
UNIVERSIT�A DEGLI STUDI DI PAVIAFa
olt�a di S
ienze Matemati
he Fisi
he e NaturaliDipartimento di Fisi
a \A. Volta"
Semi-empiri
al and ab-initio
al
ulations of opti
al properties insemi
ondu
tor superlatti
esSilvana Botti

Tesi presentata per il 
onseguimento deltitolo di Dottore di Ri
er
a in Fisi
aXIV CICLO



Coordinatore del dottorato di ri
er
a in �si
apresso l'Universit�a di Pavia:Prof. S. P. Ratti

Tutore nelle attivit�a di ri
er
a:Prof. L.C. Andreani



Io vedo le teorie s
ienti�
he 
ome 
ostruzioni umane{ reti progettate da noi per 
atturare il mondo.(K. Popper)
A mio padre



4



Table of 
ontents
1 Introdu
tion and overview 72 Semi-empiri
al 
al
ulations of superlatti
e band stru
tures 152.1 The 
hoi
e of an empiri
al model . . . . . . . . . . . . . . . . . . . . 162.2 The Linear Combination of Bulk Bands method . . . . . . . . . . . . 182.3 From bulk to superlatti
e states . . . . . . . . . . . . . . . . . . . . . 232.4 Cal
ulated superlatti
e ele
troni
 levels . . . . . . . . . . . . . . . . . 313 Ab-initio 
al
ulations of superlatti
e band stru
tures 393.1 Density Fun
tional Theory . . . . . . . . . . . . . . . . . . . . . . . . 403.1.1 The Hohenberg-Kohn theorem . . . . . . . . . . . . . . . . . . 413.1.2 The Kohn-Sham s
heme . . . . . . . . . . . . . . . . . . . . . 423.1.3 The Lo
al Density Approximation . . . . . . . . . . . . . . . . 453.2 Te
hni
al aspe
ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473.2.1 Plane wave basis . . . . . . . . . . . . . . . . . . . . . . . . . 473.2.2 Sets of k-points for integration over the Brillouin zone . . . . 483.3 Results for ground-state properties . . . . . . . . . . . . . . . . . . . 493.4 Kohn-Sham eigenstates and quasi-parti
le states . . . . . . . . . . . . 523.5 Bulk band stru
ture by DFT-LDA 
al
ulations . . . . . . . . . . . . . 563.6 Superlatti
e band stru
ture by DFT-LDA 
al
ulations . . . . . . . . . 624 Semi-empiri
al 
al
ulations of opti
al properties 694.1 Semi-
lassi
al theory of interband transitions . . . . . . . . . . . . . . 724.2 Results for bulk opti
al spe
tra . . . . . . . . . . . . . . . . . . . . . 784.3 Opti
al spe
tra for GaAs/AlAs and GaAs/va
uum superlatti
es . . . 805



6 4.4 Opti
al anisotropy and ma
ros
opi
 diele
tri
 tensor . . . . . . . . . . 844.5 Cal
ulations of birefringen
e . . . . . . . . . . . . . . . . . . . . . . . 875 Ab-initio 
al
ulations of opti
al properties 935.1 Time Dependent Density Fun
tional Theory . . . . . . . . . . . . . . 965.1.1 Derivation of an expression for the diele
tri
 fun
tion . . . . . 985.1.2 RPA approximation without lo
al �eld e�e
ts . . . . . . . . . 1005.2 Lo
al �eld e�e
ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025.3 Results for the birefringen
e of GaAs/AlAs superlatti
es . . . . . . . 1035.4 E�e
ts of the long-range 
ontribution to the x
 kernel on the bulkspe
tra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1146 Summary and dis
ussion 125A Basi
 approximations 131B Pseudopotentials 135B.1 What a pseudopotential is . . . . . . . . . . . . . . . . . . . . . . . . 135B.2 Empiri
al pseudopotentials . . . . . . . . . . . . . . . . . . . . . . . . 138B.3 Ab-initio pseudopotentials . . . . . . . . . . . . . . . . . . . . . . . . 143B.3.1 Hamann pseudopotentials . . . . . . . . . . . . . . . . . . . . 143B.3.2 Troullier and Martins pseudopotentials . . . . . . . . . . . . . 150B.3.3 Kleinman-Bylander formulation . . . . . . . . . . . . . . . . . 151B.4 The norm-
onserving pseudopotentials built to be used in this work . 153Bibliography 155Ringraziamenti 166



Chapter 1
Introdu
tion and overview
A semi
ondu
tor heterostru
ture is an arti�
ial material, basi
ally obtained by epi-taxial growth and/or 
hemi
al et
hing of two or more di�erent semi
ondu
tors. Thesize redu
tion a
hieved in one, two or three dimensions in heterostru
tures at thenanos
ale level leads to ele
troni
 ground and ex
ited states widely di�erent fromthose of the bulk 
rystals, and has opened the way to a new generation of optoele
-troni
 and photoni
 devi
es.If we 
onsider the evolution of an ele
troni
 state from a bulk 
rystal to a nanos-tru
ture, essentially three phenomena o

ur. First, the band-o�sets at the interfa
esa
t as e�e
tive potential barriers, whi
h 
on�ne the 
arriers, both the ele
trons andthe holes, in one, two or three dimensions. Se
ond, for an arti�
ial periodi
 system,e.g. a superlatti
e, the super
ell is made up by joining a number N
 of primitive 
ellsof the underlying bulk latti
es. Hen
e, in the re
ipro
al spa
e N
 k-points in theBrillouin zone of the bulk are folded onto the same k-point in the smaller Brillouinzone of the nanostru
ture, and the arti�
ially superimposed potential indu
es a 
ou-pling between previously independent bulk states. Third, the arti�
ial 
ombinationof di�erent materials usually leads to a redu
tion of the originally higher symmetryof the 
onstituent bulk materials.Quantum 
on�nement and 
on�nement-indu
ed mixing a�e
t the energy and thedimensionality of ele
troni
 levels, the lowering in the 
rystal symmetry is responsi-ble for the removal of level degenera
ies. In pra
ti
e, to take advantage of all thesemodi�
ations in the ele
troni
 states, we have to 
onsider how they are re
e
ted in7



8 Chapter 1. Introdu
tion and overviewmodi�
ations of the quantities of interest. In parti
ular, the opti
al properties areof the utmost importan
e, as they lie at the basis of many new te
hnologi
al appli-
ations. Among the already well-established appli
ations we 
an 
ite the multiplequantum well (MQW) lasers [1, 2℄, the quantum 
as
ade lasers [3℄, the S
hottkybarriers [1, 2℄, the modulation-doped heterostru
tures [1, 2℄, like the high ele
tronmobility transistors (HEMT). Diele
tri
 superlatti
es are developed for their non-linear properties, whi
h indu
e e�e
ts su
h as the opti
al bistability or the nonlinearfrequen
y 
onversion [4℄. Those e�e
ts are also found in semi
ondu
tor heterostru
-tures based on GaAs, whi
h has by itself important nonlinear opti
al properties [5℄.The opti
al bistability has for instan
e been observed in a photoex
ited GaAs/AlAssuperlatti
e [6℄. In sear
h of new opti
al sour
es, in GaAs/oxidized-AlAs super-latti
es the opti
al anisotropy has been exploited to a
hieve phase mat
hing forse
ond-harmoni
 generation, the enhan
ed diele
tri
 
ontrast has produ
ed a break-through in the 
onstru
tion of Bragg re
e
tors for MQW lasers and mi
ro
avitiesand birefringent waveguides have been proposed [7℄.Let us analyze more in details the physi
al e�e
ts involved in the appli
ationsmentioned above. Interband absorption spe
tra of bulk tetrahedral semi
ondu
tors(like Sili
on, GaAs, AlAs, : : :) are dominated by two prominent features, denotedE1 and E2 [8, 9℄. The E1 peak originates from band-to-band transitions along the� � L dire
tion, where valen
e and 
ondu
tion bands are nearly parallel: this re-sults in a M1-type 
riti
al point, i.e. a saddle point in the joint density of states,whi
h also gives a strong ex
itoni
 
hara
ter to the transition. The E2 peak, in-stead, has 
ontributions from di�erent parts of the Brillouin zone, but mainly froma region 
entered around the spe
ial point (34 ; 14 ; 14) (in units of 2�=a, where a isthe latti
e 
onstant). Starting from a basi
 level of analysis, in a nanostru
ture the
on�nement of the 
arriers, as the simplisti
 exer
ise of the parti
le in a box 
antea
h, leads to a blue shift and a sharpening of the absorption peaks. In addition,removal of level degenera
ies 
an indu
e the subdivision of the transitions in groups,leading to splittings of the absorption peaks. In the past, most experimental inves-tigations have fo
used on the energy region of the fundamental gap, whi
h is easilya

essible by photolumines
en
e and photolumines
en
e ex
itation spe
tros
opiesand yields a variety of interesting physi
al phenomena related to bound ex
itoni




9states. Relatively few studies of 
on�nement e�e
ts on high-energy transitions havebeen presented. Blue shifts and splittings of the E1 and E2 transitions were mea-sured in GaAs/AlAs superlatti
es [10, 11℄. More re
ently, a quantum 
on�nementindu
ed shift of E1 and E2 was measured in Ge nanoparti
les embedded in a glassymatrix [12, 13℄. Con
erning theory, 
on�ned ele
troni
 levels 
lose to band edges,ex
itoni
 e�e
ts and the resulting opti
al properties 
an be 
al
ulated rather simplyand a

urately by the envelope-fun
tion method [14℄. The theoreti
al problem ofdetermining opti
al spe
tra of semi
ondu
tor heterostru
tures in the whole visibleregion is mu
h more 
omplex and beyond the rea
h of e�e
tive-mass methods, as itrequires a des
ription of the e�e
ts of 
on�nement and 
oupling on ele
troni
 statesin the whole Brillouin zone.Yet, there is still a remarkable e�e
t of the redu
tion of symmetry to be 
onsid-ered, whi
h obliges us to move to a deeper level of analysis of the problem. Theoriginal point group of most of the bulk semi
ondu
tors whi
h 
onstitute the studiedheterostru
tures is the 
ubi
 group of the diamond or zin
-blend stru
ture, whi
hyields an isotropi
 opti
al response of the medium. The lowering in the 
rystalsymmetry gives rise to an opti
al anisotropy in the real part of the diele
tri
 
on-stant (birefringen
e) and in the imaginary part (absorption anisotropy or di
hroism).Even at zero-frequen
y, birefringen
e 
an be large, like in nanostru
tured sili
on sur-fa
es [15℄, or of moderate amplitude, as in GaAs/AlAs superlatti
es [16℄, where italso shows a non-trivial dependen
e on the superlatti
e period. The basi
 pi
turein terms of transitions between one-ele
tron states, mainly used up to now, ignores
ontributions from many-body e�e
ts whi
h may play a 
ru
ial role, and whi
h tendto be espe
ially important when the s
ale of the system is redu
ed and the inhomo-geneity of the medium is more pronoun
ed. Self-energy and ele
tron-hole intera
tion(i.e. ex
itoni
) e�e
ts 
an have a signi�
ant 
ontribution to the absorption spe
traof even simple bulk semi
ondu
tors. The former 
orre
ts the ground state ex
hange-
orrelation potential, the latter des
ribes the variations of the ex
hange-
orrelationpotential upon ex
itation. Of 
ourse, there are also 
ontributions stemming fromvariations of the Hartree potential, in
luding the so-
alled lo
al �eld e�e
ts, whi
hexpress the fa
t that these variations re
e
t the 
harge inhomogeneity of the re-sponding material. Therefore, lo
al �eld e�e
ts 
an be of moderate importan
e,



10 Chapter 1. Introdu
tion and overview
ompared to the ex
hange-
orrelation 
ontributions, in the absorption spe
tra ofsimple bulk semi
ondu
tors, but show up in
reasingly when one 
onsiders moreinhomogeneous systems.Most of the today te
hnologi
ally interesting systems are strongly inhomoge-neous, and their potential appli
ations might even be based on their inhomogeneity- superlatti
es are one of the best examples. As a �rst 
on
lusion, we 
an nowdesignate the nearly latti
e-mat
hed GaAs/AlAs superlatti
es as the ideal proto-type systems for the understanding of arti�
ial stru
tures. Many referen
e dataare available, sin
e their opti
al properties have been thoroughly investigated bothexperimentally [10, 17, 18℄ and theoreti
ally [19, 20, 21, 22, 23, 24, 25℄. In thisthesis we will study the ele
troni
 states all over the Brillouin zone and the opti
alproperties, with a spe
ial 
are for the opti
al anisotropy, of two spe
i�
 kinds ofsystems: (GaAs)p/(AlAs)p superlatti
es and free-standing GaAs layers, whi
h aresimulated by (GaAs)p/(va
uum)p superlatti
es. Both these systems 
onsist in theperiodi
 alternation of layers of two di�erent materials (or also an empty latti
e)with an original zin
-blend stru
ture. Ea
h layer is 
omposed by the same numberp of (001) planes: 2p planes 
ompose the super
ell. An example of GaAs/AlAstetragonal super
ell is shown in Fig. 1.1 on page 11. Besides the obvious 
hoi
e ofGaAs/AlAs systems, the motivation for studying GaAs/va
uum superlatti
es is toanalyze how 
on�nement e�e
ts a
t in a system where the ele
troni
 states are truly
on�ned in GaAs layers, even at high energies. In GaAs/AlAs superlatti
es, in fa
t,the band stru
tures of the two 
onstituents far away from the fundamental bandedges are rather similar and strong banding e�e
ts o

ur in short-period stru
tures,i.e. the ele
troni
 states be
ome delo
alized along the superlatti
e. A 
omparisonbetween the two systems should therefore elu
idate the respe
tive roles of quantum
on�nement and superlatti
e band formation in determining the opti
al properties.However, free-standing GaAs �lms are not only an ideal model system, and they
an be produ
ed by 
hemi
al et
hing [26℄. Moreover GaAs/va
uum superlatti
es 
analso be a model for superlatti
es made of GaAs and a wide-gap oxide, like Al2O3 oroxidized AlAs (AlOx).GaAs/AlAs superlatti
es have been the subje
t of various theoreti
al studies.Most of the approa
hes well established for bulk band stru
ture 
al
ulations reveal
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Figure 1.1: Tetragonal super
ell for a (GaAs)2=(AlAs)2 (001) superlatti
e. Red small 
ir
lesindi
ate As atoms, blue 
ir
les and green 
ir
les indi
ate respe
tively Ga and Al atoms.



12 Chapter 1. Introdu
tion and overviewsome weaknesses, when applied to a low-dimensional system. A 
ompletely satisfa
-tory method should des
ribe a

urately, all over the Brillouin zone, both intervalley
oupling and 
on�nement e�e
ts, in systems of any s
ale, 
onstituted by few-atomto million-atom super
ells. In literature, only the ele
troni
 stru
ture of very-short-period (GaAs)p/(AlAs)p superlatti
es has been 
al
ulated from �rst prin
iples byDensity Fun
tional Theory (DFT) and norm-
onserving pseudopotentials (see Se
-tion 3.5). DFT 
al
ulations bene�t of a high degree of pre
ision, whi
h 
annot berea
hed by empiri
al 
al
ulations. Nevertheless, the 
omputation time grows rapidlywith the number p of monolayers, making the method impra
ti
al for large s
ale sys-tems. Thus, many empiri
al methods have been developed in the last de
ades tostudy large-s
ale superlatti
es (see Se
tion 2.1). While rea
hing a simpli�
ation ofthe problem, they often fail to des
ribe 
orre
tly all the physi
al e�e
ts involved.Con
erning the opti
al properties, only a few 
al
ulations of absorption spe
trafor very-small period superlatti
es exist. Moreover, very few information is knownabout the diele
tri
 properties and the anisotropy at zero frequen
y of GaAs/AlAssuperlatti
es. First, the refra
tive index has been neither measured nor 
al
ulated,and it is 
ommonly estimated from the diele
tri
 
onstants of bulk GaAs and AlAsin the framework of the e�e
tive medium approa
h [27℄. This 
lassi
al theory mayfail for small period superlatti
es, where the delo
alization of the ele
troni
 statesover the superlatti
e implies that the use of the bulk diele
tri
 
onstants is notjusti�ed anymore. In fa
t, theoreti
al 
al
ulations have shown for ultrathin (001)(GaAs)p/(AlAs)p SL's that an average medium model 
annot explain the behav-ior from p=1 to p=3 [11℄. Se
ond, the 
hange in the refra
tive index with lightpolarization { the stati
 birefringen
e { has been measured for large period (001)(GaAs)p/(AlAs)p SL's and a remarkable drop has been observed (see Fig 4.9 on page90) as the period de
reases. This behavior has been suggested to depend on lo
al�elds [16℄. Ab initio methods for ultrathin SL's [11℄, and a semi-empiri
al approa
hfor larger ones [28℄, have been applied negle
ting lo
al �eld e�e
ts and did not a
-
ount for the observed value of the birefringen
e, nor for its de
rease with de
reasingp, even qualitatively.After having de�ned the systems we are going to study, and after 
larifying thereasons for their interest and the variety of physi
al phenomena that they show, we



13want to dis
uss the obje
tives of this thesis work. We aim at attaining:(i) A detailed analysis of the ele
troni
 band stru
ture of superlatti
es; in parti
-ular a 
omprehension of how di�erent physi
al e�e
ts, i.e. 
on�nement, super-latti
e potential-indu
ed 
ouplings, lowering of 
rystal symmetry, in
uen
e theevolution from the bulk ele
troni
 states to the superlatti
e states.(ii) An insight in the advantages and disadvantages and an instru
tive 
omparisonof two powerful models for ele
troni
 
al
ulations in solids, namely the pseu-dopotential Linear Combination of Bulk Bands (LCBB) method [29℄ and theDensity Fun
tional Theory (DFT), used in the Lo
al Density Approximation(LDA), with norm-
onserving pseudopotentials and a plane wave basis set. The�rst of them is based on a semi-empiri
al parameterization of the pseudopoten-tial, whi
h involves a �tting on experimental data, the se
ond relies 
ompletelyon �rst prin
iples. Con
erning the LCBB method, we have developed a 
odebased on this method to study superlatti
e states and opti
al properties.(iii) A detailed determination of the diele
tri
 properties of superlatti
es, both inthe isotropi
 approximation and 
onsidering the anisotropy 
hara
ter of thediele
tri
 tensor for polarizations along the growth and in-plane dire
tions. Wewill fo
us on the behavior under 
on�nement of the peaks in the absorption
urves and on the anisotropy of the opti
al response, in parti
ular 
al
ulatingthe diele
tri
 tensor 
omponents and the zero-frequen
y birefringen
e. Theseproperties will be analyzed as a fun
tion of the superlatti
e period p. On
eagain, the dis
ussion will follow the two parallel roads of a semi-empiri
al anda �rst-prin
iple Time-Dependent DFT (TDDFT) approa
h to the problem.The two methods will be applied, on one hand, within the same approxima-tion, to judge the 
onsisten
y of the 
orresponding results. On the other hand,we will try to di�erentiate the 
al
ulations in order to 
ast light on all the pos-sible physi
al e�e
ts presented above. As a �rst step, we will dis
uss to whatextent 
on�nement and folding-indu
ed modi�
ations on the ele
troni
 statesare suÆ
ient in reprodu
ing experimental data. This kind of analysis will be
arried out in a semi-empiri
al independent-parti
le approa
h. Afterwards, wewill 
ompare the obtained results with totally analogous independent-transition



14 Chapter 1. Introdu
tion and overviewab initio 
al
ulations. Then, we will introdu
e lo
al �eld e�e
ts in the ab initioTDDFT 
al
ulations, to understand whether they give a relevant 
ontributionto the opti
al anisotropy, as it 
an be expe
ted intuitively. We will �nally
onje
ture, in view of the obtained results, how many-body e�e
ts 
an further
ontribute to the results. We will test two di�erent approximations (RPA andTDLDA) for the in
lusion of the ex
hange-
orrelation 
ontributions. To in-
lude quasi-parti
le and ex
itoni
 e�e
ts, within a many-body Green's fun
tionformulation is out of rea
h for present 
omputational tools, ex
ept for very-thinsuperlatti
es.(iv) An innovative investigation of the opti
al spe
tra of bulk GaAs and AlAs sys-tems. The appli
ation of an improved TDDFT model re
ently elaborated byReining et al. [30℄ and up to now only applied to Si bulk 
rystals, allows toin
lude the many-body e�e
ts in the opti
al spe
tra in a 
omputational veryeÆ
ient way. We will establish if it su

eeds in reprodu
ing, besides Si spe
tra,bulk GaAs and AlAs spe
tra as well. The 
ontinuum ex
iton e�e
t is knownto be 
onsiderably strong in this kind of systems. An appli
ation to superlat-ti
es is at the moment premature; nevertheless the quality of the results willbe dis
ussed also in view of a future appli
ation to heterostru
tures.The thesis is organized as follows. In Chapter 2 we introdu
e the LCBB semi-empiri
al te
hnique and we apply it to 
al
ulate bulk (i.e. GaAs and AlAs) andsuperlatti
e (i.e. GaAs/AlAs and GaAs/va
uum) band stru
tures. The DensityFun
tional Theory formalism for ground state 
al
ulations is des
ribed and appliedin Chapter 3. The results obtained in the two di�erent approa
hes are 
ompared atthe end of the Chapter 3. In Chapter 4 and 5 we present, respe
tively, the semi-empiri
al and ab initio 
al
ulations of the diele
tri
 properties, with a parti
ularinterest in the opti
al anisotropy. Chapter 6 
ontains the summary and the dis-
ussion of the present �ndings, also in view of extensions of this work. Finally, inAppendix A we dis
uss some basi
 approximations and in Appendix B we presenta des
ription of the semi-empiri
al and norm-
onserving ab initio pseudopotentials.



Chapter 2
Semi-empiri
al 
al
ulations ofsuperlatti
e band stru
tures
The �rst step to fa
e the tasks just presented in the introdu
tion to our work, is thesear
h for a reliable approa
h to the ele
troni
 state 
al
ulations for quantum nanos-tru
tures. Although the problem is more general, we are interested in fo
using onthe study of (GaAs)/(AlAs) and (GaAs)/(va
uum) superlatti
es, grown in the [001℄dire
tion. In the present and the following 
hapters, we will analyze two di�erent
hoi
es among the big variety of methods developed within the independent-parti
les
heme. At the end of the next 
hapter we will be able to 
ompare the band stru
-tures obtained by means of the two di�erent methods. Here we start dealing withsemi-empiri
al 
al
ulations. We will present a rapid overview of the empiri
al/semi-empiri
al methods usually adopted in literature, underlining their advantages anddisadvantages. Then, we will motivate the 
hoi
e of one of this methods, namelythe Linear Combination of Bulk Bands (LCBB) method [29, 31℄. In parti
ular, wewill explain the details of the formalism and how we have applied it to build a 
om-putational 
ode. The appli
ation of the method requires the availability of goodsemi-empiri
al pseudopotentials. The pro
edure to 
onstru
t semi-empiri
al atomi
pseudopotentials is dis
ussed in Appendix B. Finally, the 
al
ulated superlatti
eband stru
tures will be 
ompared to the experiment and to the 
onstituent bulkband stru
tures. It is espe
ially interesting to dis
uss how the bulk states evolveinto the superlatti
e ones. 15



16 Chapter 2. Semi-empiri
al 
al
ulations of superlatti
e band stru
tures2.1 The 
hoi
e of an empiri
al modelA method is 
alled empiri
al when the ele
troni
 Hamiltonian (see Appendix A),whi
h 
hara
terizes the physi
al system, depends on a set of parameters, to be �t-ted on experimental data. In this sense, we will see that it is more 
orre
t to de�nethe method we apply semi-empiri
al, be
ause the �tting pro
edure 
onsiders alsonumeri
al data 
oming from �rst-prin
iple 
al
ulations. If one aims at approa
hing
omplex large s
ale systems, �rst prin
iple parameter-free te
hniques often rea
htheir limits: these kind of 
al
ulations are not feasible, be
ause of pra
ti
al 
ompu-tational limitations in time and in memory. In these 
ases, the 
hoi
e of one amongthe many existing empiri
al or semi-empiri
al te
hniques represents a low 
omputa-tional 
ost solution to investigate, with satisfying reliability, some parti
ular aspe
tsof the problem. It must be 
lear from the beginning that, to keep reasonably lowthe number or �tting parameters, it is ne
essary to give up rea
hing a too highpre
ision in band stru
ture 
al
ulations, espe
ially far from the band gap and thehigh symmetry points. To 
ompete with the ab initio quasi-parti
le 
al
ulations anempiri
al method should involve a small 
omputational e�ort and allow to studyvery large s
ale systems.In order to develop and improve the empiri
al te
hniques, a 
onsiderable e�orthas been devoted in the last 15 years to go beyond the \standard model", i.e.the k � p envelope-fun
tion approa
h [32, 33, 14℄. The envelope fun
tion methodrepresents the highest degree of simpli�
ation of the problem: it substitutes the truemi
ros
opi
 potential and the real band stru
ture with simpler 
onstant potentialsand paraboli
 bands. In a way whi
h reminds the k �p model for a bulk 
rystal, therepresentation for the Blo
h superlatti
e states  i;q is made of bulk eigenfun
tionsin k0, nun;k0 (r) eik0�ron, (usually k0 = � = 0): i;q(r) = Xn;GSL 
(i;q)n;GSLh un;�(r) eiGSL�ri eiq�r ; (2.1)where GSL are superlatti
e re
ipro
al latti
e ve
tors and n is the bulk band index.This type of representation suggests an intuitive 
riterion to sele
t the band indi
esn to in
lude in the �nite sum in Eq. (2.1): only the bulk states not too far in energyfrom the sear
hed state  i;q are physi
ally important. While eminently su

essful indes
ribing states in wide quantum wells, this approa
h en
ounters strong limitations



2.1. The 
hoi
e of an empiri
al model 17in modeling small systems with more 
omplex geometries, like short/medium periodsuperlatti
es, wires and dots. The band stru
ture far from k0 
annot be reprodu
edin a satisfa
tory way, as it already happened in a k � p 
al
ulation for a bulk solid,unless an extremely high number of basis fun
tion are 
onsidered. The mixing e�e
tsbetween states labelled by k-points 
onne
ted by a nanostru
ture re
ipro
al ve
tor,and thus 
oupled by the mesos
opi
 periodi
ity of the superlatti
e potential, are nota

ounted for and must be introdu
ed arti�
ially. As a result, the appli
ation ofthis method is advised only if one is interested in the dispersion of a single bandedge of the heterostru
ture, whi
h originates from states of the bulk material 
omingfrom a region 
lose to the sele
ted point k0. On the other hand, ex
itoni
 e�e
tsand external �elds 
an be easily modeled to be in
luded, as an approximation, in
al
ulations. The more sophisti
ated and a

urate k � p generalizations, whi
h 
anin
lude multiband 
oupling throughout all the Brillouin zone, have been dis
ussedin many re
ent works (see for example Ref. [34, 35, 36, 37℄). A semi-quantitativedes
ription of superlatti
es has been obtained by Dandrea and Zunger [21℄ within avirtual-
rystal approximation. This model represents a further step in the dire
tionof relating the superlatti
e levels to those of their 
onstituents.The sear
h for improvements is intended to avoid the drasti
 solution of a \dire
tdiagonalization", whi
h gives a

urate results, but is, from a 
omputational point ofview, as expensive as the ab initio approa
hes. The dire
t diagonalization approa
h
omes from an antitheti
 starting point: it 
onsists in expanding the nanostru
turewave fun
tions on a large basis, usually made of plane waves or lo
alized atomi
states. The empiri
al tight-binding model [38, 39, 40, 41℄ expresses the ioni
 po-tential V (r) of the nanostru
ture as a superposition of atomi
 empiri
al potentials.The nanostru
ture wave fun
tions are expanded on a set of lo
alized atomi
 orbitals.The variational 
exibility of the basis is quite limited and the 
al
ulations usuallydo not in
lude more than the se
ond or third nearest-neighbor intera
tions. The
omputational time is fairly high for an empiri
al method: the dimension of the ba-sis s
ales as the number N of atoms of the 
ell, in its turn the diagonalization times
ales as N3, making the method impra
ti
al already for a system made of a fewthousands of atoms. A more 
exible basis is o�ered by a plane wave set, to be usedin 
onne
tion with atomi
 empiri
al pseudopotentials (EPM) [42, 20℄. Nevertheless,



18 Chapter 2. Semi-empiri
al 
al
ulations of superlatti
e band stru
turesthe 
hoi
e of a delo
alized basis set does not 
hange the limit size of 103 atoms. Theadvantage of these two methods, in 
omparison to the standard envelope fun
tionmodel, is the ability to study a system 
hara
terized by whatever 
omplex geometry,without losing symmetry information.The Linear Combination of Bulk Bands (LCBB) method, proposed some yearsago by Wang, Fran
es
hetti and Zunger [29℄ allows a gathering of the advantages ofmany di�erent methods. This approa
h has proved to be able to fa
e the problemof the ele
troni
 stru
ture all over the Brillouin zone, for a nanostru
ture made ofup to million atoms super
ells, 
hara
terized by any geometry. In fa
t, it needs asmall 
omputational expense and in
ludes naturally all the folding and 
on�nemente�e
ts. As the name of the method suggests, it 
onsists in expanding the ele
troni
wavefun
tions of the nanostru
ture as a linear 
ombination of the eigenfun
tions ofthe bulk 
onstituent materials. Unlike tight-binding or standard plane wave expan-sions, a basis of bulk states allows to pre-sele
t intuitively the physi
ally importantstates whi
h may mix in the formation of the nanostru
ture state, hen
e the dimen-sion of the basis 
an be redu
ed as mu
h as to make possible to approa
h large s
alesystems. By 
ontrast with the k�p envelope fun
tion method, o�-� states un;k 6=0eik�rare dire
tly 
onsidered, permitting a 
orre
t treatment of multiband 
on�nement-indu
ed 
ouplings within the Brillouin zone, without the need for a large basis ofk = 0 bulk states. Moreover, a te
hnique whose starting points are the bulk states isthe most suitable tool to understand how the bulk states evolve into the superlatti
eones, allowing to study further whi
h e�e
ts 
ontribute to the di�eren
es betweenthe opti
al spe
tra of the superlatti
es and their 
onstituent bulk materials. Allthese motivations have lead us to 
hoose the semi-empiri
al LCBB method.2.2 The Linear Combination of Bulk Bands methodThe LCBB method, as presented in Refs. [29, 31℄ 
an be easily applied to everykind of nanostru
ture. Although more general, from now on we restri
t the presen-tation of the formalism to (A)p/(B)p superlatti
es, made of alternating layers of twodi�erent materials 
hara
terized by an original zin
-blend stru
ture, grown in thedire
tion [001℄. In pra
ti
e, two spe
i�
 kinds of periodi
 systems have been studied:



2.2. The Linear Combination of Bulk Bands method 19(GaAs)p/(AlAs)p and (GaAs)p/(va
uum)p superlatti
es, with a superlatti
e periodp ranging from 4 to 20. We 
hoose to 
onstrain the width d = pa of the A layersto be equal to the width of B layers. In GaAs/va
uum superlatti
es a is simplythe experimental GaAs latti
e 
onstant, whereas in GaAs/AlAs superlatti
es a isthe average of the experimental latti
e 
onstants of the the almost latti
e-mat
hedGaAs and AlAs 
rystals. In fa
t, the latti
e mismat
h is so small (about 0.15%[43℄) that it 
an be negle
ted for our purposes, thus allowing to use the strain-freeformalism [31℄.A

ording to the LCBB approa
h, the superlatti
e ele
troni
 wave fun
tions areexpressed as linear 
ombinations over band indi
es n and wave ve
tors k = q+GSL 1of full-zone Blo
h eigenstates of the 
onstituent bulk materials: i;q(r) = X�=A;B Nb;NGSLXn;GSL 
(i;q)n;GSL;� u�n;q+GSL(r) ei(q+GSL)�r : (2.2)In the expression (2.2) the �rst sum runs over the two 
onstituent bulk materials,A=GaAs and B=AlAs,va
uum, the se
ond sum runs over the band indi
es n andthe super
ell re
ipro
al latti
e ve
tors GSL, belonging to the �rst Brillouin zone ofthe underlying bulk latti
e. Be
ause of the super
ell periodi
ity, the superimposedsuperlatti
e potential mixes up only bulk states labelled by k = q + GSL ve
torswhi
h di�er by a superlatti
e re
ipro
al latti
e ve
tor GSL: the number of 
oupledstates is hen
e always equal to 2p, be
ause exa
tly 2p ve
tors GSL are 
ontained inthe f

 Brillouin zone. The maximum dimension of the basis set is then given by2p multiplied by the number Nb of sele
ted bulk bands indi
es. The 
lassi�
ationof the bulk states by means of the band index n and the dispersion of the bandsas a fun
tion of k allow an intuitive sele
tion of the bands to be retained in thebasis: the physi
ally relevant states belong to energy bands 
lose in energy to thesuperlatti
e states we are interested in 
al
ulating. For example, if one is aiming atstudying the opti
al absorption in an energy range 
lose to the gap, the bulk statesto be in
luded in the basis are those 
lose to the opti
al gap. We know that, for ea
hindependent point k = q+GSL, the bulk eigenfun
tions of type � form an in�niteorthonormal set. In the ideal 
ase of an in�nite representation for the superlatti
e1From now on we will indi
ate with q a re
ipro
al spa
e ve
tor inside the tetragonal Brillouin zone of thesuperlatti
e, with k a ve
tor inside the bulk Brillouin zone, with GSL a superlatti
e re
ipro
al latti
e ve
tor whi
his 
ontained inside the �rst Brillouin zone of the underlying bulk latti
e, and with G a bulk re
ipro
al latti
e ve
tor.
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al 
al
ulations of superlatti
e band stru
tureswavefun
tions, it would be equivalent to use the bulk set of type A or B, whereasit would be an error to merge them in a unique set, whi
h would obviously yieldan over
omplete basis. Nevertheless, using a small set of bulk eigenfun
tions, it ismore 
onvenient to 
reate a mixed set of A and B eigenstates, provided that theresulting basis is orthonormalized before being used.Lo
al semi-empiri
al 
ontinuous atomi
 pseudopotentials have been pi
ked outfrom literature [44℄ to build the pseudopotential term in the one-parti
le Hamilto-nian. These pseudopotentials have been used to perform all the semi-empiri
al bandstru
ture 
al
ulations, �rst for the bulk 
onstituent materials and then for the het-erostru
tures. A detailed des
ription of the pseudopotential method is presented inAppendix B. Sin
e the adopted pseudopotentials are designed for a kineti
-energy
uto� of 5 Ry, [44℄ bulk eigenfun
tions are expanded on a plane wave basis settrun
ated at about 60 plane-waves at ea
h k-point:��n;k(r) = 1p
 XG B�n;k(G) ei(k+G)�r ; (2.3)where 
 is the bulk f

 
ell volume. This means that, as a 
onsequen
e, also thesuperlatti
e states are a linear 
ombination of the same small set of plane waves.However, the method is mu
h more powerful than a simple dire
t diagonalizationon the plane wave basis, be
ause the �rst diagonalization step 
on
erning the bulk
onstituents furnishes a set of 
onveniently weighted plane waves to fa
e the more
omplex superlatti
e problem. Instead, a standard plane wave expansion wouldrequire a mu
h larger plane wave basis, whose dimension would 
ontinue growingproportionally to the number of atoms in the super
ell. At this stage we have de
idedto negle
t the spin-orbit intera
tion, even if it is possible to in
lude it, as explainedin Ref. [44℄. In Figs. 2.2 and 2.3 we show the band stru
tures of GaAs and AlAs
al
ulated with these pseudopotentials. More details are dis
ussed in the followingse
tion.Moving �nally to the superlatti
e one-parti
le Hamiltonian, we observe that thepseudopotential term is built as a superposition of s
reened, spheri
al atomi
 lo
alpseudopotentials v�:H = ��h2r22m +X� XR2DL v� (r�R� d�) W� (R) ; (2.4)
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 dire
t latti
e (DL) ve
tor and d� the displa
ement of the atom oftype � in the bulk primitive 
ell. The index � 
an assume four di�erent values for aGaAs/AlAs superlatti
e, be
ause an As atom in the GaAs environment is 
onsidereddi�erent from an As atom in the AlAs environment. In 
ase of GaAs/va
uumsuperlatti
es only three 
onstituents are admitted: Ga, As (in GaAs environment)and empty latti
e sites. To preserve a 
orre
t des
ription of interfa
es in GaAs/AlAssuperlatti
es, an As atom bound to two Al and two Ga atoms has been attributeda symmetrized pseudopotential, whi
h is the average of the As pseudopotentialfun
tions in GaAs and AlAs environments.The weight fun
tionW� (R) sele
ts the atom basis whi
h lies on ea
h latti
e site,de�ning the geometri
al details and the symmetry of the stru
ture: in the va
uumlayers its value is zero. In the following 
al
ulations we assume ideal sharp interfa
es,whi
h are des
ribed by a step-like weight fun
tion W� (R). However, the interfa
ialroughness, whi
h is always present in real samples, 
an be easily simulated by asegregated pro�le of W� (R), as dis
ussed in Ref. [29℄. The Hamiltonian matrixelements on the bulk basis set are given byh�0; n0;G0SL + qjH j�; n;GSL + qi = XG;G0 hB�0n0;G0SL+q(G0)i�" �h22m jq+GSL +Gj2 ÆGSL;G0SL ÆG;G0 +X� v�(jGSL +G�G0SL �G0j)ei d��(GSL+G�G0SL�G0) W�(GSL �G0SL) #hB�n;GSL+q(G)i : (2.5)They depend on the Fourier transform of the pseudopotentials (i.e. a 
ontinuumform fa
tor) v� (r): Z
 dr ei(GSL+G)�r v�(r) = 
 v�(jGSL +Gj) ; (2.6)and the Fourier transform of the weight fun
tion W� (R):W�(GSL) = 1Np XR2DL W�(R) eiGSL�R ; (2.7)where Np equals the number of bulk latti
e points in the 
rystal volume.It is evident that the few dis
rete pseudopotential form fa
tors (i.e. the Fouriertransform 
oeÆ
ients of the pseudopotential v� (r), evaluated at the smallestG ve
-
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al 
al
ulations of superlatti
e band stru
turestor shells of the re
ipro
al latti
e), whi
h are suÆ
ient to 
al
ulate the bulk bandstru
ture, are no longer enough to obtain the matrix elements for the superlatti
eHamiltonian. The Fourier transform (2.6) is needed at all the superlatti
e re
ipro
allatti
e ve
tors GSL. When the superlatti
e period p grows, the superlatti
e re
ipro-
al latti
e be
omes denser and denser and, in the limit of an in�nitely large super
ell,we need to know the Fourier transform of the pseudopotential v� (x) for all the realvalues x = jG+GSLj, as a 
ontinuum fun
tion. We use the 
ontinuous-spa
e fun
-tions v� (x) proposed by M�ader and Zunger [44℄. Details on the 
onstru
tion ofthe semi-empiri
al pseudopotentials and a table of the parameters 
an be found inAppendix B. In Ref. [44℄, the empiri
al parameters of the pseudopotential fun
tionare adjusted in order to �t both the measured ele
troni
 properties of bulk GaAsand AlAs and some DFT-Lo
al Density Approximation (LDA) results for superlat-ti
es. This last requirement is the reason why we have 
alled these pseudopotential\semi-empiri
al", instead of simply \empiri
al". It has been veri�ed that the wavefun
tions of bulk and p=1-superlatti
e systems 
al
ulated with these pseudopoten-tials are 
lose to those obtained in rigorous �rst prin
iples LDA 
al
ulations [44℄.These pseudopotentials are adjusted to reprodu
e the experimental GaAs/AlAs va-len
e band o�set (0.50 eV). As bulk and superlatti
e energy levels are provided inthe same absolute energy s
ale, their eigenvalues 
an be 
ompared dire
tly. TheFourier transform of the weight fun
tion W� 
an be 
al
ulated analyti
ally in the
ase of abrupt interfa
es. Its expression reveals a proportionality to the inverse ofthe superlatti
e period p [45℄:W�(GSL) = 14p pXl=1 2 ei(l�1)�jp � = Ga, As (in GaAs) ; (2.8)W�(GSL) = 14p 2pXl=p+1 2 ei(l�1)�jp � = Al,As (in AlAs) ; (2.9)W�(GSL) = 0 � = empty latti
e site ; (2.10)where GSL = � + 2�pa (0; 0; j) j 2 (�p; p℄ : (2.11)As a result, the 
oupling between bulk wavefun
tions 
oming from k-points in thef

 Brillouin zone 
onne
ted by a superlatti
e ve
tor GSL be
omes less relevant asthe superlatti
e period p grows. Moreover, a di�erent behavior for even or odd p is
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ted.2.3 From bulk to superlatti
e statesThe �rst step to study the superlatti
e band stru
tures by the LCBB method is the
al
ulation of the bulk energy levels and eigenfun
tions all over the Brillouin zone.The dispersions of the energy levels along the high symmetry dire
tions in the f

Brillouin zone, for GaAs and AlAs 
rystals, are shown respe
tively in Figs. 2.2 and2.3. The energy zero is �xed at the top of the valen
e band of GaAs, for both GaAsand AlAs band stru
tures. This 
hoi
e is meant to emphasize the advantages o�eredby the semi-empiri
al pseudopotentials parametrized in Ref. [44℄: the ele
troni
energies extra
ted by the diagonalization of the Hamiltonian (2.5) lie on an absoluteenergy s
ale, thus the energy levels of GaAs and AlAs 
an be dire
tly 
omparedand the di�eren
e between the highest o

upied levels of the two materials at �gives the 0.5 eV valen
e band o�set without further adjustments. The �t of s-like
ondu
tion-band edges at the high symmetry points �, X, L is ex
ellent, espe
iallyin the 
ase of GaAs. Yet, we will noti
e that the error remains relevant, even 0.7eV with respe
t to the experiment for the p-like GaAs �15
 (see Tables 3.2 and3.3). The numeri
 values of the energy levels at the high symmetry points will befurther dis
ussed in the 
omparative tables mentioned above, after the presentationof the analogous ab initio band stru
ture 
al
ulations in Se
tion 3.5. It is worthremembering that the semi-empiri
al pseudopotential implemented here is lo
al,whereas the norm-
onserving pseudopotential a

ounts for non-lo
al 
ontributions.Hen
e it is expe
ted that the quality of �rst prin
iple band stru
ture is higher.Starting from a bulk basis set to expand the superlatti
e wavefun
tions obligesto think about the way in whi
h the bulk states 
ouple to evolve to the superlatti
estates. The 
ubi
 symmetry of the bulk latti
es is redu
ed when the superlatti
e isbuilt and the growth dire
tion z is no longer equivalent to the orthogonal in-planedire
tions x and y. The ideal stru
ture for a latti
e-mat
hed system with abruptinterfa
es is a simple tetragonal Bravais latti
e, with a super
ell de�ned by the basisve
tors (1; 1; 0)a=2, (�1; 1; 0) a=2, (0; 0; 1) pa, where a is the bulk latti
e 
onstant.The re
ipro
al latti
e is also simple tetragonal, with basis ve
tors (1; 1; 0) (2�)=a,
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Figure 2.1: Brillouin zone for simple tetragonal (GaAs)p=(AlAs)p and (GaAs)p=(va
uum)p (001)superlatti
es, in
luded in bulk 
onventional 
ubi
 
ell. The �gure shows high symmetry pointspositions.(�1; 1; 0) (2�)=a and (0; 0; 1) (2�)=(pa). The �rst Brillouin zone is shown in Fig. 2.1.Superlatti
e high symmetry points are distinguished from their bulk 
ounterpartsby putting a bar over the symbol. An additional symmetry point �L is de�ned asfollows: �L = �X if p is even, �L = �R if p is odd. The most important zin
-blendk-points are folded onto superlatti
e points as follows:�;(jpXz)j=�p+1;p �! �� ;Xy;(jpXz)j=�p+1;p �! �M ;L111;(jpXz)j=�p+1;p �! �L : (2.12)In the 
ase of a 
ommon anion stru
ture like (GaAs)p=(AlAs)p the point group isD2d,otherwise it is C2v: the latter is the 
ase of (GaAs)p=(va
uum)p superlatti
es [46℄. InFig. 2.1 we show the tetragonal Brillouin zone and the high-symmetry-points. Firstof all, we 
onsider the 
ase of GaAs/AlAs superlatti
es, where two di�erent bulkmaterials 
onstitute the alternating layers. We 
an observe that GaAs and AlAsband stru
tures are very similar, thus we do expe
t to still be able to re
ognize
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Figure 2.2: Bulk band stru
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rystal along the high symmetry dire
tions, obtainedby the semi-empiri
al pseudopotentials of Ref. [44℄. The energy zero is taken at the valen
e bandmaximum of bulk GaAs.
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al 
al
ulations of superlatti
e band stru
turesin the superlatti
e band dispersion the 
hara
teristi
 features present in the bulkdispersions. However, 
omparing dire
tly the GaAs/AlAs band dispersion, showne.g. in Fig. 2.6, with the bulk band stru
tures in Figs. 2.2 and 2.3 is misleadingand 
annot reveal these expe
ted similarities. Before being instru
tively 
ompared,the two band stru
ture must be referred to the same Brillouin zone. The tetragonalsuper
ell 
ontains 2p bulk f

 Wigner-Seitz 
ells, as a 
onsequen
e, in the re
ipro
alspa
e the tetragonal Brillouin zone is 
ontained in the bulk o
tahedron Brillouinzone (see Fig. 2.1). The bulk states outside the superlatti
e tetragonal Brillouinzone 
an be folded into it, by adding tetragonal re
ipro
al latti
e ve
tors. Theresult is a 2p times denser band dispersion along the tetragonal symmetry dire
-tions. The (GaAs)2p band stru
ture showed, for p=10, in Fig. 2.4 is 
ompletelyequivalent to the more usual pi
ture in Fig. 2.2. We remember that in the bulk f


rystal the dire
tions [001℄ and [100℄ are equivalent, hen
e the bulk band dispersionis the same along the ��- �M and ��- �Z lines. Now, if we 
ompare the (GaAs)20 bandstru
ture in the tetragonal Brillouin zone with the (GaAs)10/(AlAs)10 superlatti
eband stru
ture in Fig. 2.6, we are stru
k by their similarity. However, they are notequal, be
ause beside the 
onsequen
es of folding, also 
oupling e�e
ts o

ur whena superlatti
e is built. Starting from a simple perturbation pi
ture, when the super-latti
e potential is swit
hed on, it 
ouples the previously independent bulk bands,relative to the same superlatti
e point q, but 
oming from non-equivalent pointsq+GSL in the bigger f

 Brillouin zone. The e�e
t is an overall modi�
ation of theenergy levels. In parti
ular, sin
e the superlatti
e potential has a lower symmetry,it 
an remove level degenera
ies. It is time to observe that there are some slight,but relevant, di�eren
es in the bulk band stru
tures of GaAs and AlAs: they di�erwith regard to the �rst 
ondu
tion band. The 
ondu
tion minimum of GaAs is in�, the minimum of AlAs is in X instead. Thanks to the absolute energy s
ale, we
an 
ompare dire
tly the distan
e in energy of the two edges, whi
h measures only0.2 eV. Moreover, we know that the bulk k-points � and X 
an be 
onne
ted bya superlatti
e re
ipro
al latti
e ve
tor GSL. Starting again from the perturbationtheory pi
ture, we 
an easily see that the bulk GaAs eigenfun
tions in � 
an bestrongly 
oupled to the AlAs eigenfun
tions in X. This e�e
t is known in literatureas �-X 
oupling and has remarkable 
onsequen
es on the properties of the minimum
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Figure 2.3: Bulk band stru
ture of AlAs along the high symmetry dire
tions, obtained by thesemi-empiri
al pseudopotentials of Ref. [44℄. The energy zero is always taken at the valen
e bandmaximum of bulk GaAs, hen
e the valen
e band o�set between GaAs and AlAs is 0.5 eV.
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ture of a (GaAs)20, i.e. p=10, obtained by folding the GaAs bandsin Fig. 2.2 along the high symmetry dire
tions of the tetragonal Brillouin zone. The energy zerois taken at the valen
e band maximum of bulk GaAs. The dotted top valen
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ondu
tion state in �� at di�erent superlatti
e sizes [45, 47, 48℄. The 
oupling be-tween ��(�1
) and ��(X1
;3
) states, i.e. the lowest superlatti
e 
ondu
tion states at��, whi
h 
ome respe
tively from � and X band-edge states of the 
onstituent bulkmaterials (see the state labels in Figs. 2.2 and 2.3), leads to a re
ipro
al repulsionbetween these two levels. Sin
e all zin
-blend X states lie higher in energy than theGaAs � 
ondu
tion minimum, this symmetry 
oupling pushes down the ��(�1
) state,
ontrasting the upward shift due to 
on�nement. This 
ompetition between poten-tial symmetry and kineti
 energy e�e
ts results in a non-monotoni
 �� (�1
) =�� (X1
)splitting for small p. For large periods, symmetry indu
ed repulsions rapidly attenu-ate, as the weight fun
tion W� be
omes smaller, and 
on�nement e�e
ts dominate,even though they also de
rease as the well width grows. All this determines thetransition form a pseudo-dire
t (i.e. �� (X1
) is the 
ondu
tion minimum) to a dire
t(i.e. �� (�1
) is the 
ondu
tion minimum) gap at a superlatti
e period p = 11 � 1[49℄.We have also determined (see the table in Fig. 2.5) the ele
tron e�e
tive massesm� from the de�nition: E(k)� E0 = �h2 jk� k0j22m� ; (2.13)where E0 is the energy of the band extreme at k0 and k must not be too far fromk0, in order to validate the paraboli
 approximation. The quality of the obtainede�e
tive masses is parti
ularly important, in view of des
ribing 
orre
tly anotherimportant e�e
t, besides the mixing e�e
ts: the 
arrier 
on�nement. We give inFig. 2.5 a s
hemati
 image of the 
on�nement of an ele
tron in a multilayered stru
-ture. We 
onsider an ele
tron in a 
ondu
tion band (but the same 
onsiderationsare valid for a hole in a valen
e band) in a GaAs/AlAs superlatti
e, lying in a statewhi
h 
omes from a bulk band edge state: it 
an be represented by a parti
le ofmass m� whi
h feels a re
tangular potential, given by the level alignment of the bulkenergy bands along the growth dire
tion z (see the s
hemati
 pi
ture in Fig. 2.5).This 
orresponds to nothing more than the simple quantum me
hani
 exer
ise of aparti
le in a periodi
 repetition of boxes. The AlAs layers a
t as barriers for the
arriers (both ele
trons in 
ondu
tion band and holes in valen
e band), 
on�ned inthe wells made of GaAs. The result is a shift of both the valen
e and the 
ondu
tionenergy levels, whi
h makes the gap wider. The e�e
tive mass values are related to



30 Chapter 2. Semi-empiri
al 
al
ulations of superlatti
e band stru
tures
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∆
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GaAs AlAsEgap (eV) 1.51 3.03m��
=m0 0.10 0.18m��v1=m0 0.44 0.46m��v2=m0 0.10 0.17m�X=m0 2.0 1.0�Ev(�) (eV) 0.51��X (eV) 0.20�E
(�) (eV) 1.01�E
(X) (eV) 0.31Figure 2.5: Condu
tion and valen
e band edge pro�les in the GaAs/AlAs superlatti
e. Both �and X minima are shown.
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urvature of the bands: the semi-empiri
al pseudopotentials give satisfa
torye�e
tive masses if 
ompared to experiments, as dis
ussed in Ref. [44℄.Con
erning GaAs/va
uum superlatti
es, the same 
onsiderations are valid, ex-
ept for the fa
t that there are no AlAs states and thus only GaAs states 
an mixwith ea
h other. For the va
uum barriers are ideally in�nite in height, 
on�nemente�e
ts are signi�
antly stronger and, a

ordingly, the band gaps are wider than inGaAs/AlAs systems. If we now 
ompare the GaAs band stru
ture in the tetragonalBrillouin zone with the GaAs/va
uum superlatti
e band stru
ture in Fig. 2.7, theystill show similar dispersions. However, as the GaAs/va
uum superlatti
e has onlyhalf the number of ele
trons if 
ompared to the bulk GaAs, also the superlatti
eband stru
ture has only half the number of bulk bands.2.4 Cal
ulated superlatti
e ele
troni
 levelsFinally, we show the results of the appli
ation of the method LCBB to the single-parti
le band stru
tures of (001) (GaAs)p/(AlAs)p and (GaAs)p/(va
uum)p super-latti
es. In pra
ti
e, the period d = pa has been varied from 4a to 20a. We do not
onsider smaller super
ells be
ause the superlatti
e ele
troni
 states di�er more andmore from bulk states while the layer width de
reases, making the expansion on thebulk states less reliable.In the 
ase of a GaAs/va
uum superlatti
e we de
ide to in
lude the 4 valen
ebands and the 4 lowest 
ondu
tion bands in the basis set. In the 
ase of a GaAs/AlAssuperlatti
e the roughest sele
tion is to take both GaAs and AlAs bulk states at ea
hmixed k and n, orthonormalizing at the end the basis set obtained. As GaAs andAlAs band stru
tures are very similar ex
ept for the lowest 
ondu
tion band (seeagain Figs. 2.2 and 2.3 and details of 
al
ulation below), we have veri�ed that it isenough to in
lude only GaAs states for n from 1 to 8 together with the 5th band ofAlAs (i.e. the lowest 
ondu
tion band). The resulting set must be orthonormalized.It 
an easily be seen that the �nal dimension of the basis is always small (40� 9 forthe largest super
ell). When a suÆ
iently large number of bulk states is used as abasis set for the LCBB method, the results must 
onverge to those obtained witha dire
t diagonalization of the Hamiltonian for the 
orresponding number of plane
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tureswaves. A 
omparison of LCBB results with the 
onventional super
ell approa
h waspresented in Ref. [29℄. Here we have performed a 
onvergen
e test, whi
h 
onsistsin 
al
ulating the energy levels with four di�erent bulk basis sets of in
reasing size.Sele
ted results are shown in Tab. 2.1 for (GaAs)10/(AlAs)10 and (GaAs)6/(AlAs)6superlatti
es. As far as valen
e states are 
on
erned, dependen
e of the energy levelson the basis set is below 10�3 eV; for the lowest 
ondu
tion levels the dependen
eon the basis set is generally below 0.05 eV, and falls below 10�2 eV when the 5thband of AlAs is in
luded in the basis. The results of Tab.2.1 justify the use of basis3), namely n = 1 to 8 for GaAs and n = 5 for AlAs.Table 2.1: Comparison of energy levels (in eV) at the symmetry points for (GaAs)n/(AlAs)nsuperlatti
es with period n = 6 and n = 10. We show highest valen
e levels and lowest 
ondu
tionlevels: the energy zero is taken at the valen
e band maximum. Four di�erent 
hoi
es are 
onsideredfor the basis set: 1) �ve GaAs bands for n from 1 to 5, no AlAs bands; 2) eight GaAs bands for nfrom 1 to 8, no AlAs bands; 3) eight GaAs bands for n from 1 to 8, the 5th band of AlAs; 4) eightGaAs bands for n from 1 to 8, four AlAs bands for n from 5 to 8.basis valen
e band maximum 
ondu
tion band minimum�� �Z �R �M �X �� �Z �R �M �Xn=101) 0.0000 -0.0004 -0.8992 -2.1127 -0.8992 1.8318 1.8303 2.0069 1.9048 2.00632) 0.0000 -0.0004 -0.8990 -2.1129 -0.8990 1.8173 1.8190 2.0057 1.9014 2.00493) 0.0000 -0.0004 -0.8990 -2.1131 -0.8990 1.7949 1.8008 1.9911 1.8588 1.98814) 0.0000 -0.0003 -0.8985 -2.1130 -0.8985 1.7884 1.7957 1.9904 1.8590 1.9874n=61) 0.0000 -0.0118 -0.8488 -2.0968 -0.8489 1.9766 1.9940 2.1730 1.9961 2.15612) 0.0000 -0.0115 -0.8481 -2.0970 -0.8482 1.9526 1.9567 2.1694 1.9940 2.15353) 0.0000 -0.0115 -0.8481 -2.0973 -0.8482 1.9062 1.9109 2.1451 1.9618 2.10534) 0.0000 -0.0113 -0.8468 -2.0967 -0.8468 1.9042 1.9098 2.1440 1.9626 2.1043In Figs. 2.6 and 2.7 we show the superlatti
e energy bands for p=10: the ele
-tron energy levels are plotted along the highest symmetry lines in the tetragonalBrillouin zone. All trends in the superlatti
e states obtained by LCBB method wereshown to be reprodu
ed [29℄, with a surprising a

ura
y (10-20 meV) and a small



2.4. Cal
ulated superlatti
e ele
troni
 levels 33

-12

-10

-8

-6

-4

-2

0

2

4

6

8

Figure 2.6: Band stru
ture of a (GaAs)10=(AlAs)10 (001) superlatti
e along the high symmetrydire
tions. The length of the ��� �Z line is multiplied by ten for 
larity. The energy zero is takenat the bulk GaAs valen
e band maximum.
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omputational e�ort, down to thin superlatti
es and up to large periods. Sin
e 2pk-points in the f

 Brillouin zone are always folded onto the same point q in thesmaller tetragonal Brillouin zone, the number of o

upied superlatti
e bands is 2ptimes the number of bulk bands for GaAs/AlAs, p times the number of bulk bandsfor GaAs/va
uum superlatti
es. The dispersion along the dire
tion ��- �M is similarto the dispersion along the dire
tion �-X in the bulk, while the other two dire
tions��- �R and ��- �X have no 
ounterpart in the band stru
tures of Figs. 2.2 and 2.3. InGaAs/AlAs, the dispersion along the growth dire
tion ��- �Z is mu
h smaller than inthe other dire
tions, as expe
ted for superlatti
e minibands; in GaAs/va
uum thebands along ��- �Z are 
at as tunneling through the va
uum has a negligible e�e
t.We have dis
ussed how the main di�eren
es in the superlatti
e band stru
tures
ompared to the bulk (
ompare again to Fig. 2.4) 
an be interpreted in terms ofzone folding and quantum 
on�nement e�e
ts; it is also interesting to 
ompare theband stru
tures of the two superlatti
es. The superlatti
e gaps are larger than thebulk gaps: in parti
ular the GaAs/va
uum gaps are larger than the GaAs/AlAsones, as a result of a stronger 
on�nement; moreover the superlatti
e band gapwidths in
rease as the superlatti
e period de
reases. The lowering in the 
rystalsymmetry is responsible for the removal of level degenera
ies: as an example in theGaAs/AlAs D2d superlatti
e the threefold degenerate valen
e states at � (spin-orbitis negle
ted) are split in a twofold-degenerate and a non-degenerate state, while inthe GaAs/va
uum C2v superlatti
es the degenera
y is 
ompletely removed.In GaAs/va
uum bands we 
learly see the appearan
e of states lying in the for-bidden energy gaps. The lowest one lies in the gap from -10 to -6 eV, while two otherones lie in the opti
al gap from 0 to about 2 eV. A fourth state 
an be re
ognized at-5 eV around the point �M , while in other regions of the Brillouin zone it resonateswith the energy bands. Indeed, four surfa
e states or resonan
es are expe
ted fromthe presen
e of two dangling bonds at the two interfa
es of ea
h GaAs layers. We
an identify the surfa
e states by studying the behavior of the probability j j2 to�nd an ele
tron along the growth dire
tion z, averaged over the in-plane x; y 
o-ordinates. Taking as an example the 
ondu
tion miniband states at �, where thepotential pro�le is 
hara
terized by 0.5 eV deep wells in GaAs layers, we observe(see Fig. 2.8) that an ele
tron in a surfa
e state (j = 39 in the exempli�ed 
ase)
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Figure 2.7: Band stru
ture of a (GaAs)10= (va
uum)10 (001) superlatti
e along the high symmetrydire
tions. The energy zero is taken at the bulk GaAs valen
e band maximum. The uppermosto

upied band is number 40 (dotted).
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-10 -8 -6 -4 -2 0 2 4 6 8 10Figure 2.8: Planar averaged probability along the growth dire
tion z to �nd an ele
tron at � inthe 36th and the 39th band of a (GaAs)10=(va
uum)10 (001) superlatti
e.has a high probability to be lo
alized on the surfa
e and a de
aying probability toenter the GaAs layer; on the other hand an ele
tron in a bulk state (j = 36 in the�gure) has an os
illating probability to be found in the GaAs layers. Both statesare obviously evanes
ent in va
uum. From the position of the uppermost o

upiedband (j = 40) it follows that GaAs/va
uum superlatti
es have a metalli
 behavior:this is an artifa
t of the model, as our aim is to simulate insulating multilayers madeof GaAs and a wide-gap oxide or H-saturated free standing �lms. When 
al
ulatingopti
al spe
tra, we will get rid of the problem by ex
luding surfa
e states as initialor �nal states in interband transitions. This simulates the formation of interfa
e
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ts in a GaAs/oxide superlatti
e, whi
h would saturate the danglingbonds. The surfa
e resonan
e 
annot be easily eliminated, but it produ
es smalle�e
ts on the spe
tra, sin
e it lies deep in the valen
e band.In this 
hapter we have dis
ussed the LCBB approa
h to study the superlatti
eband stru
tures. This approa
h, whi
h expands the ele
troni
 states of the superlat-ti
e in the basis of bulk states, 
al
ulated by semi-empiri
al pseudopotentials, is foundto be adequate and pra
ti
al for superlatti
es 
hara
terized by medium to intermedi-ate periods. It has revealed to be parti
ularly suitable for 
al
ulating how the bandstru
tures of the bulk materials are modi�ed when an arti�
ial 
on�ning potential isapplied. We have written a 
omputational 
ode to 
al
ulate the ele
troni
 states insuperlatti
es. We have applied the 
ode to study the evolution of a bulk state into asuperlatti
e state, gaining a 
lear insight on the role played by the 
on�nement, thebulk states-
oupling and the redu
tion of the symmetry, all involved in the formationof a superlatti
e. The superlatti
e gaps result larger: in parti
ular the GaAs/va
uumgaps are larger than the GaAs/AlAs ones. Moreover, the superlatti
e gaps be
omelarger when the 
on�nement in
reases, as a 
onsequen
e of the size redu
tion. Thelowering in the 
rystal symmetry and the mixing of bulk states indu
e a modi�
ationof the energy levels and remove level degenera
ies.
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Chapter 3
Ab-initio 
al
ulations ofsuperlatti
e band stru
tures
In this 
hapter we present our se
ond 
hoi
e for band stru
ture 
al
ulations of bulkand nanostru
ture semi
ondu
tor systems. We move from the semi-empiri
al ap-proa
h to a well-known �rst prin
iple theory: the Density Fun
tional Theory (DFT).If 
ompared to the LCBB method presented in the previous 
hapter, the �rst strik-ing di�eren
e in the ab initio DFT approa
h is the total absen
e of experimentalinputs. Within a pseudopotential approa
h, starting from the mere knowledge of theatomi
 numbers, atomi
 pseudopotentials 
an be �tted to 
al
ulations for the iso-lated atoms. Next, an hypothesis on the geometri
 stru
ture of the system is all weneed to build up the Hamiltonian operator. The most stable stru
ture 
an be foundamong all the di�erent hypothesized stru
tures, by sear
hing for the minimum of the
al
ulated total energy. It is evident that the development of ab initio te
hniques hasgiven a mu
h stronger predi
tive 
hara
ter to the theory of ele
troni
 properties inthe matter. Details on the pro
edure we have followed to 
onstru
t norm-
onservingab initio pseudopotentials 
an be found in Appendix B. In the following se
tions,at �rst, we will present the fundamentals of the Density Fun
tional Theory. Theyare intended to be a pra
ti
al guide to a

ompany the immediately su

essive ex-position of our results, namely the ele
troni
 ground state properties and the bandstru
tures of bulk (i.e. GaAs and AlAs) and superlatti
e (i.e. GaAs/AlAs) systems.We have analyzed the stru
tural properties and the ele
troni
 band stru
tures of39
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e band stru
turesGaAs and AlAs 
rystals. Results in agreement with both the experiment and anal-ogous 
al
ulations existing in literature are a reassuring proof about the quality ofthe norm-
onserving pseudopotentials we have built. In addition, a good bulk banddispersion is promising 
on
erning the quality of further 
al
ulations of the opti
alresponse. However, we are essentially interested in (GaAs)p=(AlAs)p superlatti
es.For superlatti
es with a very short period, the expansion over bulk states be
omesunreliable (unless using a very large basis) and LCBB 
al
ulations have not beenpushed to periods p smaller than 4. Some results for the band stru
ture of small tomedium size (1 � p � 8) systems will be presented in the last se
tion. Analogous abinitio 
al
ulations are available in literature only for the smallest periods p. Thus,we will fo
us on the 
omparison of the DFT band stru
ture for the superlatti
eperiod p=8 to the 
orresponding semi-empiri
al band stru
ture.We will adopt atomi
 units, as it is usually done in literature: �h = e2 = me = 1.The spin and spa
e 
oordinates are abbreviated by x � (r; �).3.1 Density Fun
tional TheoryThe Density Fun
tional Theory (DFT), in the Kohn-Sham formalism, provides apowerful 
omputational s
heme, whi
h allows to determine exa
tly the ground-stateproperties even of 
omplex systems of intera
ting parti
les, simply solving a single-parti
le-like equation. Let us 
onsider a system made of N fermions (let us say ele
-trons), intera
ting with ea
h other via the Coulomb potential v (ri; rj) = 1= jri � rjj.The system experien
es an external potential w(r), whi
h is supposed at the mo-ment to be time-independent. In the spe
i�
 
ase of ele
trons in an in�nite periodi
solid, this external potential is due to the Coulomb intera
tion between ele
tronsand ion 
ores, �xed on the latti
e sites. The Hamiltonian operatorH = T +W + V= NXi=1 ��12r2ri + w (ri)�+ 12 NXi 6=j v (ri; rj) (3.1)is the main ingredient in the time-dependent S
hr�odinger equation, whi
h determinesthe time evolution of the system:H (x1;x2; : : : ;xN)	 (x1;x2; : : : ;xN ; t) = i�	(x1;x2; : : : ;xN ; t)�t : (3.2)
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tional Theory 41The stationary states are the eigenstates of the time-independent S
hr�odinger equa-tion: H (x1;x2; : : : ;xN ) (x1;x2; : : : ;xN) = E (x1;x2; : : : ;xN) : (3.3)An analyti
al solution of the Eq. (3.3) is not feasible, ex
ept for some extremelysimple model systems. Among the variety of possible approa
hes to ta
kle theproblem, Thomas and Fermi [50, 51℄ were the �rst to designate the 
harge density� (r), instead of the many-body wavefun
tion, as the basi
 quantity to des
ribethe ground state properties of the system. The advantage is evident: the ele
trondensity, � (r) = N Z dx2 : : : Z dxN � (r;x2; : : : ;xN) (r;x2; : : : ;xN) ; (3.4)is mu
h easier to manage: it redu
es the degrees of freedom from 3N to 3 and it isa measurable physi
al quantity.3.1.1 The Hohenberg-Kohn theoremThe formal bases of DFT are the theorems formulated in 1964 by Hohenberg andKohn [52℄. The original proof is valid for a non-degenerate ground state and aw-representable parti
le density, i.e. the ground state density belongs to a systemwhi
h undergoes an external lo
al potential w. For the proofs of the theoremsand their generalization (to, e.g., degenerate ground states, bosons, non-adiabati
systems, magneti
 systems, fully relativisti
 systems, super
ondu
ting systems, N -representation of the parti
le density, et
. : : :) we suggest to see Ref. [53℄. Here wepresent the physi
al 
ontents of the original theorems.1st HK Theorem: Let us 
onsider a system of N ele
trons, des
ribed by theHamiltonian: H = NXi=1 ��12r2ri + w (ri)�+ 12 NXi 6=j v (ri; rj) : (3.5)The ele
trons are thus subje
ted to an external potential w (r) and the groundstate 
harge density is �0(r). If we substitute the potential w0 (r) for the po-tential w (r) in 3.5 and we observe that the new ele
tron density �00(r), relativeto the ground state, is equal to �0(r), then w (r) and w0 (r) 
an only di�er by
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e band stru
turesa 
onstant: w0 (r) = w (r) + 
onst : (3.6)2nd HK Theorem: Let us de�ne the energy fun
tional of the density E [�℄ in theform E [�℄ = hN j � 12r2ri + 12 NXi 6=j v (ri; rj) jNi+ Z w (r) � (r) dr= F [�℄ + Z w (r) � (r) dr ; (3.7)where F is a universal fun
tional of the density. On
e the external potentialw (r) has been �xed, the energy fun
tional E [�℄ has its minimum, the groundstate energy E0, at the physi
al ground state density �0 (r):E0 = E [�0℄ : (3.8)The �rst theorem states that there is a bije
tive relation between the externalpotential w (r) (to within a 
onstant) and the ground state density � (r): this impliesthat the Hamiltonian is 
ompletely des
ribed by knowing the ground state density,thus all the ground state properties of the N-ele
trons system (e.g. the total energy)are fun
tionals of � (r). The Hohenberg-Kohn (HK) theorems have the limitedpurpose to prove that a universal fun
tional of the ele
tron density exists, theydo not derive its a
tual expression. A dire
t minimization of the fun
tional (3.7)is usually not appli
able, be
ause no good expression for the kineti
 energy as afun
tional of � is known, ex
ept for simple metals. The Kohn-Sham (KS) s
heme,a reformulation of the theory based on the KS orbitals instead of the mere density,is the starting-point of most of the a
tual 
al
ulations.3.1.2 The Kohn-Sham s
hemeThe variational s
heme proposed by Kohn and Sham [54℄ is an useful tool to 
larifythe physi
al 
ontents of the theory. Let us 
onsider the system of N intera
tingele
trons, des
ribed by the Hamiltonian (3.1):H = T +W + V :



3.1. Density Fun
tional Theory 43We introdu
e now an auxiliary system 
omposed by N non-intera
ting parti
les inan external potential W 0, des
ribed by the one-parti
le Hamiltonian H 0:H 0 = T +W 0 : (3.9)The KS s
heme is based on the hypothesis that it exists su
h a lo
al potential W 0,that makes the ground state ele
troni
 density �0(r) of the non-intera
ting systemequal to the ground state ele
troni
 density �(r) of the intera
ting system:� (r) = �0 (r) : (3.10)It is 
lear that if a non-intera
ting system with the required 
hara
teristi
s exists,then, a

ording to the HK theorems, it must be unique. At the moment, we assumethat it is always possible to �nd su
h a potentialW 0; its existen
e is formally provedfor w-representable densities (see Ref. [55℄) and generalized to N -representable den-sities (see Ref. [53℄). The 
harge density of the non-intera
ting system 
an be ex-pressed as a sum of single-parti
le 
harge densities; this holds also for the real 
hargedensity thanks to the equality (3.10):� (r) = �0 (r) = NXi=1 j�i (r)j2 : (3.11)The sum in
ludes the eigenfun
tions �i relative to the N lower eigenvalues, 
omingfrom the solution of the S
hr�odinger equation for the non-intera
ting system:��12r2ri + w0 (r)��i (r) = �i�i (r) : (3.12)The HK fun
tional asso
iated to the auxiliary system is:E 0 [�℄ = T 0 [�℄ + Z w0 (r) � (r) dr ; (3.13)where also the kineti
 energy of the non-intera
ting ele
trons T 0 [�℄ is a fun
tionalof the density �(r) , as a 
onsequen
e of the fa
t that the eigenfun
tions �i arefun
tionals of the density:T 0 [�℄ = NXi=1 Z ��i (r) ��12r2ri��i (r) dr : (3.14)We 
an now rewrite the HK fun
tional for the real system in a more pro�table way:E [�℄ = T 0 [�℄ + 12 Z dr Z dr0� (r) � (r0) v (r; r0) + Z w (r) � (r) dr+ Ex
 [�℄ : (3.15)
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al
ulations of superlatti
e band stru
turesThe kineti
 energy T 0 [�℄ is now the kineti
 energy of a non-intera
ting ele
tron gasand the se
ond term gives the Coulomb energy due to the 
lassi
 intera
tion of anele
tron gas of density �(r). By 
omparing the expression (3.7) and (3.15), we geta de�nition for the fun
tional Ex
, whi
h a

ounts for the many-body ex
hange and
orrelation e�e
ts among ele
trons:Ex
 [�℄ = F [�℄� 12 Z dr Z dr0� (r) � (r0) v (r; r0)� T 0 [�℄ : (3.16)The form of the still unknown external potential W 0 
an be �xed minimizing theenergy fun
tional E [�℄ in (3.15), by imposing that his �rst variation vanishes:ÆE [�℄ = 0 : (3.17)It results that the sear
hed potential for the non-intera
ting system is a fun
tionof the real external potential, the Coulomb potential and the so 
alled ex
hange-
orrelation (x
) potential:w0 (r) = w (r) + Z dr� (r0) v (r; r0) + vx
 ([�℄; r) ; (3.18)where the x
 potential is de�ned asvx
 ([�℄; r) = ÆEx
 [�℄Æ� (r) : (3.19)If we now introdu
e the potential w0 from Eq. (3.18) into the S
hr�odinger equation(3.12), we obtain the Kohn and Sham equations:heffKS �i = ��12r2 + w0��i = �i �i : (3.20)The KS equations (3.20) and the expression of w0(r) (3.18) have both a fun
tionaldependen
e on �(r), whi
h imposes a simultaneous self-
onsistent solution. Theex
hange-
orrelation term is a fun
tional of the density, lo
al in spa
e, whi
h makesthe resolution of the equations easier than the solution of e.g. analogous Hartree-Fo
k equations. Looking at the form of the one-body potential w0(r), we 
an seethat the external ioni
 attra
tive potential w is modi�ed by the s
reening due to theintera
tion between 
harges: this suggests to interpret it as the e�e
tive potentialfelt by one ele
tron in the mean �eld 
reated by the other ele
trons. Thanks toits 
onstru
tion, the e�e
tive potential w0(r) of the non-intera
ting system gives the
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orre
t density �(r) of the intera
ting system. This quantity, together with the totalenergy of the ele
tron system, has a real physi
al meaning within the KS s
heme.The solutions of the KS equations, i.e. the one-parti
le wavefun
tions �i and theeigenvalues �i, are instead, stri
tly speaking, nothing more than the eigenstatesand energy levels of the non-intera
ting system. We remark that the HK theorems
on
ern only the ground state properties of stationary systems: it is not 
orre
t toextra
t from the DFT, at least without further formal justi�
ations, any informationabout the ex
ited states or about time-dependent transitions. Nevertheless, we willsee that the theory has proved to be a good basis for a perturbation approa
h andfor time-dependent extensions, aiming at treating this kind of problems.This s
heme allows in prin
iple the exa
t determination of the ground state en-ergy. In pra
ti
e, it is inevitable to make an approximation for the x
 potential.The ex
hange-
orrelation fun
tional is a universal fun
tional, in the sense that on
eit is known for a model system, it 
an be simply transferred to all the others sys-tems with the same internal intera
tion potential, whatever the external �eld is.Unfortunately, there are no solved models for arbitrary densities � (r). The onlyavailable solution is the extremely a

urate 
al
ulation for the ele
tron jellium atthe 
onstant density � (r) = �0 [56, 57, 58℄. Being the ex
hange-
orrelation energyEx
 in general unknown, the possibility to des
ribe physi
al systems relies on thee�e
tive substitution of a simple and realisti
 approximation for this fun
tional.3.1.3 The Lo
al Density ApproximationThe Lo
al Density Approximation (LDA) 
onsists in expressing the fun
tional de-penden
e of the ex
hange-
orrelation energy on the density with a simple dependen
eon the lo
al value of the density. It is de�ned by:ELDAx
 [�℄ = Z � (r) �x
 (� (r)) dr ; (3.21)where �x
 is the ex
hange-
orrelation energy for a parti
le in an intera
ting ho-mogeneous ele
tron gas, whi
h is known with a very satisfa
tory pre
ision frommany-body Monte Carlo numeri
al simulations [56, 57, 58℄. The 
orrelation energyo

urring in our 
al
ulations has been parametrized as follows [57℄:�homx
 [� (r)℄ = 
= (1 + �1prs + �2rs) ; (3.22)



46 Chapter 3. Ab-initio 
al
ulations of superlatti
e band stru
turesfor rs � 1, where � (r) = �43�r3s��1 ; (3.23)and 
 = �0:14230 ; �1 = 1:05290 ; �2 = 0:3334 : (3.24)Sin
e the LDA is exa
t in 
ase of homogeneous systems, it has been thought to besuitable to des
ribe those physi
al systems where the 
harge density varies slowly,like metals. This is a strong restri
tion, but the approximation has surprisinglyturned out to be valid in a vaster range of 
ir
umstan
es, like in semi
ondu
tors.Su
h an unexpe
ted su

ess is due to the fa
t that the LDA, even in 
ase of stronglyinhomogeneous systems, satis�es exa
tly some sum rules whi
h must hold for the realpair 
orrelation fun
tion of the system. In general, quantities derived by 
omparingtotal energies, like ground state geometries, phonon frequen
ies, and moments ofthe density are well reprodu
ed [59℄ within this simple approximation. These topi
swill be dis
ussed further in Se
tion 3.3. There are some possible generalizations ofthe LDA: in
luding a 
orre
tion dependent on the gradient of the density � (r), asalready suggested by Hohenberg and Kohn [52℄, we get the Gradient Density Approx-imation (GDA). Some other approa
hes beyond LDA, like the Generalized GradientApproximation (GGA) [60, 61℄, the Average-Density Approximation (ADA), andthe Weighted Density Approximation (WDA) [62℄, have been obje
t of in
reasinginterest in the last years. However exa
tly satis�ed within the LDA, the sum rulesare not satis�ed within its generalizations. That's why an improvement of the LDAis not as straightforward as it might appear [59℄. It is not 
lear yet if it exists analternative non-lo
al s
heme whi
h is able to guarantee better results if 
omparedto the LDA. Up to now the LDA is widely applied in literature. The extension tospin-polarized systems is 
alled Lo
al Spin-Density Approximation (LSDA). In thiswork, however, we will always deal with spin-paired ele
trons.



3.2. Te
hni
al aspe
ts 473.2 Te
hni
al aspe
ts3.2.1 Plane wave basisWhen studying an in�nite system 
omposed by a repeated periodi
 unit, both a 
ellor a super
ell, the most natural 
hoi
e for the expansion of the wavefun
tions is theplane wave representation neiG�roG2RL. In fa
t, a

ording to the Blo
h theorem,the single ele
tron wavefun
tion 
an be expanded as follows:�n;k (r) = 1p
eik�rXG 
n;k (G) eiG�r ; (3.25)where 
 is the volume of the Wigner-Seitz 
ell (or of the super
ell in 
ase of super-latti
es) and G are the re
ipro
al latti
e ve
tors. The wave-ve
tors k, lying insidethe �rst Brillouin zone, label the ele
troni
 states together with the band index n.The 
hoi
e of a plane wave basis presents some advantages:� They simplify the evaluation of derivatives and integrals, making easier to 
al-
ulate the matrix elements of the Hamiltonian.� They allow the appli
ation of Fast Fourier Transform (FFT) formalism, allow-ing to move rapidly from the dire
t to the re
ipro
al spa
e and vi
e-versa.� They form a 
omplete and orthonormal set.� For open systems with some \va
uum", like 
luster and surfa
es or, in a futureperspe
tive, GaAs/va
uum superlatti
es, it is 
onvenient that the set does notdepend on the atomi
 positions.� The trun
ation of the in prin
iple in�nite basis set is given by a 
uto� in energy:12 jk +Gj2 � E
utoff ; (3.26)whi
h is linked to the number of plane waves NPW in the basis by the relationNPW ' 
 (E
utoff)3=2 : (3.27)The a
hievement of 
onvergen
e for total energy 
al
ulations 
an be 
ontrolledwithout ambiguity by in
reasing the 
uto�.
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al
ulations of superlatti
e band stru
turesA plane wave basis set is parti
ularly suitable in 
ase of a pseudopotential approa
h(see Appendix B). In su
h a 
ase only the valen
e wavefun
tions, whi
h are lesslo
alized than the 
ore ones, have to be 
al
ulated. Lo
alized basis sets, on theother hand, should be preferred when one is interested in highly lo
alized ele
troni
states (e.g. 
ore atomi
-like states).In our 
al
ulations, the 
onvergen
e has been a
hieved working with plane wavesup to a kineti
 energy 
uto� of 25 Ry for both GaAs and AlAs bulk 
rystals. Con-
erning the superlatti
es GaAs/AlAs, an higher 
uto� of 35 Ry is needed to a
hievethe same degree of a

ura
y. We have proved that these sets guarantee an errorwithin a few meV both for the total energy and for the KS eigenvalues.3.2.2 Sets of k-points for integration over the Brillouin zoneAll sums over the allowed k-points in the Brillouin zone be
ome integrals in thelimit of an in�nite periodi
 
rystal. In parti
ular, the 
entral quantity whi
h de�nesthe system, the 
harge density,� (r) = 1Nk o

Xn BZXk j�n;k (r)j2 ; (3.28)is transformed in: � (r) = 
(2�)3 ZBZ dk o

Xn j�n;k (r)j2 : (3.29)To perform a numeri
al 
al
ulation, in pra
ti
e, the integral must be turned ba
k intoa sum over a set of weighted k-points. If the fun
tion to be integrated, as it happensin expression (3.29), is symmetri
 in the re
ipro
al 
oordinates, these points, 
alledspe
ial points 
an be 
hosen exploiting the symmetry properties. The introdu
tionof the 
on
ept of spe
ial points is due to Balderes
hi [63℄. Then, Chadi and Cohen[64℄ and, later, Monkhorst and Pa
k [65℄ have elaborated his idea. Their methodsare now widely used. In 
omparison with an arbitrary grid of points, whi
h doesnot re
e
t the symmetries of the Brillouin zone, the spe
ial points redu
e drasti
allythe number of points needed to attain a spe
i�
 pre
ision in 
al
ulating integrals.In the numeri
al 
omputation of 
harge densities for bulk f

 GaAs and AlAswe have performed sums over a grid of 10 spe
ial k-points in the irredu
ible partof the Brillouin zone. This grid of points has been built following the pro
edure of
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k. Regarding the superlatti
es, we have used the tetrahedronintegration s
heme, as presented by Jepsen and Andersen [66, 67, 68℄. In that 
asethe biggest set whi
h we have employed is a set of 30 k-points in the irredu
iblewedge of the tetragonal re
ipro
al super
ell. The set of spe
ial points have beensele
ted to guarantee the 
onvergen
e of the total energy (the error is always smallerthan a few tenths of meV). To solve the integrals o

urring in the 
al
ulations ofopti
al properties, mu
h more points are needed, as we will pre
ise dis
ussing the
onvergen
e of the spe
tra.3.3 Results for ground-state propertiesThe results of DFT-LDA 
al
ulations on atoms, mole
ules and solids (even ioni
and 
ovalent solids), 
olle
ted in the last de
ades show without un
ertainties thatthis theory is a powerful tool to study the stru
tural properties of the matter.To perform ground state 
al
ulations in this thesis, we have used the pseudopotentialplane wave pa
kage PWSCF [69℄, originally developed by Baroni and Giannozzi.This 
ode 
omputes the ele
troni
 band stru
ture, the ele
troni
 
harge density andthe total energy of a periodi
 
rystal, 
hara
terized by a given Bravais latti
e anda given spa
e group symmetry. The algorithm is based on DFT and relies on twobasi
 approximations: the frozen-
ore approximation (see Appendix B) and the lo
aldensity approximation (though a gradient 
orre
tion is available, it has not been usedin our 
al
ulations). The use of a plane wave basis allows the transformation of thepartial di�erential self-
onsistent KS equations into an algebrai
 eigenvalue problem,whi
h is solved thanks to iterative te
hniques [70℄. The 
hoi
e of a plane waverepresentation, together with an eÆ
ient use of the Fast Fourier Transform, redu
esdrasti
ally the 
omputational time. The PWSCF 
ode exploits the symmetries of thesolid, to 
ut down the number of operations ne
essary to obtain the 
harge densityand the total energy with a given pre
ision. The 
omputation of these quantitiesallows the study of stru
tural (latti
e 
onstants, bulk modulus and elasti
 
onstants)and dynami
al (zone-
enter phonon frequen
ies) properties, the study of stru
turalphase transitions and the e�e
ts of pressure on the properties of the solids.The equilibrium stru
tural parameters (i.e. the Bravais latti
e type and the lat-
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al
ulations of superlatti
e band stru
turesti
e parameters in solids) 
an be determined ab initio, by inspe
ting the minimumof the total energy. In pra
ti
al appli
ations, the absolute 
onvergen
e of the totalenergy is not very important. The most important quantities are the energy di�er-en
es between di�erent states of the solid. Sin
e energy di�eren
es 
onverge morerapidly than the energy itself, it is usually possible to obtain a pre
ision higher thanthe total energy error (in our 
ase about a few meV). To illustrate this point, wehave studied two stru
tural properties: the latti
e 
onstant a0 and the bulk modulusB0. These quantities are related to the 
urvature of the fun
tion E(
) around theequilibrium volume 
0. The theoreti
al latti
e 
onstant has the value a0, whi
h
orresponds to 
0, while the bulk modulus is related to the 
urvature of the energy
urve at its minimum: B0 = �
 �2E�
2 �����
=
0 : (3.30)With respe
t to our bulk material, it is known that both GaAs and AlAs at zeropressure have a 
ubi
 stru
ture, based on tetrahedral units. Phase diagrams underpressure have been studied both experimentally and theoreti
ally [71, 72, 73, 74,75, 76, 77℄. We have therefore imposed the zin
-blend stru
ture and minimized thetotal energy as a fun
tion of the primitive 
ell volume 
. Starting from the 
urvesof the total energy E(
) and the pressure P (
) due to internal hydrostati
 stressat a non-equilibrium volume, the 
ohesion energy and the bulk modulus 
an beeasily determined, interpolating the values E(
) or P (
) with suitable equations ofstate. There are many 
hoi
es for the interpolating 
urves. Close to the minimumthe 
urve is a parabola, but the points deviate rapidly from the quadrati
 law and,at a large distan
e from a0, it is ne
essary to �t the points to something moresophisti
ated. One of the most popular �tting 
urves is the Murnaghan equation[78℄, whi
h depends on three parameters: 
0, B0, B00 (the derivative of the bulkmodulus with respe
t to pressure):E(
) = 
0B0B00 " 1B00 � 1 �
0
 �B00�1 + 

0 # + 
onst : (3.31)Often, it is preferred to adjust the pressure P, via the Bir
h-Murnaghan [79℄ equationof state:P = 32B0  � 

0��7=3 � � 

0��5=3!"1 + 34 (B00 � 4) � 

0��2=3 � 1!# : (3.32)
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Figure 3.1: Pressure (a) and total energy (b) of GaAs for di�erent values of the primitive 
ellvolume. The numeri
al values (
ir
les) are interpolated, respe
tively, with a Bir
h-Murnaghanequation and a Murnaghan equation (
ontinuous lines). Both the 
urves (a) and (b) 
orrespondto a 
uto� of 25 Ry.
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al
ulations of superlatti
e band stru
turesAn example of interpolation is illustrate in Fig. 3.1. In Table 3.1 we summarize theobtained �tting parameters, in 
omparison with experimental measurements andanalogous results found in literature. When the interpolating fun
tion is spe
i�edin the arti
les, the values in literature has to be 
ompared with quantities we haveobtained by the same equations of state.We have shown these results, be
ause a 
omparison with similar ab initio 
al
u-lations and experimental values is extremely important to evaluate the reliabilityof the norm-
onserving pseudopotential that we have generated. Some tests that
an be exe
uted dire
tly on the atom, to assess the quality of the pseudopotentials,are dis
ussed in Appendix B. Nevertheless, after exe
uting the atomi
 tests, a �nalvalidation is still needed: the 
al
ulation of the stru
tural properties for an in�nitebulk 
rystal is, 
ertainly, a proving test. An agreement within 1%-3% with theexperiment for the latti
e 
onstant and an agreement within 5%-10% for the bulkmodulus indi
ate that the 
al
ulations are reliable. In our 
ase the agreement iseven better. In LDA the errors on the latti
e 
onstants are systemati
: all the bondstrengths are overestimated [81℄, thus 
al
ulated latti
e 
onstants are too small.At last, before applying 
al
ulations to superlatti
e systems, we have reprodu
ed theground state 
al
ulations of the bulk GaAs, 
hoosing to des
ribe the 
ubi
 stru
turein terms of simple tetragonal super
ells, like (GaAs)2, (GaAs)4, (GaAs)6, by lower-ing the symmetry of the f

 
ubi
 point group. It is obvious that two di�erent viewsof the same problem must lead to the same results. Thus, the test is intended toverify that the passage from the 
ubi
 symmetry of the bulk to the tetragonal sym-metry of the superlatti
e does not introdu
e an additional font of numeri
al errorin 
al
ulations. This o

urren
e has been ex
luded, by 
he
king the 
onvergen
e ofthe k-points set, assuring that the di�eren
e in the total energy between the f

 andthe tetragonal des
ription is less than 1 meV.3.4 Kohn-Sham eigenstates and quasi-parti
le statesWe are now leaving the study of stru
tural properties to fo
us on the transitionsto ex
ited states. When dealing with an intera
ting parti
le system, the easierone-parti
le des
ription 
an be retained at the pri
e to introdu
e the 
on
ept of
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Table 3.1: Stru
tural parameters at zero pressure for the zin
-blend stru
ture of GaAs and AlAs:equilibrium 
ell volume 
0 (in r3b ), bulk modulus B0 (in kbar), and pressure derivative of thebulk modulus B00 (dimensionless). Our results are 
ompared with experimental measurements andanalogous ab initio 
al
ulations. GaAs AlAs
0 (r3b )Present work 297.0a 298.9a294.6b 297.2bExpt. 305.12e 306.3b;g304.89fOther theoreti
al works 298.1 
;e 300.7
;e297.0 a;f 308.8a;fB0 (kbar)Present work 731a 743a757b 765bExpt. 754b;d 740 � 40b;gOther theoreti
al works 740
;e 750
;e708a;f 710a;fB00Present work 4.8a 4.3a4.6b 4.2bExpt. 4.5b;d 5.0 � 1b;gOther theoreti
al works 4.6
;e 4.3
;e3.36a;f 3.3a:fa Murnaghan equation of stateb Bir
h-Murnaghan equation of state
 Chebyshev polynomial �td Referen
e [72℄e Referen
e [77℄f Referen
e [71℄g Referen
e [75℄
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al
ulations of superlatti
e band stru
turesquasi-parti
le (QP) states. A quasi-ele
tron di�ers from a bare ele
tron be
ause itmoves dressed by the intera
tion with a 
loud of surrounding ele
trons. The s
reen-ing 
hange its e�e
tive mass and makes �nite its lifetime. The quasi-parti
le energiesare given by the energies needed to add/subtra
t an ele
tron to/from the system.These quasi-parti
le levels 
an be measured respe
tively in inverse-photoemissionor photoemission spe
tros
opy and 
an be 
al
ulated within a 
oherent many-bodytheory framework. The many-body problem 
an be approa
hed thanks to the Greenfun
tion formalism. We will not dis
uss this subje
t in this work. For further infor-mation about many-parti
le physi
s we suggest to read Ref. [82℄, and in parti
ularfor solid state appli
ations Ref. [83℄The one-ele
tron band stru
ture is given by the dispersion of the energy level n,as a fun
tion of the wave-ve
tor k, whi
h varies along the high symmetry dire
tionsinside the �rst Brillouin zone. The ex
ited states are not a priori a

essible throughstati
 ground state DFT: the eigenstates �n;k and the energies �n;k, solutions ofthe KS equations, are not the \true" levels, i.e. the quasi-parti
le energies, of theele
tron in the solid. Only the highest o

upied DFT-KS eigenvalue �(N)N;DFT of anN-ele
tron system, if obtained with the exa
t x
 potential, equals the true ioniza-tion potential [80, 84℄, whi
h in 
ase of in�nite systems is the 
hemi
al potential �.Though a many-body 
al
ulation is the only means to 
al
ulate a 
ompletely reliableband stru
ture, it is quite 
ommon to interpret the solutions of the KS equations tobe ele
troni
 energies, and the results are sometimes a reasonably good representa-tion of the energy levels, in parti
ular 
on
erning band dispersions. A justi�
ation
an be found in the 
orre
t many-body approa
h. In fa
t, the Green-fun
tion theoryyields a S
hr�odinger-like equation for the quasi-parti
les, whi
h is extremely similarto the KS equation. The two equations di�er for the substitution of the x
 po-tential for a non-lo
al and energy-dependent operator, 
alled self-energy. One 
anthen 
onsider the KS equations as an approximation of the quasi-parti
le equations,where the self-energy operator � �r; r0; �QPn;k� is approximated by the simpler lo
alx
 potential Vx
 (r). The KS orbitals �n;k are thus usually 
onsidered a zero-orderapproximation of the wavefun
tions of the intera
ting system. Hybertsen and Louie[85℄ have shown that this approximation has a very high pre
ision for bulk states:���h�QPn;kj�LDAn;k i���2 ' 0:999. This result, together with the good qualitative agreement
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le states 55of the DFT-LDA o

upied density of states with the quasi-parti
le 
al
ulations andthe experiments, gives a valid motivation to interpret the KS eigenstates in terms ofone-ele
tron wavefun
tions and energies for the ele
tron in the solid. Nevertheless,it is well known that a DFT band stru
ture 
al
ulation always leads to a strongunderestimation of band gaps, often by more than 50% [85, 86, 87, 88, 89, 90, 91℄.There has been an interesting dispute about the origin of this gap problem. Themore a

redited idea is now that this is an intrinsi
 limit of DFT-KS [92, 93℄ anddoes not derive from the LDA. It is possible to show that the real gap and the KSgap are 
onne
ted by the relation:�gap = �KSgap +�x
 ; (3.33)where the 
al
ulated DFT-LDA gap,�KSgap = �(N)N+1;DFT � �(N)N;DFT ; (3.34)is the di�eren
e between the energies of the lower empty state and the higher o

u-pied state of the N -ele
tron system and�x
 = V (N+1)x
 (r)� V (N)x
 (r) : (3.35)In fa
t, the dis
ontinuity of order one experien
ed when an ele
tron is added 
an onlybe due to the ex
hange-
orrelation term, whi
h is not ne
essarily analyti
al in thenumber of ele
trons N , while the Hartree and the external potential are analyti
al.It 
ould be thought that �x
 is small and that the LDA is the main 
ause of theband gap error. This does not seem to be the 
ase, at least not for all the systems[59℄: a rigorous model for monodimensional semi
ondu
tors [94℄ shows that �x
 is asigni�
ant fra
tion of the energy gap. Con
erning real solids, in parti
ular Si, GaAsand AlAs, there is eviden
e that the dis
ontinuity is responsible for about 80% ofthe total error [87, 92, 95℄. It is 
lear that the only satisfying solution of the gapproblem goes through the many-body theory and the pre
ise de�nition of the energygap as the di�eren
e in the 
hemi
al potentials of an (N + 1)-ele
tron system andan N -ele
tron system:Egap = E(N+1)tot � E(N)tot � �E(N)tot � E(N�1)tot � : (3.36)
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al
ulations of superlatti
e band stru
turesThe many-body 
al
ulations are �nally in good agreement with the experiments,but they have the disadvantage to require a very high 
omputational e�ort. Quasi-parti
le 
al
ulations are usually 
arried out within the GW approximation [96℄: forthis reason the di�eren
es between DFT eigenvalues and quasi-parti
le energies are
alled GW 
orre
tions. In 
ase of GaAs, AlAs, and some other simple materials,it has been observed that the GW 
orre
tions shift the 
ondu
tion bands almostrigidly upwards 1 [86℄. This result justify the \s
issor operator" approximation,whi
h 
onsists in obtaining the quasi-parti
le band stru
ture within an error of0.1-0.2 eV in all the Brillouin zone, simply by adding a 
onstant value to all the
ondu
tion band levels. It is worth reminding that this approximation is not valid forall kinds of materials. Some authors have applied the s
issor operator to GaAs/AlAssuperlatti
es [21℄, 
onsidering that the energy shift for the two bulk material isalmost the same. We will get deeper into this subje
t in the following se
tion, whilepresenting the DFT-LDA band dispersions.3.5 Bulk band stru
ture by DFT-LDA 
al
ulationsWe are �nally ready to provide a more detailed analysis of the bulk band stru
tureobtained by means of the DFT-LDA, with norm-
onserving pseudopotentials and aplane wave basis set. The diagonalization of the KS equations for bulk GaAs andAlAs has been done at the theoreti
al latti
e 
onstants 
al
ulated in se
tion 3.3. InFigs. 3.2 and 3.3 we show the band stru
tures obtained by interpreting the Kohn-Sham eigenvalues to be ele
troni
 energies, without applying any s
issor operator.As expe
ted, this approximation always leads to a strong underestimation of bandgaps, even more than 50% for GaAs, while the form of the bands and their widthis 
orre
t. We know from literature (see Ref. [86℄) that GW quasi-parti
le energies,on the other hand, reprodu
e 
orre
tly experimental gaps to within 0.1 - 0.2 eV. We
an have an idea of the real band stru
ture applying a s
issor operator: in fa
t, ithas been proved that the GW 
orre
tions shift the 
ondu
tion bands almost rigidlyin GaAs and AlAs [86℄. Displa
ing the GaAs and AlAs DFT-LDA 
ondu
tion bandsupwards respe
tively by 0.8 and 0.9 eV yields an error in 
omparison to the GW1Be
ause of the LDA approximation, the valen
e band maximum is not exa
t and the a
tual e�e
t of GW
orre
tions involve as well a slight shift downwards of the valen
e bands.
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ulations 59results within 0.1 eV for the bands 
losest to the gap [86℄. In Tables 3.2 and 3.3we present the numeri
al values of the ab initio 
al
ulated (applying the s
issoroperator) energy levels at the high symmetry points together with the empiri
alresults and experimental data. In the third 
olumn GW quasi-parti
le energies fromRef. [86℄ are reported, to better judge the eÆ
a
y of the s
issor operator. Thespin-orbit intera
tion is negle
ted in all the theoreti
al approa
hes 
onsidered here,whereas the measured energies present a spin-orbit splitting of the highest valen
elevels. We remark again that the KS-LDA eigenvalues are 
onverged to within a fewmeV for both GaAs and AlAs 
rystals.
At last, we have 
ompared our results with previous DFT-LDA 
al
ulations foundin literature. We have found that a 
omplete equivalen
e of the results is not possi-ble, even within a DFT-LDA pseudopotential 
al
ulation, in a plane wave represen-tation. In fa
t, 
onsidering that it is not known how exa
tly the di�erent authorshave built their norm-
onserving pseudopotentials and sometimes it is not spe
i�edif they work at the experimental or theoreti
al latti
e 
onstant, it is not surprisinglyto dete
t di�eren
es up to 0.25 eV. We �nd an overall ex
ellent agreement to withinless than 0.1 eV with 
al
ulations of Godby et al. , both for GaAs and AlAs, inRef. [86℄. Also the agreement with Ba
helet et al. in Ref. [97℄ is satisfa
tory. As dis-
ussed in Ref. [86℄, the experimental values 
on
erning AlAs 
ondu
tion band edges,espe
ially the value of the gap in L, are not obtained from dire
t measurements andare not 
ompletely reliable. Moreover, we have tried to 
al
ulate the band stru
-ture at the experimental latti
e 
onstant, showing that the behavior of the 
riti
alpoints under an hydrostati
 pressure is both qualitatively and quantitatively thesame as des
ribed by Fiorentini et al. in Ref. [98℄. In fa
t, being the theoreti
alLDA latti
e 
onstants smaller than the experimental ones, exe
uting 
al
ulationsat the experimental values means applying a negative hydrostati
 pressure to the
rystal. We observe that the gap widths in � and L be
ome smaller, both for GaAsand AlAs. The gap widths in X grow: this e�e
t is stronger for the �rst gap X1 inboth materials and it is almost negligible for the se
ond gap X3 in AlAs.
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Table 3.2: GaAs eigenvalues at some high symmetry points as obtained in the present work bythe empiri
al pseudopotential method and the DFT-LDA ab initio theory. The DFT-LDA valuesare 
orre
ted by a s
issor operator of 0.8 eV [86℄. Our results are 
ompared to GW quasi-parti
leenergies [86℄ and experiments. The zero of energy is at the top of the valen
e band. The spin-orbitintera
tion term is omitted in all 
al
ulations and indi
ated in parenthesis for experiments.Energy level EPM DFT-LDA GW Experiment�v1 -12.11 -12.90 -13.10b�v15 0.00 0.00 0.00 0.00 (-0.34)a�
1 1.51 1.37 1.47 1.52a�
15 4.01 4.58 4.52 4.72bXv1 -10.00 -10.45Xv3 -6.16 -6.91Xv5 -2.31 -2.72 -2.73 -2.78 (-2.85)aX
1 2.02 2.12 2.08 1.98
 - 2.01dX
3 2.39 2.39 2.30 2.38eLv1 -10.64 -11.19Lv2 -5.98 -6.74Lv3 -0.96 -1.15 -1.11 -1.19 (-1.40)aL
1 1.83 1.79 1.82 1.82
 - 1.84dL
3 4.84 5.46 5.41a Referen
e [99℄b Referen
e [100℄
 Referen
e [101℄d Referen
e [102℄e Referen
e [103℄
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Table 3.3: AlAs eigenvalues at some high symmetry points as obtained in the present work bythe empiri
al pseudopotential method and the DFT-LDA ab initio theory. The DFT-LDA valuesare 
orre
ted by a s
issor operator of 0.9 eV [86℄. Our results are 
ompared to GW quasi-parti
leenergies [86℄ and experiments. The valen
e band maxima are aligned. The spin-orbit intera
tionterm is omitted in all the 
al
ulations and indi
ated in parenthesis for experiments.Energy level EPM DFT-LDA GW Experiment�v1 -11.67 -12.03�v15 0.00 0.00 0.00 0.00 (-0.28)a�
1 3.03 2.90 3.26 3.11
�
15 4.21 5.11 5.05 4.34bXv1 -9.49 -10.01Xv3 -5.62 -5.52Xv5 -2.25 -2.23 -2.34 -2.30 (-2.45)dX
1 2.22 2.21 2.09 2.24aX
3 3.20 3.11 2.99 2.68eLv1 -10.14 -10.57Lv2 -5.59 -5.69Lv3 -0.93 -0.84 -0.88 -1.31 (-1.51)aL
1 2.87 2.99 3.03 2.49
 - 2.54dL
3 5.00 5.57 5.48a Referen
e [99℄b Referen
e [104℄
 Referen
e [102℄d Referen
e [101℄e Referen
e [105℄
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e band stru
tures3.6 Superlatti
e band stru
ture by DFT-LDA 
al
ulationsFinally, we present ab initio 
al
ulations of (001) GaAs/AlAs superlatti
e bandstru
tures, obtained by means of the DFT-LDA, with norm-
onserving pseudopo-tentials and a plane wave basis set. These 
al
ulations are formally analogous tothe 
al
ulations for bulk systems presented in the previous se
tion. The 
ubi
 Tdpoint group is repla
ed by the smaller tetragonal D2d point group and ea
h super-
ell 
ontains p Ga atoms, p Al atoms and 2p As atoms (see Fig. 1.1 on page 11).The symmetry of the system is fully des
ribed: in parti
ular, the As atoms at theinterfa
e do not entail any arti�
ial asymmetry, be
ause the As norm-
onservingpseudopotential is independent of the environment (Ga or Al neighbors) where theAs atoms are pla
ed. We have studied (001) (GaAs)p/(AlAs)p superlatti
es with asuperlatti
e period p ranging from 1 to 8. The number of plane waves involved in the
al
ulations grows as p, thus the 
omputational expense be
omes higher and higherat large superlatti
e periods (as a term of 
omparison, on a NEC SX-5 ma
hine,to 
ompute 10 � 2p bands relative to p=1 the time needed is 2 minutes, whereas
al
ulating the 
orresponding number of bands for p=8 requires a time more than100 times longer).The resolution of the KS equations for the almost latti
e-mat
hed heterostru
-tures has been done at the averaged theoreti
al latti
e 
onstants. We do not needto perform a stru
tural minimization to determine the relaxed geometry of the 
ell,sin
e the latti
e mismat
h is small enough to make negligible stress and strain ef-fe
ts, whi
h do not a�e
t the band stru
ture, as usually assumed in literature (see,e.g., [106, 107, 108, 109℄). We have however veri�ed that the total energy does not
hange signi�
antly when moving from the GaAs latti
e 
onstant to the AlAs latti
e
onstant. Moreover, the total energy is 
lose to its minimum at this averaged value.In Figs. 3.4 and 3.5 we present the two extreme examples of superlatti
e bandsfor p=1 and p=8: all the 4� 2p valen
e states and the 
ondu
tion states up to 8 eVare shown in the tetragonal Brillouin zone. We remind that, sin
e 2p k-points in thef

 Brillouin zone are always folded onto the same point q in the smaller tetragonalBrillouin zone, the number of o

upied superlatti
e bands is 2p times the numberof bulk bands for a GaAs/AlAs superlatti
e. The p=1 superlatti
e (see Fig. 3.4)
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e band stru
turesis the more instru
tive one, be
ause the number of bands is only doubled and the�gure is more readable and easy to 
ompare to the band stru
ture in Fig. 3.2. This
ase was not studied within the semi-empiri
al framework, be
ause a des
riptionin terms of bulk states is not reliable for very short period superlatti
es. The p=1Brillouin zone 
an be obtained by folding on
e the bulk zone. Hen
e, the point ��
orresponds to both points � and Xz, the point �M 
orresponds to both points Xyand Xx, and point �R 
orresponds to both points Lz and L�z of the 
orrespondingbulk Brillouin zone. The lowering in the 
rystal symmetry is responsible for theremoval of level degenera
ies at the high symmetry points. The spin orbit splittingis not in
luded. The dire
t LDA band gap measures 1.1 eV: it is almost twi
e largerthan the bulk GaAs gap, pointing to strong 
on�nement e�e
ts. The �R1
 state is the
ondu
tion band minimum, in agreement with the DFT-LDA and quasi-parti
le re-sults reported in Refs. [44, 21℄. Following the suggestion in Ref. [21℄, we have applieda s
issor operator of 0.92 eV to 
al
ulated 
ondu
tion band energies and 
omparedour energies at the high symmetry points with analogous DFT-LDA results, avail-able only for p=1,2,3, by Dandrea et al. [21℄. The di�eren
es never ex
eed 0.1 eV.The good agreement of short-period results suggests that also the results for largerperiods are reliable. To improve these results, quasi-parti
le 
orre
tions and/or allele
tron and/or full relativisti
 ( in
luding spin-orbit intera
tion) 
al
ulations wouldbe needed.Finally, the Fig. 3.6 shows the band stru
ture of the (GaAs)8=(AlAs)8 super-latti
e, as 
al
ulated by the semi-empiri
al LCBB method adopted in the previous
hapter. The Figs. 3.6 and 3.5 are here presented on the same s
ale, to allow an easy
omparison of the two band dispersions. As expe
ted, the gap is better reprodu
edby the semi-empiri
al 
al
ulations. Ex
ept for that, the band dispersions and widthsare surprisingly similar, both in valen
e and in 
ondu
tion bands.In 
on
lusions, in this 
hapter we have presented DFT-LDA 
al
ulations for bulkGaAs, bulk AlAs and GaAs/AlAs superlatti
es. By 
al
ulating the ground statesproperties of the bulk materials, we have proved the reliability of the norm-
onservingpseudopotentials we have 
onstru
ted. The results for bulk LDA energy levels, afterthe appli
ation of a suitable s
issor operator, have been 
ompared with 
orrespondingresults, whi
h we have obtained in the semi-empiri
al LCBB approa
h, and with
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ulations 67experimental and theoreti
al data found in literature. The ab initio GaAs/AlAsband stru
ture is 
ompared to the 
orresponding semi-empiri
al band stru
ture andto some data available in literature for short-period superlatti
es. We have found anoverall agreement of all the di�erent results, whi
h 
on�rms the analysis developedin Chapter 1 and attests without doubts the high quality of the ele
troni
 states,both semi-empiri
al and DFT-LDA, whi
h will be the basis of the opti
al absorption
al
ulations in the following 
hapters.
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Chapter 4
Semi-empiri
al 
al
ulations ofopti
al properties
In a spe
tros
opi
 experiment the sample is ex
ited from its ground state: the re-sponse to the perturbation is the obje
t of both experimental measurements andtheoreti
al 
al
ulations. A big variety of phenomena 
an o

ur. In Fig. 4.1 we showthree model ex
itations: dire
t photoemission, inverse photoemission, and absorp-tion. Dire
t/inverse photoemission pro
esses are one-quasi-parti
le ex
itations: aquantum of energy h� is absorbed/emitted while an ele
tron is eje
ted/absorbed.The eje
ted/in
oming ele
tron is supposed to be 
ompletely de
oupled from the sys-tem after/before the pro
ess takes pla
e. These kinds of experiments give insight,respe
tively, on the density of o

upied and uno

upied states. Here we are moreinterested in absorption pro
esses in solids. In a naive pi
ture, the in
oming ra-diation 
auses the transition of an ele
tron from an o

upied state in the valen
eband to an empty state in the 
ondu
tion band. However, even if one uses quasi-parti
le instead of one-ele
tron states, one fa
es the problem that this pro
ess isnot the simple 
ombination of an inverse photoemission and a dire
t photoemissionpro
ess, be
ause the ele
tron does not leave the sample and 
ontinues intera
tingwith it. The ele
tron whi
h has undergone a transition to the 
ondu
tion band andthe relative hole left in valen
e band feel ea
h other via a Coulomb intera
tion: thisis the so-
alled ex
itoni
 e�e
t, whi
h introdu
es the main 
omplexity in 
omputa-tions, sin
e it for
es to abandon the independent quasi-parti
le pi
ture, to move to69
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71a two-parti
le ex
itation pi
ture.Nevertheless, in the study of the opti
al properties, independent parti
le s
hemesmaintain their usefulness, and are preliminary to full many-body treatments. Themost used approa
h is the semi-
lassi
al theory of interband transitions [9, 110℄. Inthis 
hapter, we will dis
uss how to 
ombine it with semi-empiri
al band stru
ture
al
ulations, to gain information about the absorption spe
tra of semi
ondu
tor su-perlatti
es. This simple formalism allows to reprodu
e all the features present in anabsorption spe
trum whi
h are 
onne
ted to one-quasi-parti
le ex
itations. More-over, it allows to des
ribe the absorption pro
ess in terms of the intuitive 
on
eptsof joint density of o

upied and uno

upied states and of transition probabilitiesfrom o

upied to uno

upied states.As we have already dis
ussed in Se
tion 3.4, stri
tly speaking, ele
trons in asolid are never independent parti
les. In spite of this, the one-parti
le pi
ture 
anbe retained at the pri
e to renormalize the single ele
tron energy levels by thepresen
e of the surrounding ele
trons, de�ning the 
on
ept of quasi-parti
les. Thisis suÆ
ient only for situations where the ele
tron-hole intera
tion is not important.The quasi-parti
les are still des
ribed by a one-parti
le S
hr�odinger-like equation,where the e�e
tive potential has to in
lude the e�e
ts due to the ele
tron-ele
tronintera
tion. In 
ase of empiri
al/semi-empiri
al band stru
ture 
al
ulations, theserenormalizations are at least partially in
luded { to what extent it depends bythe 
omplexity of the model { thanks to the parameterization of the Hamiltonian,whi
h is dire
tly �tted to reprodu
e the experimental spe
tra. On the other hand,ex
itoni
 e�e
ts lead inevitably to the need of a two-parti
le des
ription of thesystem. Within an empiri
al/semi-empiri
al approa
h, they 
an be qualitativelyin
luded thanks to an e�e
tive mass approximation [111, 112℄. Together with the so-
alled lo
al �eld e�e
ts, ex
itoni
 e�e
ts give essential 
ontributions to estimate theheight of the peaks in absorption spe
tra. In empiri
al/semi-empiri
al 
al
ulations,however, the peak positions 
an be already in good agreement with experiments(within a few tenth of eV) without the in
lusion of these 
orre
tions. In fa
t, theempiri
al parameters 
an be expressly �tted to reprodu
e the 
orre
t peak positions.Being mainly interested in determining the peak positions and their evolution as afun
tion of the well/barrier width, we have de
ided, at this stage, to negle
t both the



72 Chapter 4. Semi-empiri
al 
al
ulations of opti
al properties
ontributions of ex
itons and lo
al �elds. We will dis
uss at the end of the 
hapterthe limits of this approximation.One further point of interest is the birefringen
e. The 
al
ulations presented hereyield only the 
ontribution to the birefringen
e arising from quantum-
on�nement-indu
ed modi�
ations of the ele
troni
 states; they do not a

ount for the intrinsi
diele
tri
 anisotropy of a multilayer, arising from di�erent boundary 
onditions foran ele
tri
 �eld parallel or perpendi
ular to the layers [113, 114℄. This se
ond 
ontri-bution to the birefringen
e is in fa
t equivalent to the in
lusion of lo
al-�eld e�e
tsin the diele
tri
 response [115, 116, 117, 118℄.In the following se
tion we will organize the results obtained, dis
ussing theopti
al properties of GaAs/AlAs and GaAs/va
uum superlatti
e systems, via the
al
ulated real and the imaginary parts of the 
omponents of their ma
ros
opi
diele
tri
 tensor. We have written a 
omputational 
ode, whi
h adopts the LCBBte
hnique, as presented in Chapter 2, to perform the 
al
ulations of the opti
alspe
tra. We will explain why the method su

eeds in reprodu
ing the experimentalbehavior of the peak positions under 
on�nement, whereas it fails to des
ribe thelow-frequen
y opti
al birefringen
e of the GaAs/AlAs systems and, in parti
ular, itsbehavior as a fun
tion of the number of monolayers p.4.1 Semi-
lassi
al theory of interband transitionsThe ma
ros
opi
 diele
tri
 properties of a solid are intimately 
onne
ted with itsband stru
ture: we want to dis
uss how the opti
al spe
tra 
an be reprodu
ed, al-ready to a satisfa
tory extent even if at a �rst level of approximation, starting fromthe simple knowledge of the one-ele
tron band stru
ture. The dis
ussion whi
h fol-lows is valid for isotropi
 materials, like bulk zin
-blend 
rystals, where a simples
alar diele
tri
 fun
tion (more pre
isely its real and imaginary parts) is all we needto determine the opti
al response of the medium. In 
ase of anisotropi
 
rystals,like superlatti
es, it is ne
essary to de�ne a diele
tri
 tensor: the expressions wewill get for the diele
tri
 fun
tions are easily adaptable for the single 
omponents ofthe diele
tri
 tensor. We will deal with an ele
tromagneti
 �eld, whi
h is supposedweak, a
ting as a perturbation. The wavelength of the in
oming radiation is long in
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omparison to the latti
e 
onstant and we suppose, at the moment, that the medium
an be 
onsidered homogeneous. The theory is 
alled semi-
lassi
al be
ause, whilethe Blo
h ele
trons are des
ribed as a quantum system, the radiation is treated asa 
lassi
al �eld. The 
ore ions are kept \frozen" in their latti
e sites, thus ex
ludingthe o

urren
e of phonon-assisted ele
troni
 transitions. Undoubtedly, phonons areresponsible for broadening spe
tral features: these lifetime e�e
ts 
an be approxi-mately taken into a

ount by a small imaginary 
onstant added to the absorptionenergy.The 
omplete Hamiltonian, whi
h des
ribes an ele
tron in a solid in presen
e ofthe ele
tromagneti
 �eld, is:H = 12  v � A(r; t)
 !2 + V PP � �(r; t) ; (4.1)where A is the ve
tor potential and � the s
alar potential of the radiation �eld. Inthe Coulomb gauge (r �A = 0, � = 0), negle
ting non-linear e�e
ts, the ele
tron-radiation intera
tion term reads:H lo
e�rad = �1
A(r; t) � p : (4.2)The relation (4.2) is 
orre
t only if the potential is lo
al (the semi-empiri
al pseu-dopotential is lo
al), otherwise we need to take into a

ount the non-vanishing 
om-mutator of the non-lo
al term with the 
oordinate operator:Hnon�lo
e�rad = �1
 (p �A(r; t) + i [Vnl; r℄ �A(r; t)) : (4.3)For an in
oming plane wave 
hara
terized by a frequen
y !, the ve
tor potential Ahas the form: A(r; t) = A0 e ei(q�r�!t) + 
:
: ; (4.4)where e is the polarization unitary ve
tor and 
.
. indi
ates the 
omplex 
onjugateof the pre
edent term. The �rst term in (4.4) is responsible for absorption, these
ond for stimulated emission.Following Bassani and Pastori Parravi
ini [110℄, the probability per unit timeand unit volume that a perturbation of the form H e�i!t indu
es a transition froman initial state jii to a �nal state jfi is given by the Fermi's golden rule:Wi!f (!) = 2� jhf jHjiij2 Æ (!f � !i � !) ; (4.5)



74 Chapter 4. Semi-empiri
al 
al
ulations of opti
al properties
ondu
tivity � = �1 + i�2diele
tri
 fun
tion � = �1 + i�2 � = 1 + (4�i�) = (!)
omplex refra
tive index N = n+ ik � = N2 ; �1 = n2 � k2 , �2 = 2nkabsorption 
oeÆ
ient � = (2k!) = (
) = (!�2) = (n
)re
e
tivity at normal in
iden
e R = [(n� 1)2 + k2℄=[(n+ 1)2 + k2℄
Table 4.1: Relationships between opti
al response fun
tions [119℄.where the sign� refers to absorption and the sign + to emission of a quantum !. Theabsorption and emission rates are the starting points to 
al
ulate whatever opti
alfun
tion, whi
h des
ribes the response of the system to an in
oming radiation. On
ea 
omplex response fun
tion is known, all the others are related to it by means of therelations summarized in Table 4.1. Moreover, the real part and the imaginary partof a 
omplex diele
tri
 fun
tion are related by a Kramers-Kronig transformation[119℄.Inserting Eqs. (4.2) and (4.4) in the matrix element of Eq. (4.5), in 
ase ofabsorption, we �nd:h
;k0j H jv;ki = A0
 h 
k0 j eiq�r e � p j v ki = A0
 e �M
v ; (4.6)where the spatial integral, whi
h des
ribes the transition probability, ise �M
v =Xs Z
 dr e�i(k0�q)�r u�
k0(r; s) e � (�ir) eik�r uv k(r; s) : (4.7)When negle
ting the spin-orbit intera
tion term, the Hamiltonian operator (4.1) isindependent of spin, hen
e spin states are 
onserved in the transitions indu
ed bythe ele
tromagneti
 radiation. Adding a fa
tor 2 in Eq. (4.7), we 
an a

ount for thethe spin degenera
ies and be free to eliminate the dependen
e on spin 
oordinates in
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lassi
al theory of interband transitions 75the matrix element (4.7). The translational invarian
e of the wavefun
tion periodi
parts u�
k0(r; s) and u�v k(r; s) imposes that, under the hypothesis of long wavelength� (q = qrad ' 0), only dire
t transitions, i.e. between valen
e and 
ondu
tion stateslabelled by the same k ve
tor, are permitted. This sele
tion rule represents therespe
t of the momentum 
onservation in a periodi
 medium, whereas the energy
onservation is expressed by the presen
e of the delta fun
tion in Eq. (4.5). Toobtain the absorption probability per unit time and per unit volume, it is ne
essaryto sum over all the possible initial and �nal states jn;ki, remembering that the levelo

upan
y is des
ribed by the Fermi fun
tion fn;k. We obtain:Wabs(!) = 4� �A0
 �2 Xv;
 Xk2BZ fvk (1� f
k) ��� e �M
v ���2 Æ�!
(k)� !v(k)� !� : (4.8)In a 
ompletely analogous way we 
an get the emission probability per unit timeand unit volume:Wem(!) = 4� �A0
 �2 Xv;
 Xk2BZ f
k (1� fvk) ��� e �Mv
 ���2 Æ�!
(k)� !v(k) + !� : (4.9)The absorption 
oeÆ
ient is de�ned as the 
oeÆ
ient � in the relationI = I0e��d ; (4.10)whi
h des
ribes the intensity I of the radiation propagating in the medium at adistan
e d from the surfa
e: the intensity de
reases from the in
oming value I0on the surfa
e, following an exponential law. The determination of the absorptionspe
tra requires the knowledge of the absorption 
oeÆ
ient, or equivalently, theimaginary part of the diele
tri
 fun
tion � = �1 + i�2:� = !n
 �2 : (4.11)Here n is the real part of the refra
tive index. We 
an obtain � dividing the di�eren
ebetween the absorbed and the emitted energy per unit time and per unit volume bythe in
ident radiation 
ux: �(!) = (Wabs �Wem)!nA20 !2= 2� 
 : (4.12)The following equality is veri�ed:je �M
v(k)j2 = je �Mv
(k)j2 ; (4.13)
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al 
al
ulations of opti
al propertiesit is the quantum formulation of the detailed balan
e prin
iple. Thus, the �nal resultfor the imaginary part of the diele
tri
 fun
tion is:�2(!) = 24�2!2 X
;v ZBZ dk8�3 (fv;k � f
;k) je �M
v(k)j2 Æ (!
(k)� !v(k)� !) : (4.14)It is usually preferred to 
al
ulate �2 rather than �, be
ause it does not depend onthe index of refra
tion n, whi
h is a fun
tion of the energy ! as well. By exploitingthe Kramers-Kronig transformation, the expression of the real part of � 
an beimmediately derived from the knowledge of the imaginary part over all the frequen
yrange (4.14): �1 (!) = 1 + 2�P Z 10 !0 �2 (!0)!02 � !2 d!0 : (4.15)The transition rate depends on the fa
tor je �M
v(k)j2. Close to a 
riti
al point, ifthe transition is not forbidden, this fa
tor is di�erent from zero and does not varysigni�
antly with k, so that we 
an extra
t it from the integral in (4.14), giving:�2(!) = 4�2!2 X
;v je �M
v(k)j2 J
v(!)A
v(!) ; (4.16)where A
v(!) = fv;k � f
;k (4.17)is the band �lling fa
tor andJ
v(!) = ZBZ dk4�3 Æ (!
(k)� !v(k)� !) = 14�3 ZS dSjrk (!
(k)� !v(k))j!
�!v=!(4.18)is the joint density of states (JDOS) for interband transitions. The JDOS showsstrong variations in the neighborhood of the values of ! whi
h satisfy the relation:rk!
(k) = rk!v(k) : (4.19)The requirement (4.19) de�nes the 
riti
al points in the Brillouin zone and is usuallysatis�ed in the high symmetry points or along the symmetry lines. Close to anextreme k0 of the band dispersion, the energy di�eren
e in the denominator ofEq. (4.18) 
an be developed in a series of (k� k0), up to the quadrati
 term in theexpansion. Thanks to this simple analyti
al pro
edure, it is possible to dedu
e theform of the absorption 
urves 
lose to the dire
t gap !g, in 1, 2 and 3 dimensions:3D : J
v(!) = 12�2 (2m�)3=2 (! � !g)1=2 � (! � !g) ; (4.20)
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lassi
al theory of interband transitions 772D : J
v(!) = m�� � (! � !g) ; (4.21)1D : J
v(!) = 1� �m�2 �1=2 (! � !g)�1=2 � (! � !g) : (4.22)With m� we indi
ate the e�e
tive mass and � is a step fun
tion. At zero dimension,the JDOS is obviously equal to a delta fun
tion. In Fig. 4.2 we illustrate the behaviorof the JDOS in di�erent semi
ondu
tor nanostru
tures. We will work at a zero

Figure 4.2: S
hemati
 illustration of the joint density of states in semi
ondu
tor systems.temperature: all valen
e bands are o

upied and all 
ondu
tion states are empty,thus making the band �lling fa
tor A
v(!) always equal to 1.
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al 
al
ulations of opti
al propertiesThe polarization unitary ve
tor e in Eq. (4.14) 
an assume whatever dire
tionin 
ase of an isotropi
 material, without a�e
ting the physi
al properties, whi
h arenot dependent on the orientation of the sample. In 
ase of an anisotropi
 
rystal, as
alar quantity is no more suÆ
ient to de�ne the opti
al properties of the material: adiele
tri
 tensor is needed instead. By 
hoosing e, in three su

essive steps, along thethree prin
ipal opti
al axes, we 
an 
al
ulate the three 
omponents of the diagonaldiele
tri
 tensor of the superlatti
e.4.2 Results for bulk opti
al spe
traGaAs and AlAs present similar absorption properties: this is easy to understand,remembering that the two bulk semi
ondu
tors have extremely similar band stru
-tures (see Figs. 2.2 and 2.3 on pages 25 and 27). Interband absorption spe
tra oftetrahedral semi
ondu
tors are dominated by two prominent features, denoted E1and E2 [8, 9℄. The E1 peak (and its spin-orbit 
ounterpart E1 + �1, whi
h is notpresent in our 
al
ulated spe
tra) originates from band-to-band transitions along the�-L dire
tion, where valen
e and 
ondu
tion bands are nearly parallel: this resultsin aM1-type 
riti
al point, i.e. a saddle point in the JDOS, whi
h also gives a strongex
itoni
 
hara
ter to the transition. The E2 peak, instead, has 
ontributions fromdi�erent parts of the Brillouin zone, but mainly from a region 
entered around thespe
ial point (34 ; 14 ; 14) (in units of 2�=a, where a is the latti
e 
onstant). The E2peak has essentially no ex
itoni
 
hara
ter. In a superlatti
e made of alternatingGaAs and AlAs layers (or GaAs and va
uum layers), on the basis of the analysis wehave presented for the superlatti
e band stru
tures, we expe
t to re
ognize againthe same 
hara
teristi
 features. In parti
ular, in the region along the �-L dire
-tion, the ele
trons whi
h 
ontribute to the E1 peak are 
on�ned in GaAs layers (seeFig. 2.5 on page 30). We are interested in 
omparing the bulk GaAs E1 peak tothe superlatti
e E1 peaks at di�erent well/barrier widths. In Fig. 4.3 we show the
al
ulated real and imaginary parts of diele
tri
 fun
tions for bulk GaAs and AlAs
rystals. Starting from the one-ele
tron semi-empiri
al band stru
ture, the 
omplexdiele
tri
 fun
tion �(!) = �1 + i�2 is evaluated in a straightforward way by meansof the semi-
lassi
al theory of interband transitions. The 
urves 
an be 
ompared
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Figure 4.3: Cal
ulated semi-empiri
al diele
tri
 fun
tion (real and imaginary parts) of (a) GaAsand (b) AlAs.
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al 
al
ulations of opti
al propertieswith analogous measured data [120, 121℄, shown also later in Figs. 5.5 and 5.6 onpages 116 and 119. The agreement with the experimental positions of the peaks,is within a few tenths of an eV: we underline that the semi-empiri
al approa
h isfree of the band gap problem. The height of the peaks, espe
ially E1, 
annot be
orre
tly estimated without the in
lusion of the ex
itoni
 
ontributions and the lo
al�eld e�e
ts.Before 
al
ulating superlatti
e spe
tra, we have previously 
al
ulated bulk spe
-tra for (001) (GaAs)2p, i.e. we have des
ribed the 
ubi
 material as a periodi
array of tetragonal super
ells, repeating the test for di�erent super
ell lengths inthe dire
tion z. Integrating over the f

 Brillouin zone and the 
orresponding foldedtetragonal Brillouin zone, using equivalent sets of Chadi and Cohen spe
ial points,we have veri�ed the exa
t equivalen
e of the two results. An empiri
al Gaussianbroadening of 0.1 eV has been used to produ
e smooth 
urves. The spe
tra obtainedby the two di�erent des
riptions of the same system are perfe
tly superimposable.This 
he
k guarantees now the right to 
ompare the bulk absorption 
urves withanalogous superlatti
e 
urves, knowing that the di�eren
es 
annot be due to un
on-trollable errors in the numeri
al integration.4.3 Opti
al spe
tra for GaAs/AlAs and GaAs/va
uum su-perlatti
esWe dis
uss now the spe
tra obtained for superlatti
e systems. Tetragonal Brillouinzone integrations are performed using Fourier quadrature with 1056 Chadi and Co-hen spe
ial points in the irredu
ible wedge [64, 122℄. The same set of spe
ial pointshad already been used for bulk (GaAs)2p, to allow a dire
t 
omparison of results.The experimental broadening is simulated again by an empiri
al Gaussian broaden-ing of 0.1 eV. The 
al
ulated imaginary part of the diele
tri
 fun
tion �2 (!) for bothGaAs/AlAs and GaAs/va
uum systems are shown in Fig. 4.4 for di�erent super-latti
e periods p. At this stage we are not interested in the absorption anisotropy,thus we average over the three orthogonal polarization dire
tions to obtain a s
alardiele
tri
 fun
tion. Like the opti
al spe
tra of bulk GaAs and AlAs, superlatti
espe
tra show two prominent features, namely E1 and E2 peaks (see Fig. 4.3): in
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Figure 4.4: Imaginary part of the diele
tri
 fun
tion for (GaAs)p=(AlAs)p and (GaAs)p=(va
uum)psuperlatti
es, for di�erent values of the period p, by semi-empiri
al 
al
ulations. Di�erent 
urvesare o�set for 
larity. E1 splitting 
annot be easily seen in the �gure: the peak positions have beendetermined by an enlargement of the spe
tral region of interest.
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al 
al
ulations of opti
al propertiesfa
t, even if in a superlatti
e sele
tion rules allow more transitions, as a 
onsequen
eof zone-folding, the tetragonal Brillouin zone is smaller and, at last, all transitionswhi
h 
ontribute to superlatti
e peaks have their equivalent 
ounterparts in the bulkBrillouin zone. Another way to understand the similarity between bulk and super-latti
e opti
al spe
tra is to remember how 
lose the superlatti
e band dispersionin Fig. 2.6 on page 33 is to the bulk band dispersion proje
ted on the tetragonalBrillouin zone in Fig. 2.4 on page 28. As a general remark, the E1 transition isfound to blue shift and to split into two peaks for de
reasing superlatti
e periods;the 
on�nement-indu
ed shift is larger for the GaAs/va
uum system. On the otherhand the E2 transition is split for large-period GaAs/AlAs superlatti
es, where theele
troni
 states are 
on�ned in the two bulk layers leading to a superimposition ofthe two bulk spe
tra; the two peaks merge into a single one for small periods. Asingle E2 peak with a small blue shift is found for GaAs/va
uum superlatti
es.In Fig. 4.5 the peak energies are plotted as a fun
tion of the superlatti
e periodp. First we 
omment on the behavior of E1: in zin
-blend 
rystals it 
omes fromtransitions along the � line, in a region where bulk bands are almost parallel. Whenthe system is 
on�ned in the [001℄ dire
tion, it is not intuitive to des
ribe the 
on-sequen
es of folding along h111i dire
tions. The 
al
ulated spe
tra show that alongthe folded � line transitions subdivide in two main groups and lead to a splittingof the E1 peak in the absorption 
urves. The two peaks have di�erent os
illatorstrengths and, ex
ept for an intermediate period length, the lowest energy one be-
omes mu
h stronger and 
overs the other one. Both peaks undergo 
on�nemente�e
ts and are moved towards higher energies in 
omparison with their bulk posi-tion: the 
on�nement and the 
onsequent shifts are stronger at smaller well widths.A splitting of the E1 transition with a blue shift of both peaks was indeed observedexperimentally in GaAs/AlAs superlatti
es [10℄. In the present 
al
ulation this isattributed to a splitting of the bulk valen
e band at the point L and along the �-line, as indi
ated by the band energies. The results of Figs. 4.4 and 4.5 show alsothat E1 peak displa
ements are more relevant in GaAs/va
uum superlatti
es, wherequantum 
on�nement e�e
ts are stronger due to the va
uum barrier.The behavior of the E2 peak is substantially di�erent: its main 
ontribution
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Figure 4.5: E1 and E2 peak positions for GaAs/AlAs (
losed symbols) and GaAs/va
uum (opensymbols) as a fun
tion of superlatti
e period p. The horizontal lines represent the peak energiesin the bulk.
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al properties
omes from transitions in a region 
lose to the spe
ial point k = 2�a �34 ; 14 ; 14� 1. Atthis k-point the alignment of both valen
e and 
ondu
tion GaAs and AlAs bands isalmost 
at and the ele
troni
 wave fun
tions are 
ompletely delo
alized all over theheterostru
ture. This explains why E2 peak in GaAs/AlAs superlatti
es is at anintermediate energy between bulk GaAs and AlAs E2 peak positions and does notshift when the superlatti
e period p de
reases. Our 
al
ulated peak positions are ingood agreement with experimental data [123, 10, 11℄, and in parti
ular a splittingof E2 is reported in Ref. [11℄. In GaAs/va
uum superlatti
es the situation 
hanges:the ele
trons near the spe
ial point are 
on�ned in GaAs layers and the superlatti
eE2 peak has a weak blue shift at small superlatti
e periods p, going ba
k to the bulkGaAs E2 energy when p grows. A single peak obviously arises in this 
ase sin
ethere is no AlAs 
ontribution. At last, we present in Fig. 4.6 some 
urves for thereal part of the diele
tri
 fun
tion �1 for GaAs/AlAs heterostru
tures. We observethat the average, or Penn gap (de�ned as the energy at whi
h �1 goes throughzero) does not depend on the superlatti
e period. This proves that the 
enter ofgravity of valen
e and 
ondu
tion bands is preserved, as suggested in Ref. [16℄: thisfollows from 
ompensating e�e
ts of a blue shift at the bottom of the band (positive
urvature) and a red shift at the top of the band (negative 
urvature).4.4 Opti
al anisotropy and ma
ros
opi
 diele
tri
 tensorIn (GaAs)p=(AlAs)p (001) superlatti
es the Td 
ubi
 point group of the zin
-blendstru
ture is repla
ed by the D2d symmetry group. Cubi
 
rystals present isotropi
opti
al properties, while in a superlatti
e the redu
tion in symmetry leads to opti
alanisotropy in the real part of the diele
tri
 
onstant (birefringen
e) and in the imag-inary part (absorption anisotropy, or di
hroism). The opti
al response 
an no longerbe 
hara
terized by a 
omplex diele
tri
 fun
tion, in its pla
e a 
omplex diele
tri
tensor must be introdu
ed. The GaAs/AlAs system is uniaxial, with the opti
alaxis dire
ted along the growth dire
tion z, thus the diele
tri
 tensor has the form:�ij (!) = �ii (!) Æij ; (4.23)1What we 
all E2 peak may in fa
t 
ontain weak 
ontributions from the E00 transition, whi
h 
an be 
learlyresolved only in derivative spe
tra. See e.g. Refs.[8, 10℄.
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Figure 4.6: Real part of diele
tri
 fun
tion for (GaAs)p=(AlAs)p (001) superlatti
es, by semi-empiri
al 
al
ulations, for di�erent values of the superlatti
e period p.
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al 
al
ulations of opti
al propertieswhere �xx = �yy = �? and �zz = �k 2.However, we do not hide that there are further 
ompli
ations. Besides the e�e
tsof spatial anisotropy, there are e�e
ts due to the spatial inhomogeneity of the solid,independently of his symmetry group. These are the lo
al �eld e�e
ts, whi
h willbe dis
ussed in the next 
hapter (see Se
tion 5.2). The in
lusion of lo
al �elds in
al
ulations allow to a

ount naturally for the intrinsi
 diele
tri
 anisotropy of amultilayer, arising from di�erent boundary 
onditions for an ele
tri
 �eld parallelor perpendi
ular to the layers [113, 114℄. This 
ontribution to birefringen
e 
anbe estimated for long wavelength of the in
oming radiation and large superlatti
eperiods p, in a 
lassi
al e�e
tive medium model [27℄. If boundaries are assumedabrupt and the 
onstituent materials are supposed to 
onserve their bulk diele
tri
fun
tions up to the interfa
es, we 
an apply approximate expressions for �? and �kin terms of bulk 
onstituent s
alar diele
tri
 fun
tions, �1 and �2 [113℄:�? (!) = 1l1 + l2 (�1 (!) l1 + �2 (!) l2) ; (4.24)��1k (!) = 1l1 + l2  l1�1 (!) + l2�2 (!)! ; (4.25)where l1, l2 are the layer thi
knesses of the two di�erent materials. Using semi-empiri
al 
al
ulated values of bulk stati
 diele
tri
 
onstants in expressions (4.24)and (4.25) we �nd a rough estimate �n ' 0:03 for the lo
al �eld 
ontribution tobirefringen
e at zero frequen
y. We know that this sizeable 
ontribution at largesuperlatti
e periods will be missed in our 
al
ulations, as long as we negle
t lo
al�eld e�e
ts. Lo
al �eld e�e
ts are known to depend on the superlatti
e period 3.At this stage we de
ide not in
lude lo
al �eld e�e
ts: we dire
tly take into a

ountonly the e�e
ts of ele
troni
 
on�nement and band folding on opti
al transitions.Comparison with birefringen
e data from Ref. [16℄, reported in Fig. 4.9, should allowto determine if the 
on�nement and the band folding 
ontributions to anisotropy2In GaAs/va
uum superlatti
es, where the point group is C2v , the system is biaxial with prin
ipal axes along[110℄, [1�10℄, [001℄ and the diele
tri
 
onstant for in-plane polarization has a slight additional anisotropy. Thesituation is analogous to heterostru
tures with no-
ommon atom, where the in-plane anisotropy has been measured[124℄.3The ma
ros
opi
 treatment remains valid as long as the superlatti
e period remains mu
h smaller than thewavelength of light, otherwise the superlatti
e should better be viewed as a one-dimensional photoni
 
rystal, wherelo
al-�eld e�e
ts embodied in �(G;G0) lead to the formation of a band gap for light propagation [125℄.
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an be suÆ
ient to explain the behavior of the birefringen
e, at least when thesuperlatti
e period is intermediate/small.4.5 Cal
ulations of birefringen
eIn Fig. 4.7 we present an example of the 
al
ulated frequen
y dispersion of �k and�?, both for the real and imaginary parts: the birefringen
e is dispersionless up toenergies 
lose to the dire
t gap, while at higher energies it presents resonant 
on-tributions. We see, as expe
ted, that folding and 
on�nement 
an have a greaterin
uen
e on the resonant part of the birefringen
e: indeed, transitions from valen
esubbands 
ouple di�erently with xy or z-polarized ele
tri
 �elds. Note that the in-terband absorption edge is higher in energy for z-polarized light: this is in agreementwith well known quantum well and superlatti
e physi
s, in whi
h the lowest transi-tion is a heavy hole one and is forbidden for light polarized along z 4. On
e again thee�e
t is greater when 
on�nement is stronger (small superlatti
e period p). There isa dispersionless 
ontribution to birefringen
e at low frequen
ies of the order of 10�3-10�2 that 
annot be distinguished in Fig. 4.7. As proposed in Ref. [16℄, we de
ouplethis low energy ba
kground birefringen
e, des
ribing �n (!) = (�?)1=2 � (�k)1=2 interms of a �tting fun
tion,�n (!) = �nbg ��ngap ln0�1�  !!g!21A ; (4.26)where �nbg is the ba
kground 
ontribution we want to isolate, the se
ond term refersto the resonant 
ontribution and !g is the gap frequen
y. In Ref. [16℄ the three pa-rameters �nbg, �ngap and !g are extra
ted by �tting with expression (4.26) theexperimental data. We also �t our 
al
ulated �n (!) 
urves by means of expression(4.26). In Fig. 4.8 we display the �t parameters as a fun
tion of the well width: thegraphs 
an be easily 
ompared with the analogous experimental 
urves presented inFig. 4.9. The gap frequen
ies we extra
t by the �t agree both with dire
tly 
al
u-lated gaps (barely visible in Fig. 4.4) and with the measured ones [16℄. �ngap showsan in
rease of the resonan
e for small periods: the theoreti
al 
urve reprodu
es the4The polarization sele
tion rule follows immediately from k�p theory, although a pre
ise 
al
ulation of absorptionspe
tra 
lose to the fundamental gap should of 
ourse in
lude the spin-orbit intera
tion [126℄.
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Figure 4.7: (a) Components of the diele
tri
 tensor (real and imaginary parts) for a(GaAs)4=(AlAs)4 (001) superlatti
e and (b) linear birefringen
e �n for (GaAs)p/(AlAs)p (001)superlatti
es, by semi-empiri
al 
al
ulations.
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Figure 4.9: Experimental parameters of equation (4.26) as a fun
tion of well width (half of asuperlatti
e period): (a) energy gap, (b) �ngap and �nbg from Ref. [16℄
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e 91trend of the experimental 
urve, although the 
al
ulated values are signi�
antlysmaller. The sudden de
rease of the measured ba
kground birefringen
e �nbg be-low 40 �A, on the other hand, is 
ompletely missing in our results. Moreover, the
al
ulated magnitude of this term above 40 �A is remarkably underestimated. Thefa
t suggests that folding e�e
ts give only a minor 
ontribution, while the origin ofthe behavior of �nbg must be attributed to lo
al �eld e�e
ts, as already suggestedin Ref. [16℄. Similar 
onsiderations 
an be made for the GaAs/va
uum systems.The magnitude of the ba
kground birefringen
e related to lo
al �eld e�e
ts 
anbe estimated in the 
ase of a long wavelength of the in
ident radiation and a nottoo small superlatti
e period p, thanks to the expressions in (4.24) and (4.25). Theobtained value, i.e. 0:03, is mu
h larger than the 
al
ulated values in Fig. 4.8, for allsuperlatti
e periods p, and it is of the same order of magnitude as the the experimen-tal results at intermediate/large p. Only for small periods p, when relations (4.24)and (4.25) do not hold, the lo
al �eld 
orre
tion may not respe
t the analyti
 limitvalue. Nevertheless, the e�e
ts in
luded in 
al
ulations fail to des
ribe the smallsuperlatti
e period region as well. Further 
al
ulations of the opti
al propertiesin
luding lo
al-�eld e�e
ts are obviously required to 
larify this point.In this 
hapter we have applied the semi-empiri
al LCBB te
hnique and the semi-
lassi
al theory of interband transitions to 
ast light on how the opti
al spe
tra ofbulk semi
ondu
tors evolve to superlatti
e spe
tra. We have dis
ussed the adoptedapproximations, namely the independent-parti
le pi
ture negle
ting lo
al �eld e�e
ts.First, we have 
onsidered the average diele
tri
 fun
tion. Quantum-
on�nementindu
ed shifts of the 
riti
al point energies are 
al
ulated for both kinds of super-latti
es and are found to be larger for the GaAs/va
uum systems, where 
ouplingbetween di�erent GaAs layers is only due to quantum-me
hani
al tunneling and hasa negligible e�e
t. For both GaAs/AlAs and GaAs/va
uum superlatti
es, the E1peak in the absorption spe
trum splits into two peaks with in
reasing blue shifts forde
reasing superlatti
e period. This result agrees with the observations of Ref. [10℄on GaAs/AlAs superlatti
es, and is attributed to a symmetry splitting of the valen
ebands along the line �-L. The blue shifts are always larger for the GaAs/va
uumsystems. The E2 transition instead is found to be split for large-period GaAs/AlAssuperlatti
es, where the ele
troni
 states of the bulk are 
on�ned in ea
h layer and



92 Chapter 4. Semi-empiri
al 
al
ulations of opti
al propertiesthe absorption spe
trum is the superimposition of the two bulk ones. The energy ofthe E2 peak depends weakly on the superlatti
e period. The average or Penn gap,de�ned as the �rst zero of the real part of the diele
tri
 
onstant, does not dependon the superlatti
e period, 
on�rming the expe
tation that a blue shift at the lowerabsorption edges is 
ompensated by red shifts in the upper parts of the absorptionspe
trum.Se
ond, we have studied the opti
al anisotropy. The band 
ontribution to linearbirefringen
e of GaAs/AlAs superlatti
es is 
al
ulated and 
ompared with re
ent ex-perimental results of Ref. [16℄. The zero-frequen
y birefringen
e is found to be mu
hsmaller than the experimental results: we suppose that the missing 
ontribution toobserved stati
 birefringen
e may be attributed to lo
al-�eld e�e
ts, as already sug-gested in the experimental analysis of Ref. [16℄. The frequen
y-dependent part ofthe birefringen
e arising from band folding and quantum 
on�nement in
reases withde
reasing superlatti
e period, as found in the experiment, although the 
al
ulatedvalues are smaller. On
e again, a better qualitative agreement 
ould be obtainedthanks to the in
lusion of lo
al �eld e�e
ts.The presented results state the validity of the LCBB method, and its underlyingapproximations, to des
ribe the averaged opti
al properties. Nevertheless, a deeperstudy is needed to understand opti
al anisotropy, in parti
ular the origin of thebehavior of the stati
 birefringen
e as a fun
tion of the superlatti
e period.



Chapter 5
Ab-initio 
al
ulations of opti
alproperties
After having dis
ussed the empiri
al approa
h, we are going to turn our interestto �rst prin
iple theoreti
al and 
omputational tools in spe
tros
opi
 properties
al
ulations. We have introdu
ed in the previous 
hapter the 
omplex problem ofdetermining opti
al spe
tra in the whole visible region. A 
ompletely satisfa
torysolution of this task requires a des
ription, whi
h takes into a

ount at the sametime not only the detailed ele
troni
 stru
ture, but also the many-body e�e
ts andthe mi
ros
opi
 inhomogeneity of the medium. Non-trivial systems, like surfa
es,
lusters, semi
ondu
tor nanostru
tures, are today su

essfully treated in the ab ini-tio framework, most often by 
onstru
ting the ex
itation spe
trum of the system as asum over independent transitions between the states determined in the ground state
al
ulation (i.e. using the one-ele
tron energies and wavefun
tions of the Kohn-Shamequation). This degree of approximation 
an be equivalent to the one adopted inour semi-empiri
al 
al
ulations of the opti
al spe
tra, whi
h has provided a detailedanalysis of the e�e
ts of band folding and 
on�nement in semi
ondu
tor superlat-ti
es [28℄. However, no quantitative agreement with the experiment has been found
on
erning the stati
 birefringen
e, nor 
ould semi-empiri
al independent-transition
al
ulations explain, even qualitatively, the in
rease of the stati
 birefringen
e within
reasing superlatti
e period. One might suspe
t that the semi-empiri
al approa
his not suÆ
iently pre
ise to des
ribe su
h a small e�e
t as the birefringen
e. The93



94 Chapter 5. Ab-initio 
al
ulations of opti
al propertiesother strongly suspe
ted reason for failure is the inadequa
y of the basi
 approx-imations used to determine the ma
ros
opi
 diele
tri
 fun
tion. In parti
ular, weexpe
t that the lo
al �eld e�e
ts 
an play a very important role. Both the points
all for a more detailed investigation into the anisotropy of the opti
al response.In order to go beyond the simple independent-transition pi
ture for the des
rip-tion of two-parti
le ex
itations, like absorption spe
tros
opy, the most important
orre
tions to be in
luded are the full ele
tron-ele
tron and ele
tron-hole intera
-tions and lo
al �eld e�e
ts. Let us dis
uss now more in detail these e�e
ts. Lo
al�eld e�e
ts express the fa
t that, related to the inhomogeneity of the material, itsresponse to an external potential with given spatial frequen
y will in
lude, in prin-
iple, all other spatial frequen
ies determined by the re
ipro
al latti
e ve
tors of theperiodi
 system. This implies that, te
hni
ally, the size of the problem whi
h has tobe dealt with is 
onsiderably bigger than for the simple sum of transitions and, infa
t, lo
al �eld e�e
ts are often omitted in 
al
ulations. However, superlatti
es areintrinsi
ally inhomogeneous, and these e�e
ts 
an therefore be expe
ted to play animportant role in their opti
al and diele
tri
 properties. The Kohn-Sham eigenvaluesare not meant to des
ribe ele
tron addition and removal energies: only quasi-parti
leenergies, whi
h 
an be obtained within the many-body theory, are suitable to de-s
ribe the 
hanges in total energy o

urring in dire
t and inverse photoemissionpro
esses. However, quasi-parti
le 
orre
tions are still not enough to des
ribe allthe e�e
ts arising in an absorption pro
ess, where intera
ting ele
tron-hole pairs are
reated. In fa
t, another e�e
t, well known to be important for opti
al spe
tra, isthe ele
tron-hole intera
tion, or ex
itoni
 e�e
t. This e�e
t is due to the fa
t thatthe 
reated ele
tron-hole pair may intera
t more or less strongly, leading to boundstates within the gap and/or to strong deformations above the 
ontinuum absorptionedge. The importan
e of these e�e
ts depends on the size of the s
reening of theele
tron-hole intera
tion and on the details of the band stru
ture. In parti
ular for
at bands, whi
h are linked to the existen
e of lo
alized (
on�ned) states, this e�e
tis expe
ted to be very strong. Hen
e, due to the 
on�nement properties of superlat-ti
es, their spe
tra are expe
ted to show relevant ex
itoni
 e�e
ts. At the momentwe want to fo
us on the superlatti
e birefringen
e at zero frequen
y and not on thewhole absorption spe
tra: as the stati
 birefringen
e is a ground state property, we
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an expe
t that negle
ting quasi-parti
le 
orre
tions and ex
itoni
 e�e
ts has not adramati
 in
uen
e on the results. As a matter of fa
t, we will show that only whenlo
al �eld e�e
ts are in
luded qualitative and even quantitative agreement with theexperiment 
an be a
hieved. These results will be dis
ussed in the �rst part of this
hapter.In the se
ond part, we will go ba
k to the problem of ele
tron-ele
tron andele
tron-hole intera
tions, to study the line-shape of absorption spe
tra up to 7eV for bulk GaAs and AlAs systems. The 
al
ulation of opti
al spe
tra for bulksemi
ondu
tors is a widely investigated subje
t. In the last de
ades the many-body perturbation theory has produ
ed expressions both for the self-energy and theele
tron-hole intera
tion, whi
h are su

essfully used in 
omputational physi
s. Theself-energy � is usually obtained within Hedin's GW approa
h, starting from DFTresults as a zero-order solution. Similarly, the ex
itoni
 e�e
ts are well des
ribed bythe Bethe-Salpeter equation (BSE), via a fun
tional derivative of the self-energy �.However, the many-body perturbation theory is not the only approa
h developedto deal with response properties. The limits of DFT 
omes from the fa
t that ex-
ited states, are not a

essible through stati
 ground state DFT. In prin
iple, theseproblems 
an be over
ome, at least as far as opti
al ex
itations are 
on
erned, bytaking into a

ount the fa
t that in the absorption experiment the system is re-sponding to a time-dependent external �eld. Therefore a generalization of stati
DFT to Time-Dependent DFT (TDDFT) has been proposed [127, 128℄, i.e. all po-tentials are now fun
tionals of the time-dependent density. Besides the potentials,also their fun
tional derivatives with respe
t to the density are needed (at leastimpli
itly), sin
e the system is responding self-
onsistently to the applied perturba-tion. As it happened in stati
 DFT, again, the main problem resides in �nding agood approximation to the ex
hange-
orrelation 
ontribution. The time-dependentDFT approa
h still keeps the advantage of the stati
 one to be 
omputationallyvery eÆ
ient, and 
ould in prin
iple repla
e other su

essful, but more 
umbersomemethods like the Bethe-Salpeter approa
h (BSE)[129, 130, 131, 132℄. However, thereare some additional diÆ
ulties with respe
t to the 
ase of stati
 DFT: in the present
hapter we will mainly deal with the determination of reliable approximations forthe time-dependent density variation of the ex
hange-
orrelation potential Vx
, i.e.
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al
ulations of opti
al propertiesthe so-
alled ex
hange-
orrelation (x
) kernel, fx
 = ÆVx
=Æ�.Real 
al
ulations are dependent on the 
hosen approximation for the x
 kernelfx
: the lowest level of approximation (RPA) 
onsists in negle
ting the kernel, an-other simple approximation is the adiabati
 lo
al density approximation (TDLDA)[133, 134℄, where the kernel is 
al
ulated from the LDA ex
hange-
orrelation po-tential V LDAx
 . At present, the simple adiabati
 lo
al density approximation for theTDDFT kernel has given promising results for �nite systems, but does not su

eedin des
ribing absorption spe
tra in solids. Improvements might 
ome through thein
lusion of dynami
al (memory) e�e
ts and/or long-range nonlo
al terms [128, 135℄.Re
ently, Reining et al. [30℄ have shown that a stati
 long-range 
ontribution (LRC)
an simulate the strong 
ontinuum ex
itoni
 e�e
t in the absorption spe
trum ofbulk Sili
on. Here we present the results for GaAs and AlAs spe
tra. We will showthat the opti
al absorption, whi
h exhibits a strong 
ontinuum ex
iton e�e
t, is
onsiderably improved with respe
t to 
al
ulations where the adiabati
 lo
al den-sity approximation is used.We underline that the 
al
ulations 
on
erning the superlatti
e zero-frequen
y bire-fringen
e have been performed within a time-dependent DFT formalism as well.Also in this 
ase, we will dis
uss the di�erent approximations adopted to des
ribethe x
 kernel fx
.5.1 Time Dependent Density Fun
tional TheoryWe dis
uss here the essential formalism of the time-dependent generalization of DFT.For detailed information on this subje
t, we suggest to refer to some re
ent reviews[128, 136, 137, 138, 139℄. The Density Fun
tional Theory, as des
ribed in Chapter3, is a ground state theory, thus unable to a

ount for ele
troni
 ex
itations. Theserestri
tions 
an be over
ome within the DFT formalism, generalizing it by allowinga time dependen
e for the external �eld. As in 
lassi
al me
hani
s, the DFT groundstate is determined by the energy minimum:ÆE[�℄=Æ�(r) = 0 : (5.1)Extending the analogy, as the traje
tory of a 
lassi
al system is given by the extremaof the 
lassi
al a
tion R t1t0 dtL(t), where L is the Lagrangian, the evolution of a
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tional Theory 97quantum system, whi
h undergoes an external time-dependent potential Vext(r; t),is given by the extrema of the quantum me
hani
al a
tion:A = Z t1t0 dth	(t)ji ��t � Ĥ(t)j	(t)i : (5.2)Of 
ourse, there are some theorems [127℄, exa
tly analogous to the Hohenberg-Kohn theorems (see Se
tion 3.1.1) and presented within a framework similar tothe Kohn-Sham s
heme (see Se
tion 3.1.2). A �rst theorem proves that there is abije
tive 
orresponden
e between time-dependent external potentials Vext(r; t) andv-representable time-dependent densities �(r; t). A se
ond theorem proves that theevolution of the system is determined by the extrema of the quantum me
hani
ala
tion. Van Leeuwen [140℄ has shown that the time-dependent density, whi
h 
har-a
terizes a many-body system 
an be, in prin
iple, reprodu
ed by a time-dependentexternal potential, in a many-body system with no two-parti
le intera
tions. Thisproperty allows to represent at any time the density of a many-body system by meansof a non-intera
ting system, whi
h reprodu
e the exa
t intera
ting density �(r; t).The evolution of the system is des
ribed by the time-dependent KS-equations:��12r2 + Veff(r; t)� i(r; t) = i ��t i(r; t) ; (5.3)�(r; t) = NXi=1 j i(r; t)j2 ; (5.4)where Veff(r; t) = VH(r; t) + Vx
(r; t) + Vext(r; t) (5.5)is, as in the stati
 
ase, the e�e
tive potential felt by the ele
trons. It 
onsists of thesum of the external time-dependent applied �eld, the time-dependent Hartree term,plus the ex
hange-
orrelation potential (de�ned through the equivalen
e between theintera
ting and �
titious non-intera
ting systems). From the variational prin
iple,it is possible to de�ne: Vx
(r; t) = ÆAx
[�℄Æ�(r; t) ; (5.6)where Ax
[�℄ is the ex
hange-
orrelation part of the a
tion fun
tional A. Besides itselegan
e, the most remarkable quality of the time dependent DFT is in its 
ompu-tational simpli
ity, in 
omparison to other available methods.
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al
ulations of opti
al properties5.1.1 Derivation of an expression for the diele
tri
 fun
tionThe linear response of the 
harge density to an external time-dependent perturbationis determined by the polarizability � of the medium:�(r; t; r0; t0) = Æ�(r; t)ÆVext(r0; t0) �����Vext=0 : (5.7)The Eq. (5.7) means that the density �(r; t) and the external potential are relatedin the following way :�(r; t) = �(r; t0) + Z �(r; t; r0; t0)Vext(r0; t0)dr0dt0 +O(V 2ext) : (5.8)The independent-parti
le polarization �0 relates, in a fully equivalent way, the ele
-tron density �(r; t) to the e�e
tive potential Veff(r; t):�0(r; t; r0; t0) = Æ�(r; t)ÆVeff(r0; t0) �����Veff=0 : (5.9)Remembering the de�nition of the e�e
tive-potential, Veff = Vext + VH + Vx
, it iseasy to obtain:ÆVeff(r; t)ÆVext(r0; t0) = Æ(r� r0)Æ(t� t0)+Z "Æ(t� t00)jr� r00j + fx
(r; t; r00; t00)#�(r00; t00; r0; t0)dr00dt00 ; (5.10)where fx
(r; t; r0; t0) = ÆVx
[�(r; t)℄Æ�(r0; t0) �����Vext=0 (5.11)is the time-dependent x
 kernel andv(x; x0) = v(r; r0) Æ(t� t0) = Æ(t� t00)jr� r00j (5.12)a

ounts for the variation of the Hartree potential. After deriving the simple relation:Æ�=ÆVext = (Æ�=ÆVeff)(ÆVeff=ÆVext) � �0ÆVeff=ÆVext ; (5.13)a Dyson-like equation, whi
h 
onne
ts the two polarizabilities � and �0, follows ina straightforward way:�(r; r0;!) = �0(r; r0;!)+Z dr1dr2�0(r; r1;!) " 1jr1 � r2j + fx
(r1; r2; !)#�(r2; r0;!) : (5.14)



5.1. Time Dependent Density Fun
tional Theory 99This s
heme allows to des
ribe the exa
t linear response of an intera
ting system interms of the response of a non-intera
ting system with external potential Veff(r; t).The exa
t ex
hange-
orrelation 
ontributions are of 
ourse unknown, and the appli-
ation of the theory relies on some approximations. The lowest level of approxima-tion (RPA) 
onsists in negle
ting the kernel:fRPAx
 = 0 : (5.15)Another simple approximation is the adiabati
 lo
al density approximation (TDLDA)[133, 134℄, where the kernel is 
al
ulated from the LDA ex
hange-
orrelation poten-tial used in ground state 
al
ulations:fTDLDAx
 (r) = Æ (r; r0) dV LDAx
 (r)d�(r) : (5.16)Inverting formally Eq. (5.14), one obtains a 
ompa
t equation� = [1� �0(v + fx
)℄�1 �0 ; (5.17)where v is the Coulomb potential. The inverse diele
tri
 fun
tion ��1 measures thes
reening in the system: ��1 (r; t; r0; t0) = ÆVeff(r; t)ÆVext(r0; t0) : (5.18)In pra
ti
e, we need the inverse diele
tri
 fun
tion in the momentum spa
e, whi
his related by a Fourier transform to real spa
e:��1 (r; r0;!) = 1(2�)3 ZBZ dq XG;G0 ei(q+G)�r ��1GG0 (q; !) e�i(q+G0)�r0 : (5.19)Some 
are must be taken in the origin of the indu
ed s
reening. If the probe isassumed to be a test parti
le, it is only a�e
ted by the ele
trostati
 Hartree termin equation (5.10). From Eq. (5.10) it follows that the inverse diele
tri
 fun
tion is
onne
ted to the polarizability by the relation:��1 = 1 + v� : (5.20)The random phase approximation (RPA) response fun
tion is obtained, simplyimposing fx
 = 0: ��1RPA = 1 + v (1� �0v)�1 �0 : (5.21)
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al
ulations of opti
al propertiesThen, inverting the matrix relation and using the matrix equality(1� �0v)�1 �0 = �0 (1� v�0)�1 ; (5.22)we obtain: �RPA = 1� v�0 : (5.23)In 
on
lusion, all we need to perform 
al
ulations is an expli
it formulation ofthe polarizability. Appli
ation of �rst-order perturbation theory to the Kohn-Shamequations (3.20) yields the standard result for the independent-parti
le polarization�0 in the Adler-Wiser formulation [115, 116℄:�0 (r; r0;!) = 2Xi;j (fi � fj) �i(r)��j(r)��i (r0)�j(r0)�i � �j � ! � i� ; (5.24)where fi are the o

upation numbers (0; 1) and � is a positive in�nitesimal number.The small imaginary 
onstant added in the denominator a

ounts for 
ausality,and des
ribes lifetime e�e
ts when it is small, but �nite; the fa
tor 2 stems fromspin degenera
y. The expli
it Fourier transformation of the independent-parti
lepolarization results:�GG00 (q; !) = 2Xi;j (fi � fj) hjje�i(q+G)�rjiihijei(q+G0)�r0jji�i � �j � ! � i� : (5.25)5.1.2 RPA approximation without lo
al �eld e�e
tsIt is interesting to establish a link between the formula (4.14) in Se
tion 4.1. forthe imaginary part of the diele
tri
 fun
tion and the analogous formula within theRPA approximation, whi
h we 
an derive starting from the expression for �0 inEq. (5.25). At this stage, we 
ontinue negle
ting lo
al �eld e�e
ts, to preserve the
orresponden
e with the semi-empiri
al 
al
ulations. From Eqs. (5.23) and (5.25)we obtain:�M (!) = 1 + 24�
limq!0 1q2 Xk2BZXv;
 24 jhn
;k+ qjeiq�rjnv;kij2�n
;k+q � �nv;k � (! + i�) + jhn
;k� qje�iq�rjnv;kij2�n
;k�q � �nv ;k + (! + i�)35 ;(5.26)



5.1. Time Dependent Density Fun
tional Theory 101where we have used the Fourier transformation of the Coulomb potential:1jrj = 4�
 Xq;G ei(q+G)�rjq+Gj2 : (5.27)Sin
e the se
ond term (anti-resonant) does not 
ontribute to the absorption, we 
anreje
t it:�2 (!) = 24�
 limq!0 1q2 Xk2BZ Xnv;n
 Im 24 jhn
;k+ qjeiq�rjnv;kij2�n
;k+q � �nv ;k � (! + i�)35 : (5.28)For a non-lo
al Hamiltonian H, the 
ommutator with the 
oordinate operator isgiven by: ddtri = i [H; ri℄ = pi + i [Vnl; ri℄ ; (5.29)where Vnl is the non-lo
al part of the Hamiltonian. Another way to write the previousexpression is [141℄: v� = limq!0 hH; eiqr�i =q ; (5.30)where v� and r� are, for � = x; y; z, the Cartesian 
omponents of v and r. Applyingnow Eqs. (5.29) and (5.30) to simplify Eq. (5.28), we obtainlimq!0 hn
;k+ qjeiq�rjnv;ki=q = e � hn
;kjri + i [Vnl; r℄ jnv;ki�KS
 � �KSv ; (5.31)where e is a polarization unitary ve
tor, pointing in the dire
tion of q. We have indi-
ated expli
itly that the eigenvalues in the denominator are Kohn-Sham eigenvalues,be
ause they derive by the appli
ation of the Kohn-Sham Hamiltonian, even if GW
orre
tions are added. In fa
t, the use of the quasi-parti
le Hamiltonian to 
al
ulatethe 
ommutator would be mu
h more demanding, be
ause the self-energy operator� is non-lo
al and dynami
al. Hen
e, the �nal formula in the RPA approximation,negle
ting lo
al �eld e�e
ts is:�2 (!) = 24�
limq!0 Xk2BZ Xnv;n
 �����e � hn
;kjri + i [Vnl; r℄ jnv;ki�KS
 � �KSv �����2 " 1�n
;k+q � �nv;k � (! + i�)# :(5.32)We want to show that the expression (5.28) is equivalent to the expression (4.14):�2(!) = 24�2
 1!2 Xn
;nv Xk2BZ je �M
v(k)j2 Æ (!
(k)� !v(k)� !) : (5.33)
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al
ulations of opti
al propertiesExploiting on
e again Eqs. (5.29) and (5.30), we 
an rewrite it in a slightly di�erentway:�2(!) = 24�2
 limq!0 1q2 Xn
;nv Xk2BZ ���hn
;k+ qjeiq�rjnv;ki���2 Æ (!
(k)� !v(k)� !) ;(5.34)whi
h is the imaginary part of Eq. (5.28). In fa
t:lim�!0 1x� i� = P 1x � i�Æ (x) : (5.35)5.2 Lo
al �eld e�e
tsA solid whi
h possesses latti
e-potential symmetry is non-homogeneous on the mi-
ros
opi
 s
ale, even when it is 
hara
terized by a 
ubi
 symmetry group, whi
hyields isotropi
 opti
al properties. When an external perturbing �eld of small waveve
tor q and frequen
y ! is applied to the system, the lo
al �eld will in general
ontain \Bragg re
e
ted" terms, i.e. dependent on the wave ve
tor q +G, where Gis a re
ipro
al latti
e ve
tor. These mi
ros
opi
ally varying terms 
u
tuate on thewavelength of the interatomi
 spa
ing. The frequen
y ! is not a�e
ted, supposingthe homogeneity of the time. The di�eren
e between the lo
al and the ma
ros
opi
�eld 
onstitutes the lo
al-�eld 
orre
tions in the ele
tromagneti
 response.Let us 
onsider an ele
tri
 �eld E, in
oming on a non-homogeneous medium.In the linear approximation, the polarization e�e
ts are des
ribed by the ele
tri
displa
ement ve
tor D:D(q+G; !) =XG0 �mi
(q+G;q+G0;!)E(q+G0; !) : (5.36)We are interested in a relation whi
h, in the limit of a negligible q, 
onsider onlyma
ros
opi
 quantities: DM(!) = �M(!)EM(!) : (5.37)A

ording to Adler [115℄ and Wiser [116℄, the ma
ros
opi
 diele
tri
 tensor 
an berelated to the inverse of the mi
ros
opi
 diele
tri
 matrix [117, 118℄:�M (!) = limq!0 1��1GG0 (q; !) �����G=G0=0 : (5.38)
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es 103The di�eren
e between an homogeneous and non-homogeneous medium lies in theo�-diagonal terms. In the dire
t spa
e this means that the mi
ros
opi
 diele
tri
fun
tion "(r; r0) depends expli
itly on the positions r and r0, and not simply onthe distan
e jr � r0j. If the medium were homogeneous, the ma
ros
opi
 diele
tri
fun
tion would be �M = limq!0 �G=0;G0=0 ; (5.39)i.e. the spatial average of the mi
ros
opi
 diele
tri
 fun
tion. In 
ase of isotropi
media, the dire
tion in whi
h the limit of the small q ve
tor has to be taken isnon-in
uent. In 
ase of a GaAs/AlAs superlatti
e, taking the limit of q in the z orx/y dire
tions gives respe
tively the 
omponents �k and �? of the diele
tri
 tensor,whi
h in
lude lo
al �eld e�e
ts (LFE).5.3 Results for the birefringen
e of GaAs/AlAs superlat-ti
esThe redu
tion of the original 
ubi
 symmetry of the diamond or zin
-blend stru
-ture gives rise to an opti
al anisotropy in GaAs/AlAs superlatti
es [16℄. As wehave already dis
ussed in the previous 
hapter, the birefringen
e in perturbed bulksemi
ondu
tors has two well-known 
ontributions [142, 143℄, namely a dispersionlessterm related to virtual dire
t transitions involving high energy gaps between valen
eand 
ondu
tion bands, and a resonant term whi
h represents the isolated e�e
ts ofthe virtual transitions asso
iated with the small energy gaps between the top valen
ebands and the �rst 
ondu
tion bands. We have 
al
ulated the stati
 birefringen
eof (001) (GaAs)p/(AlAs)p superlatti
es for the barrier/well period p=1 to p=8, em-ploying the ab initio DFT approa
h whi
h should a priori des
ribe details of theband stru
ture in a more reliable way, if 
ompared to an empiri
al approa
h. Infa
t, one might suspe
t that the semi-empiri
al approa
h is not suÆ
iently pre
iseto des
ribe su
h a quantity as the birefringen
e whi
h requires 
al
ulations of highpre
ision, being a very small (of the order of 10�2) di�eren
e between two diele
tri

onstants. However, we will see that this rather te
hni
al point turns out not to bethe main sour
e of error in the 
al
ulations in Chapter 4. In fa
t, we have proved inSe
tion 5.1.2 that TDDFT 
al
ulations without lo
al �eld e�e
ts, within the RPA
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Figure 5.1: Stati
 birefringen
e for GaAsp/AlAsp superlatti
es as a fun
tion of p. Cir
le: exper-iment from Ref. [16℄. Filled square: RPA theoreti
al values without lo
al �elds. Empty square:semi-empiri
al theoreti
al values without lo
al �elds. The e�e
tive medium value 
al
ulated withthe theoreti
al RPA (with lo
al �elds) diele
tri
 
onstants of bulk GaAs and AlAs is indi
ated bythe horizontal dashed line (see text).
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es 105approximation for the x
-kernel, yield opti
al spe
tra totally equivalent to the oneswe have 
al
ulated within the semi-empiri
al framework. In Fig. 5.1 we 
ompareab initio and semi-empiri
al 
al
ulations without lo
al �eld e�e
ts. The two 
urvesshow the same trend as a fun
tion of the superlatti
e period p. The values of thebirefringen
e are moreover 
ompletely 
ompatible: the TDDFT 
al
ulations 
on-�rm hen
e the semi-empiri
al results. In our ab initio 
al
ulation we have 
arefully
he
ked the symmetries of the wavefun
tions and of the energy levels. In parti
ular,the symmetry operation whi
h makes x and y axes equivalent for a tetragonal super-latti
e belongs to a non-symmor�
 point group, whereas the 
odes used 
an 
onsideronly symmor�
 point groups. Thus, we had to work on improving the 
onvergen
eof the wavefun
tions, to assure that the x and y 
omponents of the diele
tri
 tensor
ould be equal up to 10�5, and, as a 
onsequen
e, that the 
al
ulated birefringen
e
ould not 
ontain un
ontrolled errors due to asymmetries.It is well known that many-body e�e
ts beyond the simple independent-parti
lepi
ture often drasti
ally alter the diele
tri
 properties of materials. Self-energy andex
itoni
 e�e
ts 
an have a signi�
ant 
ontribution to the absorption spe
tra ofeven simple bulk semi
ondu
tors, and by 
onsequen
e also 
hange their diele
tri

onstants. These e�e
ts are due to variations of the ex
hange-
orrelation potentialupon ex
itation. Of 
ourse, there are also 
ontributions stemming from variationsof the Hartree potential, in
luding the so-
alled lo
al �eld e�e
ts, whi
h expressthe fa
t that these variations re
e
t the 
harge inhomogeneity of the respondingmaterial. Therefore, lo
al �eld e�e
ts 
an be of moderate importan
e, 
omparedto the ex
hange-
orrelation 
ontributions, for example in the absorption spe
tra ofsimple bulk semi
ondu
tors, but show up in
reasingly when one 
onsiders more in-homogeneous systems. In ele
troni
 spe
tra of 
lusters (whi
h are to be 
onsideredas a strong inhomogeneity in empty spa
e), and for spe
tra involving ex
itationsfrom strongly lo
alized states [144℄, lo
al �eld e�e
ts alone explain already mostof the drasti
 disagreement between results obtained in the independent-transitionapproa
h, and the experimental spe
tra. One 
an hen
e suspe
t that, as alreadysuggested by [16℄ and indire
tly 
on�rmed by the results of the previous 
hapter,lo
al �eld e�e
ts play a 
ru
ial role for the des
ription of the anisotropy of the di-ele
tri
 properties of superlatti
es, and should not be negle
ted, independently of
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al
ulations of opti
al propertiesthe fa
t whether semi-empiri
al or ab initio approa
hes are used. Thus, we havede
ided to investigate the role of lo
al �eld e�e
ts. The RPA values of the bire-fringen
e �n = p"? � p"k 
al
ulated without and with lo
al �elds (respe
tivelyempty and �lled squares) are reported on Fig. 5.2 as a fun
tion of the well width,together with the experimental results of Ref. [16℄ (�lled 
ir
les). On
e again, we re-mark that the negle
t of lo
al �elds leads to an anisotropy mu
h smaller than in theexperiment. The in
lusion of the o�-diagonal elements in the inversion of "�1G;G0 dras-ti
ally 
hanges the behavior of the birefringen
e: the amplitude in
rease up to theexpe
ted e�e
tive medium value �n = 0.05, 
al
ulated with "? = ("GaAs+ "AlAs)=2and "�1k = ("�1GaAs + "�1AlAs)=2 [27℄. Sin
e any 
al
ulation of the stati
 diele
tri

onstant within the RPA approximation, in
reases the diele
tri
 mismat
h betweenGaAs and AlAs 
ompared to experiment [145℄, the e�e
tive medium plateau 
al
u-lated with theoreti
al diele
tri
 
onstants has a higher value than the experimentalone. The in
lusion of lo
al �eld e�e
ts perfe
tly reprodu
es the in
rease of theanisotropy with in
reasing superlatti
e period, whi
h was 
ompletely absent in theindependent-transition 
al
ulations. We �nd that, for p > 3, the opti
al anisotropyin (GaAs)p/(AlAs)p superlatti
es is 
ompletely determined by the anisotropy of thelo
al �elds.It is now interesting to analyze these results more in detail, in order to under-stand better the importan
e of lo
al �eld e�e
ts. Eqs. (5.25) and (5.23) show that,indeed, �0 and the mi
ros
opi
 RPA diele
tri
 tensor "RPA are sums over indepen-dent transitions, but the relation between the ma
ros
opi
 diele
tri
 
onstant and�0 (even in RPA) is mu
h more 
ompli
ated than the simple linear relation (5.23),that is used in 
al
ulations negle
ting lo
al �eld e�e
ts. The inversion (5.38) leadsin fa
t to an e�e
tive mixing of transitions. Therefore, it is worthwhile to see, asa �rst step, whi
h transitions determine the anisotropy of the diele
tri
 response.We explore this idea by examining the e�e
ts of the highest valen
e and lowest 
on-du
tion bands on the birefringen
e for the well/barrier period p=3 and p=8. In a�rst step we 
onsider "all" the 
ondu
tion bands (i.e. those ne
essary to a
hieve
onvergen
e) as possible �nal states for the transitions, but we restri
t the initialstates to the v �rst valen
e bands (Fig. 5.3, lower panel). Note that in order to s
alethe results of the three superlatti
es, the abs
issa axis varies from latti
e to latti
e,
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Figure 5.2: Stati
 birefringen
e for GaAsp/AlAsp superlatti
es as a fun
tion of p. Cir
le: ex-periment from Ref. [16℄. Empty square: theoreti
al values without lo
al �elds. Filled square:theoreti
al values with lo
al �elds. The theoreti
al values are 
al
ulated at the average of the the-oreti
al latti
e parameters. The e�e
tive medium value 
al
ulated with the theoreti
al diele
tri

onstants of bulk GaAs and AlAs is indi
ated by the horizontal dashed line (see text).
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al
ulations of opti
al propertieswith v = ip, p being the well/barrier period and i an integer. The dependen
e of thebirefringen
e on the number of valen
e bands in
luded in the 
al
ulation shows thesame behavior for all the studied superlatti
es. The bands 1 to 2p do not 
ontributeto the birefringen
e. A large positive 
ontribution arises from bands 4p to 6p, whi
his almost 
ompletely 
an
eled by the (folded) light-hole and heavy-hole bands from6p to 8p. If lo
al �eld e�e
ts are negle
ted the 
an
ellation is total. Also the 
on-tributions of the bands to the birefringen
e due to the lo
al �elds 
an
el, and evenlead to a 
hange in sign; the �nal results is dominated by the anisotropy of the lo
al�elds arising from transitions involving the top valen
e bands.In a se
ond step, we 
onsider "all" the valen
e bands, and restri
t �nal statesto the 
 upper 
ondu
tion bands as �nal states (Fig. 5.3, upper panel). Here the
ondu
tion band number is 
 = (i � 1)p + 1, and i and p have already been de-�ned. The highest 
ondu
tion bands do not 
ontribute to the birefringen
e. Thehigh step-like positive 
ontribution of the intermediate bands are 
an
eled by the(folded) last 
ondu
tion bands. On
e again, the lo
al �elds are not important butfor the bottom 
ondu
tion bands. The 
an
ellation e�e
ts are essential: in fa
t,a 
al
ulation involving only the highest valen
e and the lowest 
ondu
tion bandsyields a 
ontribution of lo
al �eld e�e
ts whi
h is overestimated by about a fa
tor10. The observed anisotropy 
an hen
e not be explained in a simple model involvingfew transitions. The evolution of the top valen
e region is most 
hara
teristi
 forwhat is going on in this system: due to the anisotropy, to be pre
ise the 
on�ne-ment in z-dire
tion, the top valen
e at � splits into a double degenerate heavy-holeand a single light-hole state. We �nd that the light hole state at � 
ouples to lightpolarized along the growth dire
tion, whereas the heavy-hole states respond to lightpolarized in-plane. Of 
ourse, the order and 
hara
ter of the states 
hange through-out the Brillouin zone, whi
h prevents a simple one-to-one analysis, but, as it is alsoevident from Fig. 5.4, this lifting of degenera
y in the region 
lose to the Fermi levelis suÆ
ient to explain the observed anisotropies in 
al
ulations without lo
al �elde�e
ts.A deeper analysis of the birefringen
e passes through an analysis of its single
omponents, i.e. the diele
tri
 
onstant for light polarized in plane and perpendi
-ular to the growth dire
tion. In Fig. 5.4 the upper panel shows the results for �?
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110 Chapter 5. Ab-initio 
al
ulations of opti
al propertiesand �k without lo
al �eld e�e
ts, the lower panel in
luding lo
al �eld e�e
ts, as afun
tion of the superlatti
e period p. First, " is essentially in
reasing with in
reas-ing p, whi
h 
an be dire
tly attributed to the 
on�nement e�e
ts: the average gapbetween o

upied and empty states de
reases, due to a de
rease of 
on�nement.Se
ond, for large superlatti
e periods, " tends to the average of the bulk diele
tri

onstants of GaAs and AlAs[145℄ 
al
ulated without lo
al �eld e�e
ts (arrow on theupper panel of Fig. 5.4). This o

urs for both polarizations, so that the birefringen
etends to zero, in 
onsisten
y with the fa
t that the weight of the 
ontributions of theinterfa
es relative to the weight of the bulk states vanishes for in
reasing p. Third,"? is always 
loser to the average value than "k for p > 2, whi
h 
omes from thefa
t that the gap is smaller for light polarized in-plane than in growth dire
tion. Inother words, the 
on�nement is rather \seen" in growth, than in in-plane dire
tion,making the birefringen
e slightly positive at those p [143℄.Turning to the lower panel of Fig. 5.4, whi
h shows the same quantities 
al
ulatedwith lo
al �eld e�e
ts, we note that as expe
ted, lo
al �eld e�e
ts de
rease theabsolute value of the diele
tri
 
omponents, be
ause higher energy transitions aremixed in the important gap region. The de
rease of " is found to be less e�e
tive for"? than for "k. In growth dire
tion, lo
al �eld e�e
ts in
rease linearly with the period(see inset in Fig. 5.4), and "k is 
onsequently always 
lose to the e�e
tive mediumvalue estimated with the theoreti
al bulk 
onstants "�1k = ("�1GaAs+ "�1AlAs)=2 (dashedline) [27, 145℄. In the in-plane dire
tion however, the dire
t e�e
t of quantum
on�nement on the independent transitions is found to be larger than its e�e
t onthe lo
al �elds. The latter are 
onstant with the period, and the slope of of thelinear behavior of "? remains un
hanged (see inset in Fig. 5.4). Consequently, thee�e
tive medium value "? = ("GaAs + "AlAs)=2 (dotted line) is rea
hed at 90% for aperiod as small as p ' 10. The di�erent behaviors of "k and "? 
an be understoodeither from the transition mixing formalism, the states 
oupling to light polarizedin growth dire
tion being more sensitive to the presen
e of an interfa
e, or from theexpression of lo
al �eld e�e
ts through the matrix inversion: in fa
t, in the latter
ase it is 
lear that the head element of " alone des
ribes some average homogeneousmedium. The o�-diagonal elements bring the inhomogeneity into play. Now, thes
reening of the intera
tion between two 
harges pla
ed at a 
hara
teristi
 distan
e
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al
ulations of opti
al propertiesd depends only on jdj in a homogeneous medium, but it feels also its dire
tion andthe absolute position of the 
harges when the medium is inhomogeneous. When dis put in growth dire
tion, the probability that the 
harges \see" where they are islarger than when d is in-plane. Thus, lo
al �eld e�e
ts are stronger on "k than on"?. Last and most importantly, it remains to explain why lo
al �eld e�e
ts in
reasewith in
reasing p in growth dire
tion (see inset in Fig. 5.4), sin
e it is �nally thisfa
t whi
h lets the birefringen
e tend to a plateau value instead of zero, as for largesuperlatti
e period the lh and hh states are again degenerate. This point 
an in fa
tbe understood on the basis of the previous 
onsiderations: given a 
hara
teristi
intera
tion length jdj in the system, the bigger p the bigger is the probability thatthe two 
harges are found either entirely in a region of GaAs or in a region of AlAs,instead of experien
ing a s
reening perfe
tly averaged over GaAs and AlAs.All qualitatively observed tenden
ies 
an hen
e be explained. It remains to bedis
ussed what 
ould be the origin of the remaining small quantitative dis
repan-
ies with experiment. Besides possible un
ertainties 
oming from the transmissionmeasurements, these might be sought on the theoreti
al side. Apart from variousapproximations like the pseudopotential approa
h and the negle
t of spin-orbit split-ting, one might suspe
t, �rst, a 
ontribution from the geometry of the system. Infa
t, the band stru
ture of bulk semi
ondu
tors has been shown to be very sensi-tive to a small hydrostati
 pressure [98℄. This 
hange in band stru
ture 
ould thanhave signi�
ant e�e
ts on the diele
tri
 properties. We have explored this possi-bility by 
omparing the above results, obtained using the average theoreti
al LDAlatti
e 
onstant, with a 
al
ulation performed at the average experimental latti
e
onstant. The latter 
orresponds to a negative pressure of 20 kbar in the 
al
ula-tion. No improvement is obtained; rather, for p=5 the birefringen
e has in
reasedby 17%. There is hen
e some visible in
uen
e of the 
hoi
e of the geometry in the
al
ulations on the results, and, although the most straightforward guess (i.e. thead ho
 
orre
tion of the average LDA latti
e 
onstant) does not solve the problem,we 
annot ex
lude that a geometry 
loser to the exa
t (unknown) experimental onemight improve the situation. However, another point seems more 
ru
ial, namely,the in
lusion of ex
hange-
orrelation e�e
ts beyond the RPA. One 
an do this inprin
iple within the TDDFT s
heme; in pra
ti
e, 
al
ulations on realisti
 extended
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e of GaAs/AlAs superlatti
es 113GaAs AlAsEXP 10.9 8.2semi-empiri
al without lo
al �elds 10.12 7.63RPA without lo
al �elds 14.19 10.21RPA with lo
al �elds 12.77 8.92LDA with lo
al �elds 13.55 9.52Table 5.1: Experimental [43℄ and 
al
ulated diele
tri
 
onstants for the bulk GaAs and AlAs semi-
ondu
tors. We report the results of semi-empiri
al 
al
ulations and RPA-TDDFT 
al
ulations,both without lo
al �eld e�e
ts, and the results of RPA-TDDFT and TDLDA 
al
ulations in
ludinglo
al �eld e�e
ts.systems are at the best done using the TDLDA approximation. It is known thatthe in
lusion of the LDA x
 kernel gives a minor 
ontribution to opti
al absorptionspe
tra, but a (on the s
ale of our problem) signi�
ant e�e
t on diele
tri
 
onstants,whi
h might well 
hange the birefringen
e. We have therefore 
he
ked this possi-bility by adding the ex
hange-
orrelation e�e
ts within TDLDA. In Table 5.1 weshow all the 
al
ulated diele
tri
 
onstants for GaAs and AlAs in 
omparison tothe experimental values [43℄. When working within the TDLDA, the bulk diele
tri

onstants of both 
onstituent materials in
rease as by mu
h as 7 % [146℄. However,those 
hanges 
an
el out in the birefringen
e, and both the plateau value as wellas the birefringen
e at intermediate distan
es remain virtually un
hanged. Thisdoes not ne
essarily imply that ex
hange-
orrelation e�e
ts are in fa
t negligible.TDLDA is an approximation, and the fa
t that above we have related the bire-fringen
e to the near-gap transitions of the opti
al spe
tra rises the suspi
ion thatonly a theory whi
h perfe
tly des
ribes that region would be able to yield pre
isequantitative values for the birefringen
e. Su
h an approa
h does today exist forthe ab initio 
al
ulation of opti
al properties, namely the simultaneous solution ofthe self-energy Dyson equation and the Bethe-Salpeter equation des
ribing ex
itoni
e�e
ts. It is of 
ourse out of rea
h at present to apply the full theory here.In 
on
lusion, 
on
erning superlatti
e opti
al properties, we have 
al
ulated thediele
tri
 tensor and the stati
 birefringen
e of GaAs/AlAs superlatti
es as a fun
-tion of the superlatti
e period. The use of an e�e
tive medium theory to des
ribe
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al
ulations of opti
al propertiesthe diele
tri
 tensor is found to be justi�ed in the growth dire
tion. In the in-planedire
tion, however, the dire
t e�e
t of quantum 
on�nement is large and a 
lassi
altheory fails. Having learned in the previous 
hapter that 
on�nement and band-mixing e�e
ts alone are not suÆ
ient to reprodu
e the experimental data, we havein
luded lo
al �eld e�e
ts in present 
al
ulations. We have pointed out that quan-tum 
on�nement e�e
ts are important to understand the �ne stru
ture of the opti
alspe
tra even of relatively weakly 
on�ned systems like GaAs/AlAs, but that it is
ompletely insuÆ
ient to take them into a

ount only via the band stru
ture in anindependent-transition pi
ture: lo
al-�eld e�e
ts, whi
h re
e
t the inhomogeneity ofthe superlatti
e, e�e
tively mix the formerly independent transitions and 
an there-fore drasti
ally enhan
e the anisotropy, up to a fa
tor of 7 even for periods as smallas p = 8. Moreover, we have 
on�rmed the results of previous semi-empiri
al 
al
u-lations based on the independent-transition s
heme, by performing ab-initio 
al
ula-tions in the same approximation (RPA without lo
al �elds). Only by in
luding lo
al�eld e�e
ts experiments [16℄ 
an be interpreted even qualitatively. Further ex
hange-
orrelation e�e
ts seem to 
an
el to a large extent on the anisotropy results, and 
antherefore be negle
ted unless a �ne quantitative analysis is required. Due to limita-tions in the 
omputational resour
es, at the moment a many-body Green's fun
tionapproa
h, whi
h fully a

ount for ele
tron-ele
tron and ele
tron-hole intera
tion isout of rea
h. This fa
t 
alls for the sear
h of an alternative approa
h to the problemand makes parti
ularly interesting the following se
tion, in whi
h we are presentingan alternative way to a

ount for many-body e�e
ts.5.4 E�e
ts of the long-range 
ontribution to the x
 kernelon the bulk spe
traWe move now to the problem absorption spe
tra up to 7 eV, for bulk GaAs andAlAs systems. We want to dis
uss now the e�e
ts of a stati
 long-range 
ontribution��=q2 to the x
 kernel fx
 of time dependent density fun
tional theory. The timedependent DFT approa
h still keeps the advantage of the stati
 one to be 
ompu-tationally very eÆ
ient, and 
ould in prin
iple repla
e other su

essful, but more
umbersome methods like the Bethe-Salpeter approa
h (BSE)[129, 147, 131, 132℄.



5.4. E�e
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ontribution to the x
 kernel on the bulk spe
tra 115However, there are two additional diÆ
ulties with respe
t to the 
ase of stati
 DFT:(i) the approximate Vx
 should now in prin
iple not only be good enough to repro-du
e the ground state density and total energy, but the KS equation should also yieldeigenvalues 
lose to the ones that would be obtained using the unknown exa
t Vx
(not to be 
onfused with the measurable quasi-parti
le energies) (ii) also the time-dependent density variation of Vx
, i.e. the so-
alled x
 kernel fx
 = ÆVx
=Æ�, has tobe well des
ribed. Here we will mainly deal with the problem (ii). It has turned outthat TDDFT yields good results using the lo
al and adiabati
 LDA approximation(TDLDA) for the x
 kernel fx
[128℄, provided that �nite systems are 
onsidered.Also ele
tron energy loss spe
tra of solids are well des
ribed in TDLDA. However,in both 
ases the main improvement with respe
t to the independent-parti
le KSspe
trum (i.e. with respe
t to a simple sum over independent transitions betweenKS states) 
omes from the density variation of the Hartree potential (lo
al �elde�e
ts in the solid) whi
h is des
ribed exa
tly, and not from fx
. By the way of
ontrast, the Hartree 
ontribution is not suÆ
ient to yield good absorption spe
traof solids, and taking into a

ount fx
 within TDLDA does not lead to a signi�
ant(if at all) improvement [148℄. Therefore, it would be extremely desirable to �nd abetter, generally appli
able, fx
. Improvements might 
ome through the in
lusion ofdynami
al (memory) e�e
ts and/or long-range nonlo
al terms [128, 135℄. Re
ently,Reining et al. [30℄ have shown that a stati
 long-range 
ontribution (LRC) of theform fx
(q;G;G0; !) = �ÆG;G0�=jq+Gj2 
an simulate the strong 
ontinuum ex
i-ton e�e
t in the absorption spe
trum of bulk Si (q is a ve
tor in the �rst Brillouinzone (BZ), G and G' are re
ipro
al latti
e ve
tors, and � is a material dependentparameter). Here, we dis
uss the e�e
ts of su
h a 
ontribution more in detail, by
onsidering also the real part of the diele
tri
 fun
tion ", for bulk GaAs and AlAs.Analogous results for Si and other materials are dis
ussed in Refs. [30℄ and [149℄.We show that the real and imaginary parts of " at low energy are extremely wellreprodu
ed when just this long-range 
ontribution is taken into a

ount. It is pos-sible to show [149℄ that the the approximation is not valid for the loss fun
tion, forreasons whi
h will be dis
ussed. We also examine the dependen
e of the parameter� on the material.Before showing the results, we brie
y review the origin of the long-range 
on-
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Figure 5.5: Imaginary part of the diele
tri
 fun
tion of GaAs by ab initio 
al
ulations. The dotsare the experimental results (Ref. [120℄). The dot-dashed 
urve is the result of the standardTDLDA 
al
ulation, the dashed 
urve of the GW-RPA 
al
ulation, the 
ontinuous 
urve of ourLRC 
al
ulation.
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ontribution to the x
 kernel on the bulk spe
tra 117tribution and its implementation. In TDDFT, the inverse diele
tri
 fun
tion of aperiodi
 system is 
onstru
ted from "�1(q;G;G0) = ÆG;G0+v(q)G�(q;G;G0), where� obeys the matrix equation� = �0 + �0 (v + fx
)�; (5.40)�0 being the independent-parti
le response fun
tion and v the bare Coulomb inter-a
tion. A similar equation 
an also be written for the ma
ros
opi
 diele
tri
 fun
tionwhi
h des
ribes absorption, namely "M(q;G;G0) = ÆG;G0 � v(q)G ��(q;G;G0), with�� = �0 + �0 (�v + fx
) ��: (5.41)Here, �v(q)G equals v(q)G for all G, ex
ept for the long-range term �v(q)(G=0) whi
his zero. Both the equations for � and for �� 
an be transformed to transition spa
e,as it is often done for � in the framework of quantum 
hemistry [136℄. This allowsa dire
t 
omparison to the BSE, for whi
h this formulation is naturally adopted[129, 147, 131, 132℄. One �nds then that a stati
 fx
 whi
h yields the same spe
trumas the BSE should be of the formfx
(q;G;G0) = Xn1n2n3n4 1(fn1 � fn2)��1(n1; n2;G)F(n1n2)(n3n4)(��)�1(n3; n4;G0); (5.42)with F(n1n2)(n3n4) = ��QPn2 � �QPn1 � �DFTn2 + �DFTn1 � Æn1n3Æn2n4+(fn1 � fn2)FBSE(n1n2)(n3n4) (5.43)and FBSE(n1n2)(n3n4) = � Z drdr0�(n1; n3; r)W (r0; r)��(n2; n4; r0);the matri
es � being de�ned as�(n1; n2; r) :=  n1(r) �n2(r): (5.44)Here, fn are o

upation numbers and �DFT are KS eigenvalues. �QP are quasi-parti
le (QP) eigenvalues, whi
h are supposed to be 
al
ulated within Hedin's GWapproa
h[96℄. W is the stati
ally s
reened Coulomb intera
tion, and the  n are KS
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al
ulations of opti
al propertiesorbitals, whi
h are assumed to be equal to the QP ones. The matri
es � 
an beinvertible if only a subspa
e of transitions is 
onsidered, whi
h is a
tually the 
ase forabsorption spe
tra. In a solid, the pairs of indi
es (n1; n2) are to be understood as apair of an o

upied and an empty state, with (n1;n2) = (v;k; 
;k+q). �(v;k; 
;k+q;G = 0) is going to zero as q for small q. Sin
e F(v;
);(v;
) in this limit behavesas a 
onstant, this implies immediately that fx
(q;G = G0 = 0) behaves as 1=q2.There is in fa
t a positive long-range 
ontribution stemming from the QP shift ofeigenvalues (as also predi
ted in Ref. [152℄), and a negative one resulting from theele
tron-hole intera
tion, whi
h is the main point of interest here.Comparing Eqs. (5.40) and (5.41), one 
an understand why the long-range 
ontri-bution is mu
h more important for absorption spe
tra than for the ele
tron energyloss spe
tra of solids: in the former 
ase, in Eq. (5.41) fx
 is added to a 
oulombian�v whi
h does not 
ontain the long-range term, i.e. v(G = 0) is set to zero. Obvi-ously in that 
ase, a negle
t of the divergen
e in fx
 makes an essential di�eren
e,whereas in the 
ase of loss spe
tra, determined via Eq. (5.40), this argument doesnot hold. In order to fo
us the dis
ussion about the long-range 
ontribution on these
ond, i.e. the ele
tron-hole intera
tion 
ontribution, we assume in the followingthat we absorb the �rst, positive 
ontribution in the energy shift of our starting�(0) (sin
e anyway we do not know the eigenvalues of the exa
t ex
hange-
orrelationpotential whi
h would go along with the exa
t kernel). Furthermore, we supposethat we have a system where the long-range term is 
ompletely dominating the restof the ex
hange-
orrelation 
ontribution, namely, where we 
an approximately writefx
(q;G;G0) = �ÆG;G0�=jq+Gj2. This long-range approximation for the s
reenedele
tron-hole intera
tion should of 
ourse work best for systems with weakly boundex
itons. This does not mean that the ex
itoni
 e�e
ts themselves are ne
essarilyweak, sin
e the ele
tron-hole intera
tion often drasti
ally 
hanges the spe
tral line-shape, even when the joint density of states is not a�e
ted. In fa
t, we will 
onsidertwo materials that exhibit su
h a behavior, namely gallium arsenide and aluminumarsenide. We have �rst determined their DFT-LDA ele
troni
 stru
ture. Se
ond,we have 
onstru
ted �(0), but with the eigenvalues shifted to approximate GW ones,in order to simulate the �rst part of the kernel as explained above. The GW eigen-values are obtained by applying a s
issor operator of 0.8 eV and 0.9 eV for GaAs
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Figure 5.6: Imaginary part of the diele
tri
 fun
tion of AlAs by ab initio 
al
ulations. The dotsare the experimental results (Ref. [121℄). The dot-dashed 
urve is the result of the standardTDLDA 
al
ulation, the dashed 
urve of the GW-RPA 
al
ulation, the 
ontinuous 
urve of ourLRC 
al
ulation.



120 Chapter 5. Ab-initio 
al
ulations of opti
al propertiesand AlAs [86℄, respe
tively. Third, we have used fx
(r; r0) = ��= (4�jr� r0j), withan empiri
al value for � �tted to the experiment. The spe
tra have been obtainedusing 864 o�-symmetry shifted k-points in the Brillouin zone.We are ready to dis
uss the results. Let us �rst look at absorption spe
tra.Figs. 5.5 and 5.6 show the results for GaAs and AlAs. The dots are the experimentalresults (Refs. [120℄ and [121℄, respe
tively). The dot-dashed 
urve stems from astandard TDLDA 
al
ulation (i.e. using DFT-LDA eigenvalues and the stati
 short-range LDA x
 kernel). Like other authors (see e.g. [148℄), we �nd a result 
lose to theRPA one, showing the well-known dis
repan
ies with experiment: peak positions arewrong (the spe
trum exhibits a redshift), and the intensity of the �rst main stru
ture(the E1 peak) is strongly underestimated. The dashed 
urve is the result obtainedby repla
ing KS eigenvalues with GW quasi-parti
le energies in the RPA form of ".This 
al
ulation, 
alled GW-RPA in the following, 
orresponds to the �rst step ofour approa
h, as outlined above. Again, we �nd the well-known dis
repan
ies withexperiment: now the 
al
ulated spe
trum shows a blueshift. Moreover, the intensityof the E1 stru
ture has not been 
orre
ted. Finally, the 
ontinuous 
urve is theresult of our LRC 
al
ulation. For all three materials, a very good �t to experimentis obtained using � = 0.2, 0.35 for GaAs and AlAs, respe
tively. One parameter ishen
e enough for ea
h of the materials in order to 
orre
t both the peak positions andthe intensities, whi
h is far from trivial. Moreover, other features of " are very wellreprodu
ed using the same �, as we will dis
uss in the following. The next quantitywe 
an examine is in fa
t the real part of ", Re("). Figs. 5.7 and 5.8 demonstrates thefailure to reprodu
e the experimental results (dots) of the RPA (
ontinuous 
urve),TDLDA (dot-dashed 
urve), and the GW-RPA (dashed 
urve) approa
hes. Again,both peak positions and line shapes are wrong. Instead, the LCR result (
ontinuous
urve) is 
ompared to experiment: the improvement with respe
t to the GW-RPAsituation is 
lear, for both materials. Alternatively, a similar agreement of both realand imaginary part of the diele
tri
 fun
tion 
an only be found using the mu
h more
umbersome BSE approa
h (see e.g. [147, 131, 132, 150, 151℄).We have dis
ussed the e�e
ts of a stati
 long-range 
ontribution ��=q2 to theex
hange-
orrelation kernel fx
 of TDDFT. We have shown that the real and imag-inary diele
tri
 fun
tions of GaAs and AlAs, exhibiting a strong 
ontinuum ex
iton
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Figure 5.7: Real part of the diele
tri
 fun
tion of GaAs by ab initio 
al
ulations. The dotsare the experimental results (Ref. [120℄). The dot-dashed 
urve is the result of the standardTDLDA 
al
ulation, the dashed 
urve of the GW-RPA 
al
ulation, the 
ontinuous 
urve of ourLRC 
al
ulation.
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Figure 5.8: Real part of the diele
tri
 fun
tion of AlAs by ab initio 
al
ulations. The dots arethe experimental results (Ref. [121℄). The dot-dashed 
urve is the result of the standard TDLDA
al
ulation, the dashed 
urve of the GW-RPA 
al
ulation, the 
ontinuous 
urve of our LRC 
al-
ulation.
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t, are 
onsiderably improved with respe
t to 
al
ulations where the adiabati
 lo
aldensity approximation is used. The �ndings allow to 
on
lude that, for these ma-terials, the problem of absorption spe
tra 
an be solved by just determining the onenumber �. Of 
ourse, the method is neither valid for all kind of materials, nor forall kind of ex
itation spe
tra. In spite of this, the good results for GaAs and AlAs en-
ourage a future appli
ation of the theory to GaAs/AlAs superlatti
es, where it 
ouldbe an alternative to the too expensive many-body Green's fun
tion formulation.
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Chapter 6
Summary and dis
ussion
Arriving at the end of this work, the easiest way to summarize the results a
hievedis �rst to go ba
k and read the four obje
tives presented in the introdu
tion, tofollow then in this 
on
lusive dis
ussion how they have been developed in the 
ourseof the 
hapters.In Chapters 2 and 4, the energy bands and opti
al response fun
tions of (001)-oriented (GaAs)p/(AlAs)p and (GaAs)p/(va
uum)p superlatti
es, with p from 4 to20, have been 
al
ulated by the LCBB method, introdu
ed in Ref. [29℄. This ap-proa
h, in whi
h the ele
troni
 states of the superlatti
e are expanded in the basisof bulk states, 
al
ulated by empiri
al pseudopotentials, is found to be adequateand pra
ti
al for superlatti
es with intermediate to large periods; in parti
ular, it isuseful for 
al
ulating how the band stru
tures and the opti
al spe
tra of the bulkmaterials are modi�ed upon 
on�nement.In Chapter 2 we have studied the evolution of a bulk state into a superlatti
estate, gaining a 
lear insight on the roles played by the 
on�nement, the bulk states-
oupling and the redu
tion of the symmetry, all involved in the formation of asuperlatti
e. The bulk and superlatti
e band stru
tures are very similar, neverthelessthere are some remarkable di�eren
es. The superlatti
e gaps are larger than the bulkgaps: in parti
ular the GaAs/va
uum gaps are larger than the GaAs/AlAs ones, as aresult of a stronger 
on�nement; moreover the superlatti
e band gap widths in
reaseas the superlatti
e period de
reases. The lowering in the 
rystal symmetry and themixing of the bulk states are responsible for the overall slight modi�
ation of the125
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ussionenergy levels and, espe
ially, for the removal of level degenera
ies.In Chapter 4 we have addressed the opti
al properties. The quantum-
on�nementindu
ed shifts of the 
riti
al point energies are 
al
ulated for both kinds of super-latti
es and are found to be larger for the GaAs/va
uum systems, where 
ouplingsbetween di�erent GaAs layers are only due to quantum-me
hani
al tunneling andhave a negligible e�e
t. For both GaAs/AlAs and GaAs/va
uum superlatti
es,the E1 peak in the absorption spe
trum splits into two peaks with in
reasing blueshifts for de
reasing superlatti
e period. This result agrees with the observationsof Ref. [10℄ on GaAs/AlAs superlatti
es, and is attributed to a symmetry splittingof the valen
e bands along the line �-L. The E2 transition is found to be split forlarge-period GaAs/AlAs superlatti
es, where the ele
troni
 states of the bulk are
on�ned in ea
h layer and the absorption spe
trum is the superposition of the twobulk ones. The energy of the E2 peak depends weakly on the superlatti
e period.The average (or Penn) gap does not depend on the superlatti
e period, 
on�rmingthe expe
tation that a blue shift at the lower absorption edge is 
ompensated byred shifts in the upper part of the absorption spe
trum. The band 
ontributionto linear birefringen
e of GaAs/AlAs superlatti
es is 
al
ulated and 
ompared withre
ent experimental results of Ref. [16℄. The zero-frequen
y birefringen
e is found tobe mu
h smaller than the experimental �ndings: this result hints that the missing
ontribution to observed stati
 birefringen
e may be attributed to lo
al-�eld e�e
ts,as already suggested [16℄. The frequen
y-dependent part of the birefringen
e, arisingfrom band folding and quantum 
on�nement, in
reases with de
reasing superlatti
eperiod, as found in the experiment, although the 
al
ulated values are smaller.In Chapter 3 we have presented and applied the DFT-LDA to the 
al
ulationof the ground state properties and the band stru
tures of bulk GaAs and AlAssystems and GaAs/AlAs superlatti
es. We have found an overall agreement with
orresponding semi-empiri
al results, and with experimental and theoreti
al dataavailable in literature. These �ndings 
on�rm the analysis developed in Chapter 1and attest the high quality of the ele
troni
 states, both semi-empiri
al and DFT-LDA, whi
h are the bases of the opti
al absorption 
al
ulations.In Chapter 5 we have presented two di�erent kinds of results. First, TDDFT 
al-
ulations of the diele
tri
 tensor 
omponents and of the zero-frequen
y birefringen
e



127of GaAs/AlAs superlatti
es as a fun
tion of the SL period, for p ranging from 1 to 8.We have shown that the use of an e�e
tive medium theory is justi�ed in the growthdire
tion for all periods but p=1. In the in-plane dire
tion however, the diele
tri

onstant "? in
reases with in
reasing period, and the 
lassi
al e�e
tive medium valueis rea
hed to 90% for a period as small as p ' 10. We have pointed out that thebehavior of the diele
tri
 tensor is 
ompletely determined by the interplay betweenquantum 
on�nement and lo
al �elds e�e
ts, and that the birefringen
e 
omes fromthe anisotropy of the lo
al �elds. Quantum 
on�nement e�e
ts are important to un-derstand the �ne stru
ture of the opti
al spe
tra, even of relatively weakly 
on�nedsystems like GaAs/AlAs, but it is 
ompletely insuÆ
ient to take them into a

ountonly via the band stru
ture in an independent-transition pi
ture: lo
al-�eld e�e
ts,whi
h re
e
t the inhomogeneity of the superlatti
e, e�e
tively mix the formerly in-dependent transitions and 
an therefore drasti
ally enhan
e the anisotropy, up to afa
tor of 7 even for periods as small as p = 8. In
luding lo
al �eld e�e
ts the ex-periment [16℄ 
an be reprodu
ed even quantitatively. Further ex
hange-
orrelatione�e
ts seem to 
an
el to a large extent on the anisotropy results, and 
an thereforebe negle
ted unless a �ne quantitative analysis is required. Then, we have shownthat, when working within the TDLDA, the bulk diele
tri
 
onstants of both 
on-stituent materials in
rease as by mu
h as 7 %. However, those 
hanges 
an
el outin the birefringen
e, and both the plateau value as well as the birefringen
e at in-termediate periods remain un
hanged. In addition, we have 
on�rmed the resultsof previous semi-empiri
al 
al
ulations based on the independent-transition s
heme,for 6 � p � 8, by performing ab initio 
al
ulations in the same approximation.Finally, we have presented a TDDFT 
al
ulation for bulk GaAs and AlAs, whi
hin
ludes a stati
 long-range 
ontribution ��=q2 to the ex
hange-
orrelation kernelfx
, as suggested by Reining et al. in Ref. [30℄. We have shown that the real andimaginary parts of the diele
tri
 fun
tion, whi
h exhibit strong 
ontinuum ex
itone�e
ts, are 
onsiderably improved with respe
t to 
al
ulations where the adiabati
lo
al density approximation is used. These �ndings allow to state that, for thesesemi
ondu
tor systems, the problem of opti
al properties up to 10 eV 
ould be solvedby just determining the one number �. This approa
h has the pre
ious advantageto redu
e signi�
antly the 
omputation time and memory needed, in 
omparison
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ussionto a many-body Green's fun
tion approa
h. The good results for GaAs and AlAsen
ourage a future appli
ation of the theory to GaAs/AlAs superlatti
es.The present work 
an be extended in several other dire
tions. Within the LCBBs
heme, relying on semi-empiri
al pseudopotentials, a more pre
ise 
al
ulation ofthe opti
al properties requires the in
lusion of the spin-orbit intera
tion and thelo
al-�eld e�e
ts. On the other hand, a 
omplete des
ription of the E1 and E2peaks requires, in the semi-empiri
al framework as well, the in
lusion of ex
itoni
e�e
ts, whi
h a

ount for half of the os
illator strength of the E1 transition in thebulk. Con
erning the ab initio approa
h, it is now possible to move to the study ofother, more 
omplex, superlatti
e systems of te
hnologi
al interest or even to lower-dimensional stru
tures { quantum wires or quantum dots {, trying to 
larify howthe lo
al �eld e�e
ts are modi�ed and how they a�e
t the anisotropy of the opti
alproperties and/or investigating the role of ex
itoni
 e�e
ts, in
luding their e�e
t onthe anisotropy of the opti
al response. This analysis 
ould be applied to GaAs layersalternated with an empty latti
e, whi
h are expe
ted to show 
onsiderably stronger
on�nement e�e
ts and 
an, in a �rst approa
h, simulate multilayer 
omposites ofGaAs and oxidized-AlAs (GaAs/AlOx) [7℄. Moreover, ZnSe/GaAs 
ould be 
hosenas a representative of heterovalent heterojun
tions, in view of the good latti
e mat
hof the two 
onstituent materials, and in view of its potential te
hnologi
al importan
eas a blue emitter [153℄. Also Si/Ge is a system of te
hnologi
al interest, espe
iallysin
e it has been dis
overed that short period (i.e. less than 20 interatomi
 distan
es)Si/Ge superlatti
es have a quasidire
t band gap due to band folding, and that theopti
al matrix elements between the top of the valen
e band and the new bandedge states at the 
enter of the Brillouin zone are enhan
ed by several order ofmagnitudes with respe
t to the ones for the lowest indire
t transition, remaininghowever at least one order of magnitude smaller than the opti
al matrix element ina dire
t gap semi
ondu
tor su
h as GaAs [154℄. Among the one-dimensional systemsin whi
h anisotropy and ex
itoni
 e�e
ts should play an important role, the studyof sili
on wires and gallium arsenide wires embedded in a matrix of aluminiumarsenide is parti
ularly promising. In fa
t, the �rst ones are important due totheir impa
t on the understanding of porous sili
on [155℄, the latter ones for theirpotential enhan
ement of the photovoltai
 eÆ
ien
y [156℄. It would be interesting



129to examine the possibility of mat
hing the ab initio theory to the semi-empiri
almethod for superlatti
e periods larger than p = 8, to extrapolate ab initio resultson short/medium periods to qualitative or even semiquantitative predi
tions forlarger periods. Also one and zero-dimensional systems 
ould be studied within thisapproa
h, whi
h would be based on the introdu
tion of a strongly redu
ed basis set,given by the bulk DFT-LDA wavefun
tions of the 
onstituent materials, in analogywith the LCBB s
heme.
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Appendix A
Basi
 approximationsA solid is a many-body system (typi
ally the number of degrees of freedom is ofthe order of 1023), whose 
omplete Hamiltonian 
onsists in two terms dependingrespe
tively on the spa
e and spin 
oordinates of the nu
lei R�, i.e. VN�N , and onthe ele
troni
 spa
e and spin 
oordinates ri, i.e. Ve�e, and a term of ele
tron-nu
leusintera
tion, i.e. VN�e:H = Te + TN + VN�N (fR�g) + VN�e (fri;R�g) + Ve�e (frig) ; (A.1)where Te and TN represent the nu
lear and ele
troni
 kineti
 terms. Analyti
 solu-tions of the S
hr�odinger equation are possible for a few extremely simple systems,whereas numeri
al exa
t solutions 
an be 
al
ulated for a small number of atoms ormole
ules. In the remaining 
ases, we have to introdu
e some simplifying hypotheses.The development of s
hemes that provide some useful information on real systems
ontinues nowadays. Among the variety of possible 
hoi
es, and hen
e of di�erentmethods of 
al
ulations, the a
tual 
hoi
e is intimately tied to the nature of theproblem of interest. The aim is to make the problem feasible, without invalidatingthe physi
s of the results. We want to dis
uss here our spe
i�
 approximations.The inertia of a nu
leus is mu
h bigger than the inertia of an ele
tron:me �MN ; (A.2)in fa
t the mass ratio is equal to 1=2000 even in the most unfavorable 
ase of thehydrogen atom. From a 
lassi
al point of view, the velo
ity of a nu
leus is negligibleif 
ompared to the velo
ity of an ele
tron: we 
an state that an ele
tron responds131
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 approximationsalmost instantly to the motion of the nu
lei or, the ele
trons see the nu
lei as if theywere still. In the language of the quantum me
hani
s, this intuition be
omes therigorous Born-Oppenheimer approximation: after rearranging the terms, in order toisolate the ele
troni
 and ioni
 degrees of freedom, we write the wavefun
tion as aprodu
t of an ele
troni
 part  (fri;R�g) and a nu
lear part � (R�). If we estimatereasonable to negle
t the term of intera
tion between the ele
trons and the latti
emotions (i.e. the ele
tron-phonon intera
tion), we obtain a S
hr�odinger equationwhere only the nu
lear 
oordinates o

ur:[HN + Ee (fR�g)℄ � (R�) = ET (R�)� (R�) : (A.3)The presen
e of the ele
trons is in
luded in the \adiabati
 term" Ee (fR�g), whi
hexpress the total energy of the ele
trons, in 
ase the ion 
ores are \frozen" in thepositions R�:[Te (frig) + VN�e (fri;R�g) + Ve�e (frig)℄ (fri;R�g) = Ee (fR�g) (fri;R�g) :(A.4)In short, the problem 
an be redu
ed to two independent equations: �rst, Eq. (A.4)des
ribes the ele
trons when the ions are kept in a �xed set of positions, su

essivelyEq. (A.3) des
ribes the latti
e vibrations, 
onsidering that the ion 
ores feel theele
trons around them thanks to the adiabati
 term. Con
erning the system we areinterested in, the nu
lei are �nally lo
ated on the sites of a Bravais latti
e. After theseparation has been put into e�e
t, we 
an 
on
entrate on the Eq. (A.4) regardingthe ele
troni
 degrees of freedom.We will work within a pseudopotential framework (see Appendix B). When thesolid is built up, the ele
trons whi
h belong to internal shells in the isolated atoms(
ore ele
trons) remain strongly lo
alized in the proximity of the nu
lei, being almostnot a�e
ted by the 
hemi
al bonding. This is the physi
al motivation to separatethe 
ore ele
trons from the valen
e ele
trons, by freezing them opportunely in the
ore ions (
ore ele
trons + nu
lei).In spite of the previous approximations, the two-body ele
tron-ele
tron intera
-tion is still able to make the task formidable. We do not dis
uss here the big varietyof remedies studied to over
ome this problem. In Chapters 2 an 3 we have presentedan empiri
al and a �rst-prin
iple approa
h, whi
h allow to redu
e Eq. (A.4) to a



133simpler e�e
tive one-parti
le band stru
ture equation:H1e �k;n(r) = � p22m + V (r)��k;n(r) = Ek;n �k;n(r) : (A.5)In 
ase of a periodi
 
rystal, the solutions of Eq. (A.5) are Blo
h fun
tions�k;n(r) = ei(k�r)un;k(r) ; (A.6)where un;k(r) has the periodi
ity of the Bravais latti
e. The eigenstates are labelledby the band indi
es n and the waveve
tor k, determined by the symmetry of thelatti
e.
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Appendix B
PseudopotentialsThe 
on
ept of pseudopotentials was originally proposed in an early work of Fermi,whi
h dates ba
k to 1934 [157℄. In regard to solids, it was introdu
ed as a variantof the orthogonalized plane wave (OPW) method [158℄ and developed later in theform of empiri
al pseudopotentials [159, 160℄. In the 80's the generalization fromempiri
al to ab initio norm-
onserving pseudopotentials [161, 162, 163, 164℄ hasled to a widespread use of the method in 
al
ulations based on Density Fun
tionalTheory (DFT), allowing empiri
al parameter free ground state property and bandstru
ture 
al
ulations, where the only input data required are the atomi
 numbersof the 
onstituent atoms.In this appendix we give an overview of the 
on
ept of pseudopotentials, both inthe empiri
al/semi-empiri
al and ab initio norm-
onserving forms, and we dis
usstheir 
onstru
tion and their use.B.1 What a pseudopotential isWhen solving the many-body problem of ele
trons in a 
ondensed aggregate ofatoms, a strong simpli�
ation 
onsists in fo
using on the 
harge density related toele
trons whi
h belong to outermost shells (valen
e ele
trons). Many diÆ
ulties
ome, in fa
t, from what happens in the inner region (
ore), but, fortunately, 
oreele
trons are often not 
on
erned in the bonding together of the atoms and 
an be\frozen" on
e and for all in an atomi
 
on�guration, in order to restri
t the e�ortto the study of the valen
e ele
trons. 135



136 Appendix B. PseudopotentialsThe starting point is 
onsidering an isolated atom. An ele
tron in the 
ore regionfeels roughly a Coulomb-like potential, �Zeff=r: the e�e
tive 
harge Zeff is givenby the positive nu
lear 
harge, s
reened by the presen
e of the other ele
trons. Anhighly attra
tive Coulomb term V̂ implies, from the virial theoremT̂ = �12 V̂ ; (B.1)also a high positive kineti
 energy T̂ , whi
h re
e
ts a strong spatial variation of thewavefun
tions. This is true both for the 
ore and the valen
e ele
trons, though thevalen
e ele
trons are far less likely to rea
h the neighborhood of the nu
leus andthus the amplitude of their os
illations is mu
h smaller. Moreover, the waves haveto interla
e in order to give wavefun
tions whi
h are orthogonal to ea
h other.Mathemati
ally and numeri
ally, a plane-wave-basis formalism is one of the sim-plest and most natural formalism to implement in a 
omputational 
ode for 
rystals.However, it is well known that a non-smooth 
hara
ter of the wavefun
tions in thereal spa
e 
orrespond to a large number of plane waves to des
ribe their Fouriertransforms. When using a plane wave representation for the wavefun
tions, this isa tough in
onvenien
e, whi
h results in a very high 
omputational e�ort. A furtherproblem 
omes from the fa
t that the energy of the 
ore states is of the order ofkeV, while the relevant bonding energies are in the range of some eV: a high relativepre
ision for total energies is needed, even if only di�eren
es are of interest. Theintrodu
tion of pseudopotentials aims at �nding a solution to these problems. Infa
t, in many systems there is a 
lear separation between valen
e and 
ore orbitals.The 
ore orbitals have energies far below the valen
e orbitals and their spatial extentis limited. In this spe
i�
 
ase the 
ore does not rea
t to 
hanges in the 
hemi
alenvironment and does not take part in the formation of bondings. But, in order toforget about the 
ore ele
trons, it is ne
essary to in
orporate the e�e
ts due to theirpresen
e in an e�e
tive potential, namely the pseudopotential, a
ting on the valen
eele
trons. This pseudopotential must be built in su
h a way to guarantee that thesolutions of the new S
hr�odinger equation have the same energy eigenvalues as thesolutions of the all-ele
tron problem. However, unlike the all-ele
tron wavefun
tions,the pseudowavefun
tions should be smooth and nodeless. This is the essential nu-meri
al 
onstraint when building pseudopotentials; other requirements 
an be added



B.1. What a pseudopotential is 137to give all the di�erent re
ipes for the di�erent types of pseudopotentials. In fa
t,this is a problem whose solution is far from unique.The 
ore orbitals 
ontribute to the Hartree and ex
hange-
orrelation potentialfelt by the valen
e ele
trons with a repulsive potential, whi
h 
omes from the fa
tthat ea
h valen
e ele
tron state  must be orthogonal to all the inner 
ore ele
tronstates  
. We 
an write:  = ��X
 h 
j�i 
 ; (B.2)where we introdu
e the pseudowavefun
tion �. Following Phillips and Kleinman[158℄, substituting the Eq. ( B.2 ) into the the S
hr�odinger equation for the valen
eele
trons, H  = E  ; (B.3)we obtain (H + VR)� = E� ; (B.4)where VR =X
 (E � E
) h 
j�i 
 (B.5)and E
 is the energy of the 
ore state  
:H  
 = E
  
 : (B.6)The pseudopotential V PP 
an now be de�ned as the sum of the original long-rangeattra
tive lo
al potential VI, due to the Coulomb intera
tion with the 
ore ions, andthe short-range repulsive potential VR just introdu
ed, whi
h is a memory of thepresen
e of the 
ore states. The Eq. (B.4) is the wave equation for the pseudowave-fun
tion �. The resulting pseudopotential is weak and well-behaved, even inside the
ore radius r
; this great simpli�
ation is obtained at the expense of introdu
ing anenergy-dependent, non-lo
al repulsive potential.We 
an exploit the symmetry of the problem to expand the pseudopotentialV PP (r; r0) on a set of spheri
al harmoni
 fun
tions: it is the non-lo
ality whi
hleads to di�erent 
omponents V PPl for the di�erent angular momenta l. As all
omponents V PPl at large r redu
e to the ioni
 Coulomb potential, �Zeff=r, gettingindependent of l, it is intuitive to write the pseudopotential as the sum of a lo
al
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 and a few relevant l-dependent terms whi
h vanish beyond r
:hrjV PP jr0i = V lo
Æ (r� r0) + lmaxXl=0 lXm=�lY �lm (
r) ÆV PPl (r) Æ (r � r0)r2 Ylm (
r0) ; (B.7)where ÆV PPl = V PPl � V lo
 (B.8)and Ylm are spheri
al harmoni
s. Sin
e the radial 
omponent ÆV PPl (r) is lo
al, it ismore pre
ise to 
all the whole pseudopotential \semi-lo
al", instead of non-lo
al.B.2 Empiri
al pseudopotentialsThe pseudopotentials 
an be translated in suitable �tting fun
tions, whose param-eters 
an be easily determined starting from re
e
tivity or photoele
troni
 spe
tra:this is the empiri
al pseudopotential method (EPM), whi
h is by 
onstru
tion par-ti
ularly suited to study opti
al properties. The pseudopotential has always theperiodi
ity of the Bravais latti
e. Assuming 
ells of volume 
, whi
h 
ontain N�atoms of type �, the lo
al pseudopotential expansion as a Fourier series in there
ipro
al spa
e has the form [9℄:V lo
 (r) =XG v�GS�GeiG�r ; (B.9)where the G-ve
tors are the re
ipro
al latti
e ve
tors,v�G = 1
 Z
 V lo
� (r) e�iG�r dr (B.10)is the pseudopotential form fa
tor for the atom � andS�G = 1N� N�Xj=1 e�iG�d�;j (B.11)is the stru
ture fa
tor, depending on the position d�;j of the j-th atom of type �in the primitive 
ell. The form fa
tors are the �tting parameters. If we wish toin
lude the e�e
ts of non-lo
ality we should write further 
orre
tion terms in there
ipro
al spa
e as a sum of l-dependent 
omponents. In the 
ase of GaAs andAlAs bulk 
rystals, the in
lusion of non-lo
al terms is needed to a
hieve a betterdes
ription of high-energy states: nevertheless, we have veri�ed that only the low-est 
ondu
tion bands are responsible for the stru
tures in the opti
al spe
tra below
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Figure B.1: Continuous atomi
 lo
al pseudopotentials v�(q) 
al
ulated following M�ader and Zunger[44℄.6 eV and therefore non-lo
al terms 
an be negle
ted for our purposes. The �rstatomi
 pseudopotentials were developed in this way more than 30 years ago. Al-though extremely easy to use, these pseudopotentials were not always adequate towell reprodu
e the wavefun
tions and their related quantities. Moreover, it did notexist a reliable pro
edure to assure the transferability to di�erent 
rystal stru
turesor di�erent 
oordination numbers. In the last de
ade the request for more a

urateatomi
 empiri
al pseudopotentials, to be used in the �eld of nanostru
tures 
al
ula-tions, has grown. In parti
ular, it is no more desirable the solution to have di�erentsets of form fa
tors for di�erent super
ell dimensions. Let us 
larify the statementusing as example the superlatti
es GaAs/AlAs studied in this work: the number ofG-points of the superlatti
e re
ipro
al latti
e, lying between two re
ipro
al latti
epoints of the bulk 
rystal, grows linearly with the superlatti
e period p. As a 
on-sequen
e, to study large systems, we need to know the value of v�q at a dense grid



140 Appendix B. Pseudopotentialsof points q, whi
h de�ne the superlatti
e re
ipro
al latti
e GSL. To this aim, it isuseful to develop a 
ontinuous-spa
e empiri
al pseudopotential v� (q),v�(q) = 1
 Z
 dr eiq�r v�(r) ; (B.12)to be used for all the possible di�erent stru
tures based on the same 
onstituents,in
luding of 
ourse the bulk 
rystals (see Chapter 2). That is exa
tly what Zungeret al. have done for di�erent semi
ondu
tor 
ompounds, starting from 1994 [44, 165,166, 167, 168℄.Con
erning GaAs and AlAs 
rystals, we refer to the semi-empiri
al pseudopo-tential fun
tions proposed in Ref. [44℄. We de�ne them \semi-empiri
al" be
ausethe �tting takes into a

ount not only experiment, but also ab initio 
al
ulations.The pro
edure adopted to evaluate the fun
tion (B.12) 
onsists in the followingoperations:1. The origin of the zin
-blend primitive 
ell is �xed in the middle of the linebetween the anion (As) and the 
ation (Ga or Al).2. The bulk form fa
tors v�(G) are adjusted at a small number of re
ipro
al latti
eve
tors G to reprodu
e bulk band energies and e�e
tive masses. The operationis repeated at di�erent unit 
ell volumes 
, to gain informations on the neigh-borhood of ea
h point G and dispose of a �ner mesh whi
h will make the inter-polation less ambiguous. By inspe
ting the dis
rete form fa
tors the algebrai
form sele
ted for the �tting is a linear 
ombination of Gaussians, multiplied bya smooth fun
tion that allows adjustments of the small q 
omponents:v�(q) = 
�
 4Xi=1 ai� e�
i�(q�bi�)2 h1 + f0�e���q2i : (B.13)3. At this stage the parameters of Eq. (B.13) are let free to vary independently(the original form fa
tors may 
hange), to �t: (i) the experimental GaAs/AlAsvalen
e band o�set (0.5 eV), (ii) LDA 
al
ulated level splittings in short-periodGaAs/AlAs superlatti
es of various orientations, (iii) �rst-prin
iple LDA wave-fun
tions. In this way, it is possible to explore the region q < 2p3�a , where a isthe latti
e 
onstant: small q form fa
tors are so �tted, rather than extrapolated.Moreover, the above mentioned problem of previous empiri
al 
al
ulation whi
hyielded poor wavefun
tions is �nally solved.
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� ai� bi� 
i�(a:u:)3 Ry (a:u:)�1 (a:u)2Al111.3 -1.32712 0 1.598190.158114 1.77453 2.108270.0601648 2.59550 0.5277450.0168167 2.93581 11.2708Ga131.4 -1.24498 0 1.527480.0366517 2.09782 0.9590820.0464357 2.01935 0.574047-0.0133385 2.93581 11.2708As (in AlAs)145.2 -1.10411 0 0.9724390.0174946 2.46793 6.53147-0.00368081 1.22845 5.506010.0921512 1.35897 1.18638As (in GaAs)145.2 -1.05821 0 0.959327-0.00217627 2.46808 6.53145-0.0434312 0.851644 2.946790.10569 1.22436 0.820922Table B.1: Atomi
 pseudopotential parameters in Rydberg units, and volumes 
� in atomi
 units.[44℄. The four rows for ea
h atom 
orrespond to the four Gaussian fun
tions (i = 1; 2; 3; 4) inEq. (B.13). We further need to de�ne: f0Al = 0:02, �Al = 10 (au)�1, and f0Ga = f0As = 0. Thesepseudopotentials are designed for a kineti
-energy 
uto� of 5 Ry.



142 Appendix B. Pseudopotentials4. The As potential in GaAs and AlAs are not 
onstrained to be identi
al, i.e. theyare �tted independently, to a

ount for the lo
al-environment dependen
e of theatomi
 potential, by 
onsidering the lo
al ele
troni
 
harge. This is equivalentto say that empiri
al/semi-empiri
al pseudopotentials are not transferable todi�erent 
hemi
al environments. The pseudopotential for As 
oordinated by nAl atoms and (4� n) Ga atoms is given by the weighted average:vAs = n4 vAs (AlAs) + 4� n4 vAs (GaAs) : (B.14)This means that, to preserve a 
orre
t des
ription of interfa
es in GaAs/AlAssuperlatti
es, an As atom bound to two Al and two Ga atoms is attributed asymmetrized pseudopotential, whi
h is the average of the As pseudopotentialfun
tions in GaAs and AlAs environments.
5. The quality of the �nal pseudopotentials is widely tested, in the 
ontest ofplane-wave 
al
ulations in Ref. [44℄, in the 
ontest of LCBB 
al
ulations inRef. [29℄.These pseudopotentials are lo
al and, at this stage, do not in
lude spin-orbit terms,even if in the Appendix of Ref. [44℄ it is suggested how to in
lude them. Bulk andsuperlatti
e energy levels are provided in the same absolute energy s
ale, thus su-perlatti
e and bulk eigenvalues 
an be easily 
ompared and the valen
e band o�setis automati
ally reprodu
ed. The di�erent q �! 0 limit values of v�(q) are thekey-points to des
ribe 
orre
tly the band alignment. The optimized parameters ofEq. (B.13) are given in Table B.1. The energy 
uto� these pseudopotentials aredesigned for is 5 Ry. At last, we should add that the 
ontinuous pseudopotentialspresented here are not the only ones in literature. Nevertheless, trusting the 
ompar-ison table in Ref. [44℄, these pseudopotentials should be the more eÆ
ient, at leastfor a superlatti
e 
onstituted by GaAs and AlAs. Our results, both 
on
erning thebulk and superlatti
e systems, 
on�rm the high quality of these pseudopotentials.



B.3. Ab-initio pseudopotentials 143B.3 Ab-initio pseudopotentialsB.3.1 Hamann pseudopotentialsIn a full DFT 
al
ulation, in
luding expli
itly both 
ore and valen
e ele
trons, thevalen
e ele
trons feel potentials due to the nu
lei, the 
ore ele
trons and the othervalen
e ele
trons. The sum of the �rst two terms gives the true ioni
 potential.Within a pseudopotential framework, the true ioni
 potentials are substituted bythe ioni
 pseudopotentials: the two potentials di�er in a spheri
al region 
enteredon the nu
lei. We 
an already underline a basi
 di�eren
e between this de�nitionof pseudopotentials and the semi-empiri
al pseudopotentials presented in the lastse
tion: the semi-empiri
al pseudopotentials are s
reened, i.e. they in
lude alsothe e�e
ts due to the ele
tron-ele
tron intera
tion between valen
e ele
trons. Thisexplains, as we have already remarked, why empiri
al/semi-empiri
al pseudopoten-tials 
annot be transferable. In 
ase of ioni
 pseudopotentials we do not meet thisrestri
tion: it is pra
ti
al to have a pseudopotential, whi
h 
an be 
onvenient todes
ribe the ele
troni
 properties in deeply di�erent 
hemi
al environments, like anex
ited atomi
 state, a mole
ule or a solid.The formulation of modern ab initio pseudopotentials goes beyond the Phillips-Kleinman s
heme, over
oming some problems arising from the imperfe
t normaliza-tion of the pseudowavefun
tion. In fa
t, if the true wavefun
tion  is normalized toone, then from the (B.2):1 = h�j�i � 2X
 h 
j�ih�j 
i+X
 jh 
j�i j2 ; (B.15)it follows that the pseudowavefun
tion � has a norm only approximatively equal toone: h�j�i = 1 +X
 jh 
j�i j2 : (B.16)This is a 
onsequen
e of the in
orre
t distribution of the valen
e 
harge between the
ore and the valen
e region and would 
ause serious problems in self-
onsistent 
al-
ulations. This in
onvenien
e is eliminated in the formulation of Hamann, S
hl�uterand Chiang [161℄, by imposing the 
onservation of the norm for the pseudowave-fun
tion. In the framework of this formalism, Ba
helet, Hamann and S
hl�uter havebuilt systemati
ally all the atomi
 norm-
onserving pseudopotential from H to Pu



144 Appendix B. Pseudopotentials[162℄. This is not the only way to solve the problem, another possible way leads tothe soft non-norm-
onserving pseudopotentials of Vanderbilt [169℄.The 
onstru
tion of the Hamann pseudopotentials starts from an All-Ele
tron(AE) 
al
ulation, within density fun
tional theory, for the isolated atom. The goalis to build a soft potential without a singularity in the origin, nevertheless the newpotential must not 
hange the physi
al properties of the system. The pro
edure 
anbe summarized in the following steps:a) the Kohn-Sham equation for the radial part RAEnl of the atomi
 wavefun
tionis solved self-
onsistently within an all-ele
tron s
heme:(�12 d2dr2 + l (l + 1)2r2 + V AE [n; r℄) r RAEnl (r) = �AEnl r RAEnl (r) ; (B.17)where V AE [n; r℄ = �Zr + VH [n; r℄ + V LDAx
 (n(r)) ; (B.18)Z is the atomi
 number, VH [n; r℄ is the Hartree potential and V LDAx
 (n(r)) isthe ex
hange-
orrelation potential in the lo
al density approximation.b) The all-ele
tron radial wavefun
tions RAEnl is modi�ed, by making it smooth andnodeless in the 
ore region, to obtain the radial pseudowavefun
tion RPPnl . Thepseudowavefun
tion RPPnl must ful�ll the pseudoatom Kohn-Sham equation,(�12 d2dr2 + l (l + 1)2r2 + V PPl [n; r℄) r RPPnl (r) = �PPnl r RPPnl (r) ; (B.19)To be more pre
ise, the pseudowavefun
tions RPPnl are built, under the 
on-straint to ful�ll the following requirements:(i) For the same atomi
 
on�guration, the valen
e eigenvalues of the all-ele
tron Hamiltonian and the pseudo-Hamiltonian must be equal:�AEnl = �PPnl : (B.20)(ii) The pseudowavefun
tion RPPnl (r) must 
oin
ide with RAEnl (r) outside the
ore region, i.e. RAEnl (r) = RPPnl (r) ; (B.21)for r beyond a 
uto� distan
e 
alled 
ore radius r
l, whi
h depends on theangular momentum 
omponent l. The 
ore radius r
l must in
lude themore external node of the l-th 
omponent of the all-ele
tron wavefun
tion.



B.3. Ab-initio pseudopotentials 145(iii) The integral Z R0 ���RAE;PPnl (r)���2 r2dr ; (B.22)with R > r
l, must give the same value for an all-ele
tron wavefun
tionand a pseudowavefun
tion: this relation expresses the 
onservation of thenorm. From the Eq. (B.22) it follows, thanks to the Gauss theorem, thatthe ele
trostati
 potential produ
ed at distan
es r > r
 by the pseudo-
harge distribution is equal to the potential produ
ed by the true 
hargedistribution. The density fun
tional theory is based on the 
on
ept of
harge density, thus it is fundamental to reprodu
e 
orre
tly the true 
hargedensity of the system.(iv) The logarithmi
 derivatives of the true wavefun
tion and the pseudowave-fun
tion and their �rst derivatives with respe
t to the energy must 
onvergeto the same values for R > r
:1RPPnl (r; �) dRPPnl (r; �)dr = 1RAEnl (r; �) dRAEnl (r; �)dr : (B.23)For a perfe
t pseudopotential Eq. (B.23) holds for every energy �, not onlyfor the eigenvalues �nl. This equality 
omes from the theory of s
atteringand, together with the point (iii), it is essential to guarantee the transfer-ability of the atomi
 pseudopotential to di�erent 
hemi
al environments.The freedom left within the 
onstru
tion rules still allows to play with theparameters to get a \soft" pseudopotential, i.e. a pseudopotential whi
h leadsto a low 
uto� energy for the plane-wave basis.
) On
e we have obtained the pseudowavefun
tion, the pseudopotential is ob-tained by the inversion of the Eq. (B.19):V PPs
r;l (r) = �nl � l (l + 1)2r2 + 12rRPPnl (r) d2dr2 hrRPPnl (r)i : (B.24)For a nodeless wavefun
tion the pseudopotential does not have any singular-ity, ex
ept possibly at the origin, where it 
an be avoided by imposing thewavefun
tion to be proportional to rl, when it is approa
hing the origin.d) At this stage, the pseudopotential is s
reened, i.e. it 
ontains the Hartree andex
hange-
orrelation potentials due to valen
e ele
trons. In this form, it is not
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ompared to the pseudowavefun
tionsfor valen
e states: they di�er only inside the 
ore radius.
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hemi
al environment whi
h di�ers from the one inwhi
h it has been generated. We need to remove the s
reening of the valen
eele
trons. Although the ex
hange-
orrelation energy is a non-linear fun
tionalof the total ele
tron density, in pra
ti
e the \linearization" of the 
ore-valen
e
ontribution is usual and often adequate [170℄. An expli
it a

ount of the
ore-valen
e non-linearity of Vx
 (non-linear 
ore 
orre
tion) [171℄ is sometimesne
essary, in parti
ular if the overlap between the 
ore and valen
e density isremarkable. Anyway, whatever approximation has been 
hosen, the goal is tosubtra
t from the pseudopotential the 
ontributions to the Hartree potentialand the ex
hange-
orrelation potential due to the valen
e ele
trons:V PPion;l (r) = V PPs
r;l (r)� VH [nv; r℄� Vx
 [nv; r℄ : (B.25)As a 
onsequen
e of the pro
ess of 
onstru
tion of the \bare" pseudopotential,we have a �nal result whi
h depends expli
itly on the 
omponents of the angularmomentum l : V PPion (r; r0) = 1Xl=0 P̂lÆ (r � r0)V PPion;l (r) ; (B.26)where P̂l is the proje
tor on the l-th eigenstate of the angular momentum. Weunderline that the pseudopotential is lo
al in the radial variables, but non-lo
alas far as angular 
oordinates are 
on
erned: this kind of behavior 
hara
terizeda semi-lo
al pseudopotential.e) In the �nal formulation it is useful to separate a lo
al long-range term from thenon-lo
al short-range l-dependent terms:V PPion (r; r0) := V PPlo
 (r) + �V PPl (r; r0) = V PPlo
 + infXl=0 jli�V PPl hlj : (B.27)A typi
al 
hoi
e is to set Vlo
 equal to one of the non-lo
al 
omponents: the lo
al
omponent 
an, in prin
iple, be arbitrarily 
hosen, but sin
e the summation inEq. (B.27) will need to be trun
ated at some value of l, the lo
al potential shouldbe 
hosen su
h that it adequately reprodu
es the atomi
 s
attering for all thehigher angular momentum 
hannels. The maximum angular momentum lmaxdepends both on the atom and on the ele
troni
 environment in whi
h it lies. Infa
t, in the solid the atomi
 ele
troni
 
harge is redistributed and may be in an
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ited state if 
ompared to the atomi
 ground state. For the 
onstru
tion ofex
ited angular momentum 
omponents it is ne
essary to rearrange the valen
e
harge into ex
ited orbitals, maybe even in a ioni
 
on�guration. In Figs. B.3and B.2 we show an example of the appli
ation of the Hamann s
heme: thenon-lo
al 
omponents of the pseudopotential of Ga are presented in Fig. B.3on page 148, together with the ioni
 Coulomb potential. In Fig. B.2 on page146 we show how the the wiggles in the valen
e states of Ga are eliminated,moving from the real wavefun
tion to the pseudowavefun
tion.The transferability and the smoothness of the pseudopotential are both stronglya�e
ted by the 
hoi
e of the 
ore radius r
l. A high radius redu
es the in
u-en
e of the os
illating 
ore states and brings to a softer pseudopotential, whi
hleads in its turn to a smaller energy 
uto� of the plane-wave basis. On theother hand, the transferability is lowered, due to the loss of physi
al relevantinformation in the 
ore region. For ea
h atom the appropriate 
uto� radiusmust be sele
ted as a 
ompromise between fast 
onvergen
e and good transfer-ability. There are pra
ti
al limits on how far r
l 
an be de
reased: it must belarger than the outermost node of the all-ele
tron wavefun
tion; on the otherhand it must be small enough to prevent overlaps of neighboring 
ore regionswhen the mole
ule or the solid is 
reated. Con
erning the energy 
uto� of theplane wave basis, 
ertain natural restri
tions o

ur: the atomi
 size imposesa length s
ale to the problem, whi
h in
uen
es the extent of the Fourier ex-pansion needed to a

urately des
ribe the pseudowavefun
tion. Anyway, a softpseudopotential prevents from wasting 
omputational e�ort in unne
essarilylarge expansions. The transferability depends 
riti
ally also on the lineariza-tion of the 
ore-valen
e-ex
hange-
orrelation and, of 
ourse, on the 
hoi
e ofthe states to be in
luded in the 
ore. At last, another worsening to the trans-ferability properties 
an 
ome from the transformation of the pseudopotentialfrom the semi-lo
al into the fully separable form. We will dis
uss this step ina following se
tion.The 
omparison between the logarithmi
 derivative in an all-ele
tron or pseu-dopotential 
al
ulation, as already mentioned, gives 
lear hints on the transfer-ability of the generated pseudopotentials. An additional quality requirement
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he
k that the all-ele
tron atomi
 ex
itation or ionization energies andthe eigenvalues are 
lose to the energy values obtained from the pseudopoten-tial 
al
ulations and the all-ele
tron frozen 
ore 
al
ulations. A

ording to thistest, a transferable pseudopotential should lead to the same a

ura
y as thefrozen-
ore all-ele
tron 
al
ulation. Anyway, a �nal insight on the quality ofthe pseudopotential 
an only be given by the results of realisti
 
al
ulations ondi�erent model systems (mole
ules or solids): the 
riterion is that a pseudopo-tential and an all-ele
tron 
al
ulation must deliver the same valen
e ele
troni
stru
ture and the same total energy di�eren
es.B.3.2 Troullier and Martins pseudopotentialsThe pres
riptions given in the previous se
tion are not suÆ
ient to de�ne uniquely apseudopotential. It may be remarked that the smoothness of the pseudopotential hasnever been expli
itly required. It has been the obje
tive of mu
h a
tive work tryingto determine some pra
ti
al atomi
 
riteria for a 
omputational eÆ
ient pseudopo-tential, whi
h reprodu
es the 
orre
t all-ele
tron behavior outside the 
ore region.Kerker [172℄ was the �rst to propose a pseudopotential 
onstru
tion whi
h fo
usedon the smoothness of the pseudowavefun
tion. Troullier and Martins [163℄ gener-alized and improved Kerker's method, obtaining smooth pseudopotentials with arelatively high 
uto� radius, but still able to preserve good logarithmi
 derivatives.Their re
ipe has proved to be parti
ularly eÆ
ient for systems 
ontaining �rst rowelements, transition metals, and rare-earth elements. The �rst row elements, forexample, 
ontain no p 
ore ele
trons, thus their pseudopotential 
omponents withp symmetry are very strong, be
ause there are no inner p states to enfor
e the or-thogonality. Transition metals and rare-earth elements have similar problems with dand f 
omponents. Cal
ulations involving atoms of the above type are parti
ularlydemanding and these atoms provide an important test for pseudopotential smooth-ness. The pro
edure of Troullier and Martins 
onsists in modeling inside the 
oreradius the radial wavefun
tion in the form:RPPnl (r) = rlepl(r2) ; (B.28)



B.3. Ab-initio pseudopotentials 151where pl is a polynomial of order six in r2. The seven variational 
oeÆ
ients of thepolynomial are 
hosen to ful�ll the seven following 
onditions:(i) Norm-
onservation of 
harge within the 
ore radius r
l, like in the Hamannre
ipe.(ii)-(vi) The 
ontinuity of the pseudopotential wavefun
tion and its �rst four deriva-tives at r
l, whi
h imposes in e�e
t the 
ontinuity of V PPs
r;l (r) and its �rst twoderivatives at r
l.(vii) The zero 
urvature of the s
reened pseudopotential at the origin: V 0PPs
r;l (0) = 0.The last point is the 
riterion to give smooth pseudopotentials. This 
onditionhas been a

urately tested in Ref. [163℄. On
e the pseudowavefun
tion has beende�ned, the pro
edure whi
h leads to the pseudopotential is the standard methoddes
ribed in the previous se
tion. Although there are still no absolute 
riteria foreÆ
ient pseudopotentials, the re
ipe by Troullier and Martins has been proven todeliver ex
ellent pseudopotentials, o�ering high transferability in 
ombination withfast 
onvergen
e.B.3.3 Kleinman-Bylander formulationWorking on a plane-wave representation entails performing some 
al
ulations in theposition spa
e and some others in the momentum spa
e, passing from one spa
e tothe other thanks to a Fourier transform. In the re
ipro
al spa
e the semi-lo
al partof the pseudopotential is des
ribed by the expression:XG;G0 jk+Gi�V PPl (k+G;k+G0) hk+G0j ; (B.29)whi
h is 
ompletely non-lo
al.For an N -dimensional basis fGg , the semi-lo
al form requires the evaluation andstorage of (N2+N)=2 matrix elements hk+Gj�V PPl jk+G0i. Kleinman and Bylan-der (KB) [173℄ found out that by 
ompli
ating the expression of the pseudopotentialin real spa
e, it is possible to save time and memory in their manipulation in re
ip-ro
al spa
e. With the KB form the matrix elements of the non-lo
al pseudopotentialbetween two states jk+Gi and jk+G0i are expressed as the produ
t of two fa
-tors, requiring only a number proportional to N of proje
tions h�V PPl �PPlm jk +Gi



152 Appendix B. Pseudopotentialsand then simple multipli
ations. In fa
t, following Kleinman and Bylander, we 
anrewrite in their separable form the non-lo
al pseudopotential 
omponents:�V KBl =Xl;m j�V PPl �PPlm ih�V PPl �PPlm jh�PPlm j�V PPl j�PPlm i ; (B.30)where �PPlm are the pseudoeigenfun
tions of the Hamiltonian, obtained from thesemi-lo
al atomi
 pseudopotential. The Fourier transform of Eq. (B.30) is:Xlm hPG jk+Gihk+Gj�V PPl �PPlm ii hPG0 h�V PPl �PPlm jk+G0ihk+G0jih�PPlm j�V PPl j�PPlm i : (B.31)Of 
ourse, if we use the non-lo
al part of the pseudopotential, as written in expres-sion (B.30), to solve the ele
troni
 problem of the atom, we �nd the same eigenvaluesand eigenve
tors we had already found with the pseudopotential expressed in thesemi-lo
al form. This o

urren
e makes the KB pseudopotential in prin
iple as validas the 
orresponding semi-lo
al pseudopotential. Nevertheless, this pro
edure hasto be applied 
autiously, be
ause it 
an modify in a non-physi
al way the 
hemi-
al properties of the atoms. The problem, as explained in Ref. [174℄, 
omes fromthe fa
t that the KB Hamiltonian does not respe
t the Wronskian theorem [175℄.A

ording to the theorem, the atomi
 eigenfun
tions are energeti
ally ordered su
hthat, for a given quantum number l, the energies in
rease with the number of nodes.Sin
e this 
ondition does not hold for the KB Hamiltonian, \ghost" states. i.e. un-physi
al solutions, 
an show up in the 
hemi
ally important energy range aroundthe valen
e eigenvalues El. There are some pra
ti
al pres
riptions to distinguishand eliminate the ghost states : besides applying the 
riterion of Gonze et al. [174℄,the logarithmi
 derivatives as a fun
tion of the energy must be a

urately inspe
ted,
omparing 
al
ulations using the all-ele
tron Hamiltonian, the semi-lo
al Hamilto-nian and the KB Hamiltonian. If a ghost state is dete
ted, o

urring for some ~l,it may be eliminated: (i) 
hanging the 
omponent l whi
h is set as the lo
al partof the potential, (ii) varying the 
ore 
uto� radii r
l of the ~l 
omponent or of thelo
al 
omponent. These 
hanges should be done in su
h a way to preserve as goodas possible the transferability.



B.4. The norm-
onserving pseudopotentials built to be used in this work 153B.4 The norm-
onserving pseudopotentials built to be usedin this workIn this se
tion we want to dis
uss how we have applied the above explained te
h-niques to 
reate norm-
onserving pseudopotentials for Ga, As and Al atoms. Thetool used to perform the numeri
al 
al
ulation is the fhi98PP pa
kage [176℄ byFu
hs and S
he�er. The 
ode allows to generate norm-
onserving pseudopoten-tials adapted to DFT 
al
ulations, for all the interesting elements throughout theperiodi
 table. The pro
edure of 
onstru
tion is based on a s
alar-relativisti
 all-ele
tron 
al
ulation of the free atom. Both the s
heme by Hamann [177℄, des
ribedin Se
tion B.3.1, and the s
heme by Troullier and Martins [163℄, des
ribed in Se
-tion B.3.2, are implemented and 
an be sele
ted by the user to generate the atomi
pseudopotentials. We remark on
e again that no experimental input is needed. Theex
hange-
orrelation potential 
an be implemented both in di�erent parameteriza-tions of the lo
al density approximation and in the generalized gradient approxi-mation. A partial 
ore density 
an be in
luded to allow for non-linear 
ore-valen
eex
hange-
orrelation. The pa
kage in
ludes some fa
ilities to test the quality of thepseudopotentials dire
tly on the free atom, in parti
ular their softness and theirtransferability, examining suitable 
uto� energies for plane-wave basis set, s
atter-ing properties, ex
itation energies and 
hemi
al hardness properties. Moreover, thepresen
e of unphysi
al states, in 
ase of Kleinman-Bylander separable pseudopoten-tials, is dete
ted by inspe
tion of the bound spe
trum and by the analysis of Gonzeet al. . For further details we suggest to see the Ref. [176℄.Our ab initio pseudopotentials are generated using the method of Hamann etal. [161℄ for Ga and As atoms, while the method of Troullier and Martins is usedfor Al atoms. We have used the Kleinman-Bylander form for the pseudopotential,after having a

urately veri�ed not to have ghost states. We have paid parti
ularattention to the 
hoi
e of the referen
e 
on�gurations (see Table B.2), to mimi
as 
losely as possible the environment in whi
h the atom is pla
ed: this plays animportant role to assure a good des
ription of the solid and, in parti
ular, the latti
emismat
h between GaAs and AlAs. We remind that ea
h atomi
 pseudopotentialis far from being unique and there are no �xed re
ipes to know a priori whi
h
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on�gurations and 
ore radii used in generating ab initio pseudopotentials.Elements Atomi
 
on�gurationsGa 4s1:54p0:54d0:5Al 3s2:03p3:03d0:0 s,p 
omponents3s0:753p1:03d0:25 d 
omponentAs 4s2:04p3:04d0:0Elements l rlGa 0 1.21 1.252 1.45Al 0 1.931 2.392 2.52As 0 1.152 1.60method (Hamann or Troullier-Martins), whi
h parameters (rl
, lmax), whi
h atomi

on�gurations, et
. 
an ensure the better pseudopotentials. Thus, we have testedmany di�erent atomi
 Ga, As and Al pseudopotentials, in order to 
hoose the moresuitable. We have also 
onsidered the 
ore size e�e
ts for all the 3 atoms. Atomi
tests have suggested that the introdu
tion of non-linear 
ore 
orre
tions improvesdrasti
ally the ex
itation properties in Ga and Al atoms, but do not vary signi�
antlythe behavior of As energy levels in ex
ited 
on�gurations. That is the reason whywe have simply applied the linear approximation to build the As pseudopotential.The 3d 
ore states in Ga atoms are not 
ompletely frozen, this fa
t leads to errorsof around mRy for atomi
 ex
itations. Nevertheless, we estimate that the error isstill reasonable and it is not worth introdu
ing the d states in the valen
e, in
reasingstrongly the heaviness of the 
al
ulations. A 
ru
ial test for the reliability of atomi
pseudopotentials is their use to 
al
ulate the ground state property of a bulk 
rystal.That is the reason why we refer to the des
ription of ground state 
al
ulation onGaAs and AlAs bulk materials, presented in Se
tion 3.3, as the �nal validation tothe quality of our pseudopotentials.
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