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Chapter 1

Introduction

T     is to investigate the role of exchange and corre-
lation effects on the electronic structure of nickel oxide, namely on the na-
ture of the insulating energy-gap, by means of ab-initio methods. Ab-initio

methods, also know as first-principles methods, are parameter-free approaches.
ey start from the all-electron many-body Hamiltonian and try to solve it in
a consistent way, without introducing any external arbitrary or fitted parameter.
ey of course must introduce approximations that permit to solve the problem
in practice. In most cases ground-state properties of electronic systems are well
described by Density-Functional eory [1]. e Kohn-Sham scheme [2] (used
to solve DFT in practice) has been unproperly used to describe also excited states
properties, like band structures and energy-gaps. is uncorrect approach was of-
ten the only affordable one and it has given surprisingly good results for many
compounds. As a matter of fact, the independent-electron picture has been suc-
cessful in describing the properties of a lot of materials and has marked the early
developement of solid-state physics. Still, it is a crude approximation. In fact, there
is a particular class of materials that has underpinned the limits of this approxima-
tion. ese materials are oen called strongly-correlated and display a wide range
of important properties from both a fundamental and technological point of view,
ranging from colossal magnetoresistance to high temperature superconductivity.
Among them there are transition-metal oxides. Transition-metal monoxides like
NiO are of particular interest in this framework as prototype systems. Lately, great
attention has been drawn to correlation effects in strongly-correlated materials. In
solid state physics books, correlation is defined as “everything that goes beyond the
Hartree-Fock approximation”. At first sight, this definition does not give a clue
about the physical meaning of correlation. Electronic correlation is the fact that
in a many-electron system, like a molecule or a bulk solid, the electrons cannot be
depicted as “almost free”, i.e. independent and surrounded by an effective poten-
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tial that accounts for all interactions with other electrons. ese interactions— the
correlation effects — namely affect excited-states properties.

Direct and inverse photoemission experiments are the most direct experimen-
tal way to measure the band structure of solids. ey investigateN − 1 andN + 1
particles excited states and hence need a theory able to describe changes in the
number of particles of the system.1 is is the case of Many-Body Perturbation
eory (MBPT), that treats the electronic problem in terms of n-particle propa-
gators or Green’s functions [3]. Namely, the key quantity in photoemission is the
one-particle Green’s function while for absorption spectra, which involve neutral
excitations, the key quantity one has to calculate is the two-particle Green’s func-
tion. A tractable approach derived from MBPT is the GW approximation [4, 5].
is approach allows one to calculate electron addition and removal energies, i.e
the photoemission spectra.

Correlation effects in photoemission spectra are related to the screening, which
finds its analytic expression in the dielectric function ε−1. e dielectric function
describes how the system reacts to an external field. e meaning of ε−1 can be
linked to the Hartree-Fock approximation via the GW approximation. In H-F, the
Koopmans’ theorem [6] is supposed to be valid. e Koopmans’ theorem states
that H-F energies correspond to the particle removal (addition) energies in a di-
rect (inverse) photoemission experiment, provided that there is no relaxation of
the other electrons. In H-F the key interaction is the bare Coulomb interaction v,
that is a static (i.e. time-independent) interaction. On the other hand, in the GW
approximation the key interaction is W = ε−1v, that is the dynamical screened
Coulomb interaction. It turns out that the Hartree-Fock approximation can be seen
as a particular case of GW in the limit of ε−1 = 1. is explains the link between
screening and correlation and clears out the first definition of correlation. In GW,
neglecting correlation means neglecting the screening, i.e. being in the Hartree-
Fock limit.

Taking Hartree-Fock as a reference, two main correlation effects can be found
in photoemission spectra calculated in the GW approximation: the energy peak
is found at different energies and it is broadened with respect to H-F peaks. is
means that the excited state’s lifetime is finite, as it is proportional to the inverse of
the FWHM of the peak. ere are also additional structures, called satellites, that
are related to collective excitations, e.g. plasmons.

On the other side of correlation, there is exchange. Exchange is the fact that dif-
ferent electrons, because of their quantum nature, cannot be distinguished from
each other when they are close together and their wave functions overlap. is
has a direct consequence on the symmetry of the many-body wavefunction. Ex-

1e charged excitation energy for an N-particle system is defined as Eexc = EN − EN±1 if a
particle is being added or removed respectively.
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change is exactly described in Hartree-Fock approximation where any direct elec-
tron–electron interaction is neglected. In this sense, the Hartree-Fock method can
be a reference to distinguish exchange from correlation effects, which could some-
times be mistaken one another.

Nickel oxide is an insulator with a photoemission gap of 4.3 eV. At room tem-
perature, it is a type-II antiferromagnet. At 523 K, it undergoes a magnetic tran-
sition from antiferromagnetic to paramagnetic. e photoemission gap and spec-
trum are not affected by the magnetic transition [7, 8]. As a prototype of strongly-
correlated materials, the electronic structure of nickel oxide has been extensively
studied, within several experimental and theoretical methods and models [7–28].
However, the origin of its gap is still under debate. Some people [7, 10, 16] claim it
to be aMott insulator, while others state that it can be described in a band-structure
framework, even though the description of the paramagnetic phase is problematic
in the latter case [18–21]. e debate between the two communities is still open.

In this thesis both paramagnetic and antiferromagnetic phases are covered. In
Chapter 3 I investigate the role of exchange effects on the paramagnetic phase of
NiO by means of the Hartree-Fock approximation. In Chapter 4 I take care of the
antiferromagnetic phase bymeans ofMBPT techniques. Following a new approach
on nickel oxide, focused at describing properly the photoemission gap and spec-
trum, I discuss the nature of the insulating gap in NiO and the role of exchange
and correlation effects.
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Chapter 2

Theoretical framework

In this chapter I will present all the tools that I have been using to approach the
problem of electronic structure in solids during my thesis work. Starting from the
Density-Functional eory [1] (DFT), which has the electronic density as the key
variable of the system, I will proceed in describing the Green’s functions method,
or Many-Body Perturbation eory (MBPT), which relies on the Green’s function
as the key element to solve the electronic problem. I will also carry out a discussion
on the need of a propermethod to calculate photoemission spectra, such as theGW
method.

roughout the thesis, I will make use of a number of conventional notations
and units. Hartree atomic units will be used in formulas, i.e. e2 = ~ = m = 1.
Energies are also expressed in Hartree units (1 Hartree = 27.2114 eV) and lengths
are expressed in units of the Bohr radius (1 Bohr=0.52918 Å). In the section about
Green’s functions theory shorthands forψ(r1, σ1, t1) and dr1dσ1dt1 inside integrals
will be used, namely ψ(1) and d1.

2.1 Themany-body electron problem

In quantummechanics the full Hamiltonian of a system of ions and electrons is the
following:

Ĥ = −
N∑
i

∇2
i

2
−
M∑
I

∇2
I

2MI
+
N∑
i<j

1

|ri − rj|
+

−
N∑
i

M∑
I

ZI
|ri − RI |

+
M∑
I<J

ZIZJ
|RI − RJ |

where I and RI are the ion index and position and M the number of ions; i and
ri are the electron index and position and N is the number of electrons. MI is

5



6 C . T 

I-th ion’s mass and ZI is I-th ion’s atomic number. e system is ruled by the
Schrödinger equation:

ĤΨ(r,R) = EΨ(r,R).

e complexity of the system described by this Hamiltonian is far too big to per-
mit an easy resolution. A first approximation is the so-called adiabatic or Born-
Oppenheimer approximation, which consists in separating the motion of the elec-
trons from the ions. is approximation is based on the assumption that the elec-
trons aremuch faster than the nuclei (their speed ratio is proportional to the inverse
of their mass ratio, i.e. ∼ 103). So the electronic problem alone can be analyzed
for each given ionic configuration.

We shall then take the electronic Hamiltonian for the stationary problem,H:

H =
N∑
i

(
−∇

2
i

2
+ Vext(ri)

)
+
N∑
i<j

vij (2.1)

where vij = 1
|ri−rj | is the Coulomb term of the potential and Vext(ri) is the sum

of the ionic potential and of the external potential. Resolving exactly the corre-
sponding Hamilton equation is an impossible task, at least in the time of a human
life. Nevertheless, we have now a starting point which can be treated by means of
different (alas, necessary) approximations.

2.2 Density-Functional Theory

Density-Functional eory (Hereaer DFT) is a ground-state theory in which
the emphasis is on the charge density as the relevant physical quantity [1]. DFT
has proved to be highly successful in describing structural and electronic prop-
erties in a vast class of materials, ranging from atoms and molecules to simple
crystals to complex extended systems (including glasses and liquids). Further-
more DFT is computationally relatively simple with respect to other wavefunction-
basedmethods like Hartree-Fock orMP2 andMP3 (very popular among quantum
chemists, since their applicability is limited to isolated systems). DFT is compu-
tationally cheap because its standard application implies the diagonalization of an
independent-particle-type Hamiltonian where the potential is local and density-
dependent. For these reasons DFT has become a common tool in first-principles
calculations aimed at describing — or even predicting — properties of molecular
and condensed matter systems. DFT is based on the Hohenberg-Kohn theorem.
is theorem states that there is a one-to-one relation between a ground-state ob-
servable of an electronic system (like the energy) and the ground-state electronic
density. If one knew the exact functional of the density, he would be able to calcu-
late every observable for a given density. us there would be no need to calculate
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the many-body wavefunction, which is much more complicated to compute than
the density and carries much more information, of which only a small part is ac-
tually needed to calculate the ground-state observables.

Here we summarize the Hohenberg-Kohn theorem [1]. ere is a one-to-one
relation between the electronic density and groundstatewavefunctions. e energy
density functional is so defined:

E[n] = 〈Ψ[n]|H|Ψ[n]〉, (2.2)

where Ψ[n] is the groundstate Ψ0 in some external potential. H is the Hamiltonian
of the system (2.1). e energy can be expressed as a functional of the density:

E[n] =
∫
drn(r)vext(r) + F [n] (2.3)

and it is minimal with respect to n with minimum n0 (the ground-state electron
density):

E0 = E(n0) < E(n), n(r) 6= n0(r). (2.4)

F [n] is an universal functional of the density and it does not depend on the external
potential.

A practical application of theDFT is possible thanks to the Kohn-Sham scheme
[2]. Kohn and Sham stated that it is possible to define a non-interacting electronic
system with an effective potential that has exactly the same density of the interact-
ing one. is system is usually referred to as the Kohn-Sham system. e density
is thus defined as:

n(r) =
N∑
i=1

|φi(r)|2 (2.5)

where φi(r) are the single-particle wavefunctions and are called the Kohn-Sham
orbitals. e Kohn-Sham equations are the following:(

−∇
2

2
+ Veff(r)− ɛi

)
φi(r) = 0 (2.6)

is effective potential is composed by three different parts:

Veff(r) = Vext(r) +
∫ n(r′)
|r− r′|

dr′ + Vxc(r) (2.7)

e exchange-correlation potential Vxc(r) contains all the many-body electron in-
teractions and it is defined as Vxc(r) = δExc

δn(r) , whereExc is the exchange-correlation
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energy functional. is functional is linked to the Hohenberg-Kohn energy func-
tional via the following formula

E[n] = T ′[n] +
∫
drVext(r)n(r) +

1

2

∫ ∫ n(r)n(r′)
|r− r′|

drdr′ + Exc[n], (2.8)

where T ′[n] is the total kinetic energy of the Kohn-Sham system (i.e. sum of the
single-particle kinetic energies). e second and third term are the external field
interaction energy and the electrostatic classical energy (Hartree) respectively. e
Local Density Approximation (LDA) consists in neglecting the non-local depen-
dence of the functional on the density n(r), so re-defining the functional:

ELDAxc ≡
∫
ɛxc(n(r))n(r)dr, (2.9)

where ɛxc is the exchange-correlation energy per electron of a homogeneous elec-
tron gas with density n. e exact dependence ofExc[n] on n is a functional depen-
dence. is means that in general the energy per particle in a point does not only
depend on the value of the density in that point. Instead, it depends on the value
of the density in all points (i.e. it is non-local). e LDA eliminates this problem
with a very simple assumption that makes also the calculation cheaper. In fact, to
calculate the energy one needs to know the density only in a given point and not
all over space. e Kohn-Sham equations are solved self-conistently, minimizing
the total energy of the system, and the form of the Kohn-Sham potential, which is
local in space and depends only on the density, permits to reach the minimum in a
much quicker way than e.g. the Hartree-Fock equations. In the latter case the cal-
culation of the exchange operator, which is non-local, is the major computational
drawback, while the effective potential in the Kohn-Sham is local.

Density-Functional theory, in its applicable form of the the Kohn-Sham equa-
tions, is the weapon of choice of solid-state physicists to calculate ground-state
properties of most solids. Great success has come form its affordability and rel-
atively good accuracy. However, the final aim of my work is to calculate a photoe-
mission spectrum, i.e. excited-states properties. While DFT can accomplish most
tasks regarding the ground-state properties, the calculation of photoemission spec-
tra needs additional tools. Many-Body Perturbation eory (MBPT) has a natural
attitude in describing excited-state properties, since it has its own relevant physical
quantity in the Green’s function. e link between photoemission and one-particle
Green’s functionG(r1, t1; r2, t2) will be briefly traced in the next section.
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2.3 Green’s functions theory

What is a Green’s function?
Green’s functions are used in many different fields of physics and there defined in
slightly different ways. e Green’s function is here defined as the propagator of a
particle (electron or hole) from space-time point 2 to space-time point 11. is is
actually the (time-ordered) one-particle Green’s function, defined as follows:

iG(1, 2) = 〈N |T
[
ψ̂(1)ψ̂†(2)

]
|N〉 =


〈N |ψ̂(1)ψ̂†(2)|N〉 t1 > t2

−〈N |ψ̂(2)†ψ̂(1)|N〉 t1 < t2

(2.10)

where ψ̂†(1) and ψ̂(1) are the 2nd-quantization field operators which operate
in Fock’s space in the Heisenberg representation. ψ̂†(1) is the creation oper-
ator. ψ̂(1) is the annihilation operator. Actually ψ̂(1) is an abbreviation for
ψ̂(r1, σ1, t1). is notation will be used troughout the whole thesis. T is Wick’s
time-ordering operator, which orders the two field operators in the correct order,
according to t1 and t2, following the definition in equation (2.10). |N〉 stands for
Ψ(r1, σ1, . . . , rN , σN , t), the ground-state N-particle many-body wavefunction.
e one-particle Green’s function brings all the information about one-particle
properties of the system, namely:

• the expectation value of any single-particle ground-state operator (like the
density);

• the ground-state energy of the system;

• the single-particle excitation spectrum (i.e. the photoemission spectrum).

We will see now how to find the expectation value of a generic observable once
the Green’s function is provided. Let us take a generic observable J(1, 2) (within
the first quantization picture). In second quantization it can be rewritten as

J =
∫
d12δ(t2 − t1)ψ̂†(1)J(1, 2)ψ̂(2). (2.11)

e second-quantization ground-state expectation value is then given by

〈N |J |N〉 =
∫
d12δ(t2 − t1)J(1, 2)〈N |ψ̂†(1)ψ̂(2)|N〉

= −
∫
d12δ(t2 − t+1 )J(1, 2)〈N |T

[
ψ̂(2)ψ̂†(1)

]
|N〉

(2.12)

1To have a complete overview on Green’s functions theory, see [3–5].
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where t+1 stands for t1 + δ, with δ an infinitesimal positive real number. is has
been done in order to introduce the time-ordering operator and recognize the def-
inition of the Green’s function given in (2.10). J can be then rewritten as:

J = i
∫
d12δ(t2 − t+1 )J(1, 2)G(2, 1). (2.13)

is general example shows how the knowledge of theGreen’s function can give any
single-particle operator’s expectation value. As a further example, we can write the
ground-state density:

n(1) = −iG(1, 1+) (2.14)

is last equation shows that the ground-state density is actually the one-particle
Green’s function’s diagonal in space and time.

2.3.1 Lehmann’s representation and the spectral function

We just gave a definition of the one-particle Green’s function, but how can we cal-
culate it? Of course not straightforwardly; we don’t know the form of the many-
body wavefunctions and of the field operators. We will now try to find another
way to write the Green’s functions that could help to calculate it and to get some
physical insight of the problem.

We shall first introduce N + 1 and N − 1 excited states. Using their closure
relations in the Fock space {|N, i〉} and passing in Fourier’s space, we can derive
the so-called Lehmann’s representation of one-particle Green’s function [29]:

G(r1, r2, ω) =
∑
i

fi(r1)f ∗i (r2)
ω − ɛi + iη signum(ɛi − µ)

(2.15)

where the term iη signum(ɛi − µ) (with η → 0 real and positive) is introduced to
permit the Fourier trasform. Lehmann’s amplitudes fi(r) are defined in the Fock
space as:

fi(r) =


〈N |ψ(r)|N + 1, i〉 ɛi > µ

〈N − 1, i|ψ(r)|N〉 ɛi < µ
(2.16)

and the one-particle excitation energies are:

ɛi = EN+1,i − EN . (2.17)

e form (2.15) of the Green’s function points out its connection with the ex-
citation energies. In fact, G(r1, r2, ω) is the sum over the i states of an N + 1
multi-particle state (N − 1 in case of holes) of its poles (which are the excitation
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energies) weighted by Lehmann’s amplitudes. e ɛi are electron addition and re-
moval energies. Hence, the photoemission energies that are measured in direct
and inverse photoemission spectroscopy are the poles of the one-particle Green’s
function. is shows how the Green’s function is the proper tool to calculate the
photoemission spectrum of a system.

e Green’s function is a complex function. One may want to focus on the
excitation energies. Knowing that limη→0+

1
x+iη

= P 1
x
− iπδ(x) and applying it to

(2.15) one could keep only its imaginary part, that is

=G(r1, r2, ω) = π signum(µ− ɛi)
∑
i

fi(r1)f ∗i (r2)δ(ω − ɛi). (2.18)

e imaginary part of G has different sign depending on the sign of ω. We would
certainly like to deal with an always positive function. Let us then define the spec-
tral function as

A(r1, r2, ω) =
1

π
signum (µ− ω)= [G(r1, r2, ω)]

=
∑
i

fi(r1)f ∗i (r2)δ(ω − ɛi).
(2.19)

A is a real and positive function of ω. Numerically speaking, this could be an ad-
vantage. It carries the same amount of information as theGreen’s function (as there
is a relation between real and imaginary parts of G). Let us see some interesting
properties of the spectral function that can be of practical interest. First, there is a
sum-rule; second, A brings directly the ground-state density:∫ +∞

−∞
dωA(r1, r2, ω) = δ(r1 − r2) (2.20a)∫ µ

−∞
dωA(r1, r1, ω) = n(r1). (2.20b)

Moreover, the photoemission spectrum can approximately be calculated from the
spectral function. With the assumption that the outgoing electron is decoupled
from the system, the photocurrent is

Jk(ω) =
∑
m

|Δkm|2Amm(Ek − ω) (2.21)

where Δkn is the dipole-moment operator component on a complete set of single-
particle wavefunctions and Amm is them-th diagonal element of A, provided that
A is diagonal on this particular set.

Still, we did not advance our knowledge of how to calculate G nor A. Now we
know that several interesting properties come from the Green’s function, but we
still seek a method to find it. is will be unveiled in the next subsection.
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2.3.2 Green’s function’s equation of motion and the self-
energy

Starting from the equation of motion for the Heisenberg creation and annihilation
field operators ψ̂† and ψ̂, a hierarchy of equations ofmotion for theGreen’s function
can be derived. e one-particle Green’s function depends on the two-particle one:

[
i
∂

∂t1
− h(r1)

]
G(1, 2) + i

∫
d3v(1, 3)G2(1, 3

+; 2, 3++) = δ(1, 2), (2.22)

the two-particle one on the three-particle one and so on... h(r1) is the independent
particle hamiltonian, which contains only the external potential. e two-particle
Green’s function is defined as

i2G2(1, 2; 1′, 2′) = 〈N |T
[
ψ̂(1)ψ̂(2)ψ̂†(2′)ψ̂†(1′)

]
|N〉 (2.23)

Actually, equation (2.22) shows in its second term that the evolution of a particle in
a solid is influenced by the Coulomb interaction, which is a two-particle interac-
tion. is is the physical reason of why the two-particle Green’s function appears.
e level of complexity of the complete hyerarchy of n-particle Green’s functions
equations (n = 1 . . . N ) is the same as that of the N-body problem, just reformu-
lated in terms of Green’s functions.

Here comes the fundamental idea of many-body perturbation theory: if one
is interested in one-particle properties, one only needs to know the one-particle
Green’s function. As a consequence, one would like to find good appoximations
that allow one to re-write the two-particle Green’s function in terms of one-particle
ones.

In the next section we will see that is possible to reformulate the two-particle
Green’s function in terms of an operator Σ (operating on the one-particle Green’s
function) called self-energy, that accounts for all two-particles effects:

i
∫
d3 v(1, 3)G2(1, 3

+; 2, 3++) = i
∫
d3 v(1, 3)G(3, 3+)G(1, 2)+

−
∫
d3 Σ(1, 3)G(3, 2)

(2.24)

where the first term on the right-hand side is actually the Hartree term, as the
electronic density n is equal to−iG(3, 3+). is can be put in (2.22) and yields the
so-called Dyson equation:[

i
∂

∂t1
− h(r1)

]
G(1, 2)−

∫
d3Σ(1, 3)G(3, 2) = δ(1, 2). (2.25)
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where the Hartree term is now included in h(r1). e purpose of many-body per-
turbation theory is then to find suitable approximations for the operator Σ to re-
formulate it as a function of one-particle Green’s function only.
Somephysical insight ofΣ can be given by the following pseudo-Schrödinger equa-
tion: ∫

dr3 [h(r1)δ(r1 − r3) + Σ(r1, r3, ɛi)] fi(r3) = ɛifi(r1), (2.26)

which is obtained by introducing Lehmann’s representation of one-particle Green’s
function in equation (2.22), aer a Fourier transform into frequency space. In
this equation the self-energy acts as a complex, non-local and energy-dependent
potential which includes all many-body interaction of the system. e ɛi are called
quasiparticle excitation energies and are the real photoemission excitation energies
of the system.

It is possible to define a non-interacting Green’s function of a non-interacting
particle in the commonway used inmany fields of physics, as the functional inverse
of the Hamiltonian: [

i
∂

∂t1
− h(r1)

]
G0(1, 2) = δ(1, 2). (2.27)

is shows that we can write the non-interacting Hamiltonian in the Dyson equa-
tion (2.25) asG−1

0 and re-write[
G−1

0 (1, 3)− Σ(1, 3)
]
G(3, 2) = δ(1, 2) (2.28)

or, equivalently (and in a more elegant way as well):

G = G0 +G0ΣG. (2.29)

Again, this formula shows how Σ carries all information about many-body inter-
actions and connects the interacting systemwith the non-interacting one. Still, the
self-energy is an unknown operator. In the next subsection Hedin’s approach will
be described. is approach shows a way to calculate Σ and reveals some more of
its physical meaning as well.

2.3.3 Hedin’s equations
ere is a little trick due to Schwinger [30] which allows one to decouple the hi-
erarchy of Green’s functions’ equations, i.e. introducing a small external time-
dependent perturbation of the system U(1, 2) which will be eventually brought
to zero at the end of the derivation. anks to Schwinger’s technique, it can be
shown that:

δG(1, 2)

δU(3, 4)
= −G2(1, 4; 2, 3) +G(1, 2)G(4, 3). (2.30)
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With this equation it is possible to write the two-particle Green’s function in terms
of one-particle ones (Just what we have been looking for so far!). We can then
substituteG2 in the equation of motion of the one-particle Green’s function (2.22)
and thus find two equivalent expressions2 for Σ:

Σ(1, 2) = −i
∫
d345G(1, 4)

δG−1(4, 2)

δU(3)
v(1+, 3) (2.31a)

= i
∫
d345G−1(4, 2)

δG(1, 4)

δU(3)
v(1+, 3). (2.31b)

Now we “only” have to calculateG with equation (2.29) and we will have the solu-
tion of our problem. We will now see how. Hedin [4, 5] introduces at first the local
classical potential V (1):

V (1) = U(1)− i
∫
d2v(1, 2)G(2, 2+), (2.32)

which is the sum of the external perturbationU and theHartree potential VH(1) =
−i
∫
d2v(1, 2)G(2, 2+). By the functional derivative’s chain rule3 we can reformu-

late equation (2.31a) as

Σ(1, 2) = −i
∫
d345G(1, 4)

δG−1(4, 2)

δV (5)

δV (5)

δU(3)
v(1, 3+). (2.33)

At this point, we can introduce the time-ordered inverse dielectric function:

ε−1(1, 2) =
δV (1)

δU(2)
, (2.34)

and the irreducible vertex function:

Γ̃(1, 2; 3) = −δG
−1(1, 2)

δV (3)
; (2.35)

the term “irreducible” means that the functional derivative is performed with re-
spect to the classical local potential V and not only with respect to the external
potential U. It is possible to define reducible functions differentiating with respect
to U. Let us now introduce the dynamical screened Coulomb interaction:

W (1, 2) =
∫
d3v(1, 3)ε−1(3, 2) (2.36)

2For two generic functionalsG(1, 2) and U(1), δG(1,2)
δU(3) = −

∫
d45G(1, 4) δG

−1(4,5)
δU(3) G(5, 2)

3For three generic functionals A,B and C with A = A[B[C]], δA[B[C]](1)
δC(2) =∫

d3 δA[B](1)
δB(3)

δB[C](3)
δC(2)
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and then re-write the self-energy as:

Σ(1, 2) = i
∫
d34G(1, 4)W (3, 1+)Γ̃(4, 2; 3). (2.37)

We still have to provide some tractable expressions for Γ̃ and ε−1. Using the Dyson
equationG−1 = G−1

0 −V −Σ, equation (2.34) is worked out with some functional
analysis to give

Γ̃(1, 2; 3) = δ(1, 2)δ(1, 3) +
∫
d4567

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ̃(6, 7; 3). (2.38)

Concerning ε−1, we shall use the definition of V and write:

ε−1(1, 2) = δ(1, 2) +
∫
d3v(1, 3)χ(3, 2), (2.39)

where
χ(1, 2) = −iδG(1, 1+)

δU(2)
(2.40)

is the reducible polarizability of the system. e irreducible polarizability can be
introduced as

χ̃(1, 2) = −iδG(1, 1+)

δV (2)
(2.41)

which is related to χ by

χ(1, 2) = χ̃(1, 2) +
∫
d34χ̃(1, 3)v(3, 4)χ(4, 2). (2.42)

Finally, χ̃(1, 2) can be written as a function ofG and Σ:

χ̃(1, 2) = −i
∫
d34G(1, 3)G(4, 1)Γ̃(3, 4; 2). (2.43)

We can finally write Hedin’s set of five equations in five variables [4, 5]:

G(1, 2) = G0(1, 2) +
∫
d34G0(1, 3)Σ(3, 4)G(4, 2) (2.44a)

Γ̃(1, 2; 3) = δ(1, 2)δ(1, 3) +
∫
d4567

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ̃(6, 7; 3) (2.44b)

χ̃(1, 2) = −i
∫
d34G(2, 3)G(4, 2)Γ̃(3, 4; 1) (2.44c)

W (1, 2) = v(1, 2) +
∫
d34v(1, 3)χ̃(3, 4)W (4, 2) (2.44d)

Σ(1, 2) = i
∫
d34G(1, 4)W (3, 1+)Γ̃(4, 2; 3) (2.44e)
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whereW is written as a function of χ̃ to avoid introducing the intermediate quan-
tities ε−1 and χ.

In his original paper [4], Hedin mentioned that these equations can be viewed
as an iterative solution of the many-body problem, but he stressed that they would
be interesting if only very few iterations were actually needed (for a matter of cal-
culation weight). Basically the calculation starts with some hypothesis on Σ and
G; then Γ̃ and χ̃ are evaluated. At this pointW and then Σ can be calculated. Now
one knows an improved Green’s function G and can start again the same proce-
dure, with the new Σ andG. is procedure can be represented by the pentagon in
figure 2.1, where each corner symbolizes an unknown variable and each edge one
of the five Hedin equations. e exact solution can be obtained in principle upon
completion of numerous cycles of the pentagon.

Figure 2.1: Hedin’s pentagon, representing one cycle of calculation of Σ.

2.3.4 The GW approximation

Using W instead of v as basic interaction line is motivated by the hope that the
perturbation theory will converge faster with respect to powers of W , than with
respect to the powers of v. Having this hope in mind, Hedin proposed to retain
only first-order contributions inW . is yields the so-called GW approximation
that consists in initiating the iterative scheme with Σ = 0 in the vertex equation:

Γ̃(1, 2; 3) = δ(1, 2)δ(1, 3). (2.45)
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e resulting self-energy is just

Σ(1, 2) = iG(1, 2)W (2, 1+), (2.46)

that gives its name to the approximation. e corresponding irreducible polariz-
ability reads

χ̃(1, 2) = −iG(1, 2)G(2, 1) = χ0(1, 2) (2.47)

which is the definition of the independent-particle (or RPA) polarizability χ0.
e standard GW approach that permits to calculate the photoemission exci-

tation energies starts from the comparison of the quasiparticle equation (2.22) and
the Kohn-Sham equation (2.6). e exchange-correlation potential and the self-
energy act both as a potential, with Σ being much more complicated than vKSxc .
If one supposes that the Kohn-Sham orbitals are a decent approximation of the
quasiparticles, it is reasonable to consider Σ− vKSxc as a first-order perturbation to
the Kohn-Sham Hamiltonian. e GW energies are hence most oen calculated
as first-order corrections of the Kohn-Sham energies by this formula:

ɛGWkii = ɛKSkii + Z〈φkii|Σ(ɛKSkii )− v
KS
xc |φkii〉, (2.48)

where
Z =

1

1− ∂Σ
∂ɛ

∣∣∣
ɛKSkii

. (2.49)

Moreover, theΣ dependence on ɛGWkii is approximated by linearizingΣ in the neigh-
bourhood of the Kohn-Sham energies ɛKSkii . eZ factor comes from the lineariza-
tion. e self-energy is also constructed with Kohn-Sham LDA wavefunctions via
the Green’s function G and the RPA screening W . is procedure is known as
one-shot GW,G0W0 or perturbative GW and has been proved to be very successful
in predicting photoemission gaps of various compounds. roughout the thesis I
will refer to this method also as GW+LDA.

2.3.5 Hartree-Fock self energy
e Hartree-Fock approximation can be re-introduced at this point, writing the
self-energy as

Σx(1, 2) = i v(1+, 2)G(1, 2)

=− v(r1, r2)γ(r1, r2) = −
∑
occ

φi(r1)φ∗i (r2)v(r1, r2).
(2.50)

Σx(1, 2) is the Fock exchange operator, or Hartree-Fock self-energy. γ(r1, r2) is the
density matrix. e Fock operator can be derived from GW self-energy, suppos-
ing that ε−1 = 1. e direct consequence is that the dynamical screened Coulomb
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interaction is replaced by the bare static Coulomb interaction. e physical mean-
ing is that within this approximation the system is not allowed to relax aer the
addition or removal of an electron, following Koopmans’ theorem [6].

2.3.6 Plasmon-pole model
e calculation of the self-energy in GW involves a convolution of G andW in the
frequency domain. is part of the calculation is very time-consuming. In fact,
the matrix ε−1

GG′(q, ω) must be calculated for different values of q in the Brillouin
zone, for all values of ω.4 Since one is interested only in the value of the integral, it
is acceptable to approximate the integrand to a simple form. It has been proposed
to model the dependence on ω of the matrix ε−1

GG′(q, ω) by a single plasmon-pole
model [31]:

ε−1
GG′(q, ω) = δGG′ +

Ω2
GG′(q)

ω2 − (ω̃(q)− iη)2
(2.51)

where Ω2
GG′(q) and ω̃(q) are the two parameters of the model. e dielectric func-

tion is here approximated as a single-peak structure. e peak is located on the
classical plasmon frequency ωp. is model allows us to evaluate ε−1 everywhere
in the complex plane, once the two parameters are fit. To this purpose, two con-
straints are needed. eABINITGW code [32, 33] chooses two frequencies where
the RPA ε−1 is actually computed: ω = 0 and ω ∼ iωp. e use of a plasmon-pole
model not only reduces the calculation of ε−1(ω) (as only two frequencies are re-
quired), but also permits an analytic calculation of the frequency integral in equa-
tion (2.46).5 e value of 24 eV for the plasmon frequency ωp has been taken from
experimental data by Aryasetiawan et al. [17].

2.3.7 COHSEX approximation for the self-energy
e practical application of the GW approximation is the perturbative approach
described above. is approach relies on the approximation that considers the
Kohn-Sham orbitals and energies to be quite close to the real wavefunctions. is
approximation does not have a theoretical basis, but it is grounded on practice
application of the method on model and realistic systems. However, there are
some general known limits of Kohn-Sham LDA. Namely, the energy-gap is always
smaller than the real one. is will generally provide a larger screening than the
actual one and cause an underestimation of the band-gap in GW as well. e eas-
iest solution is to iterate a perturbative GW calculation updating the Kohn-Sham

4e inverse dielectric function is defined here in reciprocal space on theG vectors of the plane
wave basis and in frequency space.

5Equation (2.46) is defined in real space. A Fourier transform is necessary to write it in the
frequency domain.



.. G’   19

eigenvalues with the GW ones, until the energies do not change anymore. is
approach is called energy-only self-consistency and still relies on the K-S wave-
functions as approximation of the quasiparticle wavefunctions. But in the worst
case, the Kohn-Sham wavefunctions appears to be not adequate at all to describe
the electronic system. In this case it is necessary to calculate new wavefunctions.
e straightforward way to do it is to diagonalize the quasiparticle equation 2.26
and iterate the procedure until self-consistency in energies and wavefunctions is
reached. is can be quite a time-consuming approach, since the self-energy is a
non-hermitian, non-local, complex and energy-dependent operator. In the case of
a self-consistent calculation Σ is diagonalized at each self-consistent step. To this
purpose, one needs an approximation tomakeΣ hermitian. eCOHSEX approx-
imation for the self-energy, first proposed byHedin as an affordable approximation
of GW [4], is not only hermitian, but also static and requires a sum only over the
occupied states, being hence much more affordable from a computational point of
view. ΣCOHSEX is the sum of two terms. e first is the following:

ΣSEX(r2, r1) = −
∑
i

θ(µ− ɛi)fi(r1)f ∗i (r2)W (r2, r1, ω = 0) (2.52)

that is the screened exchange part (SEX). is formula is almost identical to equa-
tion (2.50), except that here the static screened Coulomb interaction has taken the
place of the bare Coulomb interaction. is term should take into account cor-
rectly the fermionic nature of electrons and at the same time the fact of being in a
polarizable medium, damping the exchange interaction. e sum only over occu-
pied states ensures a limited computational effort, whereas in the GW self-energy
one has to sum over all the empty states as well. Being static, the calculation of W
requires to calculate ε−1 at ω = 0 only. e second term is

ΣCOH(r2, r1) =
1

2
δ(r1 − r2)Wp(r2, r1, ω = 0), (2.53)

where Wp = W − v is the polarizable part of W . is second term is called the
Coulomb hole contribution to the self-energy (COH). It is static and local in space.
is latter term represents the energy shi due to the polarization of the system
induced by an added hole or electron. e particle is approximated by a classical
point charge.

e COHSEX approximation for the self-energy is quite crude, but it gives a
quite immediate physical insight, so that it is clear what effects are included in
the self-energy (exchange, static screening and polarizability) and what are miss-
ing (dynamical correlation, e.g. satellites). Moreover, it is computationally much
more affordable than standard GW. is approximation is known to be a reliable
approach for self consistent calculations, whose pourpose is to calculate newwave-
functions [34–36]. e dynamical effects neglected in ΣCOHSEX are normally in-
cluded in the calculation by a last perturbative GW step on top of the converged
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COHSEX band structure. Self-consistent COHSEX is actually a way to calculate
proper quasiparticle wavefunctions that can ben used as a reliable starting-point
for perturbative GW.

2.3.8 Self-energy beyondGW: vertex corrections

I have listed above the GW approximation and other simpler approximations for
the self-energy, such as Hartree-Fock and COHSEX. But what if one wanted to
adopt an approximation better than GW? In this case one has to take a look at
Hedin’s equations. ere, the exact form of the self-energy is

Σ(1, 2) = i
∫
d34G(1, 4)W (3, 1+)Γ̃(4, 2; 3) (2.54)

where Γ̃(4, 2; 3) is the irreducible vertex function, as taken in equations (2.44). In
standard GW approach to solve Hedin’s equations, the vertex function is taken as
δ(4, 2)δ(4, 3), i.e. Σ0 = 0 is taken as the starting point of the one-step perturba-
tive approach. In this case one says that vertex corrections are neglected. is is
a quite drastic approximation, but it has been proven to be a fair one in practical
applications. Del Sole et al. [37] tried to improve the GW approximation with an
approximate vertex correction. In their article they start the perturbative calcula-
tion approximating Σ with the LDA exchange-correlation potential V LDA

xc (r). e
starting self-energy then becomes

Σ0(1, 2) = δ(1, 2)Vxc(1). (2.55)

is starting point produces, in the first iteration ofHedin’s equations, a self-energy
of the form Σ = GW̃ , where W̃ is an effective dynamical screened Coulomb inter-
action. e difference betweenW and W̃ is that the in the latter case the screening
is described by the so-called electron–test-charge dielectric function. While the
RPA ε−1 used in GW is the classical screening between two classical charges, in
this case the screening used to calculate W̃ describes the effect of an additional
charge on the potential felt by an electron. e essential difference is that in W ,
the induced charge generates only a Coulomb potential, while in W̃ the induced
charge also generates an exchange-correlation potential.

is is called theGWΓ approximation, from the complete form of Σ in Hedin’s
equations. is approach has the advantage to go beyond the GW approximation
while retaining the same computational cost. e actual need for vertex corrections
is still under debate, since it is not clear if and how much they can improve the
GW results. Also, it might be necessary to adopt different approximations for Γ̃.
Possible vertex corrections different from the one presented above, are discussed
in References Ref. [34].
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2.4 Theconceptofquasiparticle inphotoemission
spectroscopy

I have extensively used in the previous sections terms like quasiparticle and quasi-
particle energies. e term quasiparticle stands in opposition to the term indepen-
dent particle. We refer to an independent particle when the Hamiltonian of the
system is a single-particle Hamiltonian which takes into account the presence of
other electrons by an effective external potential. In this picture the electrons are
independent particles, whose behaviour is slightly affected by their surrounding.
is is e.g. the case of the Bloch picture for solids, where electrons are travelling
waves in a periodic external potential. In a photoemission experiment, an inde-
pendent photoelectron, aer being excited by a photon, leaves the solid without
any interaction with the system producing a spectral peak which is a delta peak at
the exact energy of the electron in the solid.

Even though the independent particle approximation has made possible the
developement of solid-state physics and has proven its possible application in a va-
riety of materials, it is a quite drastic approximation. In its complete treatment,
the electronic structure problem is amany-body problem, i.e. each electron is con-
stantly interacting with a number of other electrons in the system that modify its
behaviour accordingly. e Coulomb interaction between the electrons is thus
screened by themselves, depending on their reciprocal arrangement in the system.
In this picture, a precise definition of a single particle can be difficult. Neverthe-
less, photoemission spectra can give some clues, in fact photoemission spectra can
exibit structures that are very single-particle-like, e.g. strong peaks very similar
to delta peaks. But sometimes photoemission spectra can have a very different
shape, very broadened and without clear peaks at all. e broadened shapes are
called satellites and are oen the expression of collective excitations of the system.
One can have of course both kinds of behaviour. ese two very different kinds
of features in photoemission spectra mark the fact that electrons can show a very
different behaviour depending on the environment they are in.

A quasiparticle is an electron surrounded by the screened interaction with the
other particles in the system. In this picture, the electron travels in the solid sur-
rounded by what can be called a polarization cloud, that depends on the screen-
ing and consequently on the polarizability of the system. is “surrounding-
dependent” particle is the link between the single-particle world and the many-
body world. In fact, quasiparticles can have a behaviour quite similar to indepen-
dent particles. In the case of quasiparticles, one can still speak of quasiparticles
band-structures and energies, when the system is not too correlated. Correlation is
by definition every effect one takes into account beyond the Hartree-Fock approx-
imation, which only takes into account the fermionic nature of electrons. In this
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case the photoemission energies are delta peaks by construction.
When the single-particle description breaks down completely one talks about

strongly correlated materials. In this materials the photoemission spectrum shows
many-body features like satellites and loses any recognizable single-particle fea-
ture. Strongly correlated materials have been and are still under the attention of
researchers because of the difficulty to explain the physical processes underneath
their properties. is is e.g. the case of NiO, that shows both weakly and strongly
correlated properties.

Quasiparticles energies are what is measured in photoemission. Hence, an ad-
equate theoretical description is needed to calculate the spectrum. In literature
photoemission spectra are oen compared to Kohn-Sham–LDA or independent-
particle Densities Of States. is arbitrary approach has nevertheless been used
extensively. e reason for this sort of “abuse” of a ground-state theory like DFT is
to be found in the overall good agreement between Kohn-Sham bands and DOSes
and experimental data of many materials. Also, Kohn-Sham LDA’s computational
cost is very low. But a proper description of the photoemission process needs an
excited-state theory, such as many-body perturbation theory, where the Green’s
function describes precisely the process of creating a hole (or adding an electron)
and the quasiparticle excitation energies come hence naturally from the theory.
Quasiparticles have a finite lifetime and can exibit many-body features like satel-
lites. eGW approximation is an affordable way to get a correct physical descrip-
tion of the photoemission process that can be compared to experimental data.



Chapter 3

Exchange and spin interactions in
the electronic structure of NiO

In this chapter the ground-state electronic structure of NiOwill be first analyzed by
means of Density-Functional eory, calculating the Kohn-Sham band structure
and the density of states. e experimental structural parameters have been taken
into account. Secondly, the Hartree-Fock method will be applied to the system
to stress out the role played by exchange in this material, especially for what con-
cerns the paramagnetic phase. e whole procedure will be carried out for both
the paramagnetic and the anti-ferromagnetic case, i.e. including the spin explicitly
in the calculation for the latter case. is definition will be always implicit in the
following.

3.1 NiO: a strongly-correlatedmaterial

Nickel oxide is an insulator which undergoes an anti-ferromagnetic–paramagnetic
phase transition at 523-525 K [7, 8]. e magnetic transition temperature TN is
called the Néel temperature. ere is also a slight change in the crystal structure,
which passes from a rhombohedral to a rocksalt structure [9] (i.e. like NaCl). e
photoemission energy-gap of this material is 4.3 eV [7]. ere is no change in the
value of the gap while passing above the Néel temperature.

Figure 3.1 shows the experimental photoemission spectrum published by
Sawatzky and Allen [7] in 1984. It is a combined x-ray–photoemission (XPS) and
bremsstrahlung-isocromat-spectroscopy (BIS) (i.e. inverse photoemission) mea-
surement. e valence bands exibit a strong peak just below the Fermi level which,
in a band-structure description, is supposed to originate from nickel d bands.
Lower in energies (at about 4 eV) there are other peaks which come from p bands
of oxygen, that are more evident in the 66 eV XPS data. At about 8 and 11 eV there

23



24 C . E    NO

are structures that one cannnot classify in a single-particle band-structure picture.
ese are nickel oxide’s satellites. e inverse photoemission data show a strong
peak just above the energy-gap. is peak is supposed to originate from nickel eg
d bands. e experimental resolution of the spectrum is reported to be 0.6 eV.

e origin of the energy-gap of NiO is still under debate. Before the discov-
ery of antiferromagnetism, it was pointed out that, according to the Wilson theory
of metals and insulators (which describes materials in terms of Bloch’s states and
bands), nickel oxide should be a metal — whereas it is a transparent insulator. e
eg bands were predicted to be crossing the Fermi level and hence to be half-filled.
Slater [38] showed in 1951 that the antiferromagnetic sublattice in NiO could split
the eg bands into two bands with two electrons per atom in each, and thus ex-
plain its insulating properties, but pointed out that there is no marked increase in
the conductivity when the temperature is raised above the Néel temperature, even
though a band structure description would predict a metal in the latter case. More-
over, conductivity measurements on pure NiO are hard, because the resistivity is
high and measurements are very sensitive to surface conduction [10]. Another
difficulty in doing measurements on NiO is that at the Néel temperature it is sub-
limating. It is thus necessary to perform any measurement as quickly as possible,
to avoid sensitive changes in the material [8]. In NiO a metal-insulator transition
has been observed under very high pressure (2.5 Mbar): the conductivity at room
temperature drops abruptly by about 106. Nothing was determined regarding the
temperature dependence of the conductivity, or the change of volume [10].

Nickel oxide was first taken by Mott as the paradigmatic material for Mott-
Hubbard insulators, described in terms of the Hubbard model [39]. e Hubbard
model describes a solid as a regular lattice of 1-band sites and takes into account
both the itinerant and the localized nature of electrons. Here is theHubbardHamil-
tonian, in the formalism of second quantization:

Ĥ = −t
∑
〈ij〉σ

(ĉ†iσ ĉjσ + h.c.) + U
∑
i

n̂i↑n̂i↓. (3.1)

Given a hopping (i.e. site transfer) probability t, the key parameter is U , which is
the magnitude of the on-site interaction, i.e. the energy that must be paid to put
two electrons on the same lattice site. e Pauli principle must be obeyed, hence
two electrons can be on the same site only if they have opposite spins. Depend-
ing on the U/t ratio, the system can be either a metal or an insulator. Its later
developements like Dinamical Mean Filed eory (DMFT) have claimed to de-
scribe properly a variety of materials. Mott pointed out that Slater’s description
was valid for the ground-state of the system, i.e. at 0 K, but equivalent to his de-
scription, that was moreover valid at all temperatures and independent on the spin
configuration. Some authors [7] describe nickel oxide not as a Mott-Hubbard in-
sulator in the simplest sense, where the interaction is between d electrons. but as a
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Figure 3.1: Direct (XPS) and inverse (BIS)measured photoemission spectrumof nickel
oxide. For the direct photoemission part two values of the photon energy are shown.
The value of the gap is 4.3 eV. The uncertainty on the measurement is 0.6 eV [7].
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charge-transfer insulator, where the oxygen p electrons participate to the Hubbard
interaction. e applicability of this kind of models to systems like NiO is justi-
fied by the very localized nature of the 3d electrons which determines a strong on-
site Coulomb interaction. is characteristic, common to several transition-metal
compounds described by means of the Mott-Hubbard model, has oen caused
some misleading, confusing strongly correlated materials with materials where the
Mott-Hubbard model is applicable. Instead, strong correlation should be more
largely intended as every effect that prevents (partly or at all) a description of a sys-
tem in a single-particle picture, i.e. when many-body effects have a non-negligible
contribution.

Local Spin-Density Approximation

e anti-ferromagnetic structure of NiO, which is the stable configuration under
523 K, requires the explicit treatment of the spin in the calculation. is require-
ment is fulfilled by the extension of LDA to the spin domain, which is normally
referred to as the Local Spin Density Approximation (LSD or LSDA). e crystal
lattice is slightly different from the paramagnetic one, in fact it is a rhombohedral
(or, equivalently, trigonal) structure. e description of the anti-ferromagnetic
structure requires to have two nickel atoms able to have opposite spin orientation.
us, the unit cell needs to be doubled. e unit cell for the anti-ferromagnetic
configuration contains then two nickel atoms and two oxigen atoms respectively.
is trick, originally due to Slater, may seem a bit arbitrary, but actually it is just
a way to permit the system to propagate in the spin degree of freedom. e in-
clusion of the spin variable in the calculation would not be necessary in principle,
since the Hohenberg-Kohn theorem states that every ground-state variable (such
as the magnetization) can be calculated as a functional of the density only. In the
practical implementation of DFT, one needs to define the Kohn-Sham system to
make actual calculations, since the exact functional is unknown. Similarly, it ap-
pears easier to extend the theory adding the spin variable to the Kohn-Sham sys-
tem, instead of looking for an unknown functional of the density, since this way
one can build an approximate functional in a feasible way [40].

For non-magnetic materials the explicit treatment of spin brings to exactly the
same results than a calculation without spin, pointing out the validity of a simpler
approach that assumes a priori the spin degeneracy. is approach has a fall back
on the computational weight of the calculation. the number of bands multiplies by
four, since the unit cell is double and there is one electron per band (i.e. half the
number of electrons per band with respect to the LDA case) so that we have twice
the number of bands per atom.
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3.2 Lattice andmagnetic structure

e unit cell of nickel oxide contains one nickel atom and one oxygen atom. I
will briefly present the structural parameters that have been used in my work to
modelize the lattice and that have been used for all calculation in DFT, Hartree-
Fock and GW for the paramagnetic and the anti-ferromagnetic phases.

Rocksalt structure – Paramagnetic phase e rocksalt lattice structure is the
the combination of two FCC lattices, shied by a half of the lattice constant along
one axis direction (e.g. [100]). It is the same structure of NaCl. e lattice con-
stant is a=4.19056 Å at 550 K. e space group is Fm3̄m. ese values have been
determined by experiment and are taken from the literature [9]. e unit cell con-
tains one atom of nickel and one atom of oxygen. A portion of the rocksalt lattice
is shown in Figure 3.2. e Brillouin zone is the FCC Brillouin zone, i.e. a trun-
cated octahedron. e FCC Brillouin zone is displayed in Figure 3.3. See [41] for
an extensive treatment of direct and reciprocal lattices.

Figure 3.2: A portion of the rocksalt lattice structure of NiO. There are two FCC sublat-
tices for the two atomic species. The lattice constant at 550 K is a=4.19056 Å, i.e. twice
the Ni-O distance. The unit cell contains two atoms: one nickel and one oxygen.

Rhombohedral structure – Anti-ferromagnetic phase e transition from
the paramagnetic to the the anti-ferromagnetic state is accompanied by a rhom-
bohedral distorsion with a contraction along the [111] direction of the cubic unit
cell. e resulting crystallographic symmmetry is trigonal. e space group is
R3̄m. A rhombohedral lattice is defined by three unit vectors of the same length
and with a reciprocal orientation given by three angles of the same value. At 10 K,
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Figure 3.3: Brillouin zone for the rocksalt lattice structure of NiO. It is a truncated oc-
tahedron. The high-symmetry points are shown. Among them: Γ (000), X (100), K (110)
and L (111).

the rhombohedral cell parameters are a=2.9490 Å and α=60.087◦ [9]. e unit cell
is displayed in Figure 3.4. e spins are ferromagnetically disposed on the same
(111) plane, but the planes alternate their orientation along the [111] direction,
thus arranging in a AFII configuration. e description of the anti-ferromagnetic
structure imposes to double the unit cell, so as to include two nickel atoms where
the spin has the possibility to arrange in the proper way. us, the unit cell con-
tains two nickel atoms and two oxygen atoms. e rhombohedral Brillouin zone
is displayed in Figure 3.5 with the high symmetry points. In Chapter A I briefly
explain how to get the coordinates of high-symmetry points in the Brillouin zone
of the rhombohedral lattice.

3.3 Pseudopotentials

To represent the electronic wavefunctions I will make use of pseudopotentials and
a plane wave basis, that is themost natural choice since I am treating a periodic sys-
tem. A pseudopotential is an effective potential constructed to replace the atomic
all-electron potential such that core states are eliminated and the valence electrons
are described by nodeless pseudo-wavefunctions. e practical reason for a need
of a pseudopotential is that it permits to treat explicitly (i.e. to include in the cal-
culation) a much smaller number of electrons than the actual one and it permits
to lower the plane waves basis energy cutoff — that in principle is infinite — thus
reducing greatly the weight of the calculation. e physical reason that justifies the
pseudopotential approximation and makes it most of the time valid is that only the



.. P 29

Figure 3.4: Conventional magnetic unit cell for the rhombohedral lattice structure of
NiO. It is very close to a rocksalt, but actually the structure is slightly stretched along the
[111] direction. It is easy to see the type-II anti-ferromagnetic configuration of nickel
atoms: they are arranged on stacks of [111] planes where the spin orientation is alter-
natively up and down.

Figure 3.5: Brillouin zone for the rhombohedral lattice of NiO. The high-symmetry
points are shown. Among them: Γ (000), L (100), F (110) and T (111).
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electrons in the outer shell usually contribute to the chemical and physical proper-
ties of a compound. ese are the so-called valence electrons. e “deeper” elec-
trons (i.e. lower in energies), which fill the inner electronic shells and are usually
referred to as the core electrons, do not normally change their behaviour appre-
ciably when changing the ion’s enviroment. In fact, the energy separation of the
highest core electrons from the lowest valence electron is usually on the order of
100 eVs. e pseudopotential is therefore an effective potential which mimics the
core electrons. e form of the pseudopotential is based on the atomic configu-
ration of the core electrons. Another advantage of using pseudopotential is the
fact that the valence wavefunctions do not have nodes by construction and this is
a very important feature since we are using a basis of plane waves to describe the
wavefunctions.

e success of the pseudopotential approximation is also validated by years of
experience of many researchers who have generated and tested pseudopotentials
for a variety of elements. ere is a vast collection of “recipes” that describe how
to generate a pseudopotential. For my work I used Trouiller-Martins [42] type
pseudopotentials in a Kleinman-Bylander [43] separable form. ey are generated
using the i98PP [44] code. ese are norm-conserving pseudopotentials.

In the case of NiO (and in general in the case of a transition metal oxide) there
is a further detail to consider. e previous core-valence distinction is not enough.
In fact, while the argument of the energy separation remains valid, there is an issue
about the spatial separation of the orbitals, that influences directly the exchange
part of the self-energy. If we take a look at the radial wavefunctions of atomic
nickel (Figure 3.6), we can clearly see how the valence electron (i.e. 3d) are spatially
overlapped with the 3s and 3p orbitals. It is handy to define the semi-core electrons
as those electrons that are in the outermost-but-one shell. It appears necessary
to include in the calculation (i.e. to treat explicitly) also the semi-core electrons,
since the spatial proximity to the valence ones breaks down the ansatz of semi-
core and valence being separated. is becomes crucial in GW calculations. In
principle the exchange part of the self-energy is built with the contribution of all
the occupied states of the system. If they overlap with the valence states, the semi-
core states cannot be evaluated simply as a Kohn-Sham LDA potential, but need to
be included explicitly to construct the Σx operator, since the correct expression of
the exchange operator is determined by the spatial overlap betweenwavefunctions.
e validity of the inclusion the semi-core electrons is also supported by previous
works on transition metal oxides like Cu2O [34] and VO2 [35].

e generation of a pseudopotential is carried out in several steps. First, it is
necessary to choose which are the core, semi-core (if any) and valence electrons.
en, a cut-off radiusmust be chosen for each angular channel, on which the pseu-
dopotential will be developed. e pseudopotential is generated by performing an
all-electron scalar-relativistic calculation of the atomic configuration. e pseudo-
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Figure 3.6: Atomic radial wavefunctions of Ni. It appears clearly how the 3s and 3p
(semi-core) wavefunctions have their maximum in the same region as the 3d (valence)
ones.
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wavefunctions and potential are constructed thanks to the all-electron solution.
e oxygen electronic configuration is 1s22s22p4. In this case I took a pre-

generated pseudopotential alreadywell-tested at the Laboratoire des Solides Irradiés
on other transition metal oxides [34, 35]. e core configuration is 1s2 while the
valence is 2s22p4. For the Ni atom we must take into account the semi-core states.
e configuration will then be as follows. Core electrons: 1s22s22p6, semi-core
electrons: 3s23p6, valence electrons: 3d84s2. e cut-off radius rc for the s channel
is 0.895 bohr, while for the p and d channels it is 1.087 bohr. Outside the cut-off ra-
dius the all-electron wavefunctions and the pseudo-wavefunctions must coincide,
as it can be seen in Figure 3.7.
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Figure 3.7: Comparison of the radial wavefunctions of Ni and their pseudo-
counterparts. For each channel the cut-off radius iswritten. Thepseudo-wavefunctions
do not have nodes and coincide with the all-electron ones beyond rc by construction.
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3.4 The Ground State

e ground-state calculations are performed in the framework of the Local Den-
sity Approximation (LDA) of Density-Functional eory, with the explicit cal-
culation of the spin when needed (LSDA), i.e. for the anti-ferromagnetic phase.
All DFT calculations have been performed with the ABINIT package. ABINIT
is a soware package whose main program allows one to find the total energy,
charge density and electronic structure of systems made of electrons and nuclei
(molecules and periodic solids) within Density-Functional eory (DFT), using
pseudopotentials and a plane wave basis. In ABINIT neutral excited states can
be also computed within the Time-Dependent Density-Functional eory (for
molecules) while electron addition and removal energies within Many-Body Per-
turbation eory (GW approximation). Before calculating the band structure,
there is a number of parameters which need to be tuned and converged. ese
parameters are the kinetic energy cutoff, which has been fixed at 115Ha, the smear-
ing parameter (only in the case of metallic systems), which has been fixed at 0.01
Ha, and the number of k-points in the Brillouin zone, which depends on the unit
cell in the direct space. For the paramagnetic phase 28 k points have been used in
the irreducible Brillouin zone (6x6x6 Monkhorst-Pack grid [45]). For the anti-
ferromagnetic phase (i.e. treating the spin) 42 k points have been used (6x6x4
Monkhorst-Pack grid).

Paramagnetic phase e Kohn-Sham system of the paramagnetic phase of
nickel oxide, as expected, is metallic. Figure 3.8 shows how the valence bands cross
the Fermi level. Following the work by Terakura et al. [11, 12], one can separate
the bands in different contributions from the ions of the crystal. e group of
bands around the Fermi level are the d band coming from nickel ions. Namely,
the two bands crossing the Fermi level are the eg bands, which is a notations that
comes from the group theory representation of the atomic orbitals. Under the Ni
d bands there are the p bands of the oxygen ions. they are well separated from the
Ni d bands, in fact there is a small energy-gap (0.5 eV) dividing them. Above the
Fermi level, the Ni s and O p bands form the upper conduction bands, separated
by a small gap from the d bands. e density of states (Figure 3.9) exploits even
better the metallic behaviour of nickel oxide in LDA. From le to right, one can
distinguish the different types of bands explained above: the oxigen p, the nickel d
(crossing the Fermi level) and the other conduction bands.

Anti-ferromagnetic phase e analysis of the Kohn-Sham system from the
LSDA calculation on nickel oxide shows that in this case the material has a gap
of 0.7 eV. Even though it is much smaller than the actual one (4.3 eV), this calcu-
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Figure 3.8: Kohn-Sham band structure of nickel oxide obtained with an LDA calcula-
tion. The crystal structure is rock-salt (NaCl-like). The special points are characteristic of
the FCC Brillouin zone. The Fermi level εF is set at 0 eV.
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Figure 3.9: Density Of States for the Kohn-Sham system of nickel oxide obtainedwith
an LDA calculation. The Fermi level is set at 0 eV. The non-zero DOS at EF corresponds
to a metallic behaviour. A gaussian broadening of 0.2 eV is added to the spectrum.
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lation shows that considering the anti-ferromagnetic ordering gives an energy-gap,
even with an improper tool like K-S LDA. It is well known that the band-gap of
the Kohn-Sham system underestimates the real gap, so it is not surprising to find
such a small value. Also in the anti-ferromagnetic case, one can assign the bands to
contributions from the different ions. e general behaviour of the bands does not
go very far from the paramagnetic case. e lower valence bands are the oxigen p
and there is a small gap between them and the upper d bands, as before. e top-
valence bands are d from nickel, but the fundamental difference with respect to the
paramagnetic case is that the eg bands are split in two parts, one in valence and the
other in bottom-conduction (See Figure 3.10). is splitting is made possible by
the magnetic ordering of the electrons [11, 12]. e upper conduction bands are,
as in the paramagnetic case, Ni s and O p bands.

e character of the bands is an interesting aspect of the electronic structure
of solids and it is referred to the electronic shells s, p, d and so on. Projecting the
wavefunctions on the basis of spherical harmonics centered on each atom, one can
evaluate how the atomic character of the electrons changes in the solid andwhat are
the possible hybridizations, as it happens in molecules. e projected DOS con-
cerns only one nickel atomandone oxigen of the unit cell, since the other two atoms
are configured in the exact same way, but with opposite spins. e projected den-
sity of states shows very well that the top-valence and bottom-conduction bands
have a Ni d character, while the deeper valence states have a major p contribution
from the oxigen.

e LDA density of states is compared to the experimental data of direct (XPS)
and inverse (BIS) photoemission in Figure 3.12. e most apparent thing is the
highly underestimated energy-gap— 0.7 eV in LDA vs experimental 4.3 eV.More-
over, the whole of the empty states are completely off. e only structure that is
fairly reproduced is the so-called quasiparticle peak composed by nickel’s d bands.
e gap between the oxigen p bands and the nickel d bands is not found in the ex-
perimental spectrum and it is very hard to fins a correspondence between theory
and experiment for the other peaks.

e fact that the Kohn-Sham LDA band-structure in the two magnetic phases
of nickel oxide give results very different from the experimental, should not worry
us too much. I have compared the photoemission experimental data with the LDA
DOS because this procedure has proven to give results in fair agreement with ex-
periment for a large variety of materials. However, the Kohn-Sham LDA is an ap-
proximation born to solve the density-functional theory, a ground-state method.
Moreover, the Kohn-Sham wavefunctions and eigenvalues do not have any physi-
cal meaning. eir only connection to the real world is the total ground-state den-
sity. ey are not supposed to give any kind of description of excited-state proper-
ties. Hence, the only surprising thing is that K-S LDA gives good band structures
for some materials and only others — like NiO — exploit the limits of its improper
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use in describing excited states. Other methods— likeGW —are built on purpose
to describe excited states, thus we should expect better results from the application
of these methods on nickel oxide.
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Figure 3.10: Kohn-Sham band structure of nickel oxide obtained with an LSDA cal-
culation. The crystal structure is rhombohedral. The special points are characteristic
of the rhombohedral Brillouin zone. The Fermi level εF is set at 0 eV. The energy gap
value is 0.72 eV. Compared to the LDA band structure, here we have twice the number
of bands since the unit cell is doubled and with it the number of electrons as well.
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Figure 3.11: Density Of States projected on the angular components for the LSDA
calculation of anti-ferromagnetic nickel oxide. One can separate (there is also a small
energy-gap between them) the valence bands in two types: Ni d and O p. The top-
valence is mainly Ni d, as the bottom-conduction. The Fermi level EF is set at 0 eV. A
gaussian broadening of 0.2 eV is added to the spectra.
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Figure 3.12: Density Of States for the Kohn-Sham system of nickel oxide obtained
with an LSDA calculation. The Fermi level EF is set at 0 eV. The calculated DOS is com-
pared to the experimental direct (XPS) and inverse (BIS) photoemission spectrum. The
calculated energy gap value is 0.7 eV. The experimental value is 4.3 eV. A gaussian
broadening of 0.15 eV is added to the theoretical spectrum.
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3.5 A Hartree-Fock study of NiO

e aim of this section is to point out the importance of the exchange interac-
tion in the physics of bulk NiO. A clear description of the exchange interaction
is crucial for the comprehension of the correlation effects. e calculation of the
electronic structure with an exact description of the exchange between the elec-
trons can be a reference to understand what are the effects of correlation on the
system. Since correlation is defined as everything beyond the Hartree-Fock approx-
imation, the electronic structure of nickel oxide has been calculated using the H-F
approximation that, by construction, takes into account only exchange, i.e. only
the fact that we are dealing with quantum particles, namely fermions. Particularly,
we want to see if exchange plays a significant role in the paramagnetic phase, where
the Kohn-Sham band structure is metallic. It is known that, for solids, the Hartree-
Fock approximation highly overestimates energy-gaps. In fact, in general it is not a
goodmethod to describe bulks, while it can be a useful tool to describe isolated sys-
tems like atoms or molecules. e overestimation of the gap value in solids points
out that exchange in general contributes to the opening of the gap while correla-
tion’s trend is to close it. is point of view is very clear in the framework of the
GW approximation for the self-energy, where the Hartree-Fock approximation is
recovered as a limit, when the screening ε−1 is put equal to 1. Hence, inGW all the
correlation effects are included in the screening. GW and HF calculations give, for
insulators, very different energy-gaps and the HF value is always much bigger than
the GW one, by two or three times. e role of the screening in determining the
value of the gap is then clear. In this kind of picture, too much correlation in a sys-
tem should cause a metallic behaviour. is is not to be confused with the concept
of strong correlation, oen too much used and abused. In fact, strong correlation
is used to describe in general many-body phenomena that are not reduceable to
single-particle processes and the physics underlying these phenomena are still un-
der heavy debate.

3.5.1 Paramagnetic phase

e electronic structure of paramagnetic NiO in Hartree-Fock is very different
from the LDA one. In fact, the density of states has dramatically changed in the
proximity of the Fermi level and the quasi-particle peak of the Ni d bands has com-
pletely collapsed (See Figure 3.13). Probably the majority of the spectral weight of
the valence bands has moved to the structure at 10-15 eV below the Fermi level.
Nonetheless, there is still a portion of non-zero density at 0 eV, i.e. at the Fermi
level. ese bands are probably the upper eg bands, that also in the LDA case cross
the Fermi level. e conduction bands appear to be shied by about 5 eV, but do
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not seem to have changed much. e system is thus predicted to be metallic by a
Hartree-Fock study. e same result than in LDA.

is kind of result would lead to the conclusion that the exchange interaction is
not responsible of the insulating nature of nickel oxide in the paramagnetic phase.
is is somewhat reasonable, but the truth is actually far from being as clear as
that. is issue will be better developed in the following chapters and the analysis
of the other calculations performed and of the result in literature will help to obtain
a more complete picture of the problem.
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Figure 3.13: Density Of States for the Hartree-Fock calculation of nickel oxide. The
Kohn-Sham LDA DOS is shown for comparison. The Fermi level EF is set at 0 eV. The
predictedbehaviour is stillmetallic as theDOS is non-zero at the Fermi level. A gaussian
broadening of 0.2 eV is added to the spectrum.

3.5.2 Anti-ferromagnetic phase
e Hartree-Fock density of states has dramatically changed also compared to the
LSDA. e gap is present indeed, but its magnitude is of about 14 eV. e LSDA
energy-gap was 0.7 eV. e quasiparticle peak has moved far from the Fermi level,
leaving a huge gap. e experimental photoemission gap is reported to be 4.3 eV.
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e Hartree-Fock calculation is too far from any reasonable comparison with ex-
periment. As already remarked, this is a known behaviour of Hartree-Fock calcu-
lations on solids. e correct treatment of exchange causes a strong localization
of the wavefunctions, that leads to a highly overestimated energy-gap. In this pic-
ture, the role of correlation would be to reduce the exchange effects, i.e. to reduce
the value of the band-gap. In fact — as explained in the theoretical introduction
— a study of nickel oxide with methods derived from the Green’s function the-
ory is expected to give a better description of the system, since both exchange and
correlation are taken into account properly.
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Figure3.14: DensityOf States for the spin-polarizedHartree-Fock calculationofnickel
oxide. The Kohn-ShamLSDADOS is shown for comparison. The Fermi level EF is set at 0
eV. The energy-gap is of about 15 eV. This largely overestimated gap value is a common
feature of Hartree-Fock calculations on solids. A gaussian broadening of 0.2 eV is added
to the spectrum.



Chapter 4

A GW-and-beyond study of NiO

is chapter discusses the analysis of NiO bymeans of theGW method with differ-
ent approximations, perturbatively or self-consistently. e analysis will concern
the anti-ferromagnetic phase, as pointed out before. My concern will be now on
the photoemission spectrum of nickel oxide and on the magnitude and origin of
the energy-gap. To fulfil this task we will make use of some of the most advanced
tools available admist the ab-initio theoretical tools. ese are the GW method,
derived from Many-Body Perturbation eory, and other approximations for the
self-energy, such as the COHSEX and the GWΓ.

4.1 PerturbativeGW

I have applied the standard GW approach on nickel oxide. is method is built
to describe properly the quasiparticle excitation energies, i.e. the addition and re-
moval energies in a photoemission experiment. e GW energies are calculated
as first-order corrections of the LDA eigenvalues. e density of states of the GW
calculation is shown in Figure 4.1. It is compared with the experimental data. e
calculated photoemission gap value is 1.7 eV. It is much smaller than the experi-
mental one (4.3 eV).ere is an appreciable change in the valence bands: the width
in energy of the occupied states goes from 8 eV to about 6.3 eV. e main d peak
is now wider and the gap between O p and Ni d in valence has closed. e sec-
ond d peak seems to have too much spectral weight and to have a wrong energy,
if it is compared with the second structure in the 120 eV XPS spectrum. e third
structure, well visible in the 66 eV XPS spectrum, appears correctly reproduced,
even though a lot of spectral weight between p and d peaks is missing. e con-
duction bands, apart from a rigid shi of 2-3 eV, look in fair agreement with the
BIS data if one compares the reciprocal positions of the peaks. ere is an over-
all bad agreement of the calculation with the experimental spectrum, nevertheless

43
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the GW corrections go in the right direction regarding the energy-gap. ere is
an improvement with respect to LDA. e valence bands, instead, show only little
change with respect to LDA, and it is not clear wether it is better or worse.

We known from literature that a perturbative GW calculation applied on
transition-metal oxides is not able to give a correct description of the photoemis-
sion spectrum. is is reported to be mainly an effect of the poor LDA starting
point. Nevertheless I included this part in the thesis, to show how standard GW
performs on NiO. In the next section, I will carry out a more detailed discussion
on the reasons of the failure of the standard GW approach on nickel oxide.
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Figure 4.1: Density of states (DOS) for the perturbative GW calculation of nickel ox-
ide. The experimental direct (XPS) and inverse (BIS) photoemission data are shown for
comparison. The experimental photoemission gap is 4.3 eV. The GW energy-gap is
about 1.7 eV. The calculation is in bad agreement with the experiment, nevertheless
the energy-gap is much wider that in the LDA case and the DOS shows better agree-
ment in valence and conduction. The Fermi level EF is set at 0 eV. Agaussianbroadening
of 0.2 eV is added to the spectrum.
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4.2 Self-consistency and alternative approaches

e failure of the perturbative GW method on NiO is somewhat expected, in fact
the literature about transition metal oxides described by means of ab-initio meth-
ods is quite assertive in this sense. One reason oen reported to cause bad results is
a too strong delocalization of the LDA wavefunctions. In fact, the LDA exchange-
correlation potential in Kohn-Sham system cannot give a good description of the
exchange interaction between d electrons, that are very localized in space, as re-
ported by Aryasetiawan et al. [18]. Also, the LDA ingredients used to calculate
the screening in Σ, in the standard GW perturbative approach, appear to affect
too much the GW corrections [20]. In fact, the screening generated from a Kohn-
Sham system with such a small band-gap is too strong and leads to small gaps. In
general, a strong screening leads to semiconductors or metals — whereas Hartree-
Fock, where the screening is neglected, leads to high gap insulators. In a one-step
procedure, it is crucial that all the ingredients are not too far from the final point.
Taking a starting point with a wider gap has been reported to improve the GW-
on-LDA result [21], giving a wider final gap. A better starting point — i.e. in most
cases a wider gap — can be achieved either using an exchange-correlation func-
tional different from LDA, like GGA or hybrids, or applying a scissor operator to
the Kohn-Sham eigenvalues. Another solution would be to continue and iterate
the GW approach, updating the quasiparticle energies at each step and stopping
when the energies have reached self-consistency. Li, Rignanese and Louie have
applied one of this approaches to nickel oxide using a GGA exchange-correlation
functional [21] and a plasmon-pole modelW . is is a quite affordable approach,
since it costs only∼ N times the computational cost of aGW calculation, whereN
is the number of iterations1. e band-gap obtained by such method is Eg = 2.9
eV, which is better than the GW+LDA and goes in the right direction, but still not
in good agreement with the experimental data. e approach of Aryasetiawan and
Gunnarsson [18] is quite similar, as they carry out aGW calculation self-consistent
for the energies within the LDA. However, they do not adopt the plasmon-pole
model for W . ey use a Linear Muffin-Tin Orbitals basis (LMTO) for the wave-
functions. Moreover, they add a non-local potential of ∼ 6 eV to the eg bands of
the nickel, to simulate the effects due to the change of the wavefunctions. e cal-
culated band-gap is Eg ∼ 5.5 eV, still quite different from the experimental one
(4.3 eV). e possibility of using hybrid functional has been explored, but issues
remain on the reliability of this method, since several arbitrary parameters enter
in the calculation and the physical meaning of the Kohn-Sham orbitals remains
theoretically doubtful. Massidda et al. [19], instead, adopt a fully self-consistent
approach in energies and wavefunctions, but they use a model self-energy to make

1Supposing that the number of iterationsN is on the order of 10.
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computation feasible. e energy gap they find is Eg = 3.7eV . Among the ex-
amples that have been described here it is the value of the energy-gap closest to
experiment, but having a model Σ makes it difficult to compare this result with
others and to evaluate the actual validity of the method.

All the approaches described above try to go beyond the perturbative approach
in GW and point out the need of a self-consistent calculation, to get appropriate
wavefunctions. ey point out that in the case of transition-metal oxides it be-
comes necessary to get rid of a too poor starting point, i.e. the Kohn-Sham wave-
functions. However, they never apply a full self-consistent approach, basically be-
cause it would be too heavy computationally. So they find a compromise to get
to a result in a feasible way. us, different compromises (and different approxi-
mations) bring different results, as one can see from the fair range of energy-gaps
found. is way, the physics of the photoemission process in NiO remains without
a satisfactory explanation.

To get a reliable result, one needs to get rid of the dependence from a poor
starting point like LDA or GGA and find a proper description for the wavefunc-
tions. e straight-forward solution would be to perform a full self-consistentGW
calculation, solving self-consistently the quasiparticle equation of motion. is
is a quite heavy calculation, since one needs to diagonalize a complex, non-local
and energy dependent operator. Moreover, since ΣGW is not hermitian, one has
to find a hermitian approximation as well. Faleev et al. [20] carried out this ap-
proach. In their publication they include the full energy dependence ofW without
plasmon-pole model, but neglect the so-called incoherent part of the self-energy,
which gives rise to satellites. ey call this procedure QuasiParticle self-consistent
GW (QPscGW). Not using the plasmon-pole model, while keeping more reliabil-
ity, raises even more the computational effort needed for the calculation. More-
over, they treat explicitly all the electrons of the system (the so-called all-electron
treatment) adding weight compared with my pseudopotentials calculations. Nev-
ertheless, their approach brings to a good agreement with the experimental pho-
toemission data. e calculated photoemission gap is Eg = 4.8 eV.

One would like to have a cheaper approach that could give us similar results. A
possibility is to use the COHSEX approximation for the self-energy. e ΣCOHSEX

is hermitian, static and depends only on the occupied states of the system. Con-
sequently, it is much cheaper to calculate with respect to the full ΣGW . To include
the dynamical effects of the latter, one performs a one-shot GW calculation on
top of the converged COHSEX quasiparticle band structure. e main pourpose
of the self-consistent approach is to modify the wavefunctions. e COHSEX ap-
proximation has shown to be appropriate for this task on different transition-metal
oxides like Cu2O [34] andVO2 [35]. Performing a fullGW perturbative step on the
COHSEXband structure properly includes the dynamical effects in the calculation.
With this approach it is possible to get results quite similar to a fully self-consistent
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GW approach, but with at least an order of magnitude less in terms of calculation
time [34].

Moreover, the self-consistent COHSEX approach permits one to get rid of
the starting point dependence that introduced a sort of arbitraryness in the GW
method, namely to not depend on the Kohn-Sham wavefunctions anymore.

4.2.1 Self-consistent COHSEX in practice
To make the self-consistent approach feasible, the quasiparticle COHSEX wave-
functions are expanded in the basis set of LDA Kohn-Sham orbitals as follows:

|φQP
ik 〉 =

∑
j

cijk.|ϕLDA
jk 〉 (4.1)

e projection coefficient are defined as cijk = 〈ϕLDA
jk |φ

QP
ik 〉. e quasiparticle

wavefunctions are thus constrained to be linear combinations of LDA wavefunc-
tions. e reliability of this procedure has been discussed by F. Bruneval et al.
[34, 36] and M. Gatti [35] in previous works on transition-metal oxides.

Our aim is to solve the quasiparticle equation (2.26) in the COHSEX approx-
imation. At each step, using the quasiparticle wavefunctions ϕik and the quasi-
particle energies Ei, one has to calculate the full Hamiltonian 〈φik|h0 + Σ|φjk〉,
where Σ is the static and Hermitian COHSEX self-energy. In particular one needs
to calculate ε−1 andW atω = 0 to build Σ before each step. At the step n, the diag-
onalization of the Hamiltonian yields a new set of quasiparticle energies E(n)

i and
coeffcients c(n)ijk that link the new quasiparticle wavefunctions to the quasiparticle
wavefunctions at the previous iteration:

|φ(n)
ik 〉 =

∑
j

c
(n)
ijk |φ

(n−1)
jk 〉. (4.2)

So the matrix of the coeffcients evolves through the self-consistent loop, by
mixing for each quasiparticle wavefunction φik different contributions coming
from the different LDA wavefunctions ϕik. Since the Hamiltonian is Hermitian,
thematrix of the coeffcients cij remains unitary. By converging the calculation, the
Hamiltonian on the basis of the updated quasiparticle wavefunctions φ(n)

ik tends to
be diagonal. One iterates the self-consistent loop until the new quasiparticle en-
ergies E(n) i are close (within a fixed small difference, in general 1 meV) to quasi-
particle energies at the previous stepE(n−1)

i . Finally, the converged self-consistent
COHSEX eigenfunctions and eigenvalues are used as an input for the last pertur-
bative GW calculation that yields the final result.

e application of the self-consistent COHSEX approximation to the nickel
oxide has produced an appreciable change in the band structure and in the den-
sity of states (Figure 4.2). e most apparent change is of course the energy-gap,
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Figure 4.2: Density Of States of a self-consistent COHSEX calculation of nickel oxide
in the anti-ferromagnetic phase. The energy gap is Eg=6.1 eV. The Fermi level EF is set
at 0 eV. A gaussian broadening of 0.2 eV is added to the spectrum.
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that measures about 6 eV. e valence states have a quite different shape from the
LDA ones while the conduction states appears to have been just shied with re-
spect to LDA. e shi, though, is much greater for the empty d states. e cause
of this is the correct treatment of exchange in the self-energy, which causes an en-
ergy separation of more localized states such as the nickel d. At top-valence, the
quasiparticle peak has appreciably decreased. e small energy-gap in the middle
of valence bands has disappeared.

4.2.2 Hybridization in COHSEX band structure: projected
density of states

I compared the projected DOSes of LDA and self-consistent COHSEX to see how
a correct description of exchange and correlation as the one of MBPT determines
hybridization and atomic character. As the COHSEX gives a quite different energy-
gap and DOS with respect to LDA, we expect to see some differences.

In Figure 3.11 the projection of the Kohn-Sham DOS on two different angular
components is displayed, i.e. the oxygen p and the nickel d. is bands are mainly
contributing to the valence and bottom-conduction bands, which are the bands we
are most interested in. e valence bands are filled by O p and Ni d type electrons,
while the conduction bands are mainly Ni d near the gap andO p andNi s (not dis-
played) above. In the valence bands there is an energy-gap of about 0.8 eV between
O p and Ni d electrons and the top valence has an almost pure Ni d character. e
picture also shows well how spin-polarization affects only the d electrons while the
p have the same density up and down. e self-consistent COHSEX calculation
yields a quite different result from LDA. In the projected DOS (Figure 4.3) Ni p
and O d are displayed. As in the LDA case, only two ions out of four are reported.
Apart from the wider gap, the most apparent features are a considerable hybridiza-
tion of the valence bands and a higher Ni d contribution in the bottom-conduction
bands. e valence bands now have amixed p-d character overall. e top-valence
band has much more O p contribution and there is a generalized Ni d contribution
in the whole valence. ere is no clear possible distinction between p and d bands.
is kind of result already gives some hints about the opportunity of adopting the
COHSEX approximation. e hybridization of the valence bands shows that the
LDA electronic structure is actually a poor description of NiO, not reliable at all.
e dramatic change in the valence bands suggests that the LDAwavefunctions are
not adequate as a starting point of a GW calculation. A more accurate analysis of
the wavefunctions, though, requires to take into account the variations of single
wavefunctions.
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Figure 4.3: Density Of States projected on the angular components for the self-
consistent COHSEX calculation of anti-ferromagnetic nickel oxide. The valence bands
cannot be clearly distinguished between Ni d and O p, namely, the top-valence has a
marked contribution fromO p, while it loses someNi dweight. The bottom-conduction
bands is of Ni d type and it gains more weight compared to LDA. The Fermi level EF is
set at 0 eV. A gaussian broadening of 0.2 eV is added to the spectra.
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4.3 A look onto the wavefunctions:
LDA vs COHSEX

e angular-momentum projected DOS shows a dramatic change at the level of
valence electron, where there is a strong mixing of bands, whereas the Kohn-Sham
valence orbitals were quite well separated in oxygen ps and nickel ds. But the pro-
jected DOS does not tell anything about the modification of single wavefunctions.
at is why it is necessary to evaluate directly how the single wavefunctions change.
is can be done evaluating the projection of the wavefunctions on the basis.

To evaluate the differences between COHSEX and LDA wavefunctions I took,
for each COHSEX band and k point, the maximum value of the projection coeffi-
cient on the LDA wavefunctions. In other words, this number evaluates the least
change of the wavefunction in a defined k point. Formally, it is defined as

max
j
|cijk|2 = max

j

∣∣∣〈ϕLDA
jk |φ

QP
ik 〉
∣∣∣2 . (4.3)

ese coefficients are displayed in Figure 4.4, for bands 11–60, that have been in-
cluded in the self-consistent calculation. A value of 1 for the projection means that
the COHSEX wavefunction is identical to the LDA one. It appears how the quasi-
particle valence bands have undergone a drastic change. e conduction bands,
instead, are quite similar to the LDA ones, except for bands 25 and 26, that form
the bottom conduction and have a strong Ni d character. Far from the gap, quasi-
particle wavefunctions are not very different from LDA.

A deeper analysis can be carried out evaluating for each band the density ρ =
|φ| and its variation |ρCOHSEX−ρLDA|. For each band, the density is summed over all
the k points in the brillouin zone. I have taken a few bands as qualitative examples.
In Figure 4.5 the variation of the density of band #14 is displayed. In LDA, it has
a pronounced oxygen p character, while in COHSEX the trend is opposite. e
density decreases around the oxygen and increases around the nickel, as it can also
be seen from the angular-momentum projected densities of states, Figures 3.11
and 4.3. It is interesting to see what happens in proximity of the energy-gap. e
analysis of the wavefunctions helps to understand what already suggested by the
projected DOS. e top-valence band, i.e. band number 24, displays in LDA a
strong d character, as shown in Figure 4.6, localized mainly on one Ni ion. e
COHSEX wavefunction, on the contrary, is quite delocalized on all the Ni and O
ions. e bottom-conduction band (number 25) has a sort of opposite variation. In
LDA it is mainly localized around oneNi ion, but there aremoderate contributions
also on the oxigen ions and (a little) on the other Ni. In COHSEX, this band is
almost completely localized on one Ni ion. is opposite behaviour of these two
bands suggests that there could be some reciprocalmixing, as the conduction bands
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Figure 4.4: For each COHSEX wavefunction φCOHSEX
nk , a red dot indicates the maxi-

mum value of the projection of COHSEX wavefunction over all the LDA states ϕLDA
mk of

the basis (see Eq. (6.2)). At each index n the different dots correspond to the differ-
ent 42 k points that have been considered. The vertical dashed line between 24 and
25 separates occupied from empty states. A value of 1 for the projection means that
the COHSEXwavefunction is identical to the LDA one. The valencewavefunctions have
no projections equal to one, showing a dramatic change of the COHSEXwavefunctions
with respect to the LDA,while in conduction thewavefunctions are closer to LDAgoing
further from the gap.
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gain dweight while the top-valence loses it. Figure 4.8 displays clearly this specular
behaviour of the two bands.

Figure 4.5: Isosurfaces of differences |ρCOHSEX − ρLDA|=0.01 a.u.-3 between LDA and
COHSEXwavefunctions for band #14 in real space. Brown color is for positive variations;
violet is for negative variations. Band 14 is at about 6 eV below EF. In LDA it has mainly
an O p character, while in COHSEX it has a greater Ni d component, as it is shown by the
varation of the density. Please note that the isosurfaces respect the periodicity of the
trigonal lattice.
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Figure4.6: Isosurfaces of LDA (upper panel, yellow) andCOHSEX (lower panel, yellow)
densities of top-valence band (#24) in real space. The densities are displayed in the
antiferromagnetic trigonal unit cell. The isosurfaces are tracedat the valueρ=0.05 a.u.-3.
It appears how the LDA electronic density is more localized on one Ni ion (light blue),
i.e. it has high d character and strong spin polarization. In the COHSEX case, the band
gains weight on the other Ni ion and on the oxygen ions (red), being more hybridized
than LDA. Please note that in this picture the isosurfaces respect the periodicity of the
trigonal lattice.
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Figure4.7: Isosurfaces of LDA (upper panel, yellow) andCOHSEX (lower panel, yellow)
densities of bottom-conduction band (#25) in real space. The densities are displayed in
the antiferromagnetic trigonal unit cell. The isosurfaces are traced at the value ρ=0.03
a.u.-3. It appears how the LDA electronic density has a major contribution from one Ni
ion (light blue) and a minor contribution from the other Ni and the oxigen ions (red).
In the COHSEX case, the band gets less hybridized, i.e. the contribution to the density
comes mainly from one d ion, as one can see also from the angular-momentum pro-
jected DOS in Figure 4.3. Please note that in this picture the isosurfaces respect the
periodicity of the trigonal lattice.
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Figure 4.8: Isosurfaces of differences |ρCOHSEX − ρLDA| between LDA and COHSEX
wavefunctions for bottom-conduction (upper panel) and top-valence (lower panel)
bands (25 & 24) in real space. Brown color is for positive variations; violet is for negative
variations. For band 25 |ρCOHSEX−ρLDA|=0.01 a.u.-3. For band 24 |ρCOHSEX−ρLDA|=0.03
a.u.-3. The picture shows how the two bands have opposite trends. Top-valence gets
more hybridized while bottom-conduction gets more d atomic character. Nickel ions
are in light blue. Oxygen ions are in red. Please note that the isosurfaces respect the
periodicity of the trigonal lattice.
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4.4 GW on top of COHSEX

Once we have calculated the COHSEX wavefunctions and energies, we have a re-
liable starting point from which we can calculate the GW corrections. e GW
energies are calculated as a first-order perturbation of the COHSEX quasiparti-
cle energies. e GW self-energy includes all the dynamical effects that were ne-
glected in the COHSEX approximation, thus being in principle very close to the
QPscGW approach. e calculated photoemission spectrum is displayed in Fig-
ure 4.9 and compared with the experimental data from Sawatzky et al. [7]. e
spectrum shows overall good agreement with experimental data. e calculated
energy gap is about 5.4 eV. However, the fact that we have a discrete mesh in the
reciprocal space can affect this value if wemiss some important k points. Namely, I
am carrying out some calculations on different grids that reveals how the bottom-
conduction minimum should be located in the Γ point. is point is not included
in the present grid and I estimate the actual GWonCOHSEX gap to be about 0.5
eV smaller than the present result, thus giving about 4.9 eV of energy band-gap.
is result is not so close to the experimental value, although closer than the ma-
jority of other GW approaches. Moreover, it is very close to the value obtained by
Faleev et al. [20], thus exploiting the validity of GWonCOHSEX as an affordable
and reliable self-consistent method.

e valence bands are well reproduced. All the peaks from 0 to 7 eV below the
Fermi level are reproduced in the calculation. e -8 eV satellite is not reproduced.
e analysis of the satellites would require an explicit calculation of the spectral
function, but this goes beyond the scope of this thesis. Moreover, self-consistency
has been reported to cause an underestimation of satellite structures in photoemis-
sion [46]. eupper conduction bands show also a fair agreementwith experimen-
tal data: all the peaks above the bottom-conduction are rigidly shied by about 1
eV, yet, they are correctly reproduced. However, using the plasmon-pole model for
our calculations lowers its reliability for the upper conduction bands [34]. epho-
toemission spectrum calculated by means of the GWonCOHSEX approach gave a
satisfactory result. Combining self-consistency with the standard perturbativeGW
method has given similar result to QPscGW, a self-consistent approach that has a
greater computational drawback with respect to my approach.

At this point, it can be interesting to see if this results can be improved using
an approximation better than GW. e next section will clarify this issue.
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Figure 4.9: Density Of States of a perturbative GW calculation on top the converged
COHSEXband structure of nickel oxide in the anti-ferromagnetic phase. The theoretical
spectrum is compared to the experimental XPS and BIS data. The experimental energy-
gap is about 4.3 eV. The calculated energy gap, considered the missing k points, is
Eg=4.9 eV. The Fermi level EF is set at 0 eV. A gaussian broadening of 0.6 eV, equal to
the uncertainty of the data, is added to the spectrum.
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4.5 Vertex corrections to the self-energy

e GW approximation is an approximation for the self-energy derived through
Hedin’s equations. Actually, in its exact form, the self-energy is written as
Σ = iGWΓ, where Γ is the so-called vertex function. I have performed a perturba-
tive calculation within the GWΓ approximation, i.e. including vertex corrections,
as reported in References [37]. e procedure is exactly the same as GWonCOH-
SEX, but the last step is done within the GWΓ approximation.

e comparison betweenGWonCOHSEX calculation and theGWΓ one shows
how the inclusion of vertex corrections in the self-energy does not change the spec-
trum in an appreciable manner. ere is a slight change in the valence bands, but it
is very small. e two curves are compared in Figure 4.10 and they are well within
the error of the approach, which is around 0.1 eV. us, the vertex corrections do
not appear to have an important role in the photoemission spectrum of nickel ox-
ide. Nevertheless, the approximation adopted for the vertex is very simple in order
to be tractable. Better approximations might exploit effects that here are neglected.
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Figure 4.10: Density Of States of a perturbative GWΓ (i.e. including vertex correc-
tions) calculation on top of the COHSEX band structure of nickel oxide in the anti-
ferromagnetic phase. The spectrum is compared with a perturbative GW calculation.
They are almost identical. The Fermi level EF is set at 0 eV. A gaussian broadening of 0.2
eV is added to the spectrum.



Chapter 5

Conclusion

—…Attention à la marche
en descendant du train —

T  at the origin of this work is the nature underlying the considerable
gap (4.3 eV) of nickel oxide. e work presented in the thesis is divided
in two main parts. e first part concerns the paramagnetic phase of NiO.

In this phase, the Kohn-Sham LDA bands are metallic, however, LDA is not reli-
able for the calculation of excited-state properties. e main question about this
phase was if exchange is able to open an insulating gap in NiO band structure.
To answer this question I have carried out a Hartree-Fock (H-F) calculation. e
paramagnetic phase turns out to bemetallic also in the H-F approximation. At this
point one should think for a moment at what is what we call “paramagnetic phase”
and how it is modeled. To calculate a paramagnetic material means normally to
consider a non-magnetic electronic structure. is means that the spin variable
is not considered in the calculations. As a consequence, each band carries two
spin-degenerate electrons. In other words, the spin-up and spin-down electronic
densities are constrained to be exactly the same in every point of the system. is
could be seen as an arbitray constraint, but it reflects the actual behaviour of sev-
eral compounds, like e.g. silicon and other semiconductors, and in general of any
non-magneticmaterial. I should add that all themethod I used and presented here,
simulate systems at 0 K. e temperature is not included as a part of the problem.
e direct consequence is that what is normally called a paramagnetic, or a param-
agnetic phase, should be called zero-temperature paramagnetic or better, diamag-
netic. Actually, my calculationsmodel the equivalent of a high-pressureNiO at 0K,
where the spin degeneracy is recovered by high value of pressure. Hence, the main
conclusion to this first issue is that we are not capable to properly model the para-
magnetic phase of nickel oxide and that we need to find an alternative approach.
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We should think at the most general paramagnetic configuration, i.e. a random
spin configuration, where the magnetic ordering has disappeared, but the spin has
not. A possible way would be a supercell approach, where the spins could be able
to put themselves in different configurations. is kind of system should definitely
be closer to a high-temperature paramagnetic material. e H-F approximation
was applied also to the anti-ferromagnetic phase of nickel oxide and gave a huge
insulating gap (14 eV). is is not surprising, since HF is known to give highly
overestimated gaps for bulk insulators and the anti-ferromagnetic phase of NiO is
already slightly insulating (0.7 eV) in Kohn-Sham LDA. e overestimated band-
gap is mainly due to the fact that in the Hartree-Fock approximation the screening
of the system is neglected. An interesting fact concerning the magnetic ordering
in NiO is that some people [18, 47] tried to calculate a ferromagnetic NiO in HF
and other approximations. It turns out it is an insulator with gap values close to its
anti-ferromagnetic counterpart. ese studies suggest that the anti-ferromagnetic
ordering is not the direct cause of the insulating band-gap, as one could conclude
aer having read Chapter 3. Apparently, it is necessary to have just somemagnetic
ordering, i.e. to treat the spin explicitly. It has been also suggested that in nickel
oxide there could be some short-range magnetic ordering even above Néel’s tem-
perature. ese arguments also encourage us to find a proper description of the
high-temperature paramagnetic phase.

e second part of my work focused on the anti-ferromagnetic phase of nickel
oxide. e attention is drawn particularly on the photoemission spectrum and on
the energy-gap. In this part I made use of ab-initio theoretical methods derived
from Many-Body Perturbation eory (MBPT), such as the GW method. is
method is normally used to calculate photoemission energy-gaps as first-order cor-
rections to the Kohn-Sham LDA eigenvalues. eCOHSEX approximation, a sim-
plified version of GW, was used to achieve self-consistency in energies and wave-
functions. is approach was necessary since the Kohn-Sham LDA band structure
was too poor to be used as a starting point forGW calculations, as also reported in
literature. emain drawback of this step was computational, since the calculation
time has increased by one order ofmagnitudewith respect toGW. I believe this was
particularly awkward because the whole of the valence bands was badly described
in LDA. In fact, while in other materials like VO2 [35] the problem turned out to
concern mainly mixing between top-valence and bottom-conduction bands, the
COHSEX valence wavefunctions are very different from their LDA counterparts.
ey are much more hybridized, not distinguishable between p and d types any-
more. On the contrary, the bottom-conduction band appears to have even more
d character. e high level of hybridization of the valence bands points out an is-
sue concerning the description of NiO by means of the Hubbard model, that treats
only the d bands, keeping the O p bands in a band picture. is e.g. the case of
DMFT [48] and of LDA+DMFT [23, 24] approaches. In this sense, the Kohn-Sham
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structure (within LDA or other approximations) favours too much this kind of ap-
proach. Although computationally heavier than standard GW, this self-consistent
approach is much lighter than other self-consistent versions of GW like the so-
called QuasiParticle self-consistent GW (QPscGW) [20]. At the same time, it re-
mains reliable to describe properly the GW wavefunctions [34, 36]. In fact, my
results for the photoemission spectrum are comparable with QPscGW results in
literature [20]. e GW+COHSEX photoemission spectrum gives an energy-gap
of about 5 eV.

I also applied vertex corrections to the self-energy in the GWΓ approximation
[37] and calculated the corrections for the COHSEX band-structure. e calcu-
lations showed that there is no marked difference in the photoemission spectrum
with respect to the GW+COHSEX approach. us the RPA screening appears a
reliable approximation, unlike what suggested by Faleev et al. [20], who ascribe
the overestimation of the photoemission gap to a poor (i.e. RPA) approximation
for the screening. It is also true that the GWΓ approximation may not be accurate
enough to improve sufficiently the screening.

is second part of my thesis will be a starting point for the analysis of neutral
excitations with finite transferred momentum q, namely the calculation of Inelas-
tic X-ray Scattering (IXS) and Electron Energy-Loss Spectra (EELS). is kind of
analysis could shed more light on the physics of NiO. In fact, the finite momen-
tum transfer unveils the d-d excitations, which are forbidden for q = 0. Lately,
both theoretical and experimental communities are getting more and more inter-
ested in this kind of excitations in NiO and in other transition metal oxides. In
fact, they exibit great excitonic effects for this kind of transition [25] that lie in the
middle of the gap. Since the d states form the energy-gap, a proper description of
the band-structure is mandatory to calculate energy-loss spectra. For the calcula-
tion of the spectra I will make use of Time-Dependent Density Functional eory
(TDDFT), that is a time-dependent extention of DFT, and of the Bethe-Salpeter
Equation (BSE), that is a MBPT-derived method to calculate the polarizability of
an electronic system.

To conclude, I studied nickel oxide by means of the “old-fashioned” Hartree-
Fock method and of the advanced COHSEX+GW method, being able to get a lot
of physical insight in both cases. eCOHSEX+GWapproach, applied for the first
time on NiO, has given satisfactory results in good agreement with experimental
data and coherent with other self-consistent many-body approaches. Moreover,
the electronic structure will be a good starting point for an accurate analysis of the
d-d excitations.
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Appendix A

Special planes and points in the re-
ciprocal space of the trigonal lattice

It’s a tough job – but someone’s got to do it.

When dealing with Brillouin zones, the task of finding high symmetry points can
be non-trivial, especially if one is not dealing with simple and over-documented
cubic lattices. is appendix is just a bit more than a divertissement, but the truth
is that it is hard to find a concise and fully explanatory book or article that covers
this particular subject for a rhombohedral lattice in a satisfactory manner.

With relatively simple notions of geometry and linear algebra it is possible to
retrieve all planes and points of a Brillouin zone in the reciprocal space, following
the definitions given in [41].

Planes embedded in R3

Properties
In three-dimensional Euclidean space, we may exploit the following facts that do
not hold in higher dimensions:

• Two planes are either parallel or they intersect in a line.

• A line is either parallel to a plane or intersects it at a single point or is con-
tained in the plane.

• Two lines perpendicular to the same plane must be parallel to each other.

• Two planes perpendicular to the same line must be parallel to each other.
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Define a plane with a point and a normal vector

In a three-dimensional space, another important way of defining a plane is by spec-
ifying a point and a normal vector to the plane.

Let p be any known point in the plane, and let ~n be a nonzero normal vector to
the plane. e desired plane is the set of all points r such that

~n · (r− p) = 0. (A.1)

If we write

~n = ax̂ + bŷ + cẑ r = xx̂ + yŷ + zẑ, (A.2)

where x̂, ŷ, ẑ are the cartesian unit vectors (or direction vectors ), and d as the dot
product d = −~n · p, then the plane Π is determined by the condition

ax+ by + cz + d = 0, (A.3)

where a, b, c and d are real numbers and a, b, and c are not all zero.
Alternatively, a plane may be described parametrically as the set of all points

of the form r = p + s~v + t~w, where s and t range over all real numbers, and p
, ~v and ~w are given vectors defining the plane. p is the position vector from the
origin to an arbitrary (but fixed) point on the plane, and ~v and ~w can be visualized
as starting at p and pointing in different directions along the plane. ~v and ~w can,
but do not have to be perpendicular (but they cannot be collinear).

Drawing planes in the Brillouin zone

e reciprocal space vectors are:

G1 = a1x̂ + b1ŷ + c1ẑ = (0.2069308, 0.0000000, 0.0366528)

G2 = a2x̂ + b2ŷ + c2ẑ = (−0.1034654, 0.1792073, 0.0366528)

G3 = a3x̂ + b3ŷ + c3ẑ = (−0.1034654,−0.1792073, 0.0366528)

(A.4)

Some special points are already known. ey are:

• L±i = ±Gi/2,

• F±i = ±(Gj + Gk)/2 with i 6= j 6= k.

• T± = ±(G1 + G2 + G3)/2.
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Figure A.1: Sketch of the first Brillouin’s zone of a rhombohedral lattice. Some of the
L, K, T special points are drawn.

Let’s now consider the plane perpendicular to G1, that will be called ΠL1 . In
this case our normal vector ~n isG1 and the plane passes by L1. us, following the
definitions given above, we get

p =
1

2
G1 r = xx̂ + yŷ + zẑ (A.5)

~n = G1 = a1x̂ + b1ŷ + c1ẑ d = −~n · p = −1

2
G1 · G1 = −1

2
|G1|2. (A.6)

e equation giving the plane is then

ΠL+
1

: a1x+ b1y + c1z −
1

2
|G1|2 = 0. (A.7)

Let’s now take the plane normal to the direction T (ẑ) passing by the point T+. We
have

~n = G1 + G2 + G3, d = −~n · p = −1

2
|G1 + G2 + G3|2, (A.8)

which yeld

ΠT+ : (a1 + a2 + a3)x+ (b1 + b2 + b3)y

+ (c1 + c2 + c3)z −
1

2
|G1 + G2 + G3|2 = 0. (A.9)



68 A A. S    

Remarking that (a1 + a2 + a3) = (b1 + b2 + b3) = 0 the equation becomes

ΠT+ : (c1 + c2 + c3)z −
1

2
|G1 + G2 + G3|2 = 0. (A.10)

Now is the turn of the plane perpendicular to (G1 +G2) passing by the point F+
3 =

1
2
(G1 + G2). With the same procedure as before we get

~n = G1 + G2, d = −~n · p = −1

2
|G1 + G2|2, (A.11)

ΠF+
3

: (a1 + a2)x+ (b1 + b2)y + (c1 + c2)z −
1

2
|G1 + G2|2 = 0. (A.12)

e last plane needed to have a decent set is a vertical plane passing by G1. It can
be generated with the second method described before, as a plane generated by the
ẑ vector and G1, i.e.

Πz1 = tẑ + sG1 = t


0

0

1

+ s


a1

b1

c1

 (A.13)

which can be rewritten in canonical form as

Πz1 : b1x− a1y = 0, (A.14)

that in this particular case, as b1 = 0 simply becomes y = 0.
We may also need the vertical plane passing by F+

3 , which has the following
parametric form:

Πz2 = tẑ + s(G1 + G2) = t


0

0

1

+ s


a1 + a2

b1 + b2

c1 + c2

 (A.15)

which in the canonical form becomes

Πz2 : (b1 + b2)x− (a1 + a2)y = 0. (A.16)

Changing the basis

In this section we define the basis changing matrix, which can transform a vector’s
coordinates from the cartesian base to our trigonal basis (A.4). Any vector ~v can
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be represented in the cartesian reference (x̂, ŷ, ẑ) or in the trigonal reference (G1,
G2, G3) as follows:

~v = ax̂ + bŷ + cẑ = a∗G1 + b∗G2 + c∗G3. (A.17)

e unit vectors can directly be used to build the basis change matrix which
gives the cartesian coordinates given a point’s trigonal coordinates. In a formula:

xcart = M · xtri. (A.18)

e matrix is constructed, knowing the basis, as follows:

M = (G1G2G3) =

a1 a2 a3

b1 b2 b3
c1 c2 c3

 . (A.19)

e inverse matrixM−1 can be as well written, as it is the inverse ofM and it obeys

xtri = M−1 · xcart, (A.20)

which, expanded, is a little more complicated:

M−1 =
1

(a1b2c3 − a2b1c3 − a1b3c2 + a3b1c2 + a2b3c1 − a3b2c1)
×

×

b2c3 − b3c2 a3c2 − a2c3 a2b3 − a3b2
b3c1 − b1c3 a1c3 − a3c1 a3b1 − a1b3
b1c2 − b2c1 a2c1 − a1c2 a1b2 − a2b1

 . (A.21)

Putting the actual coefficients we can re-write the two matrices as:

M =

0.2069308 −0.1034654 −0.1034654
0 0.1792073 −0.1792073

0.0366528 0.0366528 0.0366528

 , (A.22)

M−1 = 3.221688925315451 0 9.094348408125255
−1.610844462657726 2.79006491365028 9.094348408125255
−1.610844462657726 −2.79006491365028 9.094348408125255

 .
(A.23)

As we are forced to work in cartesian coordinates to operate with vectors, the
basis changematrix is necessary to pass from the cartesian to the non-cartesian ref-
erence, and as we may have (and need) information in both references it becomes
a precious tool to study the reciprocal space and in particular the Brillouin’s zone.
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Intersections of planes

Now we basically have all the planes that we need to find the special points that are
missing. All we have to do is to intersect these planes and calculate the intersection
points.

PointK2

Let us take first the planes Πz2 , ΠF+
3

and ΠT+ and intersect them. is yelds the
following system of equations:



(b1 + b2)x− (a1 + a2)y = 0

(c1 + c2 + c3)z −
1

2
|G1 + G2 + G3|2 = 0

(a1 + a2)x+ (b1 + b2)y + (c1 + c2)z −
1

2
|G1 + G2|2 = 0,

(A.24)

which becomes 

y =
b1 + b2
a1 + a2

x

z =
|G1 + G2 + G3|2

2(c1 + c2 + c3)

x =
(a1 + a2)

2

|G1 + G2|2 − 2(c1 + c2)z

(a1 + a2)2 + (b1 + b2)2
.

(A.25)

Putting the numbers into this equations brings to the following result for the point
we shall call K2:

K(cart)
2 :


x = 0.048486619472184

y = 0.083981274529819

z = 0.0549792

(A.26)

It can be interesting to know also the trigonal coordinates of K2 and, as we know
that K(tri)

2 = M−1 · K(cart)
2 , applying M−1 we find

K(tri)
2 :


x = 0.65620880497952

y = 0.65620880497952

z = 0.18758239004096

(A.27)
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PointK1

Let us now consider the point that we will call K1, which is at the intersection of
planes Πz1 , ΠL+

1
and ΠT+ . e corresponding system of linear equations is



y = 0

(c1 + c2 + c3)z −
1

2
|G1 + G2 + G3|2 = 0

a1x+ b1y + c1z −
1

2
|G1|2 = 0,

, (A.28)



y = 0

x =
1

a1

(
1

2
|G1|2 − c1z

)
z =
|G1 + G2 + G3|2

2(c1 + c2 + c3)

. (A.29)

Evaluating these expressions gives

K(cart)
1 :


x = 0.096973240554234

y = 0

z = 0.0549792

(A.30)

and, as above,

K(tri)
1 :


x = 0.81241761514553

y = 0.34379119242724

z = 0.34379119242724

(A.31)

PointH1

We now calculate the point H1, which is the intersection of planes ΠF+
3
, ΠL+

1
and

ΠT+ . Here is the linear system:



a1x+ b1y + c1z −
1

2
|G1|2 = 0

(c1 + c2 + c3)z −
1

2
|G1 + G2 + G3|2 = 0

(a1 + a2)x+ (b1 + b2)y + (c1 + c2)z −
1

2
|G1 + G2|2 = 0

. (A.32)
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Knowing that b1 = 0 the system yelds

z =
|G1 + G2 + G3|2

2(c1 + c2 + c3)

x =
1

a1

(
1

2
|G1|2 − c1z

)
y =

1

b1 + b2

[
1

2
|G1 + G2|2 − (a1 + a2)x− (c1 + c2)z

] . (A.33)

Evaluating these expressions gives

K(cart)
1 :


x = 0.096973240554234

y = 0.055987506168248

z = 0.0549792

(A.34)

and

K(tri)
1 :


x = 0.81241761514553

y = 0.49999996899004

z = 0.18758241586443

(A.35)
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