
UNIVERSITÀ DEGLI STUDI DI ROMA

“Tor Vergata”

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI

Tesi di dottorato in fisica

XVIII ciclo

Electronic and optical properties of the (111)2×1
diamond surface: an ab-initio study.

Candidata:
Dott. Margherita Marsili

Relatori:
Dott. Olivia Pulci
Prof. Rodolfo Del Sole
Prof. Friedhelm Bechstedt

Coordinatore del dottorato:
Prof. Piergiorgio Picozza





Contents

Preface 3

1 Diamond and its (111) surface. 5
1.1 Diamond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 The role of the diamond and of its surfaces in novel ap-
plications . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 The (111) surface of diamond . . . . . . . . . . . . . . . . . . . 9
1.3 Geometry and reconstruction . . . . . . . . . . . . . . . . . . . 9
1.4 Electronic properties, the puzzle of the electronic gap . . . . . . 12

2 Ground state properties 17
2.1 The many body problem . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Minimising the electronic energy:

Density Functional Theory . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Basic theorem: Hohenberg and Kohn . . . . . . . . . . . 19
2.2.2 Kohn and Sham single particle scheme . . . . . . . . . . 22
2.2.3 Exchange-correlation energy . . . . . . . . . . . . . . . . 23
2.2.4 Approximations . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Application of the theory to C(111)2×1 . . . . . . . . . . . . . . 31
2.4 Equilibrium geometry of the (111) surface of diamond . . . . . . 31
2.5 DFT electronic structure and symmetries of the reconstruction . 34
2.6 The band gap problem . . . . . . . . . . . . . . . . . . . . . . . 38

3 Electronic properties 41
3.1 The Green function . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 The Lehman representation . . . . . . . . . . . . . . . . 44
3.1.2 The quasiparticle equation . . . . . . . . . . . . . . . . . 46
3.1.3 Complex or real poles? . . . . . . . . . . . . . . . . . . . 48

3.2 Hedin’s equations . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3 The G0W0 approach for the self-energy . . . . . . . . . . . . . . 51

3.3.1 The plasmon pole approximation for the dielectric function 53

1



Contents

3.3.2 Actual implementation: perturbative approach . . . . . . 54
3.3.3 G0W0 for diamond bulk . . . . . . . . . . . . . . . . . . 58
3.3.4 G0W0 for the (111) surface of diamond . . . . . . . . . . 58

3.4 Beyond G0W0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.1 Non perturbative GW . . . . . . . . . . . . . . . . . . . 63
3.4.2 Iterative GW . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.3 GWΓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Optical properties 75
4.1 Neutral excitations in solids . . . . . . . . . . . . . . . . . . . . 76
4.2 Microscopic and macroscopic dielectric functions . . . . . . . . . 77

4.2.1 Macroscopic electrodynamics . . . . . . . . . . . . . . . . 78
4.2.2 Response functions and time ordered Green’s function . . 80
4.2.3 Macroscopic dielectric function, local fields effects . . . . 81
4.2.4 Macroscopic dielectric function and modified polarisability 84

4.3 Independent quasiparticle approximation . . . . . . . . . . . . . 85
4.4 Bethe-Salpeter equation . . . . . . . . . . . . . . . . . . . . . . 86

4.4.1 Effective two particle Hamiltonian . . . . . . . . . . . . . 88
4.5 Example of excitonic calculation: Diamond bulk . . . . . . . . 92

4.5.1 Actual implementation . . . . . . . . . . . . . . . . . . . 92
4.5.2 Absorption spectra of diamond . . . . . . . . . . . . . . 93

4.6 Reflectance Anisotropy Spectroscopy . . . . . . . . . . . . . . . 94
4.6.1 RAS calculations . . . . . . . . . . . . . . . . . . . . . . 95

4.7 RAS on the (111) surface of diamond . . . . . . . . . . . . . . . 96
4.7.1 RPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.7.2 Excitonic effects (1) . . . . . . . . . . . . . . . . . . . . . 99
4.7.3 Excitonic effects (2) . . . . . . . . . . . . . . . . . . . . . 104

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Conclusions 113

A The haydoch recursive method for optical spectra 117

Bibliography 123

2



Preface

This thesis is mainly devoted to the study of many body effects in the elec-
tronic and optical properties of the (111) surface of diamond.
C(111) is the cleavage surface of diamond and the interest on its properties is
based on both fundamental and applicative reasons. On one side, in fact, it is
one of the growth surfaces for the chemical vapour deposition (CVD) of dia-
mond. CVD allows the fabrication, at a relatively low cost, of diamond films,
thus providing the possibility of exploiting the extreme and peculiar properties
of diamond and of its surfaces for applications. On the other side, it is a pro-
totype, apparently simple, surface, and for this reason it is quite amazing that
up to now no ab-initio calculation was able to even qualitatively reproduce its,
experimentally found, semiconducting character. The lack of knowledge re-
garding this surface (in contrast with the other low index surfaces of diamond,
silicon and germanium) has to be related to the fact that the state of the art
method for electronic properties (namely G0W0) could not be applied in the
usual scheme.

Experimentally, right after cleavage, the (111) surface of diamond exhibits
a 1 × 1 periodicity, and thus apparently no reconstruction, because hydrogen
saturates the dangling bonds. After annealing at more than 1000 K, how-
ever, hydrogen desorbs and surface undergoes a 2 × 1 reconstruction which
is the lowest energy configuration. Both experiments and theory agree that
the reconstruction geometry is the Pandey chain model, but the details of
this reconstruction, i.e. dimerisation or buckling of the surface chains, are
still not fully experimentally clarified. All well converged ab-initio calculations
predict an unbuckled and undimerized geometry, however the surface appears
semimetallic in contrast to experimental evidence. Even the introduction of
quasi-particle corrections within the usual G0W0 scheme does not lead to the
opening of the gap between surface states.

As we will see in the next chapters, the peculiarity of the band structure
of the surface, and its dependence on the geometry details, do not allow to
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Preface

understand clearly wether the discrepancy between theory and experiment is
due to a wrong equilibrium geometry or to the lack of quasiparticle effects in
the DFT band structure. The main task of this thesis is to solve this problem.

To deal with this issue we have used the state of the art methods for the
excited state properties within the Green’s function theory. First of all, we
have confirmed the previously found geometry and DFT semimetallic band
structure. Then, having seen that the introduction of the self energy effects
within the usual G0W0 scheme does not improve the results, we have calcu-
lated the quasiparticle energies within an iterative GW scheme. In this scheme
the GW calculations were repeated updating the quasiparticle energies until
selfconsistency was reached. A gap of about 1 eV was found between the sur-
face states, thus finally solving the discrepancy between theory and experiment.

Unluckly no inverse photoemission data exists for this surface to directly
compare with our band gap results. This is why, as shown in the last part
of the thesis, we are computing the optical spectra of the surface. Optical
experiments, in fact, while not accessing directly the electronic band gap, give
important insights on the transitions between occupied and unoccupied surface
states, thus yielding relevant informations on the band structure itself, espe-
cially when compared to ab-initio calculations that are able to include also the
effects of the electron-hole attraction, namely the excitonic effects.

This thesis is organised as follows: in the first chapter a brief introduction
on diamond (especially on its (111) surface), with an overview on the techno-
logical relevancy of this material, is presented; then, in the second chapter, we
introduce the results on the ground state properties of the surface and the the-
ory on which these calculations are based, namely Density Functional Theory.
In the third chapter we will start dealing with the Many Body Perturbation
Theory and see how quasiparticle effects can be introduced in the band struc-
ture calculations within the GW approximations of the self energy; we will
apply this formalism to the band structure of our surface and we will see how
in this case an iterative calculation is needed. Finally, in the last chapter, we
will present the results for the optical spectra of this surface computed within
the Bethe-Salpeter equation formalism.
Buona lettura!
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Chapter 1

Diamond and its (111) surface.

In this chapter we will introduce the main properties of diamond. We will see that
diamond is a very attractive material, and we will try to elucidate why properties
specific of its surfaces make it now even more appealing for technological applications,
ranging from optoelectronic to biosensing. We will then introduce its cleavage surface,
namely the (111) surface, and we will look at what it is known up to now about it.
We will start from understanding its geometry and reconstruction, finishing with its
electronic properties. We will see how the theoretical predictions for this surface are
in disagreement with the experimental findings also at a qualitative level; not being
able even to qualitatively state if the surface is semiconducting or semimetallic. This
problem is the main topic faced during this thesis.

1.1 Diamond

Diamond is an extreme material. Besides being extremely beautiful it is also
unique for its physical and chemical properties: it is the hardest material
known, it possesses the highest thermal conductivity at room temperature,
it is chemically extremely inert, biocompatible and transparent from the deep
UV to far infrared.
Diamond is made of a single element, carbon. As it is well known, there is
another crystalline form of pure carbon: graphite. If one has ever hold a pencil
in his/her hand, he/she has experienced that, besides being informed that the
gem on the ring and the tip of the pencils are made of the same atoms, the
properties of the two materials are completely different. They are somewhat
complementary: graphite is black, and soft, and (this maybe we have not tested
holding the pencil in the hand) conductive. The completely different properties
stem from the different kind of hybridisation and of the subsequent bonding
of the valence electrons of the carbon atoms. The resulting crystal structure
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Chapter 1

is completely different, as we can see from fig. 1.1. In graphite the carbon

Figure 1.1: Diamond crystal structure (a) compared to the graphite crystal structure
(b). The different kind of bondings lead to completely different geometries. Graphite
is characterised by weakly bounded layers, whereas diamond is a cubic close packed
structure.

atoms are sp2 hybridised; the lattice is formed by weakly bounded planes of
atoms. The atoms within the plane form an hexagonal lattice through the
bonds between the three sp2 electrons; the interaction among the planes is
mediated by the remaining p orbitals. Instead, in diamond, the electrons are
sp3 hybridised; as a consequence, each carbon atom is bonded to other four
carbon atoms, and all the bonds are equivalent; the resulting lattice is a closed
packed cubic lattice.
At normal temperature and pressure, graphite is more stable than diamond
and this is the reason why its natural occurance is rare compared to graphite;
diamond is created, probably in the earth’s mantle, under extremely high pres-
sure and temperatures. However we do not see a conversion of diamond in
graphite as soon as it is brought to the normal environment; this is due to the
existence of a very large energy barrier for the conversion process. So, even if
diamond is not thermodynamically stable at room temperature and pressure,
it is kinetically stable. The ones owning diamonds can feel safe, it is highly
improbable that they will wake up some day finding the gem turned to a black
opaque stone. Diamond is forever, at least on a human time scale.
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Diamond and its (111) surface.

1.1.1 The role of the diamond and of its surfaces in novel
applications

The first problem one has to face wanting to use diamond for any application
is its availability and cost. Other problems are specific of the different kind
of applications, for example in electronic applications one would like to find
a way to dope diamond, or in biological applications it is important to func-
tionalise it; we will rapidly go through each issue, and especially underline the
importance of surfaces properties.
Let’s first start form the availability issue. The first attempts that succeeded
in producing diamond artificially are dated back in 1955 [1], the idea was to
reproduce the conditions under which diamond forms in nature. The process
is called High Pressure High Temperature (HPHT) synthesis: graphite is put
under these conditions and with the help of a transition metal catalyst it turns
into diamond. Diamond formed in this way has dimensions that range from
the micrometer to the millimiter and are used in mechanical application as
superabrasive for polishing. However, until recentely, HPHT diamond is not
enough pure and defect free to be used in more refined applications such as
electronics.
Another possibility is to get diamond at lower pressures, synthetizing it from a
vapour phase, this technique is called Chemical Vapour Deposition (CVD). The
first successful attempt to grow diamond powder at subatmospheric pressure
was reported in 1969 [2]; since then, the techniques have developed and now
diamond is typically grown using a dilute mix of hydrocarbon (like methane)
in hydrogen. Roughly what happens( see [3] and references therein) is that
atomic hydrogen is formed for example through an electric discharge in the
gas; atomic hydrogen, then, reacts with the hydrocarbon forming some reac-
tive species like CH3 and C2H2 which in turn, transported to the substrate
surface, are converted into diamond by a series of still not well understood
reactions. Even from this rough description, it is clear that surface chemistry
plays a crucial role also in solving the basic problem of low cost availability
of diamond. Until very recently, however, CVD diamond could not be used
in practical applications because the films were polycrystalline, with different
orientation for each crystal. Now, see [4, 5] and references therein, new HPHT
methods have been developed that yield ultrapure diamond samples on top
of which CVD highly oriented diamond films can grow. The single-crystal di-
amond synthetized in this way is reaching the quality required for applications.

A significant use of any material in electronic applications, relies strongly
on the possibility of controlling its conductivity by providing it of additional
carriers through doping. The use of diamond within electronic is desirable in
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order to exploit its extreme properties: its great stability yields a ‘superior
resistance to ionising radiation and high energy particle’ [6] for devices that
are able to operate in space; its wide band gap (Eg = 5.5 eV) makes it the
most promising material for ultraviolet light emission [7]; and its chemical com-
position, carbon atoms only, make it extremely biocompatible. The inclusion
of boron and phosphorus during the CVD growth process allows p-type and
n-type doping respectively; the possibility of transforming diamond from insu-
lator to semiconducting opened up the chance of realizing novel electronic and
optoelectronic devices such as an ultraviolet diamond emitting diode [8], and
a diamond microelectrode array device which is expected to find applications
in tools working in paticularly harsh environments [9]. Moreover an enhanced
crystalline quality lead to a charge mobility significantly greater than the elec-
tron mobility measured for SiC and GaN, two other wide-gap semiconductors
currently under study for high-frequency and high-power applications [4, 5, 10].
Despite all of this, the doping mechanism for diamond presents many problems,
the main one is the fact that the activation energies for the charge carriers are
big ( 0.38 eV in the case of boron and 0.43 eV in the case of phosphorus) so that
at room temperature only a small fraction of the acceptors or donor levels are
activated; a possible solution is overdoping, however overdoping can ruin the
transport properties of the sample by introducing more defects and scattering
centres.
Nevertheless diamond surfaces can be doped without the need of the introduc-
tion of foreign atoms in the lattice: as a matter of fact, diamond exhibits a
p-type conduction observed when hydrogenated diamond surfaces are exposed
to air without the need of introducing any impurities in the lattice [11]. A
similar effect has been reported when C60 molecules are evaporated on a dia-
mond (111) hydrogenated surface [12]. In this last case the surface conductivity
has been explained with a sub-surface hole accumulation layer produced by a
charge transfer from the surface to the adsorbate. A similar mechanism could
also be responsible for the first case. The discovery of this surface conductivity
has lead to the creation of a novel field effect transistor [13].

Diamond is also a very good candidate for developments of new bio-sensors
and detectors, especially for its extreme surface inertness which makes it harder
to be rejected for both structural and sensor application in the body. Recentely
an artificial retina coated with diamond ultrananocrystals has been produced
[14], the diamond coating is needed to make the device biocompatible and to
protect it from the fluids presents in the eye. Another important characteristic
of diamond from a biotechnological point of view, is the fact that its surface
can become an active substrate, thanks to the surface conductivity and to the
functionalisation of its surfaces. Hydrogenated diamond surfaces have in fact
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been functionalised attaching on them green fluorescent protein, the enzyme
catalase [15] and DNA [16]. Despite of the fact that the molecules were immo-
bilised at the surface, they were still fully functional and active. Moreover the
biomolecules are covalently bounded to the diamond surface and the stability
of this bonding provides an important advantage with respect to the normally
used metal electrodes such as gold.

We have seen how diamond’s potentialities stem not only from bulk prop-
erties, but also from its surface chemistry and surface properties; carrying out
all this potentialities relies strongly on the control and on the understanding of
the chemical and physical properties of this surfaces. Moreover, understanding
the behaviour of its surfaces is important also from a theoretical point of view,
in order to elucidate the principles of surface reconstructions of the other group
IV semiconductors, Si and Ge.

1.2 The (111) surface of diamond

C(111) is the cleavage surface of diamond and it is also one of the growth
plane of the CVD process; moreover, the incorporation rate of boron in the
(111) face is greater than in the other CVD growth plane, namely the (100)
surface. Despite all of this, the geometry of the reconstructed C(111)(2 × 1)
surface and the electronic band structure that originates from it are still under
debate.

1.3 Geometry and reconstruction

Let’s consider bulk diamond: one of the four sp3 orbital of each carbon atom
is parallel to the (111) direction. As a consequence, if we cut diamond per-
pendicularly to the 111 direction, the terminated bulk can present either one
or three dangling bonds. The three dangling bonds surface has a much higher
formation energy and by cleavage only the single dangling bond surface can be
obtained; all the results presented below, and the study of this thesis refer to
the single dangling bond surface.
The single dangling bond truncated bulk is shown in fig. 1.2. From the side
view we notice that the ideally truncated bulk is formed by a series of atomic
layers spaced by a longer and a shorter interval, leading to a bilayer structure.
The important thing to notice is that the dangling bonds are not on nearest
neighbour; we can thus expect a strong modification of the structure in order
to bring the dangling bonds closer and allow them to saturate each other [17].
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Figure 1.2: Top view of the ideally truncated bulk. The single dangling bond face
is presented.

Right after cleavage the surface exhibits a 1×1 reconstruction, which consist of
approximately a truncated bulk with each dangling bond saturated by an hy-
drogen atom. The presence of hydrogen in the polished surface is confirmed by
angle resolved photoemission spectra (ARPES) that show that in the 1× 1 no
occupied surface states are present [18, 19] within the fundamental gap, consis-
tently with the picture of hydrogen saturating the dangling bonds; moreover,
infrared-visible sum frequency generation spectroscopy has shown the presence
of structures related to C-H bonds [20].
After annealing at more than 1100 K, hydrogen desorbs and the surface un-
dergoes a 2× 1 reconstruction. It is now well accepted that the reconstruction
geometry of this surface is the Pandey π-chain model [21], shown in fig. 1.3.
As already mentioned, the reconstruction involves significant changes in the
bonding of the atoms belonging to the first three layers. In each surface unit
cell, one atom of the second layer (the atom labeled B in fig. 1.2) breaks its
bond with the third layer and rises up to the first layer; at the same time, an
atom on the first layer (labeled A) goes down to the second layer bonding to
the third layer (compare fig. 1.2 and 1.3). As a result, the dangling bonds
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Diamond and its (111) surface.

Figure 1.3: Pandey chain model for the (111) 2 × 1 surface of diamond. The
reconstruction involves a significant change in the lattice structure. The irreducible
Brillouin zone and its high symmetry points are also shown.

are now on nearest neighbour atoms in the first layer. The electrons on the
chain atoms partially dehybridize to three sp2 and one pz orbitals, and the
pz like dangling bonds can saturate each other through delocalised π orbitals
forming an almost one dimensional chain developing along the y direction. The
Pandey chain reconstruction finds the most evident confirmation through the
dispersion of the occupied surface states obtained by ARPES measurements
[18, 22]. ARPES finds a surface state that is almost dispersionless along the
JK and ΓJ ′ lines (see inset fig. 1.3), i.e. in the direction perpendicular to the
chains; and that at the same time exhibits a strong dispersion along the ΓJ
and the J ′K line, i.e. parallel to the chain direction. This kind of dispersion
is a signature of a one dimensional system, like the Pandey chains.
Besides the dispersion of the occupied states, also the great majority of ex-
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perimental results, ranging from medium energy ion scattering [23, 24], low
energy electron diffraction (LEED) analysis of the spot intensity vs voltage
[25, 26], X-ray diffraction structure analysis [27], confirm the Pandey model
for the reconstruction of the (111) surface. In this sense diamond behaves in
the same way as silicon and germanium, which exhibit a Pandey chain 2 × 1
reconstruction.
However, even if there is general consensus regarding the π-bonded chain
model, the exact geometry of the unit cell is still controversial; preserving
the 2× 1 periodicity, there are still two possible degrees of freedom:

• Intrachain buckling: the atoms on the chain are not on the same heights.
As a result, the two atoms on the chain are not equivalent anymore and
there is a charge transfer.

• Intrachain dimerisation: the bonds along the chain are not equivalent,
one is shorter (almost like a double bond) than the other, and the final
structure appears as a sequence of dimers. This kind of distortion breaks
the reflection symmetry with respect to the (11̄0) plane (see fig. 1.3)

While most of the theoretical study within Density Functional Theory (see
chap. 2), predict a non buckled non dimerised geometry [17], the situation
on the experimental side is rather unclear. Dimerisation seems to be ruled
out by ARPES experiment [22], because the mirror symmetry with respect to
the (11̄0) plane is preserved. Medium energy ion scattering data [23], X-ray
diffraction structure analysis [27], and infrared-visible sum frequency genera-
tion measurements [20] find best agreement for an atomic arrangement featur-
ing tilted chains, but can not completely rule out an unbuckled undimerized
geometry. At the same time, core level binding-energy measurements [28], and
a recent LEED study [26], see no evidence for buckling.

1.4 Electronic properties, the puzzle of the elec-

tronic gap

As already mentioned in the previous section, diamond, silicon, and germa-
nium share the same model for the reconstruction of their (111) 2× 1 surface.
However, while in the case of germanium and silicon the most stable geometry
features tilted chains, diamond chains do not seem buckled [29]. This tiny
difference leads to a strong qualitative difference concerning the corresponding
band structures: at a DFT level germanium and silicon have a semiconducting
surface, whereas diamond appears semimetallic (see fig. 1.4). Experimentally,
direct photoemission experiments, which give us the information about the

12



Diamond and its (111) surface.

Figure 1.4: DFT band structure for the (111)2× 1 surface of diamond, silicon and
germanium from ref. [29]. As a consequence of the different relaxation details, the
band structures differ qualitatively. Germanium and silicon surfaces are semicon-
ducting, while the diamond surface is semimetallic.

occupied surface states, find occupied surface states within the fundamental
gap. They show a strong dispersion along the chain direction and are almost
flat perpendicularly to it [18, 22], consistently with a reconstruction model ex-
hibiting one dimensional structures like the π bonded chains. However, most
importantly, in ref. [22] the surface states are reported to reach their maxi-
mum energy 0.5 eV below the Fermi level (see. fig. 1.5). In order to know
the experimental band gap we should now know how much low in energy the
unoccupied surface band goes. Unfortunately, very little is known about un-
occupied surface states: there are evidences of unoccupied surface states from
photon photoelectron spectroscopy (2PPES) [30], high resolution soft X-rays
absorption spectra [31], and electron energy loss spectroscopy (EELS) [28].
However, all this spectra can not be directly compared to the calculated band
structure: excitonic effects (see chap. 4) must be included in the calculations
in order to compare to this kind of experiments. So what can be inferred by
the experiments is that diamond (111) 2 × 1 has an electronic gap of at least
0.5 eV.
Where does the disagreement between the calculated band structure and the
experimental results come from? In ref. [17] it is shown that the degeneracy
of the surface states along the JK line of the Brillouin zone is connected to the
equivalence of the two atoms on the chain. In the case of silicon and germanium
buckling enhances this equivalence and the degeneracy is lifted. For diamond
this seems not likely because the elastic energy loss, due to the distortion of
the lattice, prevails with respect to the gain in energy that could be obtained
through the electronic band structure. This seems to be in line with a general
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Figure 1.5: ARPES spectra from ref. [22]. The occupied surface state reaches its
maximum energy 0.5 eV below the Fermi energy at K.

chemical and physical trend. Within this trend, diamond has an opposite be-
haviour regarding reconstructions with respect to silicon and germanium. For
example, silicon and germanium present very large reconstruction as their most
stable geometry (a 7×7 reconstruction for silicon [32], and a c(2×8) for germa-
nium [33]) whereas diamond’s most stable geometry has a 2×1 periodicity. The
long range reconstructions are not realized in the case of diamond as a conse-
quence of shorter interatomic distances and stronger bonds [29]; and in general
for diamond there is the tendency of stabilisation of more symmetric structure.

Despite all this arguments, that justify the presence of an unbuckled and
undimerized geometry for diamond it could be possible that the theory is un-
able to catch some symmetry breaking mechanism yielding a semiconducting
band structure. Another possibility is that the discrepancy arises from the fact
that, as we will see in more detail in the next chapter, DFT band structures
systematically underestimate the electronic gaps of materials. In this case the
inclusion of quasiparticle effects could solve the problem.
The main task of this thesis is to try to understand wether the insulating
character of the (111) surface of diamond is a consequence of asymmetric geo-
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metrical changes, or of many body effects. We will see that many body effects
determine the insulating character of this surface.
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Chapter 2

Ground state properties

In this chapter we first review the theory that lies behind the ground state calculations
performed during this thesis. We illustrate the methods of calculation and show
the results for the (111) surface of diamond. We also illustrate the convergency
tests done in order to check the impact of the approximations on the results. We
will see how, confirming previous results based on the Local Density Approximation
(LDA) for the exchange correlation potential, also within the Generalised Gradient
Approximation (GGA) we find an undimerized and unbuckled geometry (see previous
chapter). The equivalence of the two atoms on the chain is not broken even by the
introduction of the spin degrees of freedom within Local Spin Density Approximation
(LSDA) that would possibly allow an antiferromagnetic ordering of the electrons’
spin along the chain. The resulting band structure is thus semi-metallic in contrast
with experimental findings. We finally discuss the meaning of DFT band structure
and analyse the link between the geometry and the resulting band structure.

2.1 The many body problem

If we do not take into account relativistic effects, which are negligible in the
range of energy of our interest, a system of interacting electrons and ions, like
for example a solid or a molecule, is ruled by the many body Hamiltonian:

Ĥ =

Nion∑
I=1

−1

2
∇2

I +

Nel∑
I=1

−1

2
∇2

i +
1

2

∑
I 6=J

ZIZJ

|RI −RJ |
+

1

2

∑
i6=j

1

|ri − rj|
+
∑
i,I

−Zi

|ri −RI |
.

(2.1)
The first two terms in this Hamiltonian refer respectively to the kinetic energy
of the ions (referred to with capital index) and of the electrons, then the ion-ion
interaction, the electron-electron interaction and the ion-electron interaction
are taken into account. In principle to be able to predict the ground state
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properties of this system, the minimisation of the total energy given by the
expectation value of 2.1 with respect of both the electronic and ionic degrees
of freedom, or else the knowledge of its eigenstate and eigenvalue would be
required. Of course this is a very complex task and the solution of it can not
be achieved for realistic systems.
However the ions and the electron mass are orders of magnitude different, and
since the forces acting on them are the same, we can assume that the electrons
instantaneously reach their ground state for each ionic configuration. This fact,
or in other words, the fact that the dynamic of ions and electrons involve well
separated ranges of energies, allows us to decouple the ionic and the electronic
degrees of freedom: this is the well known Born-Oppenheimer approximation
[34].
Within the the Born-Oppenheimer approximation the electronic Hamiltonian
now becomes:

H =
∑

i

−1

2
∇2

ri
+ Vext +

1

2

′∑
i,j

1

|ri − rj|
= T + Vext + Ve−e, (2.2)

even though now the ionic coordinates appear as parameters in Vext, eq. 2.2
is still very involved and directly diagonalising it to find its eigenstates is still
a formidable task that for complex system is out of the reach of the compu-
tational power. So, in order to tackle this problem, it is required to somehow
change point of view. We will see, in the next section, that, if one is interested
in ground state properties only, maybe the complete solution of the problem
set by eq. (2.2) is not necessary. The density functional approach, focusing
the attention on the the simpler total electronic density n(r) 1 rather than on
the more complex many body wavefunction Ψ(r1, ..., rN), opens the way to the
study of the ground state properties of even very complex systems.

2.2 Minimising the electronic energy:

Density Functional Theory

Density Functional Theory (DFT) treats the case of an external, time inde-
pendent potential, and is based on the seminal paper of Hohenberg and Kohn
of 1964[35]. For a review on DFT see for example [36].

1The electronic density is given by: n(r) = N
∫

Ψ∗(r, r2, ..., rN )Ψ(r, r2, ..., rN )
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2.2.1 Basic theorem: Hohenberg and Kohn

The Hohenberg and Kohn theorem states that once the mutual interaction
among the electrons is fixed, in a non time dependent situation and assuming
that all the potentials acting on the system are local, the knowledge of the
complete Hamiltonian (i.e. the external potential within a constant) and the
knowledge of the ground state density of the system represent an equivalent
information. This means that, the complete Hamiltonian of the system is uni-
vocally determined by the ground state density alone, just like, more obviously,
viceversa the ground state density is determined by the full Hamiltonian. In a
more concise way what we we want to prove is that:

The ground state expectation value of any observable (including the
ground state energy) is a unique functional of the exact ground state
density

and also that:

In particular, the energy functional, once the external potential is
specified, finds it minimum at the ground state density of the system

We will prove these two statements only for the case of a non degenerate ground
state, a generalisation also to degenerate ground state can be found in ref. [36].

We start by considering the Hamiltonian given by eq. (2.2), where, Vext

belongs to the set of external potentials V , that lead to a non degenerate ground
state. We can associate a ground state wavefunction ψ, to each element v ∈ V
by the solution of the corresponding Schrödinger equation. We collect all the
possible ψ generated in this way in a set, which we will call Ψ. The Schrödinger
equation defines a map C between the sets V and Ψ:

C : V → Ψ. (2.3)

Now, we define a second map D, that associates to each element of Ψ the
corresponding density n(r) which will be collected in the set N :

D : Ψ → N . (2.4)

We know, by construction, that to each element of Ψ corresponds at least one
element of V and that to each element of N corresponds at least one element of
Ψ, i.e. that the two maps C and D are surjective. In their paper, Hohenberg
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and Kohn proved with a reductio ad absurdum that the two maps are one-
to-one maps and thus are fully invertible. This means that the ground state
density univocally determines the Hamiltonian of the system. As a first thing
we will prove that C is fully invertible:
suppose that two different potentials, v and v′, that differ by more than a
constant, lead to the same ground state |ψ〉, this means that:

Ĥ|ψ〉 = (T̂ + V̂e−e + V̂ )|ψ〉 = Egs|ψ〉
Ĥ ′|ψ〉 = (T̂ + V̂e−e + V̂ ′)|ψ〉 = E ′

gs|ψ〉. (2.5)

(2.6)

Now, subtracting term by term the two equations, we get:

V − V ′ = Egs − E ′
gs

since the two potentials are local, if the wavefunctions are not null in a set of
finite measure 2, the two potentials differ only by a constant, which is against
our assumption.
So, what we have just seen is that each ground state belongs only to one possible
potential; if now we prove that to each density we can associate only one ground
state, we can finally say that the density determines external potential, and so
the entire Hamiltonian.
From the variational principle we know that:

Egs = 〈ψ|H|ψ〉 < 〈ψ′|H|ψ′〉; (2.7)

but

〈ψ′|H|ψ′〉 = 〈ψ′|H ′ + V − V ′|ψ′〉 = E ′
gs +

∫
n′(r)(v(r)− v′(r))d3r, (2.8)

if now we put (2.8) into eq. (2.7) we get that

Egs < E ′
gs +

∫
n′(r)(v(r)− v′(r))d3r. (2.9)

Repeating the same argument for the case of Ĥ ′, we get:

E ′
gs < Egs +

∫
n(r)(v′(r)− v(r))d3r; (2.10)

2This is true if the potentials are sufficiently well behaved, i.e. they don’t show infinite
barriers etc . . .
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if we now assume that the two ground state wavefunctions lead to the same
density, i.e. n(r) = n′(r), we can add term by term eq. (2.9) and eq. (2.10),
obtaining Egs + E ′

gs < E ′
gs + Egs, which makes no sense. This means that

to each density n(r) corresponds only one possible ground state wavefunction.
Since each ground state determines univocally an external potential, the den-
sity itself determines the external potential.

So, univocally, the Hamiltonian can be written as a functional of the ground
state density Ĥ = Ĥ[n]; and the same happens for total ground state energy
E = E[n].

Now we fix the external potential v = v0, we know that a ground state
density n0 corresponds univocally to this potential. Since the map D−1 that
links the densities to the ground state wavefunctions does not depend on the
specific choice of v0, the variational principle assure us that:

E0 = Ev0 [n0] = min
n∈N

E. (2.11)

An other important consequence of the independence of D−1 from v0 is that
we can divide the total energy functional into two parts:

Ev0 [n] = 〈ψ[n]|T + Ve−e + V0|ψ[n]〉

= 〈ψ[n]|T + Ve−e|ψ[n]〉+

∫
V0(r)n(r)d3r

= FHK [n] +

∫
V0(r)n(r)d3r; (2.12)

where FHK [n] is a universal functional of n, non depending from the choice of v0

So, in principle, knowing the form of the functional dependence E[n], one
could obtain the ground state density and energy of the system implementing
its minimisation with respect to the density n(r). However the general form
of E[n] is not known, in the next section we will see how the Thomas-Fermi
approximation can actually be recovered as a certain form of E[n]. The known
limits of the Thomas-Fermi approximation can then give an hint on where care
should be put to be able to use DFT in practice.

Thomas-Fermi approximation

The Thomas-Fermi equations can be obtained using a certain approximation
for the total energy functional E[n]. In this approximation the electrons’ in-
teraction is accounted to only via the classical electrostatic (Hartree) term:

ETF
e−e[n] =

1

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r − r′|
, (2.13)
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and the kinetic energy term is given by:

T TF [n] =
2

(2π)3

∫
d3rt0(n(r)), (2.14)

where t0(n) is the kinetic energy density of a free electron gas with density n.

t0(n) =

∫
|k|<kF

d3k
k2

2m
. (2.15)

With kF related to n through the expression kF = (3π2n)1/3. In this way the
kinetic energy becomes:

T TF [n] = C

∫
d3r(n(r))5/3. (2.16)

Where C = (3π2)(5/3)/2m. If we now minimise the total energy functional
constraining the number of particle through the use of a Lagrange multiplier,
we obtain the Thomas-Fermi equations:

5

3
C(n(r))2/3 +

∫
d3r′

n(r′)

|r − r′|
+ Vext(r) + λ = 0. (2.17)

It has been shown that the Thomas-Fermi approximation for the total energy is
exact in the limit of an infinite nuclear charge [37], and that this approximation
gives a rough description of the charge density. However the Thomas-Fermi
atoms do not bind to form molecules or solids nor have a shell structure. So,
even if the Thomas-Fermi theory have the merit of having focused the attention
on the correct variable, i.e. the electronic density, it can not be used, even in
its most refined versions, to get reliable predictive calculation.

2.2.2 Kohn and Sham single particle scheme

It is found that the most of the drawbacks of the Thomas Fermi approach are
related to the approximation made to the kinetic energy T of the interacting
N-electron system. In fact it constitutes a non negligible part of the total
energy and an approximation made directly on this term can lead to large
errors in the total energies of the system. The breakthrough appeared one year
after the Hohenberg and Kohn theorem had been published, with the paper
of Kohn and Sham [38], where the authors introduced an ad hoc separation
of the terms contributing to the total energy E. The two main advantages of
this separation were: first, to provide a single particle scheme to obtain the
ground state density and total energy, and second, but still very important, to

22



Ground state properties

have an expression in which the approximations to the unknown part would
be, in many cases, not as relevant as before. In the KS scheme the total energy
functional of the interacting system is written as:

E[n] = TKS[n] + EH [n] +

∫
drn(r)vext(r) + Exc[n], (2.18)

TKS is the kinetic energy of a non interacting system with density n, EH is the
Hartree contribution to the total energy:

EH [n] =
1

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r − r′|
, (2.19)

and Exc is the remaining part of the total energy which contains exchange-
correlation contributions plus the difference between the kinetic energy of
the interacting N-electron system T and the kinetic energy TKS of the non-
interacting system. The main idea underlying this approach is to map the
study of the (complicated) interacting system into the study of a (simpler) non
interacting fictitious system whose Hamiltonian is written as:

[−1

2
∇2 + vext + vH + Vxc]φi(r) = εiφi(r), (2.20)

and which has by construction the same ground state density of the interacting
system:

n(r) =
∑

i

fi|φi(~r)|3, (2.21)

with fi being the occupation number of the state i. In Eq. 2.20 Vxc = δExc[n]
δn

is the exchange and correlation potential of the interacting system, and Vext is
the same external potential of eq. 2.18.

It is now possible, given an approximation for Exc[n], to solve the Kohn-
Sham equations (2.20,2.21) self consistently and calculate the density of the
interacting (real) system via Eq. 2.18. Once the density is known, it is possible
to calculate the energy of the ground state of the interacting system and hence,
by proper minimisation, to find its ground state geometry.

2.2.3 Exchange-correlation energy

If we compare eq. 2.12 and eq. 2.18 we see that the exchange and correlation
energy is defined as:

Exc[n] = FHK [n]− TKS[n]− EH [n] =

= THK − TKS + 〈Ψ[n]|Ve−e|Ψ[n]〉 − EH [n], (2.22)
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where Ψ[n] is the true ground state wavefunction, φKS is the Kohn and Sham
wave function that is obtained through the selfconsistent scheme described in
the previous section and that usually is a single slater determinant, THK is
the kinetic energy of the real system, e.g. the expectation value of the kinetic
energy operator on the state Ψ[n].
Now, we can divide Exc into two parts:

Exc[n] = Ex[n] + Ec[n]. (2.23)

The exchange energy Ex is defined, following an Hartree-Fock like definition,
as:

Ex[n] = 〈φKS|Ve−e|φKS〉 − EH [n]. (2.24)

It is very important to notice that the exchange energy corrects the spurious
self-interaction present in the Hartree energy, just like the Fock term does in
the Hartree-Fock scheme. The correlation energy Ec is defined as the difference
between Exc and Ex; comparing eq. 2.22 and eq. 2.24, EC is given by:

Ec[n] = 〈Ψ[n]|T + Ve−e|Ψ[n]〉 − 〈φKS|T + Ve−e|φKS〉. (2.25)

We know that Ψ[n] minimises the total energy of the interacting system, thus
Ec[n] < 0. At the same time, we know that φKS minimise the total energy of the
non interacting system and so we know that 〈Ψ[n]|T |Ψ[n]〉−〈φKS|T |φKS〉 > 0.
So Ec[n] is the sum of a positive kinetic energy contribution and a negative
potential contribution, which anyhow prevails.

2.2.4 Approximations

Up to now, all the presented derivations are exact. However, to carry out the
real calculations, one has to resort to some approximations. For example, as
already mentioned, the exact functional dependence of Vxc with respect to the
density is not known; or, more trivially, the infinite basis set needed to describe
the electronic wavefunctions must be truncated at some point. In this section
we will go through some of the approximations that have been used within the
ground state calculations performed in this thesis.

Local Density approximation

The definitions (2.24), (2.25) while shading some light on the role of the ex-
change and correlation energy, are actually just formal definition that do not
help in practice to build a good functional.
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In their original paper [38], Kohn and Sham suggested a first simple approxi-
mation for Exc valid in principle only for slow varying density systems: the so
called Local Density Approximation (LDA) given by:

ELDA
xc =

∫
drn(r)εheg

xc (n(r)), (2.26)

where ε
heg
xc (n) is the exchange-correlation energy per electron of a homoge-

neous electron gas of density n. As we can see from eq. 2.26, within LDA
the exchange correlation energy depends only on the local value of the den-

sity. Actual calculations use parametrisation of ε
heg
xc based on accurate Monte

Carlo calculation of the exchange correlation energy of uniform electron gas
for different values of the density n [39, 40].
In their original paper Kohn and Sham wrote that they did not “ expect an
accurate description of chemical bonding” within LDA. However, despite the
simplicity of the approximation, LDA turned out to be an excellent, very accu-
rate, tool for computing ground state properties and describing the geometry
of many, even very complex, systems.

Why LDA works so well?

In this paragraph we will try to get some hints on why LDA is so accurate. In
fact this is important to get an idea of how to get better functionals beyond
it. To do this we will have first to find another expression for Exc within the
coupling constant method, and then connect it to the pair distribution of the
system. We will see that LDA fulfils, among others, the sum-rule for the ex-
change correlation hole, and thus, despite the crude approximation, provides
a quite realistic description of the exchange and correlation potential also for
non homogenous systems. In what comes next we have followed the very nice
derivation of ref. [41].

Exc within the coupling constant method

Let’s consider a density n(r) which is the ground state density of a system with
Hamiltonian

H = T + Vext + Ve−e

We introduce now a parameter λ that will modulate the strength of the inter-
action among electrons; at the same time we vary Vext in order to force the
system with Hamiltonian H = T + V λ

ext + λVe−e to have the same ground state
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density of the original system. Of course, if λ = 0, the ground state wavefunc-
tion of the system ψλ=0 is the Kohn and Sham state φKS; at the same time,
for λ = 1, ψλ=1 recovers the ground state wave function Ψ of the real system.
If we suppose that the two limiting system are adiabatically connected varying
λ from 0 to 1, then we can write the exchange correlation energy as:

Exc[n] = 〈Ψ[n]|T + Ve−e|Ψ[n]〉 − 〈φKS|T |φKS〉 − EH [n]

=

∫ 1

0

dλ
d

dλ
〈ψλ|T + λVe−e|ψλ〉 − EH [n]. (2.27)

Using the Hellmann-Feynman theorem 3 to evaluate the derivative in eq. 2.27,
we get:

Exc[n] =

∫ 1

0

dλ
d

dλ
〈ψλ|Ve−e|ψλ〉 − EH [n]. (2.29)

The exchange-correlation hole

Introducing now the two particle reduced density matrix:

ρ2(r
′, r)λ = N(N − 1)

∫
dr3 · · ·

∫
drN |ψλ(r′, r, r3, · · · , rN)|2, (2.30)

we can express the expectation value of Ve−e in terms of it:

〈Ve−e〉λ =
1

2

∫
dr

∫
dr′

ρ2(r
′, r)

|r − r′|
. (2.31)

Now, we can interpret ρ2(r
′, r)λ as the probability amplitude of finding two

electrons in r and in r′. So, ρ2(r
′, r)λ can be expressed as the product of the

probability of finding an electron in r (which is the definition of the density
n(r)) times the probability of finding an electron in r′ given an electron in r,
which we will call nλ

2(r, r
′):

ρ2(r
′, r)λ = n(r)nλ

2(r, r
′). (2.32)

We know that, since the number of particle is conserved,∫
dr′nλ

2(r, r
′) = N − 1. (2.33)

3The Hellmann-Feynman theorem states that if Hλ is an Hamiltonian depending on a
parameter λ, and Ψλ is a variational solution (including any eigenstate of Hλ) of energy
Eλ = 〈Ψλ|Hλ|Ψλ〉; then

dEλ

dλ
= 〈Ψλ|

dHλ

dλ
|Ψλ〉 (2.28)
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We divide now the expression of nλ
2(r, r

′) into two parts:

nλ
2(r, r

′) = n(r′) + nλ
xc(r, r

′). (2.34)

The nλ
xc(r, r

′) term takes into account the fact that since there is already an
electron in r, the probability amplitude of finding an electron in r′, can not
be anymore the simple n(r′), the effect of the interaction and of the exchange
among the electrons modify its shape. nλ

xc(r, r
′) is called the exchange corre-

lation hole, for what we will say next. In fact, comparing eq. 2.33 and eq.
2.34, we see that: ∫

dr′nλ
xc(r, r

′) = −1. (2.35)

This means that the contribution of nλ
xc(r, r

′) to nλ
2(r, r

′) is negative. Indeed
we can think that the presence of an electron in r pushes the other electrons
away from it, creating a sort of hole around it. The presence of this hole is due
to:

• Exchange effects: The exchange effects that take into account that
electrons of the same spin repel each other via the Pauli exclusion prin-
ciple, and also corrects the self-interaction term.

• Correlation effects: The correlation effects that take into account the
Coulomb repulsion, which keeps the electrons of any spin apart.

It is very important to notice that the exchange effects are present in any
system (also non interacting) which is ruled by the Fermi-Dirac statistic. Now
we try to distinguish the effect of correlation and exchange in nxc by writing:

nλ
xc(r, r

′) = nx(r, r
′) + nλ

c (r, r
′), (2.36)

nx(r, r
′), the exchange hole, is defined as the exchange correlation hole of the

non interacting system: nx(r, r
′) = nλ=0

xc (r, r′); eq. 2.36 implicitely defines
nλ

c (r, r
′). Now, taking into account the definition of the exchange hole, using

eq. 2.35 we know that: ∫
dr′nx(r, r

′) = −1, (2.37)

and this automatically implies that:∫
dr′nλ

c (r, r
′) = 0. (2.38)

This fact has an interesting physical interpretation: the amount of charge that
is moved away from r by the presence of an electron is only connected to the
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exchange effect. In other words the integral in eq. 2.33 must be equal to N −1
independently of the kind of interaction between the particles; it just tells that
if an electron is in r, then it can not be somewhere else. The kind of statistic
of the system, then, gives a first shape to the hole, for example, keeping the
electrons of the same spin apart. On top of this, the correlation effects only
polarise the hole by further modifying its shape. Typically the Coulomb inter-
action makes the hole deeper and more short ranged.

Now, coming back to the exchange correlation functional, if we take its
expression in terms of the integration of the coupling constant λ, i.e. eq. 2.27,
and we use eq. 2.31 and eq. 2.32; we obtain:

Exc[n] =
1

2

∫
drdr′

n(r)

|r − r′|

∫ 1

0

dλnλ
xc(r, r

′) =

=
1

2

∫
drdr′

n(r)

|r − r′|
n̄xc(r, r

′), (2.39)

where n̄xc(r, r
′) is the coupling constant averaged exchange correlation hole. If

we compare this expression with the definition of ELDA
xc in eq. 2.26, we see

that the exchange correlation hole in the case of LDA is given by:

n̄LDA
xc (r, r′) = n̄heg

xc (n(r), |r − r′|), (2.40)

where n̄heg
xc (n, |r−r′|) is the exchange correlation hole of a homogeneous electron

gas of density n. Since the homogeneous electron gas is a possible real physical
system, nLDA

xc (r, r′), will obey many of the exact constraint and sum rule of the
real exchange correlation hole.

Generalised Gradient Approximation

A possible way to go beyond LDA is to introduce an energy functional that
depends also on the derivative of the density. However, it has been seen [41]
that the direct, simple second order gradient expansion around the uniform gas
limit yields worse results than LDA. This is because the new functionals, do
not preserve the constraint for the exchange correlation hole like LDA does. In
other words the exchange correlation hole for the gradient expansion functional
is somehow less realistic than the LDA one (especially in the long range part).
In order to overcome this problem, a second type of functionals was introduced,
the so called generalised gradient approximation (GGA) functionals [42, 43].

EGGA
xc =

∫
drf(n(r),∇rn). (2.41)
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These functionals are built employing real space cutoff for both the exchange
and the correlation hole in such a way that they still fulfil the sum rule for the
exchange and correlation hole, improving in this way the results.

Pseudopotentials

The form of the energy functional is not the only approximation that is used
in typical plane wave ab-initio calculations. The pseudopotentials are used
to model the interaction between the positive ion and the electrons, in order
to get rid of (i)the singularity of the electrostatic potential of the nuclei, (ii)
the description of the very localised core electrons, (iii) the nodes of the wave
functions of the valence electrons close to the nuclei. The idea arises from the
experience that the core electrons are usually not involved in chemical bonds
among atoms and their wavefunctions are practically the same in the possible
different chemical environment. Their global effect on the valence electrons is
to push them away from the nuclei, since the Pauli exclusion principle impose
mutual orthogonality and the Coulomb interaction further pushes them apart.
The presence of the core electron can thus be assimilated to a repulsive po-
tential, that summed up with the singular attractive potential of the nuclei,
provides a much weaker total potential.
So what is done is usually to replace the nuclei and the core electron with an
effective potential which is computed by inverting the pseudoatom Schrödinger
equation imposing that

• for r greater than a certain ‘core’ value rc, the original potential is recov-
ered

• for r > rc, the valence wave function of the pseudoatom are the same as
the one of certain reference configuration, typically the neutral free atom

• the energies of the valence states of the pseudoatom are the same as the
ones of the original atom

• for r < rc the pseudoatom wave functions do not have any nodes

• the pseudopotential is transferable, i.e. it is able to describe well the
behaviour of the valence electrons in different chemical environments

On top of this requirements the norm conservation of the pseudo wave functions
is imposed. This is very important for two reasons: the first is that of course,
within a density functional framework the total electronic density should at
least fulfil the basic particle number conservation rule; the second is that, in
order to carry out transferability, the scattering properties of the ion and the
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core electrons for the valence state should be recovered; the logarithmic deriva-
tives of the pseudo wave-functions determines this scattering properties. It is
shown, [44], that norm conservation forces the logarithmic derivatives to be
the same as the one of the original atom for a certain reference energy and for
energies close to it. This is very important because, when the pseudopotential
is used to describe chemical bonding, for example in a solid or in a molecule dif-
ferent from the atomic configuration, the energy levels of the valence electrons
vary from the atomic eigenvalue used to build the pseudopotential 4.

K-point sampling of the Brillouin zone and kinetic energy cutoff

Exploiting the Bloch theorem [45], in a periodic system, each electronic eigen-
function can be expressed a sum of plane waves:

ψn,k(r) =
∑

G

cn,k+Ge
i(k+G)r, (2.42)

where k is a vector in the reciprocal space that spans the first Brillouin zone,
and G are the reciprocal lattice vectors. The Kohn and Sham equation now has
a simpler form: the Hamiltonian for each k point is a matrix in the reciprocal
space (G,G′); and one should diagonalise it in order to get the coefficients of
the planewaves.
In principle, both the number of the k points and of the G vectors in (2.42)
are infinite. Of course this infinite summations can not be implemented in real
calculations and what is actually done is to sample the Brillouin zone with a
finite number of k points and to introduce a cutoff in the kinetic energy that
limits the summation over the G vectors.
In fact, assuming that the wavefunctions in the k points that are very close to
each other are almost identical, we can think of replacing the wavefunctions of
the k points in a region of the Brillouin zone with the wavefunction of one k
point representative of the entire region. Of course convergency on the number
of k points must be achieved; however there are special sets of k points [46] for
which, exploiting the symmetry of the system, very accurate calculations can
be performed at a reasonable small number of k points.
To limit the number of G vectors, we have to think that usually the most
important coefficients for the plane wave basis set are the ones that carry small
kinetic energy. The plane wave basis set can then be truncated to include only
plane waves with kinetic energy below a certain threshold Ecut:

1

2
|k +G|2 ≤ Ecut. (2.43)

4Nota sui non norm conserving pseudopotential
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In all our calculations for diamond, if not else specified, we have used a cutoff
energy of 45 Ry.

2.3 Application of the theory to C(111)2×1

For the DFT calculations presented in this paragraph, and also where is not
else specified, we used the FHI98MD code [47] which is a plane-waves basis set
code. In this code the minimisation of the total energy functional, with respect
to both the electronic {ψk,n} and ionic degrees of freedom {RI}, is achieved
within the subsequent self-consistent scheme:

1. Input geometry and a first guess of the electronic wavefunction are pro-
vided.

2. The electronic density is computed from the wavefunctions; this density
is used to build the Hartree term and the exchange correlation potential
within the chosen approximation

3. The Kohn and Sham equations are solved by an iterative minimisation
technique, until the system is close enough to the Born-Oppenheimer
surface, i.e. close enough to the electronic ground state for the given
geometry; the result are new electronic wavefunctions

4. The forces on the ions are computed and their classical equation of motion
is integrated for one time step

5. Steps from 2 to 4 are repeated until the forces on the ion are below a
certain threshold (0.025 eV/Åand the electronic ground state is reached

In our calculations, the exchange-correlation functional is treated within the
generalised gradient approximations (GGA) of Perdew et al. [42, 43]. The ion
potential is represented by a norm-conserving, fully separable pseudopotentials.

2.4 Equilibrium geometry of the (111) surface

of diamond

The convergency test on the DFT parameters, which we will not describe in
detail, determines, for 45 Ry energy cutoff, a lattice costant of 3.54Å, 0.8%
less than the experimental value. The Car-Parrinello optimisation of the clean
2×1 surface was performed on a slab made of 12 atomic layers of carbon atoms
plus 5.4 Å of vacuum. The initial ionic positions were changed from the ideal
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position breaking all the possible symmetries of the ideal lattice except for the
inversion of the z axis; all the the atomic layers were allowed to move except
for the central 2 layers. Convergency test on the slab thickness reaching 24
atomic layers have been performed. A set of 16 ~k points was used to sample
the BZ.

As already introduced in chapter 1, it is now well accepted that the re-
construction of clean C(111) is the Pandey chain model. This model involves
significant changes from the ideally truncated bulk. In fact in the ideally
truncated bulk the dangling bonds belong to atoms which are second nearest
neighbors; the atoms rearrange themselves, in order to have dangling bonds
on nearest neighbours forming, chains along the y directions. Indeed, as we
can see form fig. 2.1, in the relaxation, per each 2x1 unit cell, one atom on
the second layer breaks its bond with the third layer and rises toward the first
layer, at the same time a bond is formed between an atom belonging to the first
layer that lowers toward the second layer. As a result, looking at the surface
from the side, we have a sequence of five fold and seven fold rings, while the
ideal surface has only sixfold rings. The dangling bonds have mostly a p-like
character that allows π bonding between the surface atoms along the chain [17]

As already mentioned, there is strong debate about the exact details of
the relaxation, mainly because, as we will see in the next paragraph, the DFT
band structure of the surface depends significantly on those details. The main
discussion concerns the presence of buckling and the degree of dimerisation of
the surface chains. The buckling ∆z is defined as the difference between the
surface atomic coordinates in the (111) direction, while the degree of dimeri-
sation ∆ is defined as ∆ = d1−d2

d1+d2
, d1 and d2 being the two bond lengths within

the surface chain.
In the optimisation of the geometry we started from several configurations,

involving Pandey chains with slight negative and positive buckling [48] and
dimerisation. The final relaxed geometry, common to all the starting points, is
shown in Fig.(2.1). We find that the buckling and the dimerisation of the chain
vanish. In particular we find for the buckling ∆z = 0.004Å and for the degree
of dimerisation ∆ = 0. The bond length of the atom in the chain is 1.427Å
in agreement with previous DFT-LDA calculations [49, 50]. The Pandey chain
reconstruction affects also the deeper layers of the slab. Conformly to the
previous DFT-LDA calculations we find that the length of the bonds d12, d

′
12

that connects the chain to the subsequent layer is almost (within 0 − 0.1%)
equal to the bulk bond length, while the distance d′ between the atoms in
the second layer chain is stretched by 0.9%. Even in the absence of buckling
and dimerisation, the atoms on the top chain are not equivalent, this is due
to the rising and the lowering of the atoms in the 3rd and 4th layer. In fact,
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Figure 2.1: (a)Ideally truncated and (b)(c) fully reconstructed C(111) surface. (a)
and (b) are side views, (c) is the top view of the surface. In agreement with previous
DFT calculations, the surface relaxes to a non buckled non dimerised Pandey chain
geometry.
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confirming previous DFT-LDA calculations [50], we find stronger buckling in
the 4th layer (∆z = 0.1659Å). The values of the buckling on the deeper layers
are reported on Fig. 2.1b. The bonds between the 2nd and 3rd layer d23 and
d′23 differ significantly: d23 is 6.7% larger than the average bulk length and d′23
is 4.1% larger. All this geometry parameter are listed in the table (2.1), where
we also list for a comparison the results of previous ab-initio calculations and
the result of the latest LEED spot intensity vs voltage experiment [26].

Method d ∆ ∆z d12 d′12 d′ d23 d′23
DFT-LDA [51] 1.44 1.4 0.00 < 2.0 < 2.0 < 2.0 8.0 8.0
DFT-LDA [49] 1.43 0.0 < 0.01 0.1 -0.1 0.9 6.6 4.5
DFT-LDA [50] 1.425 0.0 0.006 0.2 -0.2 0.9 6.5 4.6
DFT-GGA 1.427 0.00 0.004 0 0.1 0.9 6.7 4.1

Table 2.1: DFT-LDA predictions of structural parameters of the C(111) 2×1
pandey-chain reconstructions: -d is the average intrachain bond length -∆ is the
degree of dimerisation- ∆z is the first layer buckling - d12, d′12, d23 and d′23 are the
changes in the length of the bonds connecting the 1st to the 2nd layer and the 2nd to
the 3rd -d’ is the average bond length within the second layer atomic chain. GGA
calculations: present work. All lengths are in Å.

The geometrical details obtained for our slab within GGA are in very good
agreement with all the previous DFT-LDA plane waves calculations [49, 50]
except for ref. [51]. In particular in [51] a chain dimerisation of 1.4% is found
which leads to a correct band structure, despite of the fact that most experi-
mental predictions suggests an undimerized geometry. It has been argued [50]
that a possible reason for the found dimerised surface is that the slabs used
in those calculation were not thick enough (8 layers) to make possible a com-
plete relaxation involving many deeper layers as was instead found by the other
ab-initio calculations.

2.5 DFT electronic structure and symmetries

of the reconstruction

Even if there is no formal justification, one can try to interpret the eigenvalues
of the Kohn and Sham structure as single particle excitation energies of the
system, building the DFT band structure. The DFT electronic band structure
of the clean C(111)(2×1) surface is shown in Fig.(2.2).

The surface bands that lie in the gap are originated by the bonding and
anti-bonding combinations of the pz orbitals of the atoms in the chain. As
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Figure 2.2: Electronic band structure of the 2×1 surface. In agreement with pre-
vious DFT calculation the surface is semimetallic. Between J and K the upward
dispersion of the surface bands, due to the interaction between different chains,
makes both the bands cross the Fermi level.

shown in Fig.(2.1), the chains develop in the (1̄10) direction and are an almost
one dimensional structure, this characteristic should lead to a strong dispersion
of the surface bands along the chain direction that correspond to the ΓJ and
KJ’ parts of the IBZ boundaries and, viceversa, to a less dispersive part of
the band structure along the directions that are perpendicular to the chains,
that correspond to the JK and J’Γ directions. The calculated band struc-
ture seeems in good agreement with these thoughts and the small dispersion
along the JK and J’Γ is possibly due to the interaction between the chains
through the substrate [49]. The dispersion of the calculated bands seems to be
in qualitatively good agreement with experimental data points: experiments
for occupied states obtained from angle resolved photoemission show a surface
state dispersing 1eV going from 2/3ΓJ to a point close to J [18] and 1.9eV go-
ing from 1/2ΓK to K [22]. In our case the dispersions are of 1.3eV and 2.3eV
respectively. However in the JK directions the calculated two surface bands
are nearly degenerate and their upward dispersion (∼ 0.4 eV) makes them cross
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the Fermi level producing a semimetallic character of the slab. This, as already
mentioned, is in contrast with experimental data that predict a gap of at least
0.5 eV [22].

Symmetry of the chain and DFT band structure

Tight binding, one dimensional models of the π-chains; help to get insights
about the physical origin of the almost degenerate surface states present along
the JK line of the band structure. In fact what is shown, [17], is that the
degeneracy of the states along the JK line is strictly connected to the equiv-
alence of the two atoms on the chain; if this equivalence is removed then the
gap between surface states may open.
As we have already mentioned, the two atoms on the chain are not really equiv-
alent if we take into account the presence of the third layers. As a matter of
fact, there is a little splitting (∼ 0.1eV ) between surface states, but this does
not prevent the surface to be semimetallic thanks to the dispersion of both of
the surface bands along the JK line. There are different ways to gain more in-
equivalency: a chance is given by a distortion of the lattice, through buckling or
dimerisation of the chain for example; another possibility is to polarise the spin
of the atoms of the chains forming an antiferromagnetic order. For the same
surface, Si and Ge follow the first way and the chains, in their case, exhibit
buckling [52]. The mechanism is regulated by the delicate balance between the
gain of band structure energy and the loss of elastic one while distorting the
system. Probably, since the carbon bonds are stronger than Si and Ge bond,
the balance is unfavourable in the case of diamond, and the system seems to
unlike distortions. This may also justify the fact that the most stable recon-
struction for the (111) surface of diamond is the (2x1); while in the case of Si
and Ge we have more fancy (7x7), c(2x2) reconstructions.
Dimerisation is excluded experimentally for symmetry reasons [22], while, as
already discussed in chap. 1, there is still debate concerning the buckling of
the chains; so, starting from the fully relaxed geometry, we have studied the
total energy and the band structures of systems with increasing buckling. The
results are listed in tab. (2.2) and fig. (2.3). As we can see comparing tab. 2.2
and fig. (2.3), only a strong (in terms of energy cost) buckling could induce an
opening of the gap.

As a last try we tested the possibility of antiferromagnetic ordering along
the chain within the local spin density approximation (LSDA). LSDA is a
generalisation of LDA in order to include the spin degrees of freedom. The
energy functional is now dependent (still locally) also on the magnetisation
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Figure 2.3: Electronic band structure of the 2×1 surface, along the JK directions for
different values of the buckling of the surface chains. The degeneracy of the surface
bands along the JK line is lifted by the presence of buckling. The upward dispersion
of the bands, however, makes the surface become semiconducting only in the case of
a 0.8 Åbuckling. Such a big value of buckling is very unlikely: most experiments (see
chap. 1) do not find any evidence of buckling or estimate it to be 0.3 Å; moreover
total energy calculations (see tab. chap2energybuckl) show that such a buckling is
energetically unfavourable.

Buckling (Å) Total Energy (a.u.)
0.0 -137.528651
0.1 -137.526757
0.3 -137.511821
0.6 -137.464567
0.8 -137.418744

Table 2.2: Total energy of slabs vs buckling.

of the system. Also in this case we started from different initial configuration
involving different values of the magnetisation of the slab. In all cases we found
a non magnetic ground state, essentially the LDA one.
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The discrepancy of the DFT band structure, however, can not be only
addressed to the possible, unlikely, incapability of DFT to capture some in-
equivalence of the system. In general, as we will see in the next paragraph,
DFT band structures underestimate the electronic gap of semiconductors; the
main part of this thesis is devoted to the study of the possibility that also
in this case such a low value of the gap is not a consequence of asymmetric
geometrical changes, rather of many body effects.

2.6 The band gap problem

The Kohn and Sham eigenvalues, introduced in the theory as Lagrange mul-
tipliers, in principle do not have any physical meaning; not even in the sense
that Hartree-Fock eigenvalues do within Koopman’s theorem. However they
are often interpreted as addition and removal energies; and the agreement with
experiments even if only qualitative, is already remarkable in view of the ab-
sence of theoretical foundations. Thus it is important to understand whether
by getting better and better functionals, one could hope to get to a more quan-
titative description of the band structure within the Kohn Sham scheme. We
will see that this is not the case, however it is still important to get insights
on the physical content of the Kohn Sham eigenvalues.

In ref. [53], Perdew et al. extended the DFT formalism to fractional particle
number states by defining proper energy functionals for statistical mixtures. In
this framework, they proved that the ground state energy of (N + ω)-particle
state 5 (where N is an integer and 0 ≤ ω ≤ 1) is given by:

EN+ω
gs = (1− ω)EN

gs + ωEN+1
gs . (2.44)

From eq. 2.44, we can see that the ground state energy versus the total number
of particles is given by a series of straight line segments. While EN

gs
6 is a

continuous function of N , its derivative, namely the chemical potential µ = ∂E
∂N

might be discontinuous as the variable N passes through an integer value. In
ref. [53], it was also shown that:

δEN [n]

δn(r)
=
∂E

∂N

∣∣∣
N−δ

= µ−, (2.45)

where δ is a positive infinitesimal quantity, and by µ− we mean the left limit
of µ. Eq. 2.45 states that, in principle, the left limit of the chemical potential

5Described by the corresponding statistical mixture
6In this case we are dropping the condition that N is an integer number.
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is correctly given by the functional derivative of the total energy functional of
an N-particle calculation.
At the same time, Janak’s theorem [54] states that the partial derivative of the
total energy functional with respect to the occupation of a certain Kohn Sham
state is given by the corresponding Kohn-Sham eigenvalues:

∂E

∂fi

= εi. (2.46)

So comparing eq. 2.45 with eq. 2.46, it is easy to see that within DFT the left
limit of the chemical potential is given correctly by the energy of the highest
Kohn Sham occupied state:

µ−(N) = ε
(N)
N . (2.47)

From eq. 2.46, it is also straightforward [55] to see that the ionisation potential
I(N), and the electron affinity A(N) are given by:

I(N) = EN−1 − EN = −
∫ N−δ

N−1+δ

∂E

∂N
dN = −µ−(N) = −ε(N)

N

A(N) = EN−EN+1 = −
∫ N+1−δ

N+δ

∂E

∂N
dN = −µ+(N) = −µ−(N+1) = −ε(N+1)

N+1 .

(2.48)
The electronic gap of the system is defined as the difference between the ioni-
sation potential and the electron affinity, and so:

Eg = I − A = ε
(N+1)
N+1 − ε

(N)
N . (2.49)

Eq. 2.49 is very important since it states that the true gap of a system is
correctly given by the difference of the energies of the Kohn Sham highest
occupied states of the N + 1 and N particle system. How is it connected to
the Kohn and Sham gap, namely EKS

g = ε
(N)
N+1− ε

(N)
N ? Let’s consider again the

expression of the true gap:

Eg = µ+(N)− µ−(N) =
(δE[n]

δn

∣∣∣
N+δ

− δE[n]

δn

∣∣∣
N−δ

)
; (2.50)

only terms arising from the kinetic and exchange correlation part of the total
energy functional might contribute to this expression. The remaining part
of the total energy functional will give a null contribution since, in extended
systems, the addition of one electron is an infinitesimal perturbation, and the
change in the density is null being the volume infinite. Therefore all the terms
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(i.e. the Hartree potential, the external potential) of the Hamiltonian which
are analytic with respect to the density can not yield a finite, of order one,
effect on the eigenvalues. Taking all this into account,

Eg =
δT

δn

∣∣∣
N+δ

− δT

δn

∣∣∣
N−δ

+ v+
xc − v−xc. (2.51)

Now let’s consider the Kohn Sham system: it is a system of free particle moving
in an effective potential vxc. Therefore the electronic gap of this system is given
only by the discontinuity of the kinetic part of the energy functional, so that:

EKS
g =

δT

δn

∣∣∣
N+δ

− .
δT

δn

∣∣∣
N−δ

(2.52)

Comparing eq. 2.51 and eq. 2.52, we can see that the DFT Kohn Sham gap
EDFT

g of the N particle system, is related to the true quasiparticle gap through
the discontinuity ∆ of the exchange and correlation potential when an electron
is added to the system.

Eg = EKS
g + ∆ = ε

(N)
N+1 − ε

(N)
N + v+

xc − v−xc. (2.53)

Now, if ∆ is very small, a good enough functional would provide the correct
gap; viceversa, if ∆ is a big quantity, no matter how good the functional is, the
Kohn Sham gap does not provide a good approximation for the quasiparticle
gap. The discontinuity of the exchange and correlation potential was found
[56, 57] to be a consistent (80%) part of the error; the problem of quasiparticle
energies should then be addressed by other theories.
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Electronic properties

In this chapter we will see how a proper description of electronic spectra may be
achieved through many body perturbation theory, within the GW approximation for
the electronic self energy. In the case of the (111) surface of diamond, however,
the usual implementation of the GW calculation can not be successfully applied and
we need to go beyond it to face the problem of semimetallicity of the surface; hence
an iterative scheme is implemented. In this scheme the energies present in the ex-
pression of the Green function and of the microscopic dielectric function are updated
until selfconsistency is reached. A finite direct (∼ 1 eV) gap between surface states is
obtained, in better agreement with the available experiments. We will discuss briefly
the issue of selfconsistency within GW . Finally, we introduce the GWΓ approxi-
mation for the self energy, where vertex correction are included; we will apply this
method to the calculation of the electronic affinity of the surface.

In the final part of the previous chapter, we have seen how there is strong
evidence [56, 57] that within a Kohn-Sham scheme the quantitative determina-
tion of the electronic gap of semiconductors is beyond reach, even if the exact
exchange correlation energy functional is known. However, the DFT band
structure may represent a first-order approximation and a good (the best avail-
able even) starting point for the implementation of other theories more suited
to tackle the problem of the description of electronic spectra of materials.
Let’s first simply try to understand what are we comparing to when we calcu-
late band structures, and introduce the main ingredients required to describe
these phenomena properly. Typically the electronic band structure is obtained
by (angle resolved) photoemission spectroscopy (ARPES) experiments, both
direct and inverse. Roughly speaking, as schematically depicted in fig. 3.1,
in the direct PES, light is shone on the sample and, due the absorption of
a photon, an electron is excited from the valence band and leaves the sam-
ple. In the inverse photoemission setup, on the other hand, an electron beam
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Figure 3.1: Schematic picture of direct and inverse photoemission experiments.
From ref. [58].
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impinges on the sample and as an electron is captured, occupying an empty
conduction state, energy is released through the emitted photon. If, in the case
of direct photoemission, for example, one considers the final electron as being
completely decoupled from the system, the conservation of the total energy
and momentum, yields information about the amount of energy and momen-
tum transferred to the system in order to bring it from the neutral ground
state to the charged excited state, i.e.:

Eγ + EN
0 = Ee−

kin + EN−1
n ⇒ EN−1

n − EN
0 = Eγ − Ee−

kin, (3.1)

, where Eγ and Ee−

kin are the energies of the incoming photon and of the ejected
electron respectively; EN

0 is the energy of the N-particle ground state, and EN−1
n

is the energy of the n-th excited state of the (N + 1)-particle system. In an
independent-electron framework, considering for istance Hartree-Fock within
Koopman’s theorem, the energy levels of the electrons are calculated once and
for all through the selfconsistent solution of the Hartree-Fock equations. In the
ground state, the electrons will fill up the lowest N/2 levels; the energy of the
system is given by the sum of the energy of the occupied levels calculated with
respect to a common reference value, for example, the vacuum level. Now, if a
photon is absorbed and an electron is ejected from one of these states, such as
from the s-th level, the energy of the system is still the the sum of the energy
of the occupied levels, so we get:

EN−1
n − EN

0 = Eγ − Ee−

kin = −εs. (3.2)

The energy required to excite the system is exactly the energy level of the
ejected electron measured with respect to the vacuum level, the binding en-
ergy of the electron. In the same way, the electron, added to the system in an
inverse photoemission experiments, will occupy one of the fixed empty levels
above the Fermi energy. Hartree Fock calculations performed in this way, don’t
give a good description of the band structure, often overestimating the band
gap of semiconductors by more than 100 percent.
What is missing in this kind of calculation is the correlation between the elec-
trons. The electrons, in fact, respond selfconsistently to the addition or removal
of an electron because they ‘feel’ the modification of the system, which, for ex-
ample, becomes polarised as it tries to screen the added charge. This response
causes a change in the potential felt by the the new electron and all the energy
levels are modified with respect to the ones of the neutral system. So, in order
to describe more conveniently what is happening in a photoemission experi-
ment, starting from a Hartree Fock picture, we need to introduce correlation
for example by adding to the equation for each single particle state the po-
tential induced by the added (removed) particle, acting on the particle itself.
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As a matter of fact, we will come up to an equation, namely the quasiparticle
equation, in which the electronic self energy will play the role of this potential
induced by the presence of the particle through the response of the others.
This requires to use Green’s function theory.

3.1 The Green function

The single particle Green’s function is defined as:

G(x, t;x′, t′) =
〈Ψ0|T {ψ̂(x, t)ψ̂†(x′, t′)}|Ψ0〉

〈Ψ0|Ψ0〉
. (3.3)

Where |Ψ0〉 is the N-particle ground state, ψ̂(x, t) (ψ̂†(x, t)}) is the Heisenberg
creation (annihilation) field operator and we assume that the spin degrees of
freedom are included in the variable x. T is the time ordered product, meaning
that:

T {ψ̂(x, t)ψ̂†(x′, t′)} =

{
ψ̂(x, t)ψ̂†(x, t) t > t′

−ψ̂†(x′, t′)ψ̂(x, t) t < t′
. (3.4)

From the definition of time-ordered product we see that, for t > t′, the Green’s
function describes the propagation of a particle from the point (x′, t′) to the
point (x, t); viceversa, for t < t′, it describes the propagation of a hole.
The knowledge of the Green’s function enables the computation of many prop-
erties of the system:

• The expectation value of any single particle observable in the ground
state

• The ground state energy of the system

• The excitation spectra of the system

From now on we will focus our attention on this third point; very good in-
troductions about the Green’s function formalism and about the Many Body
Perturbation Theory can be found in ref. [59, 60, 61].

3.1.1 The Lehman representation

After a temporal Fourier transform, the Green’s function G can be formally
written, in what is called its Lehman representation, as

G(x, x′;ω) =
∑

s

fs(x)f
∗
s (x′)

ω − εs − iηsgn(µ− εs)
, (3.5)
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where s and s′ run over the N+1 and N-1 electrons excited states, η is positive
and infinitesimal, µ is the Fermi energy of the system, and

fs(x) =

{
〈Ψ0|ψ̂(x)|Ψs

N+1〉 εs = Es
N+1 − E0

N when εs > µ

〈Ψs
N−1|ψ̂(x)|Ψ0〉 εs = E0

N − Es
N−1 when εs < µ

. (3.6)

In the last formula 〈Ψn
N±1| is the n-th excited state of the N±1-particle system,

and EN±1 its corresponding energy. By looking at equation 3.5 and 3.6, we
see that the poles of the Green’s function are at the energy differences we are
interested in when we compare to ARPES spectra, namely the addition and
removal energy of one electron.
If we take the imaginary part of eq. 3.5, we get the so called spectral function:

1

π
Im(G(x, x′;ω)) = ±A(x, x′;ω) = ±

∑
s

fs(x)f
∗
s (x′)δ(ω − εs). (3.7)

The spectral function is a sort of density of available states weighted by the
Lehman amplitudes which give the probability, after the creation (destruction)
of a particle at point (x, t), to find the system in the eigenstate Ψs

N+1 (Ψs
N−1).

If now we take the spectral function A(x, x′;ω), and we ‘project’ it onto a
chosen suitable one-electron state |φi〉, we compute:

Aii(ω) =

∫
dxdx′A(x, x′;ω)φ∗i (x)φi(x

′)

=
∑

s

δ(ω − Es)

∫
dxdx′fs(x)φ

∗
i (x)f

∗
s (x′)φi(x

′)

=
∑

s

δ(ω − Es)〈Ψ0|ĉi|Ψs
N+1〉〈Ψs

N+1|ĉi†|Ψ0〉. (3.8)

(The last line of this equation is valid only for ω > 0, and ĉi†, (ĉi) is the
creation (annihilation) operator of an electron in i-th single particle state).
Eq. 3.8 says that if we take a system at its ground state and add (remove) a
particle in the state φi, the amplitude of the oscillations at frequency ω will be
given by Aii(ω).
Suppose that we have a system of non interacting electrons with Hamiltonian
Ĥ0. If φi is an eigenstate of the single particle Hamiltonian, then:

Aii(ω) = δ(ω − εi). (3.9)

In fact after the creation of the electron in the state φi, the system is still in an
eigenstate of the Hamiltonian and will oscillate only with the proper frequency
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Figure 3.2: Schematic picture of the spectral function Aii(ω). In the non interacting
case Aii(ω) is a delta function; when the interaction is switched on, the position of
the peak changes, the structures now have a finite width and also higher energy
satellite structures might appear. From ref. [62].

εi. As a matter of fact, also in the case of interacting system Aii(ω) can exhibit
some structures that may reflect that particular single particle state is ‘quite’
stable; this kind of states that oscillate for a reasonable number of times before
being damped are the famous quasiparticles. Generally the Aii might have a
form similar to the one presented in fig. 3.2: close to the Fermi level there is
a strong quasiparticle peak whose width is connected to its life time, satellite
structures at higher energies might also appear, usually they are interpreted
as excited state made by the quasiparticle plus a plasmon.

3.1.2 The quasiparticle equation

The Lehman representation (eq. 3.5) sheds light on the physical information
contained in the Green’s function but actually it does not provide any insight
on how to get it.
It can be shown [59, 60, 61] that the Green’s function of the interacting system
is connected to the Green’s function of the non interacting system, G0, via an
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integral equation, the so called Dyson equation, which takes the form:

G(1, 2) = G0(1, 2) +

∫
d3d4G0(1, 3)Σ(3, 4)G(4, 2). (3.10)

. Each index stands for space, time and spin coordinates for example 1 ≡
{r1, σ1, t1}. Σ is the proper self energy operator which is non hermitian, non
local, and, when turning to Fourier space, energy dependent. We consider
the Hartree Hamiltonian as the non interacting Hamiltonian Ĥ0. In principle,
knowing the expression for the self-energy one could use eq. 3.10 to obtain the
Green’s function. However, here we want to show that eq. 3.10 is equivalent
to a single particle Schrödinger equation.
From eq. 3.10 it follows that:

G−1(x, x′;ω) = G−1
0 (x, x′;ω)− Σ(x, x′;ω); (3.11)

we know, see ref. [59, 60, 61] ,that

G−1
0 (x, x′;ω) = δ(x− x′)[ω − h0(x)]. (3.12)

Inserting eq. 3.12 in eq. 3.11, we get:

G−1(x, x′;ω) = δ(x−x′)[ω−h0(x)]−Σ(x, x′;ω) = δ(x−x′)ω−H(x, x′;ω) = ω−Ĥ,
(3.13)

where we have defined an effective Hamiltonian given by:

Ĥ(x, x′;ω) = h0(x)δ(x− x′) + Σ(x, x′;ω) (3.14)

which is not hermitian and energy dependent due to Σ. It is easy to prove that
we can write the Green’s function G as:

G(x, x′;ω) =
∑

n

ψn(r, ω)ψ∗n(r′, ω)

ω − En(ω)
(3.15)

where the ψn(r, ω) and En(ω) obey the equation:

(
− ∇2

r

2
+ Vext(r) + VH(r)

)
ψn(r, ω) +

∫
dr′Σ(r, r′, ω)ψn(r′, ω) = En(ω)ψn(r, ω).

(3.16)
The ψn(r, ω), while being a complete set, are not necessary orthonormal and
the En(ω) are not necessarily real, since Σ is not hermitian.1 The poles of
the Green’s function are now at the complex energies that fulfil the equation

1In fact G should be really expressed in terms of the left and right eigenvalues of Ĥ in a
biorthogonal form, see ref. [63].
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ω = En(ω). Given a suitable expression for Σ, the poles of the Green function
can be obtained solving the single particle like equation given in 3.16. It is
worth noticing that these equations reduce to the Hartree equations when Σ=0,
to the Hartree-Fock ones when Σ = iGV , and to the Kohn-Sham equations
when, instead of Σ, a local, hermitian and energy independent operator is
taken: Σ → V KS

xc (r).
This observation gives an a-posteriori justification of the use of the Kohn-
Sham equations to calculate the excitation energies; the qualitative agreement
between DFT and experimental band structure results comes from the fact
that the Kohn-Sham equations already buries a lot of physics, containing, at
least approximately, exchange and correlation effects. In other words, V KS

xc (r)
is often a quite good approximation for the ’true’ self-energy Σ.

3.1.3 Complex or real poles?

In the previous section we have seen that, paying the price of dealing with a
complicate non local, non hermitian, energy dependent operator Σ, we have
regained a single quasiparticle picture. The poles of the Green’s function now
lie in the whole complex plane, where the Green’s function is analytically con-
tinued; for the subtle mathematics that stands beyond this, refer to [63].
However we have seen that, in the Lehman representation (eq. 3.5), the poles
of the Green’s function are at the exact eigenenergies of the system upon ad-
dition and removal of a particle; in fact they lie infinitesimally close to the real
axis. 2 Are the two expression for the Green’s function, eq. 3.5 and eq. 3.15,
contradictory? In this section we will try to shed light to this point following
an illustrative example from ref. [58].
First of all we want to keep in mind that, if we take the thermodynamic limit,
the set {εs} becomes a continuous set of excitations. So, in the thermodynamic
limit, the Green’s function definition in eq. 3.5 will have, instead of a sum, an
integral over the variable s; as a consequence rather than isolated poles, it will
present a branch cut on the real axis.
Now we assume a specific form for the Green’s function in the Lehman repre-
sentation; we then compute the spectral function, and finally we will see how
the same spectral function can be obtained with a much simpler formulation,
by allowing the Green’s function frequency domain to expand in the whole
complex plane. The important thing is that the spectral function is the quan-
tity that is directly connected to the experiments.
Let us assume that a generic matrix element of the Green’s function in the

2Note that for energy below (above) the Fermi level the analytic continuation of the
Green’s function is performed in the lower (upper) imaginary plane.
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Lehman representation has the form:

G(ω) =
∑

s

g(s)

ω − s+ iη
, (3.17)

where g(s) has the form:

g(s) =
E2

(s− E1)2 + E2
2

. (3.18)

If now we take the thermodynamic limit, s becomes a continuous variable, the
sum present in eq. 3.17 becomes an integral and G(ω) has a branch cut along
R. If now we take the imaginary part of the Green’s function we end up with
a spectral function given by:

A(ω) =
1

π

E2

(ω − E1)2 + E2
2

. (3.19)

It is straightforward that the same spectral function could be obtained taking
the imaginary part of a Green’s function given by:

G(ω) =
1

ω − (E1 + iE2)
. (3.20)

So in this case, in principle, it would have been sufficient to find only a simple
but complex pole to describe a spectral structure given by a continuos density
of excited states. The real part of the pole gives the position at which the peak
in the spectral function is located, whereas the imaginary parts gives its width.
It is as if one is in front of a choice between:

1. Describing the dynamic of the system, upon the addition or removal
of the particle, referring exactly to the eigenstate of the system. Each
component will oscillate at its proper frequency infinitely in time (the
energies are real) and the damping is just a matter of interference. This is
a possible procedure, but we have to keep in mind that we are dealing with
very complicated spectra (for solids they are continuous) and eigenstates.

2. Describing the dynamic of the system, upon the addition or removal of
the particle, through the evolution of elementary excitations called single
quasiparticles, which are not the exact eigenstate of the system: they
will have a finite lifetime, will not be orthogonal etc. but still they yield
a good description of the dynamic of the excited state 3. Obviously this

3The quasiparticles follow the Fermi statistic, in fact they might be thought as the sin-
gle particle excitations of the non interacting system which are adiabatically connected to
excitations of the real system.
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kind of picture makes sense only when the lifetimes are sufficiently high,
i.e. until the poles are close enough to real axis. In fact it would be
useless to introduce some kind of excitations that don’t even have the
time to oscillate for a reasonable time before being completely damped.

Both the approaches are, in principle exact, however in practice it is always
simpler to resort to some expression of the selfenergy and to solve the quasi-
particle equation searching for a set of simple (but complex!) poles. This is
the very advantage in using Green’s function theory.

3.2 Hedin’s equations

In the same way in which we use an approximation for V KS
xc , we have now to

face the problem of finding a suitable expression for Σ. Within the Many-Body
theory we have a set of exact equations, the Hedin’s equations [64, 65], which
define implicitly the self-energy Σ.
This set of equations is obtained (see Appendix A of ref. [64]) starting from
the equation of motion for the single particle Green’s function. It is known
[59, 60, 61], that this equation of motion involves the two particle Green’s
function; the two particle Green’s function equation of motion in turn will
depend on the three particle Green’s function and so on, yielding an infinite
hierarchy of equations. Hedin has shown that this chain of equations can be
broken by introducing in the Hamiltonian an external source that couples to
the density, and that at the end of the derivation is set to zero. The new thing
now is that the two particle Green’s function can be obtained as a functional
derivative of the Green’s function with respect to this external source, and so it
is formally removed from the equation of motion of the single particle Green’s
function. Introducing other characteristic quantities of the system like the
screened Coulomb interaction W (1, 2), the time ordered polarisation P (1, 2),
and the vertex function Γ(1, 2; 3), a close set of equation can be derived.

Σ(1, 2) = i

∫
W (1+, 3)G(1, 4)Γ(4, 2; 3)d(34);

W (1, 2) = V (1, 2) +

∫
W (1, 3)P (3, 4)V (4, 2)d(34);

P (1, 2) = −i
∫
G(2, 3)G(4, 2+)Γ(34; 1)d(34),

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +

∫
δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7; 3)d(4567). (3.21)
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The fifth equation, closing the set, is the Dyson equation given by eq. 3.10.
It is very important to stress that, not only the Hedin equations form a set
of closed selfconsistent equation that in principle could be solved using brute
force (actually this procedure can not be applied for realistic systems); but
most importantly they lead directly to the possibility of a perturbative expan-
sion in terms of the screened Coulomb interaction W . This is very important
and physically sound, in fact a direct expansion in terms of the bare Coulomb
interaction would be unsuitable due to the strenght of this kind of interac-
tion; whereas in most solid the Coulomb interaction is usually screened via the
polarisation of the system, and the effective potential, by which the particles
interact, is much weaker.
The Hedin equation offer also the possibility to analyse the physical meaning of
the involved quantity: we have already seen how the self energy can be thought
of as the effective potential that a particle, added to the system, feels due to
the change in the charge distribution induced by its own presence. We can
see from the third equation (3.21) that the polarisation P , which represents
exactly this mechanism, is made by the propagation of particles and holes,
that are not independent due to the presence of the vertex Γ. Γ contains the
information on how the particle and hole interact with each other, and it can
be seen, looking at the last equation, that it is connected to the variation of
the induced potential during the polarisation process. The entanglement of
this set of equations reflects the selfconsistency of the response of the system.

3.3 The G0W0 approach for the self-energy

The full solution of the Hedin equations can not be found for realistic sys-
tems and what is usually performed is an iterative procedure starting from
some expression of the self-energy. If, for example, we start from Σ = 0 we
immediately find that G = G0, i.e. the non interacting Green function, and
Γ(1, 2; 3) = δ(1, 2)δ(1, 3); inserting this values in the expression of the self-
energy we get Σ(1, 2) = iG(1, 2)W (2, 1), this is the so called GW approxima-
tion [65]. Now starting from Σ = 0, in principle one should use the Hartree
Green’s function and screening in the expression of Σ, which is a very poor
approximation leading to bad wavefunctions and band structure. State of the
art calculations for quasiparticle corrections use instead the best G, best W ap-
proach [66] in which the wavefunction and energies used to build the Green’s
function and the dielectric function are the best available, namely the DFT
ones. So, in principle we want to calculate:

Σ(r, r′;ω) =
i

4π

∫ ∞

−∞
eiω′δW (r, r′;ω)G(r, r′;ω + ω′)dω′. (3.22)
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The Green’s function in terms of the DFT wavefunctions and energy looks like:

G(r, r′;ω) =
∑
n,k

φDFT
nk (r)φ∗DFT

nk (r′)

ω − εDFT
nk + iηsgn(εDFT

nk − µDFT )
. (3.23)

And the screened Coulomb interaction, given in term of the microscopic di-
electric function ε(r, r′;ω) and of the bare Coulomb interaction V (r, r′) is:

W (r, r′;ω) =

∫
dr′′ε−1(r, r′′;ω)V (r′′, r′). (3.24)

If we compare this expression with the Hedin’s equation definingW , we see that
the microscopic dielectric function is connected to the irreducible polarisability
P by the equation:

ε(r, r′;ω) = δ(r − r′)−
∫
dr′′P (r, r′′;ω)V (r′′, r′), (3.25)

if now we take the zero-th order approximation for P and exploit the 3d trans-
lational symmetry, we get for P0 = χ:

χG,G′(k, ω) =
2

Nk

∑
n1k1,n2k2

(fn1k1−fn2k2)
〈n1k1|e−i(k+G)r|n2k2〉〈n2k2|ei(k+G′)r′|n1k1〉

εn1k1 − εn2k2 − ω − iδ

(3.26)
where G and G′ are reciprocal lattice vectors, k belongs to the first Brillouin
zone, |niki〉 are Kohn-Sham states labeled by their band and wave vectors
indices and Eniki

are their corresponding energies. From eq. 3.26, we see
that only transitions between Kohn-Sham states with k vectors that differ by
k+G0 (here G0 is a generic reciprocal lattice vector) contribute to the response
function.

In terms of χG,G′(k, ω), we can get via eq. 3.25, the dielectric matrix in
reciprocal space:

εG,G′(q, ω) = δG,G′ − V (q +G)χG,G′(q, ω). (3.27)

From this, we can easily write the screened interaction in reciprocal space as:

WG,G′(q, ω) = ε−1
G,G′(q, ω)v(q +G′) (3.28)

which is connected to the real space by the Fourier transform given by:

W (r, r′;ω) =
∑

q,G,G′

ei(q+G)rWG,G′(q, ω)e−i(q+G′)r′ . (3.29)
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3.3.1 The plasmon pole approximation for the dielectric
function

Looking at the equations 3.27, 3.28 and 3.29, we can easily see that in order to
get the screened Coulomb interaction for all the frequency range, in principle
the inversion of the microscopic dielectric matrix for each frequency is needed;
of course this is a huge bottleneck. To avoid this procedure, a model of the
inverse of the dielectric function, within what is called the plasmon pole ap-
proximation is typically made, and is performed all through the calculations
presented in this thesis.
This kind of model [67], is based on the observation that, typically, the imagi-
nary part of ε−1

GG′(q, ω) is a peaked function of ω. It is then assumed that the
for each q point, ε−1

GG′(q, ω) has the form given by:

ε−1
GG′(q, ω) = δGG′ +

Ω2
GG′(q)

ω2 − ω̃2
GG′(q)

; (3.30)

the unknown quantities ΩGG′(q) and ω̃GG′(q) can be fixed by imposing the ful-
filment of some specific sum rules, like in ref. [67]; or by calculating the exact
value of ε−1

GG′(q, ω) for two chosen frequencies on the imaginary axis, typically
for ω = 0 and ω equal to some value above the plasma frequency, like in ref.
[68]. In the code [69], that we have used for the calculation presented in this
thesis, the latter procedure is implemented. We may see that, even if the plas-
mon pole approximation reduces the computational effort needed to compute
ε−1
GG′(q, ω), it still remains a formidable task because it requires the inversion

of the dielectric matrix two times for each q point, while the dielectric matrix
can easily be very large.
Typically the plasmon pole approximation is known to work very well for semi-
conductors, the reason for this can be ascribed to the fact that in the calcu-
lation of the self energy, an integral over the frequencies is required; thus, if
the model is capable to catch the average features of the true dielectric func-
tion, the calculation should remain very accurate. In addition, the plasmon
pole approximation is often a quite good approximation of the true dielectric
matrix like it has been shown in ref. [67] for the case of bulk silicon or in ref.
[70] for the case of a sodium nanocluster. Moreover the quasiparticle energies
seem to be quite insensitive to the different plasmon pole model used [71, 72].
The drawback of the plasmon pole model is that it can not be used if one is
interested in calculating the lifetimes of the quasiparticles, this is because, in
this case, a much more accurate description of the imaginary part of the self
energy is required [73, 74].
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3.3.2 Actual implementation: perturbative approach

Now, within the plasmon pole approximation, we have an expression for ε−1
GG′(q, ω);

we can therefore calculate the screened Coulomb interaction W . From eq. 3.23
we have also the Green’s function; putting all this ingredients together we can
build the self energy operator. What do we do next?
We could remember we are trying to solve the Hedin’s equation within an itera-
tive scheme; as a consequence, we should continue the iterations using the new
Green’s function and self energy in the expression of the vertex, then update
the polarisability and so on so forth until selfconsistency has been reached; this
would mean a complete solution of the Hedin’s equation which is out of reach
of computational power for any realistic system.
However, there is an other kind of self consistency which might be thought de-
sirable: the self energy depends on the Green’s function and one could desire
to obtain a Green’s function and a self energy which are consistent with each
other, while keeping the vertex equal to the identity. The issue of selfconsis-
tency within GW is still very controversial, we will devote a whole paragraph
(3.4.2) to its discussion; for the moment we want to describe the commonly ap-
plied method which relies on a ‘single shot GW’ (here named G0W0), in which
the selfenergy operator is built using the DFT eigenvalues and eigenfunctions,
and the quasiparticle energies are computed using first order correction to the
DFT energies.
In fact let’s look again at the quasiparticle equation 3.16, computed at the
quasiparticle energy εQP

nk ,

(
− ∇2

r

2
+ Vext(r) + VH(r)

)
ψQP

nk (r)) +

∫
dr′Σ(r, r′, εQP

nk )ψQP
nk (r′) = εQP

nk ψ
QP
nk (r)

and at the Kohn and Sham equation 2.20(
− ∇2

r

2
+ Vext(r) + VH(r)

)
φKS

nk + Vxc(r)φ
KS
nk = εKS

nk φ
KS
nk ,

as already mentioned the two equations look very similar. If we assume now
that ψQP

nk (r) ∼ φKS
nk

4, multiplying both equations per φKS
nk and integrating over

4The DFT wave functions are not only the best available, they are also, usually, relatively
close to the real quasiparticle wave functions, as it has been seen for the case of bulk silicon
by Hybertsen and Louie in [67] and as it has been discussed by Hedin in [75]. However
there are cases, like the (110) surface of GaAs [76], or SiH4 [77], in which the two kind
of wave function may differ more significantly. It has also been shown recently [78], that
while reaching a self consistent solution of the quasiparticle equation the wave function may
deviate from the original DFT ones. In general, [79], care should be put also in the case
when the original DFT band gap is much smaller than the GW correction (which is the case
of our surface along the JK line).
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r, we would get:

〈nk|Σ(εQP
nk )|nk〉 − 〈nk|Vxc|nk〉 = εQP

nk − εKS
nk . (3.31)

We can see that the self energy operator is computed here at the quasiparticle
energy which is unknown, so our task is still not completed and we have to
expand the selfenergy operator around the DFT energy and keep only the linear
term getting:

Σ(εQP
nk ) ∼ εKS

nk +
∂Σ(ω)

∂ω

∣∣∣∣∣
ω=εKS

nk

(εKS
nk − εQP

nk ). (3.32)

If we use eq. 3.32 in eq. 3.31, we finally obtain for the self energy corrections
to the DFT band structure:

εQP
nk − εKS

nk =
〈nk|Σ(εKS

nk )|nk〉 − 〈nk|Vxc|nk〉
1− 〈nk|∂Σ(ω)

∂ω
|ω=εKS

nk
|nk〉

. (3.33)

To summarise, following the flow chart presented in fig. 3.3, we see that the
G0W0 calculation performed during this thesis followed roughly this scheme:
an initial ground state calculation was done to get the input wavefunctions and
energies; using this wavefunction and energies, the RPA response function χ
was built, following eq. 3.26, for two frequencies for each q vector; the micro-
scopic dielectric matrix was then computed and inverted for the two frequencies
and then, via the plasmon pole approximation, the inverse macroscopic dielec-
tric matrix was obtained for all the frequency range; finally the expectation
value of the selfenergy calculated at the DFT energies and its first derivative
was computed; all these pieces are then put together to get the quasiparticle
correction.
The calculation of the selfenergy expectation value is usually performed divid-
ing the self energy into two parts, the exchange selfenergy Σx, which arises
from the contribution of the δ part of the dielectric matrix, and the correlation
self-energy Σc that comes from the other term of the dielectric matrix.

〈nk|Σ|nk〉 = 〈nk|Σx|nk〉+ 〈nk|Σc|nk〉 (3.34)

where

〈Σx〉 = − 4π

NΩ

∑
Gk′n′

1

|q +G|2
〈nk|ei(q+G)r|n′k′〉×

〈n′k′|e−i(q+G)r|nk〉fn′k′ (3.35)

and

〈Σc〉 = − 2π

NΩ

∑
q

∑
GG′

∑
n′k′

1

|q +G||q +G′|
〈nk|ei(q+G)r|n′k′〉〈n′k′|e−i(q+G′)r|nk〉×
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Figure 3.3: Schematic flow chart of the steps needed to perform a G0W0 calculation.
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Figure 3.4: DFT (circles) and GW (squares) band gap calculation for different
surfaces, in units of experimental gap. In most of the case the DFT underestimation
of the gap is removed by the GW corrections which bring the theoretical value much
closer to the experimental one. From ref [80].

[ Ω2
GG′(q)

ω̃GG′(q)(ω − ω̃GG′(q)− εKS
n′k′)

− 2fn′k′Ω
2
GG′(q)

(ω − εKS
n′k′)

2 − ω̃GG′(q)2

]
. (3.36)

Where fn′k′ is the occupancy of the state (n′k′) It is very important to notice
that the exchange selfenergy is energy independent and moreover it is con-
structed through a summation over occupied states. Its calculation is hence
much less expensive than the calculation of the correlation part of the self en-
ergy, which instead involves a sum over both occupied and empty states. In
fact, the convergency on the number of bands is a real bottleneck for GW cal-
culations, and sometimes, due to the high number of states needed, it makes
even the input ground state calculation really heavy. This and similar G0W0

schemes are the state of the art method for computing band structures and
in most cases leads to a band gap in excellent agreement with experiments,
solving generally the DFT band gap problem. For an example of the success
of this method see fig. 3.4.
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3.3.3 G0W0 for diamond bulk

Also in diamond bulk, DFT shows the typical underestimation of the electronic
gap. We have performed G0W0 calculation using as input wavefunctions and
energies the ones coming out from a DFT calculation employing a GGA ex-
change correlation functional, 45 Rydberg cutoff, at the theoretical equilibrium
lattice constant of 5.7eV. A 19 k point mesh was used in the GW calculations,
it included high symmetry points of the Brillouin zone; the wavefunctions were
obtained in a non-selfconsistent DFT calculation using a well converged den-
sity calculated on a 10 Chadi-Cohen k point mesh.
Typically GW corrections converge at lower cutoff energies with respect to the
DFT calculation, meaning that a minor number of G vectors is needed. In
all our calculation we have used the same number of G vectors for the wave-
functions and for the dielectric matrix. The results of convergency test on the
number of G vectors, the number of empty states and the position of the sec-
ond frequency chosen for the plasmon pole approximation fit, for a generic k
point, are shown on table 3.1.

G vectors Empty Bands ω2 (Hartree) εGW
n=5(k)− εGW

n=4(k) (eV)
229 100 0.5 16.04
229 100 0.7 16.07
229 120 0.7 16.07
307 100 0.7 16.04

Table 3.1: In this table we list the results of the convergency test performed for
the k point k = (−0.375, 0.250, 0.000) (reciprocal lattice units), with respect to the
number of G vectors, the number of empty states and the position of the second
frequency ω2 chosen for the plasmon pole approximation fit.

3.3.4 G0W0 for the (111) surface of diamond

We have seen in section 2.5 that the DFT band structure associated to the equi-
librium geometry of the (111) surface of diamond is semimetallic in contrast
with experiments and common wisdom. The absence of the gap may be related
to the incapability of the ground state theory to catch some inequivalence on
the atoms belonging to the surface chains (see fig. 2.1); however, this seems
unlikely because dimerisation is excluded by experiments [22], only a strong
unphysical buckling could open the gap, and, moreover, the surface seems not
to like an antiferromagnetic ordering of the spins along the chain. Nevertheless,
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there is also the possibility that the absence of the gap, at the DFT level, is
just due to its underestimation, which, as we have been discussing, is typical
of Kohn-Sham band structure. This and the next sections are devoted to the
analysis of this possibility: wether or not the absence if the gap can be related
to quasiparticle effects.

As a first thing, we have calculated quasiparticle corrections to the DFT
energies, by evaluating the diagonal elements of (Σ − V DFT

xc ) between DFT
states, using the G0W0 method shown in the previous section.

We have used 1995 G vectors for both the dielectric matrix and the elec-
tronic wavefunction, 800 empty bands in the correlation part of the self energy,
and we have chosen a plasmon pole frequency of 0.7 Hartree.
Convergency test, on the number of k points employed, were performed on a
thin slab made of 6 layers of Carbon atoms with one of the surface saturated
by hydrogen. We have tested a 5 and a 13 k point mesh for the irreducible
Brillouin zone. Results for the gaps on the high symmetry points of the Bril-
louin zone are listed in tab. 3.2

k point DFT (5k) DFT (13k) G0W0 (5k) G0W0 (13k)
J 0.0 0.0 0.0 0.0
K 0.0 0.1 0.1 0.0
Γ 3.2 3.2 4.1 4.2
J’ 5.0 5.0 6.3 6.2

Table 3.2: Convergency test for the sampling of the Brillouin zone: the G0W0 gaps
for the high symmetry points are reported in comparison with their corresponding
DFT values. All energies are expressed in eV.

The results presented in tab. 3.2 show that, by using the 13 k point mesh,
we should be converged within 0.1 eV. We have then carried out the same
calculation on a slab of 12 Carbon atomic layer, without any Hydrogen. The
results are presented in tab. 3.3. Comparing tab. 3.2 and 3.3, the main
difference between the two slabs can be found at Γ. This is explained knowing
that, close to Γ, states associated to hydrogen appear within the gap (of course
they do not appear in the symmetric hydrogen free slab).

In fig. 3.5 the results on the convergency with respect to the number of
G vectors in the description of the wavefunctions is presented, for the case
of the 12 layers slab. This can be done by testing the value of the exchange
self energy varying the number of G vectors. In fact, the computation of Σx,
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k point DFT G0W0

J 0.2 0.2
K 0.2 0.2
Γ 4.5 6.1
J’ 5.0 6.3

Table 3.3: Results for the G0W0 gaps for the high symmetry points are reported in
comparison with the DFT value, for the 12 layers slab. We can see already that the
G0W0 method still leads to a semimetallic surface. All energies are expressed in eV.
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Figure 3.5: Expectation value of the exchange part of the self energy for the state
belonging to the 47th band of the k point (.125000, .484375, .000000) of a 2×16 mesh.
varying the number of the G vectors used in the description of the wavefunctions.
1995, the number of G vectors used for all the GW calculations presented in this
thesis, seems to provide an already well converged value of Σx.

which involves a summation on occupied states only, is much less expensive,
and calculations can be carried out also for many G vectors. As it can be seen
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from fig. 3.5, 1995 is already a good number of G vectors for the degree of
convergency that we aim to.
To see the effect of the G0W0 on the surface band structure, we present in
fig. 3.6 a zoom of the band structure in the area of interest, i.e. along the JK
line. As it is clear from the figure, the G0W0 corrections do not change the
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Figure 3.6: Surface states within the DFT-GGA (dashed lines) and within the G0W0

scheme (solid lines), along the JK direction.

situation: the upward dispersion from J to K of the nearly degenerate bands,
which caused the metalicity of the surface, is still present. This is due to the
fact that, at the DFT level, the two surface states at J are lower in energy than
the two surface states at K. As a consequence of such energy band ordering,
the states at J result occupied and those at K empty. GW corrections, which
strongly depend on the occupancy of the states, can not open a gap in this
case since the starting DFT band structure has a wrong occupation of the
bands. Moreover, even with the wrong occupation, if the orbitals of the upper
and lower bands were different one from the other (and this could happen for
example in the presence of some distortion like buckling) then the exchange
and correlation effects would be different for one orbital with respect to the
other, and by chance a gap could open. Instead, at is shown in fig. 3.7 for the
high symmetry point K, the orbitals of the upper and lower bands are almost
identical: they both exhibit a dangling bond character, the only difference is
on which atom on the chain they are localised around; there is no way, apart
from having a different occupation, by which exchange and correlation effects
should distinguish between them. The same thing happens all along the JK
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line. To summarise, for this system, the usual G0W0 scheme does not work,

Figure 3.7: Top view of |φ(r)|2 for the upper (panel a) and lower (panel b) surface
bands at K presented in figure 3.6. We can see that the two orbitals are almost
indistinguishable apart from the fact that one orbital is localised on one atom of the
chain and the other orbital is localised on the other atoms. The charge density is
intergrated for each state under consideration for the upper half of the symmetric
slab.

this is due to the specific details of the surface; in fact the dispersion along the
JK line does not allow a differentiation of the upper and lower surface bands
with respect to the occupation so that exchange and correlation effects can not
significantly alter the gap between the two bands along the JK line. We have
to look for more refined schemes.

Slater exchange as a different starting point

We have just seen how, a possible way to make exchange and correlation effect
act differently for the upper and lower surface bands is to have a different
occupation for the two bands. We have tested the possibility of modifying the

J K Γ J’
DFT (GGA) 0.02 0.03 3.15 4.95
DFT(Slater) 0.02 0.07 4.92 5.65

Table 3.4: Gaps between surface states at the high symmetry k points, computed
using GGA and Slater approximation to the exchange and correlation potential. All
energies are expressed in eV.

exchange correlation potential from the beginning (during the DFT calculation)
in order to slightly open the gap and then use the G0W0 scheme. We have gone
through this possibility by using a Slater exchange potential, but, as it can be
seen from fig. 3.8, the surface stays semimetallic, thus not providing a better
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Figure 3.8: Surface bands along the JK line obtained using Slater exchange and
correlation potential. The surface stays semimetallic.

starting point for the GW computation. In tab. 3.4, we see that comparing to
the GGA results, the gaps in Γ and K’ are increased, whereas in J and K they
are still almost null. Still, exchange can not see any difference between the two
bands.

3.4 Beyond G0W0

3.4.1 Non perturbative GW

As we have already discussed, generally, the Kohn-Sham wavefunctions are
thought to be an excellent approximation to the true quasiparticle wavefunc-
tion. If this is true, the selfenergy operator should be almost diagonal in the
basis of Kohn-Sham orbitals and the off diagonal elements Σ(nk,n′k′) should be
very small when compared to the difference of the Kohn-Sham energies of the
states among which they are calculated εKS

nk − εKS
n′k′ . In this case, the usual
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G0W0 approach, that takes in consideration only the diagonal part of the self
energy, works typically very well. There are some cases however in which there
is the need of changing also the wavefunctions; a possible way to go beyond
the G0W0 approach trying to include the effects of the off diagonal terms of Σ,
consist in building the whole selfenergy matrix, and then diagonalise it. This
approach is called non perturbative GW and is described in ref. [76].

Results for the (111) surface of diamond

In the specific case of our surface, the condition |Σ(nk,n′k′)| � |εKS
nk − εKS

n′k′|
might not hold along the JK line, because the DFT gap is vanishing. A test
calculation within the non-perturbative GW scheme described in [76], including
the off diagonal elements of Σ, did not give any improvement to the band gap,
since the off diagonal elements are very small (two order of magnitude smaller
than the diagonal ones). This is a consequence of the different symmetry of
the Bloch sums at J built with the dangling bonds of the two surface atoms
in the (2×1) cell: one is even under reflection with respect to the (11̄0) plane,
while the other one is odd (see fig 2.1). Hence they can not be mixed by the
Hamiltonian. In a two-dimensional model, this is true all along the JK line;
hence no gap opening can be generated by a mixing of DFT wavefunctions of
dangling-bond-like surface states.
In other words, due to symmetry reason, along the JK line the self energy
is already almost perfectly diagonal, and the Kohn-Sham wavefunctions are
almost identical to the quasiparticle ones. This is very important to hold in
mind, especially when we will be computing optical properties; in fact the
Kohn-Sham wavefunctions are of a really good quality at the JK line but this
might be not true anymore for k points that are very close to the JK line (thus
having a very small gap) but not exactly on it.

3.4.2 Iterative GW

In the presence of a correct band ordering, and occupancy of the states already
at the DFT-GGA level, typically G0W0 works really well. As we have seen, in
the case of degeneracy of DFT eigenvalues, care should be put in considering
also the off diagonal elements of the self energy, in order to remove the degen-
eracy by diagonalising the self energy operator within the degenerate space.
In our case this is not working for symmetry reason. Here we have, within
DFT-GGA or LDA, a wrong band ordering with respect to the energy; and
the states’ occupancy of the DFT band structure will not be the same as the
one in the GW band structure once the degeneracy has been removed; hence
we have to search for a new procedure. We have carried out GW calculations

64



Electronic properties

using Kohn-Sham eigenvalues and eigenfunctions starting from an artificial
electronic configuration in which the states with the correct symmetry were
occupied. This approach finds a justification only if a self-consistent scheme
is subsequently applied, and if the converged result does not depend on the
starting point. In this spirit, we have performed a GW calculation updating
the quasiparticle energies till self-consistency was obtained. While reaching
self-consistency, we could choose to update the eigenvalues only in the Green
function part of Σ, or in both the Green function and the screening part, which,
of course, is a much more time consuming procedure.

Description of the scheme implemented

The iterative scheme followed roughly this steps:

1. An input configuration, i.e. a band structure and the corresponding
wavefunctions, is provided

2. The GW corrections are calculated for a certain number of bands for each
k points. We chose to evaluate the GW corrections for 10 bands above
the Fermi level and 10 bands below it.

3. The GW corrections to the remaining states are evaluate through a linear
extrapolation

4. The expression of the selfenergy is updated with the new energies in the
Green’s function and, eventually, in the screened Coulomb interaction.

5. Steps 2 to 5 are repeated until selfconsistency has been reach within a
certain threshold.

In each iteration we have to find the new quasiparticle energies with respect to
the old one; considering, like in the case of G0W0 that during this procedure
the wavefunctions stay the same, we get:

EN+1
QP ∼ EN

QP + (〈ΣN+1(EN+1
QP )〉 − 〈ΣN(EN

QP )〉); (3.37)

again we need the self energy calculated at the new quasiparticle energy. In
the same spirit as in the G0W0 case, we linearise its value around the old
quasiparticle energy:

ΣN+1(EN+1
QP ) ∼ ΣN+1(EN

QP ) +
∂ΣN+1

∂E

∣∣∣∣∣
E=EN

QP

(EN+1
QP − EN

QP ). (3.38)
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Taking into account that in EN
QP there is the contribution of the self energy

calculated linearising around the N − 1 value and so on, we obtain that

EN+1
QP ∼ EN

QP +
E0

DFT − EN
QP − 〈Vxc〉+ 〈ΣN+1(EN

QP )〉

〈1− ∂ΣN+1

∂E

∣∣∣
E=EN

QP

〉
. (3.39)

This formula has been used throughout all the calculations that will be illus-
trated below.

Test on a 5 k point grid

Due to the smaller computational cost, we have performed most of the tests for
the thin hydrogen saturated slab with 5 k points. First of all, we simply tested
the procedure to check if there was any chance that in a reasonable number of
iterations we could reach self consistency. In fact we have to keep in mind that
each GW calculation is very heavy, and for each iteration many GW calcula-
tions are required, since we wish to compute the corrections for as many bands
as possible (actually we did it for 20 bands). We started from the artificial
configuration in which the lower surface band was occupied (see fig. 3.6), we
computed in this way the self energy using the old screening W0 (and this is
what we called G1W0), or we completely recalculated the self energy (G1W1),
and went on until selfconsistency was reached, within 0.1 eV. As we can see

K points DFT G0W0 G1W0 G1W1 G2W2

J 0.02 0.03 1.07 0.57 0.62
K 0.03 0.06 1.10 0.58 0.63

Table 3.5: Results for the gaps at J and K within the iterative GW procedure for
the 5 k-point grid. All energies are expressed in eV.

from the table 3.5, convergency is achieved within few iterations. Apparently
the effect of updating the screening is very strong, but as we will show in the
next section, this is a spurious effect of the k point sampling, in fact for the
13 k point mesh the update of the screening changes much more slightly the
results.

We have also performed a test GW calculation starting from an arbitrary
large (1.6 eV) and small (0.6 eV) gap between J and K. Already at the first step
of the computation of the quasiparticle energies, we found for the gap a value
that stayed within 0.1 eV from the converged one for the updated and the non
updated screening procedure, making sure in this way that the final converged
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value was independent of the starting point. The results are reported in Tab.
3.6.

Fixed W = W0 Updated W
EG1W0

g EG2W2
g

Ein
g =0.6 Ein

g =1.6 Ein
g = EDFT

g Eg =1.6 Ein
g = EDFT

g

J 1.08 1.12 1.07 0.72 0.62
K 1.09 1.14 1.10 0.78 0.63

Table 3.6: Calculated gaps for a test calculation starting from an arbitrary small
and big gap, compared with the results of the iterative calculation starting from
the DFT energies and artificial occupation of the gaps. We can see that both the
updated and the non updated screening calculations lead to gap values very close to
the converged ones.

Final results

Taking this result into account, we performed a much more elaborated calcu-
lation using 13 ~k points mesh in the IBZ for the 12 layers slab. The results are
listed in Tab.(3.7): a minimum gap of about 1 eV opens between the surface
states at J. In fig. 3.9 is the final band structure. Both procedures (updating

Gap J K Γ J’
DFT 0.16 0.15 4.52 5.03
G0W0 0.19 0.18 6.07 6.30
G1W0 1.06 1.06 5.82 6.27
G1W1 0.93 0.95 5.71 6.17

Table 3.7: The gaps between surface states within DFT and for each GW self-
consistency cycle. The subscripts of the GW gaps refer to the iteration number:
G0W0, G1W0, G1W1 values of the gap are related, respectively to the GW calculation
obtained directly using the DFT eigenvalues, updating the eigenvalues only in G and
updating the eigenvalues both in G and in W . All energies are expressed in eV.

only G, or updating G and W) lead to a semiconducting surface, and a good
agreement with the available photoemission experiments is found. We have
hence found another piece of the the puzzle concerning the electronic structure
of the diamond (111)(2×1) surface; its insulating character might not be a
consequence of asymmetric geometrical changes, rather of many body effects.
Using this self-consistent quasiparticle approach we have found a surface-state
gap of about 1 eV. As we have seen, the procedure should lead to a value
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independent from the starting configuration, being it either an artificial ad hoc
occupied configuration, or a configuration in which the conduction band was
shifted rigidly by a small or big amount. Unluckily there are no inverse pho-
toemission experiments to directly compare to; but now optical experiments
are being carried out [81]; this experiments, even if not accessing directly to
the electronic gap, yield information about transitions between the occupied
and unoccupied surface states, as we will see in the next chapter.
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Figure 3.9: Electronic band structure of the C(111)2×1 surface within the self-
consistent GW scheme. A gap of about 1 eV opens along the JK direction. Crosses:
experimental results from [18, 22].

Selfconsistency and GW

We have seen in the previous section that an iterative procedure is needed in
the case of the (111) surface of diamond in order to get some agreement with
the experiments. As we have already mentioned, the issue of self-consistency
within GW is still very controversial: there are many possible levels of self
consistency (i.e. updating also the wavefunctions, including the quasiparticle
renormalisation factor or not, etc.) and the different methods yield different
results depending also on the implementation of an all-electron or a pseu-
dopotential scheme [82, 83, 84, 85, 86, 87, 88]. The simple update of the
quasiparticle energies has already been implemented in previous calculations
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by other groups. In systems with semimetallic band structures at LDA level
[89, 90], and in systems for which G0W0 does not give good agreement with
experiments [91, 92], the update of the quasiparticle energies yields improved
results. This latter approach has been also substantiated by a recent study of
vertex corrections within self consistent GW: vertex corrections in W and in
the self energy cancel each other to a good extent, while the energy update
yields relevant changes of quasiparticle energies [93]. Also in our calculations,
carried out according to this procedure, the self consistent scheme leads to a
better agreement with experiments.

3.4.3 GWΓ

In this section we will focus on the possibility of going beyond the G0W0 ap-
proach, considering also some part of the vertex corrections within what is
called the GWΓ approximation [66]. As we will see, this approximation cor-
rects the the quasiparticle energies, but the electronic gaps, which are differ-
ences of quasiparticle energies will not be significantly affected by this kind of
corrections; there are however, other quantities, like the electron affinity which
do depend on this absolute value. In their case it might be important to in-
clude this kind of vertex corrections.
In the next paragraph we will first analyse what is the electron affinity, we will
try to understand how we can compute it, we will then look a little bit more
in detail on the GWΓ approximation, and finally we will give some results
concerning the (111) surface of diamond.

The electron affinity

The electron affinity χ of a system is defined as the amount of energy needed
to get an electron from the conduction band out into the vacuum, it is thus the
difference between the vacuum level Evac and the conduction band minimum
ECBM .

χ = Evac − ECBM . (3.40)

Written like this the electron affinity of a material seems a true bulk quantity
which should not depend on surface orientation. However what is actually
found is that χ depends on the orientation of the surface from which the elec-
tron is extracted. In fact, besides band bending, the vacuum level which can be
experimentally measured is actually not the vacuum level at infinity Evac(∞),
defined as the energy of an electron at rest at an infinite distance from the
sample which is of course surface-invariant [94]; but what is been measured
is the vacuum level at the surface Evac(S), defined as the energy of an elec-
tron at rest close to the surface, i.e. (following ref. [94]) at a distance larger
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than the interatomic distances but smaller than the size of the sample. This
quantity is strongly dependent on the specificity of the surface geometry and
on the presence of different adsorbates. In other words what we can access
is not the energy difference between the conduction band minimum and the
vacuum level but the energy barrier that the electron must overcome in order
to get into the vacuum. The existence of this energy barrier can be explained
in terms of the presence of the interface alone: in fact, in an ideally truncated
bulk, some of the surface electron will spill out into the vacuum creating a
negative charge region just outside the solid, at the same time the region just
inside is left with a net positive charge. The total effect is thus the presence of
an electric dipole at a microscopic level which gives rise to a potential which
prevents other electrons to leave the solid [95]. Of course reconstructions and
adsorbates strongly influence this microscopic dipole changing the potential
barrier and thus the electron affinity. In particular the changes in χ due to the
presence of adsorbates can be addressed very intuitively to differences in the
electronegativity of the adsorbate’s atoms with respect to the substrate’s ones.
The ability of the adsorbate atom to attract more (less) the electron, induces
a polarisation of the bond, which creates a negative (positive) charged region
at the surface raising (lowering) χ. In this sense we can easily understand that
the presence of hydrogen lowers the energy barrier at the surface of diamond,
and of course oxygen behaves in the exact opposite way. It is very important
to notice that the electron affinity of a system is not affected by the presence of
band bending; band bending at a surface is in fact generated by the presence of
the mesoscopic surface charge region and affects in the same way both Evac(s)
and ECBM [94, 95].

Supercell, slab calculations and alignment with bulk

In order to compute the value of the electron affinity, we see from eq. (3.40),
that we need to know both the energy level of the conduction band minimum
and the energy level of the vacuum with respect to a generic common reference
value. However ECBM is obtained from a bulk calculation in which, exploiting
also the periodicity of the plane wave basis set, the primitive cell is repeated an
infinite time in all directions. In this calculation the vacuum level is ill defined
since there is actually no vacuum. The level of the conduction band minimum
can anyway be computed with respect to the bottom of the macroscopically
averaged [96, 97] total electrostatic potential. To include the presence of a
surface we use the supercell approach in which the surface is rapresented by
a slab of finite thickness; also in this case the periodicity of the basis set is
exploited and the interaction between the replicas of the slab is avoided if
enough vacuum is included in the geometry. Now within the slab geometry, if
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the slab is thick enough and the vacuum is deep enough, we are able to know
the value of the vacuum level with respect to the bottom of the macroscopically
averaged total electrostatic potential, which we finally compare with ECBM to
get χ.

Vertex correction to Σ

If we compare eq. (3.16) and (2.20) we see that using DFT wavefunctions
and energies actually means starting from the expression of the self-energy
Σ(1, 2) = δ(1, 2)Vxc(1). It has been shown [66] that starting from this local
expression for the self-energy, the vertex function is a two-point function and
the self-energy itself in the next iteration has still a “GW” form but with an
effective interaction W̃ :

Σ(1, 2) = iG(1, 2)W̃ (3.41)

where

W̃ = v
[
1− χ0(v +Kxc)

]−1
(3.42)

and

Kxc(1, 2) =
δVxc(1)

δn(2)
. (3.43)

It has been shown [66] that inserting in this way vertex corrections, i.e. both in
the screening and in the self-energy, leads to some sort of cancellations and the
effects on the band gap are negligible. However in the same paper it has been
shown that the absolute values of the energies change, and this shift, while
not affecting the band gaps could strongly influence the electron affinity, which
depends just on one quasiparticle energy at the time.

Electron affinity calculations for diamond surfaces

In all the calculations we have carried out the following scheme: the GW and
GWΓ band gaps (EGW

GAP ,EGWΓ
GAP ) and the correction for the energy of the valence

band maximum (∆EGW
V BM ,∆EGWΓ

V BM) for the bulk were computed; at this point,
after the Car-Parrinello optimisation of the slab geometry was performed, the
vacuum level Evac of the slab was computed. Evac was aligned with the energy
levels of the bulk calculation by computing the difference, ∆Eall, between the
macroscopically averaged total electrostatic potential of the bulk and the one
of the bulk region in the slab calculation, and by shifting Evac of this amount.
The electron affinity χ was finally calculated as:

χGW = Evac + ∆Eall − (EV BM + ∆EGW
V BM + EGW

GAP ). (3.44)
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Γ X L EGAP Top Bottom
Valence (Γ) Conduction (Γ)

LDA 5.65 11.27 11,39 4.26 4.32 9.97
GW 7.43 12.96 13.42 5.7 4.32-0.64 9.97+1.14
GWΓ 7.39 13.0 13.42 5.7 4.32-0.12 9.97+1.62

Table 3.8: DFT, GW and GWΓ gaps of bulk diamond at high symmetry points,
and values of the top of the valence and bottom of the conduction bands at Γ point.
All energies are expressed in eV.

In this case we have used for the exchange correlation potential the Local
Density Approximation (LDA) in the parametrisation of Perdew and Zunger
[40].

GW and GWΓ on diamond bulk

The ground state density was computed using a 10 Chadi-Cohen [46] k-point
mesh in the irreducible Brillouin zone. With this density, the LDA energies
for the high symmetry points Γ, X and L were calculated. GW and GWΓ
corrections to LDA energies were computed within the plasmon pole model
[68] for the screened Coulomb interaction using 331 G-vectors and 120 empty
bands. The results for the electronic gaps are shown in Tab. 3.8, where the
absolute shifts of the bands at Γ (the valence band maximum) are also shown.
As we can see, the GWΓ and GW gaps are practically the same, whereas the
absolute shift of the valence and conduction bands at Γ point is quite different.
As we will see this difference leads to a significative effect for the electron
affinity.

C (111) and (100) surfaces

The Car-Parrinello optimisation was performed using a 16 layer slab, plus 6
layers of vacuum, with a cutoff energy of 40 Ryd, in the case of the (111)
surface; for the (100), instead, we relaxed the geometry for a slab formed by
12 layers of carbon and 18 layers of vacuum, with a cutoff of 40 Ryd and a 16
k-point mesh. After aligning the slab calculation to the bulk energies, following

χDFT χGW χGWΓ Exp
C(111)2× 1 1.6 0.8 0.3 0.38 [98]
C(001)2× 1 1.94 1.14 0.62 0.5 [99]

Table 3.9: Electron affinity for the diamond (111) and (100) surface computed at
the DFT, GW and GWΓ level. All energies are in eV.

72



Electronic properties

(3.44), we computed the electron affinity. The results are summarised in Tab.
3.9. As we can see, in both cases, the inclusion of the vertex correction seems
to be imporatnt to gain a good agreement with experiments.
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Optical properties

In this chapter we will go through the theory that lies behind the calculations of the
optical properties of diamond (111) presented in this thesis. This formalism develops
within the framework of many body perturbation theory, which allows the computation
of the microscopic dielectric function at different levels of sophistication. These
different levels are connected to the possibility of including in the spectra different
physical effects such as local fields effect, which take into account the inhomogeneity of
the system, and the electron hole interaction which takes into account the correlation
of the electrons and the holes present in a polarised medium. First, we will try to get
an idea about the ingredients needed to describe the neutral excitations in solids. We
will then see how the macroscopic dielectric function, which is the quantity directly
involved in the experiments, can be connected to the microscopic dielectric function
that comes out from the calculations. Then, within an iteration scheme of Hedin’s
equations, the Bethe Salpeter equation for a generalised four-point polarisability will
be derived, and we will see how the Bethe Salpeter equation can be cast into a two
body Hamiltonian problem. We will then see how it is typically solved in practice,
and apply the method for the computation of a diamond bulk absorption spectra.
Then, we will look at Reflectance Anisotropy Spectroscopy (RAS) which is an optical
spectroscopy sensitive to surfaces. We will see that the RAS spectra are connected
to the slab polarisability α and we will see how α can be computed. We will finally
compute the RAS spectra for diamond (111); we will see how the transitions between
surface bands give strong signal at low energies. This signals, if detected, could give
another proof of the existence of a finite gap between surface state and, moreover,
give an indirect information about its magnitude.
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4.1 Neutral excitations in solids

In order to describe optical or electron energy loss (EEL) spectra, one has to
take into account excited states of a completely different nature with respect
to the ones involved in photoemission spectroscopy. In the latter the final state
of the system is charged since one electron has been removed or added to it; in
the first, instead, the system, exchanging energy with the probe, is left in what
is called a neutral excited state. Excitons and plasmons are examples of neu-
tral excited states that are mostly detected by optical and EEL spectroscopy
respectively; in a very schematic way excitons can be thought as bounded
electron-hole states, while plasmons can be seen as coherent oscillations of
electronic charge [100]. The structures associated with excitons are usually
located in the low energy part of the spectra, while plasmons’ structures are
located at higher energies. The main news about this kind of excitations is that
the excited electrons stay in the solid, and one might imagine an absorption
experiment as a sequence of a direct and an inverse photoemission experiment.
If that was the case, one could think that in order to get a good absorption
spectra what is needed is actually ‘just’ a very good band structure. In terms
of calculations this would mean that an accurate GW calculation, i.e. the so-
lution of an effective one body problem, would do the main job in obtaining a
good optical spectra. Indeed this is not the case, and this can be easily under-
stood noticing, for example, that the conduction band levels represent addition
energies, meaning the energy required to add an electron to a N particle state.
Instead, in the case of the absorption, thought as a sequence of two photoemis-
sion experiments, the electron would be added to a N-1 particle state, and it is
obvious to think that the addition energies in this case would be different. So,
one might think that, even if a single GW calculation is not enough, maybe two
GW calculations could do the job: one for the N and one for the N-1 particle
system. However, this is still not the case because, especially in solids, the fact
that the hole is formed at the same time that the electron is excited, in other
words the correlation between the electron-hole pair, are effects that can not
be neglected. In order to take the electron-hole correlation into account, one
has to consider the presence of the hole and the electron simultaneously; it is
clear, then, that, at least within the Green’s function formalism, any effective
single particle problem could not describe this phenomena accurately 1, and
that one has to resort to an effective two body problem. Indeed this is the case:
we will see that the solution of the Bethe-Salpeter equation from which very

1Actually, optical properties can also be calculated exploiting an effective single particle
formalism within the Time Dependent Density Functional Theory (TDDFT) [58, 101] which
is a generalisation of DFT to time dependent external potentials. Within TDDFT the polar-
isability of the system χ can be expressed in terms of the independent particle polarisability
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accurate optical spectra can be obtained, can be actually cast into an effective
two body Hamiltonian problem.

4.2 Microscopic and macroscopic dielectric func-

tions

In this section we will try to understand the link between the macroscopic
quantities involved in experiments and the microscopic ones that come out
from ab-initio calculations. We will see that care must be put into the av-
eraging process and that not all the macroscopic quantities are just simply
connected to their microscopic counterparts by a macroscopic average. The
most relevant example of this fact is given by the macroscopic dielectric func-
tion itself.
The section is organised as follows: first we will just review some basic relations
relevant in the macroscopic world connecting the absorption of an electroma-
gentic field in a medium and its macroscopic dielectric function. Then we
will turn to the microscopic world and see how the density density response
function is connected to the reducible polarisability and to the microscopic
dielectric function. We will then put things together and get the relation be-
tween the microscopic and macroscopic worlds. At last we will see that the
macroscopic dielectric function can be cast in terms of a modified reducible
polarisability in a form suitable to treat the local fields effects and the electron
hole interaction on the same footing.

χ0 through a Dyson like equation:

χ(r, r′;ω) = χ0(r, r′;ω) +
∫ ∫

dr′′dr′′′
[
χ0(r, r′′;ω)

(
v(r′′, r′′′) + fxc(r′′, r′′′)

)
χ(r′′′, r′;ω)

]
where fxc is called the exchange-correlation kernel, and it is the functional derivative of the
exchange correlation time dependent potential with respect to the time dependent density,
namely:

fxc(r′, r′) =
δVxc([n], r, t)

δn(r′, t′)
.

. Unfortunately the natural generalisation of LDA to time dependent problems, namely
the adiabatic local density approximation (ADLDA) for the kernel, does not yield accurate
spectra in the case of extended systems. More complicated kernels, whose expression is
derived by a direct comparison with the MBPT formalism, are nowdays available [102, 103].
In the case of MBPT-derived kernel the quality of the spectra is excellent also for extended
systems; however the actual implementation are computationally as heavy as a full MBPT
calculation.
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4.2.1 Macroscopic electrodynamics

Within classical electrodynamics in CGS units, the electromagnetic field in the
presence of a dielectric medium is given by the Maxwell equations [104]:

∇∧H =
1

c

∂D

∂t
+

4π

c
jext; ∇∧ E = −1

c

∂B

∂t

∇D = 4πρext; ∇B = 0 (4.1)

here E and H are the total electric and magnetic field, D is the electric dis-
placement, B is the magnetic induction, and ρext and jext are the external
charge density and current. It is very important to notice that this equation
refers to quantity which are averaged within volumes that are ‘physically in-
finitesimal’ [104] but still contain many atoms and lattice sites.
Up to know this equations are completely general and apparentely no specific
properties of the material under consideration show up. The peculiarity of each
material comes out when one considers the link between the various quantity
present in eqns. 4.1: the total electric field E in a dielectric will be different
from the applied external field D, and this difference is due to the specific ca-
pability of the material to polarise. As a matter of fact, D = E+4πP , where P
is the polarisation of the system. Neglecting non linear effects, the polarisation
is related to the electric field through the electric susceptibility tensor χij:

Pi(r, t) =

∫
dr′dt′χij(r, r

′; t− t′)Ej(r
′, t′) =

∫
dr′dt′χij(r − r′; t− t′)Ej(r

′, t′).

(4.2)
The second equation holds since on the macroscopic scale the system is homo-
geneous. In Fourier space eq. 4.2 becomes:

Pi(q, ω) = χij(q, ω)Ej(q, ω). (4.3)

The dielectric tensor ε, which connects the electric displacement to the electric
field, namely in Fourier space D = εE, is then related to the electric suscepti-
bility tensor by:

εij(q, ω) = δij + 4πχij(q, ω). (4.4)

For the frequency range we are interested, the wavelength of the light is much
bigger than the typical lattice scale, and one is actually interested in knowing
only εij(0, ω) which we will more briefly call ε(ω) 2. In other words, for this
range of frequency, the wavelengths of the field are such that in eq. 4.2, the
electric field can be considered constant in the range in which the electric

2For cubic systems, moreover, the tensor εij is diagonal and there actually there is only
one independent component, i.e. εi,i = εj,j = ε; i, j = x, y, z
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susceptibility is different from zero; so that E can be taken out of the integral.
Eq. 4.2 then becomes:

Pi(r, t) =

∫
dt′(

∫
dr′χij(r−r′, t− t′))Ej(r, t

′) =

∫
dt′χij(q = 0, t− t′)Ej(r, t

′).

We have to note that the electronic characteristic frequencies are within the
frequency range of our interest, and, in fact, we can not neglect the frequency
dependency of the dielectric tensor.
The macroscopic optical properties of a material can also be expressed in terms
of a complex refractive index ñ = n+ iκ. In terms of ñ the propagation of the
electric field in the medium in the absence of external sources is given by:

E(x, t) = E0e
i ω

c
xñe−iωt = E0e

i ω
c
nxe−

ω
c
κxe−iωt. (4.5)

The complex refractive index is connected to the dielectric function by ñ =
n+ iκ =

√
ε; which give the real and imaginary part of the dielectric function

in terms of the refractive index n and of the extinction coefficients κ:

ε1 = n2 − κ2

ε2 = 2nκ. (4.6)

From eq. 4.5 we can see that, when light travels from the point x to the point
x′ in a medium of complex refractive index ñ, its intensity is reduced following:

I(x′) = I(x)e−
2ω
c

κ(x′−x) = I(x)e−α(x′−x). (4.7)

This relation defines the absorption coefficient α as:

α =
2ω

c
κ =

ωε2
nc

(4.8)

from which we see that the imaginary part of the dielectric function is linearly
related to the absorption coefficient.
Experimentally the optical functions are measured by different techniques, in
relation to the interesting frequency range and to the type of materials: ab-
sorption experiments give a direct access to the absorption coefficients, but
since one has to measure the intensity of the light transmitted through the
sample, which decreases exponentially with the sample thickness, thinner and
thinner sample would be required. Another possibility is to perform reflection
measurements, since the reflectance of the sample is related to the complex
refractive index by the Fresnel formulae [105]. The drawback of this tech-
nique is the sensitivity of the spectra to the sample surface contaminants. Last
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but not least is the determination of the complex dielectric function through
the technique of optical ellipsometry, In this technique a linear polarised light
(neither s- nor p- polarised 3) impinges the sample at an angle φ and the ratio
σ = rp

rs
between the p and s components reflectivities is measured. The complex

dielectric function is then given by [106]:

ε = sin2 φ+ sin2 φ tan2 φ
(1− σ

1 + σ

)2

.

4.2.2 Response functions and time ordered Green’s func-
tion

In this section we want to derive some relations between microscopic quantities
such as the microscopically induced charge density, the microscopic dielectric
tensor etc... that will turn out useful in the next paragraph where we will
derive the connection between the macroscopic world and the microscopic one.
The theory of the linear response to an external perturbation allows us to
express the charge density nind(x) induced by the presence of an external scalar
potential φext(x, t) in terms of a response function χ(x, t;x′t′), so that:

nind(x, t) =

∫ ∞

−∞

∫
d3x′dt′χ(x, t;x′t′)φext(x

′, t′). (4.9)

Within the linear response theory it can be shown (see ref.[59]) that χ(x, t;x′t′)
is the retarded density-density correlation function which in turn, for ω > 0, is
equal to the time ordered reducible polarisability Pred

4. The induced charge
in turns creates a potential φind(x, t) given by

φind(x, t) =

∫
d3x′v(x− x′)nind(x

′, t) (4.10)

so that the total potential φtot(x, t) can be written as 5

φtot = (1 + vPred)φext = ε−1φext. (4.11)

3p-polarisation corresponds to a polarisation parallel to the plane of incidence, while
s-polarisation to a polarisation perpendicular to it.

4In the previous chapter we have introduced the irreducible polarisability P and we have
seen how it is connected to the screened Coulomb interaction and to the microscopic dielectric
function, namely W = v + WPv, and ε = 1− Pv. The reducible polarisability, see ref. [59],
is connected to the irreducible polarisability via a Dyson like equation Pred = P + PvPred.
As a consequence the screened Coulomb interaction now is W = v + vPredv, and the inverse
microscopic dielectric function is ε−1 = 1 + vPred

5From now on we imply that v, Pred, ε−1, act as integral operators, and that all the
relations are valid for ω > 0; else we replace the polarisabilities with their corresponding
retarded version.
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This allows us 6 to identify the role played at the microscopic scale by the
inverse microscopic dielectric function with the role of the inverse macroscopic
dielectric function present in classical electrodynamics. Now, which is the role
of the irreducible polarisability P? Let’s suppose to have an integral operator
X that connects the induced charge density to the total potential of the solid
so that nind = Xφtot then

φind = vXφtot = φtot − φext ⇒ φtot = (1− vX)−1φext

but we know that φtot = ε−1φext so that ε = (1 − vX). If we remember that
the microscopic dielectric function is given, in terms of P , by the relation
ε = 1 − vP , we can identify P and X. So the irreducible polarisation, for
positive frequencies, is the functional derivative of the charge density with
respect to the total potential:

nind = Pφtot. (4.12)

4.2.3 Macroscopic dielectric function, local fields effects

In the last two paragraphs we have seen how the inverse of the microscopic
dielectric function and the inverse of the macroscopic one play the same role
in connecting the total potential to the external perturbation. Here, following
the work of Adler [107], we will get the macroscopic dielectric function in terms
of the microscopic one.

Let’s suppose that the perturbing external potential is given by a monochro-
matic, slowly varying potential:

φext = φext(q, ω)ei(qr−ωt). (4.13)

The total potential, given by the sum of the external potential and of the one
that is induced by the polarisation of the medium, will present q + G wave-
vector components (here G is a generic reciprocal lattice vector) and thus will
vary much faster in space, so that in a general way we can write 7:

φtot(r, t) =
∑

G

φ(q,G;ω)ei(q+G)re−iωt (4.14)

6We assume from now on that we are talking about positive frequencies, or about retarded
functions.

7We can see how the total potential gains the q+G components considering its expression
in terms of the microscopic dielectric function:

φtot(r, t) =
∫

dr′dt′ε−1(r, r′; t− t′)φext(r′, t′) == φext(q, ω)
∫

dr′ε−1(r, r′;ω)ei(qr′−ωt) =
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The macroscopic potential, equal to the space average of eq. 4.14, will then be
given by:

〈φtot〉 = φ(q, 0;ω)i(qr−ωt). (4.15)

This is because in eq. 4.14, the space dependence is only contained in the
exponential ei(q+G)r, and the G 6= 0 components are rapidly oscillating in real
space and are thus averaged to 0.
In the same way, we can think that the induced potential is gaining q + G
components, and we can write it as:

φind(r, t) =
∑

G

φind(q,G;ω)ei(q+G)re−iωt. (4.16)

Also in this case we can perform a space average getting:

〈φind〉 = φind(q, 0;ω)i(qr−ωt). (4.17)

The longitudinal8 macroscopic dielectric function is then given by:

εL(q, ω) = 1− 〈φind〉
〈φtot〉

= 1− φind(q, 0;ω)

φ(q, 0;ω)
=

φext

φ(q, 0;ω)
. (4.18)

So we want to find the ratio φext/φ(q, 0;ω) in terms of microscopic quantities.
To do this, we remember from the previous section, that the induced charge
density, in terms of the irreducible polarisability P , is given by nind = Pφtot;
so that we can relate φind and φtot with:

φind(r, t) =

∫
dr′V (r − r′)nind(r′, t) =

=

∫
dr′dr′′V (r − r′)P (r′, r′′;ω)φtot(r′′, ω)e−iωt.

= φext(q, ω)e−iωt
∑
G,G′

∫
1BZ

d3kε−1
GG′(k)

∫
dr′e−i(k+G)rei(k+G+q)r′

=

= φext(q, ω)e−iωt
∑
G,G′

ε−1
GG′(q)e−i(q+G)r =

∑
G

φ(q, G;ω)ei(q+G)re−iωt

where φ(q, G;ω) =
∑

G′ φext(q, ω)ε−1
GG′(q).

Here we have used the Fourier expansion for the inverse microscopic dielectric function
defined by: ε−1(r, r′;ω) =

∑
G,G′

∫
1BZ

d3kε−1
GG′(k)e−i(k+G)rei(k+G)r′

, and ε−1
GG′(k) = ε−1(k +

G, k + G′).
8Here we are assuming that the electric field is generated by a scalar potential, and thus

are talking about the longitudinal dielectric function.
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Which, exploiting the Fourier representation of the operators, becomes:

φind(r, t) =
∑
G,G′

1

|q +G|2
PG,G′(q, ω)φtot(q,G′;ω)ei(q+G)re−iωt. (4.19)

Comparing eq. 4.16 and eq. 4.19, we can express the Fourier component of
the induced potential as:

φind(q,G;ω) =
1

|q +G|2
∑
G′

PG,G′(q, ω)φtot(q,G′;ω). (4.20)

However, referring to eq. 4.18, we still want to obtain a relation between the
Fourier component of the total potential and the external potential. In order
to do this, we remember that the microscopic dielectric function is ε = 1−Pv.
From this equation, expliciting P in Fourier space we get:

PG,G′(q, ω) = δG,G′|q +G′|2 − |q +G′|2εG,G′(q, ω). (4.21)

Inserting this relation in eq. 4.20, we get:

φind(q,G;ω) = φtot(q,G;ω)− 1

|q +G|2
∑
G′

|q +G′|2εG,G′(q, ω)φtot(q,G′;ω)

which gives

|q +G|2 [φtot(q,G;ω)− φind(q,G;ω)]︸ ︷︷ ︸
φext(q,ω)δG,0

=
∑
G′

|q +G′|2εG,G′(q, ω)φtot(q,G′;ω).

(4.22)
Now, if we multiply each term by ε−1

G′′,G(q, ω) and we sum up over G,

ε−1
G′′,0(q, ω)|q|2φext(q, ω) =

∑
G′

δG′′,G′|q +G′|2φtot(q,G′;ω) (4.23)

and expliciting φtot, we finally get:

φtot(q,G′;ω) = |q +G′′|−2|q|2φext(q, ω)ε−1
G′′,0(q, ω). (4.24)

Let’s go back to the expression for the longitudinal macroscopic dielectric func-
tion given by 4.18:

εL(q, ω) = 1− φind(q, 0;ω)

φ(q, 0;ω)
=
φext(q;ω)

φ(q, 0;ω)
=

=
φext(q;ω)

|q +G′′|−2|q|2φext(q, ω)ε−1
G′′,0(q, ω)

∣∣∣∣∣
G′′=0

=
1

ε−1
0,0(q, ω)

. (4.25)
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In the optical limit, the transverse and longitudinal dielectric function are equal
[108], so that we can generically write the macroscopic dielectric function as:

εM(ω) = lim
q→0

1

ε−1
0,0(q, ω)

. (4.26)

The EEL spectra, in the limit of vanishing exchanged wave vector, is pro-
portional to the imaginary part of the inverse of the macroscopic dielectric
function; while the absorption spectra is proportional to the imaginary part of
the macroscopic dielectric function (see eq.(4.27)).

EEL ∝
{ 1

εM

}
Abs ∝

{
εM

}
. (4.27)

In an inhomogeneous system, the off-diagonal terms of the dielectric matrix are
non-zero and so, obviously, εG=0,G′=0 is different from 1

ε−1
G=0,G′=0

. Computing the

macroscopic dielectric function as prescripted by eq. (4.26) takes into account
the fact that an external spatially homogeneous electric potential can induce,
by mean of the polarisation of the system, an electric potential that fluctuates
in space with Fourier components equal to the reciprocal lattice vectors. This
are the so called local field effect. So looking at eq. (4.26) we can see that in
order to take into account the local field effects we have to compute the inverse
of the microscopic dielectric function ε−1

G,G′ and then take the macroscopic limit.
The inverse of the microscopic dielectric matrix can be computed knowing the
reducible polarisability Pred remembering that ε−1 = 1 + vPred, where v is the
bare coulomb interaction. The reducible polarisability satisfies a Dyson-like
equation that connects it to the irreducible polarisability P (see note in pg.
80).

4.2.4 Macroscopic dielectric function and modified po-
larisability

However there is another way to directly obtain the macroscopic dielectric
function, which is more convenient because it allows to treat the excitonic and
local field effects on the same footing: it can be shown (see appendix B of ref.
[58]) that the macroscopic dielectric function can be rewritten in terms of a
modified reducible polarisability P̄ as:

εM(ω) = 1− lim
q→0

v(q)0P̄G=G′=0(q, ω). (4.28)

The modified polarisability satisfies a Dyson like equation in terms of the ir-
reducible polarisability P and a modified coulomb potential v̄ very similar to
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the equation for the reducible polarisability:

P̄ = P + P v̄P̄ . (4.29)

The modified Coulomb interaction is defined by subtracting the G = 0 Fourier
component to the bare coulomb interaction. It’s interesting to notice that the
v̄ term is entirely responsible of the local field effect. In fact, following ref.
[102], if we suppose to neglect this term the macroscopic dielectric function
would be given by:

εM(ω)nov̄ = 1− lim
q→0

v(q)0PG=G′=0(q, ω) (4.30)

if we remember the definition of the microscopic dielectric function, namely
ε = 1− vP , looking at eq. 4.30 we see that in this case

εM(ω)nov̄ = lim
q→0

εG=G′=0(q, ω)

which is equivalent in neglecting the off diagonal elements of εG,G′ in eq. 4.26
meaning that the local field effects are neglected as already discussed.

To summarise we have seen how the optical and EEL spectra are connected
to the macroscopic dielectric function, the macroscopic dielectric function can
be obtained in terms of the reducible polarisability Pred or in terms of a mod-
ified reducible polarisability P̄ . In both cases the knowledge of the irreducible
polarisability P of the system is required and P can be computed within the
Hedin’s equations scheme 3.21 at different levels of approximation. In the next
sections we will see the quality of the different spectra that we can obtain with
different approximation of P .

4.3 Independent quasiparticle approximation

We have seen that the Hedin’s equations can not be solved exactly but only
using a self consistency scheme (a full self consistency can not be obtained for
real system due to numerical limits). Adopting the same level of approximation
that we have introduced to obtain GW quasiparticle energies, i.e. neglecting
the vertex correction, we get the so called random phase approximation (RPA)
for the dielectric matrix. Within this approximation the irreducible polaris-
ability is given by:

PIQP (x, x′;ω) = 2
∑
i,j

(fi − fj)
φi(x)φ

∗
j(x)φ

∗
i (x

′)φj(x
′)

εi − εj − ω − iη
(4.31)
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here (i, j) are single quasiparticle state labels, fi and φi are the corresponding
occupation and wave function respectively. From this equation, neglecting
the local field effects, in the length gauge we have that the response to a
longitudinal field for q → 0

εM(ω) = 1− lim
q→0

v(q)
∑
vc

|〈v| exp−iqr |c〉|2

ω − (εc − εv)− iη
. (4.32)

Here v is the coulomb interaction, |v〉 (|c〉) represent valence (conduction) single
particle state and εv (εc) is its corresponding energy. From equation 4.32 we
see that the sum of all the possible independent transitions gives rise to the
spectra. In this picture the structure of the spectra are located at quasiparticle
energy differences and the line shape is determined by the matrix elements
of eiqr between a valence state and a conduction state independently for each
transition. In fact in a single quasiparticle scheme the neutral excited state can
be seen as a sum of independent excitation of one electron from the valence to
the conduction band. Comparing the RPA spectra with experiments usually
both the peak positions and the line shape are wrong. In particular, depending
on which single particle scheme is used, whether DFT or GW, the position
of the peaks will be shifted toward lower or higher energy. The spectra is
also strongly dependent on local fields effects, which must be included for
anisotropic systems like for example surfaces and nanowires. However even
including local fields effects the optical spectra of solids obtained within RPA
are often not even in qualitative agreement with experiments.

4.4 Bethe-Salpeter equation

In the previous section we have seen that the vertex corrections can not be com-
pletely neglected in order to obtain optical spectra in agreement with experi-
ments. Neglecting vertex corrections means to neglect the interaction between
the holes and the electrons that are formed within the polarisation process of
the system. In fact, we can see from the Hedin’s equation that defines the
irreducible polarisability 3.21, that, setting Γ = δδ, leads to an expression for
P , namely P = −iGG, in which the hole and the electron propagators are
independent one to the other. In the description of absorption experiments,
in which the excited electron remains in the sample, evidentely the effects of
the electron-hole interaction, i.e. the excitonic effects can not be neglected.
Within manybody perturbation theory it is shown that, in order to include the
effects of the electron-hole interaction in the spectra, one has to introduce an
effective two body Hamiltonian,the so called excitonic Hamiltonian. In a very
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schematic way we will see how the excitonic Hamiltonian can be obtained.
In order to include vertex corrections, we can think to iterate once more the
selfconsistency cycle of the Hedin’s equations. If we start from the GW ap-
proximation for the selfenergy Σ and iterate, we obtain for the vertex function
the following expression:

Γ(123) = δ(12)δ(13) + iW (1+, 2)

∫
G(16)G(72)Γ(673)d(67) (4.33)

where we have used δΣ
δG

= iW and neglected the term iG δW
δG

. Multiplying
equation (4.33) by G(4, 1)G(2, 5) and integrating it with respect to the vari-
ables (1, 2) we can obtain a Dyson like equation for a generalised three-point
polarisability defined as:

3P (312) = −i
∫
G(16)G(72)Γ(673)d(67). (4.34)

The Dyson like equation for this three-point polarisability takes the form:

3P (345) = −iG(43)G(35) +

∫
G(41)G(25)W (1+2)3P (312)d(12). (4.35)

We can generalise this equation for a four-point polarisability introducing the
four-point screened coulomb interaction 4W (1234) = W (12)δ(13)δ(24), getting
a four-point integral equation for the generalised irreducible polarisability 4P :

4P = 4PIQP +4 P 4W 4PIQP . (4.36)

We can now generalise the equation (4.29) in terms of four-point quantities
getting:

4P̄ (1234) =4 P (1234) +

∫
4P (1256)δ(56)δ(78)v̄(57)4P̄ (7834)d(5678).

(4.37)
Using the expression for 4P given by eq. (4.36) in eq. (4.37) we obtain the
Bethe-Salpeter equation for 4P̄ :

4P̄ =4 PIQP +4 PIQPK
4P̄ . (4.38)

The kernel K of this integral equation contains an electron-hole exchange con-
tribution v̄ and an electron hole attraction −W term:

K(1234) = δ(12)δ(34)v̄(13)− δ(13)δ(24)W (12). (4.39)

In principle to obtain 4P̄ , one could invert the integral equation 4.38, contract
the indices of the four point polarisability and get the macroscopic dielectric
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function. However, this is not the procedure performed in the actual calcula-
tions for two reasons: the first one is that it would require the inversion of the
four point integral equation for each frequency, which is quite time consuming;
the second reason is that, as we will see, an effective two body Hamiltonian
formalism carries much more information, especially regarding the excitonic
eigenstates and eigenvalues. In the next section we will see how to get to this
effective two body formalism.

4.4.1 Effective two particle Hamiltonian

In order to be able to pass to a two particle Hamiltonian formulation of the
problem, we need to define the projection of a four-point quantity into the
transition space, i.e. into a basis made of couples of single quasiparticle states,
usually labeled by a band and a wave vector indices which we will summarise
in the index ni; two of this indices rapresent a transition which, when needed,
we will call t. If A(1,2,3,4) is a generic four-point operator, its projection is
given by

Att′ = A(n1,n2)(n3,n4) =

∫
dr1dr2dr3dr4A(1, 2, 3, 4)φn1(r1)φ

∗
n2

(r2)φ
∗
n3

(r3)φn4(r4).

(4.40)
It is important to notice that in the transition space the unity operator is
given by δtt′ = δn1n3δn2n4 . And that the independent particle polarisability P 0

is diagonal:

P 0
(n1,n2)(n3,n4)(ω) =

fn2 − fn1

εQP
n2 − εQP

n1 − ω
δn1n3δn2n4 . (4.41)

From eq. 4.28, the macroscopic dielectric matrix in terms of the transition
space matrix elements of P̄ is given by:

εM(ω) = 1− lim
q→0

v0(q)
∑

n1,n2,n3,n4

P̄(n1,n2)(n3,n4)(ω)〈n1|e−iqr|n2〉〈n3|eiqr′|n4〉.

(4.42)
So, to get εM we need the matrix elements P̄(n1,n2)(n3,n4)(ω); in order to obtain
them let’s start by projecting the Bethe Salpeter equation 4.38 in the transition
space:

P̄(n1,n2)(n3,n4)(ω) = P 0
(n1,n2)(n3,n4)(ω)+P 0

(n1,n2)(n5,n6)(ω)K(n5,n6)(n7,n8)(ω)P̄(n7,n8)(n3,n4).
(4.43)

Formally, we get P̄ by inverting this last equation, so that we can write:

P̄(n1,n2)(n3,n4)(ω) = (1− P 0K)−1
(n1,n2)(n5,n6)P

0
(n5,n6)(n3,n4). (4.44)
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Let’s look more carefully at the operator (1− P 0K), a generic matrix element
can be written as:

(1− P 0K)(m1,m2)(m3,m4) = δm1m3δm2m4 − P 0
(m1,m2)(m5,m6)K(m5,m6)(m3,m4) =

= δm1m3δm2m4 −
(fm2 − fm1)δm1m5δm2m6

εQP
m2 − εQP

m1 − ω
K(m5,m6)(m3,m4) =

= δm1m3δm2m4 −
fm2 − fm1

εQP
m2 − εQP

m1 − ω
K(m1,m2)(m3,m4) =

=
1

εQP
m2 − εQP

m1 − ω
[(εQP

m2
− εQP

m1
− ω)δm1m3δm2m4 − (fm2 − fm1)K(m1,m2)(m3,m4)].

We define the excitonic Hamiltonian as:

H2p,exc
(m1,m2)(m3,m4) = (εQP

m2
− εQP

m1
)δm1m3δm2m4 − (fm2 − fm1)K(m1,m2)(m3,m4) (4.45)

so that

(1− P 0K)(m1,m2)(m3,m4) =
1

εQP
m2 − εQP

m1 − ω
[H2p,exc

(m1,m2)(m3,m4) − ωδm1m3δm2m4 ].

(4.46)
Now, summarising the transition indix as:

(m1m2) ≡ t (m3,m4) ≡ t′

and writing:

Em2 − Em1 − ω = ∆Et; H2p,exc
(m1,m2)(m3,m4) = H2p,exc

tt′ ; (fm2 − fm1) = ft

we can write

(1− P 0K)tt′ =
1

∆Et

[H2p,exc
tt′ − ωδtt′ ]

and

(P 0)tt′ =
ft

∆Et

δtt′ .

From eq. 4.44, we get:9

P̄tt′ = (1−P 0K)−1
tt′′P

0
t′′t′ = [H2p,exc − Iω]−1

tt′′∆Et′′
f ′′t

∆E ′′
t

δt′′t′ = [H2p,exc − Iω]−1
tt′ ft′ .

(4.47)

9Here we are using the general property that, given a matrix B, defined by Bij = aiAij ,
its inverse is given by (B)−1

ij = (A)−1
ij

1
aj
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In principle, we still have to invert a four point operator for each frequency,
however we can use the spectral representation of the inverse of an operator
getting:

[H2p,exc − Iω]−1
tt′ = [H2p,exc − Iω]−1

(n1,n2)(n3,n4) =
∑
λλ′

An1n2
λ S−1

λλ′A
∗n3n4

λ′

Eexc
λ − ω

(4.48)

where {An1n2
λ } and {Eλ} are solutions of the eigenvalue problem:

H2p,exc
(n1,n2)(n3,n4)A

n3n4
λ = EλA

n1n2
λ (4.49)

and S is the overlap matrix given by:

Sλλ′ =
∑
n1n2

A∗n1n2
λ An1n2

λ′ . (4.50)

If the excitonic Hamiltonian were hermitian, then {Eλ} would be real and the
overlap matrix would be a delta function, Sλλ′ = δλλ′ ; however this is not
always the case.
Inserting eq. 4.48 into eq. 4.47, we get for P̄ :

P̄(n1,n2)(n3,n4) =
∑
λλ′

An1n2
λ S−1

λλ′A
∗(n3n4

λ′

Eexc
λ − ω

(fn4 − fn3). (4.51)

The presence of the factor (fn4 − fn3) implies that only the matrix elements
of the excitonic Hamiltonian H2p,exc

(n1,n2)(n3,n4) in which the state labeled by n3

and the state labeled by n4 have different occupation contribute. Within this
subspace the two particle excitonic Hamiltonian will have the form:10

H2p,exc
(n1,n2)(n3,n4) =

(
H2p,reso

(n1=v,n2=c)(n3=v′,n4=c′) K̄(n1=v,n2=c)(n3=c′,n4=v′

−K̄(n1=c,n2=v)(n3=v′,n4=c′ −H2p,reso
(n1=c,n2=v)(n3=c′,n4=v′)

)
.

(4.52)
Where H2p,reso, the resonant part of the excitonic hamiltonian is given by:

H2p,reso
(vck)(v′c′k′) = (εQP

ck − εQP
vk′ )δvv′δcc′δkk′ + 2v̄v′c′k′

vck −W v′c′k′

vck . (4.53)

Here (εQP
ck , ε

QP
vk′ ) are the quasiparticle energies, calculated within the GW ap-

proximation, of the states (ck) and (vk′). As already mentioned, the excitonic

10Since in this subspace the single particle states belonging to each couple ninj have
different occupation we will refer to them as v and c, namely valence and conduction bands.
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Hamiltonian is not necessary hermitian, however, if we take into account only
its resonant part, it is hermitian, and the macroscopic dielectric function is:

εM(ω) = 1− lim
q→0

v(q)
∑

λ

∣∣∣∑(n1n2)〈n1| exp−iqṙ |n2〉A(n1n2)
λ

∣∣∣2
Eexc

λ − ω − iη
(4.54)

where each label ni represents a couple of band and wave vector indices. Com-
paring this formula with the RPA dielectric function 4.32, we can see that in
this case the dielectric function has poles at the eigenvalues of the excitonic
Hamiltonian which are not anymore differences of occupied and unoccupied
quasiparticle states energies. This fact moves the position of the structures
in the spectra usually to lower energies. As we can see from eq. 4.49, each
eigenstate of the excitonic Hamiltonian 4.49 is made by a sum of independent
quasiparticle transitions; each transition contributes to it with a weight equal
to An1n2

λ . This mixing of independent transitions is present in the numerator
of the dielectric function 4.54; and its effect is to strongly modify the lineshape
of the spectra.

From eq.(4.54), we can see that to obtain the macroscopic dielectric function
we need to diagonalise the excitonic Hamiltonian and to know the quasiparticle
wavefunctions (in order to compute the dipole matrix elements present in the
numerator). As in most ab initio calculation, we assume that Kohn-Sham
wave functions are a very good approximation to the quasiparticle’s ones. The
computation of the matrix elements of the excitonic Hamiltonian, which is
also a very time consuming part of the calculation, requires the knowledge of
the quasiparticle energies and of the screened Coulomb interaction and also
relies on the assumption that the quasiparticle wave functions are very close
to the Kohn-Sham ones. At this level we limit the calculation to a static
RPA screening, and the quasiparticle energies are computed within the GW
approximation of the self energy.

To summarise, in order to compute the excitonic spectra we need a well
converged geometrical structure calculation, Kohn-Sham wave functions, quasi-
particle energies and the statically screened Coulomb interaction present in the
excitonic Hamiltonian.
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4.5 Example of excitonic calculation: Dia-

mond bulk

4.5.1 Actual implementation

All the excitonic calculations presented in this thesis are performed using the
EXC code [109], which is a plane wave basis set code. As already mentioned,
one of the main task of any excitonic calculation is building the excitonic Hamil-
tonian. Computed in the reciprocal space, considering only spin-singlet class
of solution, a generic matrix element of the resonant part of the Hamiltonian
will look like [102]:

Hreso
(vck)(v′c′k′) = (εQP

ck − εQP
vk )δvv′δcc′δkk′ + 2v̄(vck)(v′c′k′) −W(vck)(v′c′k′) (4.55)

where

v̄(vck)(v′c′k′) =
4π

Ω

∑
G6=0

1

|G|2
〈ck|eiGr|vk〉〈v′k′|e−iGr|c′k′〉 (4.56)

and

W(vck)(v′c′k′) =
4π

Ω

∑
GG′

ε−1
GG′(q)

|q +G|2
〈ck|ei(G+q)r|c′k′〉〈v′k′|e−i(G′+q)r′|vk〉δ(k−k′),q

(4.57)
v is the exchange term, responsible for the local fields effects and for the
propagation of the electron-hole excitation11, while W rapresents the screened
Coulomb attraction between the electron and the hole. 12 Besides the fact
that the wavefunctions used to build the excitonic Hamiltonian are not the
true quasiparticle wavefunctions, and that the dielectric matrix is calculated
within RPA and only its static part is retained, there are many more approxi-
mations that are, or might be, performed solving the Bethe Salpeter equation.
Let’s look more carefully at them:

• The excitonic Hamiltonian should have infinite dimensions: the number
of k vectors and of conduction states should be infinite, and one should

11Looking at the formulation of the exchange term in real space, namely∫
dr
∫

dr′φ∗ck(r)φvk(r)v(r− r′)φc′k′(r′)φ∗v′k′(r′), we can see that it is made of terms in which
an electron-hole pair is annihilated in r′ and an other electron hole pair is created in r,
thus propagating in the medium. The exchange term is repulsive and it may be seen as the
repulsion between holes and electrons belonging to different electron-hole pairs [110].

12Also in this case from the real space formulation of W we can read more easily its
meaning. Calculated in real space W is W =

∫
dr
∫

dr′φ∗ck(r)φc′k′(r)W (r, r′)φvk(r′)φ∗v′k′(r′).
We can see that W is made up of terms in which an electron present in r interacts, and
scatters with a hole in r′.
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also take into account all the valence bands. Of course this is not done and
one uses a discrete sampling of the Brillouin zone and a finite number of
conduction bands. Typically also the number of valence states is limited.
Convergency should be reached with respect to all of this three quantities.

• Also the number of the G vectors present in 4.56 and 4.57 is in principle
infinite, and the sums must be truncated at some point. Usually con-
vergency is reached with much fewer G vectors than the one needed in
ground state calculations.

• If only the resonant part of the excitonic Hamiltonian is used, then the
positive energy transitions are completely decoupled from the negative
energy ones. Typically, in optical spectra the effects of the coupling
terms can be neglected, however they might become important when
considering quantities based also on the real part of ε, like for example
EEL spectra [58].

• The screened Coulomb interaction could be considered taking into ac-
count only the diagonal terms in G,G′. Typically the effects of this
approximation are small in homogeneous systems but can become sig-
nificant in strongly inhomogeneous ones like in the case of clusters and
surfaces.

In most of the calculations that will be presented all of this approximations
are used. When possible the effects of such approximation are analysed.

4.5.2 Absorption spectra of diamond

As an example of excitonic calculation we show the spectra of bulk diamond.
Within LDA approximation for the vxc we find a lattice parameter of 6.71a.u..
The first Brillouin zone has been sampled with 2048 shifted k-points. To ob-
tain this set we started with 60 special k-points in the irreducible Brillouin
zone, and by applying all the lattice symmetry operations to this set, a second
uniform grid of 2048 k-points was obtained within the first Brillouin zone. A
small shift along a non high symmetry direction was then applied to obtain
the final grid of crystallographically inequivalent k-points. The quasi particle
corrections have been computed for the 2048 shifted k-points by extrapolating
from the corrections for the non-shifted grid calculated using 349 plane waves
and 100 empty bands. In the calculation of the macroscopic dielectric functions
the contributions of the transitions coming from the two valence and three con-
duction bands around the gap are included. It is important to notice that in
this case the spectra has not been obtained by direct diagonalisation of the
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excitonic Hamiltonian, but using an iterative algorithm, namely the Haydock
recursive algorithm [111], presented in more detail in appendix A to reduce the
computer main memory required for the calculation. The In fig. 4.1 we see
that the Bethe-Salpeter spectra is in very good agreement with experimental
data [112]: in particular it corrects the blue shift of the GW-RPA spectra.

0 5 10 15 20 25 30
Energy (eV)

0

5

10

15

20

Im
(ε

)

Exp.
Excitonic
GW RPA

Figure 4.1: Diamond optical spectra. Dashed line: RPA with GW energies; solid
line: Bethe-Salpeter with GW energies; circles: experiment (from [112]).

4.6 Reflectance Anisotropy Spectroscopy

Reflectance Anisotropy Spectroscopy is a typical optical probe for surfaces
( for a recent review see [113]). It measures the difference in reflectance ∆r
between two normal incident light beam polarised linearly along two orthogonal
directions in the surface plane (xy), normalised to the mean reflectance:

δr

r
=

2(rx − ry)

rx + ry

. (4.58)
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This technique, although maintaining the properties of being highly non de-
structive, since light doesn’t have a very strong interaction with matter, is still
surface sensitive, because, in cubic materials and neglecting non linear effects,
the isotropic contribution from the bulk cancels out.
In the next section we will briefly see how we can take into account the pres-
ence of a surface in describing the the propagation and reflection of light; since
all our calculations are performed using the repeated slab geometry we will
introduce the half slab polarisability, which is the quantity that connects cal-
culations and experiments; we will finally show the results for the (111) surface
at the RPA, GW and Bethe Salpeter level.

4.6.1 RAS calculations

In sec. 4.2.1, we have seen how, for cubic crystals, a simple, non local, isotropic
relation holds between the macroscopic electric field E, and electric displace-
ment vectors D, namely:

Di(r, ω) = ε(ω)Ei(r, ω). (4.59)

This relation can be obtained assuming that at the macroscopic scale, for long
enough wavelengths, the system is homogeneous. In the simplest picture we
can think that a surface is an abrupt interface between two regions in space
were 4.59 still holds but with two different dielectric constants. In this scheme
we can modelize the presence of a surface along the (xy) plane, with the crystal
occupying the upper (z > 0) volume, using a dielectric function of the form:

ε(ω, z) = θ(−z) + εb(ω)θ(z) (4.60)

taking this form into account and solving the Maxwell equations for the prop-
agation of light, one gets to the well known Fresnel formulae which for the
normal incidence reflectivity give:

R =
∣∣∣ ñ− 1

ñ+ 1

∣∣∣2. (4.61)

It is clear that in this framework all the surface effects are neglected, no con-
tribution of the modification of the response function of the material due to
surface induced changes in the electronic structure are present; no anysotropy,
and no non-locality are there. However anysotropy, non-locality and inhomo-
geneity are basic features in the response functions of a surface, and can not
be neglected if one wishes to compare the results of calculations with surface
sensitive techniques such as RAS.
In order to go beyond the Fresnel picture, a perturbative scheme is followed.
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This scheme was implemented for a vacuum-jellium interface by Bagchi et al.
[114], and generalised to a crystal surface by Del Sole [115]. The unperturbed
system is rapresented by the fictitious abrupt Fresnel interface with dielectric
constant given by eq. 4.60, and the reflection coefficients are calculated to the
first order in the expansion parameter d/λ = (ω/c)d, where d is the surface
thickness. It is important to notice that the perturbation is actually not small,
and the the electric field is not continuous at the interface; the perturbative ex-
pansion of ref. [114, 115] works because only continuous quantities (the electric
field component parallel to the surface, the electric displacement component
perpendicular to the surface) are taken into account in the derivation. Within
the perturbative scheme the first order correction to the Fresnel reflectivity R0

is given by:

∆Ri

R0

=
Ri −R0

R0

=
4πω

c
Im

〈∆εii〉
εb − 1

; i = x, y (4.62)

where

〈∆εii〉 =

∫
dz

∫
dz′[ε−1

i j(z, z′)− δijδ(z − z′)εb(z)]. (4.63)

In all our calculations, however we have a repeated slab geometry, in this case
it is more convenient to express 〈∆εii〉, in the terms of the so called halfslab
polarisability εhs

ii given by [116]:

εhs
ii (ω) =

1

4πd

∫ d

−∞
dz

∫ +∞

−∞
dz′[εii(ω; z, z′)− δ(z − z′)] (4.64)

where d is usually half of the slab thickness. In practice the imaginary part
of the half slab polarisability, is given by the imaginary part of macroscopic
dielectric function of the supercell, multiplied by d; it has in fact the dimension
of a length; and, in parallel with the level of approximation for the calculation
of the macroscopic dielectric function, it can be computed in a single particle
framework, or including excitonic effects.

4.7 RAS on the (111) surface of diamond

In the previous two chapters we have seen how the most stable reconstruction
for the (111) surface of diamond is the 2 × 1 Pandey Chain model. Within
this model almost one dimensional chains of atoms are present on the surface
along the y direction. We have seen how the presence of a buckled or dimerised
geometry of the chains is strictly connected to the possibility of opening a gap
at the DFT level. However such buckling or dimerisation seem very unlikely
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and the most stable geometry, featuring undimerized and unbuckled chain, is
associated to a semimetallic DFT band structure. Finally, we have seen how
the inclusion of quasiparticle corrections within an iterative GW scheme leads
to a semimetallic surface with a minimum direct gap of ∼ 1 eV between sur-
face states. Unfortunately, as already mentioned, experimentally not much is
known about the empty surface states of C(111)2 × 1. A direct information
of the magnitude of the gap could be given by inverse photoemission spectra
which, however, are not available. Optical spectroscopy, like RAS, could give
insights on the transitions between occupied and unoccupied surface states,
and, as a matter of fact, RAS experiments are currently being set up [81]; it is
thus extremely interesting to compute the optical spectra of this surface.
The optical properties of this surface at the RPA level have been calculated
in 1996 by Noguez and Ulloa [117] using a tight binding approach. As ex-
pected, they found a large anysotropy in the surface dielectric response as
a consequence of the presence of the one dimensional Pandey chains in the
surface reconstruction. However, no fully ab-initio calculation has ever been
performed, nor calculations that included excitonic effects, which, on other di-
amond surfaces, [118] are very important.
In this section we will present the results regarding the optical spectra of
C(111)2× 1, at both the RPA and the Bethe-Salpeter level. We will see how,
due to the extremely large dispersion of the surface bands moving away from
the JK line (the electronic gap opens of about 4 eV, going from J to Γ, see
fig. 3.9 and tab. 3.7), a very dense k-point grid is needed to converge the low
energy side of the spectra (0÷1.5 eV), while the high energy side of the spectra
(1.5÷ 6 eV) is converged at a much broader k-point grid. We will present the
results of the excitonic calculation for a 2× 16 k-points grid in the irreducible
Brillouin zone. For this k-point mesh the high energy side of the spectra is well
converged up to 6 eV and the low energy side is converged up to 0.3 eV (the
RPA peak position is 0.3 eV away from its converged position). At last, we will
see how an interpolation scheme for the screened Coulomb interaction must be
implemented in order to use a much denser k-point mesh. Test calculations
on bulk systems are presented, and the scheme is subsequently applied to the
calculation of the optical response of the surface for a 4× 64 k-point mesh.

4.7.1 RPA

The RPA RAS spectra obtained for different grid of k points is shown in fig.
4.2. The number of empty bands used in each calculation is shown in the legend
of the graph. First of all, let’s compare this result with the tight binding result
of Noguez et al. [117]: also in our case there is a strong negative peak at low
energies, and some structures appear around 4 eV. The low energy peak comes
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Figure 4.2: RPA RAS computed for different k-point grids (a), compared with the
tight binding results (b) of Noguez et al. [117]. Qualitatively the DFT and tight
binding spectra are similar. It is important to notice that the low energy peak
position is converged using at least a 4×64 k-point mesh, while the high energy side
of the spectra is converged already using a 2× 16 grid. (Surface chains are along the
y direction)

98



Optical properties

from transitions between surface states for k points close to the JK line. The
sign of the low energy peak is clearly determined by the fact that the optical
response is much stronger for light polarised along the chain direction (the
chains are parallel to the y direction in our case, see fig. 2.1), than for light
polarised perpendicular to it. Moreover, if we think that exactly at the JK line
the surface state for each k point have dangling bond character with different
parity with respect to the mirror symmetry y → −y; then it is clear that right
on the JK line the response for light polarised along x will be exactly zero,
since px, has vanishing matrix elements with respect to the two surface states,
while it will be maximum for light polarised along y
From fig. 4.2 we can also see that in the region of energy ranging from 1.5 to
6 eV, a 2× 16 k point mesh and the inclusion of ten empty bands give already
a quite good description of the spectra. (When we will introduce excitonic
effects, however, we must remember that transitions of different energies might
mix so that convergency on the number of bands used must be checked again).
The convergency of the position of the low energy peak is very delicate. In fact
its position is very sensitive to the sampling of the Brillouin zone, especially
to how much close to the JK line the k-point set can go. In fig. 4.3 we show
the dispersion of the DFT gap between surface states for a fixed values of Kx,
varying Ky: we can see that, for every value of Kx, the gap varies very quickly
so that going from Ky = 0.25 to Ky = 0.5 the gap value decreases from 4 to
∼ 0 eV. As a consequence, it is clear that, in order to catch transitions of the
minimum energy, one should get really close to the JK line. For example the
red crosses in fig. 4.3 show the sampling along the Ky direction that would be
performed by a 2×16 k-point mesh: the first transition found is already 0.3eV !
Looking at the results for the 2× 16 k-point mesh we must keep in mind that
the accuracy for the low energy peak is at most 0.2− 0.3eV .

4.7.2 Excitonic effects (1)

In this section we show the results of the excitonic calculations using a 2× 16
k-point grid. First of all, the convergency with respect to the parameters of the
calculations was checked. The convergency test followed roughly this scheme:

• The number of iterations of the Haydock algorithm (see app. A) needed
for convergency of the spectra in the 0÷ 6 eV energy range is obtained.

• The number of G vectors needed in the description of the wave function
and of the exchange term (eq. 4.56) is obtained. The calculations were
performed using only one G vector for the screened interaction term (eq.
4.57), and considering 10 valence and 10 conduction bands (the number
of bands needed to converge the RPA spectra up to 6 eV).
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Figure 4.3: (a) Dispersion of the gap between surface states varying Ky at four fixed
values of Kx, namely Kx = (0.0625, 0.1875, 0.3125, 0.4375). In all the four cases the
gap exhibits a very strong dispersion. The red crosses correspond to the sampling
along the Ky direction in the case of a 2× 16 mesh, while the continous line to the
case of a 4×64 mesh. (All energies are expressed in eV and the k-vectors components
are expressed in relative units).(b) The four lines in the irreducible Brillouin zone
along which the gap has been calculated. (Surface chains are along the y direction)
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• The number of G vectors in the screened Coulomb interaction is also
brought to convergency.

• Convergency on the number of bands is achieved
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Figure 4.4: Results of the convergency test for the supercell macroscopic dielectric
function, in the case of light polarised along the y directions. All calculations have
been performed including excitonic effects and using a 2 × 16 sampling of the IBZ.
(Surface chains are along the y direction)

In fig. 4.4 the results of the convergency test are presented for the supercell
dielectric function in the case of light polarised along the y direction. We can
see that the spectra are well converged, in the energy range of our interest, us-
ing 200 iterations of the Haydock algorithm, 503 G-vectors in the description
of the wavefunction and of the exchange part, 203 G-vectors for the screened
Coulomb interaction term, and taking into account 15 valence and conduction
bands.

We also checked the impact on the spectra of the quality of the RPA di-
electric matrix used in the computation of the screened Coulomb interaction
term. In fact, remembering the expression of the RPA irreducible polarisabil-
ity (eq. 3.26), and knowing that the inversion of the dielectric matrix must be
performed, the quality of the screening might depend on the number of empty
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bands considered in the computation of eq. 3.26 and on the dimension of the
matrix to be inverted. In fig. 4.5, two spectra are presented, using in one
case an RPA screening obtained considering 600 empty bands and inverting a
1995×1995 matrix, in the other case 200 bands and a 1003×1003 matrix were
used. As we can see the two spectra are almost identical.
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Figure 4.5: Excitonic spectra obtained using two different RPA screening, using 600
bands and a 1995 × 1995 matrix inversion, or 200 bands and a 1003 × 1003 matrix
inversion. Both calculations were performed using a 2 × 16 sampling of the IBZ.
(Surface chains are along the y direction)

The effect of the computation of the excitonic Hamiltonian taking into
account also the off-diagonal terms of the screened Coulomb interaction, and
the coupling to the negative frequency transitions was analysed. The results
for the low energy peak are shown in fig. 4.6. We can see that in the case
of the (111) surface of diamond their effect is negligible. This result is not
surprising, because the off-diagonal terms of the screened Coulomb interaction
are important only in the case of very inhomogeneous systems like clusters,
while, in this case, we are perturbing the system with an electric field parallel
to the surface, i.e. we are probing it along the direction in which the system is
more homogenous; concerning the coupling term, it is typically more important
for the study of EEL spectra.
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Figure 4.6: The low energy peak calculated including the off diagonal terms of the
screened Coulomb interaction, the coupling between positive and negative transition
term, and using a constant screening 1/ε0. The effects of both the coupling and
off diagonal terms is negligible. In the inset the RAS spectra corresponding to the
Bethe Salpeter W diagonal calculation is shown. This calculations, being referred
only to the low energy peak, were performed using 2 conductions and two valence
bands only, the remaining parameters are kept fixed to the previous values. (Surface
chains are along the y direction, all calculations are carried out using a 2×16 k point
mesh in the IBZ).

In order to compute the final spectra, a new RPA screening was computed.
This screening calculation used the quasiparticle updated energies instead of
the DFT ones. In fact we have to remember that the final band structure
that we have obtained, was the result of an iterative procedure in which the
self energy was Σn+1 = GnWn. Following ref. [58], in this case the functional
derivative of the self energy with respect to the Green’s function present in the
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kernel of the Bethe Salpeter equation 4.39, should be ∂σn+1

∂Gn
= Wn. This RPA

updated screening was calculated using 200 empty bands and a 1003 × 1003
matrix inversion. The results for the low energy peak are shown in fig. 4.7.
As we can see, the effects of the updated screening enhances the excitonic
effects, this is not surprising since the RPA-DFT screening is the screening of
a semimetal and thus should be quite stronger than the updated screening.
The excitonic binding energy is, in this case, 0.4 eV. The binding energy of
the exciton is in this case quite smaller than in the (100) surface [118] (in that
case the binding energy was 0.9 eV) the explanation for this might be found in
the fact that the dispersion of the band gap is in this case very large yielding a
much smaller effective mass and thus a smaller binding energy; we have also to
take into account, however that the low energy peak is still not well converged
at this level. This problem will be analysed in more detail in the next section.
The higher energy side of the spectra is already well converged with the 2× 16
k point mesh, as we can see from fig. 4.2. The convergency test on the number
of bands to be used, look at fig. 4.4, show that including 15 valence and
conductions band, already yields well converged spectra 8 eV. In fig. 4.8, we
can see that also in the for the higher energy structures the excitonic effects
shift and modify the spectra; in particular the small structures at ∼ 2, ∼ 3,
and ∼ 4 eV are shifted at lower energies, while in the structures around 6 eV
most of the spectral weight is moved at lower energy in a single peak at ∼ 5.2
eV.

4.7.3 Excitonic effects (2)

We can see from fig. 4.2 that the low energy peak is converged using the 4×64
k-point mesh, at least concerning its position. However such a k-point grid
requires the knowledge of the inverse dielectric constant for 325 inequivalent
q-vectors of the irreducible Brillouin zone, which would require months of com-
puter time. Assuming that the dielectric constant is not so strongly varying,
we can think to get its value for a broader mesh of q-points and interpolate it
for the q point that are actually needed. In what comes next we will see how
this interpolation scheme is actually implemented and tested in the case of bulk
silicon and diamond. We will see that the results on bulk are encouraging: the
scheme is hence subsequently applied to the case of diamond (111).

Interpolation scheme for the screening

Within the interpolation scheme for the dielectric function, we compute the
RPA screening for a certain grid of q-vectors; then this screening is used in a
Bethe Salpeter calculation where a denser mesh of q points is required. The
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Figure 4.7: RAS spectra for the low energy part of the spectra including excitonic
effects computed using an updated screening. The coupling and the off-diagonal
terms of the excitonic hamiltonian were not taken into account; the IBZ is sampled
using a 2× 16 k point mesh. (Surface chains are along the y direction).
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Figure 4.8: RAS spectra including excitonic effects. The calculation was performed
with a 2× 16 k-point sampling of the IBZ, and including 15 valence and conduction
bands to get convergency up to 8 eV. The screening in this case was not updated,
since the high energy structures are less sensitive to the variation of the quasiparticle
energies in the screening due to the GW corrections. (Surface chains are along the
y direction).

106



Optical properties

value of the dielectric matrix for each q point needed is replaced by the one
of the closest q-point that has been actually calculated; care is put in order to
choose q-vectors grids that are lying in the same irreducible Brillouin zone. In
fig. 4.9 we see the absorption spectra of diamond and silicon bulk computed
with this interpolation scheme. The diamond calculation is performed using a
grid of 2048 shifted k-points in the first Brillouin zone. The calculation requires
the knowledge of the screening for 85q points in the irreducible Brillouin zone,
the curve in red is the result obtained using the 85 q-points grid, while the
curve in black is the spectra obtained using a dielectric matrix computed for a
19 q-points grid (the q-vectors grid associated to the 10 Chadi Cohen k-point
mesh); the two curves are very similar. Also for the case of silicon we see that
in the case of the 256 shifted k-points mesh, using the proper dielectric matrix
calculated for a 19 q-vector grid or the dielectric matrix computed on a 6 q
vectors grid is quite the same. In the case of silicon it is also shown the result
of the absorption spectra for the 32 shifted k-point mesh from which the 6
q-vectors mesh is obtained; we see that in this case the spectra differ strongly
from the 256 k-points grid. In the case of bulk silicon and diamond, it seems
like if the inverse microscopic dielectric matrix is smooth enough in order to
allow the application of this interpolation scheme; this might not be so obvious
at a surface and care should be put to check this assumption; the results on
these tests systems are however encouraging.

Preliminary results on a dense k-points grid

In what follows, we have applied the interpolated dielectric matrix scheme
for the case of the (111) surface of diamond using a 4 × 64 k-point mesh.
The RPA static dielectric matrix has been computed for a 25 q vectors mesh
obtained from a 4 × 4 k-point grid, using 200 empty bands, the inversion of
a 1003 × 1003 G-vectors matrix, and updated energies. In fig. 4.10 the two
grids of q points are shown. We can see that associated to each q vector of the
broader grid there is an area of the irreducible Brillouin zone, the q vectors of
the denser grid that are found within this area are associated to it. The Bethe-
Salpeter calculation was then carried out with the convergency parameter of
the previous calculation, i.e. using 503 G-vectors for the wavefunction and the
exchange term, and 401 G-vectors for the screened Coulomb interaction term.
Since now we are interested only in the low energy peak, only two valence and
two conduction bands are taken into account. The reduction of the number of
bands used has been carried out after checking that the single particle states
contributing to the low energy peak in the 2 × 16 calculation are only the
surface state within the gap.

The resulting RAS spectra is shown in fig. 4.11. We can see that now the
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Figure 4.9: Absorption spectra for diamond and silicon bulk. The spectra obtained
with the interpolated dielectric matrix (full black line) are compared to the full
calculations (red circles).
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Figure 4.10: The mesh of q-vectors generated by the 4 × 4 and by the 4 × 64 k-
points grids are compared. The 4×4 k-points grids produces a 25 q-point mesh (red
crosses), while the 4 × 64 k-points grid produces a 325 q-point (black circles). To
each of the 25 q points is associated an area, all the q points of the 325 set that are
found within this area are associated to it.
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binding energy, 0.5 eV, is quite larger than in the case of the 2×16 mesh, even
if it is still less than the one of the (100) surface. The most important thing,
however, is that now that the lineshape of the spectra is changed. In the 2×16
k point spectra, concerning the low energy peak, the effects of the introduction
of the electron-hole interaction was an almost rigid shift of 0.2 eV toward lower
energies. In this case, instead, the spectral weight is redistributed in a different
way, the main weight is at energies close to the GW-RPA peak, but a series of
peaks appear at lower and higher energies.

0 0.5 1 1.5 2
Energy (eV)

-0.015

-0.01

-0.005

0

(R
x-R

y)/R
0

GW without Local Fields 
Bethe Salpeter including Local Fields

Figure 4.11: RAS spectra of the (111) surface of diamond using a 4 × 64 k-point
grid. The spectral weight is now redistributed giving rise to a series of peaks. The
binding energy of the exciton is 0.5 eV. (Surface chains are along the y direction)

4.8 Conclusions

In this chapter we have first reviewed the theory behind the calculation of
optical spectra and then we have seen its application to the RAS spectra of
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diamond (111). There is the need of going beyond the single particle picture
to be able to describe the optical properties of solids, and, in fact, we have
seen how the solution of the Bethe Salpeter equation can be cast into a two
body Hamiltonian problem, and how the macroscopic dielectric matrix can be
expressed in terms of its eigenvalues and eigenvectors.
In the case of the (111) surface of diamond we see that the excitonic effects are
strong in both the low and high energy part of the spectra. The binding energy
of the exciton ranges from 0.2 to 0.5 eV, and the spectral weight is redistributed.
Care should be put in analysing this results, especially for the low energy size
of the spectra, since convergency with respect to the k-point grid is in this
case very delicate and an interpolation scheme for the dielectric matrix has
been used; however we can conclude that the evidence of the presence of an
electronic gap could be given by optical spectra, and that a strong anystropy
signal at low energy would be the signature of the transition within surface
states close to the gap.
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Despite the fact that the (111) surface of diamond represents a prototype, and
quite simple system, its electronic band structure and underlying geometry
were up to now not fully determined. As a matter of fact no ab-initio cal-
culation was able to reproduce its insulating character. The deficiency of the
theory in this case could not be easily addressed to a definite reason like a
wrong equilibrium geometry nor to the unfeasibility of the usual G0W0 scheme
for this specific band structure.

Confirming previous ground state results, we found that this surface recon-
structs with π-bonded chains without any significant dimerisation, buckling,
or antiferromagnetic ordering. The resulting band structure is semimetallic in
contrast with experimental data that predict a gap of at least 0.5 eV (see fig.
2.2).

Experiments rule out the dimerised geometry for symmetry reasons [22];
and, regarding buckling, there is no definite indication: medium energy ion
scattering data [23], X-ray diffraction structure analysis [27], and infrared-
visible sum frequency generation measurements [20] find best agreement for an
atomic arrangement featuring tilted chains, but can not completely rule out an
unbuckled undimerized geometry; at the same time, core level binding-energy
measurements [28], and a recent LEED study [26], see no evidence for buckling.
We have seen, however, that even in the presence of a reasonable buckling no
gap opens at the DFT level. The mechanism of the formation of the electronic
must hence be found elsewhere.

DFT (within LDA or GGA schemes) is known to underestimate the gap of
semiconductors. DFT itself, in fact, is an exact theory when applied to ground
state properties but, in principle, there is no formal justification to the use of
this theory for excited state properties. The absence of the gap between surface
states at the C(111)(2×1) surface may be due to this reason. A formalism
in which the single particle excitations energy can be more straightforwardly
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accessed is given by the Green’s function theory. Within this approach the
single particle excitation energies are computed calculating the quasiparticle
correction to the DFT band structure using a first order perturbation scheme,
and the self energy operator is approximated as the product of the independent
particle Green’s function G0 and the RPA screened Coulomb interaction W0.
As we have seen in chapter 3, the G0W0 corrections to the band structure do
not change the situation; this is due to the coincidence of two facts specific of
this surface:

1. At the DFT level, along the JK direction of the Brillouin zone (see fig.
2.2) the surface bands are crossing the Fermi level. Both surface states
at J (K) are so occupied (unoccupied).

2. Along the JK direction the higher and lower surface bands’ wavefunction
are equivalent, exhibiting in both case a dangling bond character.

The combination of these two facts implies that the energy of both states at
J (K) are corrected downward (upward) by approximately the same amount.
As a result the dispersion along the JK line is enhanced and the surface stays
semimetallic.
After checking that a non perturbative approach including the off diagonal
terms of the self-energy operator could not improve the results, we have car-
ried out GW calculations within an iterative scheme. The starting configura-
tion corresponded to the Kohn-Sham band structure (i.e. using the Kohn and
Sham eigenvalues and eigenfunctions) using an artificial population in which
the states with the correct symmetry were occupied. The GW calculation
were then repeated, updating the quasiparticle energies while building the self-
energy, till self consistency was reached. As a result a direct gap of about 1 eV
opens between the surface states 13. The insulating character of this surface
thus is not a consequence of asymmetric geometrical changes, rather of many
body effects.

In the absence of inverse photoemission experiments to directly compare
with our band gap calculations we have performed also the calculations of
the optical spectra 14 including the effect of the electron hole interaction. We
have found that strong anisotropy signals at low energy are connected to the
transitions between surface states, the excitonic binding energy ranging from

13We have also checked that this value was independent from the starting configuration,
being it either an artificial ad hoc occupied configuration, or a configuration in which the
conduction band was shifted rigidly by a small or big amount. The indirect gap is ∼ 0.5 eV.

14RAS experiments are currently being carried out in Rome and Berlin [81].
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0.3 to 0.5 eV. If this signal could be detected it would give important indications
on the presence and magnitude of the electronic gap.
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Appendix A

The haydoch recursive method
for optical spectra

As we have seen in chapter 4, in order to obtain an optical spectra including
the electron-hole attraction, one has to diagonalise the excitonic Hamiltonian.
The macroscopic dielectric function is then written in terms of the excitonic
eigenfunctions and eigenvalues. However, this procedure is not only very time
consuming, but it requires the storage in the main memory of at least half of
the excitonic Hamiltonian whose number of elements scales as the square of the
number of transitions N2

t ∼ N2
kN

2
vN

2
c , being Nk, Nc, and Nv the number of k

points in the first Brillouin zone, of conduction and valence bands respectively.
This fact can be understand intuitively thinking that in order to diagonalise a
matrix, all its elements must be known at one time.
In the case of large systems, as surfaces, the memory requirement for the di-
agonalisation of the excitonic Hamiltonian can become prohibitive. In this
appendix we want to present a method that allows to obtain the macroscopic
dielectric function within an iterative scheme in a continued-fraction represen-
tation. During this procedure the excitonic Hamiltonian is repetitively applied
to an initial state. In other words the only operation that has to be performed
is a matrix-vector product, which requires the knowledge of only a matrix line
at the time (scaling now as the number of transitions). This procedure is a gen-
eralisation of the Lanczos method [119] 1 to the computation of any dynamical
properties of a system that can be cast into a form given by:

I(ω) = Im[〈Ψ0|Ô† 1

ω − Ĥ + iη
Ô|Ψ0〉] = Im[〈P | 1

ω − Ĥ + iη
|P 〉]. (A.1)

1The Lanczos method allows to iteratively find a basis in which the Hamiltonian has a
tridiagonal representation
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This method has been introduced by R. Haydock [111], and in the same paper
it has been illustratively applied to the computation of the local density of
states of a system of a given Hamiltonian. Then it has been applied to the
computation of the density-density correlation function of a model Hamiltonian
by E.R. Gagliano and coworkers [120], and finally it has been used to compute
the macroscopic dielectric function by L.X. Benedict and E.L. Shirley in ref.
[121]. We have implemented this method in the excitonic code EXC [109] 2.
In this appendix we will first write the macroscopic dielectric function as eq.
A.1, then we will see how it can be computed as a continued fraction within
the Haydock recursive scheme.
In the Coulomb gauge and neglecting non linear terms, the part of the Hamil-
tonian concerning the interaction of the electromagnetic field with particles
can be in general written as [122]:

Hint = −1

c

∑
i

vi ·A (A.2)

where vi are the velocity operator of each electron and A is the vector potential
of the electromagnetic field. The electron are thus coupled to the electromag-
netic field through their current, and it is very interesting to notice that in the
presence of a local non perturbed Hamiltonian the usual A · P form for the
interaction term is recovered.
If the interaction between light and matter is given by eq. A.2, for a monochro-
matic perturbation of frequency ω, and amplitude A0 the Fermi golden rule
gives a transition rate from the initial state |i〉 to the final state |i〉 of the form:

Pi→f = 2π
A2

0

c2
|〈f |v · ê|i〉|2δ(Ef − Ei − ω), (A.3)

were ê is the polarisation vector. Following the derivation of ref. [123] p. 35,
the macroscopic dielectric function can be connected to the transition rates
through the absorption coefficients giving:

ε2 =
4π2

ω2

∑
f

|〈f |v · ê|0〉|2δ(Ef − Ei − ω) (A.4)

where |0〉 is the many body ground state. The velocity operator can be written
in a more convenient way [124] as:

vα = lim
q→0

[H, eiqrα ]

q
, (A.5)

2This work has been performed in collaboration with F. Sottile during a one month stage
in L. Reining’s group at the Ecole Polytechnique in Palaiseau
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and inserting this expression in eq. A.4 we get:

ε2 = 4π2 lim
q→0

1

q2
ê ·
∑

f

|〈f |[H, eiqr]|0〉|2 1

Ef − E0

δ(Ef − E0 − ω) =

= 4π2 lim
q→0

∑
f

ê · 〈f |eiqr|0〉|2δ(Ef − E0 − ω). (A.6)

Exploiting the properties of the principal part of an integral, namely

1

x+ iε
= P

(1
x

)
− iπδ(x)

and unfolding the expression of the square modulus, we can rewrite eq. A.6
as:

−4π lim
q→0

Im〈0|ê · e
−iqr

q

1

ω − Ĥ + iη

eiqr

q
· ê|0〉. (A.7)

We have finally recovered an expression for the macroscopic dielectric function
that is equivalent to eq. A.1, where |P 〉 is defined as: |P 〉 = limq→0 ê · eiqr

q
|0〉.

Now we want to show how eq. A.1 can be evaluated in terms of a continued
fraction by an iterative procedure.

We start from the state |P 〉 = |1〉 and we build an orthonormal basis
following this scheme:

a1 = 〈1|H|1〉; b1 = |H|1〉 − a1|1〉|

|2〉 =
H|1〉 − a1|1〉
|H|1〉 − a1|1〉|

=
H|1〉 − a1|1〉

b1

it is straightforward to see that 〈1|2〉 = 0, and that 〈1|H|2〉 = b1. We call
a2 = 〈2|H|2〉. Next |3〉 is defined as:

|3〉 =
H|2〉 − a2|2〉 − b1|1〉
|H|2〉 − a2|2〉 − b1|1〉|

=
H|2〉 − a2|2〉 − b1|1〉

b2

where we have implicitely defined b2.
From this three initial states it is possible give an iterative definition for the
rest of the basis:

ai = 〈i|H|i〉; bi = |H|i〉 − ai|i〉 − bi−1|i− 1〉|

|i+ 1〉 =
H|i〉 − ai|i〉 − bi−1|i− 1〉

bi
; (A.8)
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it is easy to show that this is an orthonormal set and that the Hamiltonian is
written in a tridiagonal form in terms of the coefficients {ai, bi} as:

H =



a1 b1 0 . . .
b1 a2 b2 0 . . .

0 b2
. . .

...
...

ai bi 0 . . .
bi ai+1

0 bi+1
. . .

...
...


(A.9)

Let’s now define the operator

(z − Ĥ) = (ω + iη − Ĥ). (A.10)

In the Hilbert space connected by the Hamiltonian to the state |1〉 the set of
states |i〉 that we have just generated is complete so that we can write:∑

n

〈m|(z − Ĥ)|n〉〈n|(z − Ĥ)−1|p〉 = δmp (A.11)

in particular, choosing p = 1 we get:∑
n

〈m|(z − Ĥ)|n〉〈n|(z − Ĥ)−1|1〉 =
∑

n

(z − Ĥ)mn(z − Ĥ)−1
n1 δm1. (A.12)

We rewrite everything more conveniently defining:

Xn = (z − Ĥ)−1
n1 = 〈n|(z − Ĥ)−1|1〉

and noting that Im(X1) is exactly I(ω) we were looking for. If we write eq.
A.12 in terms of {Xi} we have:∑

n

(z −H)mnXn = δm1 (A.13)

that is a linear system of equation for {Xi}. So applying basic linear algebra
theorems we have that:

X1 =
detB0

det(z −H)
(A.14)
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where B0 is a matrix identical to (z −H) except for its first column that has

been substituted with the vector


1
0
0
...

. Namely the two matrices are:

z −H =



z − a1 −b1 0 . . .
−b1 z − a2 −b2 0 . . .

0 −b2
. . .

...
...

z − ai −bi 0 . . .
−bi z − ai+1

0 −bi+1
. . .

...
...


(A.15)

and

z −H =



1 −b1 0 . . .
0 z − a2 −b2 0 . . .

0 −b2
. . .

...
...

z − ai −bi 0 . . .
−bi z − ai+1

0 −bi+1
. . .

...
...


(A.16)

If now we call Di the matrix obtained from (z −H) removing the first i rows
and columns, we can see that:

det(z − Ĥ) = (z − a1) detD1 − b21 detD2 (A.17)

and that
detB0 = detD1. (A.18)

Inserting this results in the expression for X0 given by eq. A.14 we get that:

I(ω) = Im

(
detD1

(z − a1) detD1 − b21 detD2

)
=

= Im

(
1

(z − a1)− b21
det D2

det D1

)
(A.19)
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now in the same way:

detD1 = (z − a2) detD2 − b22 detD3 (A.20)

so that

I(ω) = Im
1

(z − a1)− b21
z−a2−det D3

det D2

(A.21)

in general it can be seen that:

detDi = (z − ai+1) detDi+1 − b2i+1 detDi+2 (A.22)

so that finally we can express I(ω) as a continued fraction:

I(ω) = Im

(
1

z − a1 − b21

z−a2−
b22

z−a3−···

)
. (A.23)

To summarise, in order to obtain the spectra one has:

1. Define the starting state |1〉 = |P 〉 = limq→0 ê · eiqr

q
|0〉

2. Iteratively apply the Hamiltonian to the state generating the orthonormal
set {|i〉} and storing the coefficients {ai, bi} defined by the relations:

ai = 〈i|H|i〉; bi = |H|i〉 − ai|i〉 − bi−1|i− 1〉|

|i+ 1〉 =
H|i〉 − ai|i〉 − bi−1|i− 1〉

bi
(A.24)

3. Build the continued fraction A.23, and compute its imaginary part.

4. Check the convergency of the spectra with the number of iteration used
to build the continued fraction.
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