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Abbreviations

ALDA adiabatic local-density approximation
BO Borh-Oppenheimer
BSE Bethe-Salpeter equation
BZ Brillouin zone
DFT density functional theory
e.g. exempli gratia (“for example”)
GGA generalized gradient approximation
HF Hartree-Fock
HK Hohenberg-Kohn
i.e. id est (“that is”)
IXS inelastic X-Ray scattering
KS Kohn-Sham
LDA local density approximation
LF local fields
MBPT many-body perturbation theory
NIXS nonresonsnt inelastic X-Ray scattering
RIXS resonant intelastic X-Ray scattering
RPA random phase approximation
TDDFT time-dependent density functional theory
xc exchange-correlation
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Introduction

Excitons are many-body excitations that originate from interaction between an electron, in the otherwise
empty conduction band, and a hole, in the otherwise filled valence band, screened by the rest of the
electrons. Excitonic effects dominate low-energy part of the optical and loss spectra. Excitons are
of paramount importance in many semiconductor applications such as photovoltaics, photocatalysis,
light-emitting diodes and so on. It is important to understand the mobility and migrations of excitons,
which is related to their energy dispersion as a function of momentum transfer q.

Optical absorption probes the q → 0 limit, and the most accurate theoretical tool to describe
optical spectra is the Bethe-Salpeter equation from the many-body perturbation theory. Modern loss
spectroscopies – coherent inelastic X-ray scattering (CIXS), resonant inelastic X-ray scattering (RIXS),
Compton scattering – make it possible to study excitons at finite q, and map the full momentum-energy
exciton dispersion. Theoretical tools to interpret the experimental results and explore the excitons at
large momentum transfer based on bethe-Salpeter equation have only recently been developed [1],
allowing us to describe and understand exciton dispersion.

The goal of this work is to apply the newly developed method to a prototypical oxide material,
and also to study a material with Wannier-like excitons, which have not been studied yet within ab
initio theory. The material of choice is Magnesium Oxide, which is a prototype material for insulating
oxides, widely used in optoelectronic devices. It is an sp semiconductor with a band gap of 7.8 eV. It
has rock salt crystal structure, and belongs to the face centred cubic symmetry group, together with
many other important materials. MgO is used as a substrate, and is a part of mixed oxide materials,
such as ZnMgO and MgAl2O4.

This work is divided into three chapters. In the first, we describe briefly the ab initio methods that
we used for calculations of electronic structure and excited state properties:

• Density functional theory (DFT) for the calculation of ground state density and bands structure;
• Theoretical description of spectroscopic properties;
• Time-dependent density functional theory (TDDFT) for the calculation of optical properties;
• Green’s function formalism of the quantum field theory in the many-body physics: GW approxi-

mation and the G0W0corrections of the band gap energy, Bethe-Salpeter equation (BSE) for the
calculation of optical and loss properties and the study of excitons both at q→ 0 limit and finite
q.

In the second chapter, we describe the practical implementation of these theoretical approaches in the
Abinit and DP/EXC codes that we used for calculations.

And finally in the third chapter we present and discuss the obtained results.
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Chapter 1

Theoretical Background

1.1 The many-body problem

The purpose of quantum mechanical calculations is to predict the properties of materials from the first
principles, or ab initio, such as electronic density, electron addition and removal energies, the response
of the system to an external perturbation. All these properties are often encompassed in a polymorphic
name “electronic structure”. The equation of motion for the electrons of mass me with coordinates
ri and nuclei of mass MI with coordinates RI is the famous non-relativistic Schrödingier equation:
ih̄ ∂

∂t
Ψ = Ĥ Ψ, where Ĥ is the many-body Hamiltonian, which in the abscence of external potentials

is:

Ĥ = −
∑
i

h̄2∇2
i

2me

−
∑
I

h̄2∇2
i

2MI

+ 1
2
∑
i 6=j

e2

|ri − rj|
−
∑
iI

ZIe
2

|ri − RI |
+ 1

2
∑
I 6=J

ZIZJe
2

|RI − RJ |

The first two terms are the kinetic terms for electrons and nuclei, and the other three terms is the
instanteneous Coulomb interaction between all pairs of bodies. By solving the corresponding eigen-
value problem Ĥ Ψn = EnΨn we find the stationary wavefunctions, which depend on all nuclear and
electronic variables, and corresponding energies En of the system. The wavefunctions contain all
information about the system, but even though we can write the Hamiltonian exactly for any system, it
cannot be solved analytically for a system which contains more than two bodies, yet alone for a solid
with 1023 interacting particles. So, inevitably, we have to adopt some approximations to solve the
problem, or find a way to extract the information we need without finding the eigenfunctions of the
system.

The Born-Oppenheimer approximation allows us to decouple motion of electrons from nuclei.
However, solving the Shrödinger equation for electronic problem is still not feasible. All the methods
of electronic structure calculation can be separated into two categories:

• wavefunction-based methods
• integrated variable methods

The wavefunction-based methods—for instance, Hartree-Fock, CI, MP2, quantum Monte-Carlo—deal
directly with the wavefunctions, trying to find the solutions of the electronic Hamiltonian (often
approximated). These methods are mostly used to study molecules, as the number of electrons is
relatively small, and computational cost scales quite unfavorably with the numer of electrons.

However, we usually want to know only limited amount of information which is of practial interest
to us. The integrated variable methods abandon the idea of following single electrons and instead
aim at finding the relevant information about observables bypassing the many-body wavefunctions.
The integrated variables are obtained from the full wavefunction by integrating over all but a few
variables: for instance, ground state electronic density n0(r), density matrix γ(r, r′), one-particle
Green’s function G(r, t, r′, t′) (which can be though of as a dynamical density matrix), and so on.

Each of these basic variables is suitable for evaluation of certain observables: to find the total
energy of a system, one can use ground state density, but to find electron removal energies, one has to
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use more advanced formalism of Green’s functions. It is crucial to know which experiment one wants
to describe and choose the cheapest consistent theory.

1.2 Ground state properties and density functional theory

Density functional theory (DFT) is based on the assumption that any property of a many-body system
can be seen as a functional of its ground state electronic density n0(r). The existence of such functionals
was proven by Hohenberg and Kohn in the landmark paper [2], where they stated the two fundamental
theorems of DFT (as presented in [3]):

Theorem I.
“For any system of interacting particles in an external potential Vext(r), the potential Vext(r) is
determined uniquely, except for a constant, by the ground state particle density n0(r).”

Theorem II.
“A universal functional of the energy E[n] in terms of the density n(r) can be defined, valid
for any external potential Vext(r). For any particular Vext(r), the exact ground state energy of
the system is the global minimum value of this functional, and the density that minimises this
functional is the exact ground state density n0(r).”

While the Hohenberg-Kohn theorems prove the existence of the funcitonals of the grouns state
density, they say nothing about how to find them. What made DFT useful is the Kohn-Sham ansatz,
which replaces the original many-body problem by the auxiliary problem of non-interacting electrons,
assumin that the ground state density of the auxiliary system is the same as the density of the original
system [4].

The Hamiltonian of the auxiliary system consists of the kinetic energy term and the effective
potential V σ

eff (r), which is usually chosen to be local:

ĤKS = −1
2∇

2 + V σ
eff (r)

The effective potential in general depends on the electron spin σ, however, in this work we will
disregard the spin dependence and consider only spin-symmetric case where N↑ = N↓.

The ground-state density of the KS system is then obtained from the eigenfunctions φi(r) of the
KS Hamiltonian:

n(r) =
N∑
i

|φi(r)|2

According to the second HK theorem, we need the ground state energy fuctional E[n] to find the groud
state density of the KS system, which according to the KS ansatz is equal to the true ground state
density. This ground state functional of the whole many-body system is written as:

EKS = T [n] +
∫
dr Vext(r)n(r) + EHartree[n] + EII + Exc[n] (1.1)

where T [n] is the kinetic energy functional of the auxiliary electrons, which can be calculated explicitly
as a functional of the KS orbitals:

T =
N∑
i

〈φi|∇2|φi〉

And the Hartree energy EHartree is the energy of classical charge density n(r) interacting with itself:

EHartree[n] = 1
2

∫
d3r d3r′

n(r)n(r′)
|r− r′|
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The external potential Vext incorporates the potential of the nuclei and other external fields that may be
present, and the EII is the energy of the interaction between nuclei.

All terms in the equation (1.1) are well defined, except the last one: the exchange-correlation
functional Exc[n]. It incorporates all the many-body effects, i.e. electron-electron interaction beyond
the classic Hartee term. If the functional Exc[n] was known, we would be able to find the exact
ground-state density of the may-body system by finding the minimum of the ground-state energy:

δ(EKS[n(r)]− εi
∫
drn(r))

δn(r) = 0 (1.2)

Which can be rewritten as the Schrödinger-like equation:(
−1

2∇
2 + Vext(r) + δEHartree

δφi(r) + δExc
δφi(r)

)
φi = εiφi (1.3)

This is the Kohn-Sham equation, and it must be solved self-consitently.
While the KS eigenvalues εi have a definite meaning within the KS theory—Lagrange multipliers

in the problem (1.2), they do not have a physical meaning: they are not the electron addition and
removal energies, except that in a finite system the highest eigenvalue is equal to the ionization energy.
In particular, the KS eigenvalues should not give a correct band gap of a semiconductor.

For the practical implementation of the Kohn-Sham approach the exchange-correlation functional
Exc must be approximated. Many functionals have been developed, but for our material (MgO) as well
as for many other sp semiconductors and simple metals the most simple, but remarkably useful local
density approximation (LDA), which is exact for homogeneous electron gas, shows great results. In
LDA, the exchange-correlation energy at each point r is taken to be equal to the exchange-correlation
energy of the homogeneous electron gas with the density at this point. The exchange-correlation energy
of the homogeneous electron gas can be calculated with great accuracy using quantum Monte-Carlo
methods [5].

To summarise, Kohn-Sham DFT allows us to find the ground state density of the many-body system
through the introduction of the auxiliary system of non-interacting electrons. The density we find
would be exact if the ground state energy functional E[n] was known. In practice, the kinetic energy,
interaction with external potential and Hartree energy are well defined, while the many-body effects are
incorporated into the unknown exchange-correlation functional Exc[n]; so the density we can calculate
is as good as the approximation for the exchange-correlation functional.

In practice, DFT can be successfully applied to many different materials, and can predict ground-
state properties—atomic structure, total energy, electronic density, elastic constants, phonon frequen-
cies. For the description of the excited state properties—band gap, optical and dielectric properties
etc—one has to go beyond DFT.

1.3 Description of the Spectroscopic Properties

Most generally speaking, spectroscopies measure response of the system to an external perturbation
(electromagnetic radiation, fast paricles, etc). We can separate the spectroscopic techniques of interest1

into two categories: those where the number of particles changes (photoemission and inverse photoe-
mission), and those where the number of particles remains the same (optical absorption, scattering
experiments).

In photoemission, the system absorbs a photon and as a consequence emits an electron, which
carries certain energy and momentum. From the kinetic energy of the photoelectron, we can find energy

1There are many kinds of spectroscopies, and here we will discuss only those where electronic degrees of freedom are
involved, like optical absorption, inelastic X-ray scattering, photoemission, and similar.
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of the state from which the electron was ejected, and from its direction, we can find the momentum
that this electron had inside the crystal. The photoemission experiments probe occupied states of the
system. Inverse photoemission probes empty states in the similar fashion: the system is irradiated
with a beam of electrons, which couple to the empty states and emit radiation. Description of these
spectroscopies relies on the determination of the electron addition and removal energies, and the quasi
one-particle picture can be adopted, where the additional particle (the electron or the hole) interacts
with the rest of the electrons, which are seen as some effective medium.

In case of neutral excitations, an electron is excited into a higher state, leaving a hole behind; the
number of particles in the system remains the same. The electron and the hole interact, screened by the
other charged particles, and this interaction cannot be reduced to a one-particle picture. The description
of such excitations is different from the description of the charged excitations and is more complicated.

Linear response

If the applied external potential is small, we can consider it as a perturbation and use linear-response
framework [6]. The Hamiltonian can be written as: Ĥ (t) = Ĥ0+Ĥ1(t), where Ĥ0 is the Hamiltonian
of the system in the abscence of external potential, and Ĥ1 is the perturbative part. The response
function χ relates the perturbing potential2 to the response of the system:

δ〈O(r, t)〉 = 〈O(r, t)〉 − 〈O(r, t0)〉 =
∫
dr′

∫
dt′ χ(r, r′; t− t′)V (r’, t′) (1.4)

Where 〈O(r, t)〉 is the expectation value of the operator O under the perturbing potential V , and the
〈O(r, t0)〉 it its expectation value in the unperturbed system. In the V → 0 limit the response function
χ is independent of the applied potential. The Fourier transform of the response function is a complex
function χ(ω) = χ1(ω) + iχ2(ω), and the real and imaginary part are related through Kramers-Kronig
relations [3]. The response function which relates induced charge density to the perturbing potential is
called full polarizability:

nind(r, t) =
∫
dr′ dt′ χ(r, r′; t− t′)Vext(r’, t′) (1.5)

It can be shown [6] that the Fourier tranform of polarizability χ(r, r′, ω) can be written as:

χ(r, r′, ω) =
∑
i

[
fi(r)f ∗i (r′)

ω − (EN
0 − EN

i ) + iη
+ fi(r′)f ∗i (r)
ω + (EN

0 − EN
i ) + iη

]
(1.6)

where fi(r) = 〈N |n(r, 0)|N, i〉, and EN
0 and EN

i are the energies of the ground state |N〉 and ith

excited state |N, i〉. It is clear that polarizability has poles at excitation energies of the N -particle
system.

The equation (1.6) describes the full polarizability of the system from the microscopic point of
view, which is convenient for the microscopic ab inito description; however, experiments measure
macroscopic, averaged in space quantities.

Microscopic-macroscopic connection

Electrodynamics is able to describe electric and magnetic fields in macroscopic media using the
Maxwell equations [7]. The external field induces changes in the system, or, in other words, the
external field is screened, which creates induced fields. The total field which acts on a test particle is a
sum of the external and induced fields. The quantity which relates induced and external fields is the

2The response can be formulated in terms of fields or, alternatively, in terms of potentials; the latter way is easier and
thus is perferred.
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dielectric function3:
D(r, t) =

∫
dr′ dt′ εM(r, r′, t− t′)E(r′, t′) (1.7)

Where D is the electric displacement (“applied field”) and E is the total electric field. The macroscopic
dielectric function εM(ω) = ε1 + iε2 is related to the refractive index n =

√
ε = ν + iκ and other

measurable quantities. Absorption coefficient α is proportional to the imaginary part of εM :

α = ωε2

νc
(1.8)

Energy dW lost by fast particle (e.g. electron) due to inelastic scattering in the unit time dt is:

dW

dt
= − 1

π2

∫ dk
k2=

{
ω

ε(k, ω)

}
(1.9)

Where the function =ε−1 is called the loss function.
Macroscopic dielectric function εM only contains information about the way the system reacts

to a perturbation on a macroscopic scale, i.e. the scale of the wavelength of applied filed (which in
case of UV-VIS spectroscopy is much larger than interatomic distances or the size of the unit cell).
We would like to compute εM from the first principles, e.g. from the quantum mechanical description
of the system. The relation between the microscopic response function χ and the experimentally
measured quantities is not straightforward. The quantities measured in usual spectroscopy experiments
(except atomic resolution electron microscopy and high-energy X-Ray spectroscopy) are averaged
over distances which are large comparing to the scale of inhomogenities of the system (unit cell size,
interatomic distances, etc) [8]. The response function that we can use to build the bridge between
microscopic and macroscopic quantities is the inverse microscopic dielectric function ε−1, which is
also related to the full polarizability χ:

ε−1 = δ(Vext + VHartree)
δVext

= 1 + vχ (1.10)

In a periodic solid, it is more convenient to work with the microscopic dielectric function
ε−1(r, r′, ω) in the k-space, so it becomes a matrix εGG′(q, ω), where G is a reciprocal lattice vector
and q belongs to the first Brillouin zone: k = q + G. The averaging in space is achieved by taking the
head element of the matrix:

εM(q, ω) = 1
ε−1

GG=0′(q, ω)
(1.11)

This yields the macroscopic dielectric function εM , from which we can calculate the quantities
relevant to the experiments. Now we will discuss approaches to calculate ε−1 from the first principles,
since from it we can obtain crucial spectrosopic quatities.

1.4 Time-Dependent Density Functional Theory

Runge and Gross extended Hohenberg-Kohn theorems of the density-functional theory to the time
domain, showing that the time-evolution of a system is a unique functional of time-dependent density,
given the initial wavefunction at one time (when the system begins in its ground state, there is no
initial state dependence) [2]. This laid the foundations of the time-dependent density-functional
theory (TDDFT), describes the excitations of the many-body system using response functions within
Kohn-Sham framework.

3This is a function only for isotropic medium or a cubic crystal, and in general case this quantity is a tensor.
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The time-dependent Schrödinger-like Kohn-Sham equation is the extension of the equation (1.3):

ih̄
∂φi(t)
∂t

=
(
−1

2∇
2 + Vtot(r, t)

)
φi(t)

with the time-dependent total effective potential:

Vtot(r, t) = Vext(r, t) +
∫
dt
n(r′, t)
|r− r′|

+ Vxc[n](r, t) (1.12)

where exchange-correlation potential Vxc[n](r, t) is the functional of density at all earlier times. It is
not known how to create such functional, and in the majority of cases adiabatic approximation is used,
where the functional form of the exchange-correlation potential is independent of time.

Here we apply linear response formalism to study the effect of a small perturbation Vext(r, t) on
the system using TDDFT. The response function of interest is the full polarizability, introduced in
the equation (1.5). We can also introduce the response function χ0 of the auxiliary non-interacting
Kohn-Sham system to the effective total potential (eq. (1.12)):

nind(r, t) =
∫
dr dt χ0(r, r′, t− t′)Vtot(r′, t′) (1.13)

The independent-particle polarizability χ0 has a well known form in the frequency domain [8, 6]:

χ0(r, r′, t− t′) =
∑
vc

φ∗v(r)φ∗c(r)φ∗c(r′)φv(r′)
ω − (εc − εv)− iη

(1.14)

The two response functions χ and χ0 are related through a Dyson-like equation:

χ(r, r′, ω) = χ0(r, r′, ω) +
∫ ∫

dr′′ dr′′′
(
χ0(r, r′, ω) (v(r′′, r′′′) + fxc(r′′, r′′′, ω))χ(r′′′, r′, ω)

)
or, using concise notation:

χ = χ0 + χ0(v + fxc)χ (1.15)

where v = δVHartree/δn, and fxc = δVxc/δn is the exchange correlation kernel, which accounts for
the first order exchange and correlation effects in the perturbing potential.

For homogeneous systems, heterogenities due to the local structure—local field effects—can be
neglected:

n(r, t) =
∫ ∫

dt dr′ χ(r− r′, t− t′)Vext(r′, t′)

In the reciprocal space the polarizability matrix χGG′(q, ω) becomes diagonal. Of course, realistic
systems are not homogeneous, and care must be taken when the local fields are not taken into account.
This approximation might have a small effect in simple solids, but fails completely in heterostructures
and finite systems, where the off-diagonal elements cannot be neglected.

In practice, the calculation of optical spectra in TDDFT is done in the following way:
1. Ground state calculation of the Kohn-Sham wavefunctions φi and eigenenergies εi.
2. Calculation of the independent-particle polarizability χ0 from the KS wavefunctions and eigen-

values according to the equation (1.14).
3. Calculation of the full polarizability χ using the equation (1.15).
4. Calculation of the inverse microscopic dielectric function ε−1 (eq. (1.10))
5. Finally, the macroscopic dielectric function εM (eq. (1.11)), from which the absorption, energy

loss and other spectra can be obtained.
To calculate the full polarizability χ, we need the exhange-correlation kernel, which is not known

and must be approximated. The simplest way is the random phase approximation (RPA) [9], in
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which the exchange-correlation kernel is simply neglected: fRPAxc = 0. This means that the exchange-
correlation effects are taken into account only during KS DFT ground state calculation, but are
neglected in the caclulation of the linear response. In fact, the polarizability obtained with RPA
is equivalent to the application of Fermi Golden Rule to the Kohn-Sham system of noninteracting
particles, if no local fields are included. The other common approximation is the adiabatic local density
aproximation (ALDA), which sets the exchange-correlation kernel equal to the functional derivative of
the LDA exchange-correlation potential V LDA

xc with respect to the density n in adiabatic (i.e. static,
time-independent) limit:

fALDAxc (r, r′) = δ(r− r′)δV
LDA
xc (n(r))
δn(r) (1.16)

In the adiabatic approximation all the memory effects are neglected, and the kernel is time-independent.
ALDA gives satisfactory EELS and also optical spectra for finite systems (molecules and clusters), but
systematically fails to describe optical spectra of solids [10]. To describe them other approximations
for the fxc are developed [11, 12]; however, state of the art description of the optical properties is done
within the Green’s funciton formalism.

1.5 Green’s function formalism

Density funcitonal theory, discussed in the previous sections, uses electronic density n as a basic
variable. While this is an integrated variable which does not contain as much information about the
system as the many-body wavefunction, it is exteremely useful for finding the quantities that are
interesting from the practical point of view. Another integrated variable of such kind is a one-particle
Green’s function, which can be interpreted as a frequency-dependent one-particle density matrix. The
one-particle Green’s function contains information about single-particle addition and removal energies,
expectation values of single-particle operators, and ground state energy of the system. It is especially
useful for description of photoemission experiments. While in this work photoemission is not the
subject of interest, introduction of the single-particle Greens’ function is the necessary step for us to
come to the two-particle Green’s functions, which are invaluable for the description of electron-hole
pairs.

The Green’s functions are defined within the second quantization formalism. The key concepts of
the second quantisation are creation and annihilation operators ĉ†i and ĉi, which create (and annihilate,
respectively) a particle in the state φi. They can be represented in the position basis of eigenfunctions
of the x-operator (where x stands for the spatial and spin coordinates (r, σ)), in which case they are
called field operators ψ̂†(x) and ψ̂(x). If the operator ĉ†i creates a particle in the state φi, the operator
ψ̂†(x) creates a particle with the coordinate x, i.e. with spin σ and in the position r.

Now, for a many-body system with the N -particle ground state |N〉 and field operators in Heisen-
berg picture ψ̂(1) and ψ̂†(2) (where (1) is the shorthand for (r1, σ1, t1)) we can define the single
particle Green’s function [13, 6]:

iG(1, 2) =

 〈N |ψ̂(1)ψ̂†(2)|N〉, if t1 > t2

〈N |ψ̂†(2)ψ̂(1)|N〉, if t1 < t2

The Green’s function describes propagation of a particle added to a system at time t1 and coordinate
r1, and removed from the system at the time t2 and coordinate r2. If t1 > t2, the Green’s funtion
describes propagation of a hole, and if t1 < t2, it describes proparagion of an electron.

In the Lehmann representation, Green’s function in the frequency space can be written as [6]:

G(r1, r2, ω) =
∑
i

fi(r1)f ∗i r2

ω − εi + iη sign(εi − µ) (1.17)
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where εi = E|N〉 − E|N+1,i〉, µ is chemical potential, and fi(r) are the Lehmann amplitudes:

fi(r) =

 〈N |ψ̂(r)|N − 1, i〉, if εi > µ

〈N − 1, i|ψ̂(r)|N〉, if εi < µ

In the Lehmann representation it becomes clear that G(1, 2) has poles at the particle addition and
removal energies, which lay infinitesmally below real axis if εi > µ, and infinitesmally above it if
εi < µ. This makes it the ideal tool to describe charged excitations and photoemission spectroscopies.

The formal definition of Green’s function is useless from the practical point of view, as it is based
on the full many-body wavefunction |N〉. One of the approaches to calculate Green’s function is
a perturbative approach, adopted by Many-Body Perturbation Theory. The other way is to find an
equation for which Green’s function is a solution, and solve it approximately.

From the equations of motion for the field operators in Heisenberg picture, it is possible to derive
the hierarchy of the equations of motion for the Green’s functions:[

i
∂

∂t
− h0(r1)

]
G(1, 2) = δ(1, 2)− i

∫
d3 v(1, 3)G2(1, 3+; 2, 3++)

where 3+ = (r3, σ3, t3 + δ), δ being a positive infinitesmal. This equation establishes relation between
one-particle Greens function G and the two-particle Green’s function G2. The 2-paricle Greens
function is then related to the 3-particle Green’s function, and so on, untill the full many-body Green’s
function. The fundamental idea is that if one is interested in one-particle properties, one needs only
one-particle Green’s function. By making approximations to the Green’s functions for higher number
of particles, we can solve this equation of motion and obtain approximated 1-particle Green’s function.
For example, making independent particle approximation for the 2-particle Green’s function yields the
1-particle Green’s Function in the Hartree-Fock approximation.

Alternatively, we can introduce the self-energy operator, in which the higher-order excitations are
folded: [

i
∂

∂t
− h0(r1)− VHartree(1)

]
G(1, 2) = δ(1, 2)− i

∫
d3 Σ(1, 3)G(3, 2) (1.18)

It is a complex non-local frequency-dependent operator, which implicitly takes into account many-body
effects (exchange and correlation) of the system.

The independent-particle4 Green’s function G0(1, 2) is obtained by setting Σ = 0:[
i
∂

∂t
− h0(r1)− VHartree(1)

]
G0(1, 2) = δ(1, 2)

Inserting the definition of the G0 into the equation of motion (1.18) yields the Dyson equation:

G(1, 2) = G0(1, 2) +
∫
d(34)G0(1, 3)Σ(3, 4)G(4, 2)

or, using the concise symbolic notation:

G = G0 +G0ΣG. (1.19)

Single-particle Green’s function is the resolvent of a Schrödinger-like equation:[1
2∇

2 + Vext(r) + VHartree(r)
]

Ψi(r) +
∫
dr′Σ(r, r′, ω)Ψi(r′, ω) = Ei(ω)Ψi(r, ω) (1.20)

4Even though the Green’s funciton G0(1, 2) is called “non-interacting”, it still contains Hartree potential.
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which can be approximated by putting ω = Ei(ω), giving rise to the quasiparticle equation (which is
equavalent to assuming that the complex pole of G is its dominant part).

The concept of quasiparticles was introduced by Lev Landau in the Fermi liquid theory. He noticed
that in the liquid, instead of considering electrons interacting via the long-range Coulomb forces,
we can consider quasiparticles (or “dressed” eletrons), which interact via short-ranged, screened
interaction. Any electron excludes the other electrons from its neighborhood, and thus effectively
carries around itself a cloud of positive charge. While such electron requires a very complicated
description, if we consider the electron with its cloud as a quasiparticle, which weakly interacts
with other quasiparticles, the description becomes much more simple. Such quasiparticle has the
same spin, charge and momentum, but dynamical properties (mass, magnetic momentum etc) are
renormalized. As the quasiparticles are not the eigenstates of the system, they can dissipate and break
down, and the farther they are from the Fermi surface, the shorter is their lifetime. All the difference
between bare electrons and quasiparticles is incorporated into the self energy, whcih is non-local,
frequency-dependent, non-hermitian operator.

The quasiparticles near Fermi surface are very similar to the non-interacting (but still subjected to
the Hartree potential) electrons, and so the properties of the Fermi liquid near Fermi surface can be
derived using perturbative approach, slowly switching the interaction on. One can also notice that the
Kohn-Sham equation (1.3) is similar to the quasiparticle equation (1.20), where Vxc(r) plays the role
of self energy Σ(r. This is the reason why the Kohn-Sham DFT yields good band dispersion for most
materials: if the quasiparticle picture is reasonable, the LDA Kohn-Sham orbitals are often close to the
quasiparticle states. There are cases, however, when quasiparticle picture is invalid; in this case, the
whole concept of band structure becomes meaningless, and one has to be careful with the interpretation
of the results of band structure calculations.

1.6 GW approximation

Lars Hedin in 1965 developed the approach to approximate the self-energy Σ [14]. He derived 5
coupled integro-differential equations, cast in terms of a 1-particle Green’s function G, self-energy Σ,
irreducible polatizability P̃ , screening W and vertex Γ, which are often called “Hedin’s pentagon”:

Σ(1, 2) = i
∫
d(34)G(1, 3)Γ(3, 2, 4)W (4, 1+) (1.21)

G(1, 2) = G0(1, 2) +
∫
d(34)G0(1, 3)Σ(3, 4)G(4, 2) (1.22)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +
∫
d(4567) δΣ(1, 2)

δG(4, 5)G(4, 6)G(7, 5)Γ(6, 7, 3) (1.23)

W (1, 2) = v(1, 2) +
∫
d(34)v(1, 3)P̃ (3, 4)W (4, 2) (1.24)

P̃ = −i
∫
d(34)G(1, 3)G(4, 1+)Γ(3, 4, 2) (1.25)

The irreducible polarizability is defined as:

P̃ = δn(1)
δU(2) , where U(2) = Vext(2) + VH(2) (1.26)

The vertex function is:

Γ(1, 2, 3) = −δG
−1(1, 2)
δU(3) = δ(1, 2)δ(1, 3) + δΣ(1, 2)

δU(3) (1.27)

13



And through the definition of the time-ordered dielectric function:

ε(1, 2) = δ(1, 2)−
∫
d3 v(1, 3)P̃ (3, 2) (1.28)

we can obtain the equation for the screening:

W (1, 2) =
∫
d3 ε−1(3, 2)v(1, 3) (1.29)

The five Hedin’s equations are exact, and in principle, they could be solved in an iterative way; however,
in practice this is not possible, and some approximations must be made.

The GW approximation [14, 15] neglects the variation of self-energy in the equation for vertex
function (1.23), making ΓGW (1, 2, 3) = δ(1, 2)δ(1, 3). Now, to solve the Hedin’s equation, we start
from setting the Green’s function equal to the G0, and the other equations become:

P 0(1, 2) = −iG0(1, 2)G0(2, 1+)

W 0(1, 2) = v(1, 2) +
∫
d(34) v(1+, 3)P 0(3, 4)W 0(4, 2)

Σ(1, 2) = iG0(1, 2)W 0(1+, 2)

The polarizability P 0 is the independent-particle RPA polarizability. Using the obtained self-energy
Σ0 = G0W 0, we can obtain quasiparticle energies from the equation (1.20). As was mentioned before,
the Kohn-Sham equation is similar to the quasiparticle equation, and so we can treat the difference
as a perturbation. This is why the GW corrections are calculated on top of the KS DFT results. One
can solve the Hedin’s equations in GW approximation in a self-consistent way with both energy and
wavefunctions, or stop at the first-order corrections to the KS energies (so called G0W0); there are also
intermediate approaches, for instance, G0W, GW0 and so on.

GW approximation describes the propagation of the additional particle (electron or hole) in the
effective medium, replacing the many-body interactions between additional charge and the electrons
with the polarizability of the medium. In fact, GW approximation is the Hartree-Fock approximation
with an additional term: the screened Coulomb interaction. Comparing to the Hartree-Fock approxima-
tion, where potential has infinite range and is static, the screened Coulomb interaction W is dynamic
(and in metallic systems also short-ranged). Because of the frequency dependence of the self-energy,
we can obtain more solutions than the dimention of a basis (more, than there are particles in a system),
which is impossible in adiabatic approximation to the kernel. In case of GW, this means that we take
into account coupling of the additional particle with plasmons [16]. The GW approximation, however,
is reliable only when this coupling is weak.

The GW approximation is good for the description of photoemission experiments and yeilds
bandgap energies very close to experiment [17]. However, it fails at the description of optical
properties, because the variation of self-energy in eq. (1.23), neglected in the GW approximation,
contains the information about electron-hole interaction, which is essential for the description of
neutral excitations. This variation enters the kernel of the Bethe-Salpeter equation for the 2-particle
Green’s funciton, which allows for a state of the art description of the optical properties, including the
excitonic effects.

1.7 Bethe-Salpeter equation

The optical absorption inevitably involves interaction between the electron in an excited state and
the hole it left behind in a valence state. It cannot be described within one-particle picture, as the
electron-hole interaction must be taken into account. Thus, we introduce the two-particle Green’s
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function [6]:
G(1, 2, 3, 4) = (−i)2〈N |T

[
ψ̂(1)ψ̂(3)ψ̂†(4)ψ̂†(2)

]
|N〉

The two-particle excitations are described using the two-particle correlation function L, also called
four-point polarizability:

L(1, 2, 3, 4) = L0(1, 2, 3, 4)−G(1, 2, 3, 4),

where the independent-particle polarizability L0 describes the propagation of an electron and a hole that
don’t interact: L0(1, 2, 3, 4) = iG(1, 3)G(4, 2). The four-point polarizability L enters the Dyson-like
equation, known as the Bethe-Salpeter equation [18]:

L(1, 2, 3, 4) = L0(1, 2, 3, 4)+
∫
d(5678)L0(1, 2, 5, 6) [v(5, 7)δ(5, 6)δ(7, 8) + Ξ(5, 6, 7, 8)L(7, 8, 3, 4)],

where the kernel Ξ is:

Ξ(5, 6, 7, 8) = i
δΣ(5, 6)
δG(7, 8)

The four-point polarizability L can be contracted to obtain the two-point response function χ =
δn(1)/δVpert(2):

χ(1, 2) = L(1, 1+, 2, 2+)

The many-body kernel Ξ is unknown, and must be approximated. Setting Σx(1, 2) = iG(1, 2)v(1, 2)
(i.e. neglecting screening) yields the time-depentent Hartree-Fock approximation, while the “standard”
Bethe-Salpeter equation implies the use of GW self-energy:

Ξ(5, 6, 7, 8) = i
δΣGW (5, 6)
δG(7, 8) = −δG(5, 6)W (5, 6)

δG(7, 8) = W (5, 6)δ(5, 7)δ(7, 8) +G(5, 6)δW (5, 6)
δG(7, 8)

Here the term GδW/δG describes a second-order effect —the change in screening because of the
excitation, and is normally neglected. The Behte-Salpeter equation finally becomes:

L(1, 2, 3, 4) = L0(1, 2, 3, 4)

+
∫
d(5678)L0(1, 2, 5, 6) [v(5, 7)δ(5, 6)δ(7, 8)−W (5, 6)δ(5, 7)δ(6, 8)]L(7, 8, 3, 4)

or, using concise notation, L = L0 + L0[v −W ]L.
The Bethe-Salpeter equation describes the response to a perturbation as creation of electron-hole

pairs, which is expressed by the term L0. The electron-hole pairs, in turn, create the induced potential,
which affects the rest of the system, modifying the potential which acts on the electon-hole pair in
a self-consistent manner. This two-particle picture allows for the description of excitonic effects in
spectra, including the formation of bound excitons.

Dynamical effects in W and in G tend to cancel out in case of simple semiconductors, so they are
usually neglected in both. This means that the screening is assumed to be instanteneous. Including
the dynamical effects in the interactions would give rise to a non-Hermitian kernel, which would
allow us to describe, among other effects, excitonic lifetimes, double excitations, dynamical screening
etc.However, there is no practical implementation of the dynamic BSE so far, and the statec BSE is
considered to be the state of the art for electronic structure response functions.
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Chapter 2

Computations

All methods that we use are fully ab initio, meaning that there are no adjustable parameters, and
everything is calculated from the first principles. The only parameters we have are the convergence
parameters, which must me changes untill the spectrum (or other quantity of interest) does not change
anymore.

2.1 Structure of MgO

MgO (periclase) has rock salt crystal structure, with 2 atoms in a unit cell: Mg at the position (0, 0, 0)
and O at the position (1/2, 1/2, 1/2) is the reduced coordinates. The lattice constant as measured my
the X-ray diffraction is 4.217 Å [19].

Figure 2.1: First Brillouin zone of a face-centered cu-
bic crystal (space group 225). The scheme was taken
from the Bilbao crystallographic server [20]

Special reciprocal cartesian
point coordinates coordinates

Γ 0, 0, 0 0, 0, 0
X 1/2, 1/2, 0 0, 0, 1
L 1/2, 1/2, 1/2 1/2, 1/2, 1/2
W 1/2, 3/4, 1/4 1/2, 0, 1
K 3/8, 3/8, 3/4 3/4, 3/4, 0

Table 2.1: Coordinates of the special points in the first
Brillouin zone of fcc crystal. [20]

The Brillouin zone of the face-centered cubic crystal is presented on the Fig. 2.1. The coordinates
of symmetry points are listed in the Table 2.1. These coordinates were used in the calculation of band
structure and of the loss properties for q > 0.

2.2 DFT calculations

The DFT calculations were performed using Abinit code [21] with local density approximation. The
Kohn-Sham (KS) equation (1.3) must be solved in the iterative way to find the KS wavefunctions φi
and eigenenergies εi.
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The number of iterations is determined by the difference between the wavefunctions, or between
total energies that are obtained between iterations.

For periodic solids, it is convenient to work in a reciprocal space, so the plane wave basis set is a
natural choice:

ψnk(r) = eik·runk(r), where unk(r) =
∑

G
unk(G)eiG·r (2.1)

The size of the basis set is determined by the number of G vectors, included in the sum (2.1). This
number is usually specified indirectly, using the energy cutoff :

(k + G)2

2 < Ecut (2.2)

Many quantities that we calculate require integration over the Brillouin zone. To compute such integrals
numerically, we have to convert integral to a sum over the set of k-points. It turns out that some ways
to sample the Brillouin zone are better than the other. Monkhorst and Pack presented a way to build
k-point grids which ensure fast convergence [22], and we follow this recipe for our DFT calculations.

We use pseudopotential approach [23] which allows us to exclude core electrons form the calcula-
tions [3] and thus reduce the computation cost. The pseudopotentials we used were the norm-conserving
Troullier-Martins taken from the Abinit web site [24].

2.3 TDDFT calculations

The general scheme of TDDFT calculations was presented in the section 1.4. The Kohn-Sham energies
and wavefunctions (computed in the previous step) enter the equation (1.14) for χ0, which through the
eq. (1.15) and (1.10) leads to the microscopic dielectric matrix εGG′(q, ω). The head element of the
matrix is then inverted to obtain the macroscopic dielectric function εM (eq. (1.11)).

We have performed the computations using DP code [25] with RPA and ALDA. The most important
parameters that enter the calculations are: number of bands to sum over in the equation (1.14) for χ0;
size of the plane wave basis set; number of the G vectors, i.e. dimention of the εGG′(q, ω) matrix.

The k-point grid used for the calculation of optical properties is different from the symmetric
Monkhorst-Pack grids. For fast convergence of optical spectra the grid must contain no high-symmetry
points. It is built in a similar way to a Monkhorst-Pack grid, except that the shifts are symmetry-
breaking [26].

2.4 G0W0corrections in practice

The GW corrections were performed with Abinit code [27] using plasmon-pole model.
The independent-particle Green’s function is built from the Kohn-Sham wavefunctions and ener-

gies. The polarizability which is required for calculation of screening is independent-particle RPA
polarizability χ0, which in k-space is:

χ0
GG′(q, ω) = 2

Ω

BZ∑
k

∑
cv

ρ̃tρ̃t∗

ω + εc,k - q − εv,k − iη
+ 2

Ω

BZ∑
k

∑
cv

ρ̃tρ̃t∗

ω − (εc,k - q − εv,k)− iη (2.3)

where the matrix elemets ρ̃t for each transition t between states |k-q, c〉 and |k, v〉 are:

ρ̃t = 〈k-q, c|e−i(q+G)r|k, v〉 =
∑
G′
u∗k-q,c(G′)u∗k,v(G+G′) (2.4)

The crucial parameters are: dimetions of matrix χ0
GG’ (eq. (2.3)); number of bands to sum over
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(eq. (2.3)); number of k-points to sum over (eq. (2.3)); size of the basis set (number of G vectors,
equation (2.4)).

Next, the quasiparticle energies must be computed using the G0W0self-energy:

Σ(r, r′, ω) = i

2π

∫
dω′G0(r, r′, ω − ω′)W 0(r, r′, ω)e−iηω′

(2.5)

where W 0 is the screened Coulomb interaction calcualted with χ0. Since the quasiparticle equa-
tion (1.20) is similar to the KS equation (1.3), it is reasonable to assume that φQPi ≈ φKSi , and so the
equation for quasiparticle energies becomes:

εQPi = εKSi + 〈φKSi |Σ(r, r′, ω = εQPi )− Vxc(r)|φKSi 〉 (2.6)

The self-energy depends on the energy, and so the equation (2.6) should be solved self-consistently.
However, in practice the self-energy is linearized:

〈Σ(ω = εQPi )〉 = 〈Σ(ω = εKSi )〉+ (εQPi − εKSi )〈∂Σ(ω)
∂ω

|ω=εKS
i
〉 (2.7)

The matrix elements of Σ(ω) are computed in the basis of KS wavefunctions. The self-energy is
divided into exchange part, which is frequency indepenent, and correlation part, which is dynamic.
The frequency dependence of Σc(ω) comes from the W 0, and can be approximated with plasmon-pole
model [28] using two ab initio calculated ω points.

The calculation of 〈Σc(ω)〉 is the most CPU-demanding part of the computation. It involves double
summation over G vectors and tends to converge very slowly with the number of bands.

2.5 Solving Bethe-Salpeter equation

We used EXC code to solve Bethe-Salpeter equation [29]. To solve the Bethe-Salpeter equation (1.7)
numerically, we must work in the basis of independent-particle transitions:

L(1234, ω)⇒ Ln3n4
n1n2(ω) =

∫
d(1234)L(1234, ω)φn1(r)φ∗n2(r)φn3(r′)φ∗n4(r′) ≡ 〈〈L〉〉 (2.8)

The BSE can be rewritten in the transition space:

Ln3n4
n1n2(ω) =

[
(εQPn2 − ε

QP
n1 − ω)δn1n3δn2n4 + 〈〈v〉〉+ 〈〈W 〉〉

]−1
= [Hexc − ω]−1 (2.9)

where εQPn are the quasiparticle energies, which leads us to the excitonic Hamiltonian:

Hexc =
[
(εQPn2 − ε

QP
n1 )δn1n3δn2n4 + 〈〈v〉〉+ 〈〈W 〉〉

]
(2.10)

The eigenfunctions Aλ and eigenvalues Eλ of this Hamiltonian let us obtain the εM :

εM = 1− 8π
q2

∑
λ

|∑tA
t
λρ̃

t|2

ω − Eλ + iη
(2.11)

where the sums runs over all independent-particle transitions t and over all excitonic states λ.
There are two ways to obtain the spectrum form the Hexc. First, it can be fully diagonalized, in

which case we obtain Aλ and Eλ; second, L can be partially inverted using iterative alogithms [30],
which allows us to obtain εM bypassing the Aλ and Eλ. Full diagonalization thus gives more infor-
mation, but it is much more memory and CPU demanding; the iterative inversion allows us to tackle
much larger systems with more bands, and thus obtain spectrum in a wider energy range.
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Chapter 3

Results

3.1 Ground state calculations and band structure

At first, we have to calculate the ground state density of MgO, which we do using the trusted
DFT method. The main purpose of the DFT calculations in this work is to obtain the Kohn-Sham
wavefunctions and eigenenergies, which enter the calculation of the independent-particle polarizability
χ0. We also calculated the Kohn-Sham band structure, and density of states, which carry a lot of useful
information about the electronic structure of the material.

Figure 3.1: Total energy per unit cell as a function of
a lattice constant for MgO, calculated within the local
density approximation of DFT. The dependence is close
to the parabolic fit near the equilibrium, but becomes
more steep for lower values of the lattice constant.

We use LDA approximation for the DFT cal-
culation. We verified that LDA results differ very
little from the results obtained with generalized
gradient approximation (GGA), data not shown.
To get an evidence that the LDA indeed works
well, we calculated the lattice constant1. For this,
we performed self-consisted DFT calculation of
the total energy at different values of the lattice
constant, and fit the obtained values to parabola
(Fig. 3.1). The position of the minimum of this
parabola gave us the equilibrium value of the lat-
tice constant: 4.242 Å. The experimental value is
2.217 Å, so the discrepancy is 0.6%. This agree-
ment is very good, and is a sign that the ground
state density that we calculated within the LDA
is close to the real one.

The calculated band structure of MgO is
shown on the Figure 3.2a. The LDA band gap
is equal to 4.62 eV, it is direct and located at Γ
point. The experimental band gap is 7.8 eV [31], and the calculated value is a severe underestimation.
This is expected from the LDA DFT, as it is known to underestimate bandgaps of solids. To correct the
value of the bandgap, we performed G0W0corrections, which are described later.

As we use a pseudopotential approach [23], only valence electrons (2 from Mg and 6 from O
per unit cell) are taken into account during the calculation. The 8 electrons of the unit cell fill 4
valence bands. The lowest valence band is almost flat and is about 12 eV lower than the other three
valence bands, which all lie close in energy and have a dispersion of about 4 eV. The Γ point is triply
degenerate, which is typical for face-centered cubic crystals. The two highest bands (3rd and 4rth)
are degenerate along some directions, in particular, along Γ-L and Γ-X. The dispersion of the bands

1MgO has the face-centered cubic crystal (fcc) structure, so the only parameter that is necessary to describy crystal
geometry is the lattice constant; see also section 2.1
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Figure 3.2: (a) LDA band structure of MgO. (b) The total density of states.

in the vicinity of the Γ point has parabolic character. The curvature of the valence bands determines
effective mass of the holes, and as a consequence, their mobility. As the bands are triple degenerate
and non-isotropic, the effective mass is a tensor, and finding it is a non-trivial task, which we did not
pursue.

The lowest conduction band is non-degenerate at Γ, and the gap at Γ is much smaller than the gap
at other points.

The projected density of states (pDOS) (Fig. 3.3) shows that the lowest valence band is formed by
the s-orbitals of Oxygen, and the three other valence bands are the p-states of Oxygen. The electronic
density is virtually absent on the Magnesium, showing that the bond character is strongly ionic. The
conduction bands have mixed character with the strongest contribution from the p-states of Oxygen.

3.2 Optical properties with TD DFT

In opder to evaluate optical properties of MgO, we start from TDDFT fro it is in principle much simpler
and in practice much faster and less memory demanding. We calculated the real ε1 and imaginary ε2
part of the macroscopic dielectric function εM in the random-phase approximation (RPA) and adiabatic
local-density approximation (ALDA) of TD DFT following equations (1.14), (1.15) and (1.10). The
results are shown on the Figure 3.4, together with the experimentally obtained dielectric function [31].
The RPA results are very similar to the ALDA, and the disagreement with the experiment is striking.
First of all, the absorption edge is red-shifted: while in principle the band gap underestimation must
be cured by the exchange-correlation kernel fxc, both approximations for the fxc that we used cannot
handle this problem (see also section 1.4). Second, the sharp peak in the ε2 given by the bound exciton
is absent, and the spectral weight is blue-shifted. This is because electron-hole interaction is not taken
into account in the approximations from fxc, and so the excitonic effects are absent.

We also studied the importance of crystal local field effects for the description the macroscopic
dielectric function. As can be seen on the Figure 3.5, there is no significant difference between the
curves with and without local fields, and so the non-diagonal elements of the microscopic dielectric
function εGG′ can be neglected.

As there is no improvement in going from RPA to ALDA, and including the local field effects
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Figure 3.3: The projected density of states for s and p states of Magnesium (right) and Oxygen (left). Virtually
all electronic density is located at the Oxygen, so the bond character is strongly ionic.
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Figure 3.4: Real and imaginary part of the dielectric function calculated with random phase approximation
(RPA) and adiabatic local density approximation (ALDA) of TDDFT, compared to the experimental data [31].
Both approximations yield dielectric function ε which poorly agrees with the experiment.
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Figure 3.5: Real and imaginary part of the dielectric function calculated with RPA, without taking into account
crystal local field effects (light blue) and with the local field effects (dark blue).
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doesn’t help either, we need to use more sophisticated approach to describe the optical properties of
MgO. The excitonic effects are very important for this system and must be taken into account, as was
already reported in the literature [32]. TDDFT functionals were developed recently which take into
account electron-hole interaction and are able to describe even bound excitons [11, 12]; however, we
choose to adopt the most advanced approach and solve Bethe-Salpeter equation, which is currently the
state of the art theory for treating the electron-hole interactions.

But before we solve the Bethe-Salpeter equation, we must correct the band gap with G0W0. The
reason for this is that the Bethe-Salpeter equation reads:

L = L0 + L0(v −W )L, (3.1)

where L0 = χ0
QP contain the quasiparticle energies, see the BSE in transition space (2.9) where

quasiparticle energies enter as ingredients. Today the most used approximation for Σ is the GW
approximation (see also sections 1.6 and 1.7)

3.3 G0W0corrections

To find the G0W0corrections, we must first calculate the screening, and then calculate the self-energy
(see section 2.4)). Each of the two parts requires convergence of three parameters:

1. Calculation of screening:
• cutoff energy for the plane wave basis⇒ basis size;
• cutoff energy for the number of G-vectors⇒ dimension of the εGG′(q, ω) matrix;
• number of bands to sum over.

2. Calculation of the self-energy:
• cutoff energy for the plane wave basis⇒ basis size;
• cutoff energy for the number of G-vectors to sum over;
• number of bands to sum over.

Both calculations of screening and self-energy require integration over the Brillouin zone, and so the
results must be converged with the number of k-points. Convergence of each of the 7 parameters is
interdependent, and there are no empirical recipes for the “safe” values of the parameters, because in
every solid the convergence behaves differently. Moreover, the calculations are very time consuming,
and scale unfavorably, which makes it impossible to “overshoot” by choosing the values which are
“large enough for sure”. So we face a complex problem of the multidimensional convergence, where we
must consider carefully the CPU time and memory requirements. There are some things, however, that
helps us greatly. First, the bandgap approaches asymptotically the converged value as the parameters
are increased. Second, we know that as we increase the number of k-points, the other parameters must
also increase (or at least stay the same).

Special point G0W0corrections, eV

Γ 2.468
X 2.957
L 2.694

Table 3.1: G0W0corrections for MgO at 3 k-points.

We adopted the following strategy. First, se-
lected small values for each of the parameters ex-
cept the number of k-points, and converged each
parameter while keeping the other fixed at the
small grid of 256 k-points (4× 4× 4 Monkhorst-
Pack grid, see section 2.2). Then we selected
the converged values, and again converged each
parameter independently. Finally, we calculated
the final band gap value for this k-point grid with
the obtained values.

Next, we increased the number of k-points to 864 (6× 6× 6 grid), and repeated the same cycle
again: converged each value independently, and then calculated the bandgap with the obtained values.
Here we noticed that difference that we gain by increasing the number of k-points is much greater
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Figure 3.6: Real and imaginary part of the dielectric function calculated by solving the Bethe-Salpeter equation
(BSE), compared to the experimental data [31].

than the gain from increasing the other 6 parameters. So, we move to the (8× 8× 8 grid). Here, the
calculations become extremely time consuming, and so we quickly reach the limit of the CPU time we
can afford.

The G0W0corrections were calculated at three k-points: Γ, X and L. The final correction values
are listed in the table 3.1. As we can see, the corrections are slightly different at each of the points,
suggesting that the KS DFT band dispersion can be corrected. However, for our purposes the difference,
which is within 10%, can be disregarded, and we choose to correct only the band gap using the scissor
operator, i.e. to widen the gap and move all the conduction bands accordingly without changing the
band dispersion.

3.4 Optical and loss spectra from the Bethe-Salpeter equation

We studied excitonic properties of MgO at q = 0 and at q > 0 for Γ-X, Γ-L, and Γ-W directions. In
the optical limit of q = 0 we are mainly interested in the imaginary part of the dielectric function,
which determines the absorption spectrum. At q > 0 we are interested in the dynamical structure
factor, which is the probability of inelastic scattering of X-rays (IXS), and in the exciton dispersion in
itself.

3.4.1 Optical limit: q = 0
The real and imaginary part of the dielectric function obtained by solving the Bethe-Salpeter equation
are shown on the Figure (3.6) (the band gap of the BSE spectrum was adjusted to match the experimental
value for easier comparison with experiment). The agreement between the calculated spectrum and
experiment is very good. The sharp peak at the absorption edge given by the bound excitons is present,
and the shape and positions of the bands in spectrum is also in good agreement.

On the Fig. 3.8a we compare the ε2 with BSE and GW-RPA. The GW-RPA spectrum is a spectrum
obtained with LDA wavefuntions, but with eigenvalues corrected by the scissor operator obtained from
the G0W0calculations. There are two main qualitative differences betwen the spectra:

1. the BSE spectrum contains the sharp excitonic peak within the bandgap;
2. the oscillator strength of the BSE spectrum is red-shifted as compared to the GW-RPA spectrum.

Schematically, these differences are illustrated on the Figure 3.8b. These are the excitonic effects
in the spectrum, and any method which does not take them into account fails to describe the optical
properties of most of the materials, except metals.

As was described earlier (see section 2.5), there are two numerical approaches to obtain the
dielectric function though the Bethe-Salpeter equation (BSE). The most straightforward way is to
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Figure 3.8: (A) Real and imaginary part of the dielectric function calculated by solving the Bethe-Salpeter
equation (BSE), compared to the spectra calculated with GW RPA. (B) Schematic representation of excitonic
effects in the imaginary part of dielectric function: the formation of bound excitonic peaks within the band gap,
and red shift of the oscillator strength in the region of interband transitions.

diagonalize the excitonic Hamiltonian. The complexity of the algorithm is N3, where N is the number
of transitions given by the product of number of k-points, valence and conduction bands. We were
able to diagonalize the Hamiltonian with 3 valence and 3 conduction bands, which yielded 18432
independent-particle transitions. With 3 conduction bands we can study only the low-energy part of the
spectrum (roughly up to 9eV), however, full diagonalization yields the excitonic eigenvectors Aλ and
excitonic energies Eλ, where λ is the index of excitonic states that enters the equation (2.11). Knowing
them, we can not only calculate the dielectric function εM (eq. (2.11)) but also answer some important
questions:

• How delocalized is the excitonic wavefunction?
• How many bound excitonic states are there? What are the binding energies of the excitons?
• Which parts of the Brillouin zone contribute to the formation of the bound excitonic states?
• How many independent-particle transitions do we need to describe the spectrum?
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Figure 3.7: Excitonic energies Eλ for the
first 15 states λ. The two triply-degenerate
states below the bandgap are the bound exci-
tonic states. The states.

Another way is to abandon the idea of the full diago-
nalization, and use iterative inversion algorithms, which
are much faster and less memory consuming, making it
possible to tackle bigger systems and include many more
bands to reach higher energies. The drawback is that εM
is calculated directly, without obtaining the Aλ and Eλ. So
we obtain the full spectrum, but cannot analyse it as deeply
as in the case of full diagonalization.

It must be noted that to converge the binding energies,
one would need to use a k-point grid which contains the Γ
point and is very dense in its vicinity [32]. To converge the
overall spectrum, on the contrary, one needs a k-point grid
which does not contain any high-symmetry points (built
using the symmetry-breaking shifts, see section 2.5). As

our goal was to obtain the spectra, the binding energies we obtained are not perfectly converged, even
though the shape of the spectrum is correct.

The excitonic energies for the 15 lowest excitonic states λ at q = 0 are shown at the Figure 3.7.
There are two setf of triple degenerate bound excitonic states. The one with the highest binding energy
is of the main importance to us. Using only 50 independent-particle transitions, the corresponding
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Figure 3.9: (A) Location in the Brillouin Zone of the interband transitions that form the first bound exciton. The
transitions are located in the vicinity of the Γ point. (B) The lowest bound exciton: electronic density with the
hole fixed on the Oxygen atom in the center (110 cut). The wavefunction is delocalized over about 5 unit cells.

peak already gains 50% of its intensity. These transitions are located in the vicinity of the Γ point, with
the transition at Γ giving the greatest contribution (Fig. 3.9a).

Our analysis also shows that in order to describe features at higher energies, there’s no obvious
equivalent to Fig. 3.9a, for the mixing of transitions involves many more bands and spans over much
larger regions of the Brillouin zone.

The excitonic wavefunction is a function of electron and hole coordinates. It cannot be represented
on an image, and to visualize it, we must fix the coordinates of one of the particles. On the Figure 3.9b
we show the electronic density of the lowest bound exciton with the hole fixed at the Oxygen atom in
the center of the picture. The excitonic density avoids Magnesium and is concentrated on Oxygen,
which confirms our expectations from the analysis of the projected density of states. The exciton is
delocalized over the distance much larger than a unit cell, and in this manner it is similar to a Wannier
exciton [33].

3.4.2 Dynamical structure factor and exciton dispersion: q > 0
It’s now time to look at q > 0, for which no reference is available in the literature. Optical analysis
is not able to probe fininite q, so we have to compare to scattering experiments, like non-resonsnt
intelastic X-Ray scattering (NIXS).

The dynamical structure factor (DSF) S(r, ω) describes the probability of NIXS. It is proportional
to the loss function =(ε−1

M ) (which can also be obtained from electron energy loss spectra, see eq. (1.9)):

S(r, ω) = − q2

4π2n
= 1
εM

(3.2)

where n is the average electron density. We can calculate the inverse macroscopic dielectric
function directly from BSE.

On the Fig. 3.10 we show the dispersion of the exciton for small values of momentum transfer
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Figure 3.10: Imaginary part of the macroscopic dielectric function for the small values of momentum transfer
along Γ−X direction. Both images present the same data in the form of a pseudo-3D plot (a) and in the form of
a color map (b), where the color corresponds to the intensity of the ε2.

along Γ-X direction. The dispersion of the exciton is close to parabolic, which makes it similar to a
Wannier model.

Clearly going away from q = 0, the Wannier model cannot follow any longer ab initio calculations
are necessary. and The DSF for large momentum transfer along Γ-X is shown on the Fig. 3.11. The
signal from excitons in very low, and although there are bound excitonic states, they are “dark”, i.e.
they cannot be seen in the scattering experiment. These dark states, however, are important because
they can interact with other degrees of freedom of the system and become deexcitation channels.

Figure 3.12: The DSF in the Γ − L direction shows
plasmonic peak, while the signal close to the bandgap
(red dashed line) is virtually absent.

The exciton dispersion for the Γ-X direc-
tion is shown on the Fig. 3.11, bottom panel.
Each circle corresponds to a calculated energy-
momentum value. For most of the values of q
there are three double-degenerate bound excitonic
states. The degeneracy can be a consequence of
the cubic symmetry, and of the degeneracy of the
valence bands (see the Kohn-Sham bandstructure
on the Fig. 3.2a).

The DSF for the Γ-L direction is shown on
the Fig. 3.12. For this direction of momentum
transfer, there is no excitonic signal whatsoever.

The DSF for less symmetric direction Γ−W
(Fig. 3.13), on the contrary, shows strong excitonic signal at certain values of the momentum transfer.
On the bottom panel of the Figure 3.13 we show the DSF for q = 2ΓW , 2.5ΓW , and 3ΓW . We can
see distinct peaks within the bandgap which correspond to the bound excitonic states: one peak for
q = 2ΓW , 2.5ΓW , and in case of q = 3ΓW there are two peaks and a band around 9 eV, which due
to its proximity to the band gap is strongly affected by the electron-hole interaction.

Experiment looking for an excitonic signature in MgO should clearly start from the mentioned q
range along Γ-W. The analysis of the excitonic signatures is still ongoing, as full diagonalization for
all q’s is still ongoing.
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Figure 3.11: Top: the dynamical structure factor (DSF) for the momentum transfer q in the Γ−X direction.
The red dashed line is the bandgap, i.e. the lowest independent-particle transition energy for each q. The DSF
shows strong plasmonic peak at about 20 eV, while the signal from bound excitons is too low to be visible.
Bottom: the dispersion of the bound excitons along the Gamma−X direction. Although the bound excitonic
states exist, they are dark—invisible in the scattering experiment.
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Figure 3.13: Top: the DSF in the Γ−W direction shows strong plasmonic peak, as well as bound excitons and
peaks close to the bandgap (red dashed line). Bottom: the DSF at the selected values of momentum transfer:
q = 2ΓW, 2.5ΓW , and 3ΓW . The sharp peaks below the band gap correspond to the bound excitonic states.
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Conclusion and Perspectives

In this thesis, we approached a problem of studying excitonic effects in MgO from the first principles
in optical limit as well as at q > 0. First, we used the formalism of time-dependent density functional
theory with random phase and adiabatic local density approximations for the exchange-correlation ker-
nel. The dielectric function obtained with both approximations drastically differs from the experiment,
because they neglect excitonic effects that play an important role in dielectric properties of MgO.

Thus, we adopted a state of the art approach based on green’s function formalism. We performed
G0W0corrections for the DFT bandgap, and then obtained the dielectric function by solving the
Bethe-Salpeter equation.

The resulting optical spectra show good agreement with the experiment, and reproduce the sharp
excitonic peak within the bandgap, as well as the spectral features in the reegion of interband transitions.
We analysed the bound exciton and determined that it is delocalized over distances much larger than a
unit cell and has parabolic dispersion at small q, which confirms that it is a Wannier-like exciton. At
larger q, however, the Wannier model breaks down, and only ab initio calculations are able to describe
the excitonic effects.

We have calculated the dynamical structure factor at many q’s for three directions: Γ-X, Γ-L
and Γ-W, and showed that excitonic signatures are virtually absent for Γ-L, very weak for Γ-W, and
strong at certain values of q along Γ-W. These results can be used as a suggestion for future scattering
experiments, and indicate where to look for excitonic signatures.

We have validated the newly developed method of the calculation of dielectric properties at large q
for an oxide materal. Confirmed that the method is reliable, one can study more complicated oxides,
and approach the question of exciton propagation and mobility, which are important for optoelectronic
applications.

There are also perspectives for theoretical description of modern synchrothron spectroscopies,
e.g. coherent inelastic X-ray scattering (CIXS), resonant inelastic X-ray scattering (RIXS), which
implicitly require momentum dependence and are able to study exciton and plasmon dispersion.

The dielectric function calculated with excitonic effects using Bethe-Salpeter equation can be used
for more refined general theoretical description of spectroscopic experiments. For example,it can enter
the theoretical description of photoemission, which will allow to describe excitonic satellites.
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