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Abstract

The topic of this thesis is situated in the framework of theoretical spectroscopy. In partic-

ular, I propose a new ab-initio derivation to find approximations for the one-body Green’s

function (GF) [1–3]. This approach leads to an improved description of fermion-plasmon

coupling in the framework of many-body perturbation theory (MBPT) [1–3], which can

be used to study direct and inverse photoemission spectroscopy. Although the observed

phenomena have been well known before, my formulation yields a better description than

previous state-of-the-art approaches. It answers several open questions, cures some funda-

mental shortcomings and suggests a way for systematic improvement.

In photoemission spectroscopy [4], the sample is irradiated by photons and electrons are

emitted and captured by the energy analyzer. From the energy difference of the incoming

photon and outgoing electron, a great deal of information on the properties of the sample

can be studied, e.g. the band structures or lifetimes of excitations etc.. In an independent-

particle picture, this energy difference corresponds to the one-particle energy level that the

emitted electron was occupying before the measurement. This leads to a sharp peak in

the spectrum with weight normalized to one, representing one particle. In reality, pho-

toemission is not just photons in and independent electrons out, because the sample is an

interacting many-body system. The long range Coulomb interaction and anti-symmetric

nature of fermions give rise to the so-called exchange-correlation effects, which makes

the problem fundamentally difficult to solve. The description, understanding and prediction

of the effects of the Coulomb interaction on the properties of materials has been one of the

big challenges of theoretical condensed matter physics for ages [2]. In the framework of this

thesis one can imagine that first, the photoemission creates a hole (i.e. a missing electron)

in the sample, which causes all remaining electrons to relax. Due to the attractive interac-

tion between positively charged holes and negatively charged electrons, the electrons move

towards to the holes and dress them to create “quasi-particles”. The effective interaction

between quasi-particles is the dynamically screened Coulomb interaction W . It is in general

weaker than the bare Coulomb interaction vc. Consequently, the observed band structure

is a quasi-particle band structure, which differs from the result of an independent-particles
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band structure calculation. Second, when the hole propagates in the sample the remaining

electrons get excited. They can show collective oscillations that is the density response to

the perturbation. These are neutral excitations with approximately bosonic nature, be-

cause they are constituted by pairs of fermions. The coupling of the hole to the neutral

excitations leads to additional structures in the photoemission spectrum which are called

satellites [1–3]. This reduces the quasi-particle weight that is now fractional. Most often,

the dominant satellites are due to plasmons, i.e. collective long-range oscillations, but one

can also observe interband transitions or excitons, or other satellites that are due to more

complicated couplings.

This overview shows that in order to have a good description of photoemission spec-

troscopy, we should study the propagation of particles, as well as the interaction between

particles and plasmons or other excitations. The Green’s function gives the probability

amplitude of particles propagating from one point to another. Its imaginary part yields the

spectral function that has a direct link to the spectrum measured in a photoemission exper-

iment. The state-of-the-art method in this framework is the GW approximation (GWA) that

was proposed by L. Hedin in 1965 [5]. In the GW approximation the one-particle Green’s

function is determined by the Dyson equation G = G0 + G0ΣG, where G0 is the non-

interacting Green’s function, and Σ is the non-local and frequency dependent self-energy

that is approximated to be the product of the one-particle Green’s function G and the

dynamical screened Coulomb interaction W leading to Σ = iGW . The GW approximation

has become one of the most widely used methods [6,7] for the quasi-particle band structure

calculations thanks to its success to the solution of the band-gap problem encountered in

density-functional theory (DFT) [8]. However, as discussed above, the quasi-particles are

only a part of the measured spectrum. The most interesting part, when it comes to explore

correlation effects, is contained in the satellites that directly exhibit the effects of coupling

between excitations. In principle one should expect that at least plasmon satellites are well

described by the GW approximation, since plasmons are the dominant structures that are

seen in the inverse dielectric function ε−1(ω) and hence in the screened Coulomb interaction

W = ε−1vc. Satellites due to plasmons are indeed found in the GW approximation, but

they are often too far from the quasi-particle energy, and sometimes much too sharp, and
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in other cases much too weak as compared to the experiment [9–12]. The main reason for

the bad description of the plasmon satellites from the GWA is the so called plasmaron

effect [9, 11–15] , which will be discussed in this thesis.

Alternatively, approaches based on a picture of electron-boson coupling such as the

cumulant expansion approximation (CEA) are promising for a good description of plasmon

satellites. The cumulant expansion approximation, inspired by the exact Green’s function

of the core-level quasi-boson model Hamiltonian [16], has an exponential expression of

the Green’s function, the expansion of which yields a series of plasmon satellites in the

spectral function. The CEA has a very good agreement with the spectrum observed in

the photoemission experiment [9–11]. In particular, my thesis project is a continuation of

the thesis work of Dr. Matteo Guzzo [17] as well as previous work from Dr. Giovanna

Lani [18]. Thanks to the excellent derivations done by them, I had the opportunity to go a

bit further in the direction of understanding photoemission spectroscopy in a deeper way.

The derivations and approximations proposed in this thesis give a new way to calculate the

Green’s function, which improves the description of photoemission spectroscopy. Moreover,

they give access to other quantities that can be obtained from the one-body Green’s function,

in particular total energies.

In the present thesis manuscript, we discuss how one can obtain a better description of

the one-body Green’s function, in particular for the description of fermion-plasmon coupling

in photoemission spectroscopy. To this purpose, in Chapter 1, a brief introduction of

photoemission spectroscopy is given, together with some important physical concepts and

the physical picture for describing photoemission spectroscopy in theory. The purpose of

this chapter is to establish the link between the photoemission experiment and theory,

such that one can have a clear picture about the physical phenomena I am going to study.

The Green’s function theory is also introduced and some important exact constraints are

summarized such that one can use these constraints to examine the approximations that I

will study in this thesis.

After the introduction, I will show a brief overview of state-of-the-art methods in electron

spectroscopy in Chapter 2, including the Kohn-Sham density functional theory (KS-DFT),

the GW approximation (GWA) and the cumulant expansion approximations (CEAs) (i.e.
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the TOC96 in Ref. [9] and the retarded cumulant (RC) in Ref. [19]). Some calculated pho-

toemission spectra are provided and discussed, such that one can understand the advantages

and disadvantages of each present theory. I will also show some of my own calculations on

bulk sodium to illustrate these methods. In particular, in section 2.2, I will discuss the

importance of self-consistency in GW calculations using my original calculations on sodium

valence and core states, which have been published in the Journal of Chemical Physics [20].

The GWA cannot describe the plasmon satellites in bulk sodium, the TOC96 on the other

hand, is able to give a reasonably good photoemission spectrum. The retarded cumulant is

designed for improving the sodium valence photoemission spectrum.

In Chapter 3, a unified derivation of the GWA, the TOC11 [11] and the retarded cu-

mulant (RC) is shown, which is different from previous derivations and more compact. In

particular, I will show two different ways of deriving the GWA starting from the functional

differential equation of the one-body Green’s function. The cumulant expansion approx-

imation can be also obtained from this unified derivation: the decoupling approximation

plus a GW quasi-particle correction yields the TOC11 and a clever ansatz Green’s function

leads to the retarded cumulant. An further study of this unified derivation which aims at

exploring increasingly good approximations will be shown in Appendix C.

After the ab-initio derivations, two simplified hole-plasmon coupling Hamiltonians are

studied in detail and the exact Green’s functions are calculated in Chapter 4. The exact

Green’s functions of the model Hamiltonians can be used to examine the performance

of the GWA and different CEAs. All the sophisticated formulas become fully analytical

expression in these hole-plasmon coupling Hamiltonians such that one can see clearly the

link between different approximations, as well as their physical meanings. Moreover all the

exact constraints of the Green’s function can be studied under different approximations.

From this study, we will understand why the present CEAs are insufficient in the description

of valence photoemission for different reasons.

Based on the understanding of the hole-plasmon coupling model Hamiltonians and our

unified derivation of the CEA, as well as the study of the disadvantages of different ap-

proximations in the two-level hole-plasmon coupling Hamiltonian, I will propose a new

cumulant Green’s function that will be refereed to as the constrained retarded cumulant
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(CRC) in Chapter 5. A detailed formulation of this method is provided, together with an

implementation for real system calculations.

Chapter 6 aims at illustrating the cumulant expansion approximations in bulk sodium

valence and core using the dynamically screened Coulomb interaction W in the random

phase approximation (RPA W ). The calculated spectra are compared to the experimental

ones. All the results provided there are from my original calculations. The traditional

time-ordered cumulants (the TOC96 and TOC11) are performed in the sodium core and

valence, yielding reasonably good photoemission spectra compared to the experimental

ones, however the performance of the time-ordered cumulant becomes worse when going

from core to valence: the plasmon satellite energy and weight ratio between the QP and

satellites are overestimated. These discrepancies are expected to be corrected by the newly

derived constrained retarded cumulant. Therefore, the comparison of the calculated sodium

valence spectra using the time-ordered cumulant and constrained retarded cumulant is

provided, again using the RPA W . The constrained retarded cumulant does enhance the

weights of satellites, but unfortunately the overestimation of the plasmon satellite energy

is still present. In order to find out the origin of this overestimation with respect to the

experimental spectrum, a study using more advanced calculations of the screened Coulomb

interaction W is provided.

Besides the spectral functions, the Green’s function is also able to provide the total

energies. The total energies will be studied in Chapter 7, where a new total energy formula

will be derived according to the hole-plasmon coupling model Hamiltonian. This new for-

mula will be refereed to as the hole-plasmon coupling total energy (HPCtot) formula. The

HPCtot formula that is different from the most widely used Galitskii-Migdal total energy

formula, works better with the Green’s function calculated from the GWA or the CEA.

This phenomena reflects the importance on the consistency of approximations: the perfor-

mance of the total energies does not only depend on the performance of the approximate

Green’s function, but also the total energy formula that is used. If the approximate total

energy formula keeps consistency with the approximate Green’s function, the total energy

can be better than using the exact total energy formula with the same approximate Green’s

function. The philosophy is quite similar to the use of the cumulant expansion approxi-
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mation with the GW self-energy versus the use of the Dyson equation with the same GW

self-energy. The Dyson equation is the exact equation to determine the exact Green’s func-

tion, however the GW self-energy is an approximation to the exact self-energy, such that

the Green’s function calculated using the cumulant expansion approximation works better

than the solution of the exact Dyson equation (i.e. the GWA). The total energy study

provided in Chapter 7 shows that the constrained retarded cumulant Green’s function to-

gether with the newly derived hole-plasmon coupling total energy formula yields the best

total energy compared to the exact total energy of the hole-plasmon coupling Hamiltonian.

This suggests to go a step further to implement this formula in real system calculations. A

suggestion for the final implementation is provided and will be used in the future to study

the homogeneous electron gas.

Finally I will summarize and provide some outlooks from this work.
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Résumé

Le sujet de cette thèse se place dans le cadre de la spectroscopie théorique. En partic-

ulier, je propose une nouvelle dérivation ab-initio pour trouver des approximations pour la

fonction de Green (GF) à un corps. Cette approche conduit à une meilleure description du

couplage fermion-plasmon dans le cadre de la théorie des perturbations à plusieurs corps

(MBPT), qui peut tre utilisée pour étudier la spectroscopie de photoémission directe et in-

verse. Bien que les phénomènes observés étaient bien connus avant, ma formulation donne

une meilleure description que les approches précédentes de l’état de l’art. Cela répond à

plusieurs questions ouvertes, guérit certaines lacunes fondamentales et suggère un moyen

d’amélioration systématique. En spectroscopie de photoémission, un échantillon est irradié

par des photons et des électrons sont émis. A partir de la différence d’énergie du photon

incident et des d’électrons sortant, un grand nombre d’informations sur les propriétés de

l’échantillon peut tre obtenu, par exemple les structures de bandes ou la durée de vie des

excitations. Dans une cadre de particules indépendantes, cette différence d’énergie corre-

spond au niveau d’énergie d’une particule que l’électron émis occupait avant la mesure. Cela

conduit à un pic très intense dans le spectre, avec un poids normalisé à un. En réalité, la

photoémission n’est pas juste des photons entrants et des électrons indépendants sortants,

car l’échantillon est un système à plusieurs corps en interaction. L’interaction de Coulomb et

la nature anti-symétrique des fermions donnent lieu aux effets d’échange-corrélation, ce qui

rend le problème fondamentalement difficile à résoudre. La description, la compréhension

et la prédiction des effets de l’interaction de Coulomb sur les propriétés des matériaux a

été, pendant des années, l’un des grands défis de la physique théorique de la matière con-

densée. Dans le cadre de cette thèse, on peut imaginer que, premièrement, la photoémission

crée un trou (à savoir, un électron manquant) dans l’échantillon, ce qui provoque la relax-

ation de tous les électrons restants. En raison de l’interaction attractive entre les trous

chargés positivement et les électrons chargés négativement, les électrons se déplacent vers

les trous et créent des ”quasi-particules”. L’interaction effective entre les quasi-particules

est l’interaction de Coulomb écrantée dynamiquement. Elle est en général plus faible que

l’interaction de Coulomb nue. Par conséquent, la structure de bandes observée est celle
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de quasi-particules, qui diffère du résultat en particules indépendantes. Deuxièmement,

lorsque le trou se propage dans l’échantillon les électrons restants peuvent présenter des

oscillations collectives: réponse de la densité à la perturbation. Ce sont des excitations

neutres avec une nature approximativement bosonique, parce qu’elles sont constituées par

des paires de fermions. Le couplage du trou avec les excitations neutres conduit à des struc-

tures supplémentaires dans le spectre de photoémission, appelées satellites. Cela réduit le

poids des quasi-particules qui est maintenant fractionnée. Le plus souvent, les satellites

dominants sont dus à des plasmons, des oscillations collectives à longue portée, mais on

peut aussi observer des transitions ou excitons interbandes ou d’autres satellites qui sont

dus à des couplages plus complexes. Cela montre que pour avoir une bonne description de

la spectroscopie de photoémission, nous devrions étudier la propagation de particules, ainsi

que l’interaction entre les particules et les plasmons ou d’autres excitations. La fonction de

Green donne l’amplitude de probabilité de particules se propageant d’un point à un autre.

Sa partie imaginaire donne la funtion spectrale qui a un lien direct vers le spectre mesuré

dans une expérience de photoémission. Les dérivations et approximations proposées dans

cette thèse donnent une nouvelle façon de calculer la fonction de Green, ce qui améliore

la description de la spectroscopie de photoémission. En outre, cela permet d’accéder à

d’autres grandeurs qui peuvent tre obtenues à partir de la fonction de Green à un corps, en

particulier les énergies totales.
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Notations and units

I provide here a list of abbreviations and symbols used, with the reference to the pages

where they are defined.
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Chapter 1

Introduction

In this thesis, I will show a development of a theory to describe the observables that can be

measured by a photoemission spectroscopy (PES) experiment, as indicated by the title of

my thesis. Before going to the details about the complicated theory, I will start with a brief

introduction about the physical picture of photoemission spectroscopy. Thus this chapter

will be organized in the following way:

• In section 1.1, a brief introduction to the photoemission process is given together with

the terminologies used in the theoretical description. The aim is to understand what

happens during photoemission, what kind of quantities can be measured or calculated,

what kind of properties we can get from these measured quantities, as well as to see

how one can theoretically model photoemission, such that the link between experiment

and theory is built up.

• In section 1.2, I will introduce the one-body Green’s function whose imaginary part

yields the spectral function that has a direct link to the spectrum measured in ex-

periment. The one-body Green’s function will be the main target to calculate in this

thesis.

• Finally I will summarize in section 1.3, and give some important exact constraints for

the one-particle Green’s function which will be studied in this thesis.

We have to keep in mind that the aim of theoretical spectroscopy is not to reproduce the

experimental results, but to understand deeper and sometimes even predict the properties
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of materials. On the other hand, whenever a new theoretical approach is developed, the

experimental result can be a good tool for testing its performance. This is the case in the

present thesis when I show the comparison between results from theory and experiment.

1.1 Photoemission spectroscopy

The photoemission spectroscopy originates from the discovery of the photoelectric effect

by Hertz [21], which was later explained by Einstein [22], who obtained the Nobel prize in

1921. After its discovery photoemission spectroscopy has become more and more used to

understand the electronic properties of materials [4]. In a general spectroscopy experiment,

one perturbs an electronic system by transferring some external energy (perturbation), and

measures the response of the system after excitation. This allows one to access a great deal

of information about the electronic properties of the system. Photoemission spectroscopy

can be divided into two complementary processes, namely direct and inverse photoemission

spectroscopy ((I)PES). In the direct photoemission the sample absorbs photons and the

electrons in the sample are excited and emitted. Knowing the photon energy and by mea-

suring the kinetic energy of the photoelectrons, one can infer information about the energy

distribution of electronic states (the occupied states in an independent-particle picture) of

the sample. The inverse photoemission (IPES) can be considered as the time-reversal of

PES, where the electrons are absorbed and photons are emitted and measured in the de-

tector. Consequently one can access the information of the possible empty (unoccupied)

states (in an independent-particle picture) of the sample.

1.1.1 What happens during photoemission spectroscopy?

A schematic view of the PES and IPES processes are shown in Fig. 1.1, where Ekin and hν

are the energies of electron and photon, respectively. In an (I)PES experiment, these two

energies can be measured such that the energy difference of the sample before and after the

measurement can be determined by energy conservation. The most complete information is

angle-resolved photoemission spectroscopy (ARPES) [23–25] whose schematic view is shown

in Fig. 1.2. In ARPES, besides the energy the angle of the photoelectrons can be measured,
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such that the energy-momentum relations of electrons inside the sample can be deduced.

As a result we can obtain the angle-resolved spectrum from ARPES, which corresponds

to the spectra of each k-point in the Brillouin zone of a solid (k-resolved spectrum) (see

Fig. 1.3).

VB

CB

PES: N -> N-1 IPES: N -> N+1

Figure 1.1: Schematic view of direct (on the left) and inverse (one the right) photoemission
spectroscopy. The Fermi energy is between the valence (VB) and conduction (CB) band.
In PES an electron is emitted with energy Ekin duo to the excitation induced by the photon
of energy hν. The IPES is the inverse process of PES where one electron is added to the
system and one photon is emitted as Bremsstrahlung. In both processes we can measure
Ekin and hν from which we can access the energy levels of the system using the energy
conservation rule. The total number of electrons in the sample has been changed (from N
to N ± 1) in both processes. This is the reason why the excitations in (I)PES are called
charged excitations, as opposed to the neutral excitations (e.g., excitons and plasmons)
where the number of electrons is conserved during the excitation.

The quasi-particle excitation

In an independent-particle picture1, the energy difference between the incoming photons

and outgoing photoelectrons in (AR)PES gives directly the energy of the one-particle level

that the one electron was occupying before being emitted from the system. Therefore under

the independent-particle assumption, we will observe a series of δ-peaks corresponding to

1The independent-particle picture does not really neglect the interaction between particles. Instead it
approximates the interaction between particles as an averaged effective potential that acts on all the particles
of the system. As a consequence, there is no direct interaction between particles but particles are affected by
this effective potential. Examples are the Hartree or Hartree-Fock mean fields, or the Kohn-Sham potential
in density functional theory (see section 2.1).
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Figure 1.2: A schematic representation of an angle-resolved photoemission spectroscopy
(ARPES) experiment taken from [26]. Besides the energy of the photoelectron, its angle is
also measured in ARPES.

different independent-particle states in the sample as shown in the left panel of Fig. 1.3.

Since there is no interaction between particles, each δ-peak has a normalized weight of

Z = 1 representing one particle. Moreover, there is no relaxation of remaining electrons

in the independent-particle picture such that the excitation has an infinite lifetime (the

excitation energy is real-valued as opposed to a complexed-valued energy from the GW

approximations that will be discussed later) and the occupation number of each state is

either 1 (for states below the Fermi level) or 0 (for states above the Fermi level).

Figure 1.3: A schematic illustration of an ARPES spectrum. The figure is modified from Ref.
[24]. The left figure shows an independent-particle spectrum of δ-functions with occupation
1 or 0. The right figure exemplifies a spectrum for interaction electrons with quasi-particle
peaks (i.e., peaks in the spectrum due to one-particle excitations) with fractional weight Z <
1 and satellites due to additional excitations in the system induced by the photoemission.
In this figure n(k) represents the momentum distribution.
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However, the spectrum one actually obtains from an (AR)PES experiment is most of the

time different from the simple independent-particle picture. In fact, the emitted electron

leaves a hole in the electronic system corresponding to a positive charge. The remaining

electrons in the system can react to that hole, which screens the hole. Alternatively speak-

ing, the hole left behind attracts the surrounding electrons due to the attractive interaction

between positive and negative charges. The screened particles are called quasi-particles

(QPs). The interaction between QPs is weaker than the interaction between bare electrons:

instead of the bare Coulomb interaction, the effective interaction in the system is the dy-

namically screened Coulomb interaction W (see Fig. 1.4). Since the dynamical screening

corresponds to excitations into which the QP can decay, the latter corresponds to an excited

state of the system with a finite lifetime. As a consequence, in an ARPES experiment we

observe a broadened peak with finite width, which gives a measure of the interactions due

to the presence of a hole. The broadened QP peaks, which replace the sharp δ-peaks of the

independent-particle picture, are shown in the right panel of Fig. 1.3.

h⌫

W (!)

Ekin

Figure 1.4: Schematic illustration of electron removal and the resulting reaction of the
remaining electrons. The hole induced by the removal of one electron is dressed by the wave-
like oscillation of all other electrons. This is a screening effect described by the dynamically
screened Coulomb interaction W .

Coupling to neutral excitations

Moreover, besides the broadening the observed QP weight is reduced compared to the

independent-particle picture. This is because the hole induced by the photoemission ex-
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cites all remaining electrons, which often leads to collective wave-like oscillations in the

system. This collective oscillation is a neutral excitation as opposed to the charged excita-

tion, because after the photoemission, the remaining electrons move inside the system and

the total number of electrons is conserved. The neutral excitations are of bosonic nature

because they are constituted by pairs of fermions (e.g., excitons and plasmons)2. Therefore

besides the QPs, the photon energy has been used also to excite the additional excitations

(e.g., the plasmon excitation will be discussed intensively throughout this thesis) yielding

new structures in the spectrum. The renormalized QP weight is reduced by giving some

weight to these additional structures, leading to a fractional renormalization factor Z < 1.

In simple systems like simple metals or semiconductors, the weight of the plasmon exci-

tations are smaller than the QP weight. The peaks due to the plasmon excitations are

called satellites3 in the photoemission spectrum. As a collective oscillation, the plasmon

excitation should be able to propagate as all other waves in nature (e.g., waves of water),

the longer it propagates, the smaller its weight (possibility of excitation) indicating that

we should be able to observe not only one plasmon satellite but its replica with decreasing

weights (see e.g., the left panel of Fig. 1.5).

Due to the screening and collective oscillation of electrons, the possibilities of excitations

in a many-body system are infinite, leading to a continuous spectrum with broadening (finite

lifetime) and extra structures (e.g., plasmon satellites). Moreover, the occupation numbers

of the states close to the Fermi level become fractional instead of 0 or 1 as shown in the

right panel of Fig. 1.3 due to the many-body interaction. To illustrate our analysis, the

photoemission spectrum and the momentum distribution function of bulk sodium in the

valence band region are shown in Fig. 1.5. The left panel is the photoemission spectrum of

the sodium valence band taken from Ref. [20]. The experimental spectrum shows a strong

QP peak centered around −0.9 eV together with two satellites centered around −6.9 and

−12.9 eV with decreasing weights. The energy difference between the peaks is ≈ 6 eV

2The interaction between electrons and plasmons is the focus of this thesis and will be discussed in detail
in the following chapters.

3There is another definition of satellites that is the poles in the Green’s function induced only by the
interactions. Therefore we would not observe any satellite in a non-interacting system. This definition is
helpful to distinguish satellites from quasi-particles in a theoretical calculation because in any calculation,
we could put the interaction to zero to see the spectrum such that we will only observe the QP excitations
without interaction.
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Figure 1.5: Bulk sodium valence band spectrum and momentum distribution. Left: the
photoemission spectrum of sodium valence band taken from Ref. [20] (the calculations are
my own results). The zero of energy axis is the Fermi energy from experiment. Blue dashed
curve is the intrinsic spectral function calculated in a cumulant expansion approximation.
The red curve is the cumulant intrinsic+extrinsic+interference calculation provided by my
co-author J. Kas in Ref. [20]. The black curve is the experimental spectrum reproduced
from Ref. [28]. Right: The momentum distribution of sodium determined by experiment,
quantum Monte-Carlo, G0W0 and LDA calculations. The step function is the free-electron
gas result. The figure is taken from Ref. [27].

which is the plasmon energy of bulk sodium, indicating that the satellites in this spectrum

are indeed induced by the plasmon excitations. The other two spectra are calculated in

the cumulant expansion approximations (CEA); they will be discussed in section 6.1. The

right panel of Fig. 1.5 shows the momentum distribution function of bulk sodium (taken

from Ref. [27]). The ideal Fermi gas and LDA results are very close to the non-interacting

electron result as shown in the left panel of Fig. 1.3, where the momentum distribution

is a step function. Whenever the interaction between particles is taken into account, as it

is the case in all other calculations in Fig. 1.5, the momentum distribution function will

give a fractional number at each momentum. The two experimental datasets confirm the

fractional occupations in bulk sodium.

The quasi-boson model

The above description of the PES process suggests to introduce the so-called quasi-boson

model Hamiltonian, which was proposed by B.I. Lundqvist to study the GW approximation

[14], and was later solved exactly by D.C. Langreth [16] for the case of a core electron

coupled to the plasmons, building upon the work of Nozières and De Dominicis [29]. The
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Hamiltonian reads

Ĥ = ε0c
†c+ cc†

∑

q

gq(aq + a†q) +
∑

q

ωqa
†
qaq , (1.1)

where c(†) is the annihilation (creation) operator of a core electron with energy ε0, a(†)

annihilates (creates) one plasmon with energy ωq and gq is the coupling strength between

the core hole and plasmon. The plasmon dispersion ω as a function of momentum q can

be taken into account with different functions ωq
4. This Hamiltonian describes right what

I have discussed above, for the case of photoemission of a core electron:

• In the initial state (ground state), there is one core electron with energy ε0 in the

system5. Since there is no excitation yet, the number of plasmons is zero which leads

to a ground state energy of ε0.

• The incoming photon excites the system by removing the one core electron, as a

consequence all other electrons in the system starts to oscillate, which creates the

plasmons. The core hole can couple to these plasmons with coupling strength gq.

The exact electron removal Green’s function (Gh) of this Hamiltonian has been obtained

by Langreth [16] from linked-cluster theorem6, which has an exponential expression

reading as

Gh(τ) = Gh0(τ)eC
h(τ) , (1.2)

where τ = t1 − t2 with t1 < t2 and Gh0(τ) = iθ(−τ)e−iε0τ is the non-interacting electron

removal Green’s function which is calculated in the limit of gq = 0 of the quasi-boson

Hamiltonian. The function Ch(τ) will be recognized as the cumulant function in section

4A study of the quasi-boson Hamiltonian with different plasmon dispersion function ωq can be found in
Ref. [30]. In the present thesis, I will mainly study the quasi-boson model Hamiltonian with Einstein boson,
i.e. the dispersionless plasmon. Thus the different plasmon dispersion functions ωq will not be studied.

5This energy ε0 has taken into account the presence of all the electrons in the system, reflecting the fact
that the system described by this quasi-boson Hamiltonian contains more than one electron and the effect
of all other electrons is to induce an effective potential to determine the orbital energy ε0. Different values
of ε0 correspond to model the core levels of different systems, and in different approximations.

6In the same paper [16], Langreth first obtained the exact Green’s function of this quasi-boson Hamilto-
nian from an exact analytical diagonalization of the Hamiltonian and later proofed that the linked-cluster
theorem yields the same result.
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2.3. It reads

Ch(τ) = −
∑

q

g2
q

∫
dω

Wq(ω)
(
1 + iωτ − eiωτ

)

ω2
. (1.3)

Here Wq is the exact plasmon propagator of the quasi-boson Hamiltonian which is

nothing else than the exact screened interaction of the quasi-boson Hamiltonian, which

reads

iWq(t1 − t2) = 〈ψ0|Tφ̂q(t1)φ̂†q(t2)|ψ0〉 = θ(t1 − t2)e−iωq(t1−t2) + θ(t2 − t1)eiωq(t1−t2) , (1.4)

where φ̂q = aq + a†q is the boson field operator. The exact Green’s function in equation

(1.2) leads to a spectral function. Neglecting the plasmon dispersion (i.e., with ωq ≡

ωp =constant) it reads

A(ω) =
∞∑

n=0

e−ββn

n !
δ(ω − ε0 − ωpβ + nωp) , (1.5)

where β =
∑

q

g2
q

ω2
p

, and ωp is the plasmon energy. This spectral function Eq. (1.5) is shown

in Fig. 1.6. It shows a strong QP peak at energy ε0 +βωp with normalized weight Z = e−β

as well as a series of plasmon satellites at ε0 +βωp−nωp with weight decreasing as a Poisson

distribution. Thus the total spectral weight is conserved, i.e.

∫
A(ω)dω = 1. The blue

arrow labeled ε0 represents the δ-peak that we would obtain in the non-interacting limit

gq = 0. Therefore the coupling induces a shift of the QP peak together with a series of

plasmon satellites. The exact spectral function in Fig. 1.6 is consistent with our analysis

of the PES process, except for the fractional occupation numbers, since this Hamiltonian is

built for studying core photoemission, where the occupation number is either 0 or 1. The

validity of using this picture also for the valence states will be discussed in the following

chapters.

Despite its simplicity, the quasi-boson Hamiltonian has drawn a lot of attention for

the understanding of photoemission and plasmon excitations in a many-body system. It

simplifies the PES process dramatically but keeps much important physics. It has brought
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ε0

ωp

ωp
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ωpβ

QP

satellite

satellite

satellite

Figure 1.6: The spectral function Eq. (1.5) of the quasi-boson model Hamiltonian. The
strong peak labeled QP represents the QP peak of energy ε0 +ωpβ and renormalized weight
Z = e−β. All the other peaks are the plasmon satellites and the energy difference between
peaks is the plasmon energy ωp. The blue arrow labeled ε0 represents the position of the
δ-peak that we would obtain in the case of gq = 0, i.e. the non-interacting limit.

us a great deal of insight to improve our understanding. The correct description of fermion-

plasmon coupling by the spectral function of this Hamiltonian was later acknowledged and

summarized by several works e.g., Refs. [31–34]. In particular, the exponential expression

of the exact Green’s function (see Eq. (1.2)) from this Hamiltonian is the motivation of the

cumulant expansion approximation (CEA) that is the central approximation I am going

to discuss in this thesis.

Since the idea of this thesis can also be traced back to this Hamiltonian, detailed cal-

culations can be found in section 4.1.1 together with a generalized two-level hole-plasmon

coupling model Hamiltonian which is supposed to be able to model both core and valence

photoemission processes. Several related works, namely the TOC96 [9], TOC11 [11] and

the retarded cumulant (RC) [19] will be studied in the following chapters. In particular the

most popular CEA by Aryasetiawan, Hedin and Karlsson (i.e. TOC96 [9]) and a version
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developed in our group (i.e. TOC11 [11]) will be discussed in detail in section 2.3.1 and

section 3.3, respectively.

1.1.2 Theoretical approach to photoemission spectroscopy

Up to now, we have seen what happens in the photoemission process and which results are

expected to be given by a PES experiment. To describe this process theoretically is not

so easy, because the observed results of a photoemission measurement contain more than

just one incoming photon and one outgoing electron. In principle, there is a complicated

process of excitation of two particles with their mutual interaction and interaction with all

system particles, the electron traveling through the system and the surface until captured

by the detector, coupling to phonons, a secondary electron background, etc. (see e.g.,

Ref. [24] for some discussion). It is desirable to treat the main effects at least approximately,

which suggests to interpret the PES as a three-step process as proposed by Berglund and

Spicer [35]:

1. First an electron is excited by the incoming photon and leaves its original position

such that a hole is left behind that can propagate in the system. If the photoelectron

is measured right after this step, (i.e. we neglect entirely the propagation of the

photoelectron from its original position to the detector and take into account only the

propagation of the hole and the interactions in the N − 1 electron system) we will get

the so-called intrinsic spectrum A(ω).

2. After excitation, the photoelectron can travel in the system, interact with the hole left

behind, which leads to the so called interference effect. Moreover, the photoelec-

tron can interact with all remaining N − 1 electrons in the system until it arrives at

the surface. The energy loss of the photoelectron in this process is called extrinsic

loss.

3. The final step is the photoelectron leaves the surface of the system and travels to the

energy analyzer when the electron kinetic energy is measured. The energy loss in this

process also contributes to the extrinsic loss.

14



As a result, the photoemission intensity is the product of the possibilities of these three

steps including the extrinsic and interference effect (see Ref. [36] for a more detailed dis-

cussion). In order to concentrate on the most important effect in PES, which we usually

call the intrinsic electronic properties, one can isolate the first step by assuming that

the photoelectron once excited by the photon, does not interact with the hole nor lose

its energy on the way to the energy analyzer. This assumption is the so-called sudden

approximation [37].

In a PES experiment, what is measured is actually the electric current induced by

the photoelectron passing through the analyzer, which is called the photocurrent. The

measured photocurrent Jk(ω) is given by the probability of emitting an electron with mo-

mentum k per unit time when the sample is irradiated with the photon energy ω. The

exact expression of Jk(ω) in Fermi’s golden rule [33] reads

Jk(ω) =
∑

s

∣∣∣ 〈N − 1, s;k|∆̂|N〉
∣∣∣
2
δ(Ek − Es − ω) , (1.6)

where |N〉 and |N − 1, s;k〉 are the initial and final states of the system, respectively, s

labels the possible excitations of the system and ∆̂ is the dipole transition operator that

represents the coupling of the sample to the photon field. Due to the perturbation of

the photon field, the system of N electrons in an initial state |N〉 goes to a final state

|N − 1, s;k〉 composed of N − 1 electrons in an excited state s and one photoelectron with

momentum k7. Ek is the kinetic energy of the photoelectron and Es = EN0 − EN−1
s is the

energy difference of the sample before and after photoemission (see the definition of Ehs in

Eq. (1.20)). The total energy is conserved by the δ-function because the photon energy

must equal the sum of the kinetic energy of the photoelectron and the excitations in the

sample leading to ω = Ek −EN0 +EN−1
s . Therefore by measuring the energies of incoming

photon and outgoing photoelectron, one can access information about excitations in the

sample.

7In this picture, there are N electrons for both initial and final states but keep in mind that the reason
why the final state contains N electrons is because we are taking into account the one photoelectron. In the
sudden approximation this photoelectron can be considered as an electron outside of the sample (see Eq.
(1.8)). Therefore there are N − 1 electrons in the sample with all possible excitations |N − 1, s〉.
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The dipole transition operator in second quantization reads

∆̂ =
∑

i,j

∆̂ijc
†
icj , (1.7)

where c(†) is the fermion annihilation (creation) operator. In the sudden approximation,

the photoelectron is considered completely decoupled from the sample after excitation, such

that the final state can be simplified as a product

|N − 1, s;k〉 = c†k |N − 1, s〉 . (1.8)

If we further assume that there is no contribution of the photoelectron at the ground

state, i.e., ck |N〉 ≡ 0, we can write

〈N − 1, s|ck
∑

i,j

∆̂ijc
†
icj |N〉 =

∑

j

∆̂kj 〈N − 1, s|cj |N〉 . (1.9)

Finally the photocurrent reads

Jk(ω) =
∑

s

∣∣∣∣∣∣
∑

j

∆̂kj 〈N − 1, s|cj |N〉

∣∣∣∣∣∣

2

δ(Ek − Es − ω) . (1.10)

It is now convenient to introduce matrix elements of the spectral function Aij(ω), which

will be discussed in detail in section 1.2 (see Eq. (1.29)). For the electron removal, they

read

Aij(ω) =
∑

s

〈N |c†j |N − 1, s〉 〈N − 1, s|ci|N〉 δ(ω − Es) . (1.11)

This leads to the expression of the photocurrent in terms of the spectral function

Jk(ω) =
∑

i,j

∆̂kiAij(Ek − ω)∆̂jk . (1.12)
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If we suppose to work in a basis where the spectral function is diagonal, i.e. Aij(ω) ≡

Aij(ω)δij , we have

Jk(ω) =
∑

i

∣∣∣∆̂ki

∣∣∣
2
Aii(Ek − ω) . (1.13)

Often one supposes the dipole matrix element to be constant when estimating the pho-

tocurrent. In that case, the intensity of the spectrum is the product of the trace of the

spectral function and the dipole matrix element, which depends on the energy, momen-

tum and polarization of the incoming photon. Therefore there is a direct link between the

photocurrent measured in the experiment and the intrinsic spectral function. An example

of the intrinsic spectral function from the cumulant expansion approximation is shown in

the left panel of Fig. 1.5 where the blue dashed curve labeled as cumulant corresponds to

∑
i ∆̂kiAii(ω) in Eq. (1.13) where Ek has been taken as the experimental value. The red

curve in that figure labeled as total represents the spectrum beyond the sudden approxi-

mation where the extrinsic and interference effect are calculated approximately (this plot is

provided by my co-author J. Kas in Ref. [20]). The comparison between the intrinsic (blue

dashed) and the total (red) spectrum confirms our assumption that the intrinsic spectrum

A(ω) is the dominant part of the photocurrent measured from the experiment in the sense

that the extrinsic and interference effects change only the intensities of the spectrum, not

its main structures. In this thesis the intrinsic spectral function A(ω) will be a main target

to be calculated. The calculation of the extrinsic and interference effects can be performed

as a post process in order to bring the theoretical results close to a realistic description of

an experimental spectrum.

1.2 Green’s function theory

In this section, I am going to introduce the Green’s function theory that is built for describ-

ing the propagation of particles (electrons or holes). In particular, the imaginary part of

the one-body Green’s function gives the intrinsic spectral function A(ω), which as we have

seen above, has a direct link to the photoemission spectrum measured in the experiment.
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1.2.1 Definition of the one-body Green’s function

In order to describe photoemission spectroscopy, we need a good description of the prop-

agation of electrons or holes. This job can be done by the one-body Green’s function. At

zero temperature and in equilibrium, the time-ordered one-body Green’s function is defined

as [1, 2]

G(1, 2) ≡ −i
〈

ΨN
0

∣∣∣T
[
ψ̂H(1)ψ̂†H(2)

]∣∣∣ΨN
0

〉
. (1.14)

Here and throughout the thesis, we always use atomic units (~ = e2 = me = 1).

In this definition, index (1), for the sake of compactness, includes the space, spin, and

time variables: (1) = (x1, t1) = (r1, σ1, t1)8. The N-particle ground state wavefunction of

the system is denoted by
∣∣ΨN

0

〉
9. The field operator in the Heisenberg picture10 that

annihilates (creates11) one particle at space, time and spin (1) is given by ψ̂H(1) (ψ̂†H(1)).

T is the time-ordering operator, which places the field operators with earlier time on the

right.

If we write out the time-ordering operator using the Heaviside step function, we can

express the time-ordered one-body Green’s function as:

G(1, 2) = −iθ(t1 − t2)
〈
ΨN

0

∣∣ψ̂H(1)ψ̂†H(2)
∣∣ΨN

0

〉
+ iθ(t2 − t1)

〈
ΨN

0

∣∣ψ̂†H(2)ψ̂H(1)
∣∣ΨN

0

〉

≡ θ(t1 − t2)G> + θ(t2 − t1)G< ≡ Ge(12) +Gh(12) , (1.15)

8The spin will not be treated explicitly because we do not treat a spin-polarized system in this thesis.
Nevertheless, the spin is not neglected since it is always present in the derivations.

9This notation has the same meaning as |N〉 to represent the N -electron ground state. I change the
notation in this section for the sake of compactness because I will use

∣∣ΨN±1
s

〉
to represent the excited state

of the N ± 1 electron system, instead of |N ± 1, s〉.
10There are three pictures, namely the Heisenberg ψ̂H(x, t), Schrödinger ψ̂(x) and interaction (Dirac)

ψ̂D(x, t) pictures, which can be transformed between each other. For simplicity I do not write the subindex
S for the field operator in the Schrödinger picture since the quantities in that picture do not depend on
time, hence it is easy to distinguish.

11For historical reason, I use the name “creation” for the operators who actually add a particle to the
system. In general, one cannot create particles thus there is argument of changing it into “addition”.
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in which Ge(1, 2) and Gh(1, 2) are the so-called electron and hole Green’s functions, G>

and G< are the greater and lesser components defined as

G>(1, 2) = −i
〈
ΨN

0

∣∣ψ̂H(1)ψ̂†H(2)
∣∣ΨN

0

〉
; (1.16a)

G<(1, 2) = i
〈
ΨN

0

∣∣ψ̂†H(2)ψ̂H(1)
∣∣ΨN

0

〉
; (1.16b)

and θ(t) is the Heaviside step function defined as

θ(t) =





1 for t > 0 ;

0 for t < 0 .

The one-body Green’s function expresses the probability amplitude for one electron

(hole) which at time t2 (t1) is added to the system (in its ground state) in space r2 (r1) with

spin σ2 (σ1) to be found at r1 (r2) with spin σ1(σ2) at a time t1 > t2 (t2 > t1). For this

reason, the Green’s function of t1 > t2 is often called the electron Green’s function Ge

and its time-reversal counterpart (t2 > t1) is called the hole Green’s function Gh. The one-

body Green’s function carries all the information when one particle propagates in a given

system. Therefore we can calculate the ground state expectation value of any single-particle

operator of such system, e.g. the ground state density ρ(1) = −iG<(1, 1+) where 1+ stands

for (x1, t1 + η)12. Moreover, we can calculate the ground state energy of the system using

the Galitskii-Migdal formula [38] although the Hamiltonian is not a single-particle operator.

The discussion about total energies can be found in Chapter 7. Besides the ground state

properties, the one-body Green’s function can provide us with the single particle excitation

spectra, which will be shown from its Lehmann representation later in this section.

1.2.2 The Lehmann representation and the intrinsic spectral function

The direct link between the one-body Green’s function and the (I)PES experiments cannot

be seen yet from the definition Eq. (1.14). Here we are going to write the one-body Green’s

12The ground state density ρ(1) ≡ −i
〈
ΨN

0

∣∣ψ̂†H(1)ψ̂H(1)
∣∣ΨN

0

〉
, which is nothing else than the diagonal

lesser component of the one-body Green’s function. Here (1+) stands for (x1, t1 + η) where η → 0+ is an
infinitesimal positive number.
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function in its Lehmann representation, from which we will see how we can get the (I)PES

intrinsic spectra from the one-body Green’s function.

The Lehmann representation of the one-body Green’s function

In order to derive the Lehmann representation, we first have to transform the field operator

from Heisenberg to Schrödinger picture using the following identity:

ψ̂
(†)
H (x, t) = eiĤtψ̂(†)(x)e−iĤt , (1.17)

where Ĥ is the many-body time-independent Hamiltonian we are going to treat and ψ̂(†)(x)

are the field operators in Schrödinger picture. Plugging Eq. (1.17) into the definition of the

Green’s function in equation (1.14), we get

iG(1, 2) = θ(t1 − t2)eiE
N
0 (t1−t2) 〈ΨN

0 |ψ̂(x1)e−iĤ(t1−t2)ψ̂†(x2)|ΨN
0 〉

− θ(t2 − t1)eiE
N
0 (t2−t1) 〈ΨN

0 |ψ̂†(x2)e−iĤ(t2−t1)ψ̂(x1)|ΨN
0 〉 . (1.18)

We have used the identity eiĤt
∣∣ΨN

0

〉
= eiE

N
0 t
∣∣ΨN

0

〉
in the above equation where EN0

is the N-particle ground state energy. Now it becomes obvious that the one-body Green’s

function will only depend on the time difference τ = t1 − t2, if the Hamiltonian is time-

independent (i.e., an equilibrium Hamiltonian without time-dependent external potential)

that is the main interest of this thesis. Now we introduce the completeness relation in Fock

space

1 = |0〉 〈0|+
∑

s

∣∣Ψ1
s

〉 〈
Ψ1
s

∣∣+ · · ·+
∑

s

∣∣ΨN
s

〉 〈
ΨN
s

∣∣+ · · · (1.19)

where
∑

s

|ΨN
s 〉 represents the eigenfunctions of a N-particle system and s labels different

states13. When one inserts the above equation into the Green’s function in Schrödinger

picture (1.18), for t1 > t2 the only term that is nonzero is
∑

s

∣∣ΨN+1
s

〉 〈
ΨN+1
s

∣∣ while for

13Note that when s = 0, it represents the N particle ground state. The increase of s follows the increase
of the corresponding eigenvalues ENs .
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t1 < t2 the nonzero term is
∑

s

∣∣ΨN−1
s

〉 〈
ΨN−1
s

∣∣. Thus we have

iG(x1, x2, τ) = θ(τ)
∑

s

e−iE
e
sτ
〈
ΨN

0

∣∣ψ̂(x1)
∣∣ΨN+1

s

〉 〈
ΨN+1
s

∣∣ψ̂†(x2)
∣∣ΨN

0

〉

− θ(−τ)
∑

s

e−iE
h
s τ
〈
ΨN

0

∣∣ψ̂†(x2)
∣∣ΨN−1

s

〉 〈
ΨN−1
s

∣∣ψ̂(x1)
∣∣ΨN

0

〉
, (1.20)

where we have defined τ ≡ t1 − t2, the electron addition energy Ees = EN+1
s − EN0 and

electron removal energy Ehs = EN0 −EN−1
s . After a Fourier transform (the equations for the

Fourier transform can be found in Appendix Eq. (A.1)) of the above equation and using

the differential representation of the Heaviside step function (see Appendix Eq. (A.2)), we

arrive at the final Lehmann representation of the one-body time-ordered Green’s function

in frequency space, which reads

G(x1, x2, ω) =
∑

s

fs(x1)f∗s (x2)

ω − Ees + iη
+
∑

s

gs(x1)g∗s(x2)

ω − Ehs − iη
. (1.21)

Here and throughout the thesis η → 0+ which comes from the differential representation

of the Heaviside step function. Its sign distinguishes between the hole propagation (−iη)

and electron propagation (+iη). I have introduced the Lehmann amplitudes defined as

fs(x) =
〈
ΨN

0

∣∣ψ̂(x)
∣∣ΨN+1

s

〉
; (1.22a)

gs(x) =
〈
ΨN−1
s

∣∣ψ̂(x)
∣∣ΨN

0

〉
, (1.22b)

to simplify the nominator. Now we analyze the physical meaning of the poles of the Green’s

function in equation (1.21):

Ees =
(
EN+1
s − EN+1

0

)
+
(
EN+1

0 − EN0
)

= E(N + 1, s) +A ; (1.23a)

Ehs = −
(
EN−1
s − EN−1

0

)
+
(
EN0 − EN−1

0

)
= −I − E(N − 1, s) , (1.23b)

where E(N ± 1, s) ≡ EN±1
s − EN±1

0 is the energy difference between the s-th excited state

and the ground state of a N±1 electron system14. I have used the definition of the electron

14Note that, all the energies appearing in the Green’s function are real valued quantities.
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affinity A ≡ EN+1
0 −EN0 and ionization energy I ≡ EN−1

0 −EN0 , which represent the

ground state energy difference between N ± 1 and N electron systems, respectively. We

further introduce the chemical potential µ15 that stays between the ionization energy

and electron affinity. The poles of the one-body Green’s function are exactly the excitation

energies of electron removal and electron addition as shown schematically in Fig. 1.7.

Figure 1.7: Schematical representation of the position of the poles of the time-ordered one-
body Green’s function. The figure is taken from http://www.abinit.org/doc/helpfiles/

for-v7.10/tutorial/theory_mbt.html.

The spectral function of the one-body Green’s function

The spectral function or density of states (DOS) A(ω) is proportional to the imaginary part

of one-body Green’s function. Thus from equation (1.21) using the Cauchy principle value

identity (or Kramers-Kronig relation shown in Appendix (A.3)):

1

ω − ε± iη ≡ P
1

ω − ε ∓ iπδ(ω − ε) , (1.24)

where P represents the principle value, we have

A(x1, x2, ω) ≡ − 1

π
ImG(x1, x2, ω) sgn(ω − µ)

=
∑

s

fs(x1)f∗s (x2)δ(ω − Ees) +
∑

s

gs(x1)g∗s(x2)δ
(
ω − Ehs

)
. (1.25)

15At zero temperature that is of our interest, the chemical potential µ is equivalent to the Fermi energy.
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One can show that the spectral function follows some important sum rules, in particular:

∫ ∞

−∞
dωA(x1, x2, ω) = δ(x1, x2) ; (1.26a)

∫ µ

−∞
dωA(x, x, ω) = ρ(x) . (1.26b)

We will name the first sum rule in Eq. (1.26a) as the conservation of spectral

weight throughout this thesis. The second one in Eq. (1.26b) yields the conservation of

particle number because the integration of the ground state density ρ(x) over x yields the

total particle number N (i.e.

∫
ρ(x)dx = N) in a given system.

Green’s function and spectral function in a discrete basis

We have been talking about the Green’s function in real space before, but in practice we

always work on some discrete basis (e.g., site basis or orbital basis etc.). The field operator

can be written in some arbitrary basis defined by the basis functions ϕi as

ψ̂(x) =
∑

i

ciϕi(x) ; (1.27a)

ψ̂†(x) =
∑

j

c†jϕ
∗
j (x) . (1.27b)

The Green’s function in such a basis is a matrix for which the matrix elements can be

written as

Gij(ω) ≡ 〈i|G(ω)|j〉 =

∫
dx1x2ϕ

∗
i (x1)G(x1, x2, ω)ϕj(x2)

=
∑

s

〈
ΨN

0

∣∣ci
∣∣ΨN+1

s

〉 〈
ΨN+1
s

∣∣c†j
∣∣ΨN

0

〉

ω − Ees + iη
+
∑

s

〈
ΨN

0

∣∣c†j
∣∣ΨN−1

s

〉 〈
ΨN−1
s

∣∣ci
∣∣ΨN

0

〉

ω − Ehs − iη
.

(1.28)

This Lehmann representation of the Green’s function in a certain basis will be used in

section 4.1 to calculate the exact Green’s function of the hole-plasmon coupling Hamiltonian.

The above formula tells us what is in principle needed to calculate a Green’s function.
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Suppose we want to calculate the electron removal Green’s function Gh: we fist have to

find a complete basis of Slater determinants φα for N and N − 1 electron systems built

with the single particle orbital φi, then we have to diagonalize the Hamiltonian in such

a basis (i.e., diagonalize the matrix 〈φα|Ĥ|φβ〉) and find the eigenvalues (EN0 and EN−1
s )

and eigenfunctions (
∣∣ΨN

0

〉
and

∣∣ΨN−1
s

〉
) of these two matrices. In particular, the lowest

eigenvalue EN0 and eigenfunction
∣∣ΨN

0

〉
are the ground state energy and wavefunction of the

N electron system.

The spectral function in such a basis becomes

Aij(ω) =
∑

s

〈
ΨN

0

∣∣ci
∣∣ΨN+1

s

〉 〈
ΨN+1
s

∣∣c†j
∣∣ΨN

0

〉
δ(ω − Ees)

+
∑

s

〈
ΨN

0

∣∣c†j
∣∣ΨN−1

s

〉 〈
ΨN−1
s

∣∣ci
∣∣ΨN

0

〉
δ(ω − Ehs ) . (1.29)

Note that the second line of the above equation is identical to the spectral function in

equation (1.11). An important property of the spectral function that can be seen from the

above equation: the excitation energy Es is independent of the matrix index, i.e. all the

matrix elements of the spectral function should have the poles at the same position. This

important property is referred to as the constraint of poles throughout this thesis.

1.3 Summary

In this chapter, I have introduced photoemission spectroscopy and its physical picture,

and in particular, the physical concepts of the quasi-particles and plasmons. In order to

describe photoemission spectroscopy from theory, the one-body Green’s function has been

introduced. Its imaginary part is the spectral function, which has a direct link to the

spectrum measured in photoemission spectroscopy. In this way, a fundamental relation

between experiment and theory of PES has been established. We understand that the

central quantity we need to obtain is the one-body Green’s function. Moreover, I have

emphasized some important phenomena that should appear in photoemission spectroscopy,

as well as some exact constraints of the one-body Green’s function or analogously its spectral

function. These are the following:
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1. The quasi-particle excitation: The main excitation in a photoemission spec-

trum usually is a quasi-particle excitation, which in principle should have a fractional

renormalization factor Z, because the QP loses weight towards other excitations. In

addition, the QP excitation should have a finite lifetime leading to a broadening of

the QP peak in the spectrum.

2. The satellite replica: Besides the QP excitations, neutral excitations such as

plasmons can be seen in photoemission spectroscopy. They appear as satellites in the

spectrum. Due to the bosonic nature of neutral excitations, the satellites should have

replica at a distance of the energy of the neutral excitation.

3. Partial occupation number close the Fermi level: Due to the many-body in-

teractions, in a system with a small band gap, the states close to the top valence can

be partially occupied.

4. Conservation of particle number: The spectral function should conserve the par-

ticle number, i.e.
∑

k

∫ µ

−∞
dωAk(ω) = N where k labels the states in the basis function

where the spectral function A is diagonal, and N is the total particle number of the

system.

5. Conservation of spectral weight: The integration of the spectral function should

be normalized to unity, i.e.

∫ ∞

−∞
dωAk(ω) = 1 .

6. Constraint of poles: The pole position of the one-particle Green’s function is

independent of the matrix elements, due to equation (1.29).

The properties (3-6) are in principle exact such that we should be able to observe all

of them in the calculated spectra. However, whenever approximations (e.g., the GWA or

CEA) are involved, some of the above properties might be violated. Thus the aim of this

thesis is to look for an improved description of photoemission spectroscopy using a Green’s

function approach that fulfills the important constraints.
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Chapter 2

State-of-the-art theories in electron

spectroscopy

In this chapter, I will review the state-of-the-art methods in electron spectroscopy starting

from the well developed density functional theory (DFT). I mainly focus on the Kohn-

Sham formalism of DFT (KS-DFT) as the starting point, in particular the local-density

approximation (LDA) from which we can get the ingredients for calculating the one-particle

Green’s function with good approximations e.g., the GW approximation (GWA) and cumulant

expansion approximation (CEA). The derivations of the GW approximation and one of

the cumulant expansion approximations will be shown in this chapter, together with the

corresponding spectral functions to illustrate the performance of these approximations. The

target of this chapter is to understand the following issues:

• What quantities can be given by different theories?

• How can we link the quantities calculated from different approximations? What is the

general process for a realistic calculation using the approximations that are studied

in this thesis?

• The advantages and disadvantages of different approximations.
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2.1 Density functional theory

In chapter 1, we have seen that the one-particle Green’s function (GF) has a direct link

with PES or IPES experiments such that it is the central quantity we are going to calculate

in this thesis. In this section, I will show how we treat the ground state problem with the

Kohn-Sham formalism of density functional theory (KS-DFT). On one side, this allows us to

calculate ground state properties such as lattice constants. Most importantly in this thesis,

we can get the ingredients for the calculation of Green’s functions in the GW approximation

and the cumulant expansion approximation from KS-DFT.

2.1.1 The many-body problem

All the information of a many-body system that is described by the many-body Hamiltonian

Ĥ =
N∑

i

(
−∇

2
i

2
+ Vext(ri)

)
+

1

2

N∑

i 6=j
vc(ri, rj) , (2.1)

is contained in the many-body wavefunction Ψ, which can be found by solving the time-

independent Schrödinger equation:1

ĤΨ = EΨ . (2.2)

This is an eigenvalue problem where the many-body wavefunctions Ψ and energies E

are unknown. Vext(r) is the external local potential induced by e.g., the presence of nuclei2.

vc(ri, rj) is the two-particle Coulomb interaction that reads

vc(ri, rj) =
1

|ri − rj |
, (2.3)

where ri is the position of the i-th electron. To deal with the Hamiltonian Eq. (2.1)

has been a major problem in molecular and condensed matter physics. If we could solve

the Schrödinger equation (2.2) for such a many-body system, we could in principle get

1Throughout this thesis, if not otherwise specified, the relativistic effects have been neglected.
2All the theories in this thesis are supposing the Born-Oppenheimer approximation [39] in which the

motion of nuclei and electrons are decoupled, yielding the fixed ionic positions.
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all the properties of the system. However, there are two main problems which make the

Hamiltonian (2.1) unsolvable, namely

1. The many-body wavefunction Ψ is a function with 3N arguments (each r has three

coordinates in 3-dimensions), where N can be of the order of 1023, i.e. Avogadro’s

number. In practice, the information contained in Ψ is too large to store in any

computer, such that we are obliged to look for approximations or different ways to

obtain the information of interest from a many-body Hamiltonian like Eq. (2.1).

2. Moreover, the two-body Coulomb interaction term in Eq. (2.1) is a strong interac-

tion at short distance between two electrons and decays slowly with distance (long

range interaction), which makes the Schrödinger equation (2.2) extremely difficult to

solve. We have to find good approximations to represent the effects of the many-body

Coulomb interaction as well as possible.

For these reasons, the Schrödinger equation (2.2) is at the same time exactly known and

too complicated to be solvable. It is one of the big challenges of theoretical condensed matter

physics to find alternative ways to deal with a many-body Hamiltonian like (2.1). One of

the successfully alternative ways is density functional theory (DFT) where the fundamental

quantity of interest is the density ρ(r) of the many-body system instead of the wavefunction

Ψ, which simplifies the computations dramatically.

Density functional theory is based on the Hohenberg-Kohn theorem [8] which states:

• There exists a universal functional F [ρs]
3 that enables the one-to-one mapping be-

tween a ground state observable and the total electronic density ρs of the system

such that the only quantity we need to know is the density instead of the many-body

wavefunction if we knew this functional.

• The ground state density ρ (when s = 0) minimizes the total energy.

With the first statement of Hohenberg-Kohn theorem, we can write the ground state

expectation value of any operator as a functional of the density. In particular, the energy

3I use the symbol ρs to represent the density of a general system for either ground state density (when
s = 0) ρs=0 ≡ ρ, or the excite state density where s 6= 0.
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functional can be written as

E[ρs] = 〈Ψ0[ρs]|Ĥ|Ψ0[ρs]〉 = F [ρs] +

∫
drρs(r)Vext(r) , (2.4)

where Ĥ is the many-body Hamiltonian in Eq. (2.1) and F [ρs] is the universal functional

of the density in the sense that it does not depend on the external potential Vext
4. The

second statement of the Kohenberg-Kohn theorem tells that the ground state density ρ

(when s = 0) minimizes the total energy such that we have

E[ρ] = F [ρ] +

∫
drρ(r)Vext(r) < E[ρs] , (2.5)

with ρ(r) 6= ρs(r). In DFT, all the unknown is still contained in the universal density func-

tional F [ρs], thus although it provides us a way to deal with the many-body Hamiltonian, it

does not provide us any practical way to determine this universal functional. This suggests

to the introduce of the Kohn-Sham formalism of DFT5.

2.1.2 Kohn-Sham DFT

The big advantage of DFT compared with the wavefunction based methods is its emphasis

of the electronic density, which is a much simpler quantity (with only 3 arguments) than

the many-body wavefunction that has 3N arguments. However, the functional F [ρs] is not

known. The only known part is the classical electrostatic contribution, the Hartree potential

energy EH [ρs] =
1

2

∫
drr′

ρs(r)ρs(r
′)

|r − r′| . A large contribution to the unknown remainder is

given by the kinetic energy T [ρs]. The idea of Kohn and Sham [44] was to describe exactly

the non-interacting kinetic energy TIP [ρs]. They stated that it is possible to define an

independent-particle system described by a Hamiltonian Ĥks with an effective potential

(the Kohn-Sham potential Vks(r)) that has exactly the same density as the system with

4If F [ρs] depended on Vext, it would become a system-dependent functional instead of a universal func-
tional.

5Many books (e.g. [40]) and reviews (e.g. [41] and [42]) have been written on DFT and it has been well
developed as a ground state theory in many ab-initio computational codes (e.g., ABINIT code [43]). Since
in my thesis, DFT only serves as a starting point for calculating the electronic excitation properties, I will
not spend too much time on it. If the reader is interested more in DFT, I suggest to read for example
Refs. [40–42].

29



full interactions. In this non-interacting system, the kinetic energy can be expressed in

terms of one electron orbitals. This finally provides us with a practical way to apply the

Hohenberg-Kohn theorem in real systems. In the Kohn-Sham (KS) system, the ground

state density is defined as

ρ(r) =
N∑

i

|ψi(r)|2 . (2.6)

Here ψi(r) is the independent-particle wavefunction that is also called Kohn-Sham or-

bital. It can be calculated from the Kohn-Sham equation

Ĥks(r) = −∇
2
i

2
+ Vks(r) ; (2.7a)

(
−∇

2
i

2
+ Vks(r)

)
ψi(r) = Eiψi(r) , (2.7b)

where Ei is the Kohn-Sham eigenenergy6. The Kohn-Sham potential Vks contains three

parts:

Vks(r) = Vext(r) + VH(r) + Vxc(r) , (2.8)

where the Hartree potential VH(r) =

∫
dr′

ρ(r′)

|r − r′| is an average potential induced by

all the electrons in the system. The last term of the above equation, Vxc, known as the

exchange-correlation potential, contains all the remaining interactions7 and it is defined as

Vxc(r, [ρs]) =
δExc[ρs]

δρs(r)

∣∣∣∣
ρs(r)=ρ(r)

. (2.9)

Here Exc[ρs] is the exchange-correlation energy functional where all the unknown con-

tributions are hidden, since by definition

E[ρs] = Tks[ρ] + VH [ρ] + Exc[ρs] +

∫
drVext(r)ρ(r) , (2.10)

6Note that, the Kohn-Sham eigenvalues do not have a physical meaning except the highest occupied
eigenvalue EN that is equal to the ionization energy (I) of the system [45]. Therefore strictly speaking, the
Kohn-Sham eigenvalues are not the excitation energies.

7There is no universal definition of correlation, but a general agreement is that exchange-correlation is
everything beyond the Hartree approximation.
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where Tks[ρ] is the kinetic energy of the Kohn-Sham system. Compared to the Hohenberg-

Kohn expression in equation (2.4), the advantage of the Kohn-Sham formalism is that it

has removed the non-interacting kinetic energy and Hartree energy from the functional

F [ρs] and left the smaller part Exc[ρs] as unknown. Until this point, all the complicated

many-body interactions are hidden in Exc[ρs] and there is no known expression for it. To

find good approximations of Exc[ρs] has been a major task in the field of DFT and over

last half century, many different approximations of Exc[ρs] have been developed [40], among

which the first and still one of the most popular approximations is called the local-density

approximation (LDA) [44]. As we will see later, LDA is often a good approximation as a

starting point for the excited state calculations (e.g., the GWA and CEA).

The local density approximation

The exchange-correlation energy functional Exc[ρs] is non-local because it depends on the

density ρs(r
′) at all points r′ in the system. The local density approximation neglects

the non-local dependence of the exchange-correlation energy functional on the density and

replaces it by an functional ELDAxc that reads

ELDAxc [ρ] =

∫
dr EHEGxc [ρ(r)]ρ(r) , (2.11)

where EHEGxc [ρ] is the exchange-correlation energy density of a Homogeneous Electron Gas

(HEG) that can be calculated numerically using quantum Monte Carlo for different densities

[46]. LDA yields an exchange-correlation potential whose value at point r depends only on

the density at the same point.

In order to illustrate the theory, a band structure of bulk sodium from a KS-LDA cal-

culation using the ABINIT code [43] is shown in the left panel of Fig. 2.18. The two core

states of sodium (2s and 2p) are very flat, almost without dispersion, reflecting the fact that

the interaction between core states and valence states is negligible, which explains why the

quasi-boson Hamiltonian in equation (1.1) is designed for core electron photoemission. As

a consequence the occupation number of these two core states is either 1 (before photoe-

8This is my own numerical calculation. The computational details can be found in section 6.4. They are
the same, if not otherwise specified, for all the original numerical calculations in this thesis.
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mission) or 0 (after photoemission) for each spin. LDA gives a binding energy of ≈ −52.5

eV and ≈ −25 eV for these two states, respectively, which is much smaller (absolute value)

than the experimental results: 2s of −63.7 eV and 2p of −30.5 eV reported in Ref. [47].

Different from the core, the valence (3s) has a strong dispersion and part of this band

crosses the Fermi level leading to some partially occupied states. The bandwidth of sodium

from my LDA calculation is ≈ 3.18 eV which is ≈ 16% wider than the experimental value

reported in Ref. [48] as shown in Fig. 2.2, where the red dashed curve also shows the LDA

calculation of Ref. [49]. Both LDA calculations overestimate the bandwidth of sodium by

more than 15%.
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Figure 2.1: The band structure of bulk sodium calculated from KS-LDA using the ABINIT
code is shown in the left panel. The right panel is the first Brillouin zone (BZ) of bulk
sodium (which is body-centered cubic in real space) where all the high symmetry points are
indicated. This figure of the Brillouin zone is taken from Refs. [50,51]. In the left panel, the
chemical potential (εF ) has been shifted to zero. The bands represented by the red curves
are conduction bands. The two core bands contained in my calculation are shown in thick
blue (2s) and thick blue with stars (2p), respectively. The valence band (3s) is shown in
thin blue curve with crosses.

2.2 Hedin’s equations and the GW approximation

The Kohn-Sham eigenvalues (E) are not the total energy differences of the system between

N and N±1 particles, besides the highest occupied state in a finite system or metal [45,52].

Thus they cannot be interpreted as electron addition (EN+1
s −EN0 ) or removal (EN0 −EN−1

s )

energies as the one that appear in the photocurrent Eq. (1.6). The band structure in
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Figure 2.2: Dispersion of the sodium valence band along Γ-N k-point path. The black
diamonds are experimental data reproduced from Ref. [49]. The red circles are the LDA
result reproduced from the same article. The blue solid curve is the result from my own
calculation.

Fig. 2.1 given by the Kohn-Sham eigenvalues is therefore different from the one that is

measured in experiment where the energies correspond to the quasi-particle (QP) energies.

In particular the Kohn-Sham band gap is in general substantially smaller than the measured

photoemission band gap (see e.g. Ref. [6, 49]). This is sometimes called the Kohn-Sham

band-gap problem. In a metal like sodium, this fact as well as the quality of the approximate

functional influence the bandwidth.

In order to go beyond the ground state and describe phenomena such as electron addi-

tion and removal, it is more appropriate to change the framework and work with Green’s

functions [1, 3] instead of the density. In particular, the imaginary part of the one-particle

Green’s function yields the intrinsic spectral function that can be directly linked to the

spectrum measured from a PES or IPES experiment as discussed in Chapter 1. In an

independent-particle picture like the Kohn-Sham formalism, the spectral functions consist

of peaks that are δ-functions at the independent-particle energies such as the KS eigenval-

ues Eksi . Instead in an interacting system, the peaks of spectral function are shifted and

broadened: these are the quasi-particle peaks with an finite lifetime. Moreover, they lose

weight towards additional structures and incoherent background that appear in the spectra,

because all excitations are coupled, and the initial excitation decays by exciting electron-

hole pairs, or collective excitations such as plasmons. The GW approximation is designed

for describing photoemission spectroscopy in such a picture.
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2.2.1 The GW approximation in theory

A route to approximate the one-body Green’s function is traced by many-body perturbation

theory (MBPT) [1,3] in which the one-body Green’s function is determined from the Dyson

equation9

G(1, 2) = G0(1, 2) +

∫
d13G0(1, 3)Σ(3, 4)G(4, 2) , (2.12)

where G0 is the non-interacting Green’s function which is supposed to be known since it

is calculated from the non-interacting part of the many-body Hamiltonian (see Eq. (2.1))

ĥ0 ≡ −∇2/2 +Vext. Σ(1, 2) is the non-local and frequency-dependent self-energy where the

Hartree potential as well as all the unknown exchange-correlation contributions are stored.

Compared to the Kohn-Sham formalism where the unknown is hidden in the local and

energy-independent exchange-correlation potential Vxc(r), in MBPT the unknown becomes

an nonlocal and energy-dependent self-energy Σ(r, r′;ω). In fact, the non-locality of the

self-energy is responsible for the opening of the band gap with respect to a Kohn-Sham

calculation. The frequency dependence makes the self-energy fundamentally different from

any independent-particle potential. It causes the “ Z-factor ” to be smaller than one. This

factor gives the fraction of spectral weight that remains in the QP peak since the rest of

the spectral weight has been transferred to the satellites and the background. The Z-factor

is a measure of correlation since in any independent-particle system, the Z-factor must be

equal to one. Satellites can only appear when the Z-factor is smaller than one, and they

are always due to interactions; the stronger the interaction, the smaller the Z-factor.

Up to now, we have discussed the physical meaning of the self-energy Σ, but not yet given

any practical way to calculate this complex quantity. Most modern ab-initio calculations

of Σ can be traced back to 1965 when Lars Hedin formulated his closed set of equations

to determine Σ and proposed the famous GW approximation (GWA) [5]. In the GWA, the

self-energy is approximated as a simple product of the one-body Green’s function and the

dynamically screened interaction, leading to Σ = iGW . Here I am going to derive these

equations in a slightly different way than what can be found in Hedin’s paper in Ref. [5],

9Throughout this thesis, the short notation

∫
d12 ≡

∫ ∞
−∞

d1 d2 is adopted.
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and closer to the derivations in Ref. [53]. To do so, we have to start from the equation of

motion (EOM) of the one-body Green’s function that can be found in Appendix B.1. In

particular, equation (B.17) gives the definition of Σ because

G−1
0 (1, 4) = G−1(1, 4)− i

∫
d23vc(1, 3

+)G2(1, 3+; 2, 3++)G−1(2, 4) , (2.13)

where G2 is the two-body Green’s function. Compared with the Dyson equation (2.12), the

self-energy is defined as

Σ(1, 4) = −i
∫

d23vc(1, 3
+)G2(1, 3+; 2, 3++)G−1(2, 4) . (2.14)

With the above definition of the self-energy, the EOM in Eq. (B.14) becomes

(
i
∂

∂t1
− ĥ0(r1)

)
G(1, 2)−

∫
d3Σ(1, 3)G(3, 2) = δ(1, 2) . (2.15)

However, this definition dose not tell us how to calculate Σ because it contains a more

complicated quantity that is the two-body Green’s function G2 whose EOM yields the

three-body Green’s function G3 and so on. In order to overcome this problem following

Schwinger [54], we can introduce a fictitious external time-dependent perturbation φ(x, t)

to rewrite the EOM in presence of φ(x, t) as shown in Appendix B.2. The trick is that the

two-body Green’s function can be expressed in terms of a variation of the one-body Green’s

function. Thus we need the EOM in non-equilibrium as shown in equation (B.44):

G(1, 2;φ) = G0(1, 2) +

∫
d3G0(1, 3)φ(3)G(3, 2;φ)

+

∫
d3G0(1, 3)VH(3;φ)G(3, 2;φ)

+ i

∫
d34G0(1, 3)vc(3, 4

+)
δG(3, 2;φ)

δφ(4)
, (2.16)
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where VH(3;φ) = −i
∫

d4vc(3, 4
+)G(4, 4++;φ) is the Hartree potential in presence of the

external potential φ. The self-energy in presence of φ reads

Σ(1, 2;φ) = VH(1;φ)δ(1, 2) + i

∫
d34vc(1, 3

+)
δG(1, 4;φ)

δφ(3)
G−1(4, 2;φ) . (2.17)

The first term in the self-energy is the Hartree term which is supposed to be known.

Since there is no functional derivative with respective to φ in the Hartree term, φ→ 0 can

be taken whenever it is necessary such that VH(1;φ)→ V
(0)
H (1) = −i

∫
d2vc(1, 2

+)G(2, 2+)

(see Eq. (3.4)) in equilibrium. The second term in the above equation is sometimes refereed

to as the mass operatorM where all the unknown exchange-correlation effects are hidden.

We call it the exchange-correlation self-energy Σxc. It reads

Σxc(1, 2;φ) = i

∫
d34vc(1, 3

+)
δG(1, 4;φ)

δφ(3)
G−1(4, 2;φ) . (2.18)

At this moment φ = 0 cannot be taken yet since there is still the functional derivative

of G with respect to φ in Σxc
10. To get rid of this functional derivative, we can further

introduce the total classical potential defined as:

Vcl(1;φ) = VH(1;φ) + φ(1) , (2.19)

to rewrite Σxc as11

Σxc(1, 2;φ) = −i
∫

d345vc(1, 3
+)G(1, 4;φ)

δG−1(4, 2;φ)

δVcl(5;φ)

δVcl(5;φ)

δφ(3)
. (2.20)

10The reason why we have to get rid of the functional derivative with respect to the external perturbation
φ is that, we want to study the property of materials in equilibrium where φ = 0. The calculation of Green’s
function in equilibrium is the main interest of this thesis.

11We have used the following identity of the Green’s function:

δ
[
GG−1

]
δφ

=
δG

δφ
G−1 +

δG−1

δφ
G ;

δG

δφ
G−1 = −δG

−1

δφ
G ,

as well as the chain-rule
δG−1

δφ
=
δG−1

δVcl

δVcl
δφ

.
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The first derivative of the above equation suggests to introduce a irreducible12 vertex

function Γ̃ defined as

Γ̃(4, 2, 5;φ) = −δG
−1(4, 2;φ)

δVcl(5;φ)
= δ(4, 5)δ(2, 5) +

δΣxc(4, 2;φ)

δVcl(5;φ)
, (2.21)

where the inverse of the Dyson equation (2.12) G−1 = G−1
0 − Vcl − Σxc has been used to

derive the above equation. Again using the identity

δG

δφ
= −GδG

−1

δφ
G , (2.22)

the vertex function can be written in a closed form

Γ̃(4, 2, 5;φ) ≡ δ(4, 5)δ(2, 5) +

∫
d67

δΣxc(4, 2;φ)

δG(6, 7)

δG(6, 7;φ)

δVcl(5;φ)

= δ(4, 5)δ(2, 5) +

∫
d6789

δΣxc(4, 2;φ)

δG(6, 7;φ)
G(6, 8;φ)

δG−1(8, 9;φ)

δVcl(5;φ)
G(9, 7;φ)

= δ(4, 5)δ(2, 5) +

∫
d6789

δΣxc(4, 2;φ)

δG(6, 7;φ)
G(6, 8;φ)Γ̃(8, 9, 5;φ)G(9, 7;φ) . (2.23)

In equilibrium, we have

Γ̃(4, 2, 5) = δ(4, 5)δ(2, 5) +

∫
d6789

δΣxc(4, 2)

δG(6, 7)
G(6, 8)Γ̃(8, 9, 5)G(9, 7) . (2.24)

In equation (2.20), the derivative of the total potential with respect to the external

potential gives the definition of the inverse dielectric function ε−1:

ε−1(1, 2;φ) =
δVcl(1)

δφ(2)
= δ(1, 2) +

∫
d3vc(1, 3

+)
δρ(3;φ)

δφ(2)
. (2.25)

We have used the definition of the ground state density ρ(1) ≡ −iG(1, 1+) in the above

equation. The functional derivative of the density with respect to the external potential is

12All the quantities that are defined as a functional derivative with respect to the classical total potential
Vcl are refereed to be the irreducible one, which distinguishes from the reducible one that is the functional
derivative with respect to the external potential φ.
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a measure of the polarizability of a system:

χ(1, 2;φ) ≡ δρ(1;φ)

δφ(2)
. (2.26)

To connect the polarizability χ with the Green’s function it is more appropriate to

write it in its irreducible form χ̃, which has a direct link to the irreducible vertex function

Γ̃ since

χ̃(1, 2;φ) ≡ δρ(1;φ)

δVcl(2;φ)
= −iδG(1, 1+;φ)

δVcl(2;φ)
= i

∫
d34G(1, 3;φ)

δG−1(3, 4;φ)

δVcl(2;φ)
G(4, 1+;φ)

= −i
∫

d34G(1, 3;φ)Γ̃(3, 4, 2;φ)G(4, 1+;φ) . (2.27)

The link between χ and χ̃ is obvious with the help of the chain rule and equation (2.25):

χ(1, 2;φ) =

∫
d3

δρ(1;φ)

δVcl(3;φ)

δVcl(3;φ)

δφ(2)
=

∫
d3χ̃(1, 3;φ)

(
δ(3, 2;φ) +

∫
d4vc(3, 4

+)
δρ(4;φ)

δφ(2)

)

= χ̃(1, 2;φ) +

∫
d34χ̃(1, 3;φ)vc(3, 4

+)χ(4, 2;φ) . (2.28)

At this point, all the functional derivatives with respect to φ have been carried out and

all the quantities are linked to each other so that we are ready to put φ → 0 in equation

(2.20) to calculate Σxc in equilibrium ( see Eqs. (2.21) and (2.25)).

Σxc(1, 2) = i

∫
d345vc(1, 3

+)G(1, 4)Γ̃(4, 2, 5)ε−1(5, 3) . (2.29)

It is convenient to further introduce the dynamically screened interaction W de-

fined as

W (1, 2) ≡
∫

d3ε−1(1, 3)vc(3, 2
+) =

∫
d3

(
δ(1, 3) +

∫
d4vc(1, 4

+)χ(4, 3)

)
vc(3, 2

+)

= vc(1, 2
+) +

∫
d34vc(1, 4

+)χ(4, 3)vc(3, 2
+) . (2.30)
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We can also express W in terms of the irreducible polarizability χ̃, since

ε(1, 2) ≡ δφ(1)

δVcl(2)
= δ(1, 2)−

∫
d3vc(1, 3

+)χ̃(3, 2) , (2.31)

which yields

ε−1(1, 2) = δ(1, 2) +

∫
d34vc(1, 3

+)χ̃(3, 4)ε−1(4, 2) . (2.32)

Therefore W in terms of χ̃ reads

W (1, 2) ≡
∫

d3ε−1(1, 3)vc(3, 2
+) = vc(1, 2

+) +

∫
d34vc(1, 4

+)χ̃(4, 3)W (3, 2+) (2.33)

Now collecting all the equations that have been derived above, we can write them in a

closed form in equilibrium, which is often called Hedin’s equations:

G(1, 2) = G0(1, 2) +

∫
d34G0(1, 3)Σ(3, 4)G(4, 2) ; (2.34a)

Σxc(1, 2) = i

∫
d34W (1, 3)G(1, 4)Γ̃(4, 2, 3) ; (2.34b)

W (1, 2) = vc(1, 2
+) +

∫
d34vc(1, 4

+)χ̃(4, 3)W (3, 2) ; (2.34c)

χ̃(1, 2) = −i
∫

d34G(1, 3)Γ̃(3, 4, 2)G(4, 1+) ; (2.34d)

Γ̃(1, 2, 3) = δ(1, 3)δ(2, 3) +

∫
d4567

δΣxc(1, 2)

δG(4, 5)
G(4, 6)Γ̃(6, 7, 3)G(7, 5) . (2.34e)

There are five unknown quantities i.e. G,Σ,W, χ̃ and Γ̃ and five equations to link them

together as shown by the pentagon in Fig. 2.3. Up to now all quantities in the above

equations are still exact. This way of formulating the many-body problem is appealing,

since it highlights the important physical ingredients [55]:

• The irreducible polarizability χ̃ in equation (2.34d) contains the response of the

system to the total classical potential according to its definition in equation

(2.27). As a consequence, pairs of particles are created leading to two one-particle

Green’s functions. Note that the particles are interacting with each other represented

by the vertex function Γ̃. Moreover, depending on the time ordering of the two

Green’s functions, the particle pairs can be either electron-hole or electron-electron
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Figure 2.3: Hedin’s pentagon which represents the five closed set of integro-differential
equations as shown in (2.34). In principle, one can start from some guess of the self-energy
and run clockwise this pentagon until the desired level of approximation for the various
quantities is reached.

or hole-hole. In particular in the GW approximation (that will be discussed later)

where Γ̃ = 1, the pairs become electron and hole (χ̃ = −iG(1, 2)G(2, 1)) leading

to the random phase approximation [56] (RPA)13 of the polarizability where the

interaction between electron and hole is neglected.

• The dielectric function ε = ε1 + iε2 in Eq. (2.25) is a complex valued quantity whose

real and imaginary parts are ε1 and ε2, respectively. It contains the neutral excitations

of the system. In particular, the frequency that fulfills the condition of ε1(ω) = 0 is

defined as the plasmon frequency of a many-body system [58]. In a solid, plasmons are

the dominant structures that are seen in ε−1(ω), which are identified as the maximum

of the imaginary part of ε−1(ω) in practice since, − Im ε−1 =
ε2

ε21 + ε22
thus − Im ε−1

has a sharp peak when ε1 = 0 and ε2 is very small. This property is transferred to the

dynamically screened interaction W = ε−1vc (see Eq. (2.30)) hence the self-energy

Σxc = iGW Γ̃ if the vertex Γ̃ is close to 1.

13The name random phase approximation (RPA) was first introduced by Pines and Bohm [56] for the
HEG where it leads to the Lindhard dielectric function [57]. Strictly speaking, the RPA response function
corresponds to the product of two independent-particle Green’s functions (e.g., the KS Green’s functions)
instead of the full interacting Green’s function.
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• The effective classical interaction between two particles in the system is not the bare

Coulomb interaction vc, but its screened counterpart W as shown in equation (2.34c).

The Dyson equation for W reflects the self-consistent response of the system to the

total classical potential Vcl = φ + VH because χ̃ is the response to the total classical

potential as expressed by equation (2.27). In particular, the definition of W = vcε
−1

in equation (2.30) reflects the fact that the bare Coulomb interaction is screened by

the induced Hartree potential due to the definition of inverse dielectric function ε−1

in equation (2.25). For this reason, W in Eq. (2.34c) is the potential that is created

and seen by the external classical charges14 and the dielectric function ε in Eq. (2.25)

is thus called the test-charge test-charge (TCTC) dielectric function.

• An electron in the system is not an external classical charge, but a fermion that is

indistinguishable from the other electrons in the system. Therefore besides the total

classical potential Vcl = φ + VH , an electron should feel the exchange-correlation

potential Σxc, leading to the total potential Vtot = φ+ VH + Σxc. However the latter

cannot be given by W because it appears in the vertex function Γ̃ Eq. (2.34e). Due

to the vertex, the effective interaction becomes W Γ̃ in equation (2.34b), instead of

W in the GW approximation. Note that the relation of the effective interaction to

the exchange-correlation potential W Γ̃ =
δΣxc

δG
is quite similar to the relation of

the bare Coulomb interaction to the Hartree potential vc =
δVH
δρ

. One may call the

total effective interaction W Γ̃ a generalized test-charge test-electron (TCTE) screened

interaction15.

In principle, one can start from an approximated self-energy Σxc and iterate Hedin’s

equations as illustrated in the pentagon 2.3 clockwise until convergence is achieved. The

self-consistent solution should be in principle, the exact solution of the many-body prob-

lem. However, due to the complicated three point vertex function Γ̃ where a functional

derivative is involved, it is impossible to achieve this for a many-electron system. Moreover,

even for a small system as simple as the Hydrogen molecule H2, there can be problems

14The classical charge does not have the anti-symmetry property of fermions such that it differs from the
fermion in the exchange-correlation part.

15A calculation of bulk sodium photoemission spectrum using the test-charge test-electron dielectric func-
tion will be shown in section 6.2.
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such as multiple solutions. A straightforward expansion for the self-energy in powers of

the screened interaction W may yield unphysical results such as negative spectral functions

when truncated at some order [59]. Recently it has been suggested to correct this by adding

some higher order terms [60]. In fact, there are many ways of expanding Σ with respect

to different quantities but there is even no unique answer to the question “which quantity

is the best parameter to expand, the bare Coulomb interaction vc, the screened interaction

W , or other?” Different expansions can be good to describe some physical phenomena

(e.g. transport) but not necessarily also good for others (e.g. spectra). An important point

that I would like to address here is the fact that different approximations might cause the

breakdown of different exact constraints that should in principle hold for the one-particle

Green’s function. This can induce unphysical phenomena in certain applications. There

seems to be no approximate solution of Hedin’s equations that fulfills all exact constraints,

except the exact one (at least so far no one has found it). The good point is that, not

all the exact constraints are important for all applications, e.g if we are only interested in

the quasi-particle energies so as to get a good band structure, we do not need to worry

about the negative spectral functions, which will appear at higher binding energy. In the

framework of this thesis, the important constraints for our purpose have been summarized

in section 1.3.

The problems posed by perturbation theory, Hedin’s equations (e.g. non-physical solu-

tions) and proper ways to expand the self-energy [60] have been studied for decades and

countless approximations have been proposed. These discussions go beyond the scope of

this thesis. Here I will focus on the most popular approximation, i.e. the GW approxima-

tion (GWA) [5] and work in a system where GW can give good quasi-particle energies and

reasonable spectral functions. The GW approximation corresponds to solving Hedin’s equa-

tions without vertex corrections, i.e., the irreducible vertex Γ̃ in the GW approximation has

been approximated as

Γ̃(1, 2, 3) = δ(1, 3)δ(2, 3) ≡ Γ̃GW (1, 2, 3) . (2.35)
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The vertex function appears in χ̃ Eq. (2.34d) and Σxc Eq. (2.34b). The GW approxi-

mation of Γ̃GW in the polarizability χ̃ yields the random phase approximation (RPA) (see

Eq. (2.34d)), which further yields the the random phase approximation for W . On the

other hand, Γ̃GW in the self-energy Σxc yields the GW self-energy that reads ΣGW (1, 2) ≡

iG(12)W (12). The GW approximation can be further separated into two main differ-

ent frameworks. One of them is called the one-shot GW (G0W0). It starts from some

independent-particle Green’s function and runs one single shot of Hedin’s pentagon with

Γ̃GW = 1 as shown in figure 2.4. The starting independent-particle Green’s function can be

fore example a Hartree-Fock or Kohn-Sham Green’s function. A G0W0 calculation in bulk

sodium starting from a KS-LDA Green’s function will be discussed later in this section.

The other framework is called the self-consistent GW (scGW) where instead of running

a single shot of Hedin’s pentagon keeping Γ̃GW = 1, some quantities (eigenvalues, eigen-

functions or the full Green’s function) will be updated during the iteration. Depending on

which quantity is updated, there are different methods of doing scGW, e.g. the eigenvalue

self-consistent GW0 (EscGW0) updates only the eigenenergies appearing in the Green’s

function when we evaluate Σ in equation (2.34b) but W is kept to be fixed during iteration,

i.e. the RPA W . Again, I will take bulk sodium as an example to show the importance of

self-consistency for sodium core states, where in particular the EscGW0 is needed.

2.2.2 The GW approximation in practice

In practical calculation, we start from the Kohn-Sham local-density approximation (LDA)

to calculate the starting independent-particle Green’s function. Hence G0 → GLDAks that

is calculated from the KS-LDA eigenvalues (Ei) and eigenfunctions (ψi) by solving the KS

equation (2.7b), and Σxc → (Σxc−V LDA
xc ). Therefore GW starting from a KS-LDA Green’s

function corresponds to solving the following equations either in one run yielding G0W0 or
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Figure 2.4: Schematic representation of the GW approximation. If one only runs a single
shot of these equations starting from G = G0, one ends up with the G0W0 approximation.
If we iterate these equations until self-consistency is reached we end up with a scGW
approximation.

self-consistently yielding scGW:

χ̃0(1, 2) = −iGLDAks (1, 2)GLDAks (2, 1) ; (2.36a)

W0(1, 2) = vc(1, 2
+) +

∫
d34vc(1, 4)χ̃0(4, 3)W0(32) ; (2.36b)

ΣGW (1, 2) = iGLDAks (1, 2)W0(1, 2) ; (2.36c)

G(1, 2) = GLDAks (1, 2) +

∫
d34GLDAks (1, 3)

(
ΣGW (3, 4)− V LDA

xc (3, 4)δ(3, 4)
)
G(4, 2) .

(2.36d)

In G0W0, the above equations are calculated in one run, which yields the random

phase approximation (RPA) of the dynamically screened Coulomb interaction W0 due to

the random phase approximation of the irreducible polarizability [61, 62] that is a product

of two KS-LDA Green’s function (χ̃ = −iGksGks) representing two independent particles

(one electron and one hole) propagating without interaction. In EscGW0, the eigenenergies

appearing in GLDAks (Eq. (2.36c)) are updated during the iteration until self-consistency

is achieved. The screened interaction W0 is kept fixed during iteration so that EscGW0
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also uses the RPA W 16. Therefore the difference between EscGW0 and G0W0 is that the

former has updated eigenenergies Ei → εi in the Green’s function when calculating ΣGW

such that the EscGW0 self-energy has a shift in its poles compared to the G0W0 one. Note

that an energy shift in the denominator of ΣGW will induce not only a shift in the final

Green’s function when solving the Dyson equation (2.36d) compared to a G0W0 calculation,

but it changes the structure of the spectral function which can be seen in Fig. 2.8. This

energy self-consistent process is important when the KS-LDA eigenenergies are far from the

quasi-particle energies, e.g. for the sodium core states (2s and 2p).

The RPA W contains one bare Coulomb interaction term vc that is time-independent

and another time-dependent term Wc = vcχ̃W where Wc is called the correlation part of

the screened interaction. This separation yields the separation of the self-energy into its

exchange and correlation parts ΣGW = Σx + Σc:

Σx(x1, x2, t1 − t2) = iG(x1, x2, t1 − t2)vc(x1 − x2)δ(t1 − t2) ;

Σc(1, 2) = iG(1, 2)Wc(1, 2) .

In practice, Σx and Σc are calculated separately17. Assuming that ΣGW − V LDA
xc is

diagonal in the Kohn-Sham orbitals, the spectral function of a certain state labeled i (see

Eq. (2.36)) can be written as

Ai(ω) =
1

π
|ImGi(ω)| ,

=
1

π

∣∣∣∣∣Im
1

ω − Ei + V LDA
xc,i − ΣGW

i (ω)

∣∣∣∣∣ ,

=
1

π

∣∣Im ΣGW
i (ω)

∣∣
[
ω − Ei + V LDA

xc,i − Re ΣGW
i (ω)

]2
+
[
Im ΣGW

i (ω)
]2 , (2.37)

16As discussed above, the plasmons are described by the maximum of − Im ε−1, hence of ImW =
−vc Im ε−1. In particular, plasmons calculated using the RPA often compare well to experimental spec-
tra such as electron energy loss spectra or inelastic x-ray scattering (see e.g. Refs. [63–67]). Therefore, in
principle one expects that at least plasmon satellites are well described by the GWA. Plasmon satellites are
indeed found in the GWA as can be seen in the following discussions, but they are often too far from the
quasi-particle energy, and sometimes much too sharp, and in other cases much too weak, as compared to
experiment.

17The exchange part Σx corresponds to the Fock operator Σx = iGvc evaluated with the interacting
density matrix −iG(xx′, tt+).
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where ΣGW can be the one from G0W0 or EscGW0. An illustration of the GW spectral

function using the quasi-boson Hamiltonian18 in equation (1.1) is shown in Fig. 2.5. For

vanishing GW self-energy ΣGW = 0, Ai(ω) shows a δ-peak at energy Ei−V LDA
xc,i ≡ εHi where

εHi is the Hartree eigenvalue19 as represented by the green arrow labeled εH in Fig. 2.5.
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Figure 2.5: An illustration of the GW spectral function in equation (2.37) using the quasi-
boson Hamiltonian in equation (1.1). Left and right panels are cases of weaker and stronger
coupling strength gq, respectively. The black solid curve represents the spectral function
A(ω) shown in Eq. (2.37). The red dashed and blue curve with up-triangles are the imagi-
nary Im Σ and shifted real part ω−E +V LDA

xc −Re Σ of the GW self-energies, respectively.
The green arrow labeled εH is the Hartree eigenenergy which corresponds to ΣGW = 0.

The real part of the GW self-energy shifts the Hartree eigenenergy to the GW QP

energy ε, as can be see from the denominator of Ai. The QP peak is still very sharp if

Im ΣGW (ω = ε) is small. In that case, the zero of the shifted real part of the GW self-

energy gives the QP energy, i.e.

εi = Ei − V LDA
xc,i + Re ΣGW

i (ω = εi) , (2.38)

18Note that the exchange part of the self-energy Σx is contained in the orbital energy ε0 of the quasi-boson
model. Therefore, we only need to calculate the correlation part. This will be clear in section 4.2.

19The Hartree eigenvalues are obtained from the diagonalization of the Hartree Hamiltonian that reads
ĥH = ĥ0+VH . Thus compared to the KS Hamiltonian, the Hartree approximation corresponds to a vanishing
exchange-correlation potential Vxc = 0.
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as illustrated in the left panel of Fig. 2.5. In principle, the width of this QP peak is

determined by Im ΣGW
i (ω = εi)

20 as can be seen in the denominator of Eq. (2.37). The

neutral excitations induced by electron removal lead to a distinct structure in Im ΣGW

as shown in the red dashed curve of the same figure. As discussed before, the peak in

Im ΣGW stems from the peak in Im ε−1 such that it links to the neutral excitations of the

system. This explains why the distance between the QP peak and the the peak in Im ΣGW

is the plasmon energy21. The peaks in the spectral function induced by these structures are

satellites. In a weaker coupling system, the GW satellite is very close to the peak of Im ΣGW ,

but with a small weight. This explains why the GWA can give good satellites for example

for vanadium dioxide (VO2) in Ref. [68]22. However, when the coupling becomes stronger,

the shifted real part of the GW self-energy has a second crossing of zero (blue curve with

up-triangles in the right panel of Fig. 2.5), leading to a strong satellite at an energy too

far from the energy where Im ΣGW has a peak. This satellite is called a plasmaron [13,14]

satellite. It has been shown to be an artifact of the GW approximation when the vertex

correction is neglected [11, 15, 69] and it completely masks the very week satellite close to

the peak in Im Σ.

Eq. (2.37) shows how the intrinsic spectral function is obtained from the GWA, but the

quasi-particle energy is not calculated explicitly yet. In practice, often one wants only the

quasi-particle energies from the GWA, e.g. the band corrections to a Kohn-Sham calculation

(see e.g. Refs. [70, 71]). In that case one can avoid the calculation of the Green’s function

in (2.36d). This suggests to introduce the so-called quasi-particle equation.

The quasi-particle equation

It would be more convenient to have an effective Schrödinger equation like the Kohn-Sham

equation (2.7b) from which the eigenvalues and eigenfunctions of the corresponding effective

20However, in the study of the quasi-boson model, all the energies are real. Thus in Fig. 2.5 the Lorentzian
broadening of the QP peaks are put by hand.

21Note that the plasmon dispersion has been neglected in the quasi-boson model when plotting the Fig.
2.5. In practical calculation of real materials, both the QP peak and the imaginary part of Σ are broadened,
such that the distance between the maximum of these two peaks can be different for different orbitals or
k-points in the Brillouin zone. The calculation in bulk sodium will be shown in Chapter 6.

22In the case of VO2, the satellites in the spectrum are due to d-d transitions which corresponds to a
weaker coupling gq in the quasi-boson model. Therefore, the left panel of Fig. 2.5 could be an illustration
of a d-d transition satellite in the GWA.
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Hamiltonian similar to Ĥks, can be calculated. Such an equation is the quasi-particle

equation. To derive the quasi-particle equation, we first have to Fourier transform the

EOM (2.15) to frequency space, which yields

(
ω − ĥH(x1)

)
G(x1, x2, ω)−

∫
dx3 Σxc(x1, x3, ω)G(x3, x2, ω) = δ(x1, x2) . (2.39)

The so-called quasi-particle approximation [3] assumes that the dominant energies of

the above equation are the complex quasi-particle energies ω = EQPi . The real part of the

quasi-particle energy εi gives the quasi-particle excitation energy and the imaginary part

gives the damping of the quasi-particle excitation that is proportional to the inverse life-

time of that excitation. Expanding the Green’s function around the quasi-particle energies

and introducing a set of independent-particle wavefunctions ψQPi called the quasi-particle

wavefunctions, we arrive at the quasi-particle equation that reads

ĥH(x1)ψQPi (x1) +

∫
dx2 Σxc(x1, x2, EQPi )ψQPi (x2) = EQPi ψQPi (x1) . (2.40)

Compared to the KS equation (2.7b) which reads

(
ĥH(r) + Vxc(r)

)
ψi(r) = Eiψi(r) , (2.41)

the quasi-particle equation replaces the local and energy-independent Kohn-Sham exchange-

correlation potential Vxc by a nonlocal and energy dependent exchange-correlation self-

energy Σxc. Note that Σxc could still be the exact exchange-correlation self-energy, instead

of the GW self-energy at this moment. Under the assumption that the Kohn-Sham wave-

functions ψi are nearly identical with the quasi-particle wavefunctions ψQPi , we can calculate

the quasi-particle energies from first-order perturbation theory assuming the starting Hamil-

tonian as Ĥks (see Eq. (2.7a)) with LDA V LDA
xc and 〈ψi|ψQPi 〉 ≈ 1, which means that we

can replace the quasi-particle wavefunctions in the quasi-particle equation (2.40) by the KS

wavefunctions.
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Quasi-particle energies from the GWA

We now use for Σxc the GW self-energy ΣGW , and obtain

EQPi = Ei + 〈ψi|ΣGW (EQPi )− V LDA
xc |ψi〉 = Ei + ΣGW

i (EQPi )− V LDA
xc,i . (2.42)

Since all Kohn-Sham ingredients E and Vxc are real, the imaginary part of the quasi-

particle energy is determined by the imaginary part of the self-energy, i.e. Im EQP =

Im ΣGW (EQP ). From the spectral function Eq. (2.37), we can see that when Im Σ is small,

the real part of the quasi-particle energy εi corresponds indeed to a peak in the spectra

function because it fulfills the condition that

εi − Ei + V LDA
xc,i − Re ΣGW

i (εi) = 0 , (2.43)

In order to calculate the real part of the quasi-particle energy εi from equation (2.42),

we can expand ΣGW (ω) around the KS-LDA eigenvalue Ei and keep the linear order term:

εi − Ei ≈
〈
ψi

∣∣∣∣∣Σ
GW (Ei) + (εi − Ei)

∂ΣGW
i (ω)

∂ω

∣∣∣∣
ω=Ei

− V LDA
xc,i

∣∣∣∣∣ψi
〉

= ZGWi
(
ΣGW
i (Ei)− V LDA

xc,i

)
, (2.44)

where the quasi-particle weight from the GWA is given by the Z-factor that reads

ZGWi =

(
1−

〈
ψi

∣∣∣∣∣
∂ΣGW

i (ω)

∂ω

∣∣∣∣
ω=Ei

∣∣∣∣∣ψi
〉)−1

. (2.45)

One can see from the following paragraphs, the G0W0 self-energy is good enough for

getting the QP energies of the sodium valence state (3s) because the Kohn-Sham eigenvalues

of valence states are close to the GW quasi-particle energy. But for the sodium core states

(2s and 2p), the Kohn-Sham eigenvalues are far from the GW quasi-particle energies such

that eigenvalue self-consistency is crucial.
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The intrinsic spectral function of sodium valence band

Here I am going to show some of my own GW calculations on bulk sodium. The aim is to

illustrate the performance of the GWA in different situations, i.e. valence and core. The

comparison of G0W0 and EscGW0 spectral functions for the sodium valence state (3s) at

the Γ point (i.e., k=0,0,0) of the Brillouin zone is shown in Fig. 2.6. We first study the QP

energies from different calculations. There are four different kinds of QP energies appearing

in the lower panel of Fig. 2.6 which are:
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Figure 2.6: Intrinsic spectral functions of the sodium 3s band at the Γ point (lower panel).
Red curves with diamonds are G0W0 results, blue curves with circles are EscGW0 results.
The position of the LDA band at Γ is given by the black arrow labeled LDA. The arrow
labeled G0W0 indicates the quasi-particle energy that one would obtain by the usual first-
order approximation based on a linearization of the self-energy as discussed in equation
(2.44). The upper two panels show the imaginary and shifted real parts of the GW self-
energy. The zero of the energy axis is set to be the EsGW0 Fermi energy.

• The black arrow labeled as LDA is the KS-LDA eigenvalue E .

• The black arrow labeled as G0W0 is the quasi-particle energy from G0W0 with lin-

earization thus it is calculated from equation (2.44) using a G0W0 self-energy instead

of the EscGW0 one.

50



• The first peak in the red diamond curve shows the quasi-particle energy from G0W0

by solving the quasi-particle equation (2.42) with the G0W0 self-energy instead of the

EscGW0 one.

• The first peak in the blue circle curve shows the quasi-particle energy from EscGW0

by solving the quasi-particle equation (2.42) with the EscGW0 self-energy.

To understand the origin of the features in the spectrum, we also show the imaginary

part of the GW self-energy (upper panel) as well as the shifted real part (middle panel).

Note that (ω−ELDA+V LDA
xc −Re ΣGW (ω)) is plotted to avoid double counting. As discussed

in equations (2.37) and (2.42), when the shifted Re ΣGW crosses zero, we have the quasi-

particle peak in the spectral function. Red curve with diamonds are G0W0 results and blue

curve with circles are EscGW0 (i.e., updated energies in G). The imaginary part of ΣGW

shows one pronounced peak at about 6 eV below the quasi-particle energy, corresponding to

the plasmon energy of bulk sodium. In correspondence, the real part is strongly dispersing

around that energy. It crosses zero at the quasi-particle energy, giving rise to the quasi-

particle peak of the bottom valence band. It is close to the band energy found in the

KS-LDA indicated by the black arrow, there is just a slight band narrowing, as is also

found in the homogeneous electron gas (HEG) [72]. The arrow labeled G0W0 indicates the

quasi-particle energy that one would obtain by the usual first-order approximation based on

a linearization of the self-energy as discussed in equation (2.44), which is nearly the same

as the real quasi-particle energy by finding the zero crossing of shifted Re ΣGW (quasi-

particle peak of G0W0). However, there is also a second crossing, around 12 eV binding

energy. This causes a second pronounced peak in the spectral function. This is the so-called

plasmaron satellite I have mentioned before, which is a spurious peak induced by the GW

approximation. It is further away from the quasi-particle peak than the plasmon energy

(the distance between the QP and plasmaron satellite is ≈ 9.2 eV), which explains the

bad agreement between G0W0 and experiment found also in the earlier work [9]. Energy

self-consistency does not change the results significantly. The total intrinsic GW spectral

functions of sodium valence state (sum over all the k-points in the Brillouin zone) in Fig.

2.7 show that the G0W0 and EscGW0 results are almost identical.
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Figure 2.7: Intrinsic spectral function of the sodium 3s band where the spectral function
of each k-point in the BZ has been summed. Red curve with diamonds are G0W0 results,
blue curve with circles are EscGW0 results. The zero of the energy axis is set to be the
EsGW0 Fermi energy. A Gaussian broadening of 0.3 eV has been used when plotting these
two spectral functions.

The core states of sodium: the importance of self-consistency

We have seen that the G0W0 is sufficient to give good QP energies in the valence band

region of sodium. How about the core? The results for the core levels at Γ are shown in

Fig. 2.8: left and right panels are 2s and 2p results, respectively (they are analogous to

Fig. 2.7). Again the G0W0 and EscGW0 results show satellites that are of plasmaronic

origin and therefore too sharp and too far away from the quasi-particle energy as compared

to the plasmon frequency23. Two things should be noted in the core level spectra. First,

G0W0 and EscGW0 give very different results. This is due to the fact that GW shifts

the core level significantly with respect to the KS-LDA as shown in table 2.1. Energy

self-consistency is therefore mandatory for the core. Second, in the non-self-consistent

calculation the commonly made assumption that one could calculate quasi-particle levels

23The sodium experimental photoemission spectra will be shown in Chapter 6. In particular Fig. 6.2
shows the spectra of the sodium core states and Fig. 6.5 shows the experimental spectrum of the sodium
valence.
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Figure 2.8: Intrinsic spectral function of the sodium 2s state at the Γ point (lower panel).
Red curves with diamonds are G0W0 results, blue curves with circles are EscGW0 results.
The position of the LDA band at Γ is given by the black arrow labeled LDA. The arrow
labeled G0W0 indicates the quasi-particle energy that one would obtain by the usual first-
order approximation based on a linearization of the self-energy as discussed in equation
(2.44). The upper two panels show the imaginary and shifted real parts of the GW self-
energy. The zero of the energy axis is set to be the EsGW0 Fermi energy.

from the linearized self-energy of Eq. (2.44) cannot be made. Indeed, the arrow labeled

G0W0 indicates the quasi-particle energy that one would obtain by using that procedure:

clearly, the energy is completely off with respect to the quasi-particle peak in the G0W0

spectral function (red curve with diamonds in Fig. 2.8). Moreover, in the non-self-consistent

G0W0 calculation the satellite is much farther from the quasi-particle peak and the weight

transfer from the quasi-particle to the satellite is huge, which cannot be justified with any

particular strong correlation effect in sodium. Indeed, the situation changes drastically

when self-consistent calculations are performed, as one can see from the blue curves with

circles in Fig. 2.8: the satellites get closer to the quasi-particle peak (they are located at

a distance ≈ 1.5 times the plasmon energy) and their intensity is reduced compared to the

G0W0. It has been noted in several places that eigenvalue self-consistency is crucial when

one is interested in GW satellites [68,73–75]; the present example is a striking illustration.
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Overall, the two core levels behave similarly, although all features discussed here are more

pronounced in the deeper core. The results are summarized in the following table.

Table 2.1: Binding energies of sodium core states

states
methods

LDA G0W0 EscGW0 experiment [47]

Na 2s (eV) -52.5 -57.69 -69.39 -63.7
Na 2p (eV) -25 -29 -33.79 -30.5

In conclusion, the GWA cannot describe the plasmon satellites in bulk sodium for both

valence and core, as also found by many other studies of different systems (see e.g. Refs.

[11,73,76]). This suggests to introduce the cumulant expansion approximation (CEA) in the

next section. The CEA, inspired by the quasi-boson model, is very promising to describe

well the plasmon satellites in a system like bulk sodium as it has been shown in Ref. [9].

2.3 The cumulant expansion approximation

In the previous section, we have seen the performance of the GW spectral functions illus-

trated by a calculation on bulk sodium. The main problem of the GW approximation is

the plasmon satellites induced by the spurious plasmaron24. As discussed in section 1.1.1,

the exponential expression of the exact one-body Green’s function of the quasi-boson model

Hamiltonian yields the plasmon satellites at exactly the plasmon energy of the system.

This suggests us to look for an exponential ansatz of the Green’s function to cure the plas-

maron problem. The cumulant expansion approximation (CEA), which is right following

this idea, was proposed by Lars Hedin [31] to study the satellites in the electron gas25.

Hedin’s method was based on the diagrammatic expansion of the self-energy where his

approximated one-body Green’s function has an exponential expression and its expansion

generalizes a series of plasmon satellites. Later Gunnarsson, Meden and Schönhammer [77]

and Aryasetiawan, Hedin and Karlsson [9] (their work will be refereed to as the TOC96)

proposed their cumulant ideas by identifying the cumulant expansion with the self-energy

24The discussion of the plasmaron has a very long history. A detail historical review of the plasmaron
problem can be found in the thesis of Dr. M. Guzzo (section 6.3 and 6.4) of Ref. [17].

25As far as I know, Ref. [31] of Hedin was the first cumulant attempt that is beyond the quasi-boson model
Hamiltonian to study the satellites of a realistic many-body system.
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expansion of the one-body Green’s function. Their ideas are consistent with the one of

Hedin in Ref. [31], but they gave more detailed derivations that justify the link between

the cumulant expansion approximation and the GW self-energy. The CEA has been ap-

plied successfully in the ab-initio framework to several metal and semiconductors (see e.g.

Refs. [9–12,78]). In particular, the TOC96 in Ref. [9] was performed in the valence state of

bulk sodium, leading to a huge improvement of the spectral function over the GW result,

compared to the experimental spectrum.

In this section, I am going to study two different cumulant expansion approximations,

namely the TOC96, and the retarded cumulant (RC) that was proposed recently by J. Kas,

J. Rehr and Reining in Ref. [19]. In particular, I will study TOC96 in more detail since it

has been the most widely used cumulant for the past years and its derivation it the most

general.

2.3.1 The TOC96

Since we are mainly interested in the photoemission process, we will focus on the derivation

of the electron removal part of the cumulant Green’s function. As in the case of the GWA,

we still start from the Kohn-Sham local-density approximation of the one-particle Green’s

function (i.e. G0 → GLDAks ). In TOC96, the one-particle Green’s function for the hole

(τ < 0) is written as

G(τ) = G0(τ)eC(τ) = iθ(−τ)e−iEτ+C(τ) , (2.46)

where τ ≡ t12 = (t1−t2), C(τ) is the so-called cumulant function, G0(τ) = iθ(−τ)e−iEτ , and

E is the KS-LDA eigenvalue of the corresponding state. Note that the above cumulant ansatz

is only for the hole Green’s function and the ansatz for the electron addition is Ge(τ) =

−iθ(τ)e−iEτ+Ce(τ), indicating the decoupling between the electron and hole branches of this

approach. Following [9], we can expand the cumulant Green’s function in equation (2.46)

in powers of the cumulant, thus we have

G(τ) = G0(τ)

(
1 + C(τ) +

1

2!
(C(τ))2 + · · ·

)
≡ G0(τ)

∞∑

m=0

Cm(τ)

m !
, (2.47)
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We can do a similar expansion for the Green’s function with respect to the self-energy

from the Dyson equation (2.36d)

G = G0 +G0ΣG0 +G0ΣG0ΣG0 + · · · , (2.48)

where the self-energy is Σ = ΣGW − V LDA
xc . The cumulant can be obtained by equating

terms of the same order in the above two expansions such that the first order reads

G0C = G0ΣG0 ≡ G(1) . (2.49)

The above equation can be written in the Kohn-Sham orbitals ψi(x) where G0 is diag-

onal, which yields

G
(1)
ij (t1, t2) =

∫
dt3t4G

0
ii(t1, t3)Σij(t3, t4)G0

jj(t4, t2) . (2.50)

The self-energy contains exchange and correlation components, as well as minus the

Kohn-Sham exchange-correlation potential i.e., Σ(t3, t4) = Σc(t3, t4) + Σxδ(t3 − t4) −

V LDA
xc δ(t3 − t4). Writing these terms explicitly, the diagonal elements of the hole Green’s

function G ≡ G(1)
ii becomes

G(1)(t12) = −e−iE(t1−t2)

∫ ∞

t1

dt3

∫ t2

−∞
dt4Σc(t34)eiE(t3−t4)

−
(
Σxt12 − V LDA

xc t12

)
e−iE(t1−t2) , (2.51)

Note that in the above equation, Σ and V LDA
xc are the diagonal elements only. The

above equation yields a first order cumulant function for a certain state (see Eq. (2.49))

reading as

C(t12) = i

∫ ∞

t1

dt3

∫ t2

−∞
dt4Σc(t34)eiE(t3−t4) +

(
Σx − V LDA

xc

)
t12 . (2.52)
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For simplicity, we drop the time-independent part of the cumulant function and define

its correlation part as

Cc(t12) = i

∫ ∞

t1

dt3

∫ t2

−∞
dt4Σc(t34)eiE(t3−t4) . (2.53)

We further put t2 = 0, t1 = t < 0 and τ = t3 − t4 since we are in equilibrium. The

correlation part of cumulant Cc becomes

Cc(t) = i

∫ ∞

t
dt′
∫ ∞

t′
dτΣc(τ)eiEτ

= i

∫ 0

t
dt′
∫ ∞

t′
dτΣc(τ)eiEτ + i

∫ ∞

0
dt′
∫ ∞

t′
dτΣc(τ)eiEτ

≡ Cc0(t) + Cc∞(t) . (2.54)

In order to evaluate the above integrals, the spectral representation of Σc is needed,

which reads (see Appendix Eq. (D.2e))

Σc(ω) =

∫ µ

−∞
dω′

D(ω′)

ω − ω′ − iη +

∫ ∞

µ
dω′

D(ω′)

ω − ω′ + iη
, (2.55)

where µ is the chemical potential and D(ω) is the spectral function of the correlation self-

energy Σc. Using the Krames-Kronig relation, D(ω) reads

D(ω) = − 1

π
Im Σc(ω)sgn(ω − µ) . (2.56)

After a Fourier transform of the spectral representation of Σc(ω) (the equations for the

Fourier transform are in Appendix Eq. A.1), we have

Σc(τ) =
1

2π

∫
dωe−iωτΣc(ω)

= iθ(−τ)eητ
∫ µ

−∞
dω′D(ω′)e−iω

′τ − iθ(τ)e−ητ
∫ ∞

µ
dω′D(ω′)e−iω

′τ , (2.57)
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where we have used the spectral representation of the Heaviside step function (see Appendix

Eq. (A.2)). Now we can evaluate the integrals in equation (2.54):

C0(t) = i

∫ 0

t
dt′
∫ ∞

t′
dτΣc(τ)eiEτ

= i

∫ 0

t
dt′
∫ ∞

t′
dτeiEτ

(
iθ(−τ)eητ

∫ µ

−∞
dωD(ω)e−iωτ − iθ(τ)e−ητ

∫ ∞

µ
dωD(ω)e−iωτ

)

= −
∫ 0

t
dt′
∫ 0

t′
dτ

∫ µ

−∞
dωei(E−ω−iη)τD(ω) +

∫ 0

t
dt′
∫ ∞

0
dτ

∫ ∞

µ
dωei(E−ω+iη)τD(ω)

= i

∫ 0

t
dt′
∫ µ

−∞
dω

1− ei(E−ω−iη)τ

E − ω − iη D(ω) + i

∫ 0

t
dt′
∫ ∞

µ
dω

D(ω)

E − ω + iη

= i

∫ 0

t
dt′
(∫ µ

−∞
dω

D(ω)

E − ω − iη +

∫ ∞

µ
dω

D(ω)

E − ω + iη

)
+

∫ µ

−∞
dω

ei(E−ω−iη)t − 1

(E − ω − iη)2
D(ω)

= −iΣc(E)t+

∫ µ

−∞
dω

ei(E−ω−iη)t

(E − ω − iη)2
D(ω) +

∂

∂ω′

∫ µ

−∞
dω

D(ω)

ω′ − ω − iη

∣∣∣∣
ω′=E

= −iΣc(E)t+

∫ µ

−∞
dω

ei(E−ω−iη)t

(E − ω − iη)2
D(ω) +

∂Σh
c (ω)

∂ω

∣∣∣∣
ω=E

, (2.58)

where we have defined the hole part of the correlation self-energy Σh
c that reads

Σh
c (ω) =

∫ µ

−∞
dω′

D(ω′)

ω − ω′ − iη . (2.59)

The second integral in equation (2.54) can be evaluated in the same way, leading to

C∞(t) = i

∫ ∞

0
dt′
∫ ∞

t′
dτΣc(τ)eiEτ =

∂Σe
c(ω)

∂ω

∣∣∣∣
ω=E

, (2.60)

with the electron part of the correlation self-energy Σe
c defined as

Σe
c(ω) =

∫ ∞

µ
dω′

D(ω′)

ω − ω′ + iη
. (2.61)

58



We now add the part due to the time-independent quantities which are Σx and V LDA
xc in

the cumulant function (see Eq. (2.52)). The hole Green’s function of TOC96 finally reads

GC96(τ) = iθ(−τ)e−iEτ exp

(
−iΣ(E)τ +

∂Σ(ω)

∂ω

∣∣∣∣
ω=E

+

∫ µ

−∞
dω

ei(E−ω−iη)τD(ω)

(E − ω − iη)2

)
;

= iθ(−τ)e−iEτ exp

(
−iΣ(E)τ +

∂Σ(ω)

∂ω

∣∣∣∣
ω=E

+
1

π

∫ µ

−∞
dω

ei(E−ω−iη)τ Im Σh(ω)

(E − ω − iη)2

)
.

(2.62)

The electron Green’s function can be calculated analogously. Now one can understand

that the central quantity of the TOC96 is actually the GW self-energy. However, instead of

solving the Dyson equation using the GW self-energy, the cumulant function is calculated

from a double time integral of the shifted GW self-energy (see Eq. (2.52)). As a result, one

can show that the CEA yields the exact Green’s function of the quasi-boson Hamiltonian

(see Eq. (1.1)) (this will be discussed in Chapter 4).

Now we can give an analysis of each term in the cumulant function. The first term in

the exponential Σ(E) induces an energy shift with respect to the KS-LDA eigenvalue E such

that the final quasi-particle energy from TOC96 is E + Σ(E), which is essentially the GW

quasi-particle energy (see equation (2.42)) whose real and imaginary parts are E + Re Σ(E)

and Im Σ(E), respectively. In particular, the real part of the QP energy reads

εQP = E + Re Σ(E) = E − V LDA
xc + Re ΣG0W0(E) ≡ E − V LDA

xc + Re ΣEscGW0(εQP ) .

(2.63)

The second term gives the normalized quasi-particle weight. The derivative of the

imaginary part of self-energy at E is in general very small, i.e. ∂ Im Σ(ω)
∂ω

∣∣∣
ω=E
≈ 0. Therefore

the QP renormalization factor Z of TOC96 reads

ZC96 = exp

(
∂ Re Σ(ω)

∂ω

∣∣∣∣
ω=E

)
. (2.64)

Note that the quasi-particle renormalization factor from TOC96 is different from the

GWA in equation (2.45). This issue will be discussed in Chapter 4.
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The third term yields a series of plasmon satellites. Using the Kramers-Kronig relation

(see appendix Eq. (A.3), supposing Im Σh ≈ πλδ(ω−E+ωp) where ωp is the plasmon energy

(suppose no dispersion for the moment) and λ is the weight of Σh, this term becomes

exp

(
λ

ω2
p

eiωpτ
)

=

∞∑

m=0

1

m !

(
λ

ω2
p

)m
eimωpτ , (2.65)

which generates satellites at ωp, 2ωp etc..

The spectral function of sodium valence 3s at the Γ point calculated from TOC96 in

equation (2.62) is shown in figure 2.9. The black dashed curve is G0W0 spectral function

reproduced from Ref. [9], which is slightly different from my GW calculation (red curve

with diamonds that is the same curve in the lower panel of figure 2.7), especially in the

plasmaron satellite region. This is because I have used more k-points in the Brillouin zone

than Aryasetiawan et al.. My G0W0 spectrum is almost identical to the EscGW0 result as

shown in figure 2.7. Similar G0W0 spectral functions can be also found in Ref. [79], which

confirms my G0W0 calculation. The cumulant expansion approximation calculated from

equation (2.62) is shown by the black solid curve, where the plasmon satellite replica are

observed at the energy difference ≈ 6 eV that is the plasmon energy of sodium.

Fig. 2.9 shows that TOC96 can describe the plasmon satellites in sodium, much better

than the GWA. What about the constraints I have mentioned in section 1.3? One can proof

that TOC96 does not conserve particle number, since26

∫ ∞

−∞
dωGC96(ω) ≡

∫ µ

−∞
dωGC96(ω) < 1 . (2.66)

Another drawback of TOC96 is that it only gives satellites on one side of the quasi-

particle peak due to the decoupling of electron and hole branches in its original ansatz (see

Eq. (2.46)). Taking equation (2.62) for example, the expansion of the last term only gives

satellites below the chemical potential µ. It is valid when the orbital is far from the Fermi

level. However, when the orbital is close to the Fermi level where the states are partially

26This is because the electron self-energy Σe in Eq. (2.61) enters the Z-factor through Eq. (2.64), which
determines the normalization of the spectrum. However, it does not enter in the last term of GC96 in Eq.
(2.62) that is responsible for producing the plasmon satellites. Thus the TOC96 conserves the particle
number only when Σe ≈ 0. This issue will be discussed in detail in Chapter 4.
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Figure 2.9: Intrinsic spectral function of the sodium valence 3s at the Γ point. Black curves
are reproduced from Ref. [9]. Dashed and solid curves are G0W0 and cumulant spectral
functions, respectively. The red curve with diamonds is the G0W0 spectral function from my
calculation that was also shown in the lower panel of figure 2.7. To have a good comparison,
I have shifted the my G0W0 spectrum by 0.1 eV such that the QP peak is centered at the
same energy as the result of Aryasetiawan et al. [9].

occupied, as discussed in section 1.1.1, there should be satellites on the other side of the

quasi-particle peak to conserve the total spectrum (i.e.

∫
A(ω)dω = 1). Actually these

two drawbacks are linked because the reason why this cumulant does not conserve particle

number is the fact that it is not able to give the correct spectrum on the other side of the

quasi-particle induced by the partially occupied states. I will discuss in detail about the

performance of the TOC96 in Chapter 4.

2.3.2 The retarded cumulant

An attempt of going beyond the decoupling of electron and hole branches that has been used

for TOC96 was proposed by J. Kas, J. Rehr and Reining in 2014 [19]. In Ref. [19] they stated

that the reason why the traditional time-ordered cumulants (TOCs) in Refs. [9, 11, 12, 78]

have no spectral weight on the right hand side of the QP peak (for electron removal) is
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due to the use of the time-ordered Green’s function in the cumulant ansatz. Therefore

a simple alternative way of going beyond is the use of the retarded counterparts27. The

relation between the time-ordered and retarded quantities is summarized in Appendix D.

The retarded cumulant ansatz of Ref. [19] reads

GRC(t) = GR0 (t)eC
R(t) , (2.67)

which is different from the ansatz of TOC96 just in the use of the corresponding retarded

quantities. The retarded cumulant function is obtained by solving symbolically the Dyson

equation with the retarded quantities

GR0 e
CR = GR0 ΣRGR0 . (2.68)

All the derivations are the same as TOC96 but replacing the time-ordered quantities

by the retarded counterparts. An illustration of the spectra in the homogeneous electron

gas is shown in Fig. 2.10 taken from Ref. [19]. The spectral functions for a range of states

k are shown. The black curves are spectra from a G0W0 calculation. As discussed before

they fail to produce the multiple satellites while both cumulants exhibit multiple satellites

representing the coupling to plasmons. In particular, in a very deep state (k/kF = 0.0)

the spectral function of the time-ordered cumulant (e.g. TOC96) (green filled curve) is

nearly identical with the retarded cumulant (red thick curve). This is consistent with my

above analysis about TOC96. When we go to the states that are close to the the Fermi

state kF , the retarded cumulant gives satellites on both sides of the QP peak, however

the time-ordered cumulant only has satellites on one side. Especially in the state where

k/kF = 1.0+, the retarded cumulant yields a spectrum that is almost symmetric with respect

to the chemical potential. Actually the GWA, although it gives bad satellites, shows similar

behavior (satellites on both sides of the QP peak).

27The difference between the time-ordered and retarded self-energies can be found in Appendix Eq. (D.1).
In the time-ordered self-energy, there are different θ functions that determine different time-ordering of Σ>

and Σ<. As a consequence, part of Σ> will be dropped in the double time integral in Eq. (2.58). If we use
ΣR where both Σ< and Σ> have the same time-ordering, the full self-energy will be integrated on the same
footing. The resulting integration of ΣR can be found in Eq. (3.63).

62



CUMULANT EXPANSION OF THE RETARDED ONE- . . . PHYSICAL REVIEW B 90, 085112 (2014)

ω
pA

k(
ω

)

ω/ωp

k/kF = 0.0

k/kF = 0.75

k/kF = 1.0+

k/kF = 1.25

k/kF = 2.0

k/kF = 2.5
-2

-1

0

1

-4 -2 0 2 4 6

ω
pA

k(
ω

)

ω/ωp

-1.5

-1

-2 -1

FIG. 1. (Color online) Spectral function Ak(ω) of an electron gas
at zero temperature for rs = 4.0 in units of the plasmon energy
ωp , for a range of k from the retarded cumulant (RC) approach
of this work (thick red lines), the time-ordered cumulant (TC) (filled
green curves), and the G0W 0 approximation (thin black lines). G0W 0

fails to produce multiple satellites while TC cumulants only exhibit
satellites on one side of the Fermi energy. The largest discrepancy
between RC and TC is near kF . The inset shows the existence of a
dispersionless satellite below the Fermi energy with increasing k from
k/kF = 1.0+ (top) to 1.45 (bottom) in steps of 0.025, as predicted
by RC. The dashed vertical line in both plots is set at the chemical
potential µ.

the spectral function is

Ak(ω) = − 1
π

ImGR
k (ω). (6)

While the above equations are similar to the TC formulas [2],
a major difference lies in the excitation spectrum βk(ω) =
β+

k (ω) + β−
k (ω), where β±

k (ω) = |Im $R
k (ω + ϵk)|θ [±(ϵkF

−
ϵk − ω)]. While the RC contains all frequencies and builds in
particle-hole symmetry, the TC forms only contain β+

k or β−
k

for particles or holes, respectively. For particles (+) or holes
(−), for example, the TC formalism gives

C̃T
k (t) =

∫
dω

β±
k (ω)
ω2

(e−iωt + iωt − 1). (7)

Consequently, the spectral functions are substantially different
(see Fig. 1). The simplicity of the RC allows one to check
that the basic requirements and sum rules are fulfilled. Thus
Ck(t = 0) = 0, so that Ak(ω) is normalized to unity. In
addition, C ′

k(t = 0) = 0 so the spectral function has a centroid
at the unperturbed (non-self-consistent) Hartree-Fock energy
ϵx
k , consistent with a one-shot calculation of Ak(ω). One also

easily obtains the renormalization constant Zk , quasiparticle
energy shift 'k , and occupation numbers nk ,

Zk = e−ak , ak =
∫

dω
βk(ω)

(ω − iδ)2
,

(8)

'k =
∫

dω
βk(ω)

(ω − iδ)
, nk =

∫ µ

−∞
dω Ak(ω),

where the chemical potential µ is fixed by enforcing total
occupation $knk = N . This definition of the chemical poten-
tial is reasonable for the electron gas, although enforcing the
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FIG. 2. (Color online) Occupation number nk vs k calculated for
an electron gas with rs = 4.0 from RC (red) compared to TC (green),
G0W 0 (blue), Compton experiment for Na [32] (black error bars),
and QMC (pink squares) [32]. Inset: Re[Zk] vs k from RC (red) and
G0W 0 (green).

occupations in this manner can cause problems in semicon-
ductors, where µ may not lie in the band gap. In any case,
this problem occurs with the G0W 0 approximation as well
[29]. These quantities permit a separation of the quasiparticle
and satellite parts of the Green’s function [2]; however, this
separation may not always be reasonable, e.g., in cases when
the real part of the renormalization constant is negative (see
Fig. 2). Nevertheless, the total cumulant and related Green’s
function as given by Eq. (5) are always well defined within
either the RC or TC methods. Note also that, when βk(0) > 0,
ak and thus Zk are complex. For the electron gas, this is the
case for all k ̸= kF . One can also express ak in terms of the
derivative of the self-energy, i.e.,

ak = −d$k(ω)
dω

∣∣∣∣
ω=ϵk

, (9)

which leads to the familiar GW form of the renormaliza-
tion constant Zk = 1/[1 − $′

k(ϵk)]. The primary many-body
ingredient in the RC is βk(ω), the imaginary part of the
retarded G0W self-energy $R

k , where W is defined by a
given screening approximation and has a structure that reflects
peaks in the loss function |Im ϵ−1(ω)|. Thus the computational
effort in the RC is comparable to that in G0W 0 if we also
use the RPA W = W 0. Going to higher order is technically
difficult and not necessarily an improvement, since higher
order terms can lead to nonphysical behavior in Ak(ω)
[9,13]. The complex renormalization constant Zk describes
the reduction in strength, and asymmetry of the quasiparticle
peak and agrees to first order in W with that for G0W 0

where ZGW
k = 1/(1 + ak). Physically the behavior of the RC in

Eq. (5) can be interpreted as a transfer of spectral weight
away from the quasiparticle peak by quasiboson excitations
at frequency ω, with coupling constants g2 ∼ β(ω). The
“shake-up” counts ak = a+

k + a−
k correspond to the mean

number of bosons coupled to the electron (or hole), and
account for the satellite strengths a±

k =
∫

dω β±
k (ω)/(ω − iδ)2

in Ak(ω) above (+) and below (−) the quasiparticle peak. To

085112-3

GW 
RC 
TOC 

Figure 2.10: The comparison of the spectra calculated from the GWA (G0W0), the time-
ordered cumulant, and the retarded cumulant in the homogeneous electron gas at zero
temperature for rs = 4.0 (which corresponds to the sodium density) in units of the plasmon
energy ω/ωp. The figure is taken from Ref. [19]. The spectral functions Ak(ω) for a range
of states k are shown. The black curves are the GWA results, the thick red curves are the
retarded cumulant results and the time-ordered cumulant (TOC) spectra are shown by the
green filled curves. The dashed vertical line is set at the chemical potential µ.

Fig. 2.10 is an illustration of the disadvantages of the traditional time-ordered cumulant

based on the time-ordered formalism, which yields the decoupling of electron and hole

branches. The retarded cumulant seems to be a better method of going beyond the time-

ordered cumulant. However, we will see in the following Chapters that, it has some serious

drawbacks. A new derivation of this retarded cumulant will be shown in Chapter 3 and a

detailed study and discussion will be given in the following Chapters.

2.4 Summary

In this chapter, I have briefly reviewed state-of-the-art theories in electron spectroscopy in-

cluding the Kohn-Sham density functional theory (KS-DFT), the GW approximation (GW),

and the cumulant expansion approximation (CEA). The derivations and links between dif-
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ferent methods have been shown. In practice, we start from a Kohn-Sham calculation with

the local-density approximation such that the Kohn-Sham eigenvalues and orbitals are ob-

tained. The GW self-energy and Green’s function can be calculated with the Kohn-Sham

ingredients. The cumulant expansion approximation can be considered as a further step

after the GWA because it uses the GW self-energy as its input. Instead of solving the Dyson

equation, the cumulant Green’s function is calculated from an exponential ansatz.

The spectral functions calculated from different methods are discussed such that the

advantages and disadvantages of different approximations are understood. The KS-DFT

based on the independent-particle picture with a static local effective potential can only de-

scribe the band structure qualitatively and it cannot yield satellites in the spectrum. The

GWA based on the quasi-particle picture and a non-local frequency-dependent self-energy,

usually improves the band structure with respect to KS-DFT and it yields satellites in the

spectrum, but it often fails to describe them correctly. The cumulant expansion approxi-

mation, on the other hand, can describe multiple satellites that represent the coupling to

plasmon excitations. However, its performance in the valence band region has to be assessed

in detail, and as we will see, improvements are needed.
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Chapter 3

Unified derivations of the GWA

and CEA

In this chapter, I will show unified derivations of the GW approximation and the cumulant

expansion approximations including the time-ordered cumulant developed in our group (i.e.

the TOC11 from Refs. [11, 20]) and the retarded cumulant that yields the same Green’s

function as the retarded cumulant from Ref. [19]. The derivations will be shown in this

chapter starting from the full functional differential equation of one-body Green’s func-

tion (also known as the Kadanoff-Baym equation [80]), which are different from previous

derivations (e.g. Hedin’s equations [5]), leading to a more compact formalism for treating

the many-body problem. Therefore the proposed derivations can be used for increasingly

accurate approximations.

3.1 Linearization

The linearization approximation was proposed by Dr. G. Lani in her PhD thesis [18] and

has been published in Ref. [81]. Since all the cumulant expansion approximations can be

derived based on the linearization1, I will briefly explain this process in this section. The

full functional differential equation (FDE) of the one-particle Green’s function has

1An alternative derivation will be shown in Appendix C where the cumulant expansion approximation
can be derived without the linearization.
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been derived in Appendix B.2. It reads

G(1, 2;φ) = G0(1, 2) +

∫
d3G0(1, 3)φ(3)G(3, 2;φ) +

∫
d3G0(1, 3)VH(3;φ)G(3, 2;φ)

+ i

∫
d34G0(1, 3)vc(3, 4

+)
δG(3, 2;φ)

δφ(4)
, (3.1)

where

VH(3;φ) = −i
∫

d4vc(3, 4
+)G(4, 4+;φ) , (3.2)

is the Hartree potential in presence of φ, G0 is the non-interacting Green’s function, and φ

is an external time-dependent perturbation.

If one could solve the above FDE, the solution at φ = 0 would be the desired one-

particle Green’s function G of a many-body system in equilibrium. Note that when the

last term is neglected (i.e. G does not change with the variation of φ), one retrieves the

Hartree approximation for G. Instead, the variation of the Green’s function goes beyond

the independent-particle picture; it contains the information that excitations are coupled

through the last term.

As pointed out in the book by Baym and Kadanoff [80], “ there is no known technique

to solve functional differential equations like (3.1) in an efficient way.” Instead, the equation

can be used as a starting point for increasingly accurate approximations.

One of the complications is the fact that the density ρ(1;φ) = −iG(1, 1+;φ) in the

Hartree potential in presence of the perturbation φ Eq. (3.2) depends on the Green’s

function such that the third term in Eq. (3.1) is quadratic in G, which makes the whole

equation nonlinear. To overcome this problem, we introduce the so-called linearization

approximation by a Taylor expansion of VH(φ) and keep until the linear order term in φ:

VH(3;φ) ≈ −i
∫

d4vc(3, 4) G(4, 4+;φ)

∣∣∣∣
φ=0

− i
∫

d45vc(3, 4
+)

δG(4, 4+;φ)

δφ(5)

∣∣∣∣
φ=0

φ(5) ,

(3.3)

where the higher order terms O
(
φ2
)

are neglected leading to a linear response of the Hartree

potential with respect to the external perturbation.
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The linearized Hartree potential can be written in two terms:

VH(3;φ) ≡ V (0)
H (3) + V

(1)
H (3;φ) , (3.4)

where the first term on the right hand side of the above equation V
(0)
H ≡ vcρ becomes the

Hartree potential in equilibrium (i.e. φ = 0).

The linearization is a reasonable approximation since we are only interested in the

solution for vanishing external perturbation φ. The first term in the Hartree potential does

not depend on φ, which suggests to introduce the Hartree Green’s function defined as

GH(1, 2) ≡ G0(1, 2) +

∫
d3G0(1, 3)V

(0)
H (3)GH(3, 2) . (3.5)

Now we want to replace G0 by GH in the functional differential equation (3.1). To this

end we invert the Dyson equation

∫
d12G−1

0 (4, 1)GH(1, 2)G−1
H (2, 5) =

∫
d12G−1

0 (4, 1)G0(1, 2)G−1
H (2, 5)

+

∫
d123G−1

0 (4, 1)G0(1, 3)V
(0)
H (3)GH(3, 2)G−1

H (2, 5) ,

(3.6)

which yields

G−1
0 (4, 5) = G−1

H (4, 5) + V
(0)
H (4)δ(4− 5) . (3.7)

The same trick can be used for the functional differential equation (3.1) (with the lin-

earized VH in Eq. (3.4)) whose inverse form reads (the arguments have been dropped for

simplicity)

G−1 = G−1
0 − (VH + φ)− ivc

δG

δφ
G−1

= G−1
H − (V

(1)
H + φ)− ivc

δG

δφ
G−1 . (3.8)
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Now we re-invert the above equation by multiplying with G and GH on both sides and

finally we get the linearized differential equation (LDE) in terms of GH instead of G0, which

reads

G(1, 2;φ) = GH(1, 2) + i

∫
d34GH(1, 3)vc(3, 4

+)
δG(3, 2;φ)

δφ(4)

− i
∫

d3GH(1, 3)

(∫
d45vc(3, 4

+)
δG(4, 4+;φ)

δφ(5)

∣∣∣∣
φ=0

+ iδ(3− 5)

)
φ(5)G(3, 2;φ) .

(3.9)

The term in the large bracket fits the definition of the inverse dielectric function ε−1 in

Eq. (2.25), i.e.

ε−1(3, 5) = −i
∫

d4vc(3, 4
+)

δG(4, 4+;φ)

δφ(5)

∣∣∣∣
φ=0

+ δ(3− 5) . (3.10)

With this, the LDE becomes

G(1, 2;φ) = GH(1, 2) +

∫
d35GH(1, 3)ε−1(3, 5)φ(5)G(3, 2;φ)

+ i

∫
d345GH(1, 3)ε−1(5, 4)vc(3, 4

+)
δG(3, 2;φ)

δ
∫

d6ε−1(5, 6)φ(6)

= GH(1, 2) +

∫
d3GH(1, 3)φ̄(3)G(3, 2;φ) + i

∫
d34GH(1, 3)W (3, 4+)

δG(3, 2;φ)

δφ̄(4)
,

(3.11)

where we have used the definition of the dynamical screened Coulomb interaction W in Eq.

(2.30), and the screened external perturbation φ̄ is defined as

φ̄(1) =

∫
d2ε−1(1, 2)φ(2) . (3.12)

Equation (3.11) is the final linearized differential equation that we are going to use to

derive the GW and the cumulant expansion approximations where the dynamically screened

Coulomb interaction W is the central quantity. The first term on the right hand side of the

linearized differential equation (3.11) represents the propagation of particles in the Hartree

potential, the second term describes the propagation in the screened external perturbation,
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while the last term contains all the complicated exchange and correlation effects of the

system where all the unknown is stored.

3.2 The GW approximation from the linearized differential

equation

In section 2.2, I have shown the traditional way of deriving the GW approximation from

Hedin’s equations by neglecting the three-point vertex correction, i.e. Γ̃ = 1. Since we

have re-derived all the equations from the exact functional differential equation (3.1) and

re-formulated the terms, as well as proposed the linearization approximation, the GW

approximation can be derived from our linearized differential equation in a more compact

way. The reason why we prefer our more compact derivation is because the linearized

differential equation (3.11) provides an opportunity to derive further approximations e.g.

the GWA and the CEA at the same footing. Moreover, the linearized differential equation

provides possibilities to go beyond these present approximations in a way that it is more

convenient than dealing with the three-point vertex function in Hedin’s equations.

In order to get the GWA, we start from the linearized differential equation which reads

G(1, 2;φ) = GH(1, 2) +

∫
d3GH(1, 3)φ̄(3)G(3, 2;φ) + i

∫
d34GH(1, 3)W (3, 4+)

δG(3, 2;φ)

δφ̄(4)
.

(3.13)

The simplest approximation to the above equation is2

δG(3, 2;φ)

δφ̄(4)

∣∣∣∣
φ=0

=
δG̃(3, 2; φ̄)

δφ̄(4)

∣∣∣∣∣
φ=0

≈ G(3, 4)G(4, 2) . (3.14)

Like the random phase approximation, the above approximation neglects the interaction

between electron and hole. After this approximation, φ = 0 can be taken in the LDE, such

2Note that the functional of the Green’s function on φ (i.e., G[φ]) is different from the functional of the
Green’s function on φ̄ (i.e., G̃[φ̄]). For the sake of simplicity, I will keep using G[φ] instead of G̃[φ̄] in the
following. This is reasonable because we are finally only interested in the Green’s function in equilibrium
where φ = 0.
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that in equilibrium it becomes a Dyson equation that reads

G(1, 2) = GH(1, 2) +

∫
d34GH(1, 3)Σxc(3, 4)G(4, 2) , (3.15)

where the self-energy is defined as

Σxc(1, 2) ≡ iG(1, 2)W (1, 2+) . (3.16)

These two equations (3.15) and (3.16) are equivalent to Hedin’s equations (2.34) when

the vertex correction is neglected, where the equations leading to the GWA are

G(1, 2) = G0(1, 2) +

∫
d34G0(1, 3)Σ(3, 4)G(4, 2) ;

Σ(1, 2) = V
(0)
H (1)δ(1, 2) + iG(1, 2)W (1, 2+) .

The GW approximation involves hence two approximations: a linearization of the den-

sity response (VH) of the system to the perturbation induced by the electron addition or

removal and an approximation of the coupling of excitations, which leads to Σ = iGW .

Often the GWA is used with two further approximations: first, the Green’s function G

that appears in Eq. (3.16) is replaced by an independent-particle one, for example a Kohn-

Sham Green’s function. Second, W is calculated in the RPA. As our derivation shows, these

are additional approximations, not indispensable for the GWA. Instead, the derivation sug-

gests that in principle W should be the exact linear response screened Coulomb interaction,

which is the time-ordered counterpart of the measurable retarded screened interaction (of-

ten called test-charge test-charge interaction instead of the test-charge test-electron one),

and that the self-energy should be built with the self-consistent Green’s function G. As we

will see later, the excitations contained in W directly show up in the satellites. This allows

one to confirm that, in agreement with our derivation, W should indeed be the physical

screened interaction, and not its RPA version.

However, deriving GW from the LDE is not our main purpose, but just to prove that

the linearization is a good approximation and the LDE is a good starting point to derive
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some approximation beyond the GWA. As I will show in the next section, the cumulant

expansion approximation can be also derived from this LDE, yielding a similar Green’s

function as the TOC96 in Eq. (2.62).

3.3 The TOC11 from the linearized differential equation

In section 2.3 I have introduced the TOC96. In this section, I am going to show the

derivation of the TOC11 of Refs. [11,17]. I have re-derived this cumulant and introduced a

different derivation in Ref. [20]. But for the sake of compactness, the derivation based on

Refs. [11, 17] will be shown in this section.

3.3.1 Cumulant from Decoupling approximation

Again we start from the linearized differential equation (3.11). The approximation I am

going to use to derive the TOC11 is called the decoupling approximation. Following

the idea of Ref. [11], I approximately decouple the LDE by supposing that G(φ) and GH

are diagonal in the same, φ-independent, basis (e.g. the Kohn-Sham orbitals). For each

diagonal matrix element in such a basis, the LDE becomes

G(t12;φ) = GH(t12) + GH(t13)φ̄ii(t3)G(t32;φ) + i
∑

kl

GH(t13)W ii
kl(t34)

∂G(t32;φ)

∂φ̄kl(t4)
, (3.17)

where G ≡ Gii represents the diagonal elements of the Green’s function, the short notation

of t12 ≡ (t1, t2) has been used, and the matrix elements of W is defined as

W kl
ij (t34) ≡

∫
dx1x2 ϕ

∗
k(x1)ϕi(x2)W0(x1, x2, t34)ϕ∗j (x2)ϕl(x1) . (3.18)

Note that I have changed the functional derivative to a partial derivative, since I suppose

the basis to be discrete, which corresponds to the calculations in practice. Now if one iterates

the above equation for G(φ), it turns out that G(φ) depends only on the element φ̄ii, i.e.

the diagonal part of φ̄. As a consequence,
∂G(t32;φ)

∂φ̄kl
is nonzero only when k = l = i, which

eliminates the sum over k and l in the last term of the above equation. Finally we have a
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scalar differential equation that reads

G(t12) = GH(t12) + GH(t13)φ̄ii(t3)G(t32) + iGH(t13)W(t34)
∂G(t32)

∂φ̄ii(t4)
, (3.19)

where

W(t12) = W ii
ii (t12) =

∫
dx1x2|ϕi(x1)|2|ϕi(x2)|2W (x1, x2, t12) (3.20)

are the diagonal elements of the screened interaction W . Note that with the decoupling

hypothesis that all Green’s functions are diagonal automatically, only the diagonal elements

of W are needed but without any further approximation on W . The scalar equation (3.19)

can be solved exactly. Since it is a first order differential equation, it has more than one

solution. Excluding a phase transition, the physical solution is the one that connects to the

non-interacting one when vc → 0 [81]. This solution describes one orbital propagating in

the medium given by W that represents the effects of all other electrons.

For the external potential φ = 0, the solution of equation (3.19) for an occupied state3

reads

G(t12) = GH(t12) exp

(
−i
∫ t2

t1

dt′
∫ t2

t′
dt′′W(t′ − t′′)

)
, (3.21)

where GH contains the effect of the Hartree potential constructed with the ground state

density (i.e. at φ = 0) as shown in equation (3.5). The double integral term in the

exponential corresponds to the cumulant function C(τ) in Eq. (2.46). Suppose we are

calculating the Green’s function of some occupied state, GH(t12) is non-zero only when

t1 < t2. The time-ordering in the double integral then becomes t1 < t′ < t′′ < t2, which

means that only the t′ < t′′ part of W(t′ − t′′) is included in the cumulant function. This

is due to the decoupling approximation we have used in Eq. (3.19) when deriving this

cumulant: the electron and hole branches are totally decoupled.

The screened interaction contains two parts, i.e. W = vc + Wc where the second term

represents the correlation part of W that is time-dependent. We can write the correlation

part of the screened interaction into its spectral representation (see Appendix (D.2c)) as

3Strictly speaking, to say one certain state is occupied or unoccupied is not always correct because states
can be partially occupied. Throughout this thesis, an occupied state is refereed to as a state below the Fermi
level and an unoccupied state is refereed to be a state above the Fermi level.
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what we did for Σc in Eq. (2.55), which yields

Wc(ω) =

∫ 0

−∞
dω′

B(ω′)

ω − ω′ − iη +

∫ ∞

0
dω′

B(ω′)

ω − ω′ + iη
≡ Wh

c (ω) +We
c (ω) , (3.22)

where4

B(ω) = − 1

π
ImW(ω)sgn(ω − µ) . (3.23)

Fourier transforming Wc(ω) to time domain, we have

Wc(τ) = iθ(−τ)eητ
∫ µ

−∞
dω′B(ω′)e−iω

′τ − iθ(τ)e−ητ
∫ ∞

µ
dω′B(ω′)e−iω

′τ . (3.24)

Due to the time-ordering t′ < t′′, only

Wh
c (τ) = iθ(−τ)eητ

∫ µ

−∞
dω′B(ω′)e−iω

′τ , (3.25)

is included in the cumulant function. Similar to what we did for Σc when we derived

the TOC96 in section 2.3.1, we can calculate the cumulant function in equation (3.21) by

defining t2 = 0, t1 ≡ t < 0 and τ ≡ t′ − t′′ < 0, yielding

Cc(t) = itWh
c (ω = 0)− ∂Wh

c (ω)

∂ω

∣∣∣∣
ω=0

− 1

π

∫ µ

−∞
dω

ImWh
c (ω)e−i(ω+iη)t

(ω + iη)2
. (3.26)

Plugging the above equation into Eq. (3.21) and putting back the time-independent

part of W , the final Green’s function from the decoupling approximation reads

G(t12) = GH(t12) exp

(
it12Wh(ω = 0)− ∂Wh(ω)

∂ω

∣∣∣∣
ω=0

− 1

π

∫ µ

−∞
dω

ImWh(ω)e−i(ω+iη)t12

(ω + iη)2

)
.

(3.27)

The decoupling approximation is a very rough approximation, but it allows us to see

the structure of the problem, and the physics that emerges from the exact solution of the

linearized equation: since W contains the neutral excitations of the system, expansion of

the exponential (i.e. the last term in Eq. (3.27)) creates a series of single, double, and

4Of course there is no hole or electron part of the screening W itself, but here I define the quantities in
a way that is convenient for their later use. Especially this way of definition is consistent with the Green’s
function and the self-energy.
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multiple excitations. As discussed in section 1.1, such an expression is the exact solution

of a core electron Hamiltonian [16], where a single fermion is coupled to bosons. Here the

bosons are the excitations contained in W , and the fermion is given by G.

The above cumulant Green’s function is similar to the Green’s function of the TOC96

in Eq. (2.62), but instead of using the GW self-energy, only the screened interaction W

is contained in the exponential. In the case of a core level, it is reasonable to divide the

system into an isolated level and the rest, which screens the level. But in the case of valence

states, no such clear separation exists. However, one can still imagine that one excites a

quasi-particle, and that excitation of this quasi-particle, in turn, leads to bosonic excitations

in the system. However, the quasi-particle is not simply the bare level; it is dressed by the

other electrons. In order to improve the description of the quasi-particle, a further GW

quasi-particle correction will be introduced in the following paragraphs, leading to the final

TOC11.

3.3.2 The GW quasi-particle correction

Eq. (3.27) is not the TOC11 in Ref. [11] yet. Besides the decoupling approximation, the

TOC11 also used the GW quasi-particle corrections. In order to get a better description

than Eq. (3.27), beyond the decoupling approximation, it is useful to compare to the GW

approximation, like in the TOC96 where the GW self-energy enters. In the decoupling

approximation, the i-th matrix element of the EscGW0 self-energy for t1 < t2 reads

ΣGW,h
i (t12) = −θ(t2 − t1)e−iεit12W(t12) , (3.28)

where εi is the quasi-particle energy from a EscGW0 calculation5.

We can now use Eq. (3.28) to rewrite Eq. (3.21) as

G(t12) = GH(t12) exp

(
i

∫ t2

t1

dt′
∫ t2

t′
dt′′ΣGW,h

i (t′ − t′′)eiεi(t′−t′′)
)
. (3.29)

5Note that equation (3.28) is only valid in the decoupling approximation. In general, the GW self-
energy contains the sum over all the states, i.e. Σii = i

∑
kGkkW

ii
kk. Moreover, the GW self-energy is not

necessarily the EscGW0 one. The G0W0 self-energy can lead to the same result if we have taken the εi
properly according to the self-energy. This will be discussed in more detail in section 4.2.
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The exponential term in the above equation is similar to equation (2.51) besides the

time arguments in the double integral, due to the decoupling approximation. The cumulant

Green’s function in Eq. (3.27) can now be written in terms of the GW self-energy, leading

to

G(t12) = G0
QP (t12) exp

(
∂ΣGW,h

i (ω)

∂ω

∣∣∣∣∣
ω=εi

)
exp

(
1

π

∫ µ

−∞
dω

Im ΣGW,h
i (ω)ei(εi−ω−iη)t12

(εi − ω − iη)2

)
,

(3.30)

where

G0
QP (t12) = GH(t12) exp

(
−iΣGW,h

i (εi)(t12)
)
. (3.31)

Within the decoupling approximation, Eq. (3.30) is equivalent to Eq. (3.27). The

quasi-particle energy from Eq. (3.30) is the QP energy in G0
QP which is calculated using

only the hole part of the GW self-energy as shown in the above equation. It is different

from the GW quasi-particle energy where the whole GW self-energy is used (see e.g. the

QP energy of the TOC96 in Eq. (2.62)).

Up to now, the electron and hole sectors separate: occupied and empty states do not

correlate in the decoupling approximation; for example, in Eq. (3.30) only ΣGW,h appears.

In order to have a better description of the quasi-particle, the full GWA self-energy, and not

only its hole part, is used to calculate the quasi-particle shift in the TOC11, which yields

GC11(t12) = GQP (t12) exp

(
∂ΣGW,h

i (ω)

∂ω

∣∣∣∣∣
ω=εi

)
exp

(
1

π

∫ 0

−∞
dω

Im ΣGW,h
i (ω)ei(εi−ω−iη)t12

(εi − ω − iη)2

)
,

(3.32)

where GQP is the Green’s function evaluated with GWA quasi-particle energies, which is the

same as the TOC96 in equation (2.62). The only difference to the TOC96 is the Z-factor

that reads

ZC11 = exp

(
∂ΣGW,h

i (ω)

∂ω

∣∣∣∣∣
ω=εi

)
. (3.33)
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The Z-factor of the TOC11 is important to guarantee conservation of weight of the

spectral function, i.e.

∫ ∞

−∞
Ai(ω)dω = 1.

Besides the TOC96, several derivations of this or closely related expressions can be found

in the literature. In particular, Langreth [16] has obtained the cumulant Green’s function

as solution to an electron-boson coupling Hamiltonian (see Eq. (1.1)). In the simplest case

of one level and one boson, such a Hamiltonian corresponds to our decoupled LDE (3.19),

where W contains one bosonic excitation. The more complete equation LDE (3.11) couples

several fermionic levels and bosonic excitations. With respect to Langreth, our derivation

starts from the full many-body Hamiltonian, and not from the already approximate electron-

boson coupling model. The solution of the problem is then based on a different mathematical

strategy, but of course with similar results, since in both cases the solution is the exact

solution to the approximate problem.

Other derivations (see e.g., Refs. [9, 19, 33, 77]) postulate the GW self-energy as central

ingredient, and either solve the equation of motion from the Green’s function approximately

[33], or use the cumulant exponential form as ansatz, with the cumulant derived from the

constraint that the Dyson equation and the cumulant approach should yield the same result

to first order in W [9, 19,77], as for example for the TOC96.

In our case, the GW form of the self-energy appears naturally. The closest derivation to

ours is probably the one of Hedin [31] where the diagrammatic expansion of the Green’s

function is resummed thanks to approximations on the recoil effects. As in our derivation,

there is no model Hamiltonian, W is the central ingredient, and the GW self-energy appears

as a result.

A detailed study of the TOC11 in the hole-plasmon coupling model Hamiltonians will

be provided in section 4.2. In Chapter 6 I will also show the performance of the TOC11

photoemission spectrum of sodium in the valence and for the core levels by comparing

theory and experiment.
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3.4 The retarded cumulant

In Section 3.3 I have shown how the TOC11 can be derived from the linearized differential

equation (3.11) using the decoupling approximation plus the GW quasi-particle correction.

In this section, I am going to start from the LDE again, and introduce an ansatz Green’s

function that leads to the retarded cumulant Green’s function that has been introduced in

section 2.3. The LDE (3.11) reads

G(1, 2;φ) = GH(1, 2) +

∫
d3GH(1, 3)φ(3)G(3, 2;φ) + i

∫
d34GH(13)W (3, 4+)

δG(3, 2;φ)

δφ(4)
.

(3.34)

For simplicity of the notation, I have used the symbol φ to represent the screened

external perturbation instead of φ̄ (see footnote 2 in section 3.2.). We can define a new

Green’s function from the following Dyson equation

Gφ(1, 2) = GH(1, 2) +

∫
d3GH(1, 3)φ(3)Gφ(3, 2) , (3.35)

such that the linearized differential equation (3.34) becomes

G(1, 2;φ) = Gφ(1, 2) + i

∫
d34Gφ(1, 3)W (3, 4)

δG(3, 2;φ)

δφ(4)
. (3.36)

Note that Gφ becomes GH in equilibrium (φ = 0) and its derivative with respect to φ

gives

δGφ(1, 2;φ)

δφ(3)
= Gφ(1, 3)Gφ(3, 2) . (3.37)

Note that there is no integration on the repeated index 3 in the above equation (3.37).

Now the question is how one can solve equation (3.36) in an efficient way. My strategy is

to look for some ansatz Green’s function that in principle is the exact solution of equation

(3.36). Then we can introduce proper approximations to the ansatz such that equation

(3.36) can be solved in equilibrium using the chosen approximate ansatz.
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To be more specifically, we can have a look of the following two ansatz Green’s functions,

for example:

GA1(1, 2;φ) = Gφ(1, 2) exp [C(1, 2;φ)] ; (3.38)

GA2(1, 2;φ) =

∫
d3Gφ(1, 3) exp [C(3, 2;φ)] . (3.39)

In principle, both of the above two ansatz Green’s functions are the exact solution of

equation (3.36) because we have the cumulant function C that can be adjusted according to

the requirement that C = ln
δG

δGφ
in Eq. (3.38) or C = ln

(
G−1
φ G

)
in Eq. (3.39). However,

we could not solve equation (3.36) exactly using these two ansatz Green’s function directly6.

One alternative way is that we expand the cumulant function C with respect to the external

perturbation φ, which requires our cumulant function C to be Taylor expandable with

respect to φ. We can expect that the expansion can be done when φ can be kept relatively

small. After expansion, we keep only the zero-order term such that the resulting cumulant

function C0 is φ-independent. Thus the approximate ansatz Green’s functions are

GA10(1, 2;φ) = Gφ(1, 2) exp [C0(1, 2)] ; (3.40)

GA20(1, 2;φ) =

∫
d3Gφ(1, 3) exp [C0(3, 2)] . (3.41)

In the following subsection, I am going to study in detail the second ansatz Green’s

function (GA20) but not the first one (GA10) because I did not find any promising solution

of Eq. (3.36) from the first ansatz. Therefore, the study of the first ansatz is not provided

in the thesis.

3.4.1 Ansatz that gives the GWA

In order to see how the ansatz Green’s function works, I will take the second ansatz GA20 as

one example to show how we can get the GW approximation from equation (3.36). Plugging

6This is because if we could solve Eq. (3.36) using these two ansatzs, this is equivalent to solve the exact
many-body problem which is of course if possible. Some approximations must be done.
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GA20 in Eq. (3.36) and using the property in Eq. (3.37), we have

∫
d3Gφ(1, 3)eC0(3,2) = Gφ(1, 2) + i

∫
d345Gφ(1, 3)W (3, 4)Gφ(3, 4)Gφ(45)eC0(5,2) . (3.42)

Now φ = 0 can be taken since the functional derivative with respective to φ has already

been carried out, leading to

∫
d3GH(1, 3)eC0(3,2) = GH(1, 2) + i

∫
d345GH(1, 3)W (3, 4)GH(3, 4)GH(45)eC0(5,2) .

(3.43)

The above equation can be simplified by introducing the GW self-energy ΣGW (3, 4) =

iGH(3, 4)W (3, 4)7, such that it becomes

∫
d3GH(1, 3)eC0(3,2) = GH(1, 2) +

∫
d345GH(1, 3)ΣGW (3, 4)GH(45)eC0(5,2) . (3.44)

The above equation is nothing else than the Dyson equation with the GW self-energy8,

which reads

G(1, 2) = GH(1, 2) +

∫
d34GH(1, 3)ΣGW (3, 4)G(4, 2) , (3.45)

where the knowledge of C0 in

G(1, 2) =

∫
d3GH(1, 3)eC0(3,2) (3.46)

is not directly needed, although one could of course calculated C0 from G, the solution of

Eq. (3.45).

7Note that here the GW self-energy is defined in terms of the Hartree Green’s function GH , and the exact
screening W instead of the RPA one. Thus the self-energy ΣGW (3, 4) = iGH(3, 4)W (3, 4) corresponds to
a one-shot GW self-energy. In practice, the Hartree Green’s function will be replaced by the quasi-particle
Green’s function such that the self-energy becomes the quasi-particle self-consistent GW self-energy.

8I have mentioned in section 2.2 that the GW approximation corresponds to neglecting the vertex
correction (i.e. Γ̃ = 1) in Hedin’s equations in Eq. (2.34). Then the one-shot GW self-energy be-
comes ΣGW (3, 4) = iGH(3, 4)WRPA(3, 4) and the Green’s function from the GWA becomes G(1, 2) =
GH(1, 2) + i

∫
d34GH(1, 3)ΣGW (3, 4)G(4, 2) which is similar to Eq. (3.45) but not exactly the same. Be-

cause the GW approximation yields the RPA W but in our derivation, W keeps the exact one. We did
not put any approximation in W yet. Therefore, strictly speaking our Eq. (3.45) does not really lead to
the usual GW approximation but only when we use the RPA W , the solution of Eq. (3.45) retrieves the
commonly calculated GW Green’s function.
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As we can see, the ansatz Green’s function in equation (3.41) retrieves the GW ap-

proximation. This is good because it proves that our strategy is meaningful: using some

proper ansatz Green’s function, the solution of the linearized differential equation (3.36) can

be as good as the GWA. However, to find the GW approximation is not our final target.

The next step is to find some better ansatz that will give us powerful cumulant expansion

approximations.

3.4.2 Ansatz that gives a retarded cumulant

Up to now, we have seen how we can use the idea of an ansatz Green’s function to solve the

linearized differential equation approximately and get reasonable results. In this section,

I am going to use a new ansatz Green’s function that combines the previous two ansatz

Green’s functions in Eqs. (3.38) and (3.39). The idea of a combined ansatz is inspired

by the fact that we are looking for a quasi-particle dressed by bosons that are summed in

an exponential factor. Intuitively, each quasi-particle is given by a diagonal element of a

Green’s function in a basis, rather than a non-local function in real space. This speaks for

Eq. (3.39). On the other side, we have to change the time structure of the ansatz to go

beyond the GW approximation, as we have seen in section 3.4.1, and for this Eq. (3.38) is

a good candidate. Therefore I make the ansatz reading as:

GA3(1, 2;φ) =

∫
dx3Gφ(x1, x3, t1, t2) exp [C(x3, x2, t1, t2;φ)] . (3.47)

Again we will keep only the zero order expansion of the above ansatz, such that the final

ansatz Green’s function we are going to study reads

G(1, 2;φ) =

∫
dx3Gφ(x1, x3, z1, z2) exp [C0(x3, x2, t1, t2)]

=

∫
dx3Gφ(x1, x3, z1, z2)Ẽ(x3, x2, t1, t2) , (3.48)

where we have defined Ẽ(x3, x2, t1, t2) ≡ exp [C0(x3, x2, t1, t2)]. Note that in the linearized

differential equation (3.36), the particles are propagating in non-equilibrium due to the

presence of the external perturbation φ. Therefore all the quantities that are functionals
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of φ should have the time arguments running on the Keldysh-contour9. Here I label the

Keldysh-contour time as z and normal time as t as shown in our ansatz Green’s function

in Eq. (3.48). Now we can plug our ansatz Green’s function Eq. (3.48) into the linearized

differential equation (3.36). We first have a look at the differential term in the LDE that

reads

δ
∫

dx5Gφ(x3, x5, z3, z2)Ẽ(x5, x2, t3, t2)

δφ(4)
=

∫
dx5 Ẽ(x5, x2, t3, t2)

δGφ(x3, x5, z3, z2)

δφ(4)

=

∫
dx5 Ẽ(x5, x2, t3, t2)Gφ(x3, x4, z3, z4)Gφ(x4, x5, z4, z2)

= Gφ(3, 4)

∫
dx5Gφ(x4, x5, z4, z2)Ẽ(x5, x2, t3, t2). (3.49)

We have used relation Eq. (3.37) in the above derivation. With equation (3.49), the

LDE in Eq. (3.36) can be written as

∫
dx3Gφ(x1, x3, z1, z2)Ẽ(x3, x2, t1, t2) = Gφ(1, 2)

+ i

∫
d34Gφ(1, 3)W (3, 4)Gφ(3, 4)

∫
dx5Gφ(x4, x5, z4, z2)Ẽ(x5, x2, t3, t2) . (3.50)

Now we define the GW self-energy in non-equilibrium

Σφ(1, 2) = iGφ(1, 2)W (1, 2) . (3.51)

Plugging the above Σφ in Eq. (3.50), we get

∫
dx3Gφ(x1, x3, z1, z2)Ẽ(x3, x2, t1, t2) = Gφ(1, 2)

+

∫
d34Gφ(1, 3)Σφ(34)

∫
dx5Gφ(x4, x5, z4, z2)Ẽ(x5, x2, t3, t2) . (3.52)

In equilibrium Σφ becomes the GW self-energy Σφ=0 ≡ ΣGW = iGHW . Now we can use

the Langreth rules [84] in table 3.1 to project the Keldysh-contour time to the real time.

9The Keldysh formalism is designed for studying quantum mechanical non-equilibrium situations. Before
we put the external perturbation to zero (φ = 0), our linearized differential equation is in non-equilibrium
such that strictly speaking, we have to use the Keldysh-contour for the quantities that are φ-dependent.
More information about the non-equilibrium many-body problem can be found for instance in Refs. [82,83].
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We decide to calculate the retarded component of our Green’s function in equilibrium10

because from the table 3.1, the retarded component is the simplest one to get from Eq.

(3.52).

c(z1, z2) =
∫

dz a(z1, z)b(z, z2) c(z1, z2) = a(z1, z2)b(z2, z1)

c> = a> · bA + aR · b> c> = a>b<

c< = a< · bA + aR · b< c< = a<b>

cR = aR · bR cR = aRb< + a<bA

cA = aA · bA cA = aAb< + a<bR

cT = aT · bT − a< · b> cT = a<bT + aRb<

cT̄ = a> · b< − aT̄ bT̄ cT̄ = aT̄ b< − a<bA

Table 3.1: Identities for the convolution (first column) and product (second column) of two
functions in Keldysh space following Langreth rules [84]. Take from Ref. [82]. The super-
scripts R, A, T , T̄ are retarded, advanced, time-ordered and anti-time-ordered com-

ponents, respectively. Note that in the table, the short notations a · b ≡
∫

dt a(t1, t)b(t, t1)

and ab ≡ a(t1, t2)b(t2, t1) are adopted. The GW self-energy is Σ(t12) = iG(t12)W (t12),
which is different with the second column so we need to be careful about the order of the
time arguments when using these rules.

After using the Langreth rules in table 3.1, we can put the external perturbation to zero

(φ = 0). Thus Eq. (3.52) in equilibrium reads (for simplicity, Σ ≡ Σφ=0 ≡ ΣGW in the

following equations)

∫
dx3G

R
H(x1, x3, t1, t2)Ẽ(x3, x2, t1, t2) = GRH(1, 2)

+

∫
d34GRH(1, 3)ΣR(34)

∫
dx5G

R
H(x4, x5, t4, t2)Ẽ(x5, x2, t3, t2) . (3.53)

10Actually it is not necessary to calculate the retarded component of the GF from Eq. (3.52). We could,
in principle calculate any component by projecting the Keldysh time into normal time using the Langreth
rules, e.g. the time-ordered Green’s function that should induce the same result as the retarded Green’s
function. In this sense, the conclusion that the retarded cumulant is better than the time-ordered cumulant
is not correct. The most important approximations in the time-ordered cumulants (TOC96 and TOC11)
are the decoupling between the electron and hole branches.
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Suppose now again that we are working on a basis where GRH is diagonal. The last term

of equation (3.53) becomes

∫
d34

∫
dx1x2x5ϕ

∗
i (x1)ϕj(x2)

∑

k

GRH,kk(t1, t3)ϕk(x1)ϕ∗k(x3)
∑

nn′

ΣR
nn′(t3, t4)ϕn(x3)ϕ∗n′(x4)

×
∑

k′

GRH,k′k′(t4, t2)ϕk′(x4)ϕ∗k′(x5)
∑

lm

Ẽlm(t3, t2)ϕl(x5)ϕ∗m(x2)

=

∫
dt3t4

∑

k

GRH,ii(t1, t3)ΣR
ik(t3, t4)GRH,kk(t4, t2)Ẽkj(t3, t2) .

(3.54)

Now we can write the whole equation (3.53) in such a basis (suppose for the moment,

we are only interested in the diagonal elements). We have

GRH,ii(t1, t2)Ẽii(t1, t2) = GRH,ii(t1, t2)

+

∫
dt3t4

∑

k

GRH,ii(t1, t3)ΣR
ik(t3, t4)GRH,kk(t4, t2)Ẽki(t3, t2) . (3.55)

We use the approximation that the GW self-energy ΣR is also diagonal in the basis we

have chosen11. This yields the final scalar equation that can be solved exactly:

GRH(t12)Ẽ(t12) = GRH(t12) +

∫
dt3t4 GRH(t13)ΣR

ii(t34)GRH(t42)Ẽii(t32) , (3.56)

where G ≡ Gii is the diagonal element of the Green’s function and t12 ≡ (t1, t2).

This is the final linearized differential equation of a certain matrix element in a retarded

version. Note that in the GW self-energy ΣR
ii = i

∑

k

GHkkW
ii
kk where k runs over all states,

so that the interaction of all the states is taken into account. Now we are going to solve the

above equation (3.56) as what we did in section 3.3 when we solve Eq. (3.19).

First the retarded Hartree Green’s function reads

GRH(t12) = −iθ(t1 − t2)e−iε
H
i (t1−t2) , (3.57)

11In the derivation of the TOC96 in section 2.3 and the TOC11 in section 3.3, we always use the ap-
proximation that the GW self-energy is diagonal in the Kohn-Sham orbitals. Here I am using the same
approximation. The situation when the self-energy is not diagonal is more complicated and this issue is not
provided in this thesis.
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where εH is the Hartree eigenvalue.

Plugging the above equation (3.57) in Eq. (3.56), we can finally calculate Ẽ from

Ẽii(t12) = 1− i
∫ t1

t2

dt4

∫ t1

t4

dt3Σ̃R
ii(t34)Ẽii(t32) (3.58)

where Σ̃R
ii(t34) ≡ ΣR

ii(t34)eiε
H
i (t3−t4), and the time ordering is t1 > t3 > t4 > t2.

As one can check by putting Eq. (3.59) into Eq. (3.58), the solution of the above

equation reads

Ẽii(t12) = exp

[
−i
∫ t1

t2

dt4

∫ t1

t4

dt3 Σ̃R
ii(t34)

]
. (3.59)

Putting the above Ẽ in the left hand side of Eq. (3.56), we arrive at the final retarded

Green’s function, which reads

GRC(t12) = GRH(t12) exp

[
−i
∫ t1

t2

dt4

∫ t1

t4

dt3 Σ̃R
ii(t34)

]
. (3.60)

This retarded cumulant Green’s function is identical to the retarded cumulant in Ref. [19]

that has been discussed in section 2.3. Compared to the time-ordered cumulant in Eq.

(3.29) which is the TOC11 but without the GW quasi-particle correction (see Eq. (3.29)),

the retarded cumulant Green’s function GRC in Eq. (3.60) replaces the single branches

of the time-ordered GH and ΣGW by their full retarded counterparts. If we had not gone

through the Keldysh-contour from Eq. (3.52), but put φ = 0 in Eq. (3.52) to solve it under

decoupling approximation, we would have gotten the same cumulant Green’s function as

equation (3.29) which finally yields the TOC11 with the GW quasi-particle correction.

Similar to the derivation of the TOC96 in section 2.3, the double integral in Eq. (3.60)

can be carried out by introducing the spectral representation of the retarded self-energy

(the subscript ii is dropped for simplicity), which reads (see Appendix (D.2f))

ΣR
c (ω) =

∫
dω′

Γ(ω′)

ω − ω′ + iη

=

∫ µ

−∞
dω′

Γ(ω′)

ω − ω′ + iη
+

∫ ∞

µ
dω′

Γ(ω′)

ω − ω′ + iη
≡ Σ<

c (ω) + Σ>
c (ω) , (3.61)
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where

Γ(ω) = − 1

π
Im ΣR

GW (ω) = − 1

π

(
Im Σ>

c (ω) + Im Σ<
c (ω)

)
. (3.62)

Putting t2 = 0 and t1 ≡ t > 0 and τ = t3− t4 in Eq. (3.60), the double integral becomes

− i
∫ t1

t2

dt4

∫ t1

t4

dt3 Σ̃R(t34) = −
∫ t

0
dt4

∫ t−t4

0
dτ

∫
dω′ Γ(ω′)ei(εH−ω

′+iη)τ

= −iΣR(εH)t+
∂ΣR(ω)

∂ω

∣∣∣∣
ω=εH

− 1

π

∫ µ

−∞
dω′

Im Σ<(ω′)ei(εH−ω
′+iη)t

(εH − ω′ + iη)2

− 1

π

∫ ∞

µ
dω′

Im Σ>(ω′)ei(εH−ω
′+iη)t

(εH − ω′ + iη)2
. (3.63)

Plugging the above equation in Eq. (3.60), finally the retarded cumulant Green’s func-

tion reads

GRC(τ) = −iθ(τ)e−iτ(εH+ΣR(εH)) exp

(
∂ΣR(ω)

∂ω

∣∣∣∣
ω=εH

)

× exp

(
− 1

π

∫ µ

−∞
dω′

Im Σ<(ω′)ei(εH−ω
′+iη)τ

(εH − ω′ + iη)2

)

× exp

(
− 1

π

∫ ∞

µ
dω′

Im Σ>(ω′)ei(εH−ω
′+iη)τ

(εH − ω′ + iη)2

)
. (3.64)

The first two lines on the right hand side of the above equation lead to the same result

as the TOC96 in equation (2.62) (note that Im Σ<(ω) = − Im Σh(ω))12. Besides the terms

(the first two lines of Eq. (3.64)) in the TOC96, the third line of the above equation creates

satellites at the opposite side of the quasi-particle peak in the spectrum, with respect to

the satellites contained in the TOC96.

In other words, the main difference between the time-ordered cumulants (i.e. the TOC96

and TOC11) and the retarded cumulant is the presence of the last term in Eq. (3.64)

which takes into account the interaction between states below and above the Fermi level.

12The relation between the retarded and time-ordered self-energy can be found in Appendix D, in particular
Eqs. (D.2f) and (D.2e).
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Therefore if we use the retarded cumulant to calculate core photoemission where Σ> ≈ 013,

the retarded cumulant yields the same result as the time-ordered cumulant. However if

we calculate valence photoemission spectrum where Σ> 6= 0, on one hand the retarded

cumulant Z-factor exp

(
∂ΣR(ω)

∂ω

∣∣∣∣
ω=εH

)
will be the same as the TOC96 but smaller than

the TOC11 due to the contribution of Σ>, on the other hand, the last term in GRC will

induce additional satellites on the other side of the quasi-particle peak, which are absent

in the time-ordered cumulant. These satellites restore the conservation of spectral weight

that is otherwise guaranteed by using Eq. (3.33).

A detailed study about the retarded cumulant Green’s function in model Hamiltonians

will be shown in Chapter 4.

3.5 Summary

In this chapter, I have shown a unified derivation of the GW approximation and the cumu-

lant expansion approximations (i.e. the TOC11 and RC) starting from the full functional

differential equation of the one-body Green’s function. I have proven that all the approxima-

tions can be derived from the linearized differential equation where only the linear response

of the Hartree potential with respect to the external perturbation has been kept. From

the linearized differential equation, a random phase like approximation in δG
δφ yields the

GW approximation that can be also derived using some proper ansatz Green’s function.

The TOC11 can be obtained from the decoupling approximation which totally decouples

different states, neglecting all the interaction between states. In order to have a better de-

scription in the quasi-particles, the GW quasi-particle correction has been introduced on top

of the decoupling approximation. The retarded cumulant on the other hand, is derived from

an ansatz Green’s function which is an approximate solution to the linearized differential

equation. I have gone through the Keldysh-contour in non-equilibrium and finally projected

the linearized differential equation back to the equilibrium when the φ = 0 condition can

be fulfilled. The resulting retarded cumulant Green’s function has the same expression as

13The GW self-energy for a core-level quasi-boson model is provided in Eq. (4.33) where Σ only contains
the lesser part. On the other hand, the GW self-energy for a two-level model contains both lesser and greater
parts as shown in Eq. (4.57).
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a previously introduced retarded cumulant that is supposed to be an improvement with re-

spected to the traditional time-ordered cumulant since the decoupling between the electron

and hole branches has been eliminated. Indeed, the time-ordered cumulants can also be

obtained using the same ansatz, but projecting on time-ordered components and neglecting

the coupling between electron and hole branches.

All the derivations I have shown are very compact. The potential of using these deriva-

tions to obtain better and better approximation is still to be explored. Latter, we will

see that the cumulant expansion approximations including the TOC96, TOC11 and RC,

have some drawbacks in the description of the valence photoemission. Therefore, a bet-

ter approximate Green’s function is still needed. In Chapter 5, I will introduce ideas of

a constrained retarded cumulant derived from a model. In addition to the derivations I

have shown in this chapter, a new derivation which aims at exploring increasingly accurate

approximations from our unified derivations will be shown in Appendix C.
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Chapter 4

Performance in Model

Hamiltonians

In this chapter, I will work on two effective hole-plasmon coupling (HPC) model Hamilto-

nians which can be solved exactly. I will show a step by step calculation of the exact one-

particle Green’s function from these two model Hamiltonians such that one can understand

more in detail the physical meaning of the Green’s function as well as what information we

can get from it. Then I will calculate the one-particle Green’s function using the approx-

imations I have introduced in previous chapters, i.e. the GW approximation (the G0W0

and EscGW0) and different cumulant expansion approximations (TOC96, TOC11 and RC).

From the comparison between the approximate and the exact spectral functions of the model

Hamiltonians, we can understand more about the performance of different approximations.

In particular since most of the calculations are fully analytical, the exact constraints that

have been summarized in Chapter 1 will be studied in different approximations. Note that

the hole-plasmon coupling model Hamiltonian is an approximate system with respect to the

exact many-body system and it is designed for studying the coupling between fermions and

plasmons. It can therefore not provide exact answers with respect to the full Hamiltonian,

but it simplifies the sophisticated physical phenomena by something we could solve exactly,

such that it provides a great deal of insights to improve our understanding of the specific

physical phenomena. The aim of this chapter is to answer the following questions
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1. What is the difference between the one- and two-level hole-plasmon coupling Hamil-

tonians? What are they modeling, core or valence photoemission? Why is the hole-

plasmon coupling chosen to study photoemission, instead of the electron-plasmon

coupling?

2. How can we calculate the exact Green’s function of the hole-plasmon coupling Hamil-

tonians?

3. What is the link between the GWA and the CEA, as well as between different CEAs

(TOC96, TOC11 and RC)?

4. What are the performances of the GWA and CEA? Do they fulfill the exact constraints

I have mentioned in Chapter 1?

5. Which physics is missing in the various approximations?

4.1 The model Hamiltonians

The physical phenomena we are studying is the coupling between fermions and plasmons.

Therefore the model Hamiltonian we will study should be built for describing this specific

physical phenomena. As discussed in Chapter 1 the plasmons are collective wave-like oscil-

lations of electrons. They lead to satellites in photoemission spectrum. They have bosonic

nature, hence a general fermion-boson coupling model Hamiltonian fits our purpose. It

reads

Ĥ =
∑

i

εic
†
ici −

∑

i 6=j
tijc
†
icj + ωp

∑

i

a†iai + g
∑

i

c†ici(a
†
i + ai) . (4.1)

Here c
(†)
i and a

(†)
i are the annihilation (creation) operators of electrons of energy εi and

plasmons of energy ωp, respectively, g is the on-site electron-plasmon coupling strength, and

t represents the hopping kinetic energy of electrons. The plasmon dispersion is neglected

such that the non-dispersing plasmon (i.e. the Einstein boson) is studied here1. The above

effective Hamiltonian is an approximation with respect to the full many-body Hamiltonian

1Plasmon dispersion has been taken into account in the literature e.g., Refs. [30,34,85].
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in Eq. (2.1). In particular, the electron-electron interaction term in the many-body Hamil-

tonian is the source of both the third and fourth terms of the above Hamiltonian. In the

following we are going to study two simplified versions of this effective Hamiltonian, namely

the one- (i.e. i = 1 corresponding to core level) and two-level (i.e. i = 1, 2 that can model

valence states) hole-plasmon coupling Hamiltonian that can be solved exactly.

4.1.1 One-level hole-plasmon coupling Hamiltonian

In section 1.1 I have introduced the quasi-boson model Hamiltonian (see Eq. (1.1)) whose

spectral function provides a meaningful description of the hole-plasmon coupling in pho-

toemission. In this section, I am going to study a simplified version of this quasi-boson

Hamiltonian that is called the one-level hole-plasmon coupling Hamiltonian (HPC-1). The

HPC-1 reads

Ĥ = ε0c
†c+ gcc†(a+ a†) + ωpa

†a , (4.2)

where all the parameters have been introduced in Eq. (4.1). This Hamiltonian can be linked

to the decoupled linearized differential equation (3.19) for one orbital and one boson, where

the electron is described by a matrix element of G, and the plasmon by W.

The exact spectral function of the above Hamiltonian has been calculated by Langreth

[16] (see Eq. (1.5)). Here I am going to show a detailed calculation of the Green’s function

from this Hamiltonian using the Lehmann representation in Eq. (1.28), which is different

from the original method of Langreth in Ref. [16] and closer to the derivations in Ref. [77].

In order to calculate the exact electron removal Green’s function, we have to find the

eigenenergies and eigenfunctions of the system with and without the one electron. We

denote the states of the system as linear combinations of states |n;m〉 where n and m

represent the fermion and plasmon occupations, respectively.

In the initial state, there is one electron in the system such that there is no hole that

can couple to plasmons in the HPC-1. The coupling term in Eq. (4.2) does not contribute,

leading to the effective Hamiltonian:

ĤN=1 = ε0c
†c+ ωpa

†a . (4.3)
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The basis vectors for N = 1 are |1; 0〉, |1; 1〉, · · · , |1;m〉 where m is the plasmon

occupation number that can go to infinity. In this basis the Hamiltonian becomes an

(m + 1) × (m + 1) diagonal matrix. Hence the eigenvalues and eigenfunctions of the one-

electron system (N = 1) are easily obtained as shown in table 4.1.

Table 4.1: Eigenvalues and coefficients of the eigenvectors of the one-electron system

EN=1
m

∣∣ΨN=1
m

〉
|1; 0〉 |1; 1〉 |1; 2〉 |1; 3〉 · · · |1;m〉

ε0 1 0 0 0 · · · 0
ε0 + ωp 0 1 0 0 · · · 0
ε0 + 2ωp 0 0 1 0 · · · 0
ε0 + 3ωp 0 0 0 1 · · · 0
...

...
...

...
...

. . .
...

ε0 +mωp 0 0 0 0 · · · 1

The ground state has the lowest energy such that we have

EN=1
0 = ε0 ; (4.4a)

∣∣ΨN=1
0

〉
= |1; 0〉 . (4.4b)

After photoemission, a hole is left behind that couples to the plasmons. Therefore the

HPC-1 in Eq. (4.2) acting on the final state becomes

ĤN=0 = g(a+ a†) + ωpa
†a ≡ ∆ + ωpã

†ã. (4.5)

Here I have made a linear transformation of the boson operators by introducing an

energy shift ∆ such that ĤN=0 is diagonal in the new basis represented by |0; m̃〉 where

m̃ is the occupation of the renormalized plasmons, and ã(†) ≡ a(†) + γ. With some simple

algebra, one can show that

∆ = − g
2

ωp
; (4.6a)

γ =
g

ωp
. (4.6b)
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Therefore the eigenvalues of ĤN=0 are

EN=0
m̃ = − g

2

ωp
+ m̃ωp . (4.7)

The new basis |0; m̃〉 can be expressed by a linear combination of the old basis |0;m〉

with coefficients vm̃m, hence we have

|0; m̃〉 = vm̃0 |0; 0〉+ vm̃1 |0; 1〉+ vm̃2 |0; 2〉+ · · · =
∞∑

m=0

vm̃m |0;m〉 . (4.8)

The coefficients vm̃m can be calculated using the properties of boson operators2 , thus we

get

(vm̃0 )2 =
1

m̃ !
(
g2

ω2
p

)m̃e
− g2

ω2p ≡ 1

m̃ !
βm̃e−β , (4.9)

where β ≡ g2

ω2
p
. The complete eigenvalues and eigenvectors of ĤN=0 are shown in table 4.2.

Table 4.2: Eigenvalues and coefficients of the eigenvectors of the zero-electron system

EN=0
m̃

∣∣ΨN=0
m̃

〉
|0; 0〉 |0; 1〉 |0; 2〉 |0; 3〉 · · · |0;m〉

− g2

ωp
v0

0 v0
1 v0

2 v0
3 · · · v0

m

− g2

ωp
+ ωp v1

0 v1
1 v1

2 v1
3 · · · v1

m

− g2

ωp
+ 2ωp v2

0 v2
1 v2

2 v2
3 · · · v2

m

− g2

ωp
+ 3ωp v3

0 v3
1 v3

2 v3
3 · · · v3

m

...
...

...
...

...
. . .

...

− g2

ωp
+ m̃ωp vm̃0 vm̃1 vm̃2 vm̃3 · · · vm̃m

Our analytical results shown in Tab. 4.2 can be confirmed by comparing to the eigenval-

ues and coefficients of the eigenvectors from the exact numerical diagonalization of ĤN=0 in

the basis |0;m〉. At the same time, this serves as a test of the numerical solution that will be

reached for the two-level hole-plasmon coupling model, which cannot be solved analytically.

2The properties we have used are 〈m|m〉 = 1, a |m〉 =
√
m |m− 1〉, a† |m〉 =

√
m+ 1 |m+ 1〉 and

|m〉 = 1√
m !

(a†)m |0〉 .
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Figure 4.1: The upper and lower panels show the coefficients of the eigenfunctions and the
eigenvalues of ĤN=0, respectively. Red curves are the dataset from the exact numerical
diagonalization of ĤN=0 whose matrix elements are shown in Eq. (4.10). Blue diamonds
are our analytical results vm̃0 (upper panel) in Eq. (4.9) (only these coefficients are used
to calculate the Green’s function in Eq. (4.11)) and EN=0

m (lower panel) in Eq. (4.7),
respectively. Note that in the plot I have replaced the symbol m̃ by m, which is equivalent
to the original equations.

The matrix elements of ĤN=0 are

H[m,m] = mωp ; (4.10a)

H[m,m+ 1] = H[m+ 1,m] = g
√
m+ 1 , (4.10b)

and all other matrix elements are zero.

The comparison is shown in Fig. 4.1. All the analytical results (blue diamonds) are

sitting on top of the exact numerical results (red curve), which confirms our analytical and

numerical calculations.
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The one-particle Green’s function for electron removal can be calculated using the

Lehmann representation Eq. (1.28):

Gh(ω) =
∞∑

m̃=0

[〈
ΨN=0
m̃

∣∣ c
∣∣ΨN=1

0

〉]2

ω − (EN=1
0 − EN=0

m̃ )− iη =
∞∑

m̃=0

(vm̃0 )2

ω − (ε0 + g2

ωp
− m̃ωp)− iη

=

∞∑

m̃=0

βm̃e−β

m̃ !

1

ω − (ε0 + g2

ωp
− m̃ωp)− iη

. (4.11)

All the eigenvalues and eigenvectors can be found in tables 4.1 and 4.2. Note that only

vm̃0 appears because 〈0;m| c |1; 0〉 6= 0 only if m = 0. The spectral function of the above

Green’s function reads

Ah(ω) =
∞∑

m=0

βme−β

m !
δ

(
ω − ε0 −

g2

ωp
+mωp

)
. (4.12)

The electron removal spectral function Ah(ω) is the same as the one of Langreth in Eq.

(1.5) and a detailed discussion has been provided in section 1.1. In particular, this spectral

function conserves the particle number and the spectral weight because

∫ µ

−∞
Ah(ω) dω =

∫ ∞

−∞
Ah(ω) dω =

∞∑

m=0

βme−β

m !
= 1 . (4.13)

Since there is only one orbital in the HPC-1, the constraint of the poles summarized

in section 1.3 is meaningless. As I mentioned before, similar to the quasi-boson model the

HPC-1 describes a single (core) state coupled to plasmons. Hence there is no interaction

between different states3. This suggests to introduce a two-level hole-plasmon coupling

Hamiltonian to get closer to valence photoemission where the interaction between states is

taken into account.

Putting the electron back in the hole-plasmon coupling Hamiltonian

The HPC-1 in Eq. (4.2) can be also used to perform the inverse process, namely to calculate

the inverse photoemission spectrum starting from zero electrons. We only consider the

3This is the reason why the HPC-1 is good for modeling core photoemission. Most often, the core is
far from the valence such that the core can be approximate as a decoupled state that couples only to the
plasmons.
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ground state as starting point. In the initial state there is now one hole (zero electrons) in

the orbital of energy ε0, and the hole couples to the plasmons. The ground state eigenenergy

and eigenfunction of the zero-electron system are given in Tab. 4.2 as

EN=0
0 = − g

2

ωp
; (4.14a)

∣∣ΨN=0
0

〉
= v0

0 |0; 0〉+ v0
1 |0; 1〉+ v0

2 |0; 2〉+ · · · ≡
∞∑

m̃=0

v0
m̃ |0; m̃〉 . (4.14b)

The analytic result for the coefficients is

(v0
m̃)2 =

1

m̃ !
βm̃e−β . (4.15)

After the inverse photoemission, we have one electron in the system hence the coupling

term does not contribute. Therefore the eigenenergies and eigenfunctions are

EN=1
m = ε0 +mωp ; (4.16a)

∣∣ΨN=1
m

〉
= |1;m〉 . (4.16b)

The electron addition Green’s function and intrinsic spectral function are

Ge(ω) =

∞∑

m=0

βme−β

m !

1

ω − (ε0 + g2

ωp
+mωp) + iη

; (4.17a)

Ae(ω) =
∞∑

m=0

βme−β

m !
δ

(
ω − ε0 −

g2

ωp
−mωp

)
. (4.17b)

The comparison between electron removal and addition spectral functions is shown in

Fig. 4.2. Compared to the electron removal spectrum in Eq. (4.12), the electron addition

spectrum has the same quasi-particle energy ε0 + g2

ωp
but the plasmon satellites are on

the right hand side of the quasi-particle peak (blue curve in Fig. 4.2). The two spectral

functions are symmetric, reflecting the fact that the system can recover after photoemission

and inverse photoemission processes. In photoemission, one electron is removed from the

system. The quasi-particle energy εQP tells the energy level this one electron was occupying

before emitted. The plasmon satellites induced by the excitation of photoemission appear
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at an energy lower than εQP because the energy of the total system (one electron is the

ground state, versus the photoelectron plus the system in an excited state) is conserved.

The inverse photoemission adds the electron back to its original orbital εQP , simultaneously

the plasmons are excited leading to satellites at an energy higher than εQP .

4 3 2 1 0 1 2 3 4
ω/ωp  

A
(ω

)

1→0

0→1

Figure 4.2: The spectral functions of the one-level hole-plasmon coupling Hamiltonian
(HPC-1) in Eq. (4.2). The red line with diamonds and blue solid line are electron re-
moval (PES) Eq. (4.12) and addition (IPES) Eq. (4.17b) spectra, respectively. I have put
Lorentzian broadening η = 0.1 in both spectral functions. The quasi-particle energy has

been shifted to zero, i.e. εQP = ε0 − g2

ωp
= 0.

This is what the exact spectra should be. However, as we will see in the next section

(see 4.2) when we use the GWA or CEA to calculate the electron addition and removal

spectral functions of the HPC-1, the situation will change. This will explain why I have

chosen the hole-plasmon coupling, instead of the electron-plasmon coupling to study the

photoemission process.

4.1.2 Two-level hole-plasmon coupling Hamiltonian

As discussed before, the HPC-1 is designed for modeling the core photoemission where the

coupling between orbitals can be neglected, but not for the valence photoemission. Here I

am going to study a generalized two-level hole-plasmon coupling model Hamiltonian (HPC-
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2) that was proposed by Gunnarsson, Meden, and Schönhammer in Ref. [77] to study higher

order cumulants in the presence of the orbital interaction. The HPC-2 reads

Ĥ = ε0

2∑

i=1

c†ici + ωp

2∑

i=1

a†iai − t(c†1c2 + c†2c1) + g

2∑

i=1

(a†i + ai)cic
†
i . (4.18)

Compared to the HPC-1 in Eq. (4.2), we choose to have again one electron in the HPC-

2, but now two sites where the one electron can stay. The electron can jump between two

sites through the hopping kinetic term labeled as t. The hole-plasmon coupling is on-site

as represented by the last term of the above equation, i.e. only when the plasmons and the

hole are on the same site, can they couple with strength g 6= 04. In order to calculate the

Green’s function of the HPC-2, it is more convenient to work in orbital basis defined as

c
(†)
± =

1√
2

(
c

(†)
1 ± c

(†)
2

)
; (4.19a)

a
(†)
± =

1√
2

(
a

(†)
1 ± a

(†)
2

)
; (4.19b)

where the subscripts ± represent bonding and anti-bonding orbitals, respectively. In the

orbital basis, the HPC-2 Eq. (4.18) can be separated into two Hamiltonians:

Ĥ+ = ωpa
†
+a+ +

g√
2

(c+c
†
+ + c−c

†
−)(a†+ + a+) ; (4.20a)

Ĥ− = (ε0 − t)c†+c+ + (ε0 + t)c†−c− + ωpa
†
−a− +

g√
2

(c+c
†
− + c−c

†
+)(a†− + a−) . (4.20b)

Ĥ± are separated according to the boson operators a±
5 such that they commute, i.e.

[
Ĥ+, Ĥ−

]
= 0. This separation simplifies the calculation because we can diagonalize these

two Hamiltonians separately to have the eigenenergies and eigenfunctions of each Hamilto-

nian. Then the eigenenergies and eigenfunctions of the total Hamiltonian can be calculated

4The on-site hole-plasmon coupling reminds some aspects of dynamical mean filed theory (DMFT) [86–
88], where couplings are local. Cumulant-like results are found also in that context, e.g. Ref. [89].

5In this thesis, I use the subscripts ± for bonding and anti-bonding orbital distinguished by fermion
operators c

(†)
± and superscript to represent the separation according to boson operators a

(†)
± . For example

G+
− in Eq. (4.22) represents the anti-bonding orbital Green’s function of Ĥ+ in Eq. (4.20a).
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from

E = E+ + E− ; (4.21a)

|Ψ〉 =
∣∣Ψ+

〉 ∣∣Ψ−
〉
. (4.21b)

Here E and |Ψ〉 are the eigenenergy and eigenfunction of the HPC-2 in Eq. (4.18), E±

and |Ψ±〉 are eigenergies and eigenfunctions of Ĥ± in Eq. (4.20).

Ĥ+ in Eq. (4.20a) is nothing else than the HPC-1 in Eq. (4.2) in the case of ε0 = 0.

Consequently, the Green’s function is the same as the one in equation (4.11) when ε0 = 0,

which reads

G+
±(ω) =

∞∑

m+=0

β̃
[m+]
1 e−β̃1

m+ !

1

ω − ( g̃
ωp
−m+ωp)− iη

, (4.22)

where g̃ = g√
2

and β̃1 = g2

2ω2
p
. All the eigenenergies and eigenfunctions can be found in Tabs.

4.2 and 4.1 (replace ε0 and g by 0 and g̃, respectively).

Ĥ− in Eq. (4.20b) is more difficult due to the mixed term (c+c
†
− + c−c

†
+)(a†− + a−)6.

What we can do is to write Ĥ− in a basis reading as |n+, n−;m+,m−〉 where n± and m± are

the occupations of electrons and plasmons in each orbital, respectively. Then we diagonalize

Ĥ− numerically in this basis. I have checked that with increasing number of plasmons in

the anti-bonding orbital (i.e. m− →∞), the diagonalization converges to the exact result.

In the initial state where there is one electron, the matrix elements of Ĥ− read

H−[2m−, 2m−] = 2m−w0 + ε0 − t ; (4.23a)

H−[2m− + 1, 2m− + 1] = (2m− + 1)ωp + ε0 + t ; (4.23b)

H−[m−,m− + 1] = H−1[m− + 1,m−] = g

√
m− + 1√

2
; (4.23c)

and all other elements are zero. In practice, the plasmon number mmax
− = 200 is adopted to

have a converged ground state energy. After diagonalization, we only need the ground state

energy E−0 (the lowest eigenenergy) and eigenfunction
∣∣Ψ−0

〉
. The ground state wavefunction

6As stated by Gerald D. Mahan in his book [2] page 229: “Any terms which permit a direct interaction
between the states usually render the Hamiltonian unsolvable, at least exactly.”
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reads

∣∣Ψ−0
〉

=

∞∑

m−=0

v[2m−] |1, 0; 2m−〉+

∞∑

m−=0

v[2m−+1] |0, 1; 2m− + 1〉 . (4.24)

Note that the ground state energy E−0 and the coefficients of the eigenvectors vm are

numerical results. After photoemission, there is no electron in Ĥ−, hence the problematic

term vanishes, leading to

Ĥ− = ωpa
†a , (4.25)

whose eigenvalues and eigenfunctions are simply

EN=0
m− = m−ωp ; (4.26a)

∣∣∣ΨN=0
m−

〉
= |0, 0;m−〉 . (4.26b)

The bonding orbital electron removal Green’s function can be calculated from

G+(ω) =

∞∑

m−=0

∞∑

m+=0

(
〈Ψ+

0 | 〈Ψ−0 | c†+ |ΨN=0
m− 〉 |ΨN=0

m+
〉
)2

ω − (EN=1
0 − EN=0

m+
− EN=0

m− )− iη

=

∞∑

m−=0

∞∑

m+=0

β̃
[m+]
1 e−β̃1

m+ !

(
〈Ψ−0 | c†+ |ΨN=0

m− 〉
)2

ω − (E+
0 + E−0 + g̃2

ωp
−m+ωp − EN=0

m− )− iη

=
∞∑

m−=0

∞∑

m+=0

β̃
[m+]
1 e−β̃1

m+ !

v2
[2m−]

ω − ( g̃
2

ωp
−m+ωp + E−0 − 2m−ωp)− iη

. (4.27)

The anti-boding orbital Green’s function can be calculated analogously, leading to

G−(ω) =

∞∑

m−=0

∞∑

m+=0

β̃
[m+]
1 e−β̃1

m+ !

v2
[2m−+1]

ω − ( g̃
2

ωp
−m+ωp + E−0 − (2m− + 1)ωp)− iη

. (4.28)
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Finally the spectral function of the two-level hole-plasmon coupling Hamiltonian reads

A+(ω) =

∞∑

m−=0

∞∑

m+=0

β̃
[m+]
1 e−β̃1v2

[2m−]

m+ !
δ

(
ω − E−0 −

g2

2ωp
+ (m+ + 2m−)ωp

)
; (4.29a)

A−(ω) =

∞∑

m−=0

∞∑

m+=0

β̃
[m+]
1 e−β̃1v2

[2m−+1]

m+ !
δ

(
ω − E−0 −

g2

2ωp
+ (m+ + 2m− + 1)ωp

)
. (4.29b)

The quasi-particle peak is obtained from A+ in Eq. (4.29a) for m− = m+ = 0. The

corresponding quasi-particle renormalization factor Z reads

Z = e−β̃1v2
0 . (4.30)

Note that we have some parameters (E−0 and vm) which are calculated numerically.

The situation is different from the exact spectral function of the HPC-1 (see Eq. (4.12))

where the fully analytical result can be obtained. The spectral functions in Eq. (4.29) are

shown in Fig. 4.3 where parameters are chosen that correspond to the bulk sodium bottom

valence state7. Some important properties of the exact spectral function in Eq. (4.29) are

summarized below:

1. First, there is an electron removal spectrum in the anti-bonding orbital. It means

that the anti-bonding orbital is also partially occupied in the ground state due to the

hole-plasmon coupling, i.e. the two orbitals are interacting with each other leading to

two partially occupied (or unoccupied) orbitals.

2. Second, we only have one quasi-particle peak in the electron removal spectrum that

stays in the bonding orbital matrix element. In the anti-bonding orbital matrix ele-

ment, we have only satellites but no electron removal quasi-particle, because all the

excitations in the anti-bonding orbital are due to interaction. When there is no inter-

action, there is no spectrum in this orbital. This is consistent with the definition of

7Throughout the thesis, if not otherwise specified, the bulk sodium bottom valence parameters are corre-
sponding to the bandwidth 2t = 3.0 eV, the plasmon energy ωp = 6.0 eV and the coupling constant g = 4.5
eV yielding the exact quasi-particle renormalization factor in Eq. (4.30) Z ≈ 0.65. Note that although
we have chosen all the parameters corresponding to bulk sodium bottom valence state, it is still a very
rough correspondence. However it is sufficient to understand the overall effects on the spectral functions as
observed in the intrinsic spectral function of bulk sodium bottom valence state, which is at the Γ point in
the Brillouin zone.
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the satellites in footnote 3 of Chapter 1. Note that the position of the anti-bonding

orbital satellites are the same as the bonding orbital satellites, which is consistent

with the constraint of poles in the exact Green’s function (see the summary 1.3

of Chapter 1) .

3. Conservation of particle number. One can show that

∫ µ

−∞
dω (A+(ω) +A−(ω)) = 1,

therefore the exact spectral function in Eq. (4.29) conserves the particle number. Since

we have spectra on both orbitals, we have partial occupation, i.e.

∫ µ

−∞
dωA±(ω) < 1.
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Figure 4.3: The exact spectral functions of the two-level hole-plasmon coupling Hamiltonian
(HPC-2) . The parameters in Eq. (4.18) are chosen consistent with the bulk sodium bottom
valence state, i.e. the plasmon energy ωp = 6.0 eV, ε0 = t = 1.5 eV yielding a 3 eV
bandwidth, as well as the coupling constant g = 4.5 eV yielding the exact renormalization
factor Z = 0.65. The upper and lower panels show the spectral function of the anti-bonding
and bonding orbitals, respectively. The exact QP energy has been shifted to zero, i.e.

E−0 + g2

2ωp
= 0. I have used η = 0.1 Lorentzian to broaden both spectral functions. Note

the change of scale between the two plots.
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4.2 Performance of approximations to spectra in the model

Hamiltonians

In the previous section, I have shown how to calculate the Green’s function of the one-

and two- level hole-plasmon coupling model Hamiltonians and discussed the exact spectral

functions of these two model Hamiltonians. In this section, I am going to use the GW

approximation and the cumulant expansion approximations including the TOC96, TOC11,

and RC to calculate the spectral functions of these two Hamiltonians. From the comparison

between the exact and approximate spectral functions, I will discuss the advantages and

disadvantages of different approximations.

4.2.1 The one-level hole-plasmon coupling model

I start from the HPC-1 in Eq. (4.2) to calculate the GWA and CEA spectral functions. In

particular, I will explain why the hole-plasmon coupling is chosen to study the photoemission

spectroscopy, instead of the electron-plasmon coupling at the end of this subsection.

The GWA in HPC-1

I have shown that the GW self-energy is the central quantity for both the GWA and CEA,

such that first we have to calculate the GW self-energy of the HPC-1.

The non-interacting electron removal Green’s function of the HPC-1 reads

G0(ω) =
1

ω − ε0 − iη
. (4.31)

The plasmon propagator of such an Hamiltonian reads8

W0(ω) =
g2

ω − ωp + iη
− g2

ω + ωp − iη
. (4.32)

8Note that this plasmon propagator corresponds to the exact dynamical screened Coulomb interaction
that should appear in the one-level hole-plasmon coupling Hamiltonian as mentioned in the context around
the Eq. (1.4). For the consistency of the notation, we still use W0 but keep in mind that it is not the RPA
W here.
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As discussed before, the plasmon excitation stems from the poles in the inverse dielectric

function ε−1, hence it can be seen in the screening W = ε−1vc. This explains why W0 in Eq.

(4.32) has poles at plasmon energy ±ωp with the weight g2 representing the possibility of the

excitation due to couplings to the fermion. The one-shot GW self-energy is the convolution

of G0(ω) and W0(ω), yielding9

ΣG0W0(ω) = iG0(ω) ∗W0(ω) =
i

2π

∫
dω′G0(ω′)W0(ω − ω′)eiηω′

=
g2

ω − ε0 + ωp − iη
. (4.33)

As a consequence of the convolution, the GW self-energy has its pole at ε0 − ωp, i.e.

the pole in G0 minus the pole in W0. Since we only have the electron removal part of G0,

the convolution yields one pole in ΣG0W010. The G0W0 Green’s function can be calculated

from the following Dyson equation

GG0W0(ω) =
[
G0(ω)−1 − ΣG0W0(ω)

]−1
=

f1

ω − ε1 − iη
+

f2

ω − ε2 − iη
. (4.34)

We find

f1 =
1

2


1 +

ωp√
ω2
p + 4g2


 ; (4.35a)

f2 =
1

2


1− ωp√

ω2
p + 4g2


 ; (4.35b)

ε1 = ε0 −
ωp
2

+
ωp
2

√
1 +

4g2

ω2
p

; (4.35c)

ε2 = ε0 −
ωp
2
− ωp

2

√
1 +

4g2

ω2
p

. (4.35d)

9Note that eiηω
′

determines the direction of the contour when we use Cauchy’s residue theorem. Since η
is positive, ω′ must run counter-clockwise through the positive imaginary plane of ω′. The GW self-energy

in Eq. (4.33) is a simplified version of Σk(ω) =
∑
i,s 6=0

∣∣V sk,i∣∣2
ω + ωssgn(µ− εi)− εi

in Ref. [34], where V is defined

as the fluctuation potential.
10This GW self-energy is actually the hole part of the GW self-energy. If the non-interacting Green’s

function contains both electron and hole parts, it will yield a GW self-energy containing the electron and
hole parts as well. This will be seen in the GW self-energy of the HPC-2 later in this section.
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Therefore the G0W0 electron removal spectral function of the HPC-1 reads

AG0W0(ω) =
1

2


1 +

ωp√
ω2
p + 4g2


δ
(
ω − (ε0 −

ωp
2

+
ωp
2

√
1 +

4g2

ω2
p

)

)

+
1

2


1− ωp√

ω2
p + 4g2


δ
(
ω − (ε0 −

ωp
2
− ωp

2

√
1 +

4g2

ω2
p

)

)
. (4.36)

The above spectral function is shown by the blue dashed curve in Fig. 4.4. It has one

quasi-particle peak at ε1 with weight f1 and one satellite at ε2 with weight f2. Compared to

the exact spectral function in equation (4.12), on one hand AG0W0 does not give the exact

quasi-particle energy: it is close to the exact one because ε1 = ε0 + g2

ωp
+ O

(
g4
)

11, which

is correct to the second order in g. The QP energy obtained from a linearization in Eq.

(2.44) is even worse as illustrated by the black arrow labeled as “ linear ” in Fig. 4.4. On

the other hand, AG0W0 does not give satellite replica, instead only one satellite appears at

energy between the first and second exact satellites. The G0W0 spectral function conserves

the spectral weight and the particle number because one can show that

∫ ∞

−∞
dωAG0W0(ω) = 1 ; (4.37a)

∫ µ

−∞
dωAG0W0(ω) = 1 . (4.37b)

As mentioned before, the constraint of the poles summarized in section 1.3 is meaningless

in the HPC-1 since the occupation is either 0 or 1.

One could hope that the self-consistency improves the GWA spectrum in the HPC-1.

Therefore we have a look at the EscGW0 spectral function of the HPC-1. Following the

idea of Hedin [34], the EscGW0 can be simulated by introducing an energy shift ∆ in the

non-interacting Green’s function, which yields

GEsc0 (ω) =
1

ω −∆− ε0 − iη
, (4.38)

11We have used the Taylor series of
√

1 + x = 1 +
1

2
x− 1

8
x2 + · · · .
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where

∆ = Re ΣG0W0(ε0) =
g2

ωp
. (4.39)

With this choice, the pole in GEsc0 is εQP = ε0+ g2

ωp
that is the exact quasi-particle energy

of the HPC-1 (see Eq. (4.12)). The energy self-consistent G yields the energy self-consistent

GW self-energy that reads

ΣEsc(ω) =
g2

ω −∆− ε0 + ωp − iη
. (4.40)

Thus the self-consistent GW self-energy contains a pole at the quasi-particle energy

minus the plasmon energy. The EscGW0 Green’s function can be calculated from

GEscGW0 =
[
G0(ω)−1 − ΣEsc(ω)

]−1
. (4.41)

The above Dyson equation can be solved analytically like what I did in the G0W0 case

(see Eq. (4.34)). The resulting electron removal EscGW0 spectral function reads12

AEscGW0(ω) =
ω2
p

ω2
p + g2

δ

(
ω − ε0 −

g2

ωp

)
+

g2

ω2
p + g2

δ(ω − ε0 + ωp) . (4.42)

The above spectral function is shown by blue solid curve with up-triangles in Fig. 4.4.

Similar to the G0W0 spectral function, AEscGW0 has two poles: one quasi-particle peak at

ε0 + g2

ωp
that is the same as the exact quasi-particle energy of the HPC-1 (see Eq. (4.12)),

and the other peak is the GW plasmaron satellite that has a distance from the QP peak

larger than ωp. The EscGW0 improves the position and the weight of the QP peak, however

the satellite replica cannot be obtained.

Also AEscGW0(ω) conserves the spectral weight and particle number, since

∫ ∞

−∞
dωAEscGW0(ω) =

∫ µ

−∞
dωAEscGW0(ω) = 1 . (4.43)

The energy self-consistency corrects the G0W0 QP energy but still cannot give the

correct plasmon satellites appearing in the exact spectral function of the HPC-1 (yellow

12The EscGW0 spectral function in Eq. (4.42) is in agreement with the result in Ref. [34].
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Figure 4.4: The electron removal spectral functions of the one-level hole-plasmon coupling
Hamiltonian (HPC-1). The yellow filled curve is the exact spectral function of the model
Hamiltonian in equation (4.12). The cumulant expansion approximation yields the exact
spectral function of the HPC-1 as shown in equation (4.47). The blue dashed curve is
the spectral function calculated from the one-shot GW (G0W0) in equation (4.36). The
blue solid line with up-triangles represents the spectral function calculated using the energy
self-consistent GW in Eq. (4.42). The black arrow labeled “ linear ” represents the quasi-
particle energy from the linearization approximation in Eq. (2.44). The exact quasi-particle
energy has been shifted to zero. I have used the Lorentzian broadening η = 0.1 in all plots.
The parameters are corresponding to bulk sodium bottom valence state.

filled plot in Fig. 4.4). This is the well known failure of the GW approximation (the

plasmaron)13 that has been discussed in section 2.2. Besides the position of the peaks,

G0W0 overestimates the quasi-particle weight. Self-consistency improves a bit but still

gives too much weight on the quasi-particle peak compared to the exact spectrum. This

can be explained analytically in such a simple model. The GW and exact quasi-particle

13Note that, only the G0W0 and EscGW0 have been studied in this thesis but not the fully self-consistent
GW (scGW). In Ref. [90], the authors studied the fully self-consistent GW approximation in a similar
electron-boson coupling Hamiltonian and found that the scGW are also able to produce multiple plasmon
satellites, although not as well as the cumulant expansion approximations.
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renormalization factors are (see Eq. (2.45))

ZGW =

[
1− ∂ Re ΣEsc(ω)

∂ω

∣∣∣∣
ω=εQP

]−1

= [1 + β]−1 =
∞∑

n=0

(−β)n ; (4.44a)

Zexact = e−β =

∞∑

n=0

(−β)n

n !
. (4.44b)

They are identical to first order in β, consistently with the fact the ΣGW is correct to

first order in g2. As shown in Fig. 4.5, the quasi-particle weights from the EscGW0 (blue

line with down-triangles) are always larger than the exact ones (red line with up-triangles).

As we will see later that, this conclusion also holds for the HPC-2.
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Figure 4.5: The quasi-particle renormalization factors: GW (blue line with down-triangles)
and exact (red line with up-triangles) in Eq. (4.44) as a function of the coupling constant
g. I have used the same parameters as in Fig. 4.4.

The CEA in HPC-1

One can show that in the one-level hole-plasmon coupling Hamiltonian (HPC-1) Eq. (4.2),

all the cumulant expansion approximations (TOC96, TOC11 and RC) yield the same result
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that is the exact one14. In order to calculate the cumulant Green’s function as shown in Eqs.

(2.62), (3.32) and (3.64), we have to calculate each component of the cumulant function in

terms of the GW self-energy. The needed expressions are

Re ΣG0W0(ε0) = Re ΣEscGW0(εQP ) =
g2

ωp
; (4.45a)

∂ Re ΣG0W0(ω)

∂ω

∣∣∣∣
ω=ε0

=
∂ Re ΣEscGW0(ω)

∂ω

∣∣∣∣
ω=εQP

= − g
2

ω2
p

= −β ; (4.45b)

1

π

∫ µ

−∞
dω

ei(ε0−ω−iη)τ Im ΣG0W0(ω)

(ε0 − ω − iη)2
=

1

π

∫ µ

−∞
dω

ei(εQP−ω−iη)τ Im ΣEscGW0(ω)

(εQP − ω − iη)2
= βeiωpτ .

(4.45c)

Then the cumulant Green’s function of the HPC-1 reads (see Eq. (2.62) or (3.30))

GC(τ) = iθ(−τ)e−iεQP τe−β exp
(
βeiωpτ

)
, (4.46)

where the QP energy is εQP = ε0 +
g2

ωp
.

The final spectral function from the CEA reads

AC(ω) =
∞∑

m=0

βme−β

m !
δ

(
ω − ε0 −

g2

ωp
+mωp

)
, (4.47)

which is the same as the exact spectral function in equation (4.12). Note that Eqs. (4.45)

show that the self-consistency in the GW self-energy does not change the cumulant Green’s

function whereas it is important for the GWA itself. When I derived the retarded cumulant

in section 3.4, the self-energy is defined as Σ = iGHW (see Eq. (3.51) when φ = 0) that

corresponds to the one-shot Σ, which explains why ΣG0W0 in equation (4.45) gives the

good cumulant Green’s function. If we use ΣEscGW0 = iGEsc0 W where only the energies

are updated during iteration, we should replace all non-interacting eigenenergies (ε0) by

the quasi-particle energy in GEsc, i.e. εQP = ε0 + g2

ωp
. In such a way, we can use the

self-consistent Σ in the cumulant Green’s function, which yields the same result as using

14I have shown that the only difference in different CEAs is the use of the greater part of the self-energy.
Since in the HPC-1, the greater part of the self-energy is zero, all CEAs yield the same result.
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the one-shot Σ. For this reason, I will always use the one-shot GW self-energy to calculate

the cumulant Green’s function in the following paragraphs of this section.

The electron addition spectra of the GWA and CEA

In order to calculate the electron addition spectral function, we have to start from the

electron part of the non-interacting Green’s function that reads (the hole part is shown

in Eq. (4.31))

Ge0(ω) =
1

ω − ε0 + iη
. (4.48)

The plasmon propagator is the same as the one in equation (4.32). The resulting self-

energy for electron addition reads

Σe(ω) =
g2

ω − ε0 − ωp + iη
. (4.49)

We have seen above that in order to have a better quasi-particle energy from the GWA,

we have to use the energy self-consistent GW self-energy thus in the electron addition cal-

culation, I will not calculate the G0W0 Green’s function but only the energy self-consistent

one. Solving the same Dyson equation as (4.41) with the electron part of Ge0 and Σe, the

final EscGW0 spectral function for electron addition reads

AEscGW0
IPES (ω) =

ω2
p

ω2
p + g2

δ

(
ω − ε0 +

g2

ωp

)
+

g2

ω2
p + g2

δ(ω − ε0 − ωp) . (4.50)

Similarly we can calculate the cumulant spectral function that reads

ACIPES(ω) =
∞∑

m=0

βme−β

m !
δ

(
ω − ε0 +

g2

ωp
−mωp

)
. (4.51)

Neither the GWA nor CEA gives the correct quasi-particle energy for the inverse pho-

toemission process compared to the exact electron removal spectral function in Eq. (4.17b).

This is because the GWA and CEA are doing different processes: the inverse photoemis-

sion spectral function of Eq .(4.17b) is the electron addition process from the system with

particle number N = 0 to N = 1. However, what the GWA and CEA are calculating here
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are the electron addition process from N = 1 to N = 2. Since we can only study the one

electron in the HPC-1, it is impossible to calculate the electron addition process from N = 1

to N = 2 because with only one orbital, we can only put one electron.

What we can do is to use the GWA or the CEA to calculate the electron addition

process from N = 0 to N = 1, which will give the correct QP energy when comparing

to the exact one. This issue has been discussed in Langreth’s article [16] where extra

diagrams are needed when calculating the self-energy from the linked-cluster theorem. It

also explains why when Gunnarsson, Meden, and Schönhammer studied the photoemission

of a two-level electron-plasmon coupling Hamiltonian, an extra diagram for the self-

energy was needed (see Ref. [77]). In order to avoid the extra diagrams of Refs. [16, 77],

the hole-plasmon coupling Hamiltonian is adopted to study the photoemission process in

this thesis. Analogously, the electron-plasmon coupling Hamiltonian is good for the study

of the inverse photoemission process, where again the extra diagrams can be avoided.

4.2.2 The GWA in HPC-2

Above I have shown the performance of the GWA and CEA spectral functions in the HPC-

1, in particular all cumulant Green’s functions yield the same result that is identical to the

exact one. In this section, I will test the performance of these approximations in the two-

level hole-plasmon coupling Hamiltonian (HPC-2) in (4.18). The non-interacting Green’s

function of the HPC-2 in the orbital (bonding and anti-bonding) basis reads

G0(ω) =




1
ω−(ε0−t)−iη 0

0 1
ω−(ε0+t)+iη


 , (4.52)

which is diagonal: the bonding and anti-bonding matrix elements are the upper and lower

blocks of the diagonal elements, respectively.

Since in the HPC-2, the coupling between the plasmon and hole are only on-site, the

plasmon propagator of such an Hamiltonian diagonalizes in the site basis. This leads to the
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only non-zero matrix elements of W0 are

W ii
0,ii(ω) = W jj

0,jj(ω) =
g2

ω − ωp + iη
− g2

ω + ωp − iη
. (4.53)

Transforming the above W0 in the site basis to the orbital basis, we have the matrix

elements reading as

W++
0,++(ω) = W−−0,++(ω) = W++

0,−−(ω) = W−−0,−−(ω) =
g̃2

ω − ωp + iη
− g̃2

ω + ωp − iη
, (4.54)

where g̃ =
g√
2

, and

W kl
0,ij(ω) ≡

∫
dx1x2 ϕ

∗
k(x1)ϕi(x1)W0(x1, x2, ω)ϕ∗j (x2)ϕl(x2) , (4.55)

and ϕi represents the single-particle basis function labeled i. All other matrix elements of

W0 are zero.

The G0W0 self-energy in the orbital basis is defined as

ΣG0W0
ij (ω) = i

∑

k

G0
kk(ω) ∗W ij

0,kk(ω) , (4.56)

and it is diagonal in the orbital basis. The diagonal elements are

ΣG0W0
+ (ω) = ΣG0W0

− (ω) =
g̃2

ω − (ε0 − t− ωp)− iη
+

g̃2

ω − (ε0 + t + ωp) + iη
. (4.57)

How to calculate the energy self-consistent Σ ?

In Eq. (4.40) I have used an energy shift ∆ in the self-energy proposed by Hedin in Ref. [34]

which yields the exact QP energy of the HPC-1. However, this trick is not so simple in

the HPC-2 because we have two orbitals now. As a consequence, we have two self-energies
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ΣG0W0
± that lead to two energy shifts:

∆+ = Re ΣG0W0
+ (ε0 − t) =

g̃2

ωp
− g̃2

ωp + 2t
; (4.58a)

∆− = Re ΣG0W0
− (ε0 + t) = − g̃

2

ωp
+

g̃2

ωp + 2t
≡ −∆+ . (4.58b)

The original idea of Hedin is to use ∆+ in all orbitals, which yields

ΣHedin
± (ω) =

g̃2

ω −∆+ − (ε0 − t− ωp)− iη
+

g̃2

ω −∆+ − (ε0 + t + ωp) + iη
. (4.59)

The energy self-consistent GW self-energy I will use are15

ΣEscGW0
+ (ω) =

g̃2

ω −∆+ − (ε0 − t− ωp)− iη
+

g̃2

ω −∆+ − (ε0 + t + ωp) + iη
; (4.60a)

ΣEscGW0
− (ω) =

g̃2

ω −∆− − (ε0 − t− ωp)− iη
+

g̃2

ω −∆− − (ε0 + t + ωp) + iη
; (4.60b)

where the bonding orbital self-energy is the same as ΣHedin
+ , but I have used a different

shift in the anti-bonding self-energy ΣEscGW0
− . The reason why I did not use ΣHedin

± can be

seen from the QP energies calculated using the QP equation (2.42). The GW QP energies

of the HPC-2 from the QP equation are

εGWQP,+ = ε0 − t + Re ΣG0W0
+ (ε0 − t) = ε0 − t + ∆+ ≡ ε0 − t + ΣEscGW0

+ (εGWQP,+) ; (4.61a)

εGWQP,− = ε0 + t + Re ΣG0W0
− (ε0 + t) = ε0 + t + ∆− ≡ ε0 + t + ΣEscGW0

− (εGWQP,−) . (4.61b)

The comparison of the QP energies calculated from ΣHedin
± and ΣEscGW0

± are shown in

Fig. 4.6. The red circles are shifted Re ΣEscGW0
± which cross zero at QP energies represented

by the black arrows labeled εGWQP (see Eq. (4.61)) for both orbitals. The blue curves show

the shifted Re ΣHedin
± that gives the correct QP energy in the bonding orbital but not in

the anti-bonding orbital. For this reason, in the following context the energy self-consistent

15Note that Hedin’s trick of introducing an energy shift in the self-energy is equivalent to the exact
EscGW0 only in the HPC-1. Whenever there are more than one orbitals (e.g. the bulk sodium), this trick
becomes an approximation to the EscGW0. The method I have suggested in Eq. (4.60) will work better
than using only one energy shift to all orbitals as shown in Eq. (4.59). This method can be used also in
real system calculations. It can be taken as an cheap alternative for the computationally expensive fully
iterative EscGW0 calculation.
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GW self-energy in Eq. (4.60) is chosen to calculate the EscGW0 Green’s function, instead

of ΣHedin
± in Eq. (4.59).
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Figure 4.6: The quasi-particle energies calculated from different approximately energy self-
consistent self-energies. The shifted real part of ΣHedin

± Eq. (4.59) and ΣEscGW0
± are shown

as blue solid curve and red circles, respectively. Left panel is the anti-bonding results and
right panel is the bonding orbital results. The black arrows labeled εGWQP are the QP energies
from the QP equation which are shown in Eq. (4.61). The parameters are chosen consistent
with the bulk sodium bottom valence state, i.e. the same as in Fig. 4.3. Note that in Fig.
4.3, the horizontal axis has been defined as ω/ωp and the bonding orbital QP energy has
been shifted to zero. Here the horizontal axis is ω and there is no shift on the QP energy.

The GW Green’s function can be calculated from the following Dyson equation and

depending on which self-energy we use, the Green’s function can be either G0W0 or EscGW0

one:

G±(ω) =
(
G−1
±,0(ω)− Σ±(ω)

)−1
. (4.62)

The final spectral functions can be calculated from A = π−1|ImG|. They are shown in

Fig. 4.7. The upper and lower panels are spectral functions of anti-bonding and bonding

orbitals, respectively.
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Figure 4.7: The electron removal spectral functions of the two-level hole-plasmon coupling
Hamiltonian. I have shifted the exact quasi-particle in Eq. (4.29) to zero and all other
plots have the same shifts. The Lorentzian broadening η = 0.1 is used in all plots. The
spectral functions calculated from the G0W0 (blue dashed curve), EscGW0 (blue line with
up-triangles) are compared with the exact one (yellow filled curve). The upper and lower
panels are spectra of anti-bonding and bonding orbitals, respectively. I have chosen the
parameters corresponding to bulk sodium bottom valence state, as in Figs. 4.3 and 4.6.

I have mentioned in section 4.1.2 that we can only calculate the electron removal spec-

tral functions from the HPC-2 such that we only have the exact spectrum (yellow filled

curve) on the negative part of the horizontal axis (i.e. ω/ωp < 0) in Fig. 4.7. From the

GW approximation, we can calculate the whole spectra including the electron removal (i.e.

particle number from N = 1 to N = 0) and addition (i.e. particle number from N = 1

to N = 2). This is why all blue curves have additional spectra on the positive part of the

horizontal axis which are absent in the exact spectra in Fig. 4.7. For this reason, we will

only compare the spectra on the negative side in Fig. 4.7. This holds for all the following

comparisons between approximate and the exact spectral functions of the HPC-2.

We first have a look at the bonding orbital spectral functions as shown in the lower

panel of Fig. 4.7. The origin of the GW electron addition spectrum in the bonding orbital

(spectrum for ω/ωp > 0) is the term iG−W
++
−− in the self-energy (see Eqs. (4.56) and

(4.60)), which conserves the spectral weight, i.e.

∫ ∞

−∞
A+(ω) dω = 1. When we only
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integrate the spectral function until the chemical potential, it gives the occupation of that

orbital

∫ µ

−∞
A+(ω) dω = nb < 1 (the performance of the occupations from the EscGW0

can be seen from the blue line with down-triangles in Fig. 4.12). Therefore, the GWA

(both G0W0 and EscGW0) conserves the spectral weight and gives partial occupation of

the bonding orbital in the HPC-2.

One can also show that GW conserves the particle number16 by considering the addi-

tional electron removal spectrum in the anti-bonding orbital (blue curves on the negative

horizontal axis of the upper panel), i.e.

∫ µ

−∞
(A+(ω) +A−(ω)) dω = 1. This is reasonable

because the bonding and anti-bonding orbitals are both partially occupied in the GW ap-

proximation, so both of them should contribute to the electron removal spectra, although

the description of the satellites is not good.

Fig. 4.7 shows that the GWA does not fulfill the constraint of the poles that has been

summarized in section 1.3 since both G0W0 and EscGW0 give satellites at different energies

in bonding and anti-bonding orbitals.

Overall, GW gives good quasi-particle energies but bad satellites as shown in Fig. 4.8.

All the GW satellites appear at the energies where ω− ε0 + t−Re Σ(ω) = 0 instead of close

to the peak in Im Σ(ω). Self-consistency improves the position of the quasi-particle and

satellites. Besides the position of all the peaks, the GWA overestimates the quasi-particle

weight compared to the exact spectral function, which is similar to the conclusion we have

found in the HPC-1 (see Eq. (4.44) and Fig. 4.5).

4.2.3 The CEAs in HPC-2

All of the CEAs give the exact Green’s function in the HPC-1 but as we will see in this

section, the situation is different when we use different cumulant approaches in the HPC-2.

The TOC96

First we have a look at TOC96 in Eq. (2.62). As I have mentioned before, I am going

to use the G0W0 self-energy Eq. (4.57) in the calculation of all cumulants such that the

16In general, the one-shot GW does not necessarily conserve the particle number (see e.g. Ref. [91]). But
in this model study, I have put the chemical potential between the electron removal and addition QP energies
such that all GW calculations conserve the particle number. This holds at least for the HPC-1 and HPC-2.
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Figure 4.8: Bonding orbital G0W0 spectra (lower panel), the corresponding imaginary part
(upper panel) and shifted real part (middle panel) of self-energy. The parameters are the
same as in Fig. 4.7.

superscript “ G0W0” in the self-energy is dropped for simplicity. The hole and electron

parts of the self-energy in equation (4.57) are

Σh
±(ω) = P g̃2

ω − (ε0 − t− ωp)
+ iπg̃2δ(ω − ε0 + t + ωp) ; (4.63a)

Σe
±(ω) = P g̃2

ω − (ε0 + t + ωp)
− iπg̃2δ(ω − ε0 − t− ωp) . (4.63b)

Plugging the above self-energies in TOC96 Eq. (2.62) and replacing the KS-LDA

eigenenergies by the corresponding orbital energies, i.e.

εH+ = E+ − V LDA
xc,+ = ε0 − t ;

εH− = E− − V LDA
xc,− = ε0 + t ;
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we have the final Green’s function of the TOC96, which reads

GC96
+ (τ) = iθ(−τ)e−iε

C96
+ τe−β̃1−β̃2 exp

(
β̃1e

iωpτ
)

; (4.65a)

GC96
− (τ) = −iθ(τ)e−iε

C96
− τe−β̃1−β̃2 exp

(
β̃1e
−iωpτ

)
; (4.65b)

where I have defined

εC96
+ = ε0 − t +

g̃2

ωp
− g̃2

ωp + 2t
; (4.66a)

εC96
− = ε0 + t− g̃2

ωp
+

g̃2

ωp + 2t
; (4.66b)

β̃1 =
g̃2

ω2
p

; (4.66c)

β̃2 =
g̃2

(ωp + 2t)2
. (4.66d)

The quasi-particle energies of the TOC96 are actually the same as the EscGW0 (see Eq.

(4.61)) using the self-energies in Eq. (4.60). This can also be seen in Figs. 4.10 and 4.11: the

quasi-particle energies of the retarded cumulant are the same as the EscGW0. I will show

later that the quasi-particle energies of the TOC96, TOC11 and RC are all identical, which

therefore are identical to the EscGW0 quasi-particle energies. This confirms the use of the

energy self-consistent self-energy ΣEscGW0
± in Eq. (4.60), instead of ΣHedin

± in Eq. (4.59).

If we had used ΣHedin
− in the EscGW0 calculation, it would have yielded an anti-bonding

quasi-particle energy different from εC96
− .

The corresponding spectral functions from the TOC96 are

AC96
+ (ω) =

∞∑

m=0

β̃m1 e
−β̃1−β̃2

m !
δ
(
ω − εC96

+ +mωp
)

; (4.67a)

AC96
− (ω) =

∞∑

m=0

β̃m1 e
−β̃1−β̃2

m !
δ
(
ω − εC96

− −mωp
)

; (4.67b)

they are shown as red curves in Fig. 4.9 for small and large coupling cases.

When the coupling is not so strong as shown in the left panel of Fig. 4.9, in the

bonding orbital (red curves in the lower panel of that figure), the TOC96 gives a very good

electron removal spectrum compared to the exact one, but contrary to the GWA, it does
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Figure 4.9: The spectral functions of the two-level hole-plasmon coupling Hamiltonian. Left
panel: the coupling g = 4.5 eV that is consistent with bulk sodium bottom valence. Right
panel: the coupling g = 7 eV that yields the QP renormalization factor Z = 0.32. The
horizontal axis of the right panel has been kept until the range of our interest. All other
parameters are the same as in Fig. 4.7. Also the horizontal axises of the left and right
panels are defined analogously to previous figures. Upper and lower panels are the spectra
of the anti-bonding and bonding orbitals, respectively. The Lorentzian broadening η = 0.1
is used in all plots. The yellow filled curves are the exact spectral functions of the model
Hamiltonian in equation (4.29). The red curves are the spectral functions calculated using
the TOC96 in equation (4.67). The black dashed curves are the cumulant spectral functions
calculated with the TOC11 in (4.70).

not provide any electron addition spectrum in the bonding orbital. This leads to the non-

conserved spectral weight because one can show that the total spectral weight calculated

from the TOC96 is

∫ ∞

−∞
dωAC96

+ (ω) = exp
(
−β̃2

)
< 1.

In the anti-bonding orbital (upper panel of Fig. 4.9), the TOC96 does not give any

electron removal spectrum, which instead appears in the exact spectrum. The only spectrum

in this orbital is for electron addition whose weight is not complete since

∫ ∞

−∞
dωAC96

+ (ω) =

exp
(
−β̃2

)
< 1.
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As a consequence, the total particle number is not conserved because

∫ µ

−∞
dω
(
AC96

+ (ω) +AC96
− (ω)

)
= exp

(
−β̃2

)
< 1 . (4.68)

When the coupling is stronger as shown in the right panel of Fig. 4.9, the bonding orbital

spectrum of the TOC96 is still reasonably good compared to the exact one, although all

the peaks are shifted to the right with respect to the exact spectrum.

Therefore, TOC96 actually only calculates parts of the photoemission spectra. It does

not calculate the anti-bonding orbital electron removal satellites which should have appeared

at the same energy as the satellites in the bonding orbital as shown in the exact spectral

function (yellow filled curve in the upper panel in Fig. 4.9). The TOC96 gives a partially

occupied bonding orbital like the exact one because nC96
+ = exp

(
−β̃2

)
< 1 as shown by the

red curve with down-triangles in Fig. 4.12. In the coupling range that we are interested

in, the bonding orbital occupation given by the TOC96 is very good compared to the exact

one.

The reason why the TOC96 cannot conserve the particle number or spectral weight has

been mentioned in section 2.3. The Z-factor of the TOC96 is ZC96 = exp
(
−β̃1 − β̃2

)
, which

comes from the whole GW self-energy including Σh and Σe (see Eq. (2.64)). However, only

Σh enters the cumulant function that determines the satellite weights (i.e. β̃1). In order

to conserve both spectral weight and particle number, Σe must also enter in the cumulant

function such that e−β̃2
∑

m

β̃m2
m !

= 1 can appear to conserve both spectral weight and particle

number.

This is however not completely straightforward. The electron part of the GW self-energy

Σe should be used properly to calculate the electron removal spectrum, otherwise although

the spectral weight and total particle number are conserved, some drawbacks will appear

at the same time. We will see this from the performance of the TOC11 and RC later.
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The TOC11

The TOC11 in Eq. (3.32) uses the same self-energy as the TOC96 in Eq. (4.63), thus in

the HPC-2 the Green’s function of TOC11 reads

GC11
+ (τ) = iθ(−τ)e−iε

C11
+ τe−β̃1 exp

(
β̃1e

iωpτ
)

; (4.69a)

GC11
− (τ) = −iθ(τ)e−iε

C11
− τe−β̃1 exp

(
β̃1e
−iωpτ

)
. (4.69b)

The corresponding spectral functions are (see the black dashed curves in Fig. 4.9)

AC11
+ (ω) =

∞∑

m=0

β̃m1 e
−β̃1

m !
δ
(
ω − εC11

+ +mωp
)

; (4.70a)

AC11
− (ω) =

∞∑

m=0

β̃m1 e
−β̃1

m !
δ
(
ω − εC11

− −mωp
)
, (4.70b)

where εC11
± = εC96

± = εEscGW0
± . Apparently this cumulant conserves the total spectral weight

and particle number, since

∫ ∞

−∞
dωAC11

± (ω) = 1 ; (4.71a)

∫ µ

−∞
dω
(
AC11

+ (ω) +AC11
− (ω)

)
= 1 . (4.71b)

However it does not give the correct partial occupation number of the bonding orbital

since

∫ µ

−∞
dωAC11

+ (ω) ≡ 1.

The TOC11 in Eq. (4.70) is different from the TOC96 in Eq. (4.67) only in the quasi-

particle renormalization factor. The Z-factor of the TOC11 is ZC11 = exp
(
−β̃1

)
, which

does not contain Σe.

The TOC96 starts from a partially occupied ground state to calculate the electron re-

moval spectrum such that the integration of the bonding orbital spectral function gives a

good fractional occupation number (see Eq. (4.68) and the red curve with down-triangles in

Fig. 4.12). The TOC11 on the other hand, starts from a fully occupied bonding orbital (i.e.

nC11
+ = 1) and empty anti-boding orbital (i.e. nC11

− = 0) due to the decoupling approxima-

tion. As a consequence, these two orbitals are totally decoupled. The GW QP correction
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(see section 3.3.2) only takes into account the contribution of the orbitals interaction in the

shift of the quasi-particle energy, but has no effect on the plasmon satellites.

Alternatively speaking, the TOC96 does not calculate the anti-bonding electron removal

satellites that appear in the exact spectral function (yellow filled curve in the upper panel

of Fig. 4.9). The TOC11, instead, puts the electron removal spectrum that should have

appeared in the anti-bonding orbital, in the bonding orbital, which leads to too much weight

in the bonding orbital spectral function as shown by the black dashed curves in the lower

panel of Fig. 4.9. In such a way, the TOC11 conserves the spectral weight and the total

occupation. In this sense the TOC11 can be interpreted to be the sum of the TOC96 and

an additional spectrum as follows (for one state, e.g. the bonding orbital):

AC11
+,1 =

∞∑

m=0

β̃m1 e
−β̃1−β̃2

m !
δ
(
ω − εC11

+ +mωp
)

= AC96
+ ; (4.72a)

AC11
+,2 =

1− e−β̃2
e−β̃2

∞∑

m=0

β̃m1 e
−β̃1−β̃2

m !
δ
(
ω − εC11

+ +mωp
)

=
1− e−β̃2
e−β̃2

AC96
+ ; (4.72b)

AC11
+ = AC11

+,1 +AC11
+,2 . (4.72c)

In chapter 5 we will see that the new proposed constrained retarded cumulant has some

similarity at this point. However the interpretation in AC11
+,2 is different (see Eq. (5.12b)).

More details will be discussed there.

It has been shown that both cumulants can give good total photoemission spectra17

of some systems where the interaction between states below and above the Fermi level is

relatively small (see e.g. Refs. [9,11,12,78]). Even in the valence state of bulk sodium where

the top valence crosses the Fermi level, both cumulants give relatively good total spectra

compared to the experiment [9,20]. However, I have done the calculation of sodium valence

and core using the TOC11 in Ref. [20] and found that although the TOC11 improves the

spectrum compared to the GWA in both valence and core, the performance in the valence

17In the case of the HPC-2, the total photoemission spectrum corresponds to the sum of electron removal
spectra of both orbitals. In a real system calculation, the total photoemission spectra of one orbital is the
sum of the k-resolved spectra of this orbital over all the k points in the full Brillouin zone, i.e. Atotb =

∑
k Ak,b

where k and b label the k-point and band, respectively, and the total photoemission spectra is the sum of
Atotb over all the bands.

123



is worse than in the core. This issue reflects the challenge of the time-ordered cumulant in

the description of sodium valence photoemission that will be discussed in Chapter 6.

4.2.4 The RC

In section 3.4, I have derived the retarded cumulant (RC) Green’s function as shown in

equation (3.60) which is equal to the retarded cumulant proposed by J. Kas, J. Rehr and

Reining in Ref. [19]. In this subsection I am going to test the performance of this retarded

cumulant Green’s function in the two-level hole-plasmon coupling Hamiltonian.

We start from an orbital where εH+ = ε0−t < µ that corresponds to the bonding orbital

in the HPC-2. The retarded Hartree Green’s function in the HPC-2 reads

GRH(t12) = θ(t1 − t2)
(
G>H(t12)−G<H(t12)

)
,

where

G<H,+(t12) = ie−iε
H
+ (t1−t2) ;

G>H,+(t12) = 0 ;

G<H,−(t12) = 0 ;

G>H,−(t12) = −ie−iεH− (t1−t2) .

We have already calculated the one-shot time-ordered GW self-energy as shown in

equation (4.57). The corresponding retarded self-energy is calculated in the Appendix

(see Eq. (D.8)). Now we can calculate the components in the retarded cumulant Green’s
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function (see Eq. (3.64)) as follows

Re ΣR
+(εH+ ) =

g̃2

ωp
− g̃2

ωp + 2t
; (4.73a)

∂ Re ΣR
+(ω)

∂ω

∣∣∣∣
ω=εH+

= −β̃1 − β̃2 ; (4.73b)

− 1

π

∫ µ

−∞
dω′

Im Σ<
+(ω′)ei(ε

H
+−ω′+iη)τ

(εH+ − ω′ + iη)2
= β̃1e

iωpτ ; (4.73c)

− 1

π

∫ ∞

µ
dω′

Im Σ>
+(ω′)ei(ε

H
+−ω′+iη)τ

(εH+ − ω′ + iη)2
= β̃2e

−i(ωp+2t)τ . (4.73d)

Note that 2t ≡ εH− − εH+ in the HPC-2. Therefore the final bonding and anti-bonding

matrix elements of the retarded cumulant Green’s function are

GRC+ (τ) = −iθ(τ)e−iε
RC
+ τ exp

(
−β̃1 − β̃2

)
exp

(
β̃1e

iωpτ
)

exp
(
β̃2e
−i(ωp+2t)τ

)
; (4.74a)

GRC− (τ) = −iθ(τ)e−iε
RC
− τ exp

(
−β̃1 − β̃2

)
exp

(
β̃1e
−iωpτ

)
exp

(
β̃2e

i(ωp+2t)τ
)

; (4.74b)

where εRC± are the bonding and anti-bonding quasi-particle energies from the retarded

cumulant which are:

εRC+ = ε0 − t +
g̃2

ωp
− g̃2

ωp + 2t
; (4.75a)

εRC− = ε0 + t− g̃2

ωp
+

g̃2

ωp + 2t
. (4.75b)

Thus all the quasi-particle energies from the EscGW0, TOC96, TOC11 and retarded

cumulant are identical (see e.g. Eqs. (4.61) and (4.66) as well as Figs. 4.10 and 4.11).

The retarded cumulant spectral functions for these two orbitals are

ARC+ (ω) =

∞∑

m1,m2=0

β̃m1
1 β̃m2

2 e−β̃1−β̃2

m1 !m2 !
δ
(
ω − εRC+ +m1ωp −m2(ωp + 2t)

)
; (4.76a)

ARC− (ω) =
∞∑

m1,m2=0

β̃m2
1 β̃m1

2 e−β̃1−β̃2

m1 !m2 !
δ
(
ω − εRC− −m2ωp +m1(ωp + 2t)

)
. (4.76b)

The retarded cumulant spectral functions are shown in Fig. 4.10 together with a com-

parison with the EscGW0 and exact spectral functions using the sodium bottom valence
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parameters. The QP energies of the two orbitals calculated from the RC and EscGW0

are exactly at the same energy, which confirms my suggestion about the use of the energy

self-consistent GW self-energy18 in Eq. (4.60). Again we only have the exact removal spec-

tra such that we can only test the electron removal spectral functions calculated from the

retarded cumulant.
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Figure 4.10: The spectral functions of the HPC-2 . All parameters are the same as Fig.
4.9 and Fig. 4.7. Upper panel: the anti-bonding spectrum. Lower panel: the bonding
spectrum. The retarded cumulant, and EscGW0 spectral functions are shown by the blue
curve with up-triangles and green curve with circles, respectively. The yellow filled curves
are the exact spectral functions of the HPC-2. The coupling strength in this figure is g = 4.5
eV, leading to Z = 0.65. In Fig. 4.11, the same plots using a larger coupling strength g = 7.0
eV yielding Z = 0.32 are shown.

In the bonding orbital (lower panel of Fig. 4.10), the retarded cumulant spectrum (green

line with circles) has a very good performance compared to the exact one. It improves the

plasmon satellites compared to the GWA. However, the retarded cumulant gives one very

small satellite between the QP peak and the first plasmon satellite as shown by the black

18In principle, the quasi-particle energies from the CEA are identical to the quasi-particle energies of the
GWA. The energy self-consistent GW self-energy ΣEscGW0

± in Eq. (4.60) leads to the same GW quasi-particle

energies as the CEA. However ΣHedin± in Eq. (4.59) does not yield the same quasi-particle energies as the
CEA.
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arrow labeled “ artifact ” in that figure. This spurious structure is not present in the exact

spectrum. It stems from the term (m1 = m2 = 1) in ARC+ of Eq. (4.76a). This is an

artifact induced by the retarded cumulant. The stronger the coupling, the more evident is

the artifact as shown in Fig. 4.11 where g = 7.0 eV, instead of g = 4.5 eV has been used.

I will show how one can improve the retarded cumulant by introducing the constrained

retarded cumulant approach in Chapter 5 such that the artifact will be eliminated.

In the anti-bonding orbital (upper panel of Fig. 4.10), the retarded cumulant spectrum

improves the plasmon satellites with respect to the EscGW0 (blue line with up-triangles)

because the main satellite of the retarded cumulant is closer to the first satellite of the

exact one, and the weight is better. As in the case of the bonding orbital, a spurious peak

appears (i.e. m1 = m2 = 1 in ARC− of Eq. (4.76b)) between the first main satellite and the

QP peak (black arrow labeled “ artifact ”) of the retarded cumulant spectrum, which can

be corrected by the constrained retarded cumulant that will be discussed in Chapter 5.
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Figure 4.11: The spectral functions of the HPC-2 . All the plots are the same with Fig.
4.10 but with larger coupling strength g = 7.0 eV, leading to the QP renormalization factor
Z ≈ 0.32. Only the electron removal spectrum has been shown.
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One can show analytically that the retarded cumulant conserves the total spectral weight

because

∫ ∞

−∞
dωARC± (ω) = e−β̃1−β̃2

∞∑

m1=0

∞∑

m2=0

β̃1

m1 !

β̃2

m2 !
= 1 . (4.77)

It is difficult to see analytically whether the retarded cumulant Green’s function con-

serves the total particle number or not, because the term m2(ωp + 2t) in A±(ω) also con-

tributes satellites below the chemical potential µ. But we can see that the retarded cumulant

does conserve the particle number from the numerical calculation as shown in Fig. 4.12.

All the occupations shown in Fig. 4.12 are calculated by putting the chemical potential µ

between the QP energies of bonding and anti-bonding orbitals.
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Figure 4.12: Occupation numbers with increasing coupling strength in the HPC-2. The
green solid curve is the total occupation number calculated from the retarded cumulant

Green’s function (Eq. (4.76)), i.e.

∫ µ

−∞

(
ARC+ (ω) +ARC− (ω)

)
dω. As discussed in Eq.

(4.71b), the TOC11 has a fully occupied bonding orbital which yields nC11
b = nC11

tot = nRCtot =
1. The green, blue and red lines with down-triangles are the bonding orbital occupations
of the retarded cumulant, EscGW0, and TOC96. The black line with down-triangles shows
the exact bonding orbital occupation. The numbers in the legend represent the occupation
when g = 4.5 eV that is consistent with the sodium bottom valence.

128



The last question about the retarded cumulant Green’s function is: does it fulfill the

constraint that poles of G+ and G− are the same (see the constraint of poles summarized in

section 1.3)? Apparently not, as can be seen in Fig. 4.10: the positions of the anti-bonding

satellites are not the same as the positions of bonding orbital satellites.

Therefore, both the TOC11 and RC conserve the spectral weight and particle number

in a different way. The TOC11 drops the electron part of the self-energy. The RC uses the

whole self-energy (Σh and Σe) but not in a proper way, leading to some spurious structures

and a relatively bad anti-bonding removal spectrum.

4.3 Summary

In this chapter, I have studied the spectral functions calculated from the GWA (the G0W0

and EscGW0) and CEA (TOC96, TOC11 and RC) in two hole-plasmon coupling model

Hamiltonians. The GW approximation can give good QP energies, but the QP weight is

slightly overestimated compared to the exact one. As has been mentioned in section 2.2,

The G0W0 and EscGW0 can not provide the plasmon satellite replica which appear in the

exact spectral functions of the model Hamiltonians. There is only one satellite, due to a

plasmaron. The cumulant expansion approximation yields the exact spectral function in

the HPC-1 because the electron part of the GW self-energy is zero in such a simple model.

This explains why the CEAs can give very good spectral function of systems where the

interaction between orbitals is negligible. In the HPC-2 where the GW self-energy contains

both electron and hole parts reflecting the interaction between orbitals, none of the CEAs

can reproduce the satellites in the exact spectral functions. All CEAs have very good

spectral functions in the bonding orbital, but the anti-bonding orbital spectrum is never

satisfactory. None of the CEAs fulfills all our exact constraints that haven been summarized

in section 1.3:

• The TOC96 does not conserve the spectral weight, nor the particle number. However

it gives very good partial occupation of the bonding orbital. Since it does not give

any electron removal spectrum in the anti-bonding orbital, the constraint of the poles

(see the summaries in section 1.3) is meaningless.
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• The TOC11 conserves both the spectral weight and particle number, however it cannot

give the correct partial occupation of the bonding orbital. Like the TOC96, it does

not give any electron removal spectrum in the anti-bonding orbital. This is because

these two cumulant expansion approximations are based on the decoupling between

electron removal and addition branches as discussed in sections 2.3 and 3.3.

• The retarded cumulant conserves both the spectral weight and the total particle num-

ber. It improves the partial occupation of the bonding orbital with respect to the

GWA, although the occupation is worse than the TOC96. Moreover, the retarded

cumulant can give some electron removal satellites in the anti-bonding orbital, but

they are not in the correction position: they do not fulfill the constraint of the poles

(see the summaries in section 1.3). In addition to that, the retarded cumulant in-

duces some spurious satellites that are not present in the exact spectral functions of

the HPC-2. The larger the coupling strength, the stronger these artifacts.

These observations will now serve as a motivation and guideline to search for possible im-

provements on one side (see Chapter 5), and to analyze findings in sodium as a prototypical

real system on the other side (see Chapter 6).

130



131



Chapter 5

The constrained retarded cumulant

Green’s function

In Chapter 4 we have seen the performance of the spectral functions from different approx-

imations by comparing to the exact spectral functions of the hole-plasmon coupling model

Hamiltonians. The cumulant expansion approximations (CEAs) yield the exact spectral

function of the one-level hole-plasmon coupling model (HPC-1), however none of the present

CEAs is able to reproduce well enough the exact spectral function of the two-level hole-

plasmon coupling model (HPC-2). This means the cumulant expansion approximations are

probably still not good enough to describe valence photoemission, where the interaction

between the states below and above the Fermi level is not negligible. In order to have a

better description of the valence photoemission spectrum, I am going to propose a new cu-

mulant expansion approximation in this chapter that will be referred to as the constrained

retarded cumulant (CRC). To derive the constrained retarded cumulant, first we have to

study in detail the exact Green’s function of the HPC-2. In particular an approximate ana-

lytical expression of the exact Green’s function of the HPC-2 will be shown, from which we

can find the link between the analytical Green’s function and the retarded cumulant Green’s

function in the HPC-2. In this way, some proper constraints can be introduced on top of the

retarded cumulant, leading to the constrained retarded cumulant Green’s function which

fulfills these exact constraints. Then I will show a generalized expression of this constrained
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retarded cumulant Green’s function that could be applied to the calculation of real systems,

and predict the effects of the constrained retarded cumulant in valence photoemission.

5.1 An approximate fully analytical Green’s function of the

HPC-2

Before I propose the constrained retarded cumulant, I will first discuss some insight I have

obtained from the two-level hole-plasmon coupling Hamiltonian calculation. In section 4.1.2,

I have shown how to calculate the exact Green’s function of the HPC-2. However, the exact

Green’s function (see Eq. (4.29)) is not fully analytical because the diagonalization of Ĥ−

Eq. (4.20b) is done numerically. The numerical parameters forbid us to see the link between

the exact Green’s function and the GW self-energy. To get rid of this difficulty, I will first

show how I can find an approximate fully analytical expression of the Green’s function that

is still in better agreement with the exact Green’s function of the HPC-2 than all previous

methods. This requires a good approximation for both the ground state energy E−0 and the

coefficients of the wavefunction vm in the exact Green’s function (see Eq. (4.29)).

The ground state energy of Ĥ− for one electron can be calculated to second order in g̃,

which reads1

E−0 ≈ Eg
2

0 = ε0 − t− g̃2

ωp + 2t
. (5.1)

This analytical ground state energy yields the quasi-particle energy to second order in

g̃ which reads

εg
2

QP = ε0 − t− g̃2

ωp + 2t
+
g̃2

ωp
. (5.2)

The above QP energy is the same as the EscGW0 QP energy (see Eq. (4.61)), and hence

of all CEAs (see e.g. Eq. (4.75)). The performance of this analytical ground state energy

compared to the exact numerical total energy can be seen in Fig. 5.1, where the red curve

shows the ground state total energies (E−0 ) from the exact diagonalization of Ĥ− and the

diamonds show the ground state energies (Eg
2

0 ) calculated from Eq. (5.1) with increasing

1This analytical ground state energy can be calculated by diagonalizing the Ĥ− matrix in the basis of
|n+, n−;m+,m−〉 when mmax

− = 1.
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coupling constant g. The coupling strength has been limited to the range of our interest,

in particular g = 4.5 eV corresponds to the sodium bottom valence state where the error of

our approximation in Eq. (5.1) is about 6% compared to the numerical results. Therefore,

in the range of our interest, Eq. (5.1) is a sufficiently good approximation to the exact total

energy for our purpose.

0 1 2 3 4 5 6 7 8
g (eV)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

E
− 0

gNa

numerical (exact)
analytical (g2 )

Figure 5.1: The performance of the second order expansion of the ground state energy in
equation (5.1). The parameters are corresponding to bulk sodium bottom valence state, i.e.
ε0 = t = 1.5 eV and ωp = 6 eV. Red curve is the exact numerical total energy E−0 and blue
diamonds are the total energy calculated from the second order expression in Eq. (5.1). In
particular, g = 4.5 eV (black arrow labeled “gNa”) corresponds to the sodium case where
the error of the second order expansion is about 6%. This figure shows that Eq. (5.1) is a
sufficiently good approximation to the exact total energy of the HPC-2.

In order to have the fully analytical approximated Green’s function, we have to know the

analytical expression of the coefficients of the eigenfunctions vm in equation (4.24). There

are conditions to approximate vm because it affects the occupation. For example if we want

to conserve the total particle number, we have to find an approximation that fulfills the

following property:
∞∑

m=0

v2
m = 1 . (5.3)
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There are many Taylor series that can do this job thus the above property is not enough

for finding good approximations. Thanks to the fully analytical expression of the retarded

cumulant Green’s function (see Eq. (4.74)) and its good performance for the weight of the

spectra as shown in Fig. 4.10, we can try to use the function that controls the weight of the

retarded cumulant spectra to approximate the coefficients of the exact one. This leads to2

vm ≈
β̃m2
m !

e−β̃2 , (5.4)

where β̃2 = g̃2

(ωp+2t)2
. The above approximation conserves the particle number since

e−x
∞∑

m=0

xm

m!
= 1. We can see the performance of this approximation in Fig. 5.2. When

we are in a weakly correlated system where the coupling is small (e.g. g < 3 eV), our

approximated vm in equation (5.4) is nearly identical to the exact one (the red up- and

down-triangle dataset in Fig. 5.2). The data sets corresponding to the bulk sodium bottom

valence are shown in blue up- and down-triangles where our approximation is still good (∼

2% error)3. Even in the strong coupling case where g = ωp = 6 eV as shown in the green

dataset, our approximation can be taken as acceptable (∼ 8% error).

Using these approximate formulas (Eqs. (5.1) and (5.4)), the approximate analytical

Green’s function reads now4

G+(τ) =
i

2
θ(−τ)e−iε+τe−β̃1−β̃2 exp

(
β̃1e

iωpτ
) [

exp
(
β̃2e

iωpτ
)

+ exp
(
−β̃2e

iωpτ
)]

; (5.6a)

G−(τ) =
i

2
θ(−τ)e−iε+τe−β̃1−β̃2 exp

(
β̃1e

iωpτ
) [

exp
(
β̃2e

iωpτ
)
− exp

(
−β̃2e

iωpτ
)]

; (5.6b)

where ε+ = ε0 − t + g̃2

ωp
− g̃2

ωp+2t is the bonding quasi-particle energy.

2Note that the ground state energy is kept until the order g2, however the approximate coefficients in
Eq. (5.4) contain higher order terms in g.

3The error is calculated from v0 that corresponds to the weight of the quasi-particle peak, which has the
largest error.

4Take Eqs. (5.1) and (5.4) in the exact Green’s function shown in Eqs. (4.27) and (4.28). Then Fourier
transform the resulting Green’s functions from frequency space to time space. I have also used the property
of

∞∑
m=0

β̃2m
2 e−β̃2

2m !
= e−β̃2

eβ̃2 + e−β̃2

2
=

1 + e−2β̃2

2
;

∞∑
m=0

β̃2m+1
2 e−β̃2

2m+ 1 !
= e−β̃2

eβ̃2 − e−β̃2
2

=
1− e−2β̃2

2
.
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Figure 5.2: The performance of the second order expansion in equation (5.4). I have used
the same parameters as Fig. 5.1, i.e. bulk sodium bottom valence state parameters. Up-
and down- triangles are the exact (Eq. (4.24)) and approximate coefficients of the ground
state wavefunction (Eq. (5.4)), respectively. Red data are the results for g = 3 eV. Blue are
g = 4.5 eV which corresponds to sodium, with an error of about 2% and green are g = 6
eV with an error about 8%.

Now we analyze the terms in the square brackets in equation (5.6) such that further

approximations can be introduced:

1

2

[
exp

(
β̃2e

iωpτ
)

+ exp
(
−β̃2e

iωpτ
)]

= 1 +
1

2!
β̃2

2e
i2ωpτ + · · · ≈ 1 ; (5.7a)

1

2

[
exp

(
β̃2e

iωpτ
)
− exp

(
−β̃2e

iωpτ
)]

= β̃2e
iωpτ +

1

3!
β̃3

2e
i3ωpτ + · · · ≈ β̃2e

iωpτ . (5.7b)

When β̃2 � 1, β̃m2 (m > 1) will be very small5 so that they can be neglected. Thus the

Green’s function for β̃2 � 1 reads6

G+(τ) = iθ(−τ)e−iε+τe−β̃1−β̃2 exp
(
β̃1e

iωpτ
)

; (5.8a)

G−(τ) = iθ(−τ)β̃2e
−i(ε+−ωp)τe−β̃1−β̃2 exp

(
β̃1e

iωpτ
)
. (5.8b)

5In the case of sodium bottom valence where g ≈ 4.5 eV leading to β̃2 ≈ 0.3, the higher order term (i.e.
β̃m
2
m !

with m > 1) can be neglected in a good approximation.
6The resulting G+ in Eq. (5.8a) is identical to the GC96

+ in Eq. (4.65a) whose performance is shown by
the red curves in the lower panel of Fig. 4.9. It has very good agreement with the exact bonding spectra.
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However, the above Green’s function does not conserve the particle number anymore

because one can show that

∫ µ

−∞
dω (G+(ω) +G−(ω)) = e−β̃2 + β̃2e

−β̃2 6= 1 . (5.9)

In order to conserve the particle number, we have to change the anti-bonding Green’s

function consistently with the bonding Green’s function. This means if we have kept the

zero order expansion that yields n+ = e−β̃2 in the bonding Green’s function (see Eq. (5.7a)),

we have to keep all the left weights that is 1− e−β̃2 in the anti-bonding Green’s function to

conserve the particle number, which leads to

G−(τ) = iθ(−τ)e−iε+τe−β̃1−β̃2 exp
(
β̃1e

iωpτ
) [

exp
(
β̃2e

iωpτ
)
− 1
]

= iθ(−τ)e−iε+τe−β̃1−β̃2
∞∑

m=0

[
(β̃1 + β̃2)m − β̃m1

]

m !
eimωpτ . (5.10)

Fourier transform of Eqs. (5.8a) and (5.10) yields the final approximated fully analytical

Green’s function:

Gg
2

+ (ω) = e−β̃1−β̃2
∞∑

m=0

β̃m1
m !

1

ω − (ε+ −mωp)− iη
; (5.11a)

Gg
2

− (ω) = e−β̃1−β̃2
∞∑

m=0

[
(β̃1 + β̃2)m − β̃m1

]

m !

1

ω − (ε+ −mωp)− iη
. (5.11b)

The corresponding spectral function reads

Ag
2

+ (ω) =

∞∑

m=0

e−β̃1−β̃2 β̃m1
m !

δ(ω − ε+ +mωp) ; (5.12a)

Ag
2

− (ω) = e−β̃1−β̃2
∞∑

m=0

[
(β̃1 + β̃2)m − β̃m1

]

m !
δ(ω − ε+ +mωp) . (5.12b)

Note that the bonding spectral function Ag
2

+ is equivalent to the TOC96 in Eq. (4.67).

The anti-bonding electron removal spectral function is the one missing in the TOC96,
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because the TOC96 can only calculate the electron addition spectral function of the anti-

bonding orbital.

The above spectral function conserves the particle number by design:

∫ µ

−∞
dω
[
Ag

2

+ (ω) +Ag
2

− (ω)
]

= 1 . (5.13)

The bonding orbital occupation is the same as the one from the TOC96 (see Eq. (4.68)

and the red line with down-triangles in Fig. 4.12) that is

ng
2

+ =

∫ µ

−∞
dω
(
Ag

2

+ (ω) +Ag
2

− (ω)
)

= exp
(
−β̃2

)
< 1 . (5.14)

The good performance of this bonding occupation can be seen from the red curve with

down-triangles in Fig. 4.12. Since it conserves the total particle number, the anti-bonding

occupation should also be good compared to the exact one. This Green’s function has the

same quasi-particle energy as the one from the EscGW0 hence all the CEAs, which is very

good compared to the exact quasi-particle energy. Moreover, Gg
2

fulfills the constraint of

the poles (see the summary in section 1.3), i.e. the anti-bonding satellites are at the same

energies as the bonding satellites.

Finally the performance of the spectral functions in Eq. (5.12) are shown in Fig. 5.3.

The purple curve with up-triangles shows the good performance of our approximate spectral

functions compared to the model exact one shown by the yellow filled curve in the same

figure.

In conclusion, the spectral function Ag
2

has better performance than all previous ap-

proximate spectral functions (i.e. the GWA and CEA) compared to the exact one in the

HPC-2. It has the following properties:

1. The ground state energy has been kept until the second order to g in Eq. (5.1).

2. The coefficients of the ground state wavefunction has been approximated using Eq.

(5.4).

3. The bonding matrix elements spectral function for electron removal Ag
2

+ in Eq. (5.12)

is identical to the electron removal spectral function of the TOC96 in Eq. (4.67).
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Figure 5.3: The spectral functions of the two-level hole-plasmon coupling Hamiltonian. Left
panel: the coupling g = 4.5 eV yielding Z = 0.65. Right panel: a stronger coupling g = 7
eV yielding Z = 0.32. Yellow filled and purple curves with up-triangles are the exact and
approximate (Eq. (5.12)) spectral functions, respectively.

As discussed in section 4.2, this spectral function yields good partial occupation of

the bonding orbital compared to the exact one as shown by the red curve with down

triangles in Fig. 4.12. However it is not complete because it does not conserve the

total particle number, nor the spectral weight. This is corrected by the anti-bonding

matrix element of electron removal spectral function Ag
2

− in Eq. (5.12).

4. The anti-bonding matrix element Ag
2

− in Eq. (5.12) leads to the anti-bonding orbital

occupation ng
2

− =

∫ µ

−∞
dωAg

2

− (ω) = 1−n2
+, thus the total particle number is conserved

by design. There is no electron removal QP peak in Ag
2

− but only satellites because

the presence of the anti-bonding orbital electron removal spectrum is only due to

interactions: when there is no interaction, there will not be any electron removal

spectrum in this orbital.
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5.2 The constrained retarded cumulant in the HPC-2

The approximate analytical Green’s function yields the spectral function in Eq. (5.12) that

has a very good performance compared to the exact one. However like the exact spectral

function, only the electron removal spectrum has been calculated in Eq. (5.12). In this

section, I am going to introduce the so called constrained retarded cumulant, which has

the same electron removal part as Gg
2
. Besides electron removal, it has the corresponding

electron addition part to conserve the total spectral weight.

In order to complete the electron removal and addition spectra, we have to first under-

stand why the same orbital (e.g. the bonding orbital) should have both electron removal

and addition spectra like what we have seen in the GWA and RC. This is essentially due to

the fact of partial occupation of interacting states. I will analyze this issue using a simple

two-level system as illustrated in Fig. 5.4.

EF

"k

[A<
k ; nk]

[A<
l ; nl]

k

l"l

[A>
k ; 1 � nk = nl]

[A>
l ; 1 � nl = nk]

Figure 5.4: Schematic illustration of the spectrum of a two-level system. There are two
quasi-particle states in the system: the state k and l are below and above the Fermi level,
respectively. The quasi-particle energies of these two states are εk and εl as represented by
the thick red peaks. The thin red peaks represent the satellites.

When a certain quasi-particle state labeled as k is close to the Fermi level (e.g. sodium

bottom valence) and its energy εk < µ7, it can interact with another quasi-particle state

7I am now talking about the quasi-particle states such that εk corresponds to the QP energy of the state
k instead of any independent-particle eigenvalues like Hartree or LDA. Thus in the HPC-2, εk corresponds

to the bonding orbital QP energy ε0 − t + g̃2

ωp
− g̃2

ωp+2t
, instead of the Hartree eigenvalue ε0 − t.
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l with energy εl > µ, which is exactly like the interaction between the bonding and anti-

bonding orbitals of the HPC-2. Suppose in the simplest case there are only these two

states k and l in our system. The direct consequence of the interaction is the partial

occupation of both states, which is entirely a correlation effect so that it cannot be seen in

any independent-particle picture. When we do photoemission, one electron is removed from

our system. It is impossible to tell from which state (k or l) the one electron is removed. The

resulting photoemission spectrum of the state k (A<k )(suppose we can resolve the spectrum

of each state) will contain one QP peak at energy εk and satellites on the left hand side

of the QP peak. The integration of this spectrum until the chemical potential gives the

fractional occupation number, i.e. nk =

∫ µ

−∞
A<k (ω)dω < 1.

The other part of the spectral weight (1−nk) is placed in the electron removal spectrum

of the partially occupied state l, i.e. A<l , leading to nl =

∫ µ

−∞
A<l (ω)dω = 1− nk < 1. This

spectrum will contain only satellites because the electron removal spectrum is fully induced

by the interaction: when there is no interaction, there will not be any electron removal

spectrum in the state l. The electron removal satellite energy of the state l should equal

the electron removal satellite energy of the state k because no matter from which state the

one electron is removed, it always excites all possible excitations of the system. Therefore

the Green’s functions of these two states Gk and Gl should have the same denominator

representing all possible excitations in the system. However the possibility of a certain

excitation is determined by the nominator of the Green’s function, thus some excitation

can have zero weight representing the forbidden excitations. For example, the weight of the

bonding QP excitation is zero in the anti-bonding Green’s function, which means that there

will not be any electron removal QP excitation in the state l. This is right the picture of

the exact Green’s function of the HPC-2 (see Eq. (4.29)).

Although the HPC-2 cannot provide the electron addition spectrum, we should be able

to calculate the electron addition spectrum from the constrained retarded cumulant as

what the GW approximation does (see Fig. 4.7) because our theory should be able to

calculate the electron removal and addition Green’s function on the same footing. In inverse

photoemission, one electron is added to the system. The possibility for this electron to be

added to the state k is 1− nk = nl and to the state l is 1− nl = nk. The electron addition
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spectra of these two states are similar to the electron removal spectra: the electron addition

spectrum of the state l (A>l ) has one QP peak at εl and plasmon satellites on the right

hand side of the QP peak and the electron addition spectrum of the state k (A>k ) has only

plasmon satellites at the same energy as the electron satellites of the state k.

In the picture mentioned above, the electron addition spectrum of the bonding orbital

should be calculated from the electron addition quasi-particle excitation of the anti-bonding

orbital, which yields

GCRC+ (τ) =− iθ(τ)e−iε
CRC
+ τe−β̃1−β̃2 exp

(
β̃1e

iωpτ
)

− iθ(τ)e−iε
CRC
− τe−β̃1−β̃2 exp

(
β̃1e

iωpτ
) [

exp
(
β̃2e
−iωpτ

)
− 1
]
, (5.15)

where εCRC± are the quasi-particle energies from EscGW0 that are the same as all the CEAs.

Analogously the constrained retarded cumulant anti-bonding Green’s function reads

GCRC− (τ) =− iθ(τ)e−iε
CRC
− τe−β̃1−β̃2 exp

(
β̃1e
−iωpτ

)

− iθ(τ)e−iε
CRC
+ τe−β̃1−β̃2 exp

(
β̃1e

iωpτ
) [

exp
(
β̃2e

iωpτ
)
− 1
]

(5.16)

The corresponding spectral functions are then

ACRC+ (ω) = Z+

∞∑

m=0

[
β̃m1
m !

δ
(
ω − εCRC+ +mωp

)
+

(β̃1 + β̃2)m − β̃m1
m !

δ
(
ω − εCRC− −mωp

)
]

;

(5.17a)

ACRC− (ω) = Z−

∞∑

m=0

[
β̃m1
m !

δ
(
ω − εCRC− −mωp

)
+

(β̃1 + β̃2)m − β̃m1
m !

δ
(
ω − εCRC+ +mωp

)
]
.

(5.17b)

The quasi-particle renormalization factor from the CRC is the same as the one from the

TOC96 (see Eq. (4.67)) that reads

Z± = e−β̃1−β̃2 , (5.18)
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which leads to the same occupation of bonding and anti-bonding orbitals as the TOC96

(see Fig. 4.12).

The CRC Green’s function fulfills all the exact constraints I have mentioned in the

summary of chapter 1, i.e. conservation of both spectral weight and particle number, as

well as the fact that the poles of the CRC Green’s function are independent on the matrix

elements. Moreover, the CRC describes well the partial occupation of two orbitals. The

plasmon satellite replica are given with good performance compared to the exact Green’s

function as shown in Fig. 5.5 for both weak and strong coupling cases. However, the full

CRC Green’s function can only be obtained in such a simple two-level hole-plasmon coupling

model. We will see in the next section, why it is impossible to calculate the constrained

retarded cumulant Green’s function in Eq. (5.15) in a generalized four-level model.

5.3 Generalization and implementation of the CRC for the

calculation of real systems

The constrained retarded cumulant looks perfect in the HPC-2. However, this is not the

end of the story yet because real materials are not as simple as a two-level hole-plasmon

coupling model Hamiltonian. On one hand, the plasmon is not the simple Einstein boson

that does not disperse at all. On the other hand, there are much more states that can

interact with each other in real materials. In order to go one step further, we need to see

how to get the CRC Green’s function in terms of the GW self-energy such that it can be

generalized to real system calculations as all other CEAs. Here I take the bonding orbital

of the HPC-2 as one example to show how to interpret GCRC+ in equation (5.15) in terms of

the GW self-energy Σ (see Eq. (D.8)). The fundamental building blocks of GCRC+ are the
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Figure 5.5: The spectral functions of the two-level hole-plasmon coupling Hamiltonian. All
parameters are the same as in Fig. 5.3. Upper panel (two figures): the coupling g = 4.5
eV yielding Z = 0.65. Lower panel (two figure): a stronger coupling g = 7 eV yielding
Z = 0.32. Yellow filled and purple curves are the exact and CRC spectral functions (Eq.
(5.17)), respectively. The Lorentzian broadening η = 0.1 eV has been used for all plots.

quasi-particle energies εQP+ and β̃1 and β̃2 which can be written as

εQP+ = Re Σ+(εH+ ) = ε0 − t +
g̃2

ωp
− g̃2

ωp + 2t
; (5.19a)

β̃1 =
∂ Re Σe

±(ω)

∂ω

∣∣∣∣
ω=εH+

=
∂ Re Σh

±(ω)

∂ω

∣∣∣∣∣
ω=εH−

; (5.19b)

β̃2 =
∂ Re Σe

±(ω)

∂ω

∣∣∣∣
ω=εH+

=
∂ Re Σh

±(ω)

∂ω

∣∣∣∣∣
ω=εH−

. (5.19c)
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5.3.1 A four-level system with dispersionless plasmons

Due to the simplicity of the two-level hole-plasmon coupling model, we cannot distinguish

the self-energies of bonding and anti-bonding orbitals because Σ+ ≡ Σ− (see Eq. (4.57)).

As a consequence, there are different possible formulas to obtain the same β̃1 and β̃2. In

real materials, each state has a different self-energy matrix element. Thus the HPC-2 is not

sufficient to generalize our findings. In order to find out the link between the β functions8

in the CRC Green’s function and the GW self-energy, we can have a look at the structure

of a more general Σ with four orbitals using the dispersionless plasmon approximation (see

a schematic illustration of this four-level system in Fig. 5.6 )9

Σ1(ω) =
λ1

ω − ε1 + ω1 − iη
+

λ12

ω − ε2 + ω12 − iη
+

λ13

ω − ε3 − ω13 + iη
+

λ14

ω − ε4 − ω14 + iη
;

Σ2(ω) =
λ12

ω − ε1 + ω12 − iη
+

λ2

ω − ε2 + ω2 − iη
+

λ23

ω − ε3 − ω23 + iη
+

λ24

ω − ε4 − ω24 + iη
;

Σ3(ω) =
λ13

ω − ε1 + ω13 − iη
+

λ23

ω − ε2 + ω23 − iη
+

λ2
3

ω − ε3 − ω3 + iη
+

λ34

ω − ε4 − ω34 + iη
;

Σ4(ω) =
λ14

ω − ε1 + ω14 − iη
+

λ24

ω − ε2 + ω24 − iη
+

λ34

ω − ε3 − ω34 + iη
+

λ4

ω − ε4 − ω4 + iη
;

where ε1, ε2
10 are below chemical potential µ and ε3, ε4 are above µ, Σi ≡ Σii, each W jj

ii

has one dispersionless plasmon of energy ωjjii and weight λjjii . Note that since W jj
ii = W ii

jj
11,

the short notations of W jj
ii ≡Wij and W ii

ii ≡Wi have been used.

8The small tilde on top of β has been dropped for simplicity. The function β̃ in the CRC Green’s function
will be refereed to as “ the β function ” in the following context.

9The short notation Σi ≡ Σii = i
∑
k

GkkW
ii
kk has been used.

10Here εi can be considered as the quasi-particle energies, which means the self-energies are calculated
from the quasi-particle Green’s function. This assumption is not necessary but to be an example, it will be
easier to understand.

11The screened Coulomb interaction W has the property of W jj
ii = W ii

jj because the following two equations
are equivalent:

W jj
ii (t12) =

∫
dx1x2 ϕ

∗
j (x1)ϕi(x2)W (x1, x2, t12)ϕ∗i (x1)ϕj(x2) ;

W ii
jj(t12) =

∫
dx1x2 ϕ

∗
i (x1)ϕj(x2)W (x1, x2, t12)ϕ∗j (x1)ϕi(x2) ;
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The above self-energies are simplified versions of the Σ in Ref. [34] that reads

Σk =
∑

i,s 6=0

|V s
ki|2

ω − εi + ωssgn(µ− εi)
, (5.22)

where V s
ki is defined as the fluctuation potential that plays the same role as our λ: it

determines the weight of each plasmon energy ωs where s labels the dispersion of the

plasmon. The four-level self-energy is more general than the two-level one in the sense that

each occupied matrix element (e.g., Σ1) contains two occupied orbitals, instead of only one

like the HPC-2 in Eq. (4.57). Therefore, it is closer to a realistic system than the two-level

one. Let’s take the first orbital labeled as “1” as one example. The imaginary part of the

hole self-energy in this orbital reads

1

π
Im Σh

1(ω) = λ1δ(ω − ε1 + ω1) + λ12δ(ω − ε2 + ω12) ≈ λ̃<1 δ
(
ω − ε1 + ω̃<1

)
, (5.23)

where the λ̃ and ω̃ are effective strength and plasmon energy, respectively.

The above approximation of the self-energy Eq. (5.23) is consistent with the idea in

Ref. [34] (e.g., the section 4.3 in [34])12.

The β functions of the first orbital thus read13

β<1 =
∂ Re Σh

1(ω)

∂ω

∣∣∣∣
ω=ε1

=
λ̃1

ω̃2
1

; (5.24a)

β>1 =
∂ Re Σe

1(ω)

∂ω

∣∣∣∣
ω=ε1

=
λ13

(ε13 − ω13)2
+

λ14

(ε14 − ω14)2
, (5.24b)

where εij ≡ εi − εj .
12In section 4.3 of Ref. [34], Hedin discussed the application of the TOC96 in valence photoemission. Two

assumptions have been introduced. First the occupation of occupied states are always equal to 1, which
makes the TOC96 identical to the TOC11. The second assumption is identical to my Eq. (5.23), which can
be seen as an average energy approximation.

13For the moment, I did not use the formulation in Eq. (5.23) for the electron part of the self-energy Σe1.
A complete idea of a multipole representation of the full self-energy for a real system will be introduced in
section 5.3.2.
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Now we can calculate the electron removal spectral function of the occupied state with

energy ε1 following the constrained retarded cumulant (see Eq. (5.15)). It reads

Aocc1,<(ω) = Z1

∞∑

m=0

(β<1 )m

m !
δ(ω − ε1 +mω̃1) , (5.25)

where

Z1 = exp
[
−β<1 − β>1

]
. (5.26)

This spectral function is exactly the same as the TOC96 for an occupied state (see Eq.

(4.67))14. The spectral function Aocc1,< in Eq. (5.25) is not the complete electron removal

spectral function because the QP excitation with energy ε1 will induce electron removal

satellites in the unoccupied orbitals ε3 and ε4 to conserve the total particle number. The

additional part of the electron removal spectral function induced by the QP excitation of

the state ε1 reads15

Aunocc1,< (ω) = Z1

∞∑

m=0

[(β<1 + β>1 )m − (β<1 )m]

m !
δ(ω − ε1 +mω̃1) . (5.27)

The spectral functions induced by other quasi-particle excitations can be calculated in

the same way. An illustration of the constrained retarded cumulant spectral functions are

shown in Fig. 5.6. Aocc1,< and Aocc2,< give the constrained retarded cumulant electron removal

spectra of states labeled ε1 and ε2, respectively. They are equivalent to the electron removal

spectral functions of the same states from the TOC96. Aunocc1,< +Aunocc2,< equals to the sum of

the electron removal spectra of the states labeled ε3 and ε4, i.e. Aunocc3,< +Aunocc4,< represented

by the red color in Fig. 5.6. Different from the constrained retarded cumulant in the

HPC-2, here the electron removal spectra in the ε3 and ε4 (i.e., Aunocc3,< or Aunocc4,< ) cannot

be distinguished in the constrained retarded cumulant. Actually there is no clear physical

meaning of Aunocc1,< or Aunocc2,< because it does not correspond to the spectrum of any state

but only the sum of these two has the physical meaning of total electron removal spectrum

14The CRC spectral functions Aocc1,<, Aocc2,<, Aunocc3,> , and Aunocc4,> in Fig. 5.6 are exactly the same as the one
of the TOC96. Instead, the CRC adds the contributions Aunocc1,< , Aunocc2,< , Aocc3,>, and Aocc4,> to complete the
spectra of the TOC96.

15As illustrated in Figs. 5.4 and 5.6, this spectrum is not the electron removal spectrum of the state ε1,
but the contribution of the electron removal spectrum of some unoccupied state.
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Figure 5.6: A schematic illustration of the four-level system. The states ε1 and ε2 are below
the chemical potential µ, ε3 and ε4 are states above the chemical potential. The self-energy
of each state is Σi. The electron removal spectral functions of the occupied states (below
the chemical potential) are Aocc1,< and Aocc2,<. The electron addition spectral functions of the
unoccupied states (above the chemical potential) are Aunocc3,> and Aunocc4,> . The total electron
removal spectrum of the unoccupied states are Aunocc1,< +Aunocc2,< , which equals to the sum of
electron removal spectrum of each unoccupied state Aunocc3,< +Aunocc4,< , however the individual
spectrum of Aunocc3(4),< (in red color) cannot be obtained by the constrained retarded cumulant.
Analogously the total electron addition spectrum of the occupied states Aocc1,> +Aocc2,> equals
Aocc3,> +Aocc4,> but the individual spectrum of Aocc1(2),> (in red color) is missing.

from all the states above the chemical potential. The effect of these two additional spectra

is to conserve the particle number of each state because

∫ µ

−∞

(
Aocc1(2),< +Aunocc1(2),<

)
dω = 1.

How about the conservation of spectral weight? Since the electron addition spectrum

of the state ε1 or ε2 (i.e., Aocc1(2),> in Fig. 5.6) cannot be calculated explicitly from the

constrained retarded cumulant, the conservation of the spectral weight in each state cannot

be studied. However, one can show that the conservation of the particle number leads to

the conservation of the total spectral weight, because

∫ µ

−∞

[
Aocc1,<(ω) +Aocc2,<(ω) +Aunocc1,< (ω) +Aunocc2,< (ω)

]
dω = 2 ; (5.28a)

∫ µ

−∞

[
Aocc1,<(ω) +Aocc2,<(ω)

]
dω +

∫ ∞

µ

[
Aocc3,<(ω) +Aocc4,<(ω)

]
dω = 2 . (5.28b)
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The spectral functions in Eqs. (5.25) and (5.27) are the final constrained retarded

cumulant spectral functions I am going to use in the real system calculations. In the

following, I will show details about the implementation of these formulas into a code16 for

the real system calculations.

5.3.2 Implementation into a computer code

The central quantity of the constrained retarded cumulant is the GW self-energy. In a real

system, the self-energy is a matrix when projecting on a certain basis (e.g. the Kohn-Sham

or the quasi-particle orbitals). Often, one starts from a Kohn-Sham calculation and assumes

the self-energy to be diagonal in the Kohn-Sham orbitals. Each diagonal element Σi ≡ Σii

corresponds to one state. Suppose we want to calculate a matrix element of the electron

removal spectral function in a certain occupied state of energy εk < µ, the corresponding

self-energy reads17 [34]

Σk(ω) =
occ∑

i

∑

s

λ<i,k,s
ω − ε<i + ω<i,k,s − iη

+
unocc∑

i

∑

s

λ>i,k,s
ω − ε>i − ω>i,k,s + iη

, (5.29)

where the subscript s takes into account the plasmon dispersion, and λ is the weight of the

the self-energy. The imaginary part of Σk reads

Im Σk(ω) = π
occ∑

i

∑

s

λ<i,k,sδ
(
ω − ε<i + ω<i,k,s

)
− π

unocc∑

i

∑

s

λ>i,k,sδ
(
ω − ε>i − ω>i,k,s

)
. (5.30)

What we are going to use is the imaginary part of Σk(ω + εk) which can be written in

a multipole representation (see e.g. Refs. [36, 93])

Im Σk(ω + εk) =

N<∑

i=1

λ̃<i,kδ(ω + ω̃<i.k)−
N>∑

i=1

λ̃>i.kδ(ω − ω̃>i,k) , (5.31)

16The code used for the CEA calculation is our local code called the cumulant code [92]. It was written
by Dr. Matteo Guzzo during his thesis for the calculation of the TOC11. During my thesis, I have worked
together with Dr. Matteo Guzzo to implement the TOC96 and CRC into this cumulant code.

17Now we are talking about one certain occupied state k in a certain band b, thus in practice the state
should be labeled (k, b), i.e. εk,b or Σk,b.
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where N< and N> are the number of poles to sample the lesser and greater part of Im Σ,

respectively. I have defined the sampling frequencies and the corresponding weights as

λ̃<i,k = πλ<i,k,s ; (5.32a)

λ̃>i,k = πλ>i,k,s ; (5.32b)

ω̃<i,k = εk − ε<i + ω<i,k,s ; (5.32c)

ω̃>i,k = ε>i − εk + ω>i,k,s . (5.32d)

Note that all sampling parameters in the above equations are positive. The β functions

under the multipole sampling can be calculated from

β<k =

N<∑

i=1

λ̃<i,k
π(ω̃<i,k)

2
≡

N<∑

i=1

ai,k ; (5.33a)

β>k =

N>∑

i=1

λ̃>i,k
π(ω̃>i,k)

2
≡

N>∑

i=1

bi,k . (5.33b)

The k-matrix element of the electron removal spectrum is

πAocck,<(ω)

ZkΓk
=

1

(ω − εk)2 + Γ2
k

+
N<∑

i=1

ai,k
(ω − εk + ω̃<i,k)

2 + Γ2
k

+
1

2

N<∑

i 6=j=1

ai,kaj,k
(ω − εk + ω̃<i,k + ω̃<j,k)

2 + Γ2
k

+
1

2

N<∑

i=1

a2
i,k

(ω − εk + 2ω̃<i,k)
2 + Γ2

k

+
1

6

N<∑

i=1

a3
i,k

(ω − εk + 3ω̃<i,k)
2 + Γ2

k

+
1

2

N<∑

i 6=j=1

a2
i,kaj,k

(ω − εk + 2ω̃<i,k + ω̃<j,k)
2 + Γ2

k

+
1

6

N<∑

i 6=j 6=l=1

ai,kaj,kal,k
(ω − εk + ω̃<i,k + ω̃<j,k + ω̃<l,k)

2 + Γ2
k

+ · · · . (5.34)

The quasi-particle renormalization factor Zk = exp
(
−β<k − β>k

)
, and the quasi-particle

inverse lifetime is defined as Γk = Im Σ(εk)/N
<18. The first line of the above equation

(5.34) contains the quasi-particle peak and the first order plasmon satellites. The second

line contains the second order satellites and the rest are the third order terms. In principle,

18In a single pole model, the QP inverse lifetime Γ would obtain the full lifetime broadening. Here we
sample the compete imaginary part of Σ including the region that is responsible to the broadening. Therefore
we have to reduce Γ accordingly.
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all the higher order terms should be calculated, however in practice, our cumulant code

calculates until the third order terms as shown in the above equation19.

The additional electron removal spectrum induced by the electron removal quasi-particle

excitation of the occupied state k should have been20

πÃunocck,< (ω)

ZkΓk
=

N<∑

i=1

bi,k
(ω − εk + ω̃<i,k)

2 + Γ2
k

+
1

2

N<∑

i 6=j=1

b2i,k
(ω − εk + ω̃<i,k + ω̃<j,k)

2 + Γ2
k

+
1

2

N<∑

i=1

(ai,k + bi,k)
2 − a2

i,k

(ω − εk + 2ω̃<i,k)
2 + Γ2

k

+
1

6

N<∑

i=1

(ai,k + bi,k)
3 − a3

i,k

(ω − εk + 3ω̃<i,k)
2 + Γ2

k

+
1

2

N<∑

i 6=j=1

[
(ai,k + bi,k)

2 − a2
i,k

]
bi,k

(ω − εk + 2ω̃<i,k + ω̃<j,k)
2 + Γ2

k

+
1

6

N<∑

i 6=j 6=l=1

b3i,k
(ω − εk + ω̃<i,k + ω̃<j,k + ω̃<l,k)

2 + Γ2
k

+ · · · . (5.35)

However, there is a serious problem in the above equation, which is the use of bi. On

one hand, the number of poles N< is not necessarily equal to N> in Eq. (5.33). As a

consequence, we might have less bi than ω̃<i which makes the above equation ill-defined. On

the other hand, even though we could use the same number of poles for N< and N> (i.e.

the largest converged number), besides the computation effort we have to handle, how can

we find the one-to-one correspondence between bi and ω̃>i ? Note that in equation (5.33),

the one-to-one correspondences are between ai and ω̃<i , bi and ω̃>i . There is no such relation

between bi and ω̃< and it is impossible to tell how to find this required link. We have to

look for some alternatives to implement our constrained retarded cumulant.

The simplest solution to this problem is to assume, first that the number of poles

N> ≡ N<, and second that all bis are the same21. This assumption leads to bi =
β>k
N<

which

19We have checked the effect of the higher order terms and found that the fourth order terms (that did not
appear in Eq. (5.34)) do not have any visible effects in the spectrum. Their contribution to the spectrum
are too small but the effort in the computation is very large. Therefore, only up to the third order terms
have been kept in our cumulant code. This holds also for the calculation of the TOC96 and TOC11 from
our code that will be shown in Chapter 6.

20This is in principle, but in practice it is impossible to implement for the reason that will be discussed
in the following.

21The condition of N< = N> can be fulfilled without approximations because in principle, we can always
choose the larger number of poles of the two to sample both. i.e., if N< > N<, we use N< on both lesser
and greater parts of Σ.
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is constant. Consequently, Zk = exp



N<∑

i

(ai + bi)


 to keep the correct renormalization.

With this approximation, Aunocck,< finally reads

πAunocck,< (ω)

ZkΓk
=

N<∑

i=1

β>k /N
<

(ω − εk + ω̃<i,k)
2 + Γ2

k

+
1

2

N<∑

i 6=j=1

(β>k /N
<)2

(ω − εk + ω̃<i,k + ω̃<j,k)
2 + Γ2

k

+
1

2

N<∑

i=1

(ai,k + β>k /N
<)2 − a2

i,k

(ω − εk + 2ω̃<i,k)
2 + Γ2

k

+
1

6

N<∑

i=1

(ai,k + β>k /N
<)3 − a3

i,k

(ω − εk + 3ω̃<i,k)
2 + Γ2

k

+
1

2

N<∑

i 6=j=1

[
(ai,k + β>k /N

<)2 − a2
i,k

]
β>k /N

<

(ω − εk + 2ω̃<i,k + ω̃<j,k)
2 + Γ2

k

+
1

6

N<∑

i 6=j 6=l=1

(β>k /N
<)3

(ω − εk + ω̃<i,k + ω̃<j,k + ω̃<l,k)
2 + Γ2

k

+ · · · . (5.36)

Each term of Aocck,<(ω) in Eq. (5.34) generates a term in Aunocck,< (ω) in the above equation,

except the quasi-particle term.

In practice, it is enough to use only one pole to sample the greater part of Σk (i.e.

N> = 1) because ω̃>i does not enter in the denominator of Aunocck,< . The only parameter

from Σ>
k is the total weight β>k defined in Eq. (5.33). Suppose for the moment we had not

introduced any approximation for bi, then in principle the sampling of individual bi in Eq.

(5.33) depends on the number of poles N> but the sum β>k =
N>∑

i

bi,k should be independent

of the number of poles. This suggests to use only one pole to sample Σ>
k whose weight is

β>k . This simplifies a lot of the computation because almost all the computation time is

used in the calculation of Aocck,< in Eq. (5.34). After having Aocck,<, the only parameter we

need to calculate for Aunocck,< is the weight of the one pole β>k . At the end, the CRC uses

almost the same computational time as the TOC11 or TOC96.

One may find a strange phenomena from Aunocck,< , namely that all the satellites in the

first line in Eq. (5.36) have the same weight which is independent of ai. This is actually

not surprising. It is the consequence of the approximation we have made in equation (5.10)

when we try to get the best analytical Green’s function of the HPC-2 and at the same time

keep the conservation of particle number.
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In order to understand the potential effects of the constrained retarded cumulant in

the total (i.e. k-summed) electron removal spectrum, we can again use the HPC-2 as

one example as shown in Fig. 5.7. Actually the HPC-2 can be considered as using the

CRC Green’s function in Eqs. (5.34) and (5.36) in the case of one pole sampling, i.e.

N< = N> = 1. The total electron removal spectra of the TOC96 (red line with diamonds)

and TOC11 (black dashed curve) are the same as their bonding orbital electron removal

spectra because they do not give any anti-bonding electron removal spectra. The total

electron removal spectrum of the CRC is the sum of the electron removal spectrum of

bonding and anti-bonding orbitals in Eq. (5.17).

The TOC11 spectrum has the largest weight on the QP peak because it has the largest

Z-factor (see Eq. (4.70)). The TOC96 spectrum has the same QP weight as the CRC,

but the satellites have smaller weights than the CRC due to the missing electron removal

spectrum in the anti-bonding orbital (i.e. Aunocck,< in Eq. (5.36)). The main effect of the

CRC compared to the time-ordered cumulant is the enhancement of the plasmon satellites,

which has the best agreement with the exact HPC-2 spectrum (yellow filled curve). Note

that this enhancement on the satellite weights becomes larger and larger when we go closer

to the Fermi level, because β>k becomes larger when the state k goes towards to the Fermi

level, i.e. µ− εk → 0+.

Therefore in a real system calculation where we have much more occupied states, the

satellites of the total k-summed spectrum calculated using the constrained retarded cu-

mulant should shift towards the quasi-particle peak compared to the satellites calculated

using the TOC96 or TOC11. We will see in Chapter 6 whether this is true for the valence

photoemission spectrum of sodium.

5.4 Summary

In this chapter, I have first proposed an approximate Green’s function of the two-level

hole-plasmon coupling Hamiltonian which is fully analytical. Then I have discussed how to

obtain the constrained retarded cumulant Green’s function in the HPC-2 that fulfills all the

exact constraints summarized in Chapter 1 and is inspired by the analytical approximation.
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Figure 5.7: The total electron removal spectrum of the HPC-2. Upper panel: parameters
are consistent with the sodium bottom valence state. Lower panel: relatively large coupling
strength g = 8 eV and large bandwidth t = 3 eV instead of 1.5 eV, leading to Z = 0.26.
The yellow filled curve is the exact total spectra of the model that come from the sum of
the bonding and anti-bonding spectral functions in Eq. 4.29. The red line with diamonds,
black dashed and purple line with circles show the total electron removal spectra calculated
using the TOC96, TOC11 and CRC, respectively. The Lorentzian broadening η = 0.1 eV
has been used for all plots.

The constrained retarded cumulant Green’s function in a generalized four-level system can

be written in terms of the GW self-energy such that we can go one step further to ex-

tend the constrained retarded cumulant towards calculations for real systems. However,

the constrained retarded cumulant cannot provide the individual electron removal spectral

functions of the states above the Fermi level, instead only the sum of them can be given.

Compared to the previous cumulant expansion approximations (i.e. the TOC96, TOC11
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and RC), the constrained retarded cumulant has the following properties in the calculation

of the photoemission spectrum:

1. First, Aocck,< (εk < µ) in equation (5.34) is the same as the occupied electron removal

spectrum of the TOC96 which gives a very good spectrum of the state k, as well

as good partial occupation number. It is different from the TOC11 only in the Z-

factor, which leads to too much weight on the QP peak in the spectrum of the TOC11.

Compared to the spectrum of the retarded cumulant, the spurious satellites have been

eliminated, and the constraint of the poles that has been summarized in section 1.3

is fulfilled.

2. The additional contribution to the electron removal spectrum is represented by Aunocck,<

in equation (5.36). It does not have a quasi-particle peak but only satellites. Aunocck,<

plays the role of adding weights on top of the satellites of Aocck,<. The closer the state k

to the Fermi level, the larger the added weight will be. As a consequence, in the total

k-summed photoemission spectrum, the center of the satellites in Aocck,< might shift

towards the quasi-particle peak: in the satellite region, the frequencies that are closer

to the quasi-particle energy (stemming from the k-resolved spectrum of the states k

closer to the Fermi level) get more weight than the frequencies farther away (they stem

from the k-resolved spectrum of the states k farther away from the Fermi level) from

the quasi-particle energy. We will see in the next chapter that this is exactly what we

would need in order to have a better description of the sodium valence photoemission

spectrum, because the TOC11 overestimates the distance between the QP peak and

the satellites.

3. Finally, the constrained retarded cumulant would not change anything in the core

photoemission emission spectrum of the TOC96, the TOC11 or the RC, because β>

of the core self-energy is almost zero. Therefore the spectrum of the constrained

retarded cumulant will induce the same core spectra as all other CEAs.
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Chapter 6

Cumulant expansion

approximation in bulk sodium

In the previous chapter, I have shown the constrained retarded cumulant Green’s function

and the equations which are implemented in the cumulant code for real system calculations.

The effects of the constrained retarded cumulant compared to the traditional time-ordered

cumulants (the TOC96 and TOC11) have also been discussed using the HPC-2. In this

chapter, I am going to show the calculated photoemission spectrum using the cumulant

code by comparing to the experimental photoemission spectrum in bulk sodium, for the

valence and the core. In particular the TOC11, TOC96 and the constrained retarded

cumulant results are studied in detail using the dynamical screened Coulomb interaction W

calculated in the random phase approximation (RPA W ).

The RPA W yields some discrepancies between the calculated and experimental spec-

tra. The constrained retarded cumulant improves the spectra with respect to the traditional

time-ordered cumulants but is still not good enough. In order to go beyond the random

phase approximation and find out the reason why theses disagreements appear, I also pro-

vide some analysis using some more advanced calculated W .

Finally the computational details about all the calculations in this thesis are provided

such that one can reproduce what has been shown using the same open source codes, i.e.

the ABINIT code [43] and the cumulant code [92].
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6.1 Sodium photoemission spectrum from the time-ordered

cumulant

In section 3.3 I have derived the TOC11 (see Eq. (3.32)). Here I am going to use the

TOC11 to calculate the photoemission spectrum of bulk sodium, for the valence and the

core, like what I did using the GW approximation in section 2.2.

Like in the case of the constrained retarded cumulant, the implementation of the TOC11

in our cumulant code is also based on the multipole representation of the self-energy as

shown in Eq. (5.31). Since the TOC11 does not contain the greater part of the self-

energy, only the lesser part needs to be sampled. In the case of bulk sodium, the converged

number of poles N< = 150 is adopted in our calculation. The corresponding intrinsic

spectral function of a certain occupied state k, i.e. Ak(ω) = π−1 Im |Gk(ω)| in a multipole

representation reads1

πAk(ω)

ZkΓk
=

1

(ω − εk)2 + Γ2
k

+
N<∑

i=1

ai,k
(ω − εk + ω̃<i,k)

2 + Γ2
k

+
1

2

N<∑

i 6=j=1

ai,kaj,k
(ω − εk + ω̃<i,k + ω̃<j,k)
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1

2
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a2
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6
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a3
i,k
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k
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1

2
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i 6=j=1

a2
i,kaj,k
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2 + Γ2
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+
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N<∑

i 6=j 6=l=1

ai,kaj,kal,k
(ω − εk + ω̃<i,k + ω̃<j,k + ω̃<l,k)

2 + Γ2
k

+ · · · , (6.1)

where Zk = exp


−

N<∑

i=1

ai,k


, Γk = Im Σk(εk)/N

<. In our cumulant code, the terms have

been calculated up to the third order, hence only the terms appearing in the above equation

are calculated.

1For simplicity, the label of state k contains both labels of band and k-point. In practice k → (n, k)
where n represents the band and k represents the k-point in the Brillouin zone.
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6.1.1 The TOC11 in sodium core

We have already discussed the TOC11 spectrum in the hole-plasmon coupling model Hamil-

tonian and in principle, the cumulant expansion approximations are expected to work best

for core levels, provided we use the exact screened Coulomb interaction W . Therefore we

start from the sodium core states (2s and 2p) to test the performance of the TOC11. I

have shown the GW spectral functions of sodium core states in section 2.2 using the RPA

W , i.e. the dynamically screened Coulomb interaction calculated using the random phase

approximation. In particular, we have seen the importance of the energy self-consistency

on the quasi-particle energies of the sodium core states. To be consistent with the GW

approximation, I will first show the TOC11 results using the same EscGW0 self-energy as

the one we have used in the EscGW0 calculation in section 2.22.

Screening from the random phase approximation

The calculated spectral functions of sodium core 2s and 2p at k = [0, 0, 0] (i.e., the Γ point)

using the TOC11 are shown in Fig. 6.1. The TOC11 intrinsic spectrum (red line with

up-triangles in the bottom panel) has a QP peak at the same energy as the EscGW0 but

with a smaller weight, which is consistent with our analysis in the hole-plasmon coupling

Hamiltonian (see Fig. 4.5). Moreover the TOC11 gives the first plasmon satellite at the

energy where Im Σ has a peak, reflecting the fact that the TOC11 reproduces the poles in

Im Σ hence in ImW . The satellite replica in the intrinsic spectral function of the TOC11

are almost invisible because the weight of the higher order satellites are too small compared

to the QP peak.

The total k-summed photoemission spectra of these two core states (for theory and

experiment) are shown in Fig. 6.2. The total calculated photocurrent (red curves) satel-

lites are enhanced by including the secondary electron background as well as the extrinsic

and interference effects such that the plasmon satellite replica can be observed3. The blue

2In principle, we could also use the G0W0 self-energy to calculate the TOC11 Green’s function as discussed
in section 4.2. The G0W0 and EscGW0 self-energy should give the same CEA result. However, the present
cumulant code reads the GW output from the ABINIT code [43] such that it is more convenient to keep the
same self-energy in both GW and cumulant calculations.

3As discussed in section 1.1, the red curve in Fig. 6.2 has taken into account approximately all the steps
in the three-step model. More details can been found in Ref. [20].
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Figure 6.1: Intrinsic spectral functions of sodium 2s (left lower panel) and 2p (right lower
panel) at the Γ point. Blue line with circles and red line with up-triangles are the results
of the EscGW0 and TOC11, respectively. The upper panels are the imaginary part of the
EscGW0 self-energies of these two core states. The middle panels are the shifted real part
of the EscGW0 self-energies that crosses zero at the QP energy. The lower panels show the
intrinsic spectral functions where a 0.3 eV Gaussian broadening has been used in both the
EscGW0 and TOC11 spectral functions. The zero of the energy axis is set to be the EsGW0

Fermi energy. The shoulders on the left hand side of the TOC11 QP peaks are spurious
effects induced by the algorithm of the present multipole sampling, which is discussed in
Fig. 6.3.

dashed curve labeled as cumulant is the intrinsic spectrum4 calculated from the TOC11

and the black line with circles are experimental data reproduced from Ref. [47]. The overall

agreement between the calculated photocurrent and experiment is reasonably good. The

distance of the satellites from the quasi-particle position is systematically slightly overes-

timated (larger by ≈ 0.5 eV). Our first hypothesis was that this might be due to the use

of the RPA W that overestimates plasmon frequencies in loss or inelastic x-ray scattering

spectra, especially with increasing momentum transfer [94, 95]. Since the screening of W

4The intrinsic spectrum corresponds to the photocurrent of Eq. (1.13) where the dipole matrix element
∆̂ has been calculated corresponding to the photon energy of the experiment.
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Figure 6.2: Comparison of the experimental photoemission spectrum to the spectrum cal-
culated using the TOC11 + extrinsic + interference approach: Left, Na 2s; right: Na 2p.
The red solid lines are total calculations, including secondary electron background, black
with circles are experimental data [47], and blue dashed are calculated TOC11 intrinsic
spectral functions. The total Na 2s calculated spectrum also includes an approximation to
the surface plasmon contribution. The spectra are angle-integrated. Original experimental
data were in arbitrary units: here we have normalized them to the main-peak intensities.
The calculated QP energies have been aligned with respect to the experimental QP peaks
otherwise the GWA 2s level is too deep by about 5 eV, and the 2p level by about 3 eV
(see table 2.1). The zero of the energy axis is set to be the QP energy of the experiment.
Gaussian broadening of 0.3 eV has been used in all calculated spectra. The extrinsic and
interference effects have been calculated by my co-author J. Kas and J. Rehr in Ref. [20].

should correspond to the measurable one in order to obtain the correct spectra, this should

lead to an error in the satellite positions.

A similar overestimation of the RPA plasmon energy in sodium was also observed in

Ref. [94] where the authors showed that the time-dependent local-density approximation

(TDLDA) plus the quasi-particle lifetime effects will yield a better description of the dy-

namical structure factor for sodium when comparing to the experimental result. Later I

will show the calculation of W using the TDLDA and discuss the difference in the plasmon

energy with respect to the RPA one.
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In order to verify the convergence of the multipole sampling, the TOC11 spectra of

sodium 2s at the Γ point using different numbers of sampling poles (N< =1, 5, 150 and

200) is shown in Fig. 6.3 with the corresponding Im Σ (only lesser part is shown). If we

use only one pole to sample Im Σ, we find a larger plasmon satellite energy (≈ 7.6 eV)

compared to the distance between the QP energy and the peak in Im Σ (i.e. ≈ 6 eV)5.

When we increase the number of poles to N = 5 (green curves), we have more structures

in the cumulant spectra but compared to the pole in Im Σ, apparently 5 poles are still not

enough because the satellite in the broadened spectrum (green curve with up-triangles) is

not at the position where Im Σ< has a peak. The cumulant spectrum with 150 poles (red

curves) gives the first satellite almost at the same position as the pole in Im Σ, reflecting

the fact that convergence of the number of poles to sample Im Σ< has been achieved. The

spectrum with 200 poles (black diamonds) is nearly identical to the spectrum using 150

poles, which confirms the convergence of 150 poles. However, there are small shoulders on

the left hand side of the QP peak in both spectra of 150 and 200 poles. Those shoulders

are induced by the present equal-area multipole sampling algorithm and it can be improved

by the equal-space sampling algorithm6.

6.1.2 The TOC11 in sodium valence

The TOC11 overestimates the plasmon satellite energy by about 0.5 eV in the sodium core

levels. What about the sodium valence where the TOC11 is supposed to be less precise? The

traditional time-ordered cumulant (TOC96 and TOC11) faces its challenge in the sodium

5This is because the one pole will be placed at the center of mass of Im Σ that has more weight on the
higher energy side than the lower energy side as shown by the blue curve with circles in Fig. 6.3. As a
consequence the center of mass of Im Σ is shifted towards to the higher energy part with respect to the peak
in Im Σ, leading to a larger distance between the QP and satellites.

6The present sampling algorithm is called the equal-area sampling. It takes rectangles that have the same
area under Im Σ. The final δ-function represents the area of each rectangle. As a consequence, this sampling
method puts more points around the region where Im Σ has a peak, but less points in the region where Im Σ
is very flat (e.g. the region around the QP peak). Therefore although the spectrum is converged to the 150
poles sampling, there are only a few poles at the energies close to the QP peak. These few poles yield the
spurious structures as shown on the left hand side of the QP peak in the final broadened spectrum (the red
curve with up-triangles in Fig. 6.3). We have changed the sampling algorithm in the cumulant code such
that the artificial shoulders in the CEA spectral functions can be eliminated using the so-called equal-space
sampling. The equal-space sampling distributes the poles with the same density for the whole region of
Im Σ. However, unfortunately there are other issues about the equal-space sampling algorithm left to be
studied in detail, so an improved version of the cumulant code is not ready to be shown yet in the present
thesis.
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Figure 6.3: Cumulant intrinsic spectra of Na 2s Γ point with different number of poles in
the sampling of Im Σ (only the lesser part is shown). The blue curve with circles is the
imaginary part of the self-energy at Γ. The black, green and red dashed curves are the
cumulant spectra calculated from 1, 5 and 150 poles of sampling, respectively. The green
and red lines with up-triangles are the cumulant spectra with 5 and 150 poles sampling and
a 0.3 eV Gaussian broadening. The black diamonds are the spectrum calculated using 200
poles which is on top of the spectrum using 150 poles. The zero of the energy axis is set to
be the EsGW0 Fermi energy.

valence due to the separation of the electron and hole branches as we have discussed

before. The sodium valence band has a strong dispersion and even crosses the Fermi level

as shown in the band structure in Fig. 2.1, which reflects the strong interaction between the

states below and above the Fermi level in this band. However, it has be shown in Ref. [9]

that even in sodium valence, the TOC96 gave a pretty good photoemission spectrum. To

verify the performance of the traditional time-ordered cumulant in a situation like sodium

valence where the interaction between orbitals is strong, I will show a calculation of the

sodium valence using the TOC11. Again I start from the random-phase approximation of

the screened Coulomb interaction W .
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Screening from the random phase approximation

The TOC11 and EscGW0 intrinsic spectral functions of sodium 3s at the Γ point are shown

in Fig. 6.4. The EscGW0 spectrum (blue curve with circles) is the same as the one in Fig.

2.6 which is calculated using the RPA W . The red curve with up-triangles and the black

curve are the spectral functions calculated using the TOC11 and the TOC96 (see also Fig.

2.9) reproduced from the Ref. [9]. The agreement between the TOC11 and TOC96 is very

good, which is consistent with our study in the hole-plasmon coupling model Hamiltonians7.

20 15 10 5 0
ω−µEscGW0  (eV)

A
(ω

)

Sodium at 3s-Γ

EscGW0

TOC11
TOC96

Figure 6.4: Intrinsic spectra of Na 3s at the Γ point. The blue curve with circles, red curve
with up-triangles and black curve are intrinsic spectra of the EscGW0, TOC11 and TOC96
(reproduced from Ref. [9]), respectively. The zero of the energy axis is set to be the EsGW0

Fermi energy. The is no additional broadening of spectra in this plot. The QP weight of the
TOC96 has been aligned according to the QP weight of the TOC11 for good comparison.

The comparison of the experimental photoemission spectrum (black curve with circles re-

produced from Ref. [28]) to the spectrum calculated using cumulant+extrinsic+interference

7Since the spectrum of the TOC96 is reproduced from Ref. [9], I have aligned the weight of the QP peak
according to the QP peak of the TOC11 to have a good comparison. But I did not shift the QP energy
in Fig. 6.4. The important phenomena in that figure is that the ratio between the weight of the QP peak
and satellites are the same between the TOC96 and the TOC11, which is consistent with our analysis in the
hole-plasmon coupling model Hamiltonians in section 4.2. Later I will show my own calculation in sodium
valence using the TOC11 and TOC96 to confirm this point.
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approach (red curve) is shown in Fig. 6.5 where the intrinsic cumulant spectrum is also

provided by the blue dashed curve. Similar to the core spectrum as shown in Fig. 6.2, an

overestimated plasmon satellite energy is observed as well in the valence band TOC11 cal-

culation and this discrepancy is two-times larger (≈ 1 eV) than for the core states. Besides

the error induced by the RPA W , this can be understood by the fact that the traditional

time-ordered cumulants have decoupled the electron and hole branches and this separation

is better justified in the core than in the valence. The former error is hoped to be corrected

by the use of a better W that is close to the measured W , instead of the RPA one, and the

latter error might be reduced by the constrained retarded cumulant as discussed in section

5.3.2.

Moreover, the ratio between the QP peak and the satellites in TOC11 is overestimated

in both core and valence compared to the experimental spectrum8. Similar to the plasmon

energy, this discrepancy is also larger in the valence than in the core. The constrained

retarded cumulant is designed to enhance the plasmon satellites compared to the traditional

time-ordered cumulant. Therefore, we do need the constrained retarded cumulant to have

a better description of the sodium valence photoemission spectrum. The calculation of

constrained retarded cumulant in sodium valence will be provided in section 6.2.

6.1.3 The TOC96 using RPA screening

We have studied the performance of the TOC11 in sodium valence and core photoemission

spectra by comparing to the experiment. Some disagreements between the calculated and

experimental spectra have been discussed, in particular the TOC11 overestimates the plas-

mon satellite energy and the ratio between the weight of the QP and plasmon peaks using

8The weight ratios between the QP peak and the first satellite in the experiment shown in Figs.
6.2 and 6.5 are about 1/0.6, 1/0.6 and 1/0.9 for sodium 2s, 2p and 3s, respectively. The calculated
TOC11+extrinsic+interference effects spectra show a slightly different weight ratio between the core and the
valence: ≈ 1/0.5 for the core and ≈ 1/0.6 for the valence, but not enough. The calculated intrinsic spectra
in the same figures show the same ratio for all the states, which is about 1/0.2. In this sense, we could think
the calculated intrinsic valence spectrum should have a smaller weight ratio than the core spectrum to make
the cumulant+extrinsic+interference valence spectrum closer to the experimental one. This is indeed given
by the CRC but not the TOCs. However, this is just our rough estimation. The real weight ratio between
the QP and satellites are far more complicated due to the extrinsic and interference effects. In addition,
even the (intrinsic) Z-factor is difficult to deduce from theory and experiment. As can be seen from the right
panel of Fig. 1.5 (the weight ratio between QP and satellite links to the momentum distribution), there is
some discrepancy even between the quantum Monte-Carlo and experimental results.
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Figure 6.5: Comparison of the experimental photoemission spectrum to the spectrum calcu-
lated using the TOC11 + extrinsic + interference approach: valence band. Red solid is total
calculation, including a secondary electron background, black with circles is experiment [28],
and blue dashed is the intrinsic TOC11 spectral function. The spectra are angle-integrated.
Original experimental data were in arbitrary units: here we have normalized them to the
main-peak intensities. All the calculated spectra have been Gaussian broadened with 0.3
eV and the QP peak is shifted to the experimental value, otherwise the GWA 3s level is
too deep by about 0.5 eV.

the RPA W. The discrepancy is larger in the sodium valence than the core. Here I will show

the comparison of the spectra calculated using the TOC96 and TOC11 in sodium valence

to verify the results we have gotten from the hole-plasmon coupling model Hamiltonian

study. Note that we should not expect that the TOC96 improves over the TOC11 spectrum

because they are only different in the Z-factor.

The sodium valence spectrum at the Γ point is shown in the left panel of Fig. 6.6. As

we expected, the TOC96 spectrum (red curve) has smaller weights on all the peaks than

the TOC11 spectrum (black curve). However, the difference is very small. If we multiply

the spectrum of the TOC11 by e−β
>

(where β> comes from the sampling of Σ> as shown

in Eq. (5.33)), the resulting spectrum (green diamonds) is identical to the TOC96. This

verifies our conclusion that the weight ratio between the QP and satellites is indeed the

same for the TOC96 and TOC11.
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Figure 6.6: Intrinsic spectra of Na 3s. Left panel: k-resolved spectrum at the Γ point.
Right panel: total k-summed spectrum. The black and red curves (red dashed in the right
panel) are the spectra of the TOC11 and TOC96, respectively. The green diamonds in the
left panel shows AC11e−β

>
that is supposed to be the same as AC96 from our derivation.

Our cumulant code gives indeed what we have expected in sodium valence calculation. The
plots in the right panel have Gaussian broadening of 0.3 eV because they are the k-summed
total spectra.

The total k-summed photoemission spectra are provided in the right panel of Fig. 6.6.

A systematic decrease of weights is observed in the TOC96 compared to the TOC11. There-

fore, if we had used this TOC96 spectrum to compare to the experimental spectrum in Fig.

6.5, it would for sure yield the same conclusion since we need anyway to align weight of the

QP peak for comparison with experiment.

6.2 Sodium valence photoemission spectrum from the con-

strained retarded cumulant

In the previous section, I have shown the calculated photoemission spectra using the tra-

ditional time-ordered cumulants. We do see that the TOC11 and TOC96 spectra become

worse when going from sodium core to valence, in particular the overestimation of the plas-

166



mon satellite energy and weight ratio between the QP and plasmon peaks become larger.

I have predicted the effects of the constrained retarded cumulant in valence photoemission

in section 5.3.2: we expect some enhancement of the plasmon satellites, and because this

enhancement should be larger for the states close to the Fermi level, the plasmon satellites

might shift towards to the QP peak. In order to see if the constrained retarded cumulant

can indeed correct the discrepancies between the time-ordered cumulants and the experi-

mental spectra, in this section I am going to use the constrained retarded cumulant in Eqs.

(5.34) and (5.36) to calculate the sodium valence photoemission spectra and compare to

the spectra of the TOC96 and TOC11.
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Figure 6.7: Intrinsic k-resolved spectra of Na 3s. Left panel: Aocck,< in Eq. (5.34) (black
curve) and Aunocck,< in Eq. (5.36) where k1 = [0, 0, 0], i.e. the Γ point. Right panel: Aocck,<
in Eq. (5.34) (black curve) and Aunocck,< in Eq. (5.36) where k6 = [0.3125, 0, 0], i.e. a state
closer to the Fermi than Γ. All the spectra have been scaled (the × numbers in the legend)
in order to have a better comparison. The insert plots in the right panel show the ≈ 0.5 eV
discrepancy between the satellites of the Aocck,< and Aunocck,< .

We first have a look at the k-resolved spectral functions calculated using the CRC in Fig.

6.7. The CRC spectral functions of two k-points are shown in that figure. The left panel is

the spectral function at Γ which corresponds to the bottom valence state. The black curve
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shows the spectral function Aocck1,< in Eq. (5.34) which is the same as the TOC96. The red

curve is the spectral function Aunocck1,< in Eq. (5.36) that is the missing term in the TOC96.

It does not have a QP peak but only satellites which are at the same energy as the satellites

of Aocck1,<. Note that all the spectral functions have been scaled by the numbers shown in

the legend. At the Γ-point, the first satellite of Aunocck1,< has a hight ≈ 0.2 in the unit defined

in that figure9.

The right panel shows the same spectra as the left panel in Fig. 6.7, but at k6 =

[0.3125, 0, 0]10 in the Brillouin zone. This is a state close to the Fermi level, as can be seen

from its quasi-particle energy. The QP peak is much sharper and stronger than the QP peak

at Γ. The small peaks on the left hand side of the QP in Aocck6,< are the spurious structures11

induced by the equal-area sampling algorithm that has been discussed in Fig. 6.3. The first

satellite of Aunocck6,< is stronger12 than the satellite of Aunocck1,< (note the scaling factor). This

is consistent with my analysis in section 5.3.2, i.e. the closer the states to the Fermi, the

larger the satellite weight in Aunocck,< . In order to confirm this point, the imaginary part of

the GW self-energy at these two k points is provided in Fig. 6.8. The black curve shows

Im Σk1 that has one sharp peak below Fermi and a very weak and broadened peak above

Fermi. This leads to a large value of β<k1 but small value of β>k1 in Eq. (5.33). The satellite

weight in Aunocck1,< is determined by the value of β>k1. On the other hand, the two peaks in

Im Σk6 are more similar, yielding similar β<k6 and β>k6. This explains why the first satellites

of Aocck6,< and Aunocck6,< have much closer weight than the satellites at Γ13 as shown in the left

panel of Fig. 6.7.

Everything seems to be going into the correct direction because the CRC does enhance

the plasmon satellites and as what we have expected, the enhancement is stronger when

closer to the Fermi. Now it is the time to have a look at the total intrinsic photoemission

9All the weights can be considered to correspond to Aocck6,< in the left panel of Fig. 6.7 because this is the
only one I did not scale.

10The k points are defined in terms of the reciprocal space primitive translations (NOT in Cartesian
coordinates!).

11They should merge to give the total QP broadening as discussed in the footnote 18 in section 5.3.2.
12Note that in Fig. 6.7, the weights of different k-points are not taken into account. In practice, there is

no equivalent k-point to Γ but there are many equivalent k-points to k6. As a consequence, the contribution
of Aunocck6 to the total k-summed spectra is much larger than Aunocck1 .

13The ratio of these two satellites equals
β<
k6

β>
k6

.
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Figure 6.8: The imaginary part of the GW self-energy Im Σ at k1 = [0, 0, 0], i.e. Γ point
(black curve) and at k6 = [0.3125, 0, 0], i.e. a state closer to the Fermi than Γ.

spectra of sodium valence as shown in Fig. 6.9. The black and red dashed curves are the

TOC11 and TOC96 spectra, respectively. They have been discussed in Fig. 6.5. The CRC

spectrum is shown as purple line with circles. It has the same QP peak as the TOC96 and

larger weight on the plasmon satellites, as what we have expected. However, the plasmon

satellite peak is centered at almost the same energy as the TOC96 and TOC11. Thus the

CRC also overestimates its position by ≈ 1 eV in sodium valence using the RPA-W with

respect to the experiment.

What has gone wrong? Why did the result not meet our expectations?

• On one hand, the right panel of Fig. 6.7 (see the insert of that figure) shows that the

first satellite in Aunocck6,< is not exactly at the same position as the satellite in Aocck6,<.

It gives more weight to the left hand side of the satellite. This is not what we want.

This discrepancy is ≈ 0.5 eV, which is of the order of magnitude of the value we want

to correct in sodium valence using the CRC with respect to the TOC11 or TOC96.

This phenomena might come from the approximation I have used when going from

Ãunocck,< in Eq. (5.35) to Aunocck,< in Eq. (5.36), i.e. the use of an average (constant)

bi = β>/N<.
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Figure 6.9: Intrinsic total k-summed spectra of Na 3s. Gaussian broadening of 0.3 eV has
been used in all plots. The black, red dashed and purple line with circles are the calculated
spectra using the TOC11, TOC96 and CRC, respectively.

• On the other hand, for example, since the QP peak of Aocck6,< in Fig. 6.7 is so strong and

sharp, the QP of the total k-summed spectrum might be centered in the QP energy

of Aocck6,<. However the first satellite of Aocck6,< is relatively small and broadened, hence

its contribution to the first satellite of the total spectrum might be also relatively

small. The first satellite of the total spectrum might be centered somewhere else. As

a consequence, the distance between the QP and the first satellite does not equal the

distance in Aocck6,<. The promising results of our model study are hence not sufficient

to improve the results of a real metal.

In conclusion, the constrained retarded cumulant improves the valence photoemission

by enhancing the weight of the plasmon satellites. This effect might be considered to be

not so important in the photoemission spectrum, however the correct distribution of the

spectral weight is important in the total energies. The study about the total energies will

be shown in Chapter 7. However, the overestimation of the distance of the satellite from

the QP using the CEA and RPA W is still not solved.
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6.3 The screening beyond the random phase approximation

In order to investigate another possible origin of this discrepancy, in this section I will show

results using more advanced calculations of W beyond the RPA. The definitions of screened

Coulomb interactions using different approximations are provided in Appendix Eq. (C.20).

The ideas of this section is as follows:

• First we would like to try a more realistic measurable screening than the RPA one by

performing a time-dependent local-density (TDLDA) calculation. I have mentioned in

section 6.1 that in Ref. [94], the authors have found that a TDLDA calculation using

the test-charge test-charge (TCTC) dielectric function improves the description of the

sodium plasmon energy for large wavevector q (mixing transitions that occur between

different k points). TDLDA corrected the plasmon energy by about 50% compared

to the experimental result. This suggests to first try to calculate the photoemission

spectrum using the TCTC dielectric function from a TDLDA calculation.

• Moreover, our derivation in the Appendix C shows that for a systematic improvement

of the CEA, one has to use the test-charge test-electron (TCTE) dielectric function.

The idea of using the TCTE screened Coulomb interaction has been introduced in

section 2.2 when I discussed the physical ingredients in Hedin’s equations following

Ref. [55].

Therefore, the TCTC and TCTE screening Coulomb interactions will be explored in

the following to study the plasmon satellites in sodium. In section 2.2 I have shown that

the plasmons stem from the zero of the real part of the dielectric function, i.e. ε1(ω) = 0.

The plasmon energy shows up as a peak in − Im ε−1, and therefore in ImW (ω) and in

Im Σ(ω). This suggests to have a detailed study of the imaginary part of the GW self-

energy using different screened Coulomb interactions. The Im Σ(ω) for sodium 2s at the Γ

point k = [0, 0, 0] in the Brillouin zone is shown in Fig. 6.10.

Since the spectra of the two core states are similar and they almost do not disperse,

only the Im Σ of sodium 2s at the Γ point is shown in Fig. 6.10. As discussed in section

6.1, the overestimation of the plasmon satellite energy in the sodium core could be mainly
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Figure 6.10: The imaginary part of the GW self-energy using the dynamically screened
Coulomb interactions in the RPA (black curve) Eq. (C.20a), the TCTC dielectric function
(red dashed curve) Eq. (C.20b), and the TCTE dielectric function (green curve with dia-
monds) Eq. (C.20c). All the plots have been aligned according to the quasi-particle energy
calculated using the RPA W as indicated by the black arrow labeled “ εRPAQP ”, for good
comparison. The real QP energies for the RPA, TCTC, and TCTE are −69.33, −68.74,
and −69.82 eV, respectively. The numbers in the legend represent the distance between
the QP peak and the peak in Im Σ for different approximations. The experimental distance
between the QP and the first satellite of sodium 2s in Fig. 6.2 (i.e. from the experiment in
Ref. [47]) is ≈ 5.9 eV.

due to the use of the RPA W . The black curve confirms our analysis, because Im Σ using

the RPA W shows up as a peak at a distance of 6.35 eV with respect to the QP peak. This

distance is about 0.45 eV larger than the distance measured in the experiment in Ref. [47],

which is consistent with the conclusion we found in Fig. 6.2. All the cumulant expansion

approximations are indeed, reproducing the peak of Im Σ. The results using the TCTC W

in Eq. (C.20b) and the TCTE W in Eq. (C.20c) are shown by the red dashed curve and

green curve with diamonds, respectively. Both show indeed some improvement with respect

to the RPA. However, the effects are small. The largest improvement comes from the TCTE

W , consistent with our derivation in Appendix C: it reduces the distance between the QP

and the peak in Im Σ by about 0.06 eV for the sodium 2s state, which corresponds to 13%

of the error.
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The distance between the QP and the peak in Im Σ for the sodium valence is shown in

Fig. 6.11. Since the sodium valence band has a strong dispersion as shown in the band

structure in Fig. 2.1, I have chosen the 8 k-points along the Γ-H path. The three calculated

W s lead to a systematic increase of the distance between the QP and the peak in Im Σ

when the states get closer to the Fermi level. The RPA gives the largest value for this

distance, reflecting its bad performance in the spectrum. The TCTC and TCTE W s show

systematic improvements, but not enough to correct the ≈ 1 eV discrepancy with respect

to the experiment.

1 2 3 4 5 6 7 8
k-path along Γ-H (k1-k8) (arb.units)

5.5

6.0

6.5

7.0

7.5

di
st

an
ce

 b
et

w
ee

n 
Q

P 
an

d 
m

ax
im

un
 o

f I
m

Σ
 (e

V)

experiment 6.1 eV

RPA-W
TCTC-W
TCTE-W

Figure 6.11: The distance between the QP and the peak in Im Σ for the sodium valence.
The horizontal axis shows the k-points along the Γ-H path (see the sodium band structure
in Fig. 2.1) in the first Brillouin zone. As in Fig. 6.10, the black solid curve, red dashed
curve, and green line with diamonds are the results using the RPA, TCTC, and TCTE
screenings, respectively. The black dashed horizontal curve represents the distance between
the QP and first satellite in the experimental spectrum in Ref. [28].

It is disappointing that the TDLDA has such a small effect in Im Σ with respect to

the RPA. We deduce that the small q vectors dominate in the GW self-energy since the

screening W is summed over all the q vectors in the self-energy. The TDLDA kernel

fLDAxc =
δV LDA

xc

δρ
[96] is constant in q, and it is added to the Coulomb interaction

4π

q2

when calculating the dielectric function, i.e. ε−1 = 1 + (vc + fxc)χ [97], such that it has no

effect at small q.
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The TCTE is better than the RPA or the TCTC results, but since it also uses the

same TDLDA kernel fLDAxc the improvement is not sufficient. This suggests that improving

the effective TCTE screened Coulomb interaction is important, and one should go beyond

TDLDA.

Finally the comparison of the k-summed CRC spectra using the RPA and TCTE W s is

shown in Fig. 6.12. The distance between the QP and satellite using the TCTE screening

(green line with diamonds) indeed decreases (the center of mass has shifted towards to the

QP peak) compared to the RPA one (black line with circles). However this improvement

is not sufficient to correct the discrepancy with respect to the experimental spectrum. As

discussed above, we should search for better effective screened interactions including vertex

corrections in the future.
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Figure 6.12: The CRC total intrinsic spectra using the RPA (black curve with circles) and
TCTE (green curve with diamonds) screening.

6.4 Computational details

The results for the electron removal spectrum of bulk sodium have been obtained with ab

initio calculations using a plane wave basis and pseudopotentials as implemented in the

ABINIT code [43]. Calculations have been performed for the experimental sodium crystal

structure at temperature T=5 K [98]. The lattice constant is taken to be 4.225 angstrom. I
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have used a sodium Troullier-Martins-type pseudopotential [99] with core and valence states

(2s, 2p and 3s) [100]. The Brillouin zone (BZ) of sodium was sampled using a 16×16×16

grid mesh that yields 145 inequivalent k-points in the irreducible Brillouin zone (IBZ), and

a smearing temperature of 0.01 Ha was used. This is a fictitious temperature that only

serves as a computational trick to speed up the k-point convergence, which explains why

I can still use a standard time-ordered formalism for the time-ordered cumulants. I have

checked that our results are not biased by the value of the temperature.

The plane-wave cutoff of the LDA ground-state calculation was 200 Hartree. I have

used the same RPA screening W0 for both one shot (G0W0) and energy-self-consistent

(EscGW0) calculations with 40 bands, 100 plane waves representing the wave functions

and the dielectric matrix. Note that the update of the energies can be expected to be the

most important contribution to self-consistency in sodium valence because it is close to the

homogeneous electron gas. For the core states, we will investigate the effect of updating also

wavefunctions in the future. The full frequency dependence of the self-energy was calculated

using a contour-deformation technique. We calculated the screening using 100 frequencies

on the real axis up to an energy of 25 eV and 10 frequencies on the imaginary axis. The

final self-energy converged to 60 bands, 9000 plane waves for both wave functions and the

exchange term.

The spectra of the cumulant expansion approximations are calculated using our local

cumulant code. The cumulant code takes the outputs of the GW calculation from the

ABINIT code. In particular, we evaluate Eq. (5.34) for the TOC96, and Eq. (6.1) for

the TOC11 using 150 poles in the sampling of Im Σ. The constrained retarded cumulant

Green’s function in Eqs. (5.34) and (5.36) are evaluated in our cumulant code using 150

poles sampling Im Σ< and 1 pole sampling Im Σ>.

6.5 Summary

In this chapter, the photoemission spectra of bulk sodium valence and core from the cu-

mulant expansion approximations, using our local cumulant code have been shown, as well

as the comparison to the experimental spectra. This simple metal has been extensively
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studied, and in particular, it has been shown [9, 79] that the GW approximation does not

yield the experimentally observed plasmon satellite series, whereas the cumulant expansion

approximation does [9]. However these studies were limited to the valence band, and even

there, a more detailed analysis was still missing. Here I provide this analysis, pointing out

the role of a spurious plasmaron in the bad performance of the GWA. Moreover, I include

the sodium core states (2s and 2p) in the calculation, thus treating valence and core on the

same footing.

The traditional time-ordered cumulants using the random phase approximation of the

dynamically screened Coulomb interaction W (RPA W ) overestimate the energy of the

plasmon satellites, and the weight ratio between the quasi-particle and satellite peaks. The

constrained retarded cumulant enhances the weights of satellites in sodium valence such

that it improves the valence photoemission with respect to the traditional time-ordered cu-

mulants. However the constrained retarded cumulant gives almost the same overestimation

of the energy of satellites when using the RPA W .

In order to find out the origin of the discrepancy between the calculated and experimental

spectra, better screened Coulomb interactions W have been studied. In particular the test-

charge test-charge (TCTC) and the test-charge test-electron (TCTE) W in the TDLDA

are studied. The improvements with respect to the RPA W are systematic, but only

about 10-15 % of the error is corrected. Since TDLDA is a quite rough approximation,

the systematic improvement is however encouraging further studies concerning effective

screened interactions including vertex corrections.
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Chapter 7

The total energies

The previous chapters were all dealing with the spectral function (hence the Green’s func-

tion) because its direct link with the measured photocurrent from photoemission experi-

ment. Besides the photoemission spectrum, the Green’s function, however, also provides

total energies, as already mentioned in section 1.2.1. It is possible to calculate the ground

state total energy from the Galitskii-Migdal formula [38] when we have the Green’s function

of a many-body system. Therefore in this chapter, I am going to study the performance of

the total energies in the one- and two-level hole-plasmon coupling Hamiltonians using the

approximations I have discussed in this manuscript, i.e. the GW approximation and the

cumulant expansion approximation.

Unlike the spectral functions where the position of each peak is important, the total

energies depend on the moments (integrals) of the spectral function. Thus a combination of

the position of the peaks and the weight distribution is important to describe well the total

energies. For this reason, the improvement of the weights of quasi-particle and satellites in

the constrained retarded cumulant will play a major role in the total energy calculation.

I will start from the derivation of the Galitskii-Migdal total energy formula (GMtot)

from the exact electronic many-body Hamiltonian. This allows one to understand that the

exact one-body Green’s function is indeed able to provide the exact total energy. Then

the total energies using the Galitskii-Migdal formula but different Green’s functions (model

exact, the GWA and the CEA) will be studied. As I will show, there is, however, a funda-

mental problem with the Galitskii-Migdal formula in our model system. In order to get a
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better total energy of the hole-plasmon coupling Hamiltonian, which is an approximation

to the exact many-body system, I have derived a new total energy formula that will be

refereed to as the hole-plasmon coupling total energy formula (HPCtot). In the HPC-2, this

new formula, different from the Galitskii-Migdal formula, improves the total energies using

the Green’s function calculated from the GW approximation or the cumulant expansion

approximation.

At the end of this chapter, I will propose an implementation of the hole-plasmon coupling

total energy formula using the constrained retarded cumulant Green’s function for the

calculation of real systems.

7.1 Total energies from the Galitskii-Migdal formula

The Galitskii-Migdal total energy formula [38] is derived from the ground state expectation

value of a time-independent electronic many-body Hamiltonian. The Hamiltonian (the same

as the equilibrium Hamiltonian in Eq. (B.1)) reads

Ĥ =

∫
dxψ̂†(x)ĥ0(x)ψ̂(x) +

1

2

∫
dx1x2ψ̂

†(x1)ψ̂†(x2)vc(x1, x2)ψ̂(x2)ψ̂(x1) = ĥ+ v̂ . (7.1)

The total energy of such a Hamiltonian can be calculated from its ground state expec-

tation value, which reads

E0 = 〈Ψ0|Ĥ|Ψ0〉 = 〈Ψ0|ĥ|Ψ0〉+ 〈Ψ0|v̂|Ψ0〉 . (7.2)

The ground state expectation value of the single particle part ĥ reads

〈Ψ0|ĥ|Ψ0〉 =

∫
dx ĥ0(x) 〈Ψ0|ψ̂†(x)ψ̂(x)|Ψ0〉

=

∫
dx ĥ0(x) lim

t′→t
e−iE0(t−t′) 〈Ψ0|ψ̂†(x)e−iĤ(t−t′)ψ̂(x)|Ψ0〉

=

∫
dx ĥ0(x) lim

t′→t
〈Ψ0|ψ̂†H(xt)ψ̂H(xt′)|Ψ0〉 =

∫
dx ĥ0(x)

[
−iG(xt, xt+)

]
. (7.3)
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We have derived the equation-of-motion of the field operator in the Heisenberg picture

in section B.1 (see Eq. (B.9)). It reads

i
∂ψ̂H(x, t)

∂t
= ĥ0(x)ψ̂H(x, t) +

∫
dy
(
ψ̂†H(y, t)vc(y, x)ψ̂H(y, t)ψ̂H(x, t)

)
. (7.4)

We now multiply by ψ̂†H(x′, t′) on the left hand side of each term in the above equation

and calculate the ground state expectation value, which yields

(
i
∂

∂t
− ĥ0(x)

)
〈Ψ0|ψ̂†H(x′, t′)ψ̂H(x, t)|Ψ0〉

=

∫
dy 〈Ψ0|ψ̂†H(x′, t′)ψ̂†H(y, t)vc(y, x)ψ̂H(y, t)ψ̂H(x, t)|Ψ0〉 . (7.5)

Taking the limit of x′ → x and t′ → t+, and integrating over x, the left hand side of the

above equation contains the one-particle Green’s function and the right hand side becomes

the ground state expectation value of the Coulomb term, thus we have

lim
t′→t+

∫
dx

(
i
∂

∂t
− ĥ0(x)

)[
−iG(xt, xt′)

]
= 2 〈Ψ0|v̂|Ψ0〉 . (7.6)

Note that only the hole part of the one-particle Green’s function appears in the above

relation due to the specific time ordering, i.e. t+ > t. Taking the above relation back to

equation (7.2) and replacing the Coulomb contribution, we have the ground state energy

reading as

E0 =
1

2
lim
t′→t+

∫
dx

(
i
∂

∂t
− ĥ0(x)

)[
−iG(xt, xt′)

]
+

∫
dxĥ0(x)

[
−iG(xt, xt+)

]

= − i
2

lim
t′→t+

∫
dx

(
i
∂

∂t
+ ĥ0(x)

)
G(xt, xt′) . (7.7)

The spectral representation of the hole part of the one-particle Green’s function reads

Gh(x, x, ω) =

∫ µ

−∞
dω′

A(x, x, ω′)

ω − ω′ − iη . (7.8)
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After Fourier transforming the above equation into time space, we have

Gh(x, x, τ) =
1

2π

∫
dω

∫ µ

−∞
dω′

A(x, x, ω′)

ω − ω′ − iη e
−iωτ

=
1

2π

∫ µ

−∞
dω′A(x, x, ω′)e−iω

′τ

∫
dω

e−iω
′′τ

ω′′ − iη

= iθ(−τ)

∫ µ

−∞
dω′A(x, x, ω′)e−iω

′τ , (7.9)

where τ = t− t+, then

E0 =
1

2

∫
dx

(
i
∂

∂τ
+ ĥ0(x)

)∫ µ

−∞
dω′A(x, x, ω′)e−iω

′τ

=
1

2

∫
dx

∫ µ

−∞
dω′

(
ω′ + ĥ0(x)

)
A(x, x, ω′)e−iω

′τ

=
1

2

∫
dx

∫ µ

−∞
dω
(
ω + ĥ0(x)

)
A(x, x, ω) . (7.10)

Note that the integration over x contains the sum of all space r and spin σ. In orbital

basis, the Galitskii-Migdal total energy formula reads

EGM0 =
1

2

∑

k

∫ µ

−∞
dω
(
ω + ĥ0

k

)
Ak(ω) . (7.11)

As we can see, the total energy is determined by the occupation numbers nk =∫ µ

−∞
Ak(ω)dω and the first moment1

∫ µ

−∞
ωAk(ω)dω, where the details of the spectral

function do not matter.

Since we will only work on the one electron case in the HPC-1 and HPC-2, we do not

need to write the sum over the spin index. But in general, we should also have the sum

over spin σ in the above equation2. Now we understand why the exact one-body Green’s

function yields the exact ground state energy of a many-body system from the Galitskii-

Migdal formula in Eq. (7.11). This will be important later. In practice, it is impossible to

find the exact one-body Green’s function, instead, different approximate Green’s functions

1Strictly speaking, the first moment is defined as

∫ ∞
−∞

ωAk(ω)dω. But for simplicity, we call the first

moment of the hole contribution

∫ µ

−∞
ωAk(ω)dω also “simply” the first moment in this thesis.

2In a spin-independent system, each state k contains two electrons with spin up and down. Therefore
the prefactor 1/2 in the GMtot Eq. (7.11) will vanish.
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(GWA or CEA) have been used in the Galitskii-Migdal formula to study the performance

of the total energies. This is exactly what I am going to do in the following paragraphs of

this section. However, as I will show at the end of this section, it is not always correct to

study the total energies in such a way.

7.1.1 The GMtot in the HPC-1

In Chapter 4, I have already calculated all the spectral functions in the one-level hole-

plasmon coupling Hamiltonian (HPC-1) including the exact model spectral function and

all the CEAs in Eq. (4.12) (all the CEAs yield the exact spectral function), the G0W0

Eq. (4.36) and the EscGW0 Eq. (4.42). Now we can plug these spectral functions into the

Galitskii-Migdal formula in Eq. (7.11) to calculate the GMtot.

One can show analytically that all of these three spectral functions lead to the same

GMtot, which is the exact ground state energy ε0 (see Tab. 4.1 in section 4.1)3, i.e

EmodelGMtot =
1

2

∫ µ

−∞
dω
(
ω + ĥ0(x)

)
Amodel(ω)

=
1

2

∞∑

m=0

βme−β

m !

(
ε0 +

g2

ωp
−mωp

)
+

1

2
ε0

= ε0 +
g2

2ωp
− ωp

2

∞∑

m=0

βme−β

m !
m

= ε0 +
g2

2ωp
− ωp

2
β
∞∑

m=0

βme−β

m !

= ε0 ,

and

EGWGMtot =
1

2

∫ µ

−∞
dω
(
ω + ĥ0(x)

)
AGW (ω) =

1

2

(
ε0 +

∫ µ

−∞
ωAGW (ω) dω

)
= ε0 ,

where AGW can be the one of G0W0 in Eq. (4.36) or the EscGW0 in Eq. (4.42).

3The chemical potential has been chosen just above the QP energy in each approximation in the HPC-
1. In the HPC-2, the chemical potential stays between the QP energies of electron removal and electron
addition.
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As what we have expected, the GMtot yields the exact total energy using the exact

spectral function of the HPC-1. Due to the simplicity of the HPC-1 , both G0W0 and

EscGW0 give the exact total energy from the Galitskii-Migdal formula as well, although

the spectral functions look very different, since their occupation number (for the HPC-1,

the occupation number is always 1) and first moment are correct.

7.1.2 The GMtot in the HPC-2

I have analyzed the exact ground state total energy of the HPC-2 in section 4.1.2, which is

the lowest eigenenergy E−0 from the numerical diagonalization of Ĥ−. In section 5.1 I have

also shown an approximated fully analytical ground state energy in the second order of g

(i.e. Eg
2

0 ) in Eq. (5.1) (see also its performance in Fig. 5.1). Similar to what I have found

in the HPC-1, we would expect to get the exact total energy from the Galitskii-Migdal

formula when we use the exact spectral functions of the HPC-2 in Eq. (4.29).

The GMtot using the exact spectral function of the HPC-2

Here I plug the exact spectral functions of Eq. (4.29) into the GMtot in Eq. (7.11) and

calculate the GMtot separately in two parts namely EGMtot1 and EGMtot2:

EmodelGMtot1 =

∫ µ

−∞
dω
[
ωAmodel+ (ω) + ωAmodel− (ω)

]

=

∞∑

m−=0

∞∑

m+=0

β̃
[m+]
1 e−β̃1v2

[2m−]

m+ !

(
E−0 +

g2

2ωp
− (m+ + 2m−)ωp

)

+

∞∑

m−=0

∞∑

m+=0

β̃
[m+]
1 e−β̃1v2

[2m−+1]

m+ !

(
E−0 +

g2

2ωp
− (m+ + 2m− + 1)ωp

)

= E−0 − ωp
∞∑

m−=0

(
v2

[2m−](2m−) + v2
[2m−+1](2m− + 1)

)
; (7.12a)

EmodelGMtot2 =

∫ µ

−∞
dω
[
(ε0 − t)Amodel+ (ω) + (ε0 + t)Amodel− (ω)

]

= ε0 − t

∞∑

m−=0

∞∑

m+=0

β̃
[m+]
1 e−β̃1

(
v2

[2m−] − v2
[2m−+1]

)

m+ !

= ε0 − t
∞∑

m−=0

(
v2

[2m−] − v2
[2m−+1]

)
. (7.12b)
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The final Galitskii-Migdal total energy using the model exact spectral functions reads

EmodelGMtot =
1

2

(
EmodelGMtot1 + EmodelGMtot2

)
. (7.13)

It is difficult to see whether EmodelGMtot equals E−0 or not from the above equation due to

the numerical parameters. Thus we have to calculate EmodelGMtot numerically. The comparison

with E−0 is shown in Fig. 7.1. The numerical G0W0 and EscGW0 GMtots in the HPC-2

are also shown in the same figure.
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Figure 7.1: Results of Galitskii-Migdal total energies for the HPC-2 as function of coupling
strength. Upper panel: the exact QP renormalization factor in Eq. (4.30). Middle panel:
the bonding occupation. Lower panel: the Galitskii-Migdal total energies. The numbers
in the legend represent the value corresponding to the sodium bottom valence case where
g = 4.5 eV. The thick yellow curves are the exact results from the HPC-2. The blue dashed
and up-triangles are the G0W0 and EscGW0 results, respectively. The black curve in the
lower panel is the Galitskii-Migdal total energy in Eq. (7.13) that is calculated from the
exact model spectral function.

The upper panel of Fig. 7.1 shows the exact Z-factor of the HPC-2 in Eq. (4.30). The

Z-factor decreases from 1 to 0.2 when the coupling increases from 0 to 8 eV. Most often,

the systems of our interest have Z-factor larger than 0.4 so that the coupling range we are

studying in this figure should be enough. The middle panel shows the bonding occupa-

tion number where the thick yellow curve represents the exact one, the blue dashed and
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up-triangles are the bonding occupation numbers calculated using the G0W0 and EscGW0,

respectively. They are very similar and both overestimate the bonding occupation. In

particular in the case of sodium bottom valence, the overestimation is about 2% (see the

numbers in the legend). The lower panel shows the GMtots: the thick yellow curve rep-

resents the exact total energy of the HPC-2, i.e. the numerical E−0 , the black solid curve

is the GMtot calculated using the exact spectral function of the HPC-2, i.e EmodelGMtot in Eq.

(7.13), the blue dashed curve and up-triangles are the GMtots calculated using the G0W0

and EscGW0 spectral functions. All the GMtots underestimate (absolute value) the total

energy of the HPC-2. The exact spectral function leads to better agreement and both GW

spectral functions give similar GMtot in the coupling range of interest.

Therefore, the GMtot using the exact spectral function of the HPC-2 does not yield

the exact total energy, which is not what we have expected. This means that there is

some mismatch between the exact spectral function and the Galitskii-Migdal total energy

formula. This issue will be discussed in detail in section 7.2. For now, we continue to study

the performance of the GMtots using the CEA spectral functions.

The GMtot using the TOC96 and TOC11 spectral functions

I have calculated all the CEA spectral functions in the HPC-2 in section 4.2. Now I am

going to plug the TOC96 (Eq. (4.67)) and TOC11 (Eq. (4.70)) spectral functions into the

Galitskii-Migdal formula in Eq. (7.11) to calculate the corresponding Galitskii-Migdal total

energies.

Since there is no electron removal spectrum in the TOC964 or TOC11, the GMtots from

these two spectral functions are

EC96
GMtot =

1

2

∫ µ

−∞
dω
[
(ω + ε0 − t)AC96

+ (ω)
]

= (ε0 − t− g̃2

2ωp + 4t
)e−β̃2 ; (7.14a)

EC11
GMtot =

1

2

∫ µ

−∞
dω
[
(ω + ε0 − t)AC11

+ (ω)
]

= ε0 − t− g̃2

2ωp + 4t
. (7.14b)

4In Ref. [101], the Galitskii-Migdal total energies of the TOC96 in a homogeneous electron gas was
studied. Since the conservation of the particle number is very important for total energies, in order to
conserve the particle number, the author has put the occupation number nk = 1 for all states, which finally
yields the TOC96 equivalent to the TOC11. In Ref. [102] the same TOC96 model spectral function was used
to study the Galitskii-Migdal total energies of sodium and aluminum, yielding improvements on the lattice
constants with respect to the LDA calculation.
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The above GMtots are fully analytical, thus we can study their performance by compar-

ing them to the analytical total energy of the HPC-2 (i.e. Eg
2

0 in Eq. (5.1) and blue dashed

curve in Fig. 7.2). We can set the term ε0− t to zero in the comparison because it appears

in all these three GMtots. Then we have EC96
GMtot =

1

2
e−β̃2Eg

2

0 and EC11
GMtot =

1

2
Eg

2

0 such

that the absolute values have the relation of
∣∣∣Eg

2

0

∣∣∣ >
∣∣EC11

GMtot

∣∣ >
∣∣EC96

GMtot

∣∣. Fig. 5.1 shows

that
∣∣∣Eg

2

0

∣∣∣ already underestimates the absolute value of the exact total energy
∣∣E−0

∣∣, which

implies an even larger underestimation of the
∣∣EC11

GMtot

∣∣ and
∣∣EC96

GMtot

∣∣ as shown by the black

diamonds and red circles in Fig. 7.2, respectively. In the same figure, the GMtot using

the retarded cumulant spectral functions is calculated numerically as shown in the green

up-triangles. It is better than the GMtot using the TOC96 or TOC11 spectral functions,

but still by far not good enough when comparing to the exact total energy of the HPC-2.
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Figure 7.2: The total energies of the HPC-2 in function of the coupling strength. The
numbers in the legend correspond to the values in the sodium bottom valence state where
g = 4.5 eV. The thick yellow curve is the exact total energy of the HPC-2. The blue

dashed curve represents the second order ground state energy Eg
2

0 in Eq. (5.1). The red
circles, black diamonds, green up-triangles are the Galitskii-Migdal total energies (GMtots)
calculated using the spectral functions of the TOC96 Eq. (7.14a), TOC11 Eq. (7.14b) and
RC (numerical integration), respectively. The purple curve is the GMtot calculated using
the constrained retarded cumulant spectral functions in Eq. (7.15).
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The GMtot using the CRC spectral function

The constrained retarded cumulant spectral function in the HPC-2 has been calculated in

Eq. (5.17). Now we plug it into the GMtot in Eq. (7.11), which yields

ECRCGMtot1 =

∫ µ

−∞
dω
[
ωACRC+ (ω) + ωACRC− (ω)

]
= ε0 − t− (ωp + 2t)β̃2 − ωpβ̃2 ;

ECRCGMtot2 =

∫ µ

−∞
dω
[
(ε0 − t)Ag

2

+ (ω) + (ε0 + t)Ag
2

− (ω)
]

= ε0 + t− 2te−β̃2 .

The final GMtot of CRC reads

ECRCGMtot =
1

2

(
ECRCGMtot1 + ECRCGMtot2

)
. (7.15)

Its performance is shown in thick purple curve in Fig. 7.2. It gives the best total energy

among all the GMtots calculated using approximate spectral functions5.

However, there are two puzzling facts. First in practice, we are never able to calculate

the exact spectral functions. Thus the best total energy we would obtain is the GMtot

using CRC, which underestimates absolute value of the exact total energy by about 36.7%

in the case of using sodium parameters in the HPC-2. Second, and most importantly, it

seems to be impossible that the exact spectral functions do not yield the exact total energy.

Is this our limit in the calculation of total energies? If not, how can we do better? Indeed,

I will show in the next section that we have to derive a new total energy formula in order

to improve the total energies from approximate Green’s functions.

7.2 Total energies from hole-plasmon coupling formula

In the previous section, I have shown the derivation of the Galitskii-Migdal formula in Eq.

(7.11). However, the exact spectral function of the HPC-2 does not yield the exact total

energy E−0 . This is not what we expected.

5One can compare the GMtots in the HPC-2 using the sodium bottom valence parameters, i.e. the
numbers in the legends of Figs. 7.1 and 7.2. The GMtot using the exact spectral function gives the best
performance, the followings are the CRC, GWA, RC, TOC96 and TOC11.
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At the beginning, I thought I did something wrong when I calculated the exact Green’s

function of the HPC-2 in section 4.1. However, I did not find any mistakes in that calcu-

lation. This really puzzled me a lot. Finally I understood that the discrepancy does not

stem from the spectral function, but from the use of the Galitskii-Migdal formula itself.

Therefore, I will show first the derivation of the hole-plasmon coupling total energy formula

(HPCtot) from the hole-plasmon coupling Hamiltonian.

The general hole-plasmon coupling Hamiltonian with an Einstein boson (without dis-

persion) reads

Ĥ =

∫
dxψ̂†(x)ĥ0(x)ψ̂(x) + g

∫
dxψ̂(x)ψ̂†(x)

(
φ̂(x) + φ̂†(x)

)
+ ωp

∫
dxφ̂†(x)φ̂(x)

= ĥ+ ĝ + p̂ , (7.16)

where φ̂ is the field operator of the boson (e.g. plasmon), ĥ is the one-particle part of the

Hamiltonian, ĝ and p̂ represent the coupling and the plasmon terms, respectively.

We have calculated the commutator of ĥ and the fermion field operator ψ̂(x) in equation

(B.6). It reads
[
ψ̂(x), ĥ

]
= ĥ0(x)ψ̂(x) . (7.17)

The commutator between ĝ and the fermion field operator reads

[
ψ̂(x), ĝ

]
= g

∫
dx
[
ψ̂(x), ψ̂(x)ψ̂†(x)

(
φ̂(x) + φ̂†(x)

)]

= g

∫
dx
[
ψ̂(x),

(
φ̂(x) + φ̂†(x)

)]
ψ̂(x)ψ̂†(x) +

(
φ̂(x) + φ̂†(x)

)[
ψ̂(x), ψ̂(x)ψ̂†(x)

]

= g

∫
dx
(
φ̂(x) + φ̂†(x)

)(
ψ̂(x)ψ̂(x)ψ̂†(x)− ψ̂(x)ψ̂†(x)ψ̂(x)

)

= −g
∫

dxψ̂(x)
(
φ̂(x) + φ̂†(x)

)
. (7.18)

Therefore we have the final commutator between the hole-plasmon coupling Hamiltonian

and the fermion field operator as

[
ψ̂(x), Ĥ

]
= ĥ0(x)ψ̂(x)− g

∫
dxψ̂(x)

(
φ̂(x) + φ̂†(x)

)
. (7.19)

188



The equation-of-motion of the field operator in the Heisenberg picture reads

i
∂ψ̂H(x, t)

∂t
= eiĤt

[
ψ̂(x), Ĥ

]
e−iĤt

= ĥ0(x)ψ̂(x, t)− g
∫

dxψ̂(x, t)
(
φ̂(x) + φ̂†(x)

)
. (7.20)

Multiplying by ψ̂†H(x′t′) and taking the ground state expectation value yields

(
i
∂

∂t
− ĥ0(x)

)
〈Ψ0|ψ̂†H(x′t′)ψ̂H(x, t)|Ψ0〉

= −g
∫

dx 〈Ψ0|ψ̂†H(x′t′)ψ̂(x, t)
(
φ̂(x) + φ̂†(x)

)
|Ψ0〉 . (7.21)

The total energy of the hole-plasmon coupling Hamiltonian can be calculated from

EHPC0 = 〈Ψ0|ĥ+ ĝ + p̂|Ψ0〉

= 〈Ψ0|ĥ|Ψ0〉 −
(
i
∂

∂t
− ĥ0(x)

)
〈Ψ0|ψ̂†H(x′t′)ψ̂H(x, t)|Ψ0〉

+ ωp

∫
dx 〈Ψ0|φ̂†(x)φ̂(x)|Ψ0〉

= −i ∂
∂t
〈Ψ0|ψ̂†H(x′t′)ψ̂H(x, t)|Ψ0〉+ ωp

∫
dx 〈Ψ0|φ̂†(x)φ̂(x)|Ψ0〉

=

∫
dx

∫ µ

−∞
dω (ωA(x, x, ω)) + Ep , (7.22)

where Ep is the ground state plasmon energy Ep = ωp

∫
dx 〈Ψ0|φ̂†(x)φ̂(x)|Ψ0〉 and in the

book of Gross, Runge and Heinonen [103] this term is defined as the energy of zero-point

motions. In orbital basis, the HPCtot reads

EHPC0 =
∑

k

∫ µ

−∞
dω (ωAk(ω)) + Ep . (7.23)

The above HPCtot formula is identical to the total energy formula derived for a system

of interacting electrons coupled to phonons [104]. Here the role of the phonons is played by

the plasmons.
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Compared to the Galitskii-Migdal formula in Eq. (7.11), there is no term linked to the

occupation number but only the first moment, without the factor 1/26. Instead the zero

point motion energy of the plasmon Ep is added. In the HPC-1, there is no plasmon at the

ground state (see Tab. 4.1) such that the Ep = 0 in the HPC-1. In the HPC-2, this term is

not zero such that we have to find a way to calculate Ep.

HMB

EGM (A) Aapprox
approx

Happrox

Eapprox(A)

Figure 7.3: Schematic view of the relation between the total energy formulas and the Hamil-
tonians. The exact total energy formula of the exact many-body Hamiltonian is proven to
be the Galitskii-Migdal formula. However, the Galitskii-Migdal formula requires the ex-
act Green’s function to reproduce the exact total energy. It is impossible to calculate the
exact Green’s function of a many-body system. Instead some approximate Hamiltonians
(Happrox) are introduced (e.g. the hole-plasmon coupling Hamiltonian) which allow us to
have the exact Green’s functions (of the corresponding approximate Hamiltonians). Con-
sequently, the exact total energy formula of the approximate Hamiltonian Happrox may not
be the Galitskii-Migdal formula any more, as indicated on the right side. We might have to
derive a new total energy formula Eapprox[A] (i.e. a functional of the spectral function hence
the Green’s function) corresponding to the approximate Hamiltonian such that the exact
spectral function of Happrox yields its exact total energy using Eapprox[A]. Since the GW
approximation and the cumulant expansion approximation can be considered as some good
approximate solution to the approximate hole-plasmon coupling Hamiltonian, the question
becomes “ which formula should we use when we have the spectral functions of the GWA or
the CEA? ” The direct answer to this question will not be provided in the present thesis,
but I will show some studies that reflect the importance of this issue in the following total
energy calculations.

6There should not be the sum over spin in the HPCtot formula. Because we always consider the case of
one electron coupled plasmons in the hole-plasmon coupling Hamiltonian.
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7.2.1 The HPCtot in the HPC-1

We have seen in section 7.1.1 that in the one-level hole-plasmon coupling Hamiltonian,

Amodel Eq. (4.12), AG0W0 Eq. (4.36) and AEscGW0 Eq. (4.42) spectral functions yield the

exact total energies from the Galitskii-Migdal formula. All the cumulant spectral functions

are the same as the exact model spectral function so that they also give the exact total

energies from the Galitskii-Migdal formula. Now we have a look what is the total energy

calculated from my new formula HPCtot in Eq. (7.23), using different spectral functions. I

have analyzed in section 4.1.1 that there is no plasmon in the ground state in the HPC-2,

so that the second term Ep in EHPC0 is zero. We only need to calculate the first term. It is

easy to show that

∫ µ

−∞
dω (ωA(ω)) = ε0 , (7.24)

is valid for all the spectral functions of the HPC-1, such that we have

EHPCtot =

∫ µ

−∞
dω (ωA(ω)) + Ep = ε0 , (7.25)

where A(ω) can be the exact (hence all the CEAs), as well as the G0W0 and EscGW0 in

the HPC-1.

Therefore similar to the Galitskii-Migdal formula, the hole-plasmon coupling total en-

ergy formula also yields the exact total energies even though we have very different spectral

functions from different approximations in the HPC-1.

7.2.2 The HPCtot in the HPC-2

For the model HPC-2, we start from the HPCtot calculated with the exact model spectral

function Amodel in Eq. (4.29). The first part of the HPCtot in Eq. (7.23) is the same as
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the first part of the GMtot in Eq. (7.12), thus we have

EmodelHPCtot1 =

∫ µ

−∞
dω
[
ωAmodel+ (ω) + ωAmodel− (ω)

]

= E−0 − ωp
∞∑

m−=0

(
v2

[2m−](2m−) + v2
[2m−+1](2m− + 1)

)
. (7.26)

In section 4.1 I have shown that there is no plasmon in the bonding orbital at the

ground state (see Ĥ+ in Eq. (4.20a)). Thus Ep in Eq. (7.23) only contains the ground

state expectation value of plasmons in the anti-bonding orbital, which yields

Ep = ωp

∫
dx 〈Ψ0|φ̂†(x)φ̂(x)|Ψ0〉 = ωp

∞∑

m−=0

v2
[m−] 〈1, 0; 0,m−|

(
a†−a−

)
|1, 0; 0,m−〉

= ωp

∞∑

m−=0

m−v
2
[m−] = ωp

∞∑

m−=0

(
v2

[2m−](2m−) + v2
[2m−+1](2m− + 1)

)
. (7.27)

Thus Ep in the above equation cancels exactly the second term in Eq. (7.26), which

leads to the exact total energy of the HPC-2, i.e.

EmodelHPCtot = EmodelHPCtot1 + Ep = E−0 . (7.28)

This confirms that indeed, the exact total energy formula of the hole-plasmon coupling

Hamiltonian should be the hole-plasmon coupling total energy formula in Eq. (7.23) instead

of the Galitskii-Migdal formula in Eq. (7.11). This is what I have analyzed in Fig. 7.3.

We have hence found the energy functional for the hole-plasmon coupling Hamiltonian,

however it is not only a functional of the spectral function, but it depends on the ground

state plasmon energy term Ep.

The physical meaning of Ep is now obvious. m−v
2
[m−] is the probability of havingm− (the

number) plasmons in the anti-bonding orbital component and the sum over m− gives the

total probability of having plasmons in the anti-bonding orbital component. Multiplying by

ωp gives the ground state expectation plasmon energy contribution. Note that the reason

why we only have plasmons in the anti-bonding orbital but not in the bonding orbital

component is directly linked to the partial occupation. The partial occupation of the two-
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level hole-plasmon coupling Hamiltonian stems from the term (c+c
†
− + c−c

†
+)(a†− + a−) in

Ĥ− (see Eq. (4.20b)), such that we will see later that the probability to have plasmons in

the anti-bonding orbital component can be approximately calculated from the anti-bonding

occupation.

The use of the hole-plasmon coupling total energy formula instead of the Galitskii-

Migdal formula in real systems is not obvious. There are many total energies studies using

the Galitskii-Migdal formula together with some approximate Green’s function (e.g. the

GWA or the CEA) (see e.g. Refs. [19, 101, 102, 105]). The final total energy performance

is related to the corresponding approximate Green’s function. One might wonder whether

the approximate Green’s function is consistent with the Galitskii-Migdal formula or not.

As shown in Fig. 7.3, the Galitskii-Migdal formula is the exact total energy formula of the

exact many-body Hamiltonian in Eq. (7.1) that is fully electronic (no boson). However,

the hole-plasmon coupling Hamiltonian represents an approximate system with respect to

the exact one. It has its own total energy formula that is the hole-plasmon coupling total

energy formula in Eq. (7.23). Therefore in order to reproduce the exact total energy of the

approximate hole-plasmon coupling Hamiltonian, we have to use the consistent total energy

formula which is the hole-plasmon coupling total energy formula, instead of the Galitskii-

Migdal formula. The present example (Eqs. (7.13) and (7.28)) is a striking illustration of

this point.

This philosophy is quite similar to the use of the cumulant expansion approximation

with the GW self-energy versus the use of the Dyson equation with the same GW self-

energy7. If we have the exact self-energy of a system, the exact one-body Green’s function

is the solution of the Dyson equation G = G0 + G0ΣG. However, we are never able to

calculate the exact Σ, instead different approximate Σs are used. Consequently, one certain

approximate Σ may perform better when used in another formula for calculating the one-

body Green’s function in order to keep the consistency of approximations. We have seen

7The Green’s function from the cumulant expansion approximation is often referred to as the “
GW+cumulant ” approach (see e.g. Refs. [12, 78]. In this sense, the Green’s function calculated from
the GW approximation should be refereed to as the “ GW+Dyson equation ” approach. The only difference
is that the Dyson equation is exact when we have the exact self-energy, but the cumulant functional instead,
can be considered as the exact functional of the Green’s function, when we have used the GW self-energy
in the one-level hole-plasmon coupling Hamiltonian. In the appendix C, I have shown that cumulant-like
expressions would be consistent with other self-energies.
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that the Green’s function calculated using the cumulant expansion approximation fits better

with the GW self-energy than the Dyson equation. This is another illustration of the fact

that the consistency of approximations is important.

Now the point is that the Green’s function calculated from the GW approximation or the

cumulant expansion approximation can be considered as a good approximate solution to the

approximate hole-plasmon coupling Hamiltonian. The reason is that they are based on the

quasi-particle and plasmon picture as mentioned in Chapter 1. This raises one important

question, namely “ which total energy formula should we use for the Green’s function of

the GWA or CEA? ” For the model itself, the answer is obvious, as I will illustrate in the

following by comparing the total energies calculated from these two formulas using the same

approximated spectral function. The answer for real systems is still unknown, since there

may be cancellations between the approximation to the hole-plasmon coupling Hamiltonian

and the approximation to the Green’s function. This requires further studies.

An approximation to the ground state plasmon energy

In order to propone these studies, in the following we will derive and test an approximation

to the HPCtot that might be used in further calculation on real systems. In particular,

before we evaluate the HPCtot in Eq. (7.23), we have to find a way to calculate the ground

state plasmon energy contribution. In practice, the ground state wavefunction Ψ0 will be

unknown, thus we could not use Eq. (7.27) to calculate Ep. This suggests to use the

approximated analytical Green’s function of the HPC-2 in Eq. (5.12) again.

The first part of the HPCtot using Ag
2

reads

Eg
2

HPCtot1 =

∫ µ

−∞
dω
[
ωAg

2

+ (ω) + ωAg
2

− (ω)
]

= ε0 − t− (ωp + 2t)β̃2 − ωpβ̃2 . (7.29)

Now how could we calculate the ground state plasmon energy Eg
2

p ? Remember that, in

section 4.1.2 when we derived the analytical spectral function, we have used the approxi-

mation to vm in Eq. (5.4) that reads

v2
[m−] ≈

e−β̃2 β̃
m−
2

m− !
. (7.30)
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Using the above approximation, Ep in Eq. (7.27) reads

Eg
2

p = ωp

∞∑

m−=0

m−v
2
[m−] =

∞∑

m−=0

e−β̃2 β̃
m−
2

m− !
m− = ωpβ̃2 . (7.31)

This leads to the HPCtot calculated using Ag
2

reading as

Eg
2

HPCtot = Eg
2

HPCtot1 + Eg
2

p = ε0 − t− (ωp + 2t)β̃2 ≡ Eg
2

0 . (7.32)

This is consistent with our analysis because the spectral function Ag
2

starts from the

HPC-2 with an approximate ground state energy Eg
2

0 and now the HPCtot yields the same

total energy8.

Now we have a formula to calculate Ep in Eq. (7.31) where the the only quantities we

need are the plasmon energy of the system ωp (which is supposed to be known, like ε0 e.g.

from an LDA calculation) and β̃2 can be calculated from the electron self-energy (see e.g.

Eq. (5.24)), i.e.

β̃2 =
∂ Re Σe

+(ω)

∂ω

∣∣∣∣
ω=ε0−t

. (7.33)

In section 5.1 I have shown that the electron removal constrained retarded cumulant

spectral function ACRC in Eq. (5.17) is the same as Ag
2

such that the HPCtot calculated

using the constrained retarded cumulant spectral function is the same as Eg
2

HPCtot in Eq.

(7.32), which has very good agreement with the exact total energy of the HPC-2 (i.e. E−0 )

as shown in Fig. 5.1.

This is not the end of the story yet because the ground-state plasmon energy in Eq.

(7.31) is only valid for the constrained retarded cumulant ( ACRC ≡ Ag
2

for electron re-

moval). How about the spectral functions in other cumulant expansion approximations (the

TOC96, TOC11 and RC), as well as the GW approximation? The plasmon energy Ep in

Eq. (7.31) leads to the same result in all cumulant expansion approximations and the GW

approximation, because they all use the same GW self-energy, hence leading to the same β̃2

in Eq. (7.33). Therefore, what we need is an energy functional (Ep[G]) which only depends

8It would not make sense to get better total energies than Eg
2

0 from the CRC, using some approximate

total energy formula. Because the derivation of the CRC starts from the ground state energy Eg
2

0 .
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on the Green’s function (instead of the self-energy), as the Galitskii-Migdal formula in Eq.

(7.11), in order to keep the approximations consistent.

Now we have to find the functional Ep[G] in order to have a consistent hole-plasmon

coupling total energy formula. First we have a look how we can link β̃2 in Eq. (7.31) to

the Green’s function hence the spectral function. I have mentioned before that the ground-

state expectation value of plasmons can be linked to the anti-bonding occupation that is

nothing else than the integration of the spectral function up to the chemical potential, i.e.

n− =

∫ µ

−∞
dωA−(ω). Now we have a look at the anti-bonding occupation of the constrained

retarded cumulant, which reads

nCRC− =

∫ µ

−∞
dωACRC− (ω) = 1− e−β̃2 =

∞∑

m=1

−(−β̃2)m

m !
≈ β̃2 . (7.34)

The performance of the above approximation can be seen in Fig. 7.4 where the anti-

bonding occupation and plasmon occupation are compared. The blue dataset are the occu-

pations calculated using the constrained retarded cumulant in Eq. (7.34). The diamonds

(β̃2) are almost right on top of nCRC− in the coupling range of interest, which means the plas-

mon occupation is very close to the electron anti-bonding occupation from the constrained

retarded cumulant such that the approximation in Eq. (7.34) is acceptable. However, this

approximation becomes worse when we use it in the exact HPC-2 Hamiltonian as shown by

the red dataset in Fig. 7.4, especially in the large coupling range: the plasmon occupation

can be larger than 0.5 but the electron occupation in the anti-bonding orbital can never

cross 0.5, which means no matter how large the coupling, the bonding orbital always has

lower energy than the anti-bonding orbital. The bad performance of the approximation in

Eq. (7.34) can be explained from the consistency of approximations. The approximation in

Eq. (7.34) is based on the constrained retarded cumulant approximation such that it works

better in the constrained retarded cumulant Green’s function. As we will see later, it also

works well for the GW Green’s function in the HPC-2.

Therefore the plasmon ground state energy in Eq. (7.31) can be approximated as

ECRCp = ωpn
CRC
− , which leads to the final hole-plasmon coupling total energy functional
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Figure 7.4: Comparison of anti-bonding occupations in HPC-2. The red and blue dataset
correspond to the exact occupation of the HPC-2 and the approximate occupation calculated
using the constrained retarded cumulant, respectively. The numbers in the legend are the
occupation for a set of parameters corresponding to the sodium bottom valence (g = 4.5
eV and ωp = 6 eV). The red curve is the exact anti-bonding occupation of the HPC-2, i.e.∫ µ

−∞
dωA−(ω) =

∞∑

m

v2
2m+1 in Eq. (4.29). The red circles are the plasmon occupation from

the HPC-2, i.e.

∞∑

m

mv2
m in Eq. (7.27). The blue curve is the anti-bonding occupation from

the CRC, i.e. 1− e−β̃2 and the blue diamonds are the plasmon occupation from the CRC,
i.e. β̃2.

reading as

EHPCtot =

∫ µ

−∞
dω (ωA+(ω) + ωA−(ω)) + ωp

∫ µ

−∞
dωA−(ω) , (7.35)

where only the spectral functions are needed.

The above HPCtot will be used in the following paragraphs to calculate the HPCtot

with the spectral functions of the GWA and CEAs.
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7.2.3 The HPCtot from the GWA and CEA spectral functions

We have discussed that the traditional time-ordered cumulant does not give any electron

removal spectrum in the anti-bonding orbital so that the ground state plasmon energy

Ep = 0 holds for both the spectral functions of the TOC96 and TOC11. Therefore we only

need to calculate the first term in Eq. (7.35) which is already given in Eqs. (7.14a) and

(7.14b):

EC96
HPCtot =

∫ µ

−∞
dω
[
ωAC96

+ (ω)
]

= e−β̃2
(
ε0 − t− g̃2

ωp + 2t

)
; (7.36)

EC11
HPCtot =

∫ µ

−∞
dω
[
ωAC11

+ (ω)
]

= ε0 − t− g̃2

ωp + 2t
. (7.37)

The HPCtot of the TOC11 EC11
HPCtot = Eg

2

0 (black diamonds in Fig. 7.5) is the same

as the HPCtot of the CRC in Eq. (7.32) that has the best performance compared to the

exact total energy. The HPCtot of the TOC96 EC96
HPCtot = e−β̃2Eg

2

0 (red circles in Fig.

7.5) underestimates (absolute value) the exact total energy of the HPC-2. The HPCtot

calculated using the GWA and the retarded cumulant spectral functions can be obtained

by numerical integration with the chemical potential between the quasi-particle energies

of the bonding and anti-bonding orbitals. All the HPCtots in Fig. 7.5 show systematic

improvements compared to the GMtots in Figs. 7.1 and 7.2.

We can conclude that in the hole-plasmon coupling Hamiltonian, the hole-plasmon cou-

pling total energy formula works better than the Galitskii-Migdal total energy formula, for

the reasons listed below:

1. In the HPC-1, all the spectral functions (the exact one, the GWA and the CEA) give

the exact total energy from both HPCtot and GMtot.

2. In the HPC-2, when we use the exact spectral function, only the HPCtot yields

the exact total energy as shown in Eq. (7.28). The GMtot using the exact spectral

function underestimates (absolute value) the total energy (see black curve in the lower

panel of Fig. 7.1). It is the best total energy using the Galitskii-Migdal formula (-0.9

eV using the sodium parameters shown in Fig. 7.1), however compared to all the

HPCtots in Fig. 7.5, it is the worst.
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Figure 7.5: The HPCtot calculated from approximate spectral functions. The thick yellow
curve is the exact total energy of the HPC-2. The red circles, black diamonds, green up-
triangles and blue down-triangles are the HPCtot from the TOC96, TOC11 (hence CRC),
RC, and EscGW0, respectively. The blue curve is the G0W0 result and it is very similar
to the EscGW0 result. The numbers in the legend are the HPCtot corresponding to the
sodium bottom valence where g = 4.5 eV and ωp = 6 eV.

3. In the HPC-2, when we use the GW spectral functions (both G0W0 and EscGW0)

the HPCtot (blue dataset in Fig. 7.5) is much better than the GMtot (blue dataset

in Fig. 7.1).

4. In the HPC-2, when we use the spectral functions of the CEAs (TOC96, TOC11, RC

and CRC), HPCtot is also better than the GMtot. In particular, the TOC11 and

CRC gives the best total energy when comparing to the exact total energy of this

Hamiltonian9.

9The number in the legend in Fig. 7.5 shows that the G0W0 gives the best total energy. However when
the coupling strength becomes larger, the total energies given by the CRC and CEA11 are better compared
to the exact total energies of the HPC-2. In addition, one should be careful whether the G0W0 spectral
function conserves the particle number for real system calculations [91].
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7.2.4 Suggestion for real system calculations with HPCtot and CRC

Green’s function

Since the performance of the HPCtot using the CRC spectral function is so good, in this

section I am going to implement this method in real system calculations as what I did for

the implementation of the CRC in section 5.3.2.

As mentioned before, one of the disadvantages of the CRC in real system calculations is

that it cannot provide explicitly the electron removal spectral functions of the states above

the Fermi level. What it can provide is Aunocck,< in Eq. (5.36) where k labels states below

the Fermi level. Therefore, there is no one-to-one correspondence between Aunocck,< and the

non-interacting part Hamiltonian ĥ0. As a consequence, we cannot plug the real system

CRC spectral functions Eqs. (5.34) and (5.36) in the Galitskii-Migdal formula in Eq. (7.11).

Fortunately the HPCtot formula in Eq. (7.23) does not depend on ĥ0, and this makes the

implementation of the HPCtot for real system calculations possible.

The first term in the HPCtot is the first moment of the CRC spectral function, which is

the same as the first term in the GMtot formula, thus its implementation is straightforward.

The difficulty is in the second term Ep that represents the ground-state plasmon energy. We

have to find a way to implement the Ep = ωpβ̃2 in the HPC-2 Eq. (7.31) for real systems.

In the implementation of the CRC, each ω̃i,k corresponds to one possible plasmon energy of

state k and each β>k /N gives its possibilities. Therefore in real system, the HPCtot formula

using the CRC spectral functions can be written as

ECRCHPCtot =
occ∑

k



∫ µ

−∞
dω
(
Aocck,<(ω) +Aunocck,< (ω)

)
+

N<∑

i=1

(
β>k
N<

ω̃<i,k

)
 , (7.38)

where k labels the states below the Fermi level in the system, ω̃<i is the pole from the

sampling of Im Σ<
k defined in Eq. (5.32), and N< is the number of poles used to sample

Im Σ<
k .

Compared to the Galitskii-Migdal formula in Eq. (7.11), our formula does not have the

prefactor 1/2. As I mentioned before, the prefactor 1/2 will disappear for a spin-independent

system in the Galitskii-Migdal formula. Our formula in Eq. (7.38) does not depend on the
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spin argument at all because the hole-plasmon coupling Hamiltonian always starts from the

ground state with one electron and other electrons are bosonized as plasmons. In this sense,

the only difference between the Galitskii-Migdal formula and our newly proposed formula

is the second term: in the Galitskii-Migdal form this term is
occ+unocc∑

k

ε0
knk where k runs

over all the states and nk is the occupation of each state; in our new formula Eq. (7.38), it

becomes

occ∑

k

N<∑

i=1

(
β>k
N<

ω̃<i,k

)
where k runs over only the occupied states.

This new proposed formula comes out really at the end of my thesis such that we

do not have enough time to test its performance for real systems. However, since its

similarity to the Galitskii-Migdal formula, it would not be so difficult to at least first test

its performance in the homogeneous electron gas. It is difficult to predict the effects of this

new formula compared to the present calculations of the Galitskii-Migdal total energies (see

e.g. Refs. [19, 101, 102, 105]), because the exchange part of the self-energy is hidden in the

orbital energy ε0 in our model study.

However, our study on the HPCtots (see Fig. 7.5) shows that the HPCtots using the

GW spectral functions are very similar to the ones from the CRC spectral functions. This

suggests to start from a total energy study using the GW spectral function together with

the newly derived HPCtot formula, since the GW approximation has been well developed

in many ab-initio computation codes. Moreover, the HPCtot from the TOC11 spectral

function is the same as the one using the CRC spectral functions as shown in Fig. 7.5.

In order to calculate the total energy from the TOC11 we only need to calculate the first

moment of the TOC11 spectral functions as shown in Eq. (7.37) due to the consistency of

approximations. This is even simpler to realize than GW since in Ref. [19] the TOC11 is

already used to study the Galitskii-Migdal total energies in the homogeneous electron gas.

7.3 Summary

In this chapter, the total energies of the one- and two-level hole-plasmon coupling model

Hamiltonians are studied in detail using the Galitskii-Migdal and newly derived hole-

plasmon coupling total energies formulas. I have also studied the performance of the GW

and cumulant expansion approximation in the total energy calculations. In order to have
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a better description of the total energy of a system, the consistency of approximations is

crucial, because the final total energy will depend on both the energy functional and the

approximate Green’s function. The Green’s function from the cumulant expansion approx-

imation can be considered as a good approximation to the hole-plasmon coupling model

Hamiltonian that is an approximate system with respect to the exact many-body Hamilto-

nian. I have found that the total energy of the model Hamiltonian is much better described

with the hole-plasmon coupling total energy formula than with the Galitskii-Migdal formula.

In particular, the constrained retarded cumulant gives the best total energy compared to

the exact total energy of the two-level hole-plasmon coupling Hamiltonian.

Since the hole-plasmon coupling total energy formula is consistent with the constrained

retarded cumulant Green’s function, I have proposed an implementation of the this new total

energy formula using the constrained retarded cumulant Green’s function in real system

calculations. Thanks to the similarity between the Galitskii-Migdal and the newly derived

hole-plasmon coupling total energy formulas, the realization of this implementation should

not be so difficult. Unfortunately, I did not have the time to study the performance of

this implementation in any real material before the end of my thesis project. This study

will be left after the submission of my thesis. It will be certainly be of great interest to

explore to which extent a modified total energy formula might improve results obtained

with approximate Green’s functions, such as the CEA or the GW ones.
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Chapter 8

Conclusion and outlook

8.1 Conclusion

In this manuscript, photoemission spectroscopy has been studied from the theoretical point

of view. I have discussed the connection between theory and experiment in the description

of photoemission spectra. In particular, I have focused my attention on the correlation

effects that appear as satellite structures in photoemission spectra. While the satellites

can be induced by different kinds of correlation effects including the coupling of electrons

and holes to plasmons (collective oscillation), excitons or interband transitions, or also by

more complicated effects such as an excited electron coupled to a bound hole-hole pair,

I have restricted my study to the domain of satellites stemming from the coupling of a

fermion to neutral excitations, in particular plasmons. Satellites cannot appear in any

independent-particle theory, such that a good description of plasmon satellites requires more

sophisticated approaches that are able to capture the many-body excitations in condensed

matter.

Choices have to be made since the number of theoretical approaches in many-body

physics is immense, and this manuscript concentrates on many-body perturbation theory

(MBPT) where the one-body Green’s function G is the fundamental building block. In

particular, the spectral function of the Green’s function directly links to the measured

photoemission spectrum. For this reason, much of the content in this manuscript focuses on

the calculation of the one-body Green’s function G that can be obtained approximately from
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many state-of-the-art theoretical approaches, e.g. Kohn-Sham density functional theory, the

GW approximation and the cumulant expansion approximation etc.. In particular, the GW

approximation (GWA), due to its success in the calculation of quasi-particle energies, has

been the most widely used method in the passed half-century. However, the GWA often fails

in the description of satellites. Satellites due to plasmons are indeed found in the GWA, but

they are often too far from the quasi-particle energy, and sometimes much too sharp, and

in other cases much too weak, as compared to the experiment. The cumulant expansion

approximation (CEA) on the other hand, uses the GW self-energy in an alternative way,

leading to a better description of the plasmon satellites in the photoemission spectrum.

However, the best performance from the present CEAs is found for core levels, whereas

more work is needed in the valence band region.

Throughout this manuscript, I have discussed extensively the present GWAs and CEAs,

especially their performance for satellites. To be more precise, all the calculations are done

using the self-energy calculated in the framework of G0W0 and EscGW0. In order to make

the complicated approximations more illustrative, I have provided the Green’s function

calculations using the GWAs and CEAs in two simplified hole-plasmon coupling model

Hamiltonians. The advantages and disadvantages of these present approaches have been

studied with the help of the exact Green’s function from the model Hamiltonians, as well as

the exact constraints of the one-body Green’s function. None of the approximations is able

to provide satisfactory spectra in the two-level hole-plasmon coupling model Hamiltonian

that is suppose to model valence photoemission.

In order to go beyond these present approximations, I have provided a unified derivations

from the full functional differential equation of the one-body Green’s function, which is able

to produce all present methods including the GWA, the time-ordered cumulant and the

retarded cumulant using proper approximations on the same footing. The potential of this

new derivation formalism is not yet fully explored in this manuscript. Much of study is

needed to go further and find better approximations from this formalism.

Based on the understanding of the hole-plasmon coupling Hamiltonian and our deriva-

tions, I have proposed an advanced CEA that is refereed to as the constrained retarded

cumulant. The constrained retarded cumulant together with two traditional time-ordered
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cumulants (i.e. TOC96 in Ref. [9] and TOC11 in Ref. [11]) have been implemented in our

local cumulant code such that the calculation of real materials can be done. Notably, the

computational efforts of the CEAs are negligible compared to the computation of the GWA,

since all the parameters of the CEAs can be obtained from a multipole sampling of the GW

self-energy after a GW calculation.

Bulk sodium has been chosen as a benchmark to illustrate the GWAs and CEAs in real

system calculations beyond the model Hamiltonian studies. In order to go beyond published

results, I have calculated the sodium photoemission spectra in both valence and core on the

same footing. The importance of the self-consistency of a GW calculation in core states

has been emphasized. The traditional time-ordered cumulant faces its challenge in valence

photoemission as illustrated from the comparison of calculated and experimental spectra in

valence and core. Although the main structures of the spectrum are obtained with reason-

ably good agreement, the time-ordered cumulant overestimates the energy of the plasmon

satellite and the weight ratio between the quasi-particle and satellites in the valence, at least

when the random phase approximation of the dynamically screened Coulomb interaction

W (RPA W ) is used. The constrained retarded cumulant spectrum improves the weight of

the satellites but unfortunately, the plasmon energy is still the same as the time-ordered

cumulant using the same RPA W . Since our derivation indicates that to first approximation

the screening W should correspond to the measurable one in order to obtain the correct

spectrum, I had expected that this discrepancy in the plasmon energy should be corrected

by using the exact W , instead of the RPA one.

In order to find out the origin of the discrepancy in the energy of the plasmon satellite

between the CEA and experimental spectra, studies of W from more advanced approxi-

mations than the RPA have been provided. First I have calculated W in the TDLDA.

Althought TDLDA improves plasmon spectra at large momentum transfer, the improve-

ment of the plasmon satellites turns out to be negligible. However, a new derivation is

shown which indicates that if we start from the Kohn-Sham LDA, the consistent dielectric

function in our CEA should be the test charge-test electron (TCTE) one, instead of the

measurable test charge-test charge (TCTC) one. The calculated CEA spectrum using the

TCTE dielectric function improves the plasmon satellite energy compared to the experi-
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mental spectrum, which confirms our analysis about the use of the TCTE instead of the

TCTC dielectric function. The improvement is still not large enough, but this might be due

to the fact that we have evaluated the TCTE in its simplest approximation, the TDLDA

which is known to underestimate the exchange-correlation contribution.

Besides the photoemission spectrum, the one-body Green’s function G also provides the

total energies because one can show that the ground state expectation value of a certain

many-body Hamiltonian can be written as an energy functional of G, i.e. E[G]. Once G

is obtained, the total energy can be calculated using the proper energy functional E[G].

The total energies of the GWAs and CEAs are studied in Chapter 7 using two different

energy functionals in the hole-plasmon coupling Hamiltonians. In particular, I start from

the most widely used Galitskii-Migdal total energy formula that yields the exact energy

of the exact many-body Hamiltonian, and find that the Galitskii-Migdal formula is not

the exact functional of the hole-plasmon coupling Hamiltonian: the exact spectral func-

tion does not yield the exact total energy using the Galitskii-Migdal formula. This is

because the hole-plasmon coupling Hamiltonian is an approximate system with respect to

the exact many-body Hamiltonian, consequently the exact total energy functional of the

hole-plasmon coupling Hamiltonian becomes the so called hole-plasmon coupling total en-

ergy formula whose derivation has been provided in my thesis. This reflects the importance

in the consistency of approximations, which is one of the major issues illustrated in this

manuscript: “using the exact functional or not?”

• One exact relation of the Green’s function in MBPT is the Dyson equation G =

G0 + G0ΣG. This means that the exact Σ leads to the exact G. But when Σ has

been approximated as ΣGW (i.e. the GWA), should we still use the Dyson equation to

calculate G leading to the GW approximation or not? This manuscript has illustrated

that G from the cumulant expansion approximation has better performance than the

one from the Dyson equation using ΣGW . In particular, the cumulant functional is

shown to be the exact one for the core-level quasi-boson model. Although the GW

self-energy is an approximation to the real many-body self-energy, it yields the exact
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Green’s function using the cumulant expansion approximation in the approximate

quasi-boson model.

• Similarly, the exact energy functional of the exact many-body Hamiltonian has been

shown to be the Galitskii-Migdal formula EGMtot[G]. However once some approximate

G is plugged in the Galitskii-Migdal formula, the final total energy does not only

reflect the performance of the approximate G, but also the energy functional because

we have to take into account whether the approximation is consistent or not. The

exact total energy functional of the hole-plasmon coupling Hamiltonian is the hole-

plasmon coupling total energy formula. The Green’s function from the GWA or CEA

is an approximate solution of the hole-plasmon coupling such that for the approximate

Hamiltonians, the HPCtot is better than the GMtot using these approximate Green’s

functions.

The total-energy studies in this manuscript show that all HPCtots calculated using

the approximate Green’s functions have better performance than the GMtots using the

same approximate Green’s function. In particular the total energy calculated using the

constrained retarded cumulant Green’s function leads to the best total energy compared to

the exact total energy of the hole-plasmon coupling Hamiltonian. Also the EscGW0 shows

excellent results when used in the hole-plasmon coupling total energy formula. However, all

the total energy studies are still based on the model Hamiltonians in this thesis. Although

I have provided an implementation of the hole-plasmon coupling total energy formula in

real system calculations, its performance is left to be studied in real materials.

8.2 Future Work

1. The first and the most important future work, from the fundamental theory devel-

opment point of view, is to apply the derivation of the formalism provided in this

manuscript. The potential applications of this formalism to produce increasingly ac-

curate approximations is left to be explored more. In particular, the constrained

retarded cumulant proposed in this manuscript is not yet derived from the full func-

tional differential equation of the one-particle Green’s function. However, the idea
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of the constrained retarded cumulant provides some insight for finding better ansatz

Green’s functions in our derivation formalism, such that we can go further. There-

fore, the next step will be to look for an improved ansatz that yields better Green’s

functions (possibly better than the constrained retarded cumulant) in the description

photoemission.

2. The calculated sodium photoemission spectrum is still not good enough compared

to the experimental spectrum. This might be cured by improving the description of

the dynamically screened Coulomb interaction W using a better test charge-test elec-

tron screened Coulomb interaction interaction than the time-dependent local-density

approximation.

3. A suggestion for an implementation of the hole-plasmon coupling total energy formula

derived in my thesis has been provided for real system calculations, thus in the next

step we will test its performance in some real systems, starting from the homogeneous

electron gas and sodium.

4. The hole-plasmon coupling Hamiltonian has been used to illustrate the approximate

spectral functions and the total energies in my thesis, however, a derivation starting

from the exact electronic many-body Hamiltonian and putting into evidence which are

the most important approximations in order to arrive at the hole-plasmon coupling

model Hamiltonian is still missing. Therefore, we still cannot estimate quantitatively

the quality of this approximate hole-plasmon coupling model Hamiltonian compared

to real many-body systems. The linearization and decoupling approximations to the

equation-of-motion of the one-body Green’s function represent the physics of the ap-

proximations involved in the Hamiltonian, but for an explicit discussion of the total

energy it would be easier to perform the equivalent steps directly on the Hamiltonian.

This is left for future work.
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Appendix A

Useful formulas

I summarize some useful formulas in this section.

The Fourier transforms used in this thesis are

f(ω) =

∫ +∞

−∞
dtf(t)eiωt ; (A.1a)

f(t) =
1

2π

∫ +∞

−∞
dωf(ω)e−iωt . (A.1b)

The differential representations of the Heaviside step function are

θ(τ) = lim
η→0+

− 1

2πi

∫ +∞

−∞
dω

e−iωτ

ω + iη
; (A.2a)

θ(−τ) = lim
η→0+

1

2πi

∫ +∞

−∞
dω

e−iωτ

ω − iη , (A.2b)

where the infinitesimally small η → 0+ is needed for the convergence of the integral.

The Cauchy principle value is defined as

1

ω − ε± iη = P 1

ω − ε ∓ iπδ(ω − ε) . (A.3)

In this thesis we refer to the conservation of spectral weight as

∫ ∞

−∞
dωAk(ω) = 1 . (A.4)

210



where k represents a certain quantum state.

The conservation of particle number refers to

∫ µ

−∞
dω
∑

i

Ai(ω) = N , (A.5)

where the sum runs over all states with one certain spin, and N is the total particle number.

The commutation and anti-commutation rules that will be used in this thesis

{
ψ̂(x, t), ψ̂†(x′, t)

}
= ψ̂(x, t)ψ̂†(x′, t) + ψ̂†(x′, t)ψ̂(x, t) = δ(x− x′) ; (A.6)

[
φ̂(x, t), φ̂†(x′, t)

]
= φ̂(x, t)φ̂†(x′, t)− φ̂†(x′, t)φ̂(x, t) = δ(x− x′) , (A.7)

where ψ̂ and φ̂ are the field operators of the fermions and bosons. The first equation is the

anti-commutation rule for Fermions and the second equation is the commutation rule for

bosons. Other useful rules are

[A+B,C] = [A,C] + [B,C] ; (A.8a)

[A,BC] = [A,B]C +B[A,C] ; (A.8b)

[A,BC] = {A,B}C −B{A,C} ; (A.8c)

[AB,C] = A[B,C] + [A,C]B ; (A.8d)

[AB,C] = A{B,C} − {A,C}B ; (A.8e)

{A,BC} = {A,B}C −B[A,C] . (A.8f)
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Appendix B

The equation-of-motion of the

one-particle Green’s function

The derivation of the equation-of-motion of the one-particle Green’s function can be found

in many textbooks. Here I recommend the book of Kadanoff and Baym [80], which intro-

duced the equation-of-motion in non-equilibrium, which is often called the Kadanoff-Baym

equation.

B.1 In equilibrium

To derive the equation-of-motion of the one-particle Green’s function in equilibrium with-

out the external perturbation, we work with the following general Hamiltonian in second

quantization:

Ĥ =

∫
dxψ̂†(x)ĥ0(x)ψ̂(x) +

1

2

∫
dx1x2ψ̂

†(x1)ψ̂†(x2)vc(x1, x2)ψ̂(x2)ψ̂(x1) , (B.1)

where ĥ0 = −∇2

2 + Vext is the non-interacting part of the Hamiltonian1, and ψ̂(x) is the

field operator in the Schrödinger picture.

1Note that ĥ0 and vc are spin-independent. For simplicity, we put spin arguments also in the spin-
independent quantities, but it is understood that this Hamiltonian is equivalent to the initial many-body
Hamiltonian we have discussed before in Eq. (2.1).
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We have the definition of the one-particle Green’s function in equilibrium that reads

(see equation (1.14))

iG(1, 2) ≡
〈

Ψ0

∣∣∣T
[
ψ̂H(1)ψ̂†H(2)

]∣∣∣Ψ0

〉
. (B.2)

Taking the derivative of G with respect to t1 (the derivative with respect to t2 is ana-

logues), we have

∂

∂t1

(
T
[
ψ̂H(1)ψ̂†H(2)

])
=

∂

∂t1

(
θ(t1 − t2)ψ̂H(1)ψ̂†H(2)− θ(t2 − t1)ψ̂†H(2)ψ̂H(1)

)

= δ(t1 − t2)ψ̂H(1)ψ̂†H(2) + δ(t2 − t1)ψ̂†H(2)ψ̂H(1)

+ θ(t1 − t2)
∂ψ̂H(1)

∂t1
ψ̂†H(2)− θ(t2 − t1)ψ̂†H(2)

∂ψ̂H(1)

∂t1

= δ(t1 − t2)
(
ψ̂H(1)ψ̂†H(2) + ψ̂†H(2)ψ̂H(1)

)
+ T

[
∂ψ̂H(1)

∂t1
ψ̂†H(2)

]

= δ(1− 2) + T

[
∂ψ̂H(1)

∂t1
ψ̂†H(2)

]
. (B.3)

Thus to have the equation-of-motion of G, we need to calculate first the equation-of-

motion of the field operator in the Heisenberg picture. It reads

∂ψ̂H(x′, t)

∂t
=
[
ψ̂H(x′, t), Ĥ

]
= eiĤt

[
ψ̂(x′), Ĥ

]
e−iĤt , (B.4)

which further requires the commutator of the field operator in the Schrödinger picture and

the Hamiltonian. To calculate this commutator, we separate the Hamiltonian (B.1) into

the one-particle and two-particle parts as

Ĥ = ĥ+ v̂ , (B.5)
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and calculate the two parts separately using the commutation properties (A.8). We start

from the one-particle part:

[
ψ̂(x′), ĥ

]
=

∫
dx
[
ψ̂H(x′), ψ̂†(x)ĥ0(x)ψ̂(x)

]

=

∫
dx
({
ψ̂(x′), ψ̂†(x)

}
ĥ0(x)ψ̂(x)− ψ̂†

{
ψ̂(x′), ĥ0(x)ψ̂(x)

})

=

∫
dx
(
δ(x− x′)ĥ0(x)ψ̂(x)− ψ̂†ĥ0(x)

{
ψ̂(x′), ψ̂(x)

})

= ĥ0(x′)ψ̂(x′) . (B.6)

The commutation of the field operator and the two-particle part reads

[
ψ̂(x′), v̂

]
=

1

2

∫
dx1x2

[
ψ̂(x′), ψ̂†(x1)ψ̂†(x2)vc(x1, x2)ψ̂(x2)ψ̂(x1)

]

=
1

2

∫
dx1x2

({
ψ̂(x′), ψ̂†(x1)

}
ψ̂†(x2)vc(x1, x2)ψ̂(x2)ψ̂(x1)

)

− 1

2

∫
dx1x2

(
ψ̂†(x1)

{
ψ̂(x′), ψ̂†(x2)vc(x1, x2)ψ̂(x2)ψ̂(x1)

})

=
1

2

∫
dx1x2

(
δ(x′ − x1)ψ̂†(x2)vc(x1, x2)ψ̂(x2)ψ̂(x1)

)

− 1

2

∫
dx1x2

(
ψ̂†(x1)

{
ψ̂(x′), ψ̂†(x2)

}
vc(x1, x2)ψ̂(x2)ψ̂(x1)

)

+
1

2

∫
dx1x2

(
ψ̂†(x2)

[
ψ̂(x′), vc(x1, x2)ψ̂(x2)ψ̂(x1)

])
→≡ 0

=
1

2

∫
dx2

(
ψ̂†(x2)vc(x

′, x2)ψ̂(x2)ψ̂(x′)
)

− 1

2

∫
dx1

(
ψ̂†(x1)vc(x1, x

′)ψ̂(x′)ψ̂(x1)
)

=
1

2

∫
dx
(
ψ̂†(x)vc(x

′, x)ψ̂(x)ψ̂(x′)− ψ̂†(x)vc(x, x
′)ψ̂(x′)ψ̂(x)

)

=

∫
dx
(
ψ̂†(x)vc(x

′, x)ψ̂(x)ψ̂(x′)
)
. (B.7)

Finally we have

[
ψ̂(x′), Ĥ

]
= ĥ0(x′)ψ̂(x′) +

∫
dx
(
ψ̂†(x)vc(x

′, x)ψ̂(x)ψ̂(x′)
)
, (B.8)
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and the equation-of-motion of the field operator in the Heisenberg picture reads

∂ψ̂H(x′, t)

∂t
= eiĤt

[
ψ̂(x′), Ĥ

]
e−iĤt

= −iĥ0(x′)ψ̂H(x′, t)− i
∫

dx
(
ψ̂†H(x, t)vc(x

′, x)ψ̂H(x, t)ψ̂H(x′, t)
)
. (B.9)

Putting the above equation back into equation (B.3) we have

i
∂G(1, 2)

∂t1
= δ(1− 2) +

〈
Ψ0

∣∣∣∣∣T
[
∂ψ̂H(1)

∂t1
ψ̂†H(2)

]∣∣∣∣∣Ψ0

〉

= δ(1− 2)− iĥ0(x1) 〈Ψ0|T
[
ψ̂H(1)ψ̂†H(2)

]
|Ψ0〉

− i
∫

dx3vc(x1, x3) 〈Ψ0|T
[
ψ̂†H(x3, t1)ψ̂H(x3, t1)ψ̂H(x1, t1)ψ̂†H(x2, t2)

]
|Ψ0〉 .

(B.10)

Note that the product ψ̂†H(x3, t1)ψ̂H(x3, t1)ψ̂H(x1, t1) originates from a single operator,

i.e., ∂ψ̂(x,t)
∂t , so that this product must remain together and be regarded as one unit. Hence

the only possible time orderings of the above equation are

T
[
ψ̂†H(x3, t1)ψ̂H(x3, t1)ψ̂H(x1, t1)ψ̂†H(x2, t2)

]

= ψ̂†H(x3, t1)ψ̂H(x3, t1)ψ̂H(x1, t1)ψ̂†H(x2, t2) → t1 > t2 ; (B.11a)

T
[
ψ̂†H(x3, t1)ψ̂H(x3, t1)ψ̂H(x1, t1)ψ̂†H(x2, t2)

]

= −ψ̂†H(x2, t2)ψ̂†H(x3, t1)ψ̂H(x3, t1)ψ̂H(x1, t1) → t2 > t1 . (B.11b)

Using the anti-commutation rule ψ̂H(x2, t1)ψ̂H(x1, t1) = −ψ̂H(x1, t1)ψ̂H(x2, t1) that

holds for the field operators in the Heisenberg picture of equal times, we can write these

four operators as

T
[
ψ̂†H(x3, t1)ψ̂H(x3, t1)ψ̂H(x1, t1)ψ̂†H(x2, t2)

]

= −T
[
ψ̂H(x1, t1)ψ̂H(x3, t1)ψ̂†H(x3, t1)ψ̂†H(x2, t2)

]
,
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thus we have2

〈Ψ0|T
[
ψ̂†H(x3, t1)ψ̂H(x3, t1)ψ̂H(x1, t1)ψ̂†H(x2, t2)

]
|Ψ0〉 = G2(x1t1, x3t

+
1 ;x2t2, x3t

++
1 ) ,

(B.12)

where G2 is the two-particle Green’s function defined as

G2(1, 2; 3, 4) ≡ 1

(i)2

〈
Ψ0

∣∣∣T
[
ψ̂H(1)ψ̂H(2)ψ̂†H(4)ψ̂†H(3)

]∣∣∣Ψ0

〉
. (B.13)

Putting G2 into equation (B.10), we finally have the equation-of-motion of the one-

particle Green’s function as

(
i
∂

∂t1
− ĥ0(x1)

)
G(1, 2) = δ(1− 2)− i

∫
dx3vc(x1, x3)G2(x1t1, x3t

+
1 ;x2t2, x3t

++
1 )

= δ(1− 2)− i
∫

d3 vc(1, 3
+)G2(1, 3+; 2, 3++)

∣∣∣∣
t3=t1

. (B.14)

The equation-of-motion of the one-particle Green’s function yields the two-particle

Green’s function whose equation-of-motion will yield the three-particle Green’s function,

and so on. For a non-interacting system where vc = 0, we have

(
i
∂

∂t1
− ĥ0(x1)

)
G0(1, 2) = δ(1− 2) . (B.15)

Its inverse reads

G−1
0 (1, 2) =

(
i
∂

∂t1
− ĥ0(x1)

)
δ(1− 2) . (B.16)

Hence Eq. (B.14) becomes G−1
o G = 1− ivG2. Multiplying G0 yields G = G0− iG0vG2,

and finally we have

G(1, 2) = G0(1, 2)− i
∫

d34G0(1, 3)vc(3, 4
+)G2(3, 4+; 2, 4++) . (B.17)

2Here we have introduced infinitesimal time differences to guarantee the correct order of all field operators.
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B.2 In non-equilibrium

As mentioned above, the equation-of-motion of the one-particle Green’s function yields the

two-particle Green’s function. The equation-of-motion of the two-particle Green’s function

yields the three-particle Green’s function. It is impossible to calculate such an infinite

series. In order to truncate this infinite chain and obtain a closed expression, we can use

Schwinger’s functional derivative approach [54], which introduces a fictitious local external

and time-dependent perturbation φ(x, t) in the initial equilibrium Hamiltonian (B.1) such

that we can work with the non-equilibrium Hamiltonian shown below:

Ĥ =

∫
dxψ̂†(x)ĥ0(x)ψ̂(x) +

∫
dxψ̂†(x)φ(x, t)ψ̂(x)

+
1

2

∫
dx1x2ψ̂

†(x1)ψ̂†(x2)vc(x1, x2)ψ̂(x2)ψ̂(x1) . (B.18)

Note that the above Hamiltonian is time-dependent because of the time-dependent ex-

ternal potential. The corresponding non-equilibrium one-particle Green’s function reads

iG(1, 2;φ) ≡

〈
Ψ0

∣∣∣T
[
Û ψ̂H(1)ψ̂†H(2)

]∣∣∣Ψ0

〉

〈Ψ0|T
[
Û
]
|Ψ0〉

, (B.19)

where the time-evolution operator Û is defined as

Û ≡ exp

(
−i
∫

d1ψ̂†H(1)φ(1)ψ̂H(1)

)
= exp

(
−i
∫

d1φ(1)ρ(1)

)
, (B.20)

and we have defined the density operator ρ̂(1) ≡ ψ̂†H(1)ψ̂H(1). Working in the interaction

(Dirac) picture, we have

∣∣∣ψ̂D(x, t)
〉

= Û(t, t0)
∣∣∣ψ̂D(x, t0)

〉
, (B.21)

where the time-evolution operator in the Dirac picture reads

Û(t, t0) = exp

(
−i
∫ t

t0

dτ φ̃(τ)

)
, (B.22)

217



and

φ̃(τ) =

∫
dxψ̂†D(x, τ)φ(x, τ)ψ̂D(x, τ) . (B.23)

The relation between operators in Heisenberg and Dirac pictures is

ψ̂H(x, t) = Û(t0, t)ψ̂D(x, t)Û(t, t0) , (B.24)

where t0 is the time where one decides the quantities in the two pictures to coincide. The

field operator in Dirac picture satisfies

i
∂ψ̂D(x, t)

∂t
=
[
ψ̂D(x, t), Ĥ(φ = 0)

]
, (B.25)

which is the same as the equilibrium (φ = 0) Heisenberg operator (B.4). Therefore, the

one-particle Green’s function in non-equilibrium can be written in the Dirac picture as

iG(1, 2;φ) =

〈
Ψ0

∣∣∣T
[
Û(−∞,∞)ψ̂D(1)ψ̂†D(2)

]∣∣∣Ψ0

〉

〈Ψ0|Û(−∞,∞)|Ψ0〉
. (B.26)

We need to take the time derivative of G(1, 2;φ) with respect to t1 (t2 is analogous).

Note that there is no t1 dependence in the denominator of equation (B.26). Thus we only

need to evaluate the time-ordering in the nominator, where we have for (−∞ < t1 < t2 <∞)

T
[
Û ψ̂H(1)ψ̂†H(2)

]
= T

[
Û(∞, t1)

]
ψ̂D(1)T

[
Û(t1, t2)

]
ψ̂†D(2)T

[
Û(t2,−∞)

]

= T
[
Û(∞, t1)

]
ψ̂D(1)T

[
Û(t1,−∞)

]
ψ̂†D(2)

= T
[
exp

(
i

∫ ∞

t1

d2φ(2)ρ(2)

)]
ψ̂D(1)T

[
exp

(
−i
∫ t1

−∞
d2φ(2)ρ(2)

)]
ψ̂†D(2) .

(B.27)

Here the density operator is defined in the Dirac picture ρ̂D(1) = ψ̂†D(1)ψ̂D(1). One can

show that ρD(1) ≡ ρH(1)

ρH(1) = ψ̂†H(1)ψ̂H(1) = Û(t0, t1)ψ̂†D(1)ψ̂D(1)Û(t1, t0)

= ρD(1)Û(t0, t1)Û(t1, t0) ≡ ρD(1) . (B.28)
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Note that the two exponentials are function of t1 so we name them as

f1(t1) = exp

(
i

∫ ∞

t1

d2φ(2)ρ(2)

)
; (B.29)

f2(t1) = exp

(
−i
∫ t1

−∞
d2φ(2)ρ(2)

)
. (B.30)

Now the derivative with respect to t1 becomes

∂f1(t1)

∂t1
=

∂

∂t1

(
i

∫ ∞

t1

d2φ(2)ρ(2)

)
exp

(
i

∫ ∞

t1

d2φ(2)ρ(2)

)

= −i
∫

dx2φ(x2, t1)ρ(x2t1)f1(t1) ; (B.31)

∂f2(t1)

∂t1
= −i

∫
dx2φ(x2, t1)ρ(x2t1)f2(t1) . (B.32)

Then the derivative of t1-dependent part of the Green’s function with respect to t1

becomes

∂f1(t1)

∂t1
ψ̂D(1)f2(t1) + f1(t1)

∂ψ̂D(1)

∂t1
f2(t1) + f1(t1)ψ̂D(1)

∂f2(t1)

∂t1

= −i
∫

dx2φ(x2, t1)ρ(x2t1)f1(t1)ψ̂D(1)f2(t1)

− if1(t1)ψ̂D(1)

∫
dx2φ(x2, t1)ρ(x2t1)f2 + f1(t1)

∂ψ̂D(1)

∂t1
f2(t1)

= −if1(t1)

∫
dx2φ(x2, t1)

{
ψ̂D(1), ρ(x2, t1)

}
f2(t1) + f1(t1)

∂ψ̂D(1)

∂t1
f2(t1)

= −if1(t1)

∫
dx2φ(x2, t1)δ(x1 − x2)ψ̂D(1)f2(t1) + f1(t1)

∂ψ̂D(1)

∂t1
f2(t1)

= −if1(t1)φ(1)ψ̂D(1)f2(t1) + f1(t1)
∂ψ̂D(1)

∂t1
f2(t1)

= −iT
[
Û ψ̂H(1)

]
φ(1) + T

[
∂ψ̂H(1)

∂t1

]
. (B.33)

We have used the property in (A.8)

{
ψ̂D(1), ρ(x2, t1)

}
=
{
ψ̂D(1), ψ̂†D(x2, t1)

}
ψ̂D(x2, t1)− ψ̂†D(x2, t1)

[
ψ̂D(x2, t1), ψ̂D(1)

]

= δ(x1 − x2)ψ̂D(x1, t1) . (B.34)
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The second term in equation (B.33) has been calculated when we derive the equation-

of-motion in equilibrium (see (B.3)), and the equation-of-motion of the field operator in

Heisenberg picture has been derived in equation (B.9). Putting back ψ̂†(2) gives

i
∂G(1, 2;φ)

∂t1
=

〈
Ψ0

∣∣∣∣∣
∂T

[
Û ψ̂H(1)ψ̂†H(2)

]
∂t1

∣∣∣∣∣Ψ0

〉

〈Ψ0|T
[
Û
]
|Ψ0〉

= G(1, 2;φ)
(
φ(1) + ĥ0(x1)

)
+ δ(1− 2)− i

∫
dx3vc(x1, x3)G2(x1t1, t3t1;x2t2, x3t1;φ) .

(B.35)

Finally, we have the equation-of-motion of the Green’s function in non-equilibrium that

reads

(
i
∂

∂t1
− ĥ0(x1)− φ(1)

)
G(1, 2;φ) + i

∫
d3 vc(1, 3

+)G2(1, 3+; 2, 3++;φ)

∣∣∣∣
t3=t1

= δ(1− 2) .

(B.36)

We consider now the change of G(φ) resulting from an infinitesimal change of the ex-

ternal perturbation φ,

φ(3)→ φ(3) + δφ(3) . (B.37)

Then the change of G(φ) is

iδG(1, 2;φ) = δ

〈
Ψ0

∣∣∣T
[
Û ψ̂H(1)ψ̂†H(2)

]∣∣∣Ψ0

〉

〈Ψ0|T
[
Û
]
|Ψ0〉

=

〈
Ψ0

∣∣∣T
[
δÛ ψ̂H(1)ψ̂†H(2)

]∣∣∣Ψ0

〉

〈Ψ0|T
[
Û
]
|Ψ0〉

−

〈
Ψ0

∣∣∣T
[
δÛ
]∣∣∣Ψ0

〉〈
Ψ0

∣∣∣T
[
Û ψ̂H(1)ψ̂†H(2)

]∣∣∣Ψ0

〉

〈Ψ0|T
[
Û
]
|Ψ0〉2

.

(B.38)

The functional derivative of Û with respect to φ reads

δÛ

δφ(3)
=

δ

δφ(3)
exp

(
−i
∫

d1φ(1)ρ̂(1)

)
= −iρ̂(3)Û . (B.39)
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Then we have

i
δG(1, 2;φ)

δφ(3)
= −i

〈
Ψ0

∣∣∣T
[
Û ψ̂H(1)ψ̂†H(2)ρ(3)

]∣∣∣Ψ0

〉

〈Ψ0|T
[
Û
]
|Ψ0〉

+ i

〈
Ψ0

∣∣∣T
[
Ûρ(3)

]∣∣∣Ψ0

〉〈
Ψ0

∣∣∣T
[
Û ψ̂H(1)ψ̂†H(2)

]∣∣∣Ψ0

〉

〈Ψ0|T
[
Û
]
|Ψ0〉2

= i

〈
Ψ0

∣∣∣T
[
Û ψ̂H(1)ψ̂H(3)ψ̂†H(3)ψ̂†H(2)

]∣∣∣Ψ0

〉

〈Ψ0|T
[
Û
]
|Ψ0〉

− i

〈
Ψ0

∣∣∣T
[
Û ψ̂H(3)ψ̂†H(3+)

]∣∣∣Ψ0

〉〈
Ψ0

∣∣∣T
[
Û ψ̂H(1)ψ̂†H(2)

]∣∣∣Ψ0

〉

〈Ψ0|T
[
Û
]
|Ψ0〉2

= i
(
−G2(1, 3; 2, 3+;φ) +G(3, 3+;φ)G(1, 2;φ)

)
, (B.40)

which yields

G2(1, 3; 2, 3+;φ) =

(
G(3, 3+;φ)− δ

δφ(3)

)
G(1, 2;φ) . (B.41)

Taking the above equation back to equation (B.36), we have

(
i
∂

∂t1
− ĥ0(x1)− φ(1)

)
G(1, 2;φ) + i

∫
d3vc(1, 3

+)

(
G(3+, 3++;φ)− δ

δφ(3)

)
G(1, 2;φ)

= δ(1− 2) .

When vc = 0, we have the analogue to Eq. (B.15),

(
i
∂

∂t1
− ĥ0(x1)− φ(1)

)
G0(1, 2;φ) = δ(1− 2) . (B.42)

Proceeding in a similar way as in the equilibrium case, we obtain

G(1, 2;φ) = G0(1, 2) +

∫
d3G0(1, 3)φ(3)G(3, 2;φ)

− i
∫

d34G0(1, 3)vc(3, 4
+)G(4, 4++;φ)G(3, 2;φ)

+ i

∫
d34G0(1, 3)vc(3, 4

+)
δG(3, 2;φ)

δφ(4)
. (B.43)
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This full functional differential equation can be simplified by introducing the Hartree

potential in presence of the external perturbation as:

G(1, 2;φ) = G0(1, 2) +

∫
d3G0(1, 3)φ(3)G(3, 2;φ)

∫
d3G0(1, 3)VH(3;φ)G(3, 2;φ)

+ i

∫
d34G0(1, 3)vc(3, 4

+)
δG(3, 2;φ)

δφ(4)
, (B.44)

where

VH(3;φ) = −i
∫

d4vc(3, 4
+)G(4, 4++;φ) . (B.45)
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Appendix C

New derivations

In this section, I am going to show a new way of treating the full functional differential

(FDE) equation (B.44). The FDE reads

G(1, 2;φ) = G0(1, 2) +G0(1, 3̄)φ(3̄)G(3̄, 2;φ) +G0(1, 3̄)VH(3̄;φ)G(3̄, 2;φ)

+G0(1, 3̄)vc(3̄, 4̄
+)
δG(3̄, 2;φ)

δφ(4̄)
, (C.1)

where

VH(3;φ) = −i
∫

d4vc(3, 4
+)G(4, 4++;φ) , (C.2)

is the Hartree potential in presence of the external perturbation φ, and f(1̄)g(1̄) ≡
∫

d1f(1)g(1). Note that the above equation is the exact full functional differential equation

(FDE), not the linearized functional differential equation (LDE). We can introduce the

Hartree Green’s function in presence of φ using the following Dyson equation:

GH(1, 2;φ) = G0(1, 2) +G0(1, 3̄)(φ(3) + VH(3̄;φ))GH(3̄, 2;φ) , (C.3)

such that Eq. (C.1) can be written in terms of GH(1, 2;φ), which reads

G(1, 2;φ) = GH(1, 2;φ) + iGH(1, 3̄;φ)vc(3̄, 4̄
+)
δG(3̄, 2;φ)

δφ(4̄)
, (C.4)
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Now we can introduce an ansatz self-energy Σ̃ and the corresponding ansatz Green’s

function G̃ from the following Dyson equation

G̃(1, 2;φ) ≡ GH(1, 2;φ) +GH(1, 3̄;φ)Σ̃(3̄, 4̄;φ)G̃(4̄, 2;φ) ;

= G0(1, 2) +G0(1, 3̄)
(
φ(3̄)δ(3̄, 4̄) + VH(3̄;φ)δ(3̄, 4̄) + Σ̃(3̄, 4̄;φ)

)
G̃(4̄, 2;φ) .

(C.5)

Note that, if the ansatz self-energy Σ̃ was the exact self-energy of the system, the ansatz

Green’s function G̃ would be the exact Green’s function. On the other hand, if Σ̃ is some

approximate self-energy, G̃ becomes the approximate Green’s function corresponding to

the self-energy, because G̃ and Σ̃ have the one-to-one correspondence defined by the above

Dyson equation.

The quantities in the bracket of above equation (C.5) can be re-grouped into a new

effective potential φ̃, which reads

φ̃(3, 4) = φ(3)δ(3, 4) + VH(3;φ)δ(3, 4) + Σ̃(3, 4;φ) . (C.6)

Now we can subtract and add the term GHΣ̃G in Eq. (C.4), leading to

G(1, 2;φ) = GH(1, 2;φ) + iGH(1, 3̄;φ)vc(3̄, 4̄
+)
δG(3̄, 2;φ)

δφ(4̄)

+GH(1, 3̄;φ)Σ̃(3̄, 4̄;φ)G(4̄, 2;φ)−GH(1, 3̄;φ)Σ̃(3̄, 4̄;φ)G(4̄, 2;φ)

= G̃(1, 2;φ) + iG̃(1, 3̄;φ)vc(3̄, 4̄
+)
δG(3̄, 2;φ)

δφ(4̄)
− G̃(1, 3̄;φ)Σ̃(3̄, 4̄;φ)G(4̄, 2;φ) .

(C.7)

We can now use the chain rule on the differential term of the above equation, yielding

δG(3̄, 2;φ)

δφ(4̄)
=
δG(3̄, 2;φ)

δφ̃(5̄, 6̄)

δφ̃(5̄, 6̄)

δφ(4̄)

=
δG(3̄, 2;φ)

δφ̃(5̄, 6̄)

(
δ(4, 5, 6)− ivc(5̄, 7̄+)δ(5, 6)

δG(7̄, 7̄+)

δφ(4̄)
+
δΣ̃(5̄, 6̄;φ)

δφ(4̄)

)

=
δG(3̄, 2;φ)

δφ̃(5̄, 6̄)

(
δ(4, 5, 6) + vc(5̄, 7̄

+)δ(5, 6)χ(7̄, 4̄;φ) +
δΣ̃(5̄, 6̄;φ)

δφ(4̄)

)
. (C.8)
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I have used the definition of the polarizability in Eq. (2.26) to derive the above

equation. Now plugging the above equation back to Eq. (C.7), we get

G(1, 2;φ) = G̃(1, 2;φ)− G̃(1, 3̄;φ)Σ̃(3̄, 4̄;φ)G(4̄, 2;φ)

+ iG̃(1, 3̄;φ)vc(3̄, 4̄
+)
δG(3̄, 2;φ)

δφ̃(5̄, 6̄)

(
δ(4, 5, 6) + vc(5̄, 7̄

+)δ(5, 6)χ(7̄, 4̄;φ) +
δΣ̃(5̄, 6̄;φ)

δφ(4̄)

)

= G̃(1, 2;φ)− G̃(1, 3̄;φ)Σ̃(3̄, 4̄;φ)G(4̄, 2;φ)

+ iG̃(1, 3̄;φ)vc(3̄, 4̄
+)
δG(3̄, 2;φ)

δφ̃(5̄, 6̄)

(
ε−1
TCTC(4̄, 5̄;φ)δ(5, 6) +

δΣ̃(5̄, 6̄;φ)

δφ(4̄)

)
, (C.9)

where the test-charge test-charge inverse dielectric function ε−1
TCTC is defined in Eq.

(2.25).

Up to now, we did not introduce any approximation in the FDE. The above equation

is just a re-formulation of the FDE such that it is still exact. When the derivative of Σ̃

is neglected, and when ε−1
TCTC is supposed to be independent of φ, we are back to the

linearization approximation (see the LDE (3.11)).

Start from the Kohn-Sham exchange-correlation potential

Here, I am going to use for the ansatz self-energy the Kohn-Sham local exchange–correlation

potential, i.e. Σ̃(1, 2) ≡ Vxc(1)δ(1, 2). Consequently G̃(1, 2) ≡ Gks(1, 2). With this choice,

Eq. (C.9) becomes

G(1, 2;φ) = Gks(1, 2;φ) + iGks(1, 3̄;φ)vc(3̄, 4̄)
δG(3̄, 2;φ)

δφ̃(5̄)

(
ε−1
TCTE(4̄, 5̄;φ) +

δVxc(5̄;φ)

δφ(4̄)

)

−Gks(1, 3̄;φ)Vxc(3̄;φ)G(3̄, 2;φ) . (C.10)

We can now use the chain rule:

δVxc(5;φ)

δφ(4)
=
δVxc(5;φ)

δρ(6̄;φ)

δρ(6̄;φ)

δφ(4)
= fxc(5, 6̄;φ)χ(6̄, 4) , (C.11)
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where fxc = δVxc/δρ [96] is the TDDFT kernel. Plugging the above equation into Eq.

(C.10), we have

G(1, 2;φ) = Gks(1, 2;φ) + iGks(1, 3̄;φ)vc(3̄, 4̄)
δG(3̄, 2;φ)

δφ̃(5̄)

(
ε−1
TCTC(4̄, 5̄;φ) + fxc(5, 6̄;φ)χ(6̄, 4)

)

−Gks(1, 3̄;φ)Vxc(3̄;φ)G(3̄, 2;φ)

= Gks(1, 2;φ) + iGks(1, 3̄;φ)vc(3̄, 4̄)
δG(3̄, 2;φ)

δφ̃(5̄)
ε−1
TCTE(4̄, 5̄;φ)

−Gks(1, 3̄;φ)Vxc(3̄;φ)G(3̄, 2;φ) . (C.12)

The test-charge test-electron inverse dielectric function is defined as ε−1
TCTE =

1 + vcχ + fxcχ [97]. Following the idea of section 3.4, now we make an ansatz for the

Green’s function reading

G(1, 2;φ) = Gks(1, 3̄;φ)Ẽ(3̄, 2) . (C.13)

Eq. (C.12) becomes

Gks(1, 3̄;φ)Ẽ(3̄, 2) = Gks(1, 2;φ)−Gks(1, 3̄;φ)Vxc(3̄;φ)Gks(3̄, 6̄;φ)Ẽ(6̄, 2)

+ iGks(1, 3̄;φ)vc(3̄, 4̄)Gks(3̄, 5̄;φ)Gks(5̄, 6̄;φ)ε−1
TCTE(4̄, 5̄;φ)Ẽ(6̄, 2)

= Gks(1, 2;φ)−Gks(1, 3̄;φ)Vxc(3̄;φ)Gks(3̄, 6̄;φ)Ẽ(6̄, 2)

+ iGks(1, 3̄;φ)Gks(3̄, 5̄;φ)W TCTE(3̄, 5̄;φ)Gks(5̄, 6̄;φ)Ẽ(6̄, 2) . (C.14)

For arbitrary φ there is no solution for Ẽ, because Eq. (C.13) is an approximation.

However, for φ = 0 we obtain

G(1, 2) = Gks(1, 2) +Gks(1, 3̄)
(
ΣTCTE(3̄, 5̄)− Vxc(3̄)δ(3, 5)

)
G(5̄, 2) , (C.15)

where the test-charge test-electron self-energy is defined as

ΣTCTE(1, 2) = iGks(1, 2)W TCTE(1, 2) = iGks(1, 2)ε−1
TCTE(1, 3̄)vc(3̄, 2) , (C.16)
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following Ref. [97]. The above derivation shows that if we start from the Kohn-Sham local

exchange–correlation potential, the screening that appears is W TCTE = vcε
−1
TCTE , instead

of the test-charge test-charge one.

If the ansatz Green’s function in Eq. (C.13) becomes the one that gave the retarded

cumulant in Eq. (3.48), i.e.

G(1, 2;φ) =

∫
dx3Gφ(x1, x3, z1, z2)Ẽ(x3, x2, t1, t2) , (C.17)

we obtain

GRC(t12) = GRks(t12)eit12Vxc exp

[
−i
∫ t1

t2

dt4

∫ t1

t4

dt3 Σ̃R,TCTE
ii (t34)

]
. (C.18)

In the same way, ΣTCTE should also appear in the TOC96 and TOC11. This is a very

important step: it shows that we should make the self-energy that appears in the cumulant

consistent with the starting Green’s function. Moreover, it indicates a clear way to obtain

better and better approximations. In practice, one should start from the best available

self-energy, Σ̃ (e.g. Vxc, G0W0, etc.). Eq. (C.18) or equivalent tells us how to use this self-

energy in a cumulant form. If one had guessed the exact self-energy to start with, Σ̃ = Σ

and the correction would be zero, such that there will not be any double counting.

This suggests to first introduce the definitions of two different response functions:

χRPA(1, 2) = χ0(1, 2) + χ0(1, 3̄)vc(3̄, 4̄)χRPA(4̄, 2) ; (C.19a)

χTCTC(1, 2) = χ0(1, 2) + χ0(1, 3̄)
[
vc(3̄, 4̄) + fLDAxc (3̄, 4̄)

]
χTCTC(4̄, 2) ; (C.19b)

where χ0 ≡ GLDAks GLDAks , and fLDAxc ≡ δV LDA
xc /δρ.

Then the three different approximate screening W s used in this thesis are defined as

WRPA(1, 2) =
[
δ(1, 3) + vc(1, 4̄)χRPA(4̄, 3)

]
vc(3̄, 2) ; (C.20a)

W TCTC(1, 2) =
[
δ(1, 3) + vc(1, 4̄)χTCTC(4̄, 3)

]
vc(3̄, 2) ; (C.20b)

W TCTE(1, 2) =
[
δ(1, 3) + vc(1, 4̄)χTCTC(4̄, 3) + fxc(1, 4̄)χTCTC(4̄, 3)

]
vc(3̄, 2) . (C.20c)
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Appendix D

The relations between

time-ordered and retarded

quantities

D.1 General relations

The time-ordered and retarded quantities used in this thesis are defined as follows:

GT (1, 2) = θ(t1 − t2)G>(1, 2) + θ(t2 − t1)G<(1, 2) ≡ Ge(1, 2) +Gh(1, 2) ; (D.1a)

GR(1, 2) = θ(t1 − t2)
(
G>(1, 2)−G<(1, 2)

)
; (D.1b)

W T
c (1, 2) = θ(t1 − t2)W>(1, 2) + θ(t2 − t1)W<(1, 2) ≡W e

c (1, 2) +W h
c (1, 2) ; (D.1c)

WR
c (1, 2) = θ(t1 − t2)

(
W>(1, 2)−W<(1, 2)

)
; (D.1d)

ΣT
c (1, 2) = θ(t1 − t2)Σ>(1, 2) + θ(t2 − t1)Σ<(1, 2) ≡ Σe

c(1, 2) + Σh
c (1, 2) ; (D.1e)

ΣR
c (1, 2) = θ(t1 − t2)

(
Σ>(1, 2)− Σ<(1, 2)

)
. (D.1f)

The subscript c in the screened interaction W and self-energy Σ represent the correlation

part because only the correlation part is time-dependent.
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In frequency domain, these quantities have their spectral representations defined as:

GT (ω) =

∫ µ

−∞
dω′

A(ω′)

ω − ω′ − iη +

∫ ∞

µ
dω′

A(ω′)

ω − ω′ + iη
≡ Gh(ω) +Ge(ω) ; (D.2a)

GR(ω) =

∫ µ

−∞
dω′

A(ω′)

ω − ω′ + iη
+

∫ ∞

µ
dω′

A(ω′)

ω − ω′ + iη
≡ G<(ω) +G>(ω) ; (D.2b)

W T
c (ω) =

∫ µ

−∞
dω′

B(ω′)

ω − ω′ − iη +

∫ ∞

µ
dω′

B(ω′)

ω − ω′ + iη
≡W h

c (ω) +W e
c (ω) ; (D.2c)

WR
c (ω) =

∫ µ

−∞
dω′

B(ω′)

ω − ω′ + iη
+

∫ ∞

µ
dω′

B(ω′)

ω − ω′ + iη
≡W<

c (ω) +W>
c (ω) ; (D.2d)

ΣT
c (ω) =

∫ µ

−∞
dω′

D(ω′)

ω − ω′ − iη +

∫ ∞

µ
dω′

D(ω′)

ω − ω′ + iη
≡ Σh

c (ω) + Σe
c(ω) ; (D.2e)

ΣR
c (ω) =

∫ µ

−∞
dω′

D(ω′)

ω − ω′ + iη
+

∫ ∞

µ
dω′

D(ω′)

ω − ω′ + iη
≡ Σ<

c (ω) + Σ>
c (ω) . (D.2f)

Note that Im Σe
c(ω) = Im Σ>

c (ω) but Im Σh
c (ω) = − Im Σ<

c (ω).

The spectral functions of G, Wc and Σc are

A(ω) = − 1

π
ImG(ω)sgn(ω − µ) , (D.3a)

B(ω) = − 1

π
ImWc(ω)sgn(ω − µ) , (D.3b)

D(ω) = − 1

π
Im Σc(ω)sgn(ω − µ) . (D.3c)

D.2 The relations in the HPC-2

The retarded Hartree Green’s function of the two-level hole-plasmon coupling Hamiltonian

reads

GRH(t12) = θ(t1 − t2)
(
G>H(t12)−G<H(t12)

)
,
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where

G<H,+(t12) = ie−iε
H
+ (t1−t2) ;

G>H,+(t12) = 0 ;

G<H,−(t12) = 0 ;

G>H,−(t12) = −ie−iεH− (t1−t2) .

Note that εH± ≡ ε0 ± t in the two-level model. The plasmon propagator of the two-level

model in retarded form reads

WR(t12) = θ(t1 − t2)
(
W>(t12)−W<(t12)

)
; (D.4)

W>(t12) = −ig̃2e−iωp(t1−t2) , (D.5)

W<(t12) = −ig̃2eiωp(t1−t2) . (D.6)

The retarded GW self-energy in time domain can be calculated from

ΣR(t12) = θ(t1 − t2)
(
Σ>(t12)− Σ<(t12)

)
,

= iθ(t1 − t2)
(
G>H(t12)W>(t12)−G<H(t12)W<(t12)

)
,

= −ig̃2θ(t1 − t2)
(
e−i(ωp+2t)(t1−t2) + eiωp(t1−t2)

)
. (D.7)

Fourier transforming the above self-energy to frequency domain, we have

ΣR(ω) =
g̃2

2π

∫
dτ

∫
dω′

e−iω
′τ

ω′ + iη

(
e−i(ε

H
−+ωp)τ + e−i(ε

H
+−ωp)τ

)
eiωτ ,

=
g̃2

2π

∫
dτ

∫
dω′

(
e−i(ε

H
−+ωp−ω+ω′)τ

ω′ + iη
+
e−i(ε

H
+−ωp−ω+ω′)τ

ω′ + iη

)
,

= g̃2

∫
dω′
(
δ(εH− + ωp − ω + ω′)

ω′ + iη
+
δ(εH+ − ωp − ω + ω′)

ω′ + iη

)
,

=
g̃2

ω − (εH− + ωp) + iη
+

g̃2

ω − (εH+ − ωp) + iη
= Σ>(ω) + Σ<(ω) , (D.8)
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where I have used

∫
dτ e±iωτ = 2πδ(±ω) , (D.9)

δ(−ω) = δ(ω) . (D.10)
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Appendix E

List of publications

• Jianqiang Sky Zhou, J. Kas, Lorenzo Sponza, Igor Reshetnyak, Matteo Guzzo, Chris-

tine Giorgetti, Matteo Gatti, Francessco Sottile, J. J. Rehr, and Lucia Reining, Dy-

namical effects in electron spectroscopy, J. Chem. Phys. 143 184109 (2015).

• Jianqiang Sky Zhou and Lucia Reining, Dyson equations or cumulants? A unified

view on the calculation of spectral functions, in preparation.

• Jianqiang Sky Zhou and Lucia Reining, An improved description of the coupling of

excitations: the constrained retarded cumulant, in preparation.

• Jianqiang Sky Zhou and Lucia Reining, Total energies of the GW and cumulant ex-

pansion approximations from a fermion-boson coupling perspective, in preparation.

• Jianqiang Sky Zhou, Matteo Guzzo, Matteo Gatti, and Lucia Reining, Plasmon satel-

lites in sodium: beyond the random phase approximation, in preparation.
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[4] S. Hüfner. Photoelectron Spectroscopy: Principles and Applications. Advanced Texts
in Physics. Springer, 2003.

[5] Lars Hedin. New method for calculating the one-particle green’s function with appli-
cation to the electron-gas problem. Phys. Rev., 139:A796–A823, Aug 1965.

[6] F Aryasetiawan and O Gunnarsson. The gw method. Reports on Progress in Physics,
61(3):237, 1998.

[7] Wilfried G. Aulbur, Lars Jnsson, and John W. Wilkins. Quasiparticle calculations in
solids. volume 54 of Solid State Physics, pages 1 – 218. Academic Press, 1999.

[8] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–B871,
Nov 1964.

[9] F. Aryasetiawan, L. Hedin, and K. Karlsson. Multiple plasmon satellites in na and al
spectral functions from Ab Initio cumulant expansion. Phys. Rev. Lett., 77:2268–2271,
Sep 1996.

[10] M Vos, A S Kheifets, E Weigold, S A Canney, B Holm, F Aryasetiawan, and K Karls-
son. Determination of the energy-momentum densities of aluminium by electron mo-
mentum spectroscopy. Journal of Physics: Condensed Matter, 11(18):3645, 1999.

[11] Matteo Guzzo, Giovanna Lani, Francesco Sottile, Pina Romaniello, Matteo Gatti,
Joshua J. Kas, John J. Rehr, Mathieu G. Silly, Fausto Sirotti, and Lucia Reining.
Valence electron photoemission spectrum of semiconductors: Ab Initio description of
multiple satellites. Phys. Rev. Lett., 107:166401, Oct 2011.

[12] Johannes Lischner, Derek Vigil-Fowler, and Steven G. Louie. Physical origin of satel-
lites in photoemission of doped graphene: An Ab Initio gw plus cumulant study. Phys.
Rev. Lett., 110:146801, Apr 2013.

[13] L. Hedin, B.I. Lundqvist, and S. Lundqvist. New structure in the single-particle
spectrum of an electron gas. Solid State Communications, 5(4):237 – 239, 1967.

234



[14] B.I. Lundqvist. Single-particle spectrum of the degenerate electron gas. Physik der
kondensierten Materie, 6(3):193–205, 1967.

[15] Clas Blomberg and Birger Bergersen. Spurious structure from approximations to the
dyson equation. Canadian Journal of Physics, 50(19):2286–2293, 1972.

[16] D. C. Langreth. Singularities in x-ray spectra of metals. Phys. Rev. B, 1:471, 1970.

[17] Matteo Guzzo. Dynamical correlation in solids: a perspective in photoelectron spec-
troscopy. Theses, Ecole Polytechnique X, October 2012. 178 pages.

[18] Giovanna Lani. Towards a novel approach for the calculation of many-body Green’s
functions. Theses, Ecole Polytechnique X, November 2011.

[19] J. J. Kas, J. J. Rehr, and L. Reining. Cumulant expansion of the retarded one-electron
green function. Phys. Rev. B, 90:085112, Aug 2014.

[20] Jianqiang Sky Zhou, J. J. Kas, Lorenzo Sponza, Igor Reshetnyak, Matteo Guzzo,
Christine Giorgetti, Matteo Gatti, Francesco Sottile, J. J. Rehr, and Lucia Reining.
Dynamical effects in electron spectroscopy. The Journal of Chemical Physics, 143(18),
2015.

[21] Hertz, H. Ann. Phys., 17:983, 1887.

[22] Einstein, A. Ann. Phys., 31:132, 1905.

[23] M. Cardona and L. Ley. Photoemission in solids: General principles. Topics in applied
physics. Springer-Verlag, 1978.

[24] Andrea Damascelli, Zahid Hussain, and Zhi-Xun Shen. Angle-resolved photoemission
studies of the cuprate superconductors. Rev. Mod. Phys., 75:473–541, Apr 2003.

[25] Vladimir N. Strocov, Masaki Kobayashi, Xiaoqiang Wang, Leonid L. Lev, Juraj Krem-
pasky, Victor V. Rogalev, Thorsten Schmitt, Claudia Cancellieri, and Mathilde L.
Reinle-Schmitt. Soft-x-ray arpes at the swiss light source: From 3d materials to
buried interfaces and impurities. Synchrotron Radiation News, 27(2):31–40, 2014.

[26] Saiht. An experimental setup of angle-resolved photoemission spectroscopy —
Wikipedia, the free encyclopedia, 2009. [Online; accessed 15 June 2009].

[27] Simo Huotari, J. Aleksi Soininen, Tuomas Pylkkänen, Keijo Hämäläinen, Arezki Isso-
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Résumé : Le sujet de cette thèse se place dans le cadre de la spectroscopie théorique. En partic-
ulier, je propose une nouvelle dérivation ab-initio pour trouver des approximations pour la fonction de
Green à un corps. Cette approche conduit à une meilleure description du couplage fermion-plasmon
dans le cadre de la théorie des perturbations à plusieurs corps, qui peut être utilisée pour étudier la
spectroscopie de photoémission directe et inverse. En spectroscopie de photoémission, un échantillon
est irradié par des photons et des électrons sont émis. A partir de la différence d’énergie du photon
incident et des d’électrons sortant, un grand nombre d’informations sur les propriétés de l’échantillon
peut être obtenu. Dans le cadre de cette thèse, on peut imaginer que, premièrement, la photoémission
crée un trou dans l’échantillon, ce qui provoque la relaxation de tous les électrons restants. En rai-
son de l’interaction attractive entre les trous et les électrons, les électrons se déplacent vers les trous
et créent des ”quasi-particules”. L’interaction effective entre les quasi-particules est l’interaction de
Coulomb écrantée dynamiquement, au lieu de l’interaction de Coulomb nue. Par conséquent, la struc-
ture de bandes observée est celle de quasi-particules, qui diffère du résultat en particules indépendantes.
Deuxièmement, lorsque le trou se propage dans l’échantillon les électrons restants peuvent présenter
des oscillations collectives : réponse de la densité à la perturbation. Ce sont des excitations neu-
tres avec une nature approximativement bosonique. Le couplage du trou avec les excitations neutres
conduit à des structures supplémentaires dans le spectre de photoémission, appelées satellites. Cela
réduit le poids des quasi-particules qui est maintenant fractionnée. Le plus souvent, les satellites dom-
inants sont dus à des plasmons, des oscillations collectives à longue portée. Cela montre que pour
avoir une bonne description de la spectroscopie de photoémission, nous devrions étudier la propagation
de particules, ainsi que l’interaction entre les particules et les plasmons ou d’autres excitations. La
fonction de Green donne l’amplitude de probabilité de particules se propageant d’un point à un autre.
Sa partie imaginaire donne la funtion spectrale qui a un lien direct vers le spectre mesuré dans une
expérience de photoémission. Les dérivations et approximations proposées dans cette thèse donnent
une nouvelle façon de calculer la fonction de Green, ce qui améliore la description de la spectroscopie
de photoémission. En outre, cela permet d’accéder d’autres grandeurs qui peuvent être obtenues à
partir de la fonction de Green à un corps, en particulier les énergies totales.

Title: Theory of electron spectroscopy beyond the state-of-the-art

Keywords: theoretical spectroscopy, Green’s function, fermion-plasmon coupling, cumulants

Abstract: The topic of this thesis is situated in the framework of theoretical spectroscopy. In par-
ticular, I propose a new ab-initio derivation to find approximations for the one-body Green’s function
(GF). This approach leads to an improved description of fermion-plasmon coupling in the framework
of many-body perturbation theory (MBPT), which can be used to study direct and inverse photoe-
mission spectroscopy. In photoemission, a sample is irradiated by photons and electrons are emitted.
From the energy difference of the incoming photon and outgoing electron, a great deal of informa-
tion on the properties of the sample can be obtained. In this thesis one can imagine that first, the
photoemission creates a hole in the sample, which causes all remaining electrons to relax. Due to the
attractive interaction between electron and hole, the electrons move toward the holes and dress them to
create ”quasi-particles”. The effective interaction between quasi-particles is the dynamically screened
Coulomb interaction instead of the bare one. Second, when the hole propagates in the sample the
remaining electrons can show collective oscillations, the density response to the perturbation. These
are neutral excitations with approximately bosonic nature. The coupling of the hole to the neutral
excitations leads to additional structures in the photoemission spectrum, called satellites. Most often,
the dominant satellites are due to plasmons, collective long-range oscillations. This overview shows
that in order to have a good description of photoemission, we should study the propagation of particles,
as well as the interaction between particles and plasmons or other excitations. The Green’s function
gives the probability amplitude of particles propagating from one point to another. Its imaginary
part yields the spectral function that has a direct link to the spectrum measured in a photoemission
experiment. The derivations and approximations proposed in this thesis give a new way to calculate
the Green’s function, which improves the description of photoemission. Moreover, it gives access to
other quantities that can be obtained from the Green’s function, in particular total energies.
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