di�erenebetween the absorbed and the emitted energy per unit time and per unit volume bythe inident radiation ux: �(!) = (Wabs �Wem)!nA20 !2= 2�  : (4.12)The following equality is veri�ed:je �Mv(k)j2 = je �Mv(k)j2 ; (4.13)



76 Chapter 4. Semi-empirial alulations of optial propertiesit is the quantum formulation of the detailed balane priniple. Thus, the �nal resultfor the imaginary part of the dieletri funtion is:�2(!) = 24�2!2 X;v ZBZ dk8�3 (fv;k � f;k) je �Mv(k)j2 Æ (!(k)� !v(k)� !) : (4.14)It is usually preferred to alulate �2 rather than �, beause it does not depend onthe index of refration n, whih is a funtion of the energy ! as well. By exploitingthe Kramers-Kronig transformation, the expression of the real part of � an beimmediately derived from the knowledge of the imaginary part over all the frequenyrange (4.14): �1 (!) = 1 + 2�P Z 10 !0 �2 (!0)!02 � !2 d!0 : (4.15)The transition rate depends on the fator je �Mv(k)j2. Close to a ritial point, ifthe transition is not forbidden, this fator is di�erent from zero and does not varysigni�antly with k, so that we an extrat it from the integral in (4.14), giving:�2(!) = 4�2!2 X;v je �Mv(k)j2 Jv(!)Av(!) ; (4.16)where Av(!) = fv;k � f;k (4.17)is the band �lling fator andJv(!) = ZBZ dk4�3 Æ (!(k)� !v(k)� !) = 14�3 ZS dSjrk (!(k)� !v(k))j!�!v=!(4.18)is the joint density of states (JDOS) for interband transitions. The JDOS showsstrong variations in the neighborhood of the values of ! whih satisfy the relation:rk!(k) = rk!v(k) : (4.19)The requirement (4.19) de�nes the ritial points in the Brillouin zone and is usuallysatis�ed in the high symmetry points or along the symmetry lines. Close to anextreme k0 of the band dispersion, the energy di�erene in the denominator ofEq. (4.18) an be developed in a series of (k� k0), up to the quadrati term in theexpansion. Thanks to this simple analytial proedure, it is possible to dedue theform of the absorption urves lose to the diret gap !g, in 1, 2 and 3 dimensions:3D : Jv(!) = 12�2 (2m�)3=2 (! � !g)1=2 � (! � !g) ; (4.20)



4.1. Semi-lassial theory of interband transitions 772D : Jv(!) = m�� � (! � !g) ; (4.21)1D : Jv(!) = 1� �m�2 �1=2 (! � !g)�1=2 � (! � !g) : (4.22)With m� we indiate the e�etive mass and � is a step funtion. At zero dimension,the JDOS is obviously equal to a delta funtion. In Fig. 4.2 we illustrate the behaviorof the JDOS in di�erent semiondutor nanostrutures. We will work at a zero

Figure 4.2: Shemati illustration of the joint density of states in semiondutor systems.temperature: all valene bands are oupied and all ondution states are empty,thus making the band �lling fator Av(!) always equal to 1.



78 Chapter 4. Semi-empirial alulations of optial propertiesThe polarization unitary vetor e in Eq. (4.14) an assume whatever diretionin ase of an isotropi material, without a�eting the physial properties, whih arenot dependent on the orientation of the sample. In ase of an anisotropi rystal, asalar quantity is no more suÆient to de�ne the optial properties of the material: adieletri tensor is needed instead. By hoosing e, in three suessive steps, along thethree prinipal optial axes, we an alulate the three omponents of the diagonaldieletri tensor of the superlattie.4.2 Results for bulk optial spetraGaAs and AlAs present similar absorption properties: this is easy to understand,remembering that the two bulk semiondutors have extremely similar band stru-tures (see Figs. 2.2 and 2.3 on pages 25 and 27). Interband absorption spetra oftetrahedral semiondutors are dominated by two prominent features, denoted E1and E2 [8, 9℄. The E1 peak (and its spin-orbit ounterpart E1 + �1, whih is notpresent in our alulated spetra) originates from band-to-band transitions along the�-L diretion, where valene and ondution bands are nearly parallel: this resultsin aM1-type ritial point, i.e. a saddle point in the JDOS, whih also gives a strongexitoni harater to the transition. The E2 peak, instead, has ontributions fromdi�erent parts of the Brillouin zone, but mainly from a region entered around thespeial point (34 ; 14 ; 14) (in units of 2�=a, where a is the lattie onstant). The E2peak has essentially no exitoni harater. In a superlattie made of alternatingGaAs and AlAs layers (or GaAs and vauum layers), on the basis of the analysis wehave presented for the superlattie band strutures, we expet to reognize againthe same harateristi features. In partiular, in the region along the �-L dire-tion, the eletrons whih ontribute to the E1 peak are on�ned in GaAs layers (seeFig. 2.5 on page 30). We are interested in omparing the bulk GaAs E1 peak tothe superlattie E1 peaks at di�erent well/barrier widths. In Fig. 4.3 we show thealulated real and imaginary parts of dieletri funtions for bulk GaAs and AlAsrystals. Starting from the one-eletron semi-empirial band struture, the omplexdieletri funtion �(!) = �1 + i�2 is evaluated in a straightforward way by meansof the semi-lassial theory of interband transitions. The urves an be ompared
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Figure 4.3: Calulated semi-empirial dieletri funtion (real and imaginary parts) of (a) GaAsand (b) AlAs.



80 Chapter 4. Semi-empirial alulations of optial propertieswith analogous measured data [120, 121℄, shown also later in Figs. 5.5 and 5.6 onpages 116 and 119. The agreement with the experimental positions of the peaks,is within a few tenths of an eV: we underline that the semi-empirial approah isfree of the band gap problem. The height of the peaks, espeially E1, annot beorretly estimated without the inlusion of the exitoni ontributions and the loal�eld e�ets.Before alulating superlattie spetra, we have previously alulated bulk spe-tra for (001) (GaAs)2p, i.e. we have desribed the ubi material as a periodiarray of tetragonal superells, repeating the test for di�erent superell lengths inthe diretion z. Integrating over the f Brillouin zone and the orresponding foldedtetragonal Brillouin zone, using equivalent sets of Chadi and Cohen speial points,we have veri�ed the exat equivalene of the two results. An empirial Gaussianbroadening of 0.1 eV has been used to produe smooth urves. The spetra obtainedby the two di�erent desriptions of the same system are perfetly superimposable.This hek guarantees now the right to ompare the bulk absorption urves withanalogous superlattie urves, knowing that the di�erenes annot be due to unon-trollable errors in the numerial integration.4.3 Optial spetra for GaAs/AlAs and GaAs/vauum su-perlattiesWe disuss now the spetra obtained for superlattie systems. Tetragonal Brillouinzone integrations are performed using Fourier quadrature with 1056 Chadi and Co-hen speial points in the irreduible wedge [64, 122℄. The same set of speial pointshad already been used for bulk (GaAs)2p, to allow a diret omparison of results.The experimental broadening is simulated again by an empirial Gaussian broaden-ing of 0.1 eV. The alulated imaginary part of the dieletri funtion �2 (!) for bothGaAs/AlAs and GaAs/vauum systems are shown in Fig. 4.4 for di�erent super-lattie periods p. At this stage we are not interested in the absorption anisotropy,thus we average over the three orthogonal polarization diretions to obtain a salardieletri funtion. Like the optial spetra of bulk GaAs and AlAs, superlattiespetra show two prominent features, namely E1 and E2 peaks (see Fig. 4.3): in
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Figure 4.4: Imaginary part of the dieletri funtion for (GaAs)p=(AlAs)p and (GaAs)p=(vauum)psuperlatties, for di�erent values of the period p, by semi-empirial alulations. Di�erent urvesare o�set for larity. E1 splitting annot be easily seen in the �gure: the peak positions have beendetermined by an enlargement of the spetral region of interest.



82 Chapter 4. Semi-empirial alulations of optial propertiesfat, even if in a superlattie seletion rules allow more transitions, as a onsequeneof zone-folding, the tetragonal Brillouin zone is smaller and, at last, all transitionswhih ontribute to superlattie peaks have their equivalent ounterparts in the bulkBrillouin zone. Another way to understand the similarity between bulk and super-lattie optial spetra is to remember how lose the superlattie band dispersionin Fig. 2.6 on page 33 is to the bulk band dispersion projeted on the tetragonalBrillouin zone in Fig. 2.4 on page 28. As a general remark, the E1 transition isfound to blue shift and to split into two peaks for dereasing superlattie periods;the on�nement-indued shift is larger for the GaAs/vauum system. On the otherhand the E2 transition is split for large-period GaAs/AlAs superlatties, where theeletroni states are on�ned in the two bulk layers leading to a superimposition ofthe two bulk spetra; the two peaks merge into a single one for small periods. Asingle E2 peak with a small blue shift is found for GaAs/vauum superlatties.In Fig. 4.5 the peak energies are plotted as a funtion of the superlattie periodp. First we omment on the behavior of E1: in zin-blend rystals it omes fromtransitions along the � line, in a region where bulk bands are almost parallel. Whenthe system is on�ned in the [001℄ diretion, it is not intuitive to desribe the on-sequenes of folding along h111i diretions. The alulated spetra show that alongthe folded � line transitions subdivide in two main groups and lead to a splittingof the E1 peak in the absorption urves. The two peaks have di�erent osillatorstrengths and, exept for an intermediate period length, the lowest energy one be-omes muh stronger and overs the other one. Both peaks undergo on�nemente�ets and are moved towards higher energies in omparison with their bulk posi-tion: the on�nement and the onsequent shifts are stronger at smaller well widths.A splitting of the E1 transition with a blue shift of both peaks was indeed observedexperimentally in GaAs/AlAs superlatties [10℄. In the present alulation this isattributed to a splitting of the bulk valene band at the point L and along the �-line, as indiated by the band energies. The results of Figs. 4.4 and 4.5 show alsothat E1 peak displaements are more relevant in GaAs/vauum superlatties, wherequantum on�nement e�ets are stronger due to the vauum barrier.The behavior of the E2 peak is substantially di�erent: its main ontribution
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Figure 4.5: E1 and E2 peak positions for GaAs/AlAs (losed symbols) and GaAs/vauum (opensymbols) as a funtion of superlattie period p. The horizontal lines represent the peak energiesin the bulk.



84 Chapter 4. Semi-empirial alulations of optial propertiesomes from transitions in a region lose to the speial point k = 2�a �34 ; 14 ; 14� 1. Atthis k-point the alignment of both valene and ondution GaAs and AlAs bands isalmost at and the eletroni wave funtions are ompletely deloalized all over theheterostruture. This explains why E2 peak in GaAs/AlAs superlatties is at anintermediate energy between bulk GaAs and AlAs E2 peak positions and does notshift when the superlattie period p dereases. Our alulated peak positions are ingood agreement with experimental data [123, 10, 11℄, and in partiular a splittingof E2 is reported in Ref. [11℄. In GaAs/vauum superlatties the situation hanges:the eletrons near the speial point are on�ned in GaAs layers and the superlattieE2 peak has a weak blue shift at small superlattie periods p, going bak to the bulkGaAs E2 energy when p grows. A single peak obviously arises in this ase sinethere is no AlAs ontribution. At last, we present in Fig. 4.6 some urves for thereal part of the dieletri funtion �1 for GaAs/AlAs heterostrutures. We observethat the average, or Penn gap (de�ned as the energy at whih �1 goes throughzero) does not depend on the superlattie period. This proves that the enter ofgravity of valene and ondution bands is preserved, as suggested in Ref. [16℄: thisfollows from ompensating e�ets of a blue shift at the bottom of the band (positiveurvature) and a red shift at the top of the band (negative urvature).4.4 Optial anisotropy and marosopi dieletri tensorIn (GaAs)p=(AlAs)p (001) superlatties the Td ubi point group of the zin-blendstruture is replaed by the D2d symmetry group. Cubi rystals present isotropioptial properties, while in a superlattie the redution in symmetry leads to optialanisotropy in the real part of the dieletri onstant (birefringene) and in the imag-inary part (absorption anisotropy, or dihroism). The optial response an no longerbe haraterized by a omplex dieletri funtion, in its plae a omplex dieletritensor must be introdued. The GaAs/AlAs system is uniaxial, with the optialaxis direted along the growth diretion z, thus the dieletri tensor has the form:�ij (!) = �ii (!) Æij ; (4.23)1What we all E2 peak may in fat ontain weak ontributions from the E00 transition, whih an be learlyresolved only in derivative spetra. See e.g. Refs.[8, 10℄.
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Figure 4.6: Real part of dieletri funtion for (GaAs)p=(AlAs)p (001) superlatties, by semi-empirial alulations, for di�erent values of the superlattie period p.



86 Chapter 4. Semi-empirial alulations of optial propertieswhere �xx = �yy = �? and �zz = �k 2.However, we do not hide that there are further ompliations. Besides the e�etsof spatial anisotropy, there are e�ets due to the spatial inhomogeneity of the solid,independently of his symmetry group. These are the loal �eld e�ets, whih willbe disussed in the next hapter (see Setion 5.2). The inlusion of loal �elds inalulations allow to aount naturally for the intrinsi dieletri anisotropy of amultilayer, arising from di�erent boundary onditions for an eletri �eld parallelor perpendiular to the layers [113, 114℄. This ontribution to birefringene anbe estimated for long wavelength of the inoming radiation and large superlattieperiods p, in a lassial e�etive medium model [27℄. If boundaries are assumedabrupt and the onstituent materials are supposed to onserve their bulk dieletrifuntions up to the interfaes, we an apply approximate expressions for �? and �kin terms of bulk onstituent salar dieletri funtions, �1 and �2 [113℄:�? (!) = 1l1 + l2 (�1 (!) l1 + �2 (!) l2) ; (4.24)��1k (!) = 1l1 + l2  l1�1 (!) + l2�2 (!)! ; (4.25)where l1, l2 are the layer thiknesses of the two di�erent materials. Using semi-empirial alulated values of bulk stati dieletri onstants in expressions (4.24)and (4.25) we �nd a rough estimate �n ' 0:03 for the loal �eld ontribution tobirefringene at zero frequeny. We know that this sizeable ontribution at largesuperlattie periods will be missed in our alulations, as long as we neglet loal�eld e�ets. Loal �eld e�ets are known to depend on the superlattie period 3.At this stage we deide not inlude loal �eld e�ets: we diretly take into aountonly the e�ets of eletroni on�nement and band folding on optial transitions.Comparison with birefringene data from Ref. [16℄, reported in Fig. 4.9, should allowto determine if the on�nement and the band folding ontributions to anisotropy2In GaAs/vauum superlatties, where the point group is C2v , the system is biaxial with prinipal axes along[110℄, [1�10℄, [001℄ and the dieletri onstant for in-plane polarization has a slight additional anisotropy. Thesituation is analogous to heterostrutures with no-ommon atom, where the in-plane anisotropy has been measured[124℄.3The marosopi treatment remains valid as long as the superlattie period remains muh smaller than thewavelength of light, otherwise the superlattie should better be viewed as a one-dimensional photoni rystal, whereloal-�eld e�ets embodied in �(G;G0) lead to the formation of a band gap for light propagation [125℄.



4.5. Calulations of birefringene 87an be suÆient to explain the behavior of the birefringene, at least when thesuperlattie period is intermediate/small.4.5 Calulations of birefringeneIn Fig. 4.7 we present an example of the alulated frequeny dispersion of �k and�?, both for the real and imaginary parts: the birefringene is dispersionless up toenergies lose to the diret gap, while at higher energies it presents resonant on-tributions. We see, as expeted, that folding and on�nement an have a greaterinuene on the resonant part of the birefringene: indeed, transitions from valenesubbands ouple di�erently with xy or z-polarized eletri �elds. Note that the in-terband absorption edge is higher in energy for z-polarized light: this is in agreementwith well known quantum well and superlattie physis, in whih the lowest transi-tion is a heavy hole one and is forbidden for light polarized along z 4. One again thee�et is greater when on�nement is stronger (small superlattie period p). There isa dispersionless ontribution to birefringene at low frequenies of the order of 10�3-10�2 that annot be distinguished in Fig. 4.7. As proposed in Ref. [16℄, we deouplethis low energy bakground birefringene, desribing �n (!) = (�?)1=2 � (�k)1=2 interms of a �tting funtion,�n (!) = �nbg ��ngap ln0�1�  !!g!21A ; (4.26)where �nbg is the bakground ontribution we want to isolate, the seond term refersto the resonant ontribution and !g is the gap frequeny. In Ref. [16℄ the three pa-rameters �nbg, �ngap and !g are extrated by �tting with expression (4.26) theexperimental data. We also �t our alulated �n (!) urves by means of expression(4.26). In Fig. 4.8 we display the �t parameters as a funtion of the well width: thegraphs an be easily ompared with the analogous experimental urves presented inFig. 4.9. The gap frequenies we extrat by the �t agree both with diretly alu-lated gaps (barely visible in Fig. 4.4) and with the measured ones [16℄. �ngap showsan inrease of the resonane for small periods: the theoretial urve reprodues the4The polarization seletion rule follows immediately from k�p theory, although a preise alulation of absorptionspetra lose to the fundamental gap should of ourse inlude the spin-orbit interation [126℄.
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Figure 4.7: (a) Components of the dieletri tensor (real and imaginary parts) for a(GaAs)4=(AlAs)4 (001) superlattie and (b) linear birefringene �n for (GaAs)p/(AlAs)p (001)superlatties, by semi-empirial alulations.
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Figure 4.8: Parameters of equation (4.26) as a funtion of well width (half of a superlattie period):(a) energy gap, (b) �ngap and �nbg . The results an be ompared with the analogous experimentalgraphs in Fig. 4.9.
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Figure 4.9: Experimental parameters of equation (4.26) as a funtion of well width (half of asuperlattie period): (a) energy gap, (b) �ngap and �nbg from Ref. [16℄



4.5. Calulations of birefringene 91trend of the experimental urve, although the alulated values are signi�antlysmaller. The sudden derease of the measured bakground birefringene �nbg be-low 40 �A, on the other hand, is ompletely missing in our results. Moreover, thealulated magnitude of this term above 40 �A is remarkably underestimated. Thefat suggests that folding e�ets give only a minor ontribution, while the origin ofthe behavior of �nbg must be attributed to loal �eld e�ets, as already suggestedin Ref. [16℄. Similar onsiderations an be made for the GaAs/vauum systems.The magnitude of the bakground birefringene related to loal �eld e�ets anbe estimated in the ase of a long wavelength of the inident radiation and a nottoo small superlattie period p, thanks to the expressions in (4.24) and (4.25). Theobtained value, i.e. 0:03, is muh larger than the alulated values in Fig. 4.8, for allsuperlattie periods p, and it is of the same order of magnitude as the the experimen-tal results at intermediate/large p. Only for small periods p, when relations (4.24)and (4.25) do not hold, the loal �eld orretion may not respet the analyti limitvalue. Nevertheless, the e�ets inluded in alulations fail to desribe the smallsuperlattie period region as well. Further alulations of the optial propertiesinluding loal-�eld e�ets are obviously required to larify this point.In this hapter we have applied the semi-empirial LCBB tehnique and the semi-lassial theory of interband transitions to ast light on how the optial spetra ofbulk semiondutors evolve to superlattie spetra. We have disussed the adoptedapproximations, namely the independent-partile piture negleting loal �eld e�ets.First, we have onsidered the average dieletri funtion. Quantum-on�nementindued shifts of the ritial point energies are alulated for both kinds of super-latties and are found to be larger for the GaAs/vauum systems, where ouplingbetween di�erent GaAs layers is only due to quantum-mehanial tunneling and hasa negligible e�et. For both GaAs/AlAs and GaAs/vauum superlatties, the E1peak in the absorption spetrum splits into two peaks with inreasing blue shifts fordereasing superlattie period. This result agrees with the observations of Ref. [10℄on GaAs/AlAs superlatties, and is attributed to a symmetry splitting of the valenebands along the line �-L. The blue shifts are always larger for the GaAs/vauumsystems. The E2 transition instead is found to be split for large-period GaAs/AlAssuperlatties, where the eletroni states of the bulk are on�ned in eah layer and



92 Chapter 4. Semi-empirial alulations of optial propertiesthe absorption spetrum is the superimposition of the two bulk ones. The energy ofthe E2 peak depends weakly on the superlattie period. The average or Penn gap,de�ned as the �rst zero of the real part of the dieletri onstant, does not dependon the superlattie period, on�rming the expetation that a blue shift at the lowerabsorption edges is ompensated by red shifts in the upper parts of the absorptionspetrum.Seond, we have studied the optial anisotropy. The band ontribution to linearbirefringene of GaAs/AlAs superlatties is alulated and ompared with reent ex-perimental results of Ref. [16℄. The zero-frequeny birefringene is found to be muhsmaller than the experimental results: we suppose that the missing ontribution toobserved stati birefringene may be attributed to loal-�eld e�ets, as already sug-gested in the experimental analysis of Ref. [16℄. The frequeny-dependent part ofthe birefringene arising from band folding and quantum on�nement inreases withdereasing superlattie period, as found in the experiment, although the alulatedvalues are smaller. One again, a better qualitative agreement ould be obtainedthanks to the inlusion of loal �eld e�ets.The presented results state the validity of the LCBB method, and its underlyingapproximations, to desribe the averaged optial properties. Nevertheless, a deeperstudy is needed to understand optial anisotropy, in partiular the origin of thebehavior of the stati birefringene as a funtion of the superlattie period.



Chapter 5
Ab-initio alulations of optialproperties
After having disussed the empirial approah, we are going to turn our interestto �rst priniple theoretial and omputational tools in spetrosopi propertiesalulations. We have introdued in the previous hapter the omplex problem ofdetermining optial spetra in the whole visible region. A ompletely satisfatorysolution of this task requires a desription, whih takes into aount at the sametime not only the detailed eletroni struture, but also the many-body e�ets andthe mirosopi inhomogeneity of the medium. Non-trivial systems, like surfaes,lusters, semiondutor nanostrutures, are today suessfully treated in the ab ini-tio framework, most often by onstruting the exitation spetrum of the system as asum over independent transitions between the states determined in the ground statealulation (i.e. using the one-eletron energies and wavefuntions of the Kohn-Shamequation). This degree of approximation an be equivalent to the one adopted inour semi-empirial alulations of the optial spetra, whih has provided a detailedanalysis of the e�ets of band folding and on�nement in semiondutor superlat-ties [28℄. However, no quantitative agreement with the experiment has been foundonerning the stati birefringene, nor ould semi-empirial independent-transitionalulations explain, even qualitatively, the inrease of the stati birefringene withinreasing superlattie period. One might suspet that the semi-empirial approahis not suÆiently preise to desribe suh a small e�et as the birefringene. The93



94 Chapter 5. Ab-initio alulations of optial propertiesother strongly suspeted reason for failure is the inadequay of the basi approx-imations used to determine the marosopi dieletri funtion. In partiular, weexpet that the loal �eld e�ets an play a very important role. Both the pointsall for a more detailed investigation into the anisotropy of the optial response.In order to go beyond the simple independent-transition piture for the desrip-tion of two-partile exitations, like absorption spetrosopy, the most importantorretions to be inluded are the full eletron-eletron and eletron-hole intera-tions and loal �eld e�ets. Let us disuss now more in detail these e�ets. Loal�eld e�ets express the fat that, related to the inhomogeneity of the material, itsresponse to an external potential with given spatial frequeny will inlude, in prin-iple, all other spatial frequenies determined by the reiproal lattie vetors of theperiodi system. This implies that, tehnially, the size of the problem whih has tobe dealt with is onsiderably bigger than for the simple sum of transitions and, infat, loal �eld e�ets are often omitted in alulations. However, superlatties areintrinsially inhomogeneous, and these e�ets an therefore be expeted to play animportant role in their optial and dieletri properties. The Kohn-Sham eigenvaluesare not meant to desribe eletron addition and removal energies: only quasi-partileenergies, whih an be obtained within the many-body theory, are suitable to de-sribe the hanges in total energy ourring in diret and inverse photoemissionproesses. However, quasi-partile orretions are still not enough to desribe allthe e�ets arising in an absorption proess, where interating eletron-hole pairs arereated. In fat, another e�et, well known to be important for optial spetra, isthe eletron-hole interation, or exitoni e�et. This e�et is due to the fat thatthe reated eletron-hole pair may interat more or less strongly, leading to boundstates within the gap and/or to strong deformations above the ontinuum absorptionedge. The importane of these e�ets depends on the size of the sreening of theeletron-hole interation and on the details of the band struture. In partiular forat bands, whih are linked to the existene of loalized (on�ned) states, this e�etis expeted to be very strong. Hene, due to the on�nement properties of superlat-ties, their spetra are expeted to show relevant exitoni e�ets. At the momentwe want to fous on the superlattie birefringene at zero frequeny and not on thewhole absorption spetra: as the stati birefringene is a ground state property, we



95an expet that negleting quasi-partile orretions and exitoni e�ets has not adramati inuene on the results. As a matter of fat, we will show that only whenloal �eld e�ets are inluded qualitative and even quantitative agreement with theexperiment an be ahieved. These results will be disussed in the �rst part of thishapter.In the seond part, we will go bak to the problem of eletron-eletron andeletron-hole interations, to study the line-shape of absorption spetra up to 7eV for bulk GaAs and AlAs systems. The alulation of optial spetra for bulksemiondutors is a widely investigated subjet. In the last deades the many-body perturbation theory has produed expressions both for the self-energy and theeletron-hole interation, whih are suessfully used in omputational physis. Theself-energy � is usually obtained within Hedin's GW approah, starting from DFTresults as a zero-order solution. Similarly, the exitoni e�ets are well desribed bythe Bethe-Salpeter equation (BSE), via a funtional derivative of the self-energy �.However, the many-body perturbation theory is not the only approah developedto deal with response properties. The limits of DFT omes from the fat that ex-ited states, are not aessible through stati ground state DFT. In priniple, theseproblems an be overome, at least as far as optial exitations are onerned, bytaking into aount the fat that in the absorption experiment the system is re-sponding to a time-dependent external �eld. Therefore a generalization of statiDFT to Time-Dependent DFT (TDDFT) has been proposed [127, 128℄, i.e. all po-tentials are now funtionals of the time-dependent density. Besides the potentials,also their funtional derivatives with respet to the density are needed (at leastimpliitly), sine the system is responding self-onsistently to the applied perturba-tion. As it happened in stati DFT, again, the main problem resides in �nding agood approximation to the exhange-orrelation ontribution. The time-dependentDFT approah still keeps the advantage of the stati one to be omputationallyvery eÆient, and ould in priniple replae other suessful, but more umbersomemethods like the Bethe-Salpeter approah (BSE)[129, 130, 131, 132℄. However, thereare some additional diÆulties with respet to the ase of stati DFT: in the presenthapter we will mainly deal with the determination of reliable approximations forthe time-dependent density variation of the exhange-orrelation potential Vx, i.e.



96 Chapter 5. Ab-initio alulations of optial propertiesthe so-alled exhange-orrelation (x) kernel, fx = ÆVx=Æ�.Real alulations are dependent on the hosen approximation for the x kernelfx: the lowest level of approximation (RPA) onsists in negleting the kernel, an-other simple approximation is the adiabati loal density approximation (TDLDA)[133, 134℄, where the kernel is alulated from the LDA exhange-orrelation po-tential V LDAx . At present, the simple adiabati loal density approximation for theTDDFT kernel has given promising results for �nite systems, but does not sueedin desribing absorption spetra in solids. Improvements might ome through theinlusion of dynamial (memory) e�ets and/or long-range nonloal terms [128, 135℄.Reently, Reining et al. [30℄ have shown that a stati long-range ontribution (LRC)an simulate the strong ontinuum exitoni e�et in the absorption spetrum ofbulk Silion. Here we present the results for GaAs and AlAs spetra. We will showthat the optial absorption, whih exhibits a strong ontinuum exiton e�et, isonsiderably improved with respet to alulations where the adiabati loal den-sity approximation is used.We underline that the alulations onerning the superlattie zero-frequeny bire-fringene have been performed within a time-dependent DFT formalism as well.Also in this ase, we will disuss the di�erent approximations adopted to desribethe x kernel fx.5.1 Time Dependent Density Funtional TheoryWe disuss here the essential formalism of the time-dependent generalization of DFT.For detailed information on this subjet, we suggest to refer to some reent reviews[128, 136, 137, 138, 139℄. The Density Funtional Theory, as desribed in Chapter3, is a ground state theory, thus unable to aount for eletroni exitations. Theserestritions an be overome within the DFT formalism, generalizing it by allowinga time dependene for the external �eld. As in lassial mehanis, the DFT groundstate is determined by the energy minimum:ÆE[�℄=Æ�(r) = 0 : (5.1)Extending the analogy, as the trajetory of a lassial system is given by the extremaof the lassial ation R t1t0 dtL(t), where L is the Lagrangian, the evolution of a



5.1. Time Dependent Density Funtional Theory 97quantum system, whih undergoes an external time-dependent potential Vext(r; t),is given by the extrema of the quantum mehanial ation:A = Z t1t0 dth	(t)ji ��t � Ĥ(t)j	(t)i : (5.2)Of ourse, there are some theorems [127℄, exatly analogous to the Hohenberg-Kohn theorems (see Setion 3.1.1) and presented within a framework similar tothe Kohn-Sham sheme (see Setion 3.1.2). A �rst theorem proves that there is abijetive orrespondene between time-dependent external potentials Vext(r; t) andv-representable time-dependent densities �(r; t). A seond theorem proves that theevolution of the system is determined by the extrema of the quantum mehanialation. Van Leeuwen [140℄ has shown that the time-dependent density, whih har-aterizes a many-body system an be, in priniple, reprodued by a time-dependentexternal potential, in a many-body system with no two-partile interations. Thisproperty allows to represent at any time the density of a many-body system by meansof a non-interating system, whih reprodue the exat interating density �(r; t).The evolution of the system is desribed by the time-dependent KS-equations:��12r2 + Veff(r; t)� i(r; t) = i ��t i(r; t) ; (5.3)�(r; t) = NXi=1 j i(r; t)j2 ; (5.4)where Veff(r; t) = VH(r; t) + Vx(r; t) + Vext(r; t) (5.5)is, as in the stati ase, the e�etive potential felt by the eletrons. It onsists of thesum of the external time-dependent applied �eld, the time-dependent Hartree term,plus the exhange-orrelation potential (de�ned through the equivalene between theinterating and �titious non-interating systems). From the variational priniple,it is possible to de�ne: Vx(r; t) = ÆAx[�℄Æ�(r; t) ; (5.6)where Ax[�℄ is the exhange-orrelation part of the ation funtional A. Besides itselegane, the most remarkable quality of the time dependent DFT is in its ompu-tational simpliity, in omparison to other available methods.



98 Chapter 5. Ab-initio alulations of optial properties5.1.1 Derivation of an expression for the dieletri funtionThe linear response of the harge density to an external time-dependent perturbationis determined by the polarizability � of the medium:�(r; t; r0; t0) = Æ�(r; t)ÆVext(r0; t0) �����Vext=0 : (5.7)The Eq. (5.7) means that the density �(r; t) and the external potential are relatedin the following way :�(r; t) = �(r; t0) + Z �(r; t; r0; t0)Vext(r0; t0)dr0dt0 +O(V 2ext) : (5.8)The independent-partile polarization �0 relates, in a fully equivalent way, the ele-tron density �(r; t) to the e�etive potential Veff(r; t):�0(r; t; r0; t0) = Æ�(r; t)ÆVeff(r0; t0) �����Veff=0 : (5.9)Remembering the de�nition of the e�etive-potential, Veff = Vext + VH + Vx, it iseasy to obtain:ÆVeff(r; t)ÆVext(r0; t0) = Æ(r� r0)Æ(t� t0)+Z "Æ(t� t00)jr� r00j + fx(r; t; r00; t00)#�(r00; t00; r0; t0)dr00dt00 ; (5.10)where fx(r; t; r0; t0) = ÆVx[�(r; t)℄Æ�(r0; t0) �����Vext=0 (5.11)is the time-dependent x kernel andv(x; x0) = v(r; r0) Æ(t� t0) = Æ(t� t00)jr� r00j (5.12)aounts for the variation of the Hartree potential. After deriving the simple relation:Æ�=ÆVext = (Æ�=ÆVeff)(ÆVeff=ÆVext) � �0ÆVeff=ÆVext ; (5.13)a Dyson-like equation, whih onnets the two polarizabilities � and �0, follows ina straightforward way:�(r; r0;!) = �0(r; r0;!)+Z dr1dr2�0(r; r1;!) " 1jr1 � r2j + fx(r1; r2; !)#�(r2; r0;!) : (5.14)



5.1. Time Dependent Density Funtional Theory 99This sheme allows to desribe the exat linear response of an interating system interms of the response of a non-interating system with external potential Veff(r; t).The exat exhange-orrelation ontributions are of ourse unknown, and the appli-ation of the theory relies on some approximations. The lowest level of approxima-tion (RPA) onsists in negleting the kernel:fRPAx = 0 : (5.15)Another simple approximation is the adiabati loal density approximation (TDLDA)[133, 134℄, where the kernel is alulated from the LDA exhange-orrelation poten-tial used in ground state alulations:fTDLDAx (r) = Æ (r; r0) dV LDAx (r)d�(r) : (5.16)Inverting formally Eq. (5.14), one obtains a ompat equation� = [1� �0(v + fx)℄�1 �0 ; (5.17)where v is the Coulomb potential. The inverse dieletri funtion ��1 measures thesreening in the system: ��1 (r; t; r0; t0) = ÆVeff(r; t)ÆVext(r0; t0) : (5.18)In pratie, we need the inverse dieletri funtion in the momentum spae, whihis related by a Fourier transform to real spae:��1 (r; r0;!) = 1(2�)3 ZBZ dq XG;G0 ei(q+G)�r ��1GG0 (q; !) e�i(q+G0)�r0 : (5.19)Some are must be taken in the origin of the indued sreening. If the probe isassumed to be a test partile, it is only a�eted by the eletrostati Hartree termin equation (5.10). From Eq. (5.10) it follows that the inverse dieletri funtion isonneted to the polarizability by the relation:��1 = 1 + v� : (5.20)The random phase approximation (RPA) response funtion is obtained, simplyimposing fx = 0: ��1RPA = 1 + v (1� �0v)�1 �0 : (5.21)



100 Chapter 5. Ab-initio alulations of optial propertiesThen, inverting the matrix relation and using the matrix equality(1� �0v)�1 �0 = �0 (1� v�0)�1 ; (5.22)we obtain: �RPA = 1� v�0 : (5.23)In onlusion, all we need to perform alulations is an expliit formulation ofthe polarizability. Appliation of �rst-order perturbation theory to the Kohn-Shamequations (3.20) yields the standard result for the independent-partile polarization�0 in the Adler-Wiser formulation [115, 116℄:�0 (r; r0;!) = 2Xi;j (fi � fj) �i(r)��j(r)��i (r0)�j(r0)�i � �j � ! � i� ; (5.24)where fi are the oupation numbers (0; 1) and � is a positive in�nitesimal number.The small imaginary onstant added in the denominator aounts for ausality,and desribes lifetime e�ets when it is small, but �nite; the fator 2 stems fromspin degeneray. The expliit Fourier transformation of the independent-partilepolarization results:�GG00 (q; !) = 2Xi;j (fi � fj) hjje�i(q+G)�rjiihijei(q+G0)�r0jji�i � �j � ! � i� : (5.25)5.1.2 RPA approximation without loal �eld e�etsIt is interesting to establish a link between the formula (4.14) in Setion 4.1. forthe imaginary part of the dieletri funtion and the analogous formula within theRPA approximation, whih we an derive starting from the expression for �0 inEq. (5.25). At this stage, we ontinue negleting loal �eld e�ets, to preserve theorrespondene with the semi-empirial alulations. From Eqs. (5.23) and (5.25)we obtain:�M (!) = 1 + 24�
limq!0 1q2 Xk2BZXv; 24 jhn;k+ qjeiq�rjnv;kij2�n;k+q � �nv;k � (! + i�) + jhn;k� qje�iq�rjnv;kij2�n;k�q � �nv ;k + (! + i�)35 ;(5.26)



5.1. Time Dependent Density Funtional Theory 101where we have used the Fourier transformation of the Coulomb potential:1jrj = 4�
 Xq;G ei(q+G)�rjq+Gj2 : (5.27)Sine the seond term (anti-resonant) does not ontribute to the absorption, we anrejet it:�2 (!) = 24�
 limq!0 1q2 Xk2BZ Xnv;n Im 24 jhn;k+ qjeiq�rjnv;kij2�n;k+q � �nv ;k � (! + i�)35 : (5.28)For a non-loal Hamiltonian H, the ommutator with the oordinate operator isgiven by: ddtri = i [H; ri℄ = pi + i [Vnl; ri℄ ; (5.29)where Vnl is the non-loal part of the Hamiltonian. Another way to write the previousexpression is [141℄: v� = limq!0 hH; eiqr�i =q ; (5.30)where v� and r� are, for � = x; y; z, the Cartesian omponents of v and r. Applyingnow Eqs. (5.29) and (5.30) to simplify Eq. (5.28), we obtainlimq!0 hn;k+ qjeiq�rjnv;ki=q = e � hn;kjri + i [Vnl; r℄ jnv;ki�KS � �KSv ; (5.31)where e is a polarization unitary vetor, pointing in the diretion of q. We have indi-ated expliitly that the eigenvalues in the denominator are Kohn-Sham eigenvalues,beause they derive by the appliation of the Kohn-Sham Hamiltonian, even if GWorretions are added. In fat, the use of the quasi-partile Hamiltonian to alulatethe ommutator would be muh more demanding, beause the self-energy operator� is non-loal and dynamial. Hene, the �nal formula in the RPA approximation,negleting loal �eld e�ets is:�2 (!) = 24�
limq!0 Xk2BZ Xnv;n �����e � hn;kjri + i [Vnl; r℄ jnv;ki�KS � �KSv �����2 " 1�n;k+q � �nv;k � (! + i�)# :(5.32)We want to show that the expression (5.28) is equivalent to the expression (4.14):�2(!) = 24�2
 1!2 Xn;nv Xk2BZ je �Mv(k)j2 Æ (!(k)� !v(k)� !) : (5.33)



102 Chapter 5. Ab-initio alulations of optial propertiesExploiting one again Eqs. (5.29) and (5.30), we an rewrite it in a slightly di�erentway:�2(!) = 24�2
 limq!0 1q2 Xn;nv Xk2BZ ���hn;k+ qjeiq�rjnv;ki���2 Æ (!(k)� !v(k)� !) ;(5.34)whih is the imaginary part of Eq. (5.28). In fat:lim�!0 1x� i� = P 1x � i�Æ (x) : (5.35)5.2 Loal �eld e�etsA solid whih possesses lattie-potential symmetry is non-homogeneous on the mi-rosopi sale, even when it is haraterized by a ubi symmetry group, whihyields isotropi optial properties. When an external perturbing �eld of small wavevetor q and frequeny ! is applied to the system, the loal �eld will in generalontain \Bragg reeted" terms, i.e. dependent on the wave vetor q +G, where Gis a reiproal lattie vetor. These mirosopially varying terms utuate on thewavelength of the interatomi spaing. The frequeny ! is not a�eted, supposingthe homogeneity of the time. The di�erene between the loal and the marosopi�eld onstitutes the loal-�eld orretions in the eletromagneti response.Let us onsider an eletri �eld E, inoming on a non-homogeneous medium.In the linear approximation, the polarization e�ets are desribed by the eletridisplaement vetor D:D(q+G; !) =XG0 �mi(q+G;q+G0;!)E(q+G0; !) : (5.36)We are interested in a relation whih, in the limit of a negligible q, onsider onlymarosopi quantities: DM(!) = �M(!)EM(!) : (5.37)Aording to Adler [115℄ and Wiser [116℄, the marosopi dieletri tensor an berelated to the inverse of the mirosopi dieletri matrix [117, 118℄:�M (!) = limq!0 1��1GG0 (q; !) �����G=G0=0 : (5.38)



5.3. Results for the birefringene of GaAs/AlAs superlatties 103The di�erene between an homogeneous and non-homogeneous medium lies in theo�-diagonal terms. In the diret spae this means that the mirosopi dieletrifuntion "(r; r0) depends expliitly on the positions r and r0, and not simply onthe distane jr � r0j. If the medium were homogeneous, the marosopi dieletrifuntion would be �M = limq!0 �G=0;G0=0 ; (5.39)i.e. the spatial average of the mirosopi dieletri funtion. In ase of isotropimedia, the diretion in whih the limit of the small q vetor has to be taken isnon-inuent. In ase of a GaAs/AlAs superlattie, taking the limit of q in the z orx/y diretions gives respetively the omponents �k and �? of the dieletri tensor,whih inlude loal �eld e�ets (LFE).5.3 Results for the birefringene of GaAs/AlAs superlat-tiesThe redution of the original ubi symmetry of the diamond or zin-blend stru-ture gives rise to an optial anisotropy in GaAs/AlAs superlatties [16℄. As wehave already disussed in the previous hapter, the birefringene in perturbed bulksemiondutors has two well-known ontributions [142, 143℄, namely a dispersionlessterm related to virtual diret transitions involving high energy gaps between valeneand ondution bands, and a resonant term whih represents the isolated e�ets ofthe virtual transitions assoiated with the small energy gaps between the top valenebands and the �rst ondution bands. We have alulated the stati birefringeneof (001) (GaAs)p/(AlAs)p superlatties for the barrier/well period p=1 to p=8, em-ploying the ab initio DFT approah whih should a priori desribe details of theband struture in a more reliable way, if ompared to an empirial approah. Infat, one might suspet that the semi-empirial approah is not suÆiently preiseto desribe suh a quantity as the birefringene whih requires alulations of highpreision, being a very small (of the order of 10�2) di�erene between two dieletrionstants. However, we will see that this rather tehnial point turns out not to bethe main soure of error in the alulations in Chapter 4. In fat, we have proved inSetion 5.1.2 that TDDFT alulations without loal �eld e�ets, within the RPA
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Figure 5.1: Stati birefringene for GaAsp/AlAsp superlatties as a funtion of p. Cirle: exper-iment from Ref. [16℄. Filled square: RPA theoretial values without loal �elds. Empty square:semi-empirial theoretial values without loal �elds. The e�etive medium value alulated withthe theoretial RPA (with loal �elds) dieletri onstants of bulk GaAs and AlAs is indiated bythe horizontal dashed line (see text).



5.3. Results for the birefringene of GaAs/AlAs superlatties 105approximation for the x-kernel, yield optial spetra totally equivalent to the oneswe have alulated within the semi-empirial framework. In Fig. 5.1 we ompareab initio and semi-empirial alulations without loal �eld e�ets. The two urvesshow the same trend as a funtion of the superlattie period p. The values of thebirefringene are moreover ompletely ompatible: the TDDFT alulations on-�rm hene the semi-empirial results. In our ab initio alulation we have arefullyheked the symmetries of the wavefuntions and of the energy levels. In partiular,the symmetry operation whih makes x and y axes equivalent for a tetragonal super-lattie belongs to a non-symmor� point group, whereas the odes used an onsideronly symmor� point groups. Thus, we had to work on improving the onvergeneof the wavefuntions, to assure that the x and y omponents of the dieletri tensorould be equal up to 10�5, and, as a onsequene, that the alulated birefringeneould not ontain unontrolled errors due to asymmetries.It is well known that many-body e�ets beyond the simple independent-partilepiture often drastially alter the dieletri properties of materials. Self-energy andexitoni e�ets an have a signi�ant ontribution to the absorption spetra ofeven simple bulk semiondutors, and by onsequene also hange their dieletrionstants. These e�ets are due to variations of the exhange-orrelation potentialupon exitation. Of ourse, there are also ontributions stemming from variationsof the Hartree potential, inluding the so-alled loal �eld e�ets, whih expressthe fat that these variations reet the harge inhomogeneity of the respondingmaterial. Therefore, loal �eld e�ets an be of moderate importane, omparedto the exhange-orrelation ontributions, for example in the absorption spetra ofsimple bulk semiondutors, but show up inreasingly when one onsiders more in-homogeneous systems. In eletroni spetra of lusters (whih are to be onsideredas a strong inhomogeneity in empty spae), and for spetra involving exitationsfrom strongly loalized states [144℄, loal �eld e�ets alone explain already mostof the drasti disagreement between results obtained in the independent-transitionapproah, and the experimental spetra. One an hene suspet that, as alreadysuggested by [16℄ and indiretly on�rmed by the results of the previous hapter,loal �eld e�ets play a ruial role for the desription of the anisotropy of the di-eletri properties of superlatties, and should not be negleted, independently of



106 Chapter 5. Ab-initio alulations of optial propertiesthe fat whether semi-empirial or ab initio approahes are used. Thus, we havedeided to investigate the role of loal �eld e�ets. The RPA values of the bire-fringene �n = p"? � p"k alulated without and with loal �elds (respetivelyempty and �lled squares) are reported on Fig. 5.2 as a funtion of the well width,together with the experimental results of Ref. [16℄ (�lled irles). One again, we re-mark that the neglet of loal �elds leads to an anisotropy muh smaller than in theexperiment. The inlusion of the o�-diagonal elements in the inversion of "�1G;G0 dras-tially hanges the behavior of the birefringene: the amplitude inrease up to theexpeted e�etive medium value �n = 0.05, alulated with "? = ("GaAs+ "AlAs)=2and "�1k = ("�1GaAs + "�1AlAs)=2 [27℄. Sine any alulation of the stati dieletrionstant within the RPA approximation, inreases the dieletri mismath betweenGaAs and AlAs ompared to experiment [145℄, the e�etive medium plateau alu-lated with theoretial dieletri onstants has a higher value than the experimentalone. The inlusion of loal �eld e�ets perfetly reprodues the inrease of theanisotropy with inreasing superlattie period, whih was ompletely absent in theindependent-transition alulations. We �nd that, for p > 3, the optial anisotropyin (GaAs)p/(AlAs)p superlatties is ompletely determined by the anisotropy of theloal �elds.It is now interesting to analyze these results more in detail, in order to under-stand better the importane of loal �eld e�ets. Eqs. (5.25) and (5.23) show that,indeed, �0 and the mirosopi RPA dieletri tensor "RPA are sums over indepen-dent transitions, but the relation between the marosopi dieletri onstant and�0 (even in RPA) is muh more ompliated than the simple linear relation (5.23),that is used in alulations negleting loal �eld e�ets. The inversion (5.38) leadsin fat to an e�etive mixing of transitions. Therefore, it is worthwhile to see, asa �rst step, whih transitions determine the anisotropy of the dieletri response.We explore this idea by examining the e�ets of the highest valene and lowest on-dution bands on the birefringene for the well/barrier period p=3 and p=8. In a�rst step we onsider "all" the ondution bands (i.e. those neessary to ahieveonvergene) as possible �nal states for the transitions, but we restrit the initialstates to the v �rst valene bands (Fig. 5.3, lower panel). Note that in order to salethe results of the three superlatties, the absissa axis varies from lattie to lattie,
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Figure 5.2: Stati birefringene for GaAsp/AlAsp superlatties as a funtion of p. Cirle: ex-periment from Ref. [16℄. Empty square: theoretial values without loal �elds. Filled square:theoretial values with loal �elds. The theoretial values are alulated at the average of the the-oretial lattie parameters. The e�etive medium value alulated with the theoretial dieletrionstants of bulk GaAs and AlAs is indiated by the horizontal dashed line (see text).



108 Chapter 5. Ab-initio alulations of optial propertieswith v = ip, p being the well/barrier period and i an integer. The dependene of thebirefringene on the number of valene bands inluded in the alulation shows thesame behavior for all the studied superlatties. The bands 1 to 2p do not ontributeto the birefringene. A large positive ontribution arises from bands 4p to 6p, whihis almost ompletely aneled by the (folded) light-hole and heavy-hole bands from6p to 8p. If loal �eld e�ets are negleted the anellation is total. Also the on-tributions of the bands to the birefringene due to the loal �elds anel, and evenlead to a hange in sign; the �nal results is dominated by the anisotropy of the loal�elds arising from transitions involving the top valene bands.In a seond step, we onsider "all" the valene bands, and restrit �nal statesto the  upper ondution bands as �nal states (Fig. 5.3, upper panel). Here theondution band number is  = (i � 1)p + 1, and i and p have already been de-�ned. The highest ondution bands do not ontribute to the birefringene. Thehigh step-like positive ontribution of the intermediate bands are aneled by the(folded) last ondution bands. One again, the loal �elds are not important butfor the bottom ondution bands. The anellation e�ets are essential: in fat,a alulation involving only the highest valene and the lowest ondution bandsyields a ontribution of loal �eld e�ets whih is overestimated by about a fator10. The observed anisotropy an hene not be explained in a simple model involvingfew transitions. The evolution of the top valene region is most harateristi forwhat is going on in this system: due to the anisotropy, to be preise the on�ne-ment in z-diretion, the top valene at � splits into a double degenerate heavy-holeand a single light-hole state. We �nd that the light hole state at � ouples to lightpolarized along the growth diretion, whereas the heavy-hole states respond to lightpolarized in-plane. Of ourse, the order and harater of the states hange through-out the Brillouin zone, whih prevents a simple one-to-one analysis, but, as it is alsoevident from Fig. 5.4, this lifting of degeneray in the region lose to the Fermi levelis suÆient to explain the observed anisotropies in alulations without loal �elde�ets.A deeper analysis of the birefringene passes through an analysis of its singleomponents, i.e. the dieletri onstant for light polarized in plane and perpendi-ular to the growth diretion. In Fig. 5.4 the upper panel shows the results for �?
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Figure 5.3: Contribution to the birefringene of the valene bands (lower panel) and of the ondu-tion bands (upper panel) for p=3 (�lled symbols) and p=8 (empty symbols). Cirles: ontributionswith LFE; squares: ontributions without LFE. The dashed line is a guide to the eyes for the p=3SL with LFE.



110 Chapter 5. Ab-initio alulations of optial propertiesand �k without loal �eld e�ets, the lower panel inluding loal �eld e�ets, as afuntion of the superlattie period p. First, " is essentially inreasing with inreas-ing p, whih an be diretly attributed to the on�nement e�ets: the average gapbetween oupied and empty states dereases, due to a derease of on�nement.Seond, for large superlattie periods, " tends to the average of the bulk dieletrionstants of GaAs and AlAs[145℄ alulated without loal �eld e�ets (arrow on theupper panel of Fig. 5.4). This ours for both polarizations, so that the birefringenetends to zero, in onsisteny with the fat that the weight of the ontributions of theinterfaes relative to the weight of the bulk states vanishes for inreasing p. Third,"? is always loser to the average value than "k for p > 2, whih omes from thefat that the gap is smaller for light polarized in-plane than in growth diretion. Inother words, the on�nement is rather \seen" in growth, than in in-plane diretion,making the birefringene slightly positive at those p [143℄.Turning to the lower panel of Fig. 5.4, whih shows the same quantities alulatedwith loal �eld e�ets, we note that as expeted, loal �eld e�ets derease theabsolute value of the dieletri omponents, beause higher energy transitions aremixed in the important gap region. The derease of " is found to be less e�etive for"? than for "k. In growth diretion, loal �eld e�ets inrease linearly with the period(see inset in Fig. 5.4), and "k is onsequently always lose to the e�etive mediumvalue estimated with the theoretial bulk onstants "�1k = ("�1GaAs+ "�1AlAs)=2 (dashedline) [27, 145℄. In the in-plane diretion however, the diret e�et of quantumon�nement on the independent transitions is found to be larger than its e�et onthe loal �elds. The latter are onstant with the period, and the slope of of thelinear behavior of "? remains unhanged (see inset in Fig. 5.4). Consequently, thee�etive medium value "? = ("GaAs + "AlAs)=2 (dotted line) is reahed at 90% for aperiod as small as p ' 10. The di�erent behaviors of "k and "? an be understoodeither from the transition mixing formalism, the states oupling to light polarizedin growth diretion being more sensitive to the presene of an interfae, or from theexpression of loal �eld e�ets through the matrix inversion: in fat, in the latterase it is lear that the head element of " alone desribes some average homogeneousmedium. The o�-diagonal elements bring the inhomogeneity into play. Now, thesreening of the interation between two harges plaed at a harateristi distane
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112 Chapter 5. Ab-initio alulations of optial propertiesd depends only on jdj in a homogeneous medium, but it feels also its diretion andthe absolute position of the harges when the medium is inhomogeneous. When dis put in growth diretion, the probability that the harges \see" where they are islarger than when d is in-plane. Thus, loal �eld e�ets are stronger on "k than on"?. Last and most importantly, it remains to explain why loal �eld e�ets inreasewith inreasing p in growth diretion (see inset in Fig. 5.4), sine it is �nally thisfat whih lets the birefringene tend to a plateau value instead of zero, as for largesuperlattie period the lh and hh states are again degenerate. This point an in fatbe understood on the basis of the previous onsiderations: given a harateristiinteration length jdj in the system, the bigger p the bigger is the probability thatthe two harges are found either entirely in a region of GaAs or in a region of AlAs,instead of experiening a sreening perfetly averaged over GaAs and AlAs.All qualitatively observed tendenies an hene be explained. It remains to bedisussed what ould be the origin of the remaining small quantitative disrepan-ies with experiment. Besides possible unertainties oming from the transmissionmeasurements, these might be sought on the theoretial side. Apart from variousapproximations like the pseudopotential approah and the neglet of spin-orbit split-ting, one might suspet, �rst, a ontribution from the geometry of the system. Infat, the band struture of bulk semiondutors has been shown to be very sensi-tive to a small hydrostati pressure [98℄. This hange in band struture ould thanhave signi�ant e�ets on the dieletri properties. We have explored this possi-bility by omparing the above results, obtained using the average theoretial LDAlattie onstant, with a alulation performed at the average experimental lattieonstant. The latter orresponds to a negative pressure of 20 kbar in the alula-tion. No improvement is obtained; rather, for p=5 the birefringene has inreasedby 17%. There is hene some visible inuene of the hoie of the geometry in thealulations on the results, and, although the most straightforward guess (i.e. thead ho orretion of the average LDA lattie onstant) does not solve the problem,we annot exlude that a geometry loser to the exat (unknown) experimental onemight improve the situation. However, another point seems more ruial, namely,the inlusion of exhange-orrelation e�ets beyond the RPA. One an do this inpriniple within the TDDFT sheme; in pratie, alulations on realisti extended



5.3. Results for the birefringene of GaAs/AlAs superlatties 113GaAs AlAsEXP 10.9 8.2semi-empirial without loal �elds 10.12 7.63RPA without loal �elds 14.19 10.21RPA with loal �elds 12.77 8.92LDA with loal �elds 13.55 9.52Table 5.1: Experimental [43℄ and alulated dieletri onstants for the bulk GaAs and AlAs semi-ondutors. We report the results of semi-empirial alulations and RPA-TDDFT alulations,both without loal �eld e�ets, and the results of RPA-TDDFT and TDLDA alulations inludingloal �eld e�ets.systems are at the best done using the TDLDA approximation. It is known thatthe inlusion of the LDA x kernel gives a minor ontribution to optial absorptionspetra, but a (on the sale of our problem) signi�ant e�et on dieletri onstants,whih might well hange the birefringene. We have therefore heked this possi-bility by adding the exhange-orrelation e�ets within TDLDA. In Table 5.1 weshow all the alulated dieletri onstants for GaAs and AlAs in omparison tothe experimental values [43℄. When working within the TDLDA, the bulk dieletrionstants of both onstituent materials inrease as by muh as 7 % [146℄. However,those hanges anel out in the birefringene, and both the plateau value as wellas the birefringene at intermediate distanes remain virtually unhanged. Thisdoes not neessarily imply that exhange-orrelation e�ets are in fat negligible.TDLDA is an approximation, and the fat that above we have related the bire-fringene to the near-gap transitions of the optial spetra rises the suspiion thatonly a theory whih perfetly desribes that region would be able to yield preisequantitative values for the birefringene. Suh an approah does today exist forthe ab initio alulation of optial properties, namely the simultaneous solution ofthe self-energy Dyson equation and the Bethe-Salpeter equation desribing exitonie�ets. It is of ourse out of reah at present to apply the full theory here.In onlusion, onerning superlattie optial properties, we have alulated thedieletri tensor and the stati birefringene of GaAs/AlAs superlatties as a fun-tion of the superlattie period. The use of an e�etive medium theory to desribe



114 Chapter 5. Ab-initio alulations of optial propertiesthe dieletri tensor is found to be justi�ed in the growth diretion. In the in-planediretion, however, the diret e�et of quantum on�nement is large and a lassialtheory fails. Having learned in the previous hapter that on�nement and band-mixing e�ets alone are not suÆient to reprodue the experimental data, we haveinluded loal �eld e�ets in present alulations. We have pointed out that quan-tum on�nement e�ets are important to understand the �ne struture of the optialspetra even of relatively weakly on�ned systems like GaAs/AlAs, but that it isompletely insuÆient to take them into aount only via the band struture in anindependent-transition piture: loal-�eld e�ets, whih reet the inhomogeneity ofthe superlattie, e�etively mix the formerly independent transitions and an there-fore drastially enhane the anisotropy, up to a fator of 7 even for periods as smallas p = 8. Moreover, we have on�rmed the results of previous semi-empirial alu-lations based on the independent-transition sheme, by performing ab-initio alula-tions in the same approximation (RPA without loal �elds). Only by inluding loal�eld e�ets experiments [16℄ an be interpreted even qualitatively. Further exhange-orrelation e�ets seem to anel to a large extent on the anisotropy results, and antherefore be negleted unless a �ne quantitative analysis is required. Due to limita-tions in the omputational resoures, at the moment a many-body Green's funtionapproah, whih fully aount for eletron-eletron and eletron-hole interation isout of reah. This fat alls for the searh of an alternative approah to the problemand makes partiularly interesting the following setion, in whih we are presentingan alternative way to aount for many-body e�ets.5.4 E�ets of the long-range ontribution to the x kernelon the bulk spetraWe move now to the problem absorption spetra up to 7 eV, for bulk GaAs andAlAs systems. We want to disuss now the e�ets of a stati long-range ontribution��=q2 to the x kernel fx of time dependent density funtional theory. The timedependent DFT approah still keeps the advantage of the stati one to be ompu-tationally very eÆient, and ould in priniple replae other suessful, but moreumbersome methods like the Bethe-Salpeter approah (BSE)[129, 147, 131, 132℄.



5.4. E�ets of the long-range ontribution to the x kernel on the bulk spetra 115However, there are two additional diÆulties with respet to the ase of stati DFT:(i) the approximate Vx should now in priniple not only be good enough to repro-due the ground state density and total energy, but the KS equation should also yieldeigenvalues lose to the ones that would be obtained using the unknown exat Vx(not to be onfused with the measurable quasi-partile energies) (ii) also the time-dependent density variation of Vx, i.e. the so-alled x kernel fx = ÆVx=Æ�, has tobe well desribed. Here we will mainly deal with the problem (ii). It has turned outthat TDDFT yields good results using the loal and adiabati LDA approximation(TDLDA) for the x kernel fx[128℄, provided that �nite systems are onsidered.Also eletron energy loss spetra of solids are well desribed in TDLDA. However,in both ases the main improvement with respet to the independent-partile KSspetrum (i.e. with respet to a simple sum over independent transitions betweenKS states) omes from the density variation of the Hartree potential (loal �elde�ets in the solid) whih is desribed exatly, and not from fx. By the way ofontrast, the Hartree ontribution is not suÆient to yield good absorption spetraof solids, and taking into aount fx within TDLDA does not lead to a signi�ant(if at all) improvement [148℄. Therefore, it would be extremely desirable to �nd abetter, generally appliable, fx. Improvements might ome through the inlusion ofdynamial (memory) e�ets and/or long-range nonloal terms [128, 135℄. Reently,Reining et al. [30℄ have shown that a stati long-range ontribution (LRC) of theform fx(q;G;G0; !) = �ÆG;G0�=jq+Gj2 an simulate the strong ontinuum exi-ton e�et in the absorption spetrum of bulk Si (q is a vetor in the �rst Brillouinzone (BZ), G and G' are reiproal lattie vetors, and � is a material dependentparameter). Here, we disuss the e�ets of suh a ontribution more in detail, byonsidering also the real part of the dieletri funtion ", for bulk GaAs and AlAs.Analogous results for Si and other materials are disussed in Refs. [30℄ and [149℄.We show that the real and imaginary parts of " at low energy are extremely wellreprodued when just this long-range ontribution is taken into aount. It is pos-sible to show [149℄ that the the approximation is not valid for the loss funtion, forreasons whih will be disussed. We also examine the dependene of the parameter� on the material.Before showing the results, we briey review the origin of the long-range on-
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Figure 5.5: Imaginary part of the dieletri funtion of GaAs by ab initio alulations. The dotsare the experimental results (Ref. [120℄). The dot-dashed urve is the result of the standardTDLDA alulation, the dashed urve of the GW-RPA alulation, the ontinuous urve of ourLRC alulation.



5.4. E�ets of the long-range ontribution to the x kernel on the bulk spetra 117tribution and its implementation. In TDDFT, the inverse dieletri funtion of aperiodi system is onstruted from "�1(q;G;G0) = ÆG;G0+v(q)G�(q;G;G0), where� obeys the matrix equation� = �0 + �0 (v + fx)�; (5.40)�0 being the independent-partile response funtion and v the bare Coulomb inter-ation. A similar equation an also be written for the marosopi dieletri funtionwhih desribes absorption, namely "M(q;G;G0) = ÆG;G0 � v(q)G ��(q;G;G0), with�� = �0 + �0 (�v + fx) ��: (5.41)Here, �v(q)G equals v(q)G for all G, exept for the long-range term �v(q)(G=0) whihis zero. Both the equations for � and for �� an be transformed to transition spae,as it is often done for � in the framework of quantum hemistry [136℄. This allowsa diret omparison to the BSE, for whih this formulation is naturally adopted[129, 147, 131, 132℄. One �nds then that a stati fx whih yields the same spetrumas the BSE should be of the formfx(q;G;G0) = Xn1n2n3n4 1(fn1 � fn2)��1(n1; n2;G)F(n1n2)(n3n4)(��)�1(n3; n4;G0); (5.42)with F(n1n2)(n3n4) = ��QPn2 � �QPn1 � �DFTn2 + �DFTn1 � Æn1n3Æn2n4+(fn1 � fn2)FBSE(n1n2)(n3n4) (5.43)and FBSE(n1n2)(n3n4) = � Z drdr0�(n1; n3; r)W (r0; r)��(n2; n4; r0);the matries � being de�ned as�(n1; n2; r) :=  n1(r) �n2(r): (5.44)Here, fn are oupation numbers and �DFT are KS eigenvalues. �QP are quasi-partile (QP) eigenvalues, whih are supposed to be alulated within Hedin's GWapproah[96℄. W is the statially sreened Coulomb interation, and the  n are KS



118 Chapter 5. Ab-initio alulations of optial propertiesorbitals, whih are assumed to be equal to the QP ones. The matries � an beinvertible if only a subspae of transitions is onsidered, whih is atually the ase forabsorption spetra. In a solid, the pairs of indies (n1; n2) are to be understood as apair of an oupied and an empty state, with (n1;n2) = (v;k; ;k+q). �(v;k; ;k+q;G = 0) is going to zero as q for small q. Sine F(v;);(v;) in this limit behavesas a onstant, this implies immediately that fx(q;G = G0 = 0) behaves as 1=q2.There is in fat a positive long-range ontribution stemming from the QP shift ofeigenvalues (as also predited in Ref. [152℄), and a negative one resulting from theeletron-hole interation, whih is the main point of interest here.Comparing Eqs. (5.40) and (5.41), one an understand why the long-range ontri-bution is muh more important for absorption spetra than for the eletron energyloss spetra of solids: in the former ase, in Eq. (5.41) fx is added to a oulombian�v whih does not ontain the long-range term, i.e. v(G = 0) is set to zero. Obvi-ously in that ase, a neglet of the divergene in fx makes an essential di�erene,whereas in the ase of loss spetra, determined via Eq. (5.40), this argument doesnot hold. In order to fous the disussion about the long-range ontribution on theseond, i.e. the eletron-hole interation ontribution, we assume in the followingthat we absorb the �rst, positive ontribution in the energy shift of our starting�(0) (sine anyway we do not know the eigenvalues of the exat exhange-orrelationpotential whih would go along with the exat kernel). Furthermore, we supposethat we have a system where the long-range term is ompletely dominating the restof the exhange-orrelation ontribution, namely, where we an approximately writefx(q;G;G0) = �ÆG;G0�=jq+Gj2. This long-range approximation for the sreenedeletron-hole interation should of ourse work best for systems with weakly boundexitons. This does not mean that the exitoni e�ets themselves are neessarilyweak, sine the eletron-hole interation often drastially hanges the spetral line-shape, even when the joint density of states is not a�eted. In fat, we will onsidertwo materials that exhibit suh a behavior, namely gallium arsenide and aluminumarsenide. We have �rst determined their DFT-LDA eletroni struture. Seond,we have onstruted �(0), but with the eigenvalues shifted to approximate GW ones,in order to simulate the �rst part of the kernel as explained above. The GW eigen-values are obtained by applying a sissor operator of 0.8 eV and 0.9 eV for GaAs
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Figure 5.6: Imaginary part of the dieletri funtion of AlAs by ab initio alulations. The dotsare the experimental results (Ref. [121℄). The dot-dashed urve is the result of the standardTDLDA alulation, the dashed urve of the GW-RPA alulation, the ontinuous urve of ourLRC alulation.



120 Chapter 5. Ab-initio alulations of optial propertiesand AlAs [86℄, respetively. Third, we have used fx(r; r0) = ��= (4�jr� r0j), withan empirial value for � �tted to the experiment. The spetra have been obtainedusing 864 o�-symmetry shifted k-points in the Brillouin zone.We are ready to disuss the results. Let us �rst look at absorption spetra.Figs. 5.5 and 5.6 show the results for GaAs and AlAs. The dots are the experimentalresults (Refs. [120℄ and [121℄, respetively). The dot-dashed urve stems from astandard TDLDA alulation (i.e. using DFT-LDA eigenvalues and the stati short-range LDA x kernel). Like other authors (see e.g. [148℄), we �nd a result lose to theRPA one, showing the well-known disrepanies with experiment: peak positions arewrong (the spetrum exhibits a redshift), and the intensity of the �rst main struture(the E1 peak) is strongly underestimated. The dashed urve is the result obtainedby replaing KS eigenvalues with GW quasi-partile energies in the RPA form of ".This alulation, alled GW-RPA in the following, orresponds to the �rst step ofour approah, as outlined above. Again, we �nd the well-known disrepanies withexperiment: now the alulated spetrum shows a blueshift. Moreover, the intensityof the E1 struture has not been orreted. Finally, the ontinuous urve is theresult of our LRC alulation. For all three materials, a very good �t to experimentis obtained using � = 0.2, 0.35 for GaAs and AlAs, respetively. One parameter ishene enough for eah of the materials in order to orret both the peak positions andthe intensities, whih is far from trivial. Moreover, other features of " are very wellreprodued using the same �, as we will disuss in the following. The next quantitywe an examine is in fat the real part of ", Re("). Figs. 5.7 and 5.8 demonstrates thefailure to reprodue the experimental results (dots) of the RPA (ontinuous urve),TDLDA (dot-dashed urve), and the GW-RPA (dashed urve) approahes. Again,both peak positions and line shapes are wrong. Instead, the LCR result (ontinuousurve) is ompared to experiment: the improvement with respet to the GW-RPAsituation is lear, for both materials. Alternatively, a similar agreement of both realand imaginary part of the dieletri funtion an only be found using the muh moreumbersome BSE approah (see e.g. [147, 131, 132, 150, 151℄).We have disussed the e�ets of a stati long-range ontribution ��=q2 to theexhange-orrelation kernel fx of TDDFT. We have shown that the real and imag-inary dieletri funtions of GaAs and AlAs, exhibiting a strong ontinuum exiton
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Figure 5.7: Real part of the dieletri funtion of GaAs by ab initio alulations. The dotsare the experimental results (Ref. [120℄). The dot-dashed urve is the result of the standardTDLDA alulation, the dashed urve of the GW-RPA alulation, the ontinuous urve of ourLRC alulation.
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Figure 5.8: Real part of the dieletri funtion of AlAs by ab initio alulations. The dots arethe experimental results (Ref. [121℄). The dot-dashed urve is the result of the standard TDLDAalulation, the dashed urve of the GW-RPA alulation, the ontinuous urve of our LRC al-ulation.



5.4. E�ets of the long-range ontribution to the x kernel on the bulk spetra 123e�et, are onsiderably improved with respet to alulations where the adiabati loaldensity approximation is used. The �ndings allow to onlude that, for these ma-terials, the problem of absorption spetra an be solved by just determining the onenumber �. Of ourse, the method is neither valid for all kind of materials, nor forall kind of exitation spetra. In spite of this, the good results for GaAs and AlAs en-ourage a future appliation of the theory to GaAs/AlAs superlatties, where it ouldbe an alternative to the too expensive many-body Green's funtion formulation.
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Chapter 6
Summary and disussion
Arriving at the end of this work, the easiest way to summarize the results ahievedis �rst to go bak and read the four objetives presented in the introdution, tofollow then in this onlusive disussion how they have been developed in the ourseof the hapters.In Chapters 2 and 4, the energy bands and optial response funtions of (001)-oriented (GaAs)p/(AlAs)p and (GaAs)p/(vauum)p superlatties, with p from 4 to20, have been alulated by the LCBB method, introdued in Ref. [29℄. This ap-proah, in whih the eletroni states of the superlattie are expanded in the basisof bulk states, alulated by empirial pseudopotentials, is found to be adequateand pratial for superlatties with intermediate to large periods; in partiular, it isuseful for alulating how the band strutures and the optial spetra of the bulkmaterials are modi�ed upon on�nement.In Chapter 2 we have studied the evolution of a bulk state into a superlattiestate, gaining a lear insight on the roles played by the on�nement, the bulk states-oupling and the redution of the symmetry, all involved in the formation of asuperlattie. The bulk and superlattie band strutures are very similar, neverthelessthere are some remarkable di�erenes. The superlattie gaps are larger than the bulkgaps: in partiular the GaAs/vauum gaps are larger than the GaAs/AlAs ones, as aresult of a stronger on�nement; moreover the superlattie band gap widths inreaseas the superlattie period dereases. The lowering in the rystal symmetry and themixing of the bulk states are responsible for the overall slight modi�ation of the125



126 Chapter 6. Summary and disussionenergy levels and, espeially, for the removal of level degeneraies.In Chapter 4 we have addressed the optial properties. The quantum-on�nementindued shifts of the ritial point energies are alulated for both kinds of super-latties and are found to be larger for the GaAs/vauum systems, where ouplingsbetween di�erent GaAs layers are only due to quantum-mehanial tunneling andhave a negligible e�et. For both GaAs/AlAs and GaAs/vauum superlatties,the E1 peak in the absorption spetrum splits into two peaks with inreasing blueshifts for dereasing superlattie period. This result agrees with the observationsof Ref. [10℄ on GaAs/AlAs superlatties, and is attributed to a symmetry splittingof the valene bands along the line �-L. The E2 transition is found to be split forlarge-period GaAs/AlAs superlatties, where the eletroni states of the bulk areon�ned in eah layer and the absorption spetrum is the superposition of the twobulk ones. The energy of the E2 peak depends weakly on the superlattie period.The average (or Penn) gap does not depend on the superlattie period, on�rmingthe expetation that a blue shift at the lower absorption edge is ompensated byred shifts in the upper part of the absorption spetrum. The band ontributionto linear birefringene of GaAs/AlAs superlatties is alulated and ompared withreent experimental results of Ref. [16℄. The zero-frequeny birefringene is found tobe muh smaller than the experimental �ndings: this result hints that the missingontribution to observed stati birefringene may be attributed to loal-�eld e�ets,as already suggested [16℄. The frequeny-dependent part of the birefringene, arisingfrom band folding and quantum on�nement, inreases with dereasing superlattieperiod, as found in the experiment, although the alulated values are smaller.In Chapter 3 we have presented and applied the DFT-LDA to the alulationof the ground state properties and the band strutures of bulk GaAs and AlAssystems and GaAs/AlAs superlatties. We have found an overall agreement withorresponding semi-empirial results, and with experimental and theoretial dataavailable in literature. These �ndings on�rm the analysis developed in Chapter 1and attest the high quality of the eletroni states, both semi-empirial and DFT-LDA, whih are the bases of the optial absorption alulations.In Chapter 5 we have presented two di�erent kinds of results. First, TDDFT al-ulations of the dieletri tensor omponents and of the zero-frequeny birefringene



127of GaAs/AlAs superlatties as a funtion of the SL period, for p ranging from 1 to 8.We have shown that the use of an e�etive medium theory is justi�ed in the growthdiretion for all periods but p=1. In the in-plane diretion however, the dieletrionstant "? inreases with inreasing period, and the lassial e�etive medium valueis reahed to 90% for a period as small as p ' 10. We have pointed out that thebehavior of the dieletri tensor is ompletely determined by the interplay betweenquantum on�nement and loal �elds e�ets, and that the birefringene omes fromthe anisotropy of the loal �elds. Quantum on�nement e�ets are important to un-derstand the �ne struture of the optial spetra, even of relatively weakly on�nedsystems like GaAs/AlAs, but it is ompletely insuÆient to take them into aountonly via the band struture in an independent-transition piture: loal-�eld e�ets,whih reet the inhomogeneity of the superlattie, e�etively mix the formerly in-dependent transitions and an therefore drastially enhane the anisotropy, up to afator of 7 even for periods as small as p = 8. Inluding loal �eld e�ets the ex-periment [16℄ an be reprodued even quantitatively. Further exhange-orrelatione�ets seem to anel to a large extent on the anisotropy results, and an thereforebe negleted unless a �ne quantitative analysis is required. Then, we have shownthat, when working within the TDLDA, the bulk dieletri onstants of both on-stituent materials inrease as by muh as 7 %. However, those hanges anel outin the birefringene, and both the plateau value as well as the birefringene at in-termediate periods remain unhanged. In addition, we have on�rmed the resultsof previous semi-empirial alulations based on the independent-transition sheme,for 6 � p � 8, by performing ab initio alulations in the same approximation.Finally, we have presented a TDDFT alulation for bulk GaAs and AlAs, whihinludes a stati long-range ontribution ��=q2 to the exhange-orrelation kernelfx, as suggested by Reining et al. in Ref. [30℄. We have shown that the real andimaginary parts of the dieletri funtion, whih exhibit strong ontinuum exitone�ets, are onsiderably improved with respet to alulations where the adiabatiloal density approximation is used. These �ndings allow to state that, for thesesemiondutor systems, the problem of optial properties up to 10 eV ould be solvedby just determining the one number �. This approah has the preious advantageto redue signi�antly the omputation time and memory needed, in omparison



128 Chapter 6. Summary and disussionto a many-body Green's funtion approah. The good results for GaAs and AlAsenourage a future appliation of the theory to GaAs/AlAs superlatties.The present work an be extended in several other diretions. Within the LCBBsheme, relying on semi-empirial pseudopotentials, a more preise alulation ofthe optial properties requires the inlusion of the spin-orbit interation and theloal-�eld e�ets. On the other hand, a omplete desription of the E1 and E2peaks requires, in the semi-empirial framework as well, the inlusion of exitonie�ets, whih aount for half of the osillator strength of the E1 transition in thebulk. Conerning the ab initio approah, it is now possible to move to the study ofother, more omplex, superlattie systems of tehnologial interest or even to lower-dimensional strutures { quantum wires or quantum dots {, trying to larify howthe loal �eld e�ets are modi�ed and how they a�et the anisotropy of the optialproperties and/or investigating the role of exitoni e�ets, inluding their e�et onthe anisotropy of the optial response. This analysis ould be applied to GaAs layersalternated with an empty lattie, whih are expeted to show onsiderably strongeron�nement e�ets and an, in a �rst approah, simulate multilayer omposites ofGaAs and oxidized-AlAs (GaAs/AlOx) [7℄. Moreover, ZnSe/GaAs ould be hosenas a representative of heterovalent heterojuntions, in view of the good lattie mathof the two onstituent materials, and in view of its potential tehnologial importaneas a blue emitter [153℄. Also Si/Ge is a system of tehnologial interest, espeiallysine it has been disovered that short period (i.e. less than 20 interatomi distanes)Si/Ge superlatties have a quasidiret band gap due to band folding, and that theoptial matrix elements between the top of the valene band and the new bandedge states at the enter of the Brillouin zone are enhaned by several order ofmagnitudes with respet to the ones for the lowest indiret transition, remaininghowever at least one order of magnitude smaller than the optial matrix element ina diret gap semiondutor suh as GaAs [154℄. Among the one-dimensional systemsin whih anisotropy and exitoni e�ets should play an important role, the studyof silion wires and gallium arsenide wires embedded in a matrix of aluminiumarsenide is partiularly promising. In fat, the �rst ones are important due totheir impat on the understanding of porous silion [155℄, the latter ones for theirpotential enhanement of the photovoltai eÆieny [156℄. It would be interesting



129to examine the possibility of mathing the ab initio theory to the semi-empirialmethod for superlattie periods larger than p = 8, to extrapolate ab initio resultson short/medium periods to qualitative or even semiquantitative preditions forlarger periods. Also one and zero-dimensional systems ould be studied within thisapproah, whih would be based on the introdution of a strongly redued basis set,given by the bulk DFT-LDA wavefuntions of the onstituent materials, in analogywith the LCBB sheme.
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Appendix A
Basi approximationsA solid is a many-body system (typially the number of degrees of freedom is ofthe order of 1023), whose omplete Hamiltonian onsists in two terms dependingrespetively on the spae and spin oordinates of the nulei R�, i.e. VN�N , and onthe eletroni spae and spin oordinates ri, i.e. Ve�e, and a term of eletron-nuleusinteration, i.e. VN�e:H = Te + TN + VN�N (fR�g) + VN�e (fri;R�g) + Ve�e (frig) ; (A.1)where Te and TN represent the nulear and eletroni kineti terms. Analyti solu-tions of the Shr�odinger equation are possible for a few extremely simple systems,whereas numerial exat solutions an be alulated for a small number of atoms ormoleules. In the remaining ases, we have to introdue some simplifying hypotheses.The development of shemes that provide some useful information on real systemsontinues nowadays. Among the variety of possible hoies, and hene of di�erentmethods of alulations, the atual hoie is intimately tied to the nature of theproblem of interest. The aim is to make the problem feasible, without invalidatingthe physis of the results. We want to disuss here our spei� approximations.The inertia of a nuleus is muh bigger than the inertia of an eletron:me �MN ; (A.2)in fat the mass ratio is equal to 1=2000 even in the most unfavorable ase of thehydrogen atom. From a lassial point of view, the veloity of a nuleus is negligibleif ompared to the veloity of an eletron: we an state that an eletron responds131



132 Appendix A. Basi approximationsalmost instantly to the motion of the nulei or, the eletrons see the nulei as if theywere still. In the language of the quantum mehanis, this intuition beomes therigorous Born-Oppenheimer approximation: after rearranging the terms, in order toisolate the eletroni and ioni degrees of freedom, we write the wavefuntion as aprodut of an eletroni part  (fri;R�g) and a nulear part � (R�). If we estimatereasonable to neglet the term of interation between the eletrons and the lattiemotions (i.e. the eletron-phonon interation), we obtain a Shr�odinger equationwhere only the nulear oordinates our:[HN + Ee (fR�g)℄ � (R�) = ET (R�)� (R�) : (A.3)The presene of the eletrons is inluded in the \adiabati term" Ee (fR�g), whihexpress the total energy of the eletrons, in ase the ion ores are \frozen" in thepositions R�:[Te (frig) + VN�e (fri;R�g) + Ve�e (frig)℄ (fri;R�g) = Ee (fR�g) (fri;R�g) :(A.4)In short, the problem an be redued to two independent equations: �rst, Eq. (A.4)desribes the eletrons when the ions are kept in a �xed set of positions, suessivelyEq. (A.3) desribes the lattie vibrations, onsidering that the ion ores feel theeletrons around them thanks to the adiabati term. Conerning the system we areinterested in, the nulei are �nally loated on the sites of a Bravais lattie. After theseparation has been put into e�et, we an onentrate on the Eq. (A.4) regardingthe eletroni degrees of freedom.We will work within a pseudopotential framework (see Appendix B). When thesolid is built up, the eletrons whih belong to internal shells in the isolated atoms(ore eletrons) remain strongly loalized in the proximity of the nulei, being almostnot a�eted by the hemial bonding. This is the physial motivation to separatethe ore eletrons from the valene eletrons, by freezing them opportunely in theore ions (ore eletrons + nulei).In spite of the previous approximations, the two-body eletron-eletron intera-tion is still able to make the task formidable. We do not disuss here the big varietyof remedies studied to overome this problem. In Chapters 2 an 3 we have presentedan empirial and a �rst-priniple approah, whih allow to redue Eq. (A.4) to a



133simpler e�etive one-partile band struture equation:H1e �k;n(r) = � p22m + V (r)��k;n(r) = Ek;n �k;n(r) : (A.5)In ase of a periodi rystal, the solutions of Eq. (A.5) are Bloh funtions�k;n(r) = ei(k�r)un;k(r) ; (A.6)where un;k(r) has the periodiity of the Bravais lattie. The eigenstates are labelledby the band indies n and the wavevetor k, determined by the symmetry of thelattie.
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Appendix B
PseudopotentialsThe onept of pseudopotentials was originally proposed in an early work of Fermi,whih dates bak to 1934 [157℄. In regard to solids, it was introdued as a variantof the orthogonalized plane wave (OPW) method [158℄ and developed later in theform of empirial pseudopotentials [159, 160℄. In the 80's the generalization fromempirial to ab initio norm-onserving pseudopotentials [161, 162, 163, 164℄ hasled to a widespread use of the method in alulations based on Density FuntionalTheory (DFT), allowing empirial parameter free ground state property and bandstruture alulations, where the only input data required are the atomi numbersof the onstituent atoms.In this appendix we give an overview of the onept of pseudopotentials, both inthe empirial/semi-empirial and ab initio norm-onserving forms, and we disusstheir onstrution and their use.B.1 What a pseudopotential isWhen solving the many-body problem of eletrons in a ondensed aggregate ofatoms, a strong simpli�ation onsists in fousing on the harge density related toeletrons whih belong to outermost shells (valene eletrons). Many diÆultiesome, in fat, from what happens in the inner region (ore), but, fortunately, oreeletrons are often not onerned in the bonding together of the atoms and an be\frozen" one and for all in an atomi on�guration, in order to restrit the e�ortto the study of the valene eletrons. 135



136 Appendix B. PseudopotentialsThe starting point is onsidering an isolated atom. An eletron in the ore regionfeels roughly a Coulomb-like potential, �Zeff=r: the e�etive harge Zeff is givenby the positive nulear harge, sreened by the presene of the other eletrons. Anhighly attrative Coulomb term V̂ implies, from the virial theoremT̂ = �12 V̂ ; (B.1)also a high positive kineti energy T̂ , whih reets a strong spatial variation of thewavefuntions. This is true both for the ore and the valene eletrons, though thevalene eletrons are far less likely to reah the neighborhood of the nuleus andthus the amplitude of their osillations is muh smaller. Moreover, the waves haveto interlae in order to give wavefuntions whih are orthogonal to eah other.Mathematially and numerially, a plane-wave-basis formalism is one of the sim-plest and most natural formalism to implement in a omputational ode for rystals.However, it is well known that a non-smooth harater of the wavefuntions in thereal spae orrespond to a large number of plane waves to desribe their Fouriertransforms. When using a plane wave representation for the wavefuntions, this isa tough inonveniene, whih results in a very high omputational e�ort. A furtherproblem omes from the fat that the energy of the ore states is of the order ofkeV, while the relevant bonding energies are in the range of some eV: a high relativepreision for total energies is needed, even if only di�erenes are of interest. Theintrodution of pseudopotentials aims at �nding a solution to these problems. Infat, in many systems there is a lear separation between valene and ore orbitals.The ore orbitals have energies far below the valene orbitals and their spatial extentis limited. In this spei� ase the ore does not reat to hanges in the hemialenvironment and does not take part in the formation of bondings. But, in order toforget about the ore eletrons, it is neessary to inorporate the e�ets due to theirpresene in an e�etive potential, namely the pseudopotential, ating on the valeneeletrons. This pseudopotential must be built in suh a way to guarantee that thesolutions of the new Shr�odinger equation have the same energy eigenvalues as thesolutions of the all-eletron problem. However, unlike the all-eletron wavefuntions,the pseudowavefuntions should be smooth and nodeless. This is the essential nu-merial onstraint when building pseudopotentials; other requirements an be added



B.1. What a pseudopotential is 137to give all the di�erent reipes for the di�erent types of pseudopotentials. In fat,this is a problem whose solution is far from unique.The ore orbitals ontribute to the Hartree and exhange-orrelation potentialfelt by the valene eletrons with a repulsive potential, whih omes from the fatthat eah valene eletron state  must be orthogonal to all the inner ore eletronstates  . We an write:  = ��X h j�i  ; (B.2)where we introdue the pseudowavefuntion �. Following Phillips and Kleinman[158℄, substituting the Eq. ( B.2 ) into the the Shr�odinger equation for the valeneeletrons, H  = E  ; (B.3)we obtain (H + VR)� = E� ; (B.4)where VR =X (E � E) h j�i  (B.5)and E is the energy of the ore state  :H   = E   : (B.6)The pseudopotential V PP an now be de�ned as the sum of the original long-rangeattrative loal potential VI, due to the Coulomb interation with the ore ions, andthe short-range repulsive potential VR just introdued, whih is a memory of thepresene of the ore states. The Eq. (B.4) is the wave equation for the pseudowave-funtion �. The resulting pseudopotential is weak and well-behaved, even inside theore radius r; this great simpli�ation is obtained at the expense of introduing anenergy-dependent, non-loal repulsive potential.We an exploit the symmetry of the problem to expand the pseudopotentialV PP (r; r0) on a set of spherial harmoni funtions: it is the non-loality whihleads to di�erent omponents V PPl for the di�erent angular momenta l. As allomponents V PPl at large r redue to the ioni Coulomb potential, �Zeff=r, gettingindependent of l, it is intuitive to write the pseudopotential as the sum of a loal



138 Appendix B. Pseudopotentialspotential V lo and a few relevant l-dependent terms whih vanish beyond r:hrjV PP jr0i = V loÆ (r� r0) + lmaxXl=0 lXm=�lY �lm (
r) ÆV PPl (r) Æ (r � r0)r2 Ylm (
r0) ; (B.7)where ÆV PPl = V PPl � V lo (B.8)and Ylm are spherial harmonis. Sine the radial omponent ÆV PPl (r) is loal, it ismore preise to all the whole pseudopotential \semi-loal", instead of non-loal.B.2 Empirial pseudopotentialsThe pseudopotentials an be translated in suitable �tting funtions, whose param-eters an be easily determined starting from reetivity or photoeletroni spetra:this is the empirial pseudopotential method (EPM), whih is by onstrution par-tiularly suited to study optial properties. The pseudopotential has always theperiodiity of the Bravais lattie. Assuming ells of volume 
, whih ontain N�atoms of type �, the loal pseudopotential expansion as a Fourier series in thereiproal spae has the form [9℄:V lo (r) =XG v�GS�GeiG�r ; (B.9)where the G-vetors are the reiproal lattie vetors,v�G = 1
 Z
 V lo� (r) e�iG�r dr (B.10)is the pseudopotential form fator for the atom � andS�G = 1N� N�Xj=1 e�iG�d�;j (B.11)is the struture fator, depending on the position d�;j of the j-th atom of type �in the primitive ell. The form fators are the �tting parameters. If we wish toinlude the e�ets of non-loality we should write further orretion terms in thereiproal spae as a sum of l-dependent omponents. In the ase of GaAs andAlAs bulk rystals, the inlusion of non-loal terms is needed to ahieve a betterdesription of high-energy states: nevertheless, we have veri�ed that only the low-est ondution bands are responsible for the strutures in the optial spetra below
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Figure B.1: Continuous atomi loal pseudopotentials v�(q) alulated following M�ader and Zunger[44℄.6 eV and therefore non-loal terms an be negleted for our purposes. The �rstatomi pseudopotentials were developed in this way more than 30 years ago. Al-though extremely easy to use, these pseudopotentials were not always adequate towell reprodue the wavefuntions and their related quantities. Moreover, it did notexist a reliable proedure to assure the transferability to di�erent rystal struturesor di�erent oordination numbers. In the last deade the request for more aurateatomi empirial pseudopotentials, to be used in the �eld of nanostrutures alula-tions, has grown. In partiular, it is no more desirable the solution to have di�erentsets of form fators for di�erent superell dimensions. Let us larify the statementusing as example the superlatties GaAs/AlAs studied in this work: the number ofG-points of the superlattie reiproal lattie, lying between two reiproal lattiepoints of the bulk rystal, grows linearly with the superlattie period p. As a on-sequene, to study large systems, we need to know the value of v�q at a dense grid



140 Appendix B. Pseudopotentialsof points q, whih de�ne the superlattie reiproal lattie GSL. To this aim, it isuseful to develop a ontinuous-spae empirial pseudopotential v� (q),v�(q) = 1
 Z
 dr eiq�r v�(r) ; (B.12)to be used for all the possible di�erent strutures based on the same onstituents,inluding of ourse the bulk rystals (see Chapter 2). That is exatly what Zungeret al. have done for di�erent semiondutor ompounds, starting from 1994 [44, 165,166, 167, 168℄.Conerning GaAs and AlAs rystals, we refer to the semi-empirial pseudopo-tential funtions proposed in Ref. [44℄. We de�ne them \semi-empirial" beausethe �tting takes into aount not only experiment, but also ab initio alulations.The proedure adopted to evaluate the funtion (B.12) onsists in the followingoperations:1. The origin of the zin-blend primitive ell is �xed in the middle of the linebetween the anion (As) and the ation (Ga or Al).2. The bulk form fators v�(G) are adjusted at a small number of reiproal lattievetors G to reprodue bulk band energies and e�etive masses. The operationis repeated at di�erent unit ell volumes 
, to gain informations on the neigh-borhood of eah point G and dispose of a �ner mesh whih will make the inter-polation less ambiguous. By inspeting the disrete form fators the algebraiform seleted for the �tting is a linear ombination of Gaussians, multiplied bya smooth funtion that allows adjustments of the small q omponents:v�(q) = 
�
 4Xi=1 ai� e�i�(q�bi�)2 h1 + f0�e���q2i : (B.13)3. At this stage the parameters of Eq. (B.13) are let free to vary independently(the original form fators may hange), to �t: (i) the experimental GaAs/AlAsvalene band o�set (0.5 eV), (ii) LDA alulated level splittings in short-periodGaAs/AlAs superlatties of various orientations, (iii) �rst-priniple LDA wave-funtions. In this way, it is possible to explore the region q < 2p3�a , where a isthe lattie onstant: small q form fators are so �tted, rather than extrapolated.Moreover, the above mentioned problem of previous empirial alulation whihyielded poor wavefuntions is �nally solved.
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� ai� bi� i�(a:u:)3 Ry (a:u:)�1 (a:u)2Al111.3 -1.32712 0 1.598190.158114 1.77453 2.108270.0601648 2.59550 0.5277450.0168167 2.93581 11.2708Ga131.4 -1.24498 0 1.527480.0366517 2.09782 0.9590820.0464357 2.01935 0.574047-0.0133385 2.93581 11.2708As (in AlAs)145.2 -1.10411 0 0.9724390.0174946 2.46793 6.53147-0.00368081 1.22845 5.506010.0921512 1.35897 1.18638As (in GaAs)145.2 -1.05821 0 0.959327-0.00217627 2.46808 6.53145-0.0434312 0.851644 2.946790.10569 1.22436 0.820922Table B.1: Atomi pseudopotential parameters in Rydberg units, and volumes 
� in atomi units.[44℄. The four rows for eah atom orrespond to the four Gaussian funtions (i = 1; 2; 3; 4) inEq. (B.13). We further need to de�ne: f0Al = 0:02, �Al = 10 (au)�1, and f0Ga = f0As = 0. Thesepseudopotentials are designed for a kineti-energy uto� of 5 Ry.



142 Appendix B. Pseudopotentials4. The As potential in GaAs and AlAs are not onstrained to be idential, i.e. theyare �tted independently, to aount for the loal-environment dependene of theatomi potential, by onsidering the loal eletroni harge. This is equivalentto say that empirial/semi-empirial pseudopotentials are not transferable todi�erent hemial environments. The pseudopotential for As oordinated by nAl atoms and (4� n) Ga atoms is given by the weighted average:vAs = n4 vAs (AlAs) + 4� n4 vAs (GaAs) : (B.14)This means that, to preserve a orret desription of interfaes in GaAs/AlAssuperlatties, an As atom bound to two Al and two Ga atoms is attributed asymmetrized pseudopotential, whih is the average of the As pseudopotentialfuntions in GaAs and AlAs environments.
5. The quality of the �nal pseudopotentials is widely tested, in the ontest ofplane-wave alulations in Ref. [44℄, in the ontest of LCBB alulations inRef. [29℄.These pseudopotentials are loal and, at this stage, do not inlude spin-orbit terms,even if in the Appendix of Ref. [44℄ it is suggested how to inlude them. Bulk andsuperlattie energy levels are provided in the same absolute energy sale, thus su-perlattie and bulk eigenvalues an be easily ompared and the valene band o�setis automatially reprodued. The di�erent q �! 0 limit values of v�(q) are thekey-points to desribe orretly the band alignment. The optimized parameters ofEq. (B.13) are given in Table B.1. The energy uto� these pseudopotentials aredesigned for is 5 Ry. At last, we should add that the ontinuous pseudopotentialspresented here are not the only ones in literature. Nevertheless, trusting the ompar-ison table in Ref. [44℄, these pseudopotentials should be the more eÆient, at leastfor a superlattie onstituted by GaAs and AlAs. Our results, both onerning thebulk and superlattie systems, on�rm the high quality of these pseudopotentials.



B.3. Ab-initio pseudopotentials 143B.3 Ab-initio pseudopotentialsB.3.1 Hamann pseudopotentialsIn a full DFT alulation, inluding expliitly both ore and valene eletrons, thevalene eletrons feel potentials due to the nulei, the ore eletrons and the othervalene eletrons. The sum of the �rst two terms gives the true ioni potential.Within a pseudopotential framework, the true ioni potentials are substituted bythe ioni pseudopotentials: the two potentials di�er in a spherial region enteredon the nulei. We an already underline a basi di�erene between this de�nitionof pseudopotentials and the semi-empirial pseudopotentials presented in the lastsetion: the semi-empirial pseudopotentials are sreened, i.e. they inlude alsothe e�ets due to the eletron-eletron interation between valene eletrons. Thisexplains, as we have already remarked, why empirial/semi-empirial pseudopoten-tials annot be transferable. In ase of ioni pseudopotentials we do not meet thisrestrition: it is pratial to have a pseudopotential, whih an be onvenient todesribe the eletroni properties in deeply di�erent hemial environments, like anexited atomi state, a moleule or a solid.The formulation of modern ab initio pseudopotentials goes beyond the Phillips-Kleinman sheme, overoming some problems arising from the imperfet normaliza-tion of the pseudowavefuntion. In fat, if the true wavefuntion  is normalized toone, then from the (B.2):1 = h�j�i � 2X h j�ih�j i+X jh j�i j2 ; (B.15)it follows that the pseudowavefuntion � has a norm only approximatively equal toone: h�j�i = 1 +X jh j�i j2 : (B.16)This is a onsequene of the inorret distribution of the valene harge between theore and the valene region and would ause serious problems in self-onsistent al-ulations. This inonveniene is eliminated in the formulation of Hamann, Shl�uterand Chiang [161℄, by imposing the onservation of the norm for the pseudowave-funtion. In the framework of this formalism, Bahelet, Hamann and Shl�uter havebuilt systematially all the atomi norm-onserving pseudopotential from H to Pu



144 Appendix B. Pseudopotentials[162℄. This is not the only way to solve the problem, another possible way leads tothe soft non-norm-onserving pseudopotentials of Vanderbilt [169℄.The onstrution of the Hamann pseudopotentials starts from an All-Eletron(AE) alulation, within density funtional theory, for the isolated atom. The goalis to build a soft potential without a singularity in the origin, nevertheless the newpotential must not hange the physial properties of the system. The proedure anbe summarized in the following steps:a) the Kohn-Sham equation for the radial part RAEnl of the atomi wavefuntionis solved self-onsistently within an all-eletron sheme:(�12 d2dr2 + l (l + 1)2r2 + V AE [n; r℄) r RAEnl (r) = �AEnl r RAEnl (r) ; (B.17)where V AE [n; r℄ = �Zr + VH [n; r℄ + V LDAx (n(r)) ; (B.18)Z is the atomi number, VH [n; r℄ is the Hartree potential and V LDAx (n(r)) isthe exhange-orrelation potential in the loal density approximation.b) The all-eletron radial wavefuntions RAEnl is modi�ed, by making it smooth andnodeless in the ore region, to obtain the radial pseudowavefuntion RPPnl . Thepseudowavefuntion RPPnl must ful�ll the pseudoatom Kohn-Sham equation,(�12 d2dr2 + l (l + 1)2r2 + V PPl [n; r℄) r RPPnl (r) = �PPnl r RPPnl (r) ; (B.19)To be more preise, the pseudowavefuntions RPPnl are built, under the on-straint to ful�ll the following requirements:(i) For the same atomi on�guration, the valene eigenvalues of the all-eletron Hamiltonian and the pseudo-Hamiltonian must be equal:�AEnl = �PPnl : (B.20)(ii) The pseudowavefuntion RPPnl (r) must oinide with RAEnl (r) outside theore region, i.e. RAEnl (r) = RPPnl (r) ; (B.21)for r beyond a uto� distane alled ore radius rl, whih depends on theangular momentum omponent l. The ore radius rl must inlude themore external node of the l-th omponent of the all-eletron wavefuntion.



B.3. Ab-initio pseudopotentials 145(iii) The integral Z R0 ���RAE;PPnl (r)���2 r2dr ; (B.22)with R > rl, must give the same value for an all-eletron wavefuntionand a pseudowavefuntion: this relation expresses the onservation of thenorm. From the Eq. (B.22) it follows, thanks to the Gauss theorem, thatthe eletrostati potential produed at distanes r > r by the pseudo-harge distribution is equal to the potential produed by the true hargedistribution. The density funtional theory is based on the onept ofharge density, thus it is fundamental to reprodue orretly the true hargedensity of the system.(iv) The logarithmi derivatives of the true wavefuntion and the pseudowave-funtion and their �rst derivatives with respet to the energy must onvergeto the same values for R > r:1RPPnl (r; �) dRPPnl (r; �)dr = 1RAEnl (r; �) dRAEnl (r; �)dr : (B.23)For a perfet pseudopotential Eq. (B.23) holds for every energy �, not onlyfor the eigenvalues �nl. This equality omes from the theory of satteringand, together with the point (iii), it is essential to guarantee the transfer-ability of the atomi pseudopotential to di�erent hemial environments.The freedom left within the onstrution rules still allows to play with theparameters to get a \soft" pseudopotential, i.e. a pseudopotential whih leadsto a low uto� energy for the plane-wave basis.) One we have obtained the pseudowavefuntion, the pseudopotential is ob-tained by the inversion of the Eq. (B.19):V PPsr;l (r) = �nl � l (l + 1)2r2 + 12rRPPnl (r) d2dr2 hrRPPnl (r)i : (B.24)For a nodeless wavefuntion the pseudopotential does not have any singular-ity, exept possibly at the origin, where it an be avoided by imposing thewavefuntion to be proportional to rl, when it is approahing the origin.d) At this stage, the pseudopotential is sreened, i.e. it ontains the Hartree andexhange-orrelation potentials due to valene eletrons. In this form, it is not
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Figure B.2: Example of Ga: the all-eletron wavefuntions ompared to the pseudowavefuntionsfor valene states: they di�er only inside the ore radius.



B.3. Ab-initio pseudopotentials 147suitable to be used in a hemial environment whih di�ers from the one inwhih it has been generated. We need to remove the sreening of the valeneeletrons. Although the exhange-orrelation energy is a non-linear funtionalof the total eletron density, in pratie the \linearization" of the ore-valeneontribution is usual and often adequate [170℄. An expliit aount of theore-valene non-linearity of Vx (non-linear ore orretion) [171℄ is sometimesneessary, in partiular if the overlap between the ore and valene density isremarkable. Anyway, whatever approximation has been hosen, the goal is tosubtrat from the pseudopotential the ontributions to the Hartree potentialand the exhange-orrelation potential due to the valene eletrons:V PPion;l (r) = V PPsr;l (r)� VH [nv; r℄� Vx [nv; r℄ : (B.25)As a onsequene of the proess of onstrution of the \bare" pseudopotential,we have a �nal result whih depends expliitly on the omponents of the angularmomentum l : V PPion (r; r0) = 1Xl=0 P̂lÆ (r � r0)V PPion;l (r) ; (B.26)where P̂l is the projetor on the l-th eigenstate of the angular momentum. Weunderline that the pseudopotential is loal in the radial variables, but non-loalas far as angular oordinates are onerned: this kind of behavior haraterizeda semi-loal pseudopotential.e) In the �nal formulation it is useful to separate a loal long-range term from thenon-loal short-range l-dependent terms:V PPion (r; r0) := V PPlo (r) + �V PPl (r; r0) = V PPlo + infXl=0 jli�V PPl hlj : (B.27)A typial hoie is to set Vlo equal to one of the non-loal omponents: the loalomponent an, in priniple, be arbitrarily hosen, but sine the summation inEq. (B.27) will need to be trunated at some value of l, the loal potential shouldbe hosen suh that it adequately reprodues the atomi sattering for all thehigher angular momentum hannels. The maximum angular momentum lmaxdepends both on the atom and on the eletroni environment in whih it lies. Infat, in the solid the atomi eletroni harge is redistributed and may be in an
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Figure B.3: Example of Ga: the ioni pseudopotential omponents for angular momenta l = 0; 1,and 2. The dashed line denotes the Coulomb potential for a point-like atomi ore.



B.3. Ab-initio pseudopotentials 149exited state if ompared to the atomi ground state. For the onstrution ofexited angular momentum omponents it is neessary to rearrange the valeneharge into exited orbitals, maybe even in a ioni on�guration. In Figs. B.3and B.2 we show an example of the appliation of the Hamann sheme: thenon-loal omponents of the pseudopotential of Ga are presented in Fig. B.3on page 148, together with the ioni Coulomb potential. In Fig. B.2 on page146 we show how the the wiggles in the valene states of Ga are eliminated,moving from the real wavefuntion to the pseudowavefuntion.The transferability and the smoothness of the pseudopotential are both stronglya�eted by the hoie of the ore radius rl. A high radius redues the inu-ene of the osillating ore states and brings to a softer pseudopotential, whihleads in its turn to a smaller energy uto� of the plane-wave basis. On theother hand, the transferability is lowered, due to the loss of physial relevantinformation in the ore region. For eah atom the appropriate uto� radiusmust be seleted as a ompromise between fast onvergene and good transfer-ability. There are pratial limits on how far rl an be dereased: it must belarger than the outermost node of the all-eletron wavefuntion; on the otherhand it must be small enough to prevent overlaps of neighboring ore regionswhen the moleule or the solid is reated. Conerning the energy uto� of theplane wave basis, ertain natural restritions our: the atomi size imposesa length sale to the problem, whih inuenes the extent of the Fourier ex-pansion needed to aurately desribe the pseudowavefuntion. Anyway, a softpseudopotential prevents from wasting omputational e�ort in unneessarilylarge expansions. The transferability depends ritially also on the lineariza-tion of the ore-valene-exhange-orrelation and, of ourse, on the hoie ofthe states to be inluded in the ore. At last, another worsening to the trans-ferability properties an ome from the transformation of the pseudopotentialfrom the semi-loal into the fully separable form. We will disuss this step ina following setion.The omparison between the logarithmi derivative in an all-eletron or pseu-dopotential alulation, as already mentioned, gives lear hints on the transfer-ability of the generated pseudopotentials. An additional quality requirement



150 Appendix B. Pseudopotentialsis the hek that the all-eletron atomi exitation or ionization energies andthe eigenvalues are lose to the energy values obtained from the pseudopoten-tial alulations and the all-eletron frozen ore alulations. Aording to thistest, a transferable pseudopotential should lead to the same auray as thefrozen-ore all-eletron alulation. Anyway, a �nal insight on the quality ofthe pseudopotential an only be given by the results of realisti alulations ondi�erent model systems (moleules or solids): the riterion is that a pseudopo-tential and an all-eletron alulation must deliver the same valene eletronistruture and the same total energy di�erenes.B.3.2 Troullier and Martins pseudopotentialsThe presriptions given in the previous setion are not suÆient to de�ne uniquely apseudopotential. It may be remarked that the smoothness of the pseudopotential hasnever been expliitly required. It has been the objetive of muh ative work tryingto determine some pratial atomi riteria for a omputational eÆient pseudopo-tential, whih reprodues the orret all-eletron behavior outside the ore region.Kerker [172℄ was the �rst to propose a pseudopotential onstrution whih fousedon the smoothness of the pseudowavefuntion. Troullier and Martins [163℄ gener-alized and improved Kerker's method, obtaining smooth pseudopotentials with arelatively high uto� radius, but still able to preserve good logarithmi derivatives.Their reipe has proved to be partiularly eÆient for systems ontaining �rst rowelements, transition metals, and rare-earth elements. The �rst row elements, forexample, ontain no p ore eletrons, thus their pseudopotential omponents withp symmetry are very strong, beause there are no inner p states to enfore the or-thogonality. Transition metals and rare-earth elements have similar problems with dand f omponents. Calulations involving atoms of the above type are partiularlydemanding and these atoms provide an important test for pseudopotential smooth-ness. The proedure of Troullier and Martins onsists in modeling inside the oreradius the radial wavefuntion in the form:RPPnl (r) = rlepl(r2) ; (B.28)



B.3. Ab-initio pseudopotentials 151where pl is a polynomial of order six in r2. The seven variational oeÆients of thepolynomial are hosen to ful�ll the seven following onditions:(i) Norm-onservation of harge within the ore radius rl, like in the Hamannreipe.(ii)-(vi) The ontinuity of the pseudopotential wavefuntion and its �rst four deriva-tives at rl, whih imposes in e�et the ontinuity of V PPsr;l (r) and its �rst twoderivatives at rl.(vii) The zero urvature of the sreened pseudopotential at the origin: V 0PPsr;l (0) = 0.The last point is the riterion to give smooth pseudopotentials. This onditionhas been aurately tested in Ref. [163℄. One the pseudowavefuntion has beende�ned, the proedure whih leads to the pseudopotential is the standard methoddesribed in the previous setion. Although there are still no absolute riteria foreÆient pseudopotentials, the reipe by Troullier and Martins has been proven todeliver exellent pseudopotentials, o�ering high transferability in ombination withfast onvergene.B.3.3 Kleinman-Bylander formulationWorking on a plane-wave representation entails performing some alulations in theposition spae and some others in the momentum spae, passing from one spae tothe other thanks to a Fourier transform. In the reiproal spae the semi-loal partof the pseudopotential is desribed by the expression:XG;G0 jk+Gi�V PPl (k+G;k+G0) hk+G0j ; (B.29)whih is ompletely non-loal.For an N -dimensional basis fGg , the semi-loal form requires the evaluation andstorage of (N2+N)=2 matrix elements hk+Gj�V PPl jk+G0i. Kleinman and Bylan-der (KB) [173℄ found out that by ompliating the expression of the pseudopotentialin real spae, it is possible to save time and memory in their manipulation in reip-roal spae. With the KB form the matrix elements of the non-loal pseudopotentialbetween two states jk+Gi and jk+G0i are expressed as the produt of two fa-tors, requiring only a number proportional to N of projetions h�V PPl �PPlm jk +Gi



152 Appendix B. Pseudopotentialsand then simple multipliations. In fat, following Kleinman and Bylander, we anrewrite in their separable form the non-loal pseudopotential omponents:�V KBl =Xl;m j�V PPl �PPlm ih�V PPl �PPlm jh�PPlm j�V PPl j�PPlm i ; (B.30)where �PPlm are the pseudoeigenfuntions of the Hamiltonian, obtained from thesemi-loal atomi pseudopotential. The Fourier transform of Eq. (B.30) is:Xlm hPG jk+Gihk+Gj�V PPl �PPlm ii hPG0 h�V PPl �PPlm jk+G0ihk+G0jih�PPlm j�V PPl j�PPlm i : (B.31)Of ourse, if we use the non-loal part of the pseudopotential, as written in expres-sion (B.30), to solve the eletroni problem of the atom, we �nd the same eigenvaluesand eigenvetors we had already found with the pseudopotential expressed in thesemi-loal form. This ourrene makes the KB pseudopotential in priniple as validas the orresponding semi-loal pseudopotential. Nevertheless, this proedure hasto be applied autiously, beause it an modify in a non-physial way the hemi-al properties of the atoms. The problem, as explained in Ref. [174℄, omes fromthe fat that the KB Hamiltonian does not respet the Wronskian theorem [175℄.Aording to the theorem, the atomi eigenfuntions are energetially ordered suhthat, for a given quantum number l, the energies inrease with the number of nodes.Sine this ondition does not hold for the KB Hamiltonian, \ghost" states. i.e. un-physial solutions, an show up in the hemially important energy range aroundthe valene eigenvalues El. There are some pratial presriptions to distinguishand eliminate the ghost states : besides applying the riterion of Gonze et al. [174℄,the logarithmi derivatives as a funtion of the energy must be aurately inspeted,omparing alulations using the all-eletron Hamiltonian, the semi-loal Hamilto-nian and the KB Hamiltonian. If a ghost state is deteted, ourring for some ~l,it may be eliminated: (i) hanging the omponent l whih is set as the loal partof the potential, (ii) varying the ore uto� radii rl of the ~l omponent or of theloal omponent. These hanges should be done in suh a way to preserve as goodas possible the transferability.



B.4. The norm-onserving pseudopotentials built to be used in this work 153B.4 The norm-onserving pseudopotentials built to be usedin this workIn this setion we want to disuss how we have applied the above explained teh-niques to reate norm-onserving pseudopotentials for Ga, As and Al atoms. Thetool used to perform the numerial alulation is the fhi98PP pakage [176℄ byFuhs and She�er. The ode allows to generate norm-onserving pseudopoten-tials adapted to DFT alulations, for all the interesting elements throughout theperiodi table. The proedure of onstrution is based on a salar-relativisti all-eletron alulation of the free atom. Both the sheme by Hamann [177℄, desribedin Setion B.3.1, and the sheme by Troullier and Martins [163℄, desribed in Se-tion B.3.2, are implemented and an be seleted by the user to generate the atomipseudopotentials. We remark one again that no experimental input is needed. Theexhange-orrelation potential an be implemented both in di�erent parameteriza-tions of the loal density approximation and in the generalized gradient approxi-mation. A partial ore density an be inluded to allow for non-linear ore-valeneexhange-orrelation. The pakage inludes some failities to test the quality of thepseudopotentials diretly on the free atom, in partiular their softness and theirtransferability, examining suitable uto� energies for plane-wave basis set, satter-ing properties, exitation energies and hemial hardness properties. Moreover, thepresene of unphysial states, in ase of Kleinman-Bylander separable pseudopoten-tials, is deteted by inspetion of the bound spetrum and by the analysis of Gonzeet al. . For further details we suggest to see the Ref. [176℄.Our ab initio pseudopotentials are generated using the method of Hamann etal. [161℄ for Ga and As atoms, while the method of Troullier and Martins is usedfor Al atoms. We have used the Kleinman-Bylander form for the pseudopotential,after having aurately veri�ed not to have ghost states. We have paid partiularattention to the hoie of the referene on�gurations (see Table B.2), to mimias losely as possible the environment in whih the atom is plaed: this plays animportant role to assure a good desription of the solid and, in partiular, the lattiemismath between GaAs and AlAs. We remind that eah atomi pseudopotentialis far from being unique and there are no �xed reipes to know a priori whih



154 Appendix B. PseudopotentialsTable B.2: Atomi on�gurations and ore radii used in generating ab initio pseudopotentials.Elements Atomi on�gurationsGa 4s1:54p0:54d0:5Al 3s2:03p3:03d0:0 s,p omponents3s0:753p1:03d0:25 d omponentAs 4s2:04p3:04d0:0Elements l rlGa 0 1.21 1.252 1.45Al 0 1.931 2.392 2.52As 0 1.152 1.60method (Hamann or Troullier-Martins), whih parameters (rl, lmax), whih atomion�gurations, et. an ensure the better pseudopotentials. Thus, we have testedmany di�erent atomi Ga, As and Al pseudopotentials, in order to hoose the moresuitable. We have also onsidered the ore size e�ets for all the 3 atoms. Atomitests have suggested that the introdution of non-linear ore orretions improvesdrastially the exitation properties in Ga and Al atoms, but do not vary signi�antlythe behavior of As energy levels in exited on�gurations. That is the reason whywe have simply applied the linear approximation to build the As pseudopotential.The 3d ore states in Ga atoms are not ompletely frozen, this fat leads to errorsof around mRy for atomi exitations. Nevertheless, we estimate that the error isstill reasonable and it is not worth introduing the d states in the valene, inreasingstrongly the heaviness of the alulations. A ruial test for the reliability of atomipseudopotentials is their use to alulate the ground state property of a bulk rystal.That is the reason why we refer to the desription of ground state alulation onGaAs and AlAs bulk materials, presented in Setion 3.3, as the �nal validation tothe quality of our pseudopotentials.
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