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ABSORPTION OPTIQUE DES SEMI-CONDUCTEURS ET ISOLANTS
AB INITIO DES EFFETS À PLUSIEURS CORPS

CALCUL

Résumé - Nous présentons une méthode pour inclure des effets de la self-énergie et des effets
excitoniques dans des calculs ab initio des spectres d'absorption. Ces calculs sont effectués en
utilisant l'état de l'art en matière de pseudopotentiels avec une base d'ondes planes.
Nous calculons d'abord l'état fondamental en utilisant la théorie de la fonctionnelle de densité
(DFT) et l'approximation de la densité locale (LDA). Nous déterminons ensuite le spectre de
quasiparticules physiques en corrigeant le potentiel d'échange-corrélation du calcul DFT-LDA
avec la self-énergie, pour laquelle nous employons l'approximation GW de Hedin. L'interaction
électron-trou est traitée par une équation effective de Schrôdinger à deux particules, que nous
avons dérivée des équations couplées intégrales de Hedin en passant par l'équation fondamentale
de Bethe-Salpeter.

Le kernel d'interaction comporte une interaction écrantée Coulombienne et des effets d'échange
électron-trou, qui représentent lastructure microscopique du système et qui sont aussi appelés les
effets de champ local. Nous obtenons les états propres excitoniques par diagonalisation. Cela per
met une analyse détaillée des propriétés optiques. En appliquant des propriétés de symétrie nous
réduisons la dimension de la matrice Hamiltonienne à deux particules et nous pouvons minimiser
le coût du calcul.

Nous appliquons cette approche au silicium, au diamant, à l'oxyde de lithium et au tétramère de
sodium. Un bon accord avec l'expérience est obtenu pour les spectres d'absorption optique de Si
et du diamant, la constante diélectrique statique du diamant et pour le seuil d'absorption optique
de Li20, qui est déterminé par un état excitonique lié. Nous discutons plusieurs approximations
de la méthode et nous montrons le mélange très fort des transitions de particules indépendantes
dans un état excité de l'agrégat Na4.
L'influence du calcul de l'état fondamental sur des spectres d'absorption optique est examinée
en considérant particulièrement la création des pseudopotentiels et nous discutons le choix de
l'échantillonnage de la zone de Brillouin pour des calculs spectroscopiques.

OPTICAL ABSORPTION SPECTRA OF SEMICONDUCTORS AND
LATORS: AB INITIO CALCULATION OF MANY-BODY EFFECTS

INSU-

Summary - Amethod for the inclusion of self-energy and excitonic effects in first-principle cal
culions of absorption spectra, within the state-of-the-art plane wave pseudopotential approach,
is presented.

Starting from a ground state calculation, using density functional theory (DFT) in the local den-
sity approximation (LDA), we correct the exchange-correlation potential of DFT-LDA with the
self-energy applying Hedin's GW approximation to obtain the physical quasiparticles states. The
electron-hole interaction istreated solving aneffective two-particle équation, which we dérive from
Hedin's coupled intégral équations, leading to the fondamental Bethe-Salpeter équation in an in-
termediate step.

The interaction kernel contains the screened electron-hole Coulomb interaction and the electron-
hole exchange effects, which refiect the microscopic structure ofthesystem and arethus also called
local-field effects. We obtain the excitonic eigenstates through diagonalization. This allows us a
detailed analysis ofthe optical properties. The application of symmetry properties enables us to
reduce the size ofthe two-particle Hamiltonian matrix, thus minimizing the computational effort.
We apply our method to silicon, diamond, lithium oxide and the sodium tetramer. Good agreement
with experiment isobtained for theabsorption spectra ofSi and diamond, the static dielectric con
stant of diamond, and for the onset of optical absorption of Li20 due to discrète bound excitons.
We discuss various approximations of our method and show the strong mixing of independent-
particle transitions to a bound excitonic state in the Na4 cluster.
The influence of ground state calculations on optical spectra is investigated under particular con
sidération of the pseudopotential génération and we discuss the use of différent Brillouin zone point
sampling schemes for spectral calculations.
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Chapter 1

Introduction

The spectroscopic properties of solids hâve been very important in the development
of solid state theory [1]. The interaction of light with matter gives rise to many
différent phenomena and we can learn about the behavior of particles in the solid
as well as about their interactions.

In an inverse photoemission measurement, for example, an incoming électron
is absorbed in the solid and consequently a photon emitted. Ideally the électron is
initially far away from the sample and quickly enough absorbed that we only measure
the intrinsic properties of the électron in the solid. This is important since a single
excited électron in a polarizable médium - the solid - has différent characteristics
than a bare électron in vacuum and is thus denoted a quasiparticle. The opposite
process occurs in a photoemission experiment, where an incoming photon is absorbed
and an électron is emitted above the continuum energy level leaving the solid into
the vacuum and creating a hole, i.e., a missing électron.

Both processes together describe the energetic levels of the one-particle quasi-
particles in the solid, referred to as the band structure. It reveals a wealth of
information about electronic and spectroscopic properties. The principal character-
istic, for example, of insulators and semiconductors compared to metals is the band
gap: In the ground state at zéro température ail energy bands up to a certain level
are completely occupied and the first unoccupied state is situated in an energy band
separated by an energygap from the highest occupied level. Metals, on the contrary,
hâve even in the ground state partially filled bands allowing, e.g., the easy flow of
electric current.

In order to obtain the electronic structure of a System we follow the state-of-the-
art approach of modem ab initio calculations. We start from a ground state cal-
culation, using density functional theory (DFT) in the local density approximation
(LDA) [2, 3], and obtain the physical quasiparticle (QP) states in a second step.
Hère we correct the DFT-LDA eigenvalues by using the true électron self-energy
operator E, which appears at the place of the DFT-LDA exchange-correlation po-
tential. A good approximation for E allowing to détermine the QP band structure
can be obtained within Hedin's GW approach [4]. In this scheme, DFT-LDA results
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can be used as the starting point in a first-order perturbative approach [5, 6]. This
method will be discussed in détail in the next chapter.

The main interest of this thesis are optical absorption spectra of insulators and
semiconductors. An électron absorbs the incomingphoton and is - in a non-metallic
material - energetically put above the band gap from a valence band to a conduc
tion band. However, contrary to a photoemission experiment, the électron stays in
the solid and interacts more or less strongly with the hole left behind in the va
lence band, thus creating an exciton. As an immédiate conséquence, for example,
bound exciton states occur within the gap reducing the optical absorption onset and
possibly considerably influencing the shape of the absorption spectrum.

A first starting point to describe optical absorption is traditionally nevertheless
the one-electron band theory, where we neglect the electron-hole interaction and
consider only independent, direct transitions from the filled valence to the empty
conduction bands at zéro température. Although qualitative agreement with exper
iment was obtained for several materials [7, 8, 9] the calculated spectra are typically
too poor to be used as a référence for the interprétation and prédiction of expér
imental results. Indeed, besides the réduction of the optical absorption onset, the
spectral lineshape above the continuous-absorption edge is in most cases largely
influenced by excitonic effects. Spectral weight is typically shifted to lower énergies
and can considerably deform the spectrum. Thèse effects are in compétition with
the local-fieldeffects reflecting the microscopic spatial variation of the material. The
latter are not included in the simple independent-particle absorption spectrum ei-
ther and tend to shift absorption spectra to higher énergies. Pioneering work in this
context was done by Hanke and Sham, who investigated thèse two effects at the
examples of diamond [10] and silicon [11, 12]. They used a tight-binding calculation
to model the electronic structure of the materials.

In this work we solve the problem of including excitonic and local-field effects in
optical absorption spectra in an ab initio approach, thus not relying on empirical
parameters nor restricting the validity of the method to spécifie optimizations with
respect to the material. Since first-principle band structure calculations hâve become
a reliable tool in solid state theory in the 80's [5, 6], the next important step to
address two-particle interactions has remained a major challenge.

The polarizability, from which the absorption spectrum can be calculated, is
given by the two-particle Green's function [13]. The équation of motion for this
two-particle Green's function S is the Bethe-Salpeter équation, which can be derived
using Hedin's coupled intégral équations [4] and iterating a second time after the
first, GW level. It is an intégral équation of the form

S = S0 + S0ES, (1.1)

where S0 is the non-interactingelectron-holepair, including, however, ail band struc
ture and many-particle effects of the one-particle quasiparticles. H is the interaction
kernel and includes the exchange effects, reflecting the microscopic structure of the



material, therefore also called the local-field effects, and the screened electron-hole
interaction, creating the excitonic effects. In this work we solve for S not by invert-
ing the Eq. (1.1), but by decomposing S in a spectral représentation, thus avoiding
an inversion, or the mathematical équivalent, for each absorption frequency and -
more important - obtaining the excitonic eigenvalues and eigenstates through diag-
onalization.

In the limit of a large Wannier exciton near the fondamental threshold, Eq. (1.1)
can be reduced to the Mott-Wannier model in the effective mass approximation [13].
The electron-hole screening is then given by the long-range dielectric constant. This
model is basically valid for direct transitions near the absorption onset in the case
of parabolic bands at the band extrema.

Other possible features of band structures are much more difficult to model.
The typical example is the Ex peak of silicon, where nearly parallel conduction and
valence bands around the gap lead to expressed continuum-excitonic effects, largely
deforming the spectrum calculated in the independent-particle approximation and
making simple model assumptions quite useless [12]. The ab initio calculation of
the absorption spectrum of silicon, being représentative for the group IV, III-V and
II-VI semiconductors, is thus one of the main topics of this thesis.

In the first part of this work, we will introduce the fundamental theoretical con
cepts underlying the optical absorption calculations in Chapter 2. Thèse include
density functional theory in the Kohn-Sham formalism, using the local density ap
proximation, and the quasiparticle formalism, which allows us to détermine the
quasiparticle energy levels in the GW approximation. In Chapter 3 we dérive in dé
tail the calculation of the macroscopic dielectric function in the independent-particle
picture and, of course, consider the inclusion of exchange and/or excitonic effects.
A feasible ab initio approach is presented, solving the Bethe-Salpeter équation by a
spectral décomposition, thus obtaining full information about the excitonic states.
Several ways to minimize the computational cost through application of group the
ory or careful approximations are discussed.

Chapters 4 and 5 apply the theory to silicon and diamond and discuss in dé
tail the various aspects of the calculations at the one-particle and the two-particle
level. Spécial considération is given to the ground state calculations, notably the
pseudopotential method, which is introduced in Appendix A. Hère we investigate
the construction and the use of soft pseudopotentials and the Kleinman-Bylander
séparation on the example of lithium oxide and présent also results of excitonic and
optical calculations of this highly ionic material. In particular, the onset of optical
absorption is identified as the lowest excitonic eigenvalue. Appendix B shows the
strong mixing of independent-particle transitions to a bound excitonic eigenstate at
the example of a small cluster, the sodium tetramer. Chapter 6 finally gives gênerai
conclusions of the main topics addressed in this work and briefly summarizes the
thesis.



Chapter 2

Fundamental Théories

In this chapter we summarize the underlying theoretical framework of this thesis.
We présent on introduction to density functional theory and address the problem
of quasiparticle states and énergies in the so-called GW approximation, which will
provide us with the band structure.

Since we are interested in electronic states, we limit the discussion to fermions.
Furthermore, only the case of zéro température is considered.

2.1 Key Concepts and Formulas

This section defines essential formulas and concepts needed in the following [14].
We abbreviate the spin and space coordinates by x and use x = (x,i) = (r,a,t).
Atomic units (h = -^- =me = l) are used throughout.

We consider N électrons moving in an external potential w interacting with each
other via the Coulomb interaction w(r,r') = 1 /|r —r'| . Hère w is assumed to be
time independent. For, e.g., valence électrons in a solid, w = w(r) can be the
potential of the ion cores. If relativistic effects can be neglected, the time évolution
of the System is determined by the Schrôdinger équation,

iy(x1)x2,...,xAr)^(x1,x2,...,xAr,t) =i^(Xl'X^-'Xjv't). (2.1)
The Hamiltonian H is given by

N ( 1 \ 1 N#(x1,x2,...,xJV) = J2 -«V£ +w(xi) +- J^fo,^). (2.2)

The stationary states of the System are determined from the time-independent
Schrôdinger équation,

#(xi, x2,..., xAr)^(x1, x2,..., xat) = £*(xi, x2,..., xat), (2.3)

7



Chapter 2. Fondamental Théories

and the wavefunction is antisymmetric under the interchange of space and spin
variables.

In quantum field theory, the concept of second quantization permits the explicit
inclusion of the statistics (Bose-Einstein or Fermi-Dirac) and allows to describe cré
ation and annihilation processes in a direct and natural way. The second quantized
Hamiltonian H reads as

H = H0 + V= f + W+ V, (2.4)

where

f = Jdx^H(x) -lv\ 1>H{x), (2.5)
W= Jdx^H(x)w\x)^H{x), (2.6)
V= IJ dxdx'^H(x)^H(x')v(vy)^H(x')^H(x). (2.7)

The création and annihilation field operators ipH(x) and i>H(x) are used in the
Heisenberg représentation with time-independent state vectors and time-dependent
operators:

^H(x,t) = eiÈti>{x)e-iÊt, (2.8a)
^H(x,t) = e-iÈt^(x)eiÊt. (2.8b)

The defining fermionic anti-commutation relations are

{fH(x),^H{x')} = 5{x-x'), (2.9a)
{iPH{x),i>H{x')} = {^H(x)^H{x')}=^ (2.9b)

where the anti-commutator {A, B} dénotes AB + BA.

2.2 Density Functional Theory

The électrons in the solid under considération form an interacting many-particle
System. Due to the enormous amount of degrees of freedom - typically of the
order of 1023 - a direct solution of the describing Schrôdinger équation is infeasible.
One way to proceed could be to develop models for the Hamiltonian and to apply
simplifying computational schemes.

However, instead of considering the many-particle wavefunction,

$(xi,x2,...,xN), (2.10)
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as a solution of the Schrôdinger équation (2.3), a very promising approach is to start
from the density,

n(r) NJ d*2-JdxN **(r,X2,..,xif)f(r,x2,..,xJV), (2.11)
as the basic quantity to describe the System. The number of degrees of freedom is
thus reduced to three and it is possible to find an exact solution. Moreover, we hâve
direct access to a measurable physical quantity.

Early attempts to base a formulation on the density date back to the work of
Thomas and Fermi [15, 16]. In 1964 density functional theory (DFT) was introduced
by Hohenberg and Kohn [2]. Although it was formulated in principle only for the
ground state density of a System, many modem electronic structure calculations
start from one of its many powerful computational implications.

Usually one applies the scheme ofKohn and Sham [3] to obtain the ground state
properties. This method delivers one-particle wavefunctions, but now of a corre-
sponding non-interacting System. It is a good starting point for more sophisticated
and accurate calculations ofelectronic quasiparticle states (see Section 2.3). In the
following we will only présent the basic définitions and theorems of DFT together
with a short description of the employed computer code. Proofs of the theorems and
more detailed technical information can be found, for example, in [17], [18, Chap.
2] and [19, Chap. 1], respectively.

2.2.1 Hohenberg-Kohn Theorem

The original paper by Hohenberg and Kohn [2] is the pioneering work of density
functional theory. The two important findings are:

1. The ground state energy E = (&N\ H \^N) of a System of N interacting par
ticles with the Hamiltonian H of Eq. (2.4) in an external potential iu(r) is a
unique functional of the density n(r): E = E [n]. It can be written in the form

E[n] =F[n] + Idr w(r)n(r), (2.12)

where the universal density functional F dépends only on n, but not on w. The
functional F contains the complète information about ail intrinsic properties
of the many-body system, regardless of its actual environment described by
the external potential w.

2. The energy functional E has its minimum, the ground state energy E0, at the
physical ground state density n0(r) of the System: E0 = E [n0].

In the proof of the theorem, Hohenberg and Kohn dérive a bijective relation be-
tween the external potential w(r) and the groundstate densityn0(r). Twopotentials
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w which differ by more than just a trivial constant must lead to différent ground
state densities. Since the ground state density détermines the external potential (to
within a constant), the Hamiltonian is completely described, which in turn defines
the many-body wavefunction. Ail ground state properties can be derived from the
wavefunction of the ground state and are thus functionals of the density. The DFT
contains no approximations and is an exact theory.

The original proofassumes a non-degenerate ground state and a w -representable
particle density, Le., it is the ground state density of a many-electron System sub-
ject to some local external potential w. However, the theory can be generalized
[17] to degenerate Systems and N-representable densities, Le., densities being the
expectation values of the density operator,

n(r) = (tftf| p(r) |^) = {®n\ ^(r)^(r) \VN), (2.13)

of some anti-symmetric wavefunction \^n) •
The Hohenberg-Kohn theorem is very satisfying from the theoretical point of

view, but it is not immediately applicable. The density functional of the energy is
unknown and one has to resort to approximations. It turns out that the large kinetic
energy has to be treated as precisely as possible, in contrast to the Thomas-Fermi
approach, where the kinetic energy is expressed by an approximated functional of
non-interacting électrons. Kohn and Sham presented a scheme [3], which allows
an - in principle - exact détermination of the ground state energy and restricts
inévitable approximations to some smaller remaining part, namely the exchange-
correlation potential.

2.2.2 Kohn-Sham Equations

In order to develop a practical scheme for the DFT, Kohn and Sham represent the
System ofinteracting particles by an artificial one ofnon-interacting particles, which
has by construction the same ground state energy and ground state charge density
[3]. The ground state itself of this artificial System is found by self-consistently
solving a corresponding set of effective Schrôdinger équations.

Kohn and Sham start by writing the energy functional of Eq. (2.12) in the form

E[n] =T0 [n] +Jdv n(r)w(r) +1JdvJdv' ^0^-+Exc [n], (2.14)
where T0 [n] is the functional ofthe kinetic energy ofnon-interacting électrons. The
functional Exc [n] contains the exchange-corrélation contributions as well as correc
tions to the kinetic term due to the electron-electron interaction. The comparably
small exchange-correlation functional is the only unknown part and has to be ap
proximated. In the next section we will discuss the most widely used local density
approximation. The distinct advantage of the Kohn-Sham ansatz is the correct
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treatment of the large kinetic energy of the non-interacting System, which is close
to the one of the real interacting System.

The essential step is to find a relation between the real interacting System and
a fictitious non-interacting many-particle System, described by the set of wavefunc-
tions {<Pi}, under the constraint that the latter has exactly the same density,

n(r) =fXr)|2, (2.15)
i

as the former.

We minimize the total energy functional Eq. (2.14) with respect to the density.
Préservation of particle number and the orthonormality condition of the wavefunc-
tions leads to Lagrange parameters e^ in the functional

N N .

^[k}] =S[M]-EEe«i / drtfto^Cr), (2.16)
i i "

which is minimized with respect to <£*(r), in équivalence to a minimization with
respect to the density n(v), as can be seen from Eq. (2.15).

A unitary transformation by diagonalization leads to the Kohn-Sham (KS) équa
tions

with

z;eff(r) = w(T) +jdr' 0±-+Vxc(r), (2.18)
r

Kc(r) = —E,c[n]. (2.19)

Due to construction, the effective potential veg(v) of the non-interacting System gives
the correct density of the interacting System. The Kohn-Sham équations (2.17) are
Schrôdinger-like and must be solved self-consistently, since the density Eq. (2.15),
which enters in each one-particle équation, dépends explicitly on ail wavefunctions

Once solved, the System of Eqs. (2.17) would give an exact solution for the
ground state density of the interacting System, if the exact exchange corrélation
potential Vxc were known. Unfortunately, this is not the case, and one has to find
approximations to Vxc.

2.2.3 Local Density Approximation

The simplest and most-widely used approximation for the exchange-correlation func
tional,

Exc [n] = / dv n(r)exc ([n], r), (2.20)
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is the local density approximation (LDA). We assume that the well-known results of
the homogeneous électron gas can be locally applied:

E^A[n) =Jdvn(v)e^(n(v)). (2.21)
The function

Cm (n(r)) = Cm (n(r)) + 4°m (n(r)) (2.22)

is obtained from quantum-mechanical calculations of the interacting homogeneous
électron gas. The easiest approximation is given by the Hartree-Fock method, which
does not include any corrélation and considers only the exchange energy of the
homogeneous électron gas [20],

Cm (n(r)) =
7T

3n(r)l1/3 , s
(2.23)

The best nowadays available corrélation énergies hâve been calculated with
quantum-Monte-Carlo methods by Ceperley and Aider [21]. Their results hâve been
parametrized by, e.g., Perdew and Zunger [22] and also allow the treatment of spin-
polarized Systems (local spin density approximation, LSD). In this work, however,
we will only consider spin-paired électrons. The corrélation energy is then given by

4°mMr))=7/(l + /W^ + /Vs), (2.24)

for rs > 1, where

1 4 3 , \= ô7"^ (2-25)n(r) 3

and

7 = -0.14230, & = 1.05290, P2 = 0.3334. (2.26)

Since we are neglecting nonlocal effects, one might expect that the LDA is only
valid for Systems with slowly varying densities. Yet, even for highly ionic Systems
like, e.g., an Li20 crystal, very good results are obtained [23]. In gênerai, quantities
derived by comparing total énergies, like ground state geometries, phonon frequen-
cies, and moments of the density, are very well reproduced [24].

A natural extension of the LDA would be to add terms containing gradients of
the électron density, as already suggested by Hohenberg and Kohn [2]. However,
important sum rules are exactly satisfied in the LDA, while they are easily violated
in more sophisticated approximations. A systematic improvement of the LDA is not
as straightforward as it might appear at first sight [24].
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2.2.4 Band Gap Problem

It is crucial to emphasize that the Kohn-Sham eigenvalues do not hâve any immé
diate physical relevance and are obtained in a mathematical scheme. Although the
relative values of occupied KS-LDA-bands in semiconductors and insulators are of-
ten in not too bad agreement with expérimental values, the band gaps are far too
small by about 50% up to 100% [5, 6, 25, 26, 27, 28, 29] . The band gap problem
is not an intrinsic feature of DFT nor of the LDA, but rather of the KS-formalism
[30, 31].

The highest occupied DFT-KS-eigenvalue E'^ft obtained with the exact ex-
change-correlation potential in an (AQ-electron System equals the true ionization
potential of the System [32, 33]. For infinité Systems, this is the chemical potential
jjl. The exact minimum band gap is defined by

E = F{N+1) F^ fpCO p(N-i)\

— •c'iV+l,DFT -^JV.DFT \4'4()

It is the différence in the chemical potentials of an (N + l)-electron System and an
(AQ-electron System. In the KS-formalism, however, one calculâtes

£gap,KS-DFT = #Ar+i,DFT ~~ -^JV.DFT- (2.28)
In fact,

-Egap = -Egap,KS-DFT + A, (2.29)
where

A = K(ciV+1)(r)-Kf)(r). (2.30)
The last equality follows from the observation that a discontinuity of order one
obtained by adding an électron can only corne from the exchange-correlation po
tential, which is not necessarily analytical in N, in contrast to the external and
the Hartree potential. The non-interacting KS-electrons move in a DFT effective
potential changed by the addition of one électron.

One might assume that A would be small and that the local density approxi
mation would be the main cause of the KS-LDA band gap error. However, in the
framework of many-particle theory it is possible to obtain the exact DFT exchange
corrélation potential in a closed set of équations [6, 30, 34]. There is évidence in the
cases of Si, GaAs and AlAs that the discontinuity A is responsible for about 80% of
the total error [6]. In section 2.3 we will develop the quasiparticle formalism, which
gives access to realistic particle states and énergies.

2.2.5 Ab Initio Implementation

In this thesis we use a plane wave Car-Parrinello code [35] for the ground state
calculations. It starts from first principles, Le., no models are applied to the Hamil
tonian in Eq. (2.14) besides two approximations: the local density approximation
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(see section 2.2.3) and the pseudopotential method, which only includes the valence
électrons in the total energy minimization scheme and is described in Appendix A.

Plane Wave Basis

The simplest représentation ofBloch wavefunctions in periodic boundary conditions
is given by plane waves,

^nk(r) =-/Le*"£ cnk(G)eiG'r =e^unk(v), (2.31)
V»o G

where unk(v) is periodic. The System is represented by a supercell of volume fî0
with a basis of atoms at positions rh which are translated according to the group
properties of the crystal by the lattice vectors Rj. The vectors k lie within the first
Brillouin zone (BZ), while the G are reciprocal lattice vectors.

Some distinct advantages of a plane wave basis compared to a localized one are:

• They form a complète and orthogonal basis set, in which most expressions of
the Hamiltonian in Eq. (2.14) are analytic.

• The reciprocal space formalism is directly applicable and Fast Fourier Trans
formations (FFT) are applied without further complications.

• Exact and smooth convergence of the total energy calculations can be achieved
by gradually increasing the cutoff energy EcntoS to include additional plane
waves,

-|k + G|2< EcutoB. (2.32)
The number of plane waves iVPW scales like

AW oc Q0 (Cutofff2 • (2.33)

• For open Systems with some "vacuum", like clusters, surfaces or vacancies,
the basis set is independent of the atomic positions and therefore does not
influence the electronic orbitals.

Localized basis sets (see, e.g., Réf. [36]) on the other hand, are considerably
smaller for Systems where highly localized electronic wavefunctions hâve to be con-
sidered in the chemical binding and consequently as valence électrons in the pseu
dopotential formalism (see Appendix A). Also "vacuum" can be treated more effi-
ciently. Especially for the more involved quasiparticle calculations (see section 2.3)
this can be of a great advantage [37].

However, in this work we prefer a plane wave basis, since the above mentioned
advantages are especially relevant when developing new methods - in our case the
inclusion ofexcitonic effects in optical spectra. The disadvantages are not relevant
for the Systems - primarily bulk silicon and diamond - treated hère.
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Spécial k Points and Symmetry Properties

Ail sums over the Brillouin zone are intégrais in the limit of an infinité crystal. Thus,
the density Eq. (2.15),

-, occ BZ

n(r) = -

is indeed

n(r) =^EZ>»kM|2, (2-34)

o r occ
n(r) =7^W dk£l^k(r)|2. (2.35)(2tt) Jbz „

For practical purposes the intégral is, of course, performed as a summation and has
in addition to be restricted to a carefully chosen set of so-called spécial k points
that give a good average of the intégral over the BZ with volume VBZ = (2?r)3 /Q0.
Often used methods hâve been developed by Chadi and Cohen [38] or Monkhorst
and Pack [39]. The volume of the crystal is then Q= Nkfl0, with Nk being the
number of k points in the sampling. The above used relation between a sum and
an intégral over the Brillouin zone,

is often very useful.

The symmetry properties of the crystal are reflected by the Hamiltonian and
therefore also by the wavefunctions [40]. We apply a Seitz operator {p | w} of the
space group as

{p | w}r = wpr = iu(pr) = pr + w, (2.37)
where p is a point group opération and w is a translation vector, which is a Bravais
lattice vector R or some fraction of it. By définition, the point group is the subspace
with w = 0. The inverse is given by

{p | w}"1 = {p-1 | -p^w}. (2.38)
Then the opération on a Bloch function transforms as

{P Iw} cpnk(v) = cpnk(p-lv - p-xw) = ipnpk(v), (2.39)
while the corresponding énergies are simply related by

enk = enpk. (2.40)

For non-degenerate wavefunctions this is true up to a phase factor eie, which can
be chosen to be one. However, in the case of degeneracy, the space group opération
leads to a linear combination,

deg

{P Iw> ¥>nk(r) = Yl a^Pk(r)> (2.41)
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of ail degenerate bands i with wavevector pk. The c^ are in gênerai complex.
In any case we can reduce the k points in the full BZ to a corresponding irre-

ducible part (IBZ) by taking a set of only those points kœz, which cannot be related
to each other by any opération of the type pkffiz + G0, with G0 being a reciprocal
lattice vector. The set of ail mutually inequivalent k points, expanded from a chosen
kœz point in the IBZ into the full BZ, is called a star.

In gênerai, by carefully and consistently choosing the phases of the expanded
wavefunctions, we can reduce the sum of a complex valued function / over the full
BZ to a sum over only the IBZ and the corresponding inequivalent point group
opérations D, depending on kroz:

BZ inequ.

E/W -* E E /(Dkoakœz). (2-42)
k kjBz DkIBZ

In the DFT-LDA calculations as well as in the other programs used in this
thesis, we only include rotations R in the point group opérations and the utilized
space groups are symmorphic: {R | 0}, Le., they only include the rotations, and
no translations w are applied. However, we explicitly use time reversai to get the
inversion,

V„-k(r) = d*(r), (2-43)

which is a property of quantum mechanics and thus independent of crystal symmetry.

Steepest Descent Method

The method of Car and Parrinello [35] allows realistic ab initio molecular dynamics
calculations. In this thesis we do not move the ions, but only minimize the electronic
configuration to find the ground state. The Car-Parrinello code allows to do so
without diagonalizing the full Hamiltonian of the Kohn-Sham scheme Eqs. (2.17).
This would include the occupied as well as the unoccupied states up to the number
of plane waves JVpw chosen by the cutoff energy in Eq. (2.32), if we do not choose
an itérative and often more cumbersome diagonalization scheme, which returns only
the needed lower energetic eigenstates.

Instead, in the "steepest descent" procédure [41] we introduce a fictitious time
variable t as a parameter in order to label différent configurations in the space of
one-particle wavefunctions {<^}. The Kohn-Sham energy functional E [n] is, from
Eq. (2.15), expressed as E [{<ft}] and represents a potential energy surface, on which
the électrons move with a fictitious kinetic electronic energy: the <p{ are interpreted
as fictitious classical coordinates. The ground state is then obtained by minimizing
the total energy of the System whose évolution is described by,
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occ

= -^KS^M) +5>^(r,i), (2.44)
3

where h^s is the Kohn-Sham Hamilton operator in Eqs. (2.17). A constraint is
included to guarantee orthonormal one-particle wavefunctions.

If fa = 0, Le., in the equilibrium case, we obtain

occ

fcîfsVifo *) = E W(r>t)' (2-45)

which are, apart from a unitary transformation, just the Kohn-Sham équations
(2.17). Thus, the KS-eigenvalues and wavefunctions can easily be obtained after
diagonalization of e^-, which is a small matrix with respect to the number of basis
functions used, since only the occupied states are calculated. Expérience has shown
that for fixed ionic configuration the energy surface E has only one minimum.

In practice, the équations (2.44) hâve to be numerically integrated. The steepest
descent algorithm for a first order minimization reads

ft(r, t + At) = ^(r, t) - At hf^v, t) + O(At)2. (2.46)

The initial guess, (Pi(v,t — 0), must be non-orthogonal to the ground state for
the method to work correctly. The time step At fixes the time scale and governs
the convergence of the minimization scheme. The orthogonalization method can be
quite arbitrarily chosen and a simple Gram-Schmidt procédure is sufficient. Self-
consistency is automatically built-in, as the density and the potential are updated
at each time step.

The actual, dynamical Car-Parrinello method starts from a Lagrangian includ
ing a fictitious kinetic electronic energy as well as the kinetic ionic energy and leads
to a System of second order differential équations of motion. This permits efficient
numeric procédures and, most important, ensures that on average the électrons stay
close to the Born-Oppenheimer energy surface given by the current ionic configu
ration. Thus, the System does not heat up due to the fictitious kinetic electronic
energy necessary for the minimization scheme.

2.2.6 Dielectric Function

The response of the charge distribution in the System to an external perturbation
is measured by the polarizability [42]. Hère we will emphasize the formulation in
the density-functional approach (see section 2.2). From the DFT polarizability we
obtain the inverse DFT dielectric function, which is an important ingrédient in the
quasiparticle and excitonic calculations performed in the later course of this thesis.
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Définitions

In a perturbation approach [43, 44] the independent-particle polarization x° relates
a change in the électron density on to a change in the total effective potential 5Vtot,

àVtot(x) = ôw(x) + 5VSCI(x), (2.47)

by '

ôn(x) =Jdx'x0(x,x')5Vtot(x'). (2.48)
The external potential w is written including a time-dependence in this section in
order to be gênerai. Hère we hâve used

SVSCI(x, t)= j dx' 5-0^r +fdx' Kxc(x, x')ôn(x'), (2.49)
with

r^ , „ ô2Exc\n]Kxc(x,x') = xcL J 2.50
dn(x)ôn(x') v '

The first term in Eq. (2.49) gives a change in the Hartree potential and the second
one a change in the exchange-correlation potential.

In contrast, the full polarizability x is defined via a change in the external po
tential w only,

6n{x) = / dx' x(x,x')5w(x'). (2.51)

The two polarizabilities are connected in the DFT framework by

X=[l-X°(^ + ^xc)]"1X°, (2.52)

where we use the notation v(x,x') = v(v,v')ô(t - t'). Matrix notation is used, so a
matrix inversion is required in Eq. (2.52).

We want an explicit formulation for the polarizability. For a time-independent
Hamiltonian like in Eq. (2.2) the polarizability dépends only on the time différence
T—t —t'. Then it is convenient to Fourier-transform x into energy-space according
to

X(x, x',lj)= dr eiwTx(x,x', r). (2.53)

Application of first-order perturbation theory to the Kohn-Sham équations (2.17)
yields the standard resuit for the independent-particle polarization x° in the Adler-
Wiser formulation [45, 46],

X°(x,x» . 2S> - /,) WW^W rtW?W, (2.54)

——————
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with fi being the occupation numbers (0,1) and n a positive infinitésimal. Spin has
been included in the summation.

Finally, the inverse dielectric function measures the screening in the System and
is defined by

In practice we need the inverse dielectric function in momentum space, which is
related by a Fourier transform to real space,

e-l,{v,v',u) =-Ly / dq Yl ei(q+G)'r ^GG'(q^) e-^+G'K (2.56)
{AIT) JBZ G, a(Ji

The intégration runs over the Brillouin zone. The inhomogeneity of the charge
distribution, which gives rise to the local-field effects, is included via the reciprocal
lattice vectors G and G'.

For later use we also give the explicit Fourier transformation of the independent
particle polarization x°5

X°GG, (q, W) =2£ (fi - /,) ^ lJ\ : 'I
.. ei-ej-u-in

(2.57)

The inverse dielectric function is connected to the polarizability by

e~l{x,x') = ô(x -x')+ dxx v{x,x^xixux'). (2.58)

Care must be taken ofthe origin ofthe induced screening. If the probe is assumed
to be a test particle, it is only affected by the electrostatic Hartree term in Eq.
(2.49). Then thewidely used random phase approximation (RPA) response function
is obtained, setting the exchange-correlation contributions to x to zéro,

%pa = l + îKl-X^rY, (2.59a)
£rpa = l-ux- (2.59b)

For later use we note that (1 —x°v)~1X° —X°(l —̂ X0)-1-
Because of the screening, the électrons do not directly interact via the Coulomb

interaction v, but via a dynamically screened interaction W, given by

W(x,t,x',t') = / dxxdh u(x,i,x1,t1)e-1(x1,£1,x',t')- (2.60)

This interaction function W gives the electronic screening in the GW and excitonic
calculations (see sections 2.3.2 and 3.1.3).
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Plasmon-Pole Model

The computational effort to obtain the full dynamical inverse dielectric function is
considérable and often not necessary. It is sometimes possible to make some model
assumptions about the frequency dependence of the éléments of £GGf(q, lo).

Realistic calculations of the response function show that Im e-1 is generally a
peaked function in to. Well-defined peaks correspond to a plasmon excitation of
the System associated with an absorption résonance. Thèse excitations are fixed at
frequencies û in the model [5, 47]. We include only one pôle for each matrix élément.
More plasmon frequencies would increase the accuracy of the model, but also the
computational cost.

In the plasmon-pole model the needed time-ordered or advanced inverse dielectric
function is described by, with lo, Q? and lo being real,

e.
n2 n2

T 1 = 1 + 7 : TT7 : rr = l +(co + in —lô)(lo -in + ÔJ) lo2 - (û - in)2'
(2.61a)

Ree^1 = 1+ -=—zô, (2.61b)
ur — u

irQ,2
Im^1 = --— [S(u - w) + 6{ùj + &)]. (2.61c)

In contrast, we note that the causal or retarded inverse dielectric function is
given by,

!.. - , & fl2
S;1 = 1 + 7— TT7 : TT = 1 +(u + irj - û) (u) + in + ÔJ) (u + in)2 - û2 '

Q2

(2.62a)

Ree-1 = 1+ — -j (2.62b)
U2 — LU y

ttQ2
Ime^1 = -—[6(u>-w)-8(u + ù)], (2.62c)

where the imaginary part is even instead of odd in u.
Generally, the time-ordered or advanced dielectric matrix is related to the re

tarded or causal one by a changed sign of the imaginary part for négative frequencies.
For positive frequencies, they are the same.

Hère we use the plasmon-pole model of Godby and Needs [47], where the full
frequency dépendent inverse dielectric matrix éléments are fitted at two imaginary
frequencies in the energy range important for further calculations. Less relevant
higher énergies, which may dégrade the model, are not considered. Away from the
real axis we hâve

eï1 = 6^ = 1+ —_ (2.63)
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which is a well-behaved function of the now complex lo.
Therefore, the plasmon-pole model is defined by, omitting spin dependence,

?GG' fa»w) = <W + 2 G,G2 , r. (2.64)
a>" WoG'fa)'

Two finite frequencies at wi = 0 and u;2 = ^o (with £0 ~ | a.u.) détermine the
two fit parameters.

This model has been checked at several finite frequencies for very différent Sys
tems, from bulk silicon to a sodium tetramer [48]: the fit turned out to be very
good.

2.3 Quasiparticle Formulation

The KS-DFT scheme in connection with the LDA provides a highly successful way
to calculate the ground state properties of a longrange of materials, from molécules
over clusters to metals, semiconductors and insulators. For electronic structure
calculations, however, one often goes beyond the DFT-LDA in order to obtain the
"true" levels of the électrons in the solid, which are referred to as the quasiparticle
(QP) énergies. They are given by the énergies needed to add or subtract an électron
to or from the System and are obtained by spectroscopies like, for example, inverse
photoemission and photoemission experiments.

The Kohn-Sham eigenvalues hâve often failed to deliver physically meaningful
gaps. The case of germanium, e.g., is quite dramatic: inclusion of relativistic cor
rections in the DFT-LDA calculations makes the band gap (expérimental value:
0.744 eV) to vanish and leads to a métal [49]. The discrepancies in the détails of the
band dispersion are typically smaller, but also material dépendent: the bandwidth
of Ge is well represented by the LDA eigenvalues [50, 51], but for diamond, it is
underestimated as compared to X-ray spectra [52].

In the following we will lay out the quasiparticle approach. Further information
and more détails can be found in many books on many-particle physics, like [14] or
[53], and, in particular for solid state applications, in Hedin and Lundqvist [54].

2.3.1 Green's Functions

Like for density functional theory (section 2.2) the basic idea behind the Green's
function is the observation that, in gênerai, we do not need to know the detailed
behavior of each particle in the System. Theoretically, a real (bare) particle, in
our case an électron or a hole, in an interacting System perturbs the particles in
its vicinity and moves through the System together with a cloud of surrounding
particles. This dressed particle is referred to as a quasiparticle. The screening can
largely change the properties and lead to, for example, an effective mass différent
from that of the bare particle and to a finite lifetime. Experiments tell us in fact
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about thèse quasiparticles, as measurements introduce such elementary excitations
into the system.

The one-particle Green's function describes the propagation of one quasiparti
cle through the system and contains important physical information such as the
ground state energy, the momentum distribution, and - among other equilibrium
properties - the energy and lifetime of quasiparticles. The two-particle Green's func
tion contains information about the coupled behavior of two quasiparticles moving
through the System. It has the full information of the one-particle Green's function
and directly gives énergies and lifetimes of collective excitations, as well as electri-
cal conductivity and other non-equilibrium properties. Even higher-order Green's
fonctions include the information of the lower-order ones in the same manner and

contain in addition information about more complicated properties of the system.

Définition

The time-ordered single-particle Green's function of the system at zéro température
is defined as

G(x, x') =-i (yN T[i>H{x)^H{x')\ *at) , (2.65)
where \^n) is the normalized Heisenberg (time-independent) ground state vector
of the interacting A-electron System (see section 2.2.1), satisfying the Schrôdinger
équation Eq. (2.3),

H |%) = E \WN) , (2.66)

and E is the ground state energy of the System. As in section 2.1 we abbreviate
x = (x,t) = (v,a,t). T is the Wick time-ordering operator [55], which orders an
arbitrary number of operators from the right to the left in ascending time order and
adds a factor (—l)p, where P is the number of interchanges of fermion operators
from the originally given order. Explicitly,

^h{x,WhW1)\~[_^^hMj if t<t, • (2-67)

Relation to Observables

Theoperator ip*H{v', a',t'), acting onthe A-particle ground state, créâtes an électron
with spin a' at the point r' and at the time t'. From the définition of G in Eq. (2.65)
we see that for t > t', the Green's function is the probability amplitude that we
find that particle in the now (N + l)-electron system later at the time t at the
point r and with spin a, without any other modification of the ground state \^n) •
Correspondingly, for t < t', G describes the propagation of a hole in an (N —1)-
electron system. The Green's function is thus a propagator.

With the help of the Green's function we can calculate:

1. the ground state expectation value of any single-particle operator,
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2. the ground state energy of the system,

3. certain excitation énergies of the system.

The first point is readily obtained considering the one-particle operator

Â= Idv ^<(r,a',t)ACTv(r)^(r,M, (2-68)
J an'

which we take to be local in space coordinates for ease. The ground state expectation
value of this operator is given by

(i) = (yN\Â\VN)=-iÎ
= -i f dv lim Tr [A(v)G(vt, v't')],

J r'-»1

dv lim lim
t'-+t+ r'->r

^Arv(r)GW'(x*,x't')

(2.69)

where t+ dénotes a time infinitesimally later than t. The limit has to be taken after
the action of ACT'CT(r) in order to correctly treat differential operators.

The second point was first proven by Galitskii and Migdal [56] . They derived
the following expression for the ground state energy

E = (f +w +v)

= -4 [dv lim lim (i^-^r +w(x)] Tr[G(xt,x't')]. (2.70)
2 J t'->t+ r'->r \ dt 2 V /

The third point is the main interest hère. Following Réf. [54] we rewrite Eq.
(2.65),

G(x,t, x', t') -

+i(®N

il>(x) exp [-i [H - E^]) (t - t')] ^(x')\ tfjv) S(t - t')
^t(x') exp [-i [H - E^) (t -1')] ^(x)| *N) Q(t' - t),

(2.71)

where we hâve used Eq. (2.8) and the notation of Eq. (2.27) together with

0(t) = 1, t>0, (2.72a)
= 0, t<0. (2.72b)

Next we introduce the complète set of the eigenstates of H for the (N + 1) and
(AT —1) particle system. The quantum labels of thèses states are numbered by s
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and we set r = t - t' for a time-independent Hamiltonian. The limiting energy for
injection of électrons respective holes is the chemical potential [i. Thus we obtain

G(x,x',r) = ~iJ2fs(x)f:(x')e-^
s

x [0(r)0(es - /*) - 0(-r)0(/i - es)}, (2.73)

with

j fs(x) = (*N\^(x)\VN+1,s),
i c _ P(Jv+i) rp(N) tor es > /j, (2.74a)
^ ts — H/s Cjjy ,

fs(x) = (VN^s\ï>(x)\*N),
e _ #W _ ^(Jv-i) for es < ix. (2.74b){ ts — •'-'JV s '

The énergies es are différences of total énergies and describe quasiparticle excitation
énergies. A Fourier transform of Eq. (2.73) to energy space leads to

/oo

dTG{x,x',T)eiWT
•oo

=^/.(^^(xOJ-^^-^y'dre^-^
+Î9(/* - e.) j dr e^-^A . (2.75)

Finally we obtain

G(x,x» =J2 /l(X)/;(? v (2.76)^a;-es + ^r7sgn(es-//) v v

where n is a positive infinitésimal.

The amplitudes /s(x) are not normalized to unity and are not linearly indepen-
dent. However, they fulfill the completeness relation,

J]/s(x)/;(x')=(*Ar|^(x)^(x') +Vt(x,Mx)|̂ > = <5(x-x'). (2.77)

2.3.2 Self-Energy Concept

The différence in energy between a bareparticle and the corresponding quasiparticle
isobtained from the self-energy operator. The bare particle interacts with the many-
particle system and drags a cloud ofsurrounding particles around it while moving
through the system. Thus the particle in some way interacts with itself via the
many-particle system, and changes its own energy.
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Equation of Motion for the Green's Function

From the équation of motion for the field operators inthe Heisenberg représentation,
MH{t)

m
^H(t),H

we obtain the équation of motion for the Green's function

r d V2 1iQ-t +-f-w(x)\G(xt,xrt') =

ô(x - x')ô(t ~t')-îf dxi v(v,v1)G2(xt,x,t,x,t+,x't').
The two-particle Green's function G2 is defined as

G2(x1,x2,x3,x4) =- (tyN T ^h(xi)^h(x2)^h(x3)^h(x4) # N

(2.78)

(2.79)

(2.80)

Thephysical interprétation ofG2 is similar to the one ofG. The two-particle Green's
function describes the propagation oftwo particles being added or removed from the
system. The full knowledge of G2 completely détermines the one-particle Green's
function G. In the same way the équation of motion of the two-particle Green's
function involves the three-particle Green's function, which contains full information
about the two-particle Green's function and so on.

In practice, such a chain would hâve to beterminated by decoupling corrélations
of higher order. Instead one introduces a nonlocal, time- (or energy-) dépendent,
non-Hermitian quantity, called the self-energy operator E, which takes into account
the interaction between the particle and the rest ofthe system. In comparison with
Eq. (2.79) we implicitly define E by

G(x, x') =5(x ~x')+ j dxx EOr, xJGfa, x'). (2.81)
Hère we also define

hQ(x) = —-JL+w(x)+vE(x), (2.82)

with the Hartree potential Vu, which can be expressed, using many-body wavefunc
tions and operators, as

VE{x,t) =j dx' v(r,v') (VN \^H(x',t)i;H(x',t)\ VN} . (2.83)
Effective Eigenvalue Equation

If the external potential is time-independent, we obtain in energy-space for Eq
(2.81)

LO Â0(x)] G(x,x',u) =ô(x-x') + / dxx E(x,x1,o;)G(x1,x',a;). (2.84)
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Expressing the Green's function G in terms of energy-dependent wavefunctions
4>i(x,io), which are assumed to be orthonormal and complète in each w-subspace,

g(^.«>-£wrsr- <2-86>
we can fulfill Eq. (2.84) by further demanding the following eigenvalue équations for
the complex énergies Ei{uo) and wavefunctions ^(x,eu),

h0(x)^i(x,Lo) + / dxt E(x,x1,u)(l>i(x1,Lu) = £'i(a;)^(x,a;). (2.86)

The structure of the équations (2.86) is the same as the one of the Kohn-Sham équa
tions (2.17). Indeed, substitution of the self-energy E by the exchange-correlation
potential Vxc in Eqs. (2.86) leads back to Eqs. (2.17). Setting E = 0 results in the
elementary Hartree theory. Since the self-energy is a non-Hermitian operator, the
eigenvalues Ei(u) are in gênerai complex and the imaginary part of Ei(u) gives the
lifetime of the quasiparticle.

For well-defined excitations, given by sharp peaks at énergies Ei(u) = lo = ti,
the lifetime is quasi infinité and the resulting spectrum is real and independent of

<ï(«,rf,«)-£ *JxW(f •• (2.87)
t-r* lo - et + in sgn(ej - pi)

In the limiting case of independent particles, this form of the spectrum is exact
and we use it in this work, since we are only considering sharp quasiparticle states
around the Fermi level. Depending on the chemical potential /x, the pôles are moved
away from the real axis by a positive infinitésimal n.

We note the resemblance to Eq. (2.76), although the amplitudes /s(x) are of a
much more complicated nature than the single-particle QP wavefunctions </>j(x).

Spectral Weight Function

In gênerai, the excitation spectrum is given by the spectral weight function A, which
is related to the Green's function by

G(x, x', lo) = f du' f{x:x',Lo)
J lo —lo'+ in sgn{Lo'— n) '

or also

A(u) = -\ïmG(Lo)\. (2.89)
7T

The spectral weight function A can always be chosen real except for some problems
involving magnetic fields.
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For sharp quasiparticle peaks like in Eq. (2.87), A is simply

A(x,x',lo) =^^(x)4*(x')5(w - et). (2.90)
i

We can model a distinct quasiparticle state in the spectral weight function A by a
Lorentzian,

A(x,x',lo) =E&(x)fl(xO ty* (2.91)
i i *+ _\w —tir

where e» is the real part of the complex quasiparticle energy Ei{u) in Eq. (2.86). ti
is the imaginary part, corresponding to a particle decaying like e~Vit in time space.

Even when the peak in the spectral weight function A is évident, not ail of the
spectral weight is contained in this peak. The proportion of the spectral weight under
the quasiparticle peak is known as the renormalization constant Z. It is a measure
of the strength of corrélation effects, and it is related to the energy derivative of the
matrix élément of the self-energy operator by

Zi , 1 (!M1M
du

(2.92)

A value near unity corresponds to a small associated screening cloud of the bare
particle: the quasiparticle is a well-defined particle-like excitation with a long life
time.

Hedin's Coupled Intégral Equations

We hâve found that the self-energy is a functional of the one-particle Green's func
tion, Le., E = E[Cr] and that a knowledge of E détermines G. However, we do
not hâve a practical scheme in order to solve for the self-energy, starting from a
reasonable guess for G. Hedin introduced a set of intégral équations which fully dé
termines E and G [4]. They cannot be exactly solved, but give a good starting point
for various approximations for the self-energy.

Taking the functional derivative with respect to an artificial change ôw in the
external potential w, which is set to zéro again at the end, Hedin derived a set of
coupled équations [54],

W(x,x') = v(x,x')+ dxidx2W(x,Xi)P(xi,x2)v(x2,x'), (2.93a)

P(x,x') = -i j dx1dx2G{x',Xi)G{x2,x')T{xi,x2;x), (2.93b)

T,(x,x') — i dxidx2W(x+,x1)G(x,x2)T(x2,x';xx), (2.93c)

T(x,x';x") = S(x - x')ô(x - x") +
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I dx\dx2dx3dx4 ._,. —rG(xi,x3)G(x4,x2)T(x3,x4;x"),
ÔG{xi,x2)

(2.93d)

where x+ = (x, t+).
In the Green's function formalism one often uses the irreducible polarization

propagators P and Pq instead of the polarizabilities x and X° m Eqs. (2.51) and
(2.48). The propagator P is defined by a functional derivative,

P(x,x') =i [dx1dx2 G(x',x1)G(x2,x')ÔG^}X^2). (2.94)
J dViot{x)

P is related to e by

e(x,x') = S(x —x') — dxi v(x,xi)P(xi,x'). (2.95)

We remind the relation between x and s~l in Eq. (2.58). Thus P and x are generally
not equal. We only hâve Pq = x°-

From the équation of motion for the Green's function Eq. (2.79), we get a func
tional derivative expression for the self-energy E,

E(x,x') =-i dxxdx2 v(x+,xi)G(x,x2)— ^£i, (2.96)

The vertex function T is defined by

r<*'** - -^S?=*<*-^x-*"ï+W)- (2-97)
From Eq. (2.93b) we see that the structure of the polarization propagator P

is P — GGT, thus describing the création of an électron and a hole, which are
independent, if V = 5.

GW Approximation

Hedin proposed an itérative solution of the équations, starting with E = 0, i.e., the
Hartree approximation. This gives a simple expression for the vertex T,

T(x,x'; x") = 5{x - x')5{x - x"). (2.98)

The other functional expressions of Eqs. (2.93) are then in first itération,

E(x,x') = iG(x,x')W(x+,x'), (2.99a)
PQ(x,x') = -iG(x,x')G(x',x). (2.99b)
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This is the so-called GW approximation, where vertex corrections are neglected.
It is on the same level of approximation as the random-phase approximation (RPA)
for the inverse dielectric matrix in Eq. (2.59a). Note that Eq. (2.99b) for P0 in con
nection with Eq. (2.87) also gives the Adler-Wiser formulation for the independent
polarizability x° in Eq. (2.54).

In a second itération we would hâve to calculate the dérivation 5E/5G and ob
tain terms of the order W2 in E. However, the expressions quickly become very
complicated and are usually not considered. Since screening in solids is relatively
strong, which leads to a dielectric matrix significantly différent from one, a first-
order expansion of E in powers of W is already quite good, especially compared to
an expansion in powers of the unscreened bare Coulomb interaction v.

Calculation of GW Corrections

In the DFT-LDA calculations we separate the core from the valence électron con
tribution in the context of the pseudopotential formalism (see Appendix A). In the
same spirit, we split the Green's function,

G = GC + GV, (2.100)

and the polarizability,
P = PC + PV, (2.101)

leading to, from Eqs. (2.58) and (2.60) [54],

S = iGcW + iGvWvPcWv + iGvWv. (2.102)

The first two terms are generally small and hâve already been approximately in-
corporated on the DFT level [5]. E will only refer to the last term, describing the
valence-valence électron interaction.

Since W and G implicitly dépend on E, it is essential to make a good initial
approximation for the GW calculation in order to avoid forther itérations according
to Eqs. (2.93). In fact, the Kohn-Sham wavefunctions hâve been shown to match
very closely the exact quasiparticle wavefunctions for many materials, like diamond,
Si, Ge or LiCl [5]:

¥>P(r)« 0.999 0?P(r). (2.103)

Therefore, the <pfs are used to calculate the ab initio dielectric matrix as well as to
evaluate the desired matrix éléments for E.

In particular, we approximate G in Eq. (2.87) and x° in Eq. (2.59a) or (2.99b)
together with Eq. (2.54), using the KS-LDA wavefunctions and eigenvalues, and
evaluate the self-energy corrections in first order perturbation theory,

,QP _ ,KS +<^S| £(£?P) - ^DA kP> +O((E(«P) - KLcDA)2) , (2-104)
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where E must be computed self-consistently at the energy e^p. This is achieved by
a first order Taylor expansion around efs, since (S(w)) is almost linear in energy
around a QP peak,

(E(e?p))=(s(£n>+(^p-^)(^ +Offe?p-ef)2V

Thus, the correction for the KS-LDA énergies is

QP _ KS <s(eP))-<KLcDA>
, _ / m<»)
1 \ du ,KS

(2.105)

(2.106)

In the denominator we recognize the renormalization constant Zi from Eq. (2.92).
The dérivation in Eq. (2.106) is done numerically,

9S(ci)
du

CO=£i

S(Q + Aa;)-E(6,)
Ao;

(2.107)

with Au « 0.5 eV.

It turns out that already this first step in the solution of Hedin's équations
delivers results in excellent agreement withexperiment. Limited updatingofonly the
energydenominators in G and W has been explicitly shown to alter the quasiparticle
énergies in semiconductors by less than 0.1 eV [25, 26].
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Optical Absorption Spectra

For band structures excellent agreement with expérimental data has been obtained
for a wide range of materials by applying self-energy corrections - usually evalu-
ated in the GW approximation (see Section 2.3.2) - to the Kohn-Sham electronic
structure Eqs. (2.17) [5, 6, 25, 27].

However, spectroscopic properties involving two-particle excitations are often
only poorly described at this one-particle level. The main example is absorption
spectroscopy, where a simultaneously created electron-hole pair interacts more or
less strongly. As a conséquence, in addition to bound exciton states which occur
within the gap, the spectral lineshape above the continuous-absorption edge is dis-
torted.

The reported qualitative agreement with experiment of many computed Kohn-
Sham LDA absorption spectra, obtained from one-electron transitions between KS
states [7, 8], is indeed due to a partial cancellation between two principal errors:
namely, the compensation of the large KS-LDA underestimation of the valence-
conduction band gap (see Section 2.2.4), with an overestimation of the absorption
onset induced by calculating the dielectric function entirely within the one-particle
picture.

The situation often worsens when only the first error is corrected by replacing
the KS eigenvalues with the realistic QP énergies, as has been shown, e.g., for
the case of a sodium tetramer [48] as well as for bulk silicon [57]. On the other
hand, going beyond the one-particle picture through inclusion of local-field and/or
exchange-correlation effects from Eq. (2.50) within DFT-LDA in the calculation
of the absorption spectrum does generally not remove the observed discrepancy
[9]. In fact, most of the residual error stems from the neglect of the electron-hole
interaction.

In this chapter we will first explain, how the macroscopic dielectric function can
be obtained from the dielectric function and consider the independent-quasiparticle
approximation as well as the inclusion of the local-field effects.

Then we will develop a new method to include excitonic effects in optical ab
sorption spectra from first principles. We will rederive the Bethe-Salpeter équation,

31
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which is the starting point of our approach, using a second itération of Hedin's
équations after the GW approximation. The excitonic problem is solved using an
effective two-particle Schrôdinger équation in second quantized form.

The excitonic wavefunctions are represented in Bloch space with a basis in terms
of k vectors in the Brillouin zone and valence and conductions bands. We will apply
group theory in order to reduce the excitonic Hamiltonian from one large matrix to
several smaller ones, thus making the problem feasible for an ab initio approach.

We will only consider spin-paired électrons and can therefore omit the spin in
dices, if not otherwise stated. The appropriate prefactors are included in the for
mulas in order to account for spin.

3.1 Macroscopic Dielectric Function

The polarization of an inhomogeneous médium induces fluctuations on the scale of
the atoms in the material and gives rise to internai microscopic fields. While the
macroscopic field E varies with frequency u and has the Fourier component of the
limit of long wavelengths of the internai field, the microscopic fields vary with the
same frequency u, but with différent wavevector components q + G, where q lies
within the first Brillouin zone and G is a reciprocal lattice vector. Thèse microscopic
fluctuations are at the origin of the local-field effects and reflect the spatial variation
of real materials.

According to Adler [45] and Wiser [46], the macroscopic dielectric function gov-
erning the optical properties of a crystal can be directly related to the inverse of the
microscopic dielectric matrix Eq. (2.56),

1
eM(u) = lim —

Only cubic Systems are investigated. So we do not hâve to care about the direction
in which the limit of the small q-vector has to be taken. In practice, however, we
choose a very small q in some direction away from high-symmetry régions, as thèse
may bias the resuit due to a finite basis set.

The optical absorption spectrum is then given by the imaginary part e2(u) of
£m(^)- The dielectric constant e$ is the value of em{w) at u.== 0.

3.1.1 Independent-Particle Approximation

The dielectric function in the independent-particle approximation uses the polariza
tion for independent-particles x° in Eq. (2.59a) and neglects local-field effects, i.e.,
Eq. (3.1) is approximated by £m(w) = limq_>0£oo(q,tL>). We obtain from Eqs. (2.57)
and (2.59b)

t \ rt47r .. l^f Kck + qle^luk)!2eM(u) = 1+ 2— km —> <-^ ^ J—/-^—

(3.1)
G=G'=0
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|(ck-q|e-^-r|wk)f
eck-q - evk + (u + in)

where we hâve used the Fourier transformation of the Coulomb potential,
j^ _ 4tt e*(q+G)-r
IrrTT^iqTGT'

and the factor two dénotes the spin summation. Eq. (3.2) is the response to a
longitudinal field for q -» 0 in the length gauge.

Since the anti-resonant (second) term does not contribute to the absorption
process, we obtain for the imaginary part e2, relevant for absorption,

f/,A 04?r lr, |(ck + q|e^r|uk)|2 , xe2(u) = 2-— hm — > Im -!J -^ !—fcLv, (3 4)

Eq. (3.4) could be evaluated in k •p - perturbation theory in order to obtain
the wavevector |ck+ q) [18, Chap. 4][58, Vol. 1, p. 76]. However, we would like to
clarify some aspects by rederiving it using the golden rule. Following Bassani and
Pastori Parravicini [59, Chap. 5], we transform the kinetic energy ofa system of N
électrons in the présence ofan electromagnetic field according to

h2 £?nPi——) ' (3-5)
where A is the vector potential of the electromagnetic field used in the Coulomb or
velocity gauge V •A = 0 in the absence of sources <f> = 0. Neglecting non-knear
effects, we find the interaction Hamiltonian of électrons in a radiation field,

(3.2)

(3.3)

rrlocal = --^A(r;,t).p^ = —c2^A(vi,t)-pi. (3.6)
i

However, this well-known resuit isonly correct for local potentials. For a nonlocal
Hamiltonian H, as is the case in the pseudopotential formalism (see Appendix A),
we must be more careful. First, we note that the commutator with the coordinate
operator is given by [60]

V* = dlTi = i^'^ = Pi +i lV»h r*l ' (3-7)
where Ki indicates the nonlocal part of the Hamiltonian.

By transforming the nonlocal potential into a momentum-dependent form, mak
ing the same replacements p -» p - A/c like in the above standard case and re-
taining only linear terms in first-order perturbation, one finally obtains the correct
interaction Hamiltonian in a radiation field,

o-nonlocal

*•£•• 7 =-I>7- (3-8)
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The index i will be dropped from now on, since we will only deal with one-electron
quantifies. The wavefunctions and énergies refer thus to one-particle quasiparticle
states.

This termisthen treatedin time-dependent perturbation theory. Theprobability
per unit time that a perturbation of the form £e^wt (where the time dependence
is completely contained in e™"*) induces a transition from the initial state \i) with
energy e^ to the final state |/) with energy ey is

Pi^f = 2K\(f\Z\i)\2ô(ef-eiTu>). (3.9)

The - sign is for absorption, the + sign for émission of a quantum u. In the
independent particle picture (e/ - e*) is just the energy différence between two one-
particle quasiparticle levels. Writing the vector potential as

A(r, t) = Aoêe^*-^ + ce, (3.10)

where ê is the polarization vector in the direction ofthe electric field and q the wave
vector of the radiation, we obtain the transition rate for an absorption from \i) to
I/),

p\i)^\f) =2tt l—J Saii<Tf\ê-Dfi\2S(ef-~ei~u). (3.11)
The à-fonctions indicate energy and spin conservation. The latter follows from the
fact that iïeR does not dépend on spin.

Since the momentum ofthe incoming light quantum vanishes, we can only con-
sider direct transitions between two Bloch states with \i) = \vk) and |/) = |ck).
Therefore we neglect the possibikty of momentum decay through three-particle ef
fects like lattice vibrations. Undoubtedly, phonons are responsible for broadening
spectral features. However, thèse lifetime effects are approximately taken into ac-
count by a small imaginary constant in added to the absorption energy u in Eq
(3.2).

The electric dipole transition matrix éléments are given by, using Eqs. (3.7) and
(3.8), " ' ' ' * '

Dcu(k) = (ck|v|Wk). (3.12)

The détermination of the absorption spectrum requires the knowledge of the
absorption coefficient. The macroscopic physical quantifies thereby are the complex
dielectric constant, e = ei 4- ie2, and the complex refraction index, N = n + ik,
where n is the ordinary refraction index and k the extinction coefficient. The optical
constants e and N are related by s = N2.

From the absorption coefficient a, which is given by [59, Chap. 5]

2ku u
<* = = —e2, (3.13)

ne
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we obtain the imaginary part of the dielectric constant, e2. a is by définition the
energy absorbed per unit time and volume, W, divided by the energy flux,

a(u) = —r-j-f, 3.14
u {c/n) K '

where c/n is the speed of light in the solid and the average energy density u of the
radiation field, Eq. (3.10), is

n2Alu2

The absorbed energy W(u) is obtained by summing over ail states in Eq. (3.11).
Finally, we get the imaginary part of the dielectric constant

A 2 1

e2(u) =2-^-^ Yl Ie •Dc«(k)|2 $(eCk - evk - u). (3.16)
k,c,t)

In order to understand the relation with Eq. (3.4) and to prove gauge invariance
we rewrite Eq. (3.7) slightly differently as [57]

va = lim[H,ei^]/q, (3.17)

where va and ra (a = x, y, z) are the Cartesian components of v and r, respectively.
Placing Eq. (3.17) in Eq. (3.16) and noting that ail wavefunctions and énergies are
quasiparticle quantifies, we obtain

e2(u) =2~ km —̂ 2 I<ck +QIeiq1 vk> Tô(^ck+q - evk - u), (3.18)
k,c,v

which is just the imaginary part of Eq. (3.4), remembering the rule

1 1
km —— = P- T iTrS(x). (3.19)
»7->o x ± in x v '

We can further simplify, noting that in the GW approximation the quasiparticle
(GW) wave fonctions are nearly identical to the KS-LDA ones (see Section 2.3.2),
and applying once again Eqs. (3.7) and (3.17),

to{ok+q|^1,k>/5=!iia±l^M. (3.20)
H cck Sk

The Kohn-Sham eigenvalues appear in the denominator in Eq. (3.20) since the ex-
plicit application of the operators demands for the use of the appropriate Hamil
tonian, which is in this case the Kohn-Sham one from Eqs. (2.17). The use of the
quasiparticle Hamiltonian of Eq. (2.86) for the commutator in Eq. (3.17) would be
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considérable more cumbersome in the évaluation ofthe matrix élément in Eq. (3.20),
since the self-energy operator S is nonlocal and dynamical.

This gives us the final formula in the RPA formulation, neglecting local-field
effects,

eM(u;) = l +2-^^
k,c,v

ê-(ck|f + i[Vnhv]\vk)
,KS _ ,KS
eck Sk

i

4p-ip +("+^)
(3.21)

In this thesis we omit the nonlocal commutator i [Vni, v] (see also Appendix A) in
the calculation of silicon in Chapter 4. Its contribution dépends on the nonlocakty
of the pseudopotential of the studied system and tends to decrease the absorption
spectrum for about 10% and more in certain cases, in particular strongly bonded
group-IV materials, e.g., SiC [42, 61] or diamond, where we include it (see Chapter
5).

Joint Density of States

If we take the matrix éléments in Eq. (3.16) to be constant, we find that the ab
sorption spectrum in the independent-particle picture is proportional to 1/u2 and
to the quantity [59]

•W") =TTV* [ dkY,s (4P - 4P "w) > (3-22)
(2?r) Jbz — v /

which is called joint density of states, because it gives the density of pairs of states:
one state is an occupied valence and the other one an empty conduction band state,
separated by an energy u. Using the Eqs. (2.36) and (3.19), we obtain

^)=s^E^r—• (^3)
The function Jcv(u) gives us hints about the absorption spectrum and shows

strong variations in the neighborhood of particular transition énergies (eck —evk),
which are called critical point énergies [59].

3.1.2 Local-Field Effects

The inclusion of local-field and/or exchange-correlation effects within the DFT-LDA
in the calculation of the absorption spectrum is, in principle, straightforward. From
Eq. (2.52) we know the polarizability. Placing the Fourier transformation of the
inverse dielectric function Eq. (2.58) in Eq. (3.1) directly yields the macroscopic

——•
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dielectric function for each frequency u. The resulting formulas may be found, e.g.,
in Réf. [9].

For semiconductors and insulators the exchange-correlation effects within the
DFT-LDA, given by Kxc from Eq. (2.50), hâve been shown to give only small con
tributions to the absorption spectrum [9] and we will not consider this possibikty
hère.

Hère we would like to dérive a différent formulation for the macroscopic dielectric
function, which enables us to include later on also excitonic effects without much
complications.

Given a matrix of the form

M =

m~1 = +

m00 mf
m2 m

with m0Q being a c-number, we get its inverse as

0 0 \ . 1 ( 1 —mfm 1
0 m-1 J ^ (m0o - mf m-1m2) V-m-1^ m_1m2mfm-1

(3.24)

(3.25)

Now we use the expression for the dielectric function Eq. (2.95), s = 1 —vP, and
write the macroscopic dielectric function in terms of Fourier components as, using
Eq. (3.25) and eM = lAoo1(0),

eMM = km [e0Q(q,u) - ef (q,w)e 1(q,u)e2(q,u)] .

The quantifies Sqo, ej, e2 and e are given as

We obtain

£oo(q,w) = 1 - v0{q)Poo(q,u),
[eJ(q,u)]G = v0(q)P0G(q,u), G # 0,
Mq,u/)]G, = vG>(q)PGI0(q,u), G'^ 0,
[c(q»w)]GG* = vG(q)PG&(q,u), G,GV0.

£M(o?) = l-lim[i;o(q)Poo(q,w)

- X McÙpoG(q,^)eG1Gl{q,u)v&(q)PG/0(q,u)
G,GV0

(3.26)

(3.27a)

(3.27b)
(3.27c)
(3.27d)

(3.28)

In order to simplify this expression, we want a matrix expression involving ail G
and G', not only G, G' ^ 0. Therefore we define

ê(q,w)GG< = ôGt& - vG(q)PGG>(q,u), (3.29)
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with

«o(q)
/ 0, G = 0

-\ «G(q), G^O ' ^3°)
where the dash indicates that the G = 0 contribution is to be left out in the bare
Coulomb interaction. In matrix notation we hâve

"GG,=U T)- (3-31)
Then the inverse of Eis given by, using Eq. (3.25 ),

which can be easily checked. Thus we can write Eq. (3.28) as

êmM = 1- km [vo(q)P00(q,u)], (3.33)

where we hâve defined

PcG'(q^) = PoG'(q,w) + X PGK(q^)s^Kl(q,u)vK>(q)PKIGI(q,u). (3.34)
K,K'

The replacement ofv by û in the second term in Eq. (3.34) allows us to extend the
summation over ail K, K' including 0. This is the wanted matrix expression

P = P + Pê-lvP. (3.35)

Together with ë"1 = (1 - vP)~l, Eq. (3.29), we finally arrive at the gênerai
expression

P=(P-1-^)-1, (3.36)
or in form of a Dyson équation,

P = P + PvP. (3.37)

Until now, we hâve not specified P. In the terminology of excitonic calculations
the choice P = P0 (we remind that P0 = x°, the independent-particle polarizability)
in Eq. (3.37) gives the so-called exchange contributions, which is hence the same
as including the local-field effects in the RPA. They are explicitly given by the
discrepancy between eM(o;) and limq_+0e0o(q,w) in Eq. (3.26).

3.1.3 Electron-Hole Attraction

Excitonic effects can be included in the macroscopic dielectric function, Eq. (3.33),
by taking the polarization function P in Eq. (3.37) not in the RPA approxima
tion, but going one step further and also considering the electron-hole interaction.
This can be achieved by an itération of Hedin's équations (2.93) beyond the GW
approximation.
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Second Itération of Hedin's Equations

We hâve to go again through équation Eq. (2.93d), now using E = iGW, Eq. (2.99a).
Doing so yields an intégral équation for F,

T(x,x';x") = ô(x - x')5(x - x")

+iW(x+,x')jdx3dx4 G(x,x3)G{xA,x')T(x3,xA;x"). (3.38)

Hère, we hâve used 5E/6G = iW, neglecting the term iG%, which contains infor
mation about the change in screening due to the excitation and is expected to be
small [12, 62, 63].

We can transform Eq. (3.38) to an intégral équation for a generalized P, defined
as,

V{x"; xux2) =-iJ dxdx' T(x, x'; x")G{xl,x)G(x', x2), (3.39)
by multiplying with -iG(xx,x)G(x',x2) and integrating over dxdx':

F(x";x1,x2) = -iG(xt,x")G(x",x2)

+i Jdxdx' F(x"; x, x') W(x+, x') G(x1,x)G(x', x2). (3.40)
The polarization P is directly related to P,

P{x",x2)=F(x";x2,x2). (3.41)

Thus one could possibly find a solution for P by solving for the three-point function
P in Eq. (3.40), of which we only need the diagonal part. However, this approach is
not followed in this thesis.

Indeed, like in the previous section on local-field effects, we prefer a matrix
expression for Eq. (3.40). Therefore we understand P as a four-point polarization
propagator P(x1,x2;x3,x4) from which P(x,x') is obtained as P(x,x;x',x'), which
can be done without ambiguity in the given context. In the same sensé the bare
Coulomb interaction v(xx,x2;x3,xa) is constructed as

v(xux2) ->• vix^x^ô^xx - x2)8(x3 - xA), (3.42)

and the dynamically screened interaction W(x1,x2;x3,xA) as

W(xux2) -* W(x1,x2)5(xx - x3)ô(x2 - xA) (3.43)

Then we get for Eq. (3.40) the intégral équation

P(xi,x2;x3,x4) = P0(x1,x2;x3,xA) - j dx5dx6dx7dx8 P(xx,x2;x5,x6)
xW(x5, x6; x7, z8)P0(a;7, a;8; x3, x4), (3.44)
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which can be written in matrix form as

P = Po - PWP0, (3.45)

or

P = pQ(l + WPo)-\ (3â46)

This expression for P corresponds to an évaluation of the polarization in the time-
dependent Hartree-Fock approximation, but with a screened instead of a bare Cou
lomb interaction. Ail diagrams in a ladder approximation for the polarization in
addition to the non-interacting RPA bubble are summed over [10].

Placing the Eq. (3.46) for P into Eq. (3.36) for the now four-point P, leads to
the Bethe-Salpeter équation, Eq. (1.1),

P = Po + P0{v - W)P. (3.47)

We remind that the exchange contribution v is used without the long range term of
vanishing wave vector.

Since the total spin of the ground state in semiconductors and insulators equals
zéro and HeR in Eqs. (3.6) or (3.8) does not dépend on spin, only singlet transverse
excitons with spin zéro can be induced by the radiation field, neglecting the coupkng
of spin and magnetic field. Then, when spin is not explicitly treated, v gets a factor
of two for singlet excitons.

We limit ourselves to static screening in W, since dynamical effects in the
electron-hole screening and in the one particle Green's function tend to cancel each
other [64], which suggests to neglect both of them. Especially, when the plasma
frequencies of the investigated Systems are much larger than the excitonic binding
énergies and also than the investigated absorption frequencies, this approximation
is adéquate.

Interaction Kernel E

The connection to the function S in Eq. (1.1) is given by

P(x1,x'l;x2,x'2) = ~iS(xi,x[;x2,x'2), (3.48)

where the Bethe-Salpeter équation is traditionally written as [12],

S(xi,x'1;x2,x'2) = So(xii^1;x2,af2) + So(xi,x'1]x3,x'3)
xE(x3,4; x4, x'A)S(x4, x'A; x2, x2). (3.49)

Repeated arguments are integrated over. S(xi,x'1;x2,x2) is indeed the part of the
two-particle Green's function Eq. (2.80) which excludes the disconnected term

-(?(£!, z'JG^, 4). (3.50)
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The kernel Hcan also be found as the functional derivative ofthe self-energy E from
Eq. (2.81) including the Hartree potential Vu from Eq. (2.83) with respect to the
single-particle Green's function [62]:

Axux^x^)^ SGÎ^xl) • ^51)
With E == iGW we obtain then

B{xi,x'^x^x'2) = -iô(xi,x'l)ô(x2, x'2)v(xi, x2)
+iô(x1,x2)ô(x'1,x'2)W(x1,x[). (3.52)

Like above in Eq. (3.38), we hâve neglected a term Gj^.

Macroscopic Dielectric Function

Finally, the_macroscopic dielectric function is given by placing the Fourier transfor
mation of P(r, r, r', r'; u) into Eq. (3.33),

6m(u) = 1 —lim
q->0

(q) j dv j dv' e~i(i<r-^P(v,v,v',v';u)vo (3.53)

The dash indicates once more the omission ofthe long range term ofvanishing wave
vector in the exchange contribution.

3.2 Excitonic Effects: Bloch Space

In order to solve Eq. (3.49), we hâve to invert a four-point function for each ab
sorption frequency. In an ab initio plane wave calculation (see Appendix A) such
a procédure is clearly prohibitive, when plane waves are chosen as straightforward
basis fonctions.

Instead, the physical picture of interacting electron-hole pairs suggests to use a
basis of LDA Bloch fonctions, <pnk(v), from Eq. (2.31) expecting that only a limited
number ofelectron-hole pairs will contribute to each excitation [48, 65, 66]. We use
a spectral représentation and transform the inversion into an effective eigenvalue
problem, which is solved by diagonalization.

3.2.1 Second Quantization of Bethe-Salpeter Equation

The KS-LDA Bloch fonctions (numbered by only one label n including spin) are
orthonormal and complète and we can transform the polarization P, omitting the
frequency dependence, as

P(r1,r1;r'2,r2)= ]T ^(ri)^^)^^)^^)^^)^^), (3.54)
ni.. .T14
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with

P(ni,n2),(n3,n4) —P(ni,n2),(n3,n4) lP{ni,n2),(n5,n6)^(n5,n6),(n7,n&)P(nT,n&),(ri3,n4)- (û.OOj

The independent-particle polarization P0 is given by

P(ni,na),(n8,n4) =/ dvX... Jdv'2 Pq^, 1^; V2, ^^(rO^^)^^)^^^),
(3.56)

with

P0(ri,r'1;r2,r2)= ^ VÏm (ri)yma (r'>m3 fo)?^ (gg) (3.57)

(3.58)
m\...m,4

,m4)

with fi being the occupation numbers (0,1) of the state i and n a positive infinités
imal. Thus,

\Jn,2 ~~ in\) 0ni,n3°n,2,n4P°(ni,n2),(n3,n4)
~n2 eni - u - in

Now we define

Then Eq. (3.47) becomes

Using the relation

MQ/3 =

we can rewrite fi as

1-I(ni,ïi2),(n3,n4) =

-=.1-1îl= [1 + iPoH]

p = np0

Sij h
-\ -1

aP

= [tftfcr-^yjty,

"mi,m3"m2,m4 + 1>~
Jm2 JtT&l J7Tl\

emi-u- %n
û(mi,ro2),(m3,m4)

— Ke"i2 emi

+ t [fm2 ~ frm) "(mi,m2),(m3,m4)J(ni!n2)j(n3)n4)

We define the excitonic Hamiltonian as

•"(ni,n2),(n3,n4) —(e™2 ~ eni) 0ni,n30n2,n4 + *(,/n2 —/ni) "(ni.r^Mns.^)- (3.64)

Thus,

-m2

Ld) ('mi,m3('m2,m4

n (ni,n2),(113,114)

i-l

-1

(3.59)

(3.60)

(3.61)

(3.62)

(ni,n2),(n3,n4)

(en4 - en3 - w). (3.63)

— Hm'i,m2),(m31m4) ^mi,m3<Wm4J (ni,n2),(n3,n4) (C"4 Ên3 W) '
(3.65)
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and

P(ni,n2))(n3,n4) = [B™ ~I u]"^^^ (/n4 -/„.). (3.66)
/ is the identity operator / = ômumzôm2rm4.

We hâve to invert the matrix in Eq. (3.66) for each absorption frequency u. This
iscomputationally very expensive, even ina basis ofBloch functions. The important
trick is to apply a spectral représentation for the inversion, using the relation

[a-_/(ll]:>_EWf&M (3.67)

which holds for a system ofeigenvectors and eigenvalues ofa gênerai non-Hermitian
matrix defined by

H™ |A> = Ex |A) • (3.68)

SA)A/ is the overlap matrix ofthe (in gênerai non-orthogonal eigenstates) of#exc,

SAiV = (A|A'). (3.69)

The eigenvalues Ex must nevertheless be real being the optical transition énergies
of a real physical system. There is no dispersion ofmomentum nor energy included
in the Hamiltonian matrix. Thus our excitons hâve an infinité lifetime.

More explicitly, we define the effective two-particle Schrôdinger équation for the
excitonic System by

f/exc /t("3,n4) _ p /((ni,n2) . .
/f(ni,n2)l(!n,n4)-AA = &\AX , (3.70)

which we solve by diagonalization. The macroscopic dielectric function can then
relatively easily be constructed using the excitonic eigenvalues and eigenvectors, as
explained in the next section.

The explicit knowledge ofthecoupkng ofthevarious two-particle channels, given
by the coefficients Axni,n2) of the state |A) in our Bloch basis, allows to identify the
character of each transition.

The one-particle transition énergies on the diagonal are taken to be thequasipar
ticle énergies, obtained in a GW calculation (see Section 2.3.2). This corresponds
to an updating of the energy denominators of the independent-particle polarization
P0 in Eqs. (3.60) and (3.61), using quasiparticle instead of Kohn-Sham LDA eigen
values. The screened interaction W is taken from the preceding GW calculations
and again we use the very close resemblance of the quasiparticle wavefunctions with
LDA-KS ones for the excitonic eigenstates.

Consequently, the exciton amplitude is expressed by

^(^,^=^4—)^^)^^). (3.71)
ni,n2
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Taking only the résonant term of Hexc, which is later on defined in Eq. (3.78), the
amplitude is naturally given in terms of électron and hole coordinates,

*A(rh,re) = ^4ckV;k(rh)^ck(re). (3.72)
v,c,k

Furthermore, we are interested in the excited electron-hole pair charge density.
We calculate the expectation value of the hole charge density operator in the excited
state Eq. (3.72) and obtain

n£(rh) = (#A(rh,re)|-<Kri-rh)|#A(rh,re))

= - E E (4Tk))* 4V'C'k,) / /Ai^kMv&teWn - rh)
u,c,k«',e',k' J J

x^'k'(ri)^c'k'(r2)

= -EEKCk))* '̂CkW(rh)^k(rh). (3.73)
v,c,k v'

Similarly for the excited électron, we get

n*(re) = (*A(rh,re)|5(r2-re)|*A(rh,re))

= EEKCk))*4UC'kV:k(re)^k(re). (3.74)
v,c,k d

Thèse charge densities are related to the total charge density of the excited
System n*x(v) and the ground state charge density n(v) by

nA(r) - n(r) = n*(re) + n£(rh). (3.75)

This description of négative hole and positive électron contributions to the excited
density is very usefol to investigate bound excitonic states in solids [23] and clusters
[65, 67]. In Appendix B we discuss as an example the sodium tetramer.

3.2.2 Absorption Spectrum

Structure of Excitonic Hamiltonian

We hâve to examine the structure of fff™ ,, ns more carefully. As in the case
of independent particles (see Section 3.1.1) we only take direct transitions for the
electron-hole pairs in the optical absorption, neglecting phonons, and therefore hâve
excitons with zéro momentum.

Omitting the spin and wavevector dependences, we obtain for the excitonic
Hamiltonian, Eq. (3.64),

H(m,n2),(n3,ri4) = ( Q D ) ' (3"76)
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with

B

D

(ni,n2)\(n3,n4)
{v,c}

{c,v}

(ni,n2)\(n3,n4)
{v,c}
{c,v}

(nun2)\(n3,n4)
{v,v}
{c,c}

{v',c'}
TT-exc,res

n(v,c),(v',c>)

i [Z(v,c),(c>,v')]

{c',v'}
—iz,(v,c),(d,v']

fVexc,res

n(v,c),(v',c')

W, v'} {c',c'}
1£.(v,c),(v' ,v')

îc'(c,v),(v',v')

{v',v'}

-ljl(v,c),(c>,c')
1>^'(c,v),(c',&)

{c',c'}

0 (eg - ec) 6c,d5c,c
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(3.77a)

(3.77b)

(3.77c)

The résonant part of excitonic Hamiltonian is defined as

H(™c)Z>,c') = (ec _ e*>) ^ '̂̂ c)C' - LE(v^(vffil). (3.78)

It corresponds to transitions at positive absorption frequencies u.
If we sum over spin, we obtain from Eq. (3.52),

H(vck),(v'c!k!) — (eck~ evk)§v,v'Ôc,c'Ôk>k>

+JdrJdT' Vàk(*)v*(*)y^<P</vP)v>l>vtf)
~j dr j dv' up*ck{v)yclkl{v)

xJdvle-\v,v1)~-^ripvk{v')LPllkl(r'). (3.70)
In Eq. (3.66) we hâve a factor (/n4 - fn3) for the polarization P. Thus, only the

first column of

M(ni,n2),(n3,n4) = [&"* ~ I W] (ni,n2),(n3)n4) ' (3-80)
Le., with (n3,n4) = {c',v'} and {v',c'}, contributes to the absorption process. We
are calculating Hexc and want to know, which parts in Eq. (3.76) are significant. We
split M and M-1 like above in

M

M"1

K B
0 Du J •

a P \
7 S •

(3.81a)

(3.81b)



46 Chapter 3. Optical Absorption Spectra

(Au = A~ I u, Dw = D - I u.) From MM-1 = /, we hâve the condition

oA* aB + (3Du \ j_ ( 1 0\
7Au PB +ÔDW J ~ \ 0 1 )• W™)

Since only the first column (") of M-1 contributes and, from the above équation,
7 = 0 for ail cases, we only need a = A'1. Therefore only the part A, Eq. (3.77a), is
relevant for the macroscopic dielectric fonction, a resuit which is easy to understand
by simply looking on the structure of Hexc. Only pairs containing one filled and one
empty Bloch state contribute.

Fromnow on we will restrict ourselves to this part A, Eq. (3.77a), when referring
to Hexc. It is in gênerai non-Hermitian and can be further separated into two blocks
on the diagonal with the quasiparticle transition énergies and the interaction kernel
E and two off-diagonal coupkng blocks with contributions only form the interaction
kernel,

(£>exc,res j&coupling \

—[//coupl"1*] * —Fffexc,resl * ) • (o.ooj

The résonant part is Hermitian,

while the coupling part alone is symmetric,

jycoupling = ^couplingjr _ ^ ^

We dénote the part in the lower right anti-resonant. It contains négative transition
énergies, thus only contributing to négative frequencies. It gives the same contribu
tions as the résonant part does for u > 0 for u < 0, if we neglect the interaction
éléments in the coupling parts, which are generally much smaller. Indeed, in very
good approximation we can restrict ourselves to the résonant part for the absorption
spectrum, as it will be shown in the further course of this thesis.

Macroscopic Dielectric Function

From the effective excitonic Schrôdinger équation, Eq. (3.70), the polarization Eq.
(3.66) is given by

Ani,n2)c-1 A*(nz,ri4)

Ex-u
P(ni,n2),(n3)n4)M =]T— p/'^,/ " (/n4 ~/n3) • (3.86)

A,A'

Placing this form of P into Eq. (3.53), and transforming from Bloch space back to
real space, we obtain for the macroscopic dielectric function,

£MM =1- km <v0(q) J^
11 A,A'

A(ni,n2)

E\ —u —in.ni,n2 A '
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n4- sjj. E (
n3,n4

3*q-r'
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n3 )Af^ (fn4 Jn3) (3.87)

We hâve added a small imaginary constant in to the frequency u in order to smooth
the curve by a Lorentzian shape and to shift the pôles away from the real axis.

If we consider only the Hermitian résonant part of Hexc, we obtain the simpler
formula for the imaginary part,

e2(u) == 2lim v0(q) Y^ Im
a—^0 * <Jq->0

E,lClk^k-q|e-^r|ck)A(vck)

Ex —u —in
(3.88)

The factor 2 considers summation over spin. The exciton wavefunction coefficients
A\vc in Eq. (3.88) mix the independent-particle transitions in Eq. (3.4).

Eqs. (3.70) and (3.88) constitute a set of équations which has been frequently
used in the non-ab initio framework [59, Chap. 6] [62]. Hère, it appears as a par
ticular approximation to the more gênerai formula Eq. (3.87), with well-defined ab
initio ingrédients, which are consistent with the GW approach.

Indeed, we can also include the anti-resonant part of the excitonic Hamiltonian
without explicitly solving for the full matrix in the évaluation of the macroscopic
dielectric function. Neglecting the coupling parts inthe full Hamiltonian, Eq. (3.83),
we get two block-diagonal terms, the résonant with solutions Aand the anti-resonant
part with solutions X. From H res = - [îpnti-res] *j we see E-x = -Ex and Ax =
A*x. Thus, the macroscopic dielectric function, including the anti-resonant part, but
excluding the coupling parts of Hexc, is

£m(w) = 1+ 2lim v0(q) Y^
a-40 *•—'q->0

^2(vk-q\e~i(l-r\ck)Ax
v,c,k

1 1

*q-r| „lA A(vck)

X +Ex - (u + in) Ex + (u + in) (3.89)

The energy shift n has also been retained for négative transition énergies in order
to account for finite life-time effects.

We can obtain the real part of eM by making a Kramers-Kronig transformation,

ei(o;) = l + -q5 /
T -/-oo

dt
e2{u)
Ç-u> (3.90)

which gives, using s2(u) - -s2(-u) and an infinitésimal energy shift n for the
absorption frequency,

O P+OO

ei(w) = l + - / ,
7T Jo

dÇ
C2 —u2 —2irju

(3.91)
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In the above équation for e\ (u) we hâve considered the négative frequencies. Thus
starting from e2{u), obtained from Eq. (3.88), - only taking the résonant term -,
we include the anti-resonant term in ex{u), though neglecting the coupling terms of
the excitonic Hamiltonian.

3.2.3 Formulation in Momentum Space

The computational implementation has profited from the GW code ofRexW. Godby
and R. J. Needs [6, 47] and the exciton code ofGiovanni Onida et al. [48] for clusters,
where only the T point has been programmed for the k point sampling, since finite
Systems do not hâve a dispersion. The original program written by Stefan Albrecht
et al. to find the optical absorption onset of lithium oxide (see Appendix A) has
served as a basis for the developments made in this thesis.

Spin is included in the summation.

Résonant Part

We will first consider the résonant part and split the excitonic Hamiltonian Eq.
(3.79) into

£rexc,res _ Trdiag,res , frexch,res • rrCoul,res /o Qn\

Diagonal Term The diagonal part is trivial,

H(vckfjyc'k') ~ (eck - tvk) <W<W5k,k'- (3.93)

As already discussed above, we use the quasiparticle énergies from a GW calculation
as the independent-particle transition énergies.

Exchange Term The unscreened short-range exchange term is readily evaluated.
Using the Eqs. (2.31) and (3.3), we obtain

*&>**) =2^ E 7^2 <<* KG1 vk) <Vk' |e" |̂ c'k'> . (3.94)

The volume of the crystal is Q = Nktt0, with Nk being the number of k points in
the sampling over the Brillouin zone.

The inclusion of the nonanalytic term for G = 0 in Eq. (3.94) would account
for the transverse-longitudinal splitting [5g, Chap. 6], which is not relevant for
absorption spectra. It is nevertheless observable for bound states which occur within
the gap [23] or discrète states of finite Systems like clusters and has to be evaluated
in the limit of vanishing wavevector according to Eq. (3.20). This considers the
dependence of the transverse-longitudinal splitting on the direction of the electric
dipole moment Eq. (3.12) and the excitonic wavevector kexciton = kc - k„ relative to
each other.
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For G^O the matrix éléments are evaluated applying FFT routines,

pnik,(G) s (mk1 |e-^+G)-| n2k) = [dv <lk,(rK2k(r) e~iGr, (3.95)
n2lc J

with k' = k —q.

Coulomb Term The screened Coulomb term is obtained using Eq. (2.56) for the
inverse dielectric function in momentum space,

HCoul'res - -— V gGG'(q) (r\r IJ(q+G).r| jy<U(vckUv'c>k>) - n 2^ iq + G| |q+ G'| \ck Ie Ick /
G,G' IM "M '

x(WV|e-^+G>'|uk).5q,k_kS (3.96)
where we hâve defined the symmetrized inverse dielectric matrix ê_1 by

2Sw(q) s ^GG'(q)fer?r- (3.97)
|q -r *j|

Furthermore, we hâve used Eq. (2.36) to transform the intégral over the Brillouin
zone into a sum.

The case of q = 0 in Eq. (3.96) has to be considered separately. We hâve to
retain the intégration in Eq. (2.56) and examine the limit of q —> 0. From Eqs.
(2.57), (3.3) and (3.20) we can estimate for cubic Systems the behavior of ë_1 in the
RPA formulation Eq. (2.59a),

a2%/(q -• 0) a 1+ \ oc 0(1), (3.98a)

ë&(q ">"^oc|q||q+Gf|ocQ(T)' (3'98b)
*«<* -* 0)X\q-^Ûq-\°CO{f)^ ^

êGG.(q -»• 0)oc«yG|G* + lcxO(l). (3.98d)

Together with the limiting values of the matrix éléments and the denominator
of ifCoui,res in Eq (3 g6) we find that the head (Q = 0, G' = 0) contributes only
notably to (c = c', v = v'). This part is analytically integrated out in the manner
[5]

Isz is the intégral of 1 /q2 over a chosen volume of size Vbz/AJc around q = 0. For
the easiest assumption of a small sphère with radius h, we hâve

1 f ' . 1 . iirh 1 3/6^" 0.197
*~=w? y dv=(2^=2^vir=w- (3-ioo)

vBZ/ivk
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The correct considération of the shape of the k space for the q = 0 contribution due
to the spécial k point samplingscheme of Monkhorst and Pack [30] in the intégration
leads to a factor of 0.188 instead of 0.107.

Ail other cases for the head as well as the wings (G = 0, G' / 0 or G ^
0, G' = 0) either average to zéro or vanish in the limit of a large k point sampling
set (Nk -> oo). In particular, the case (c ^ c', v ^ v') for the head, which gives
- if at ail - a very small contribution, is set to zéro, since a correct treatment for
degenerate bands demands for rather involved second order perturbation theory.

Coupling Part

The coupling part of the excitonic Hamiltonian Eq. (3.7g) is split like

frcoupling _ £Vexch,coupling , rrCoul,coupling /-q -i pj-i \

Exchange Term The unscreened short-range exchange term is, from Eq. (3.g4),

^^^J^7^W^\^)(<^\e-^\i^). (3.102)
" G^O M

The inclusion of the G = 0 term in Eq. (3.102) would hâve the same implications
as for the résonant part.

Coulomb Term The screened Coulomb term gives, from Eq. (3.96),

rrCoul,coupling _ _f^ V^ gGG' (g) / i I t(q+G)-r| „ftJ\*W(eVk') - n Z^|q+G||q+G'|\ckle \vk)
G,G

x(c'k' |e-^+G'>r'| «k) •5q,k_k>. (3.103)
There is no contribution to the case of q = 0 in Eq. (3.103) for the head and the
wings. Ail terms either average to zéro or vanish in the limit of a large k point
samplingset, similar to what has been said for Eq. (3.96).

3.2.4 Réduction of Exciton Hamiltonian

The Hamiltonian matrixfor the effective eigenvalue équation Eq. (3.70) can be quite
large, up to some ten thousands oféléments for materials with a large dispersion like
silicon. We can reduce the dimension ofthe matrixbyapplying symmetry opérations
of the crystal (see also Section 2.2.5). Instead of solving one large matrix, we treat
several small ones.

In gênerai, we consider only those opérations which form an Abelian subgroup
of the point group, and which altogether allow to reconstruct the whole zone from a
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corresponding reduced part. In the case of the diamond group, we find it convenient
to use the 180° rotations R around the x and the y axis, respectively. Thèse two
opérations allow us to break the équation #kk<,4k' = EAk (band indices hâve been
suppressed, and repeated indices are summed over) into four équations to be used for
points kj in a reduced zone only. Thèse équations are of the form hkik/iak>i = Eaki,
where hkik!i = H^kU ± i7kiRkv The Ak are then reconstructed from the reduced
eigenvectors aki. Moreover, we apply time reversai and Hermiticity in order to
accelerate the calculation of the matrix éléments.

In the followingwe will first examine the symmetry properties of the Hamiltonian
H in more détail and then show explicitly, how to construct the small Hamiltonian
matrices h, and how to get original Ak from the reduced eigenvectors aki. Finally
we will consider several approximations in order to speed up the calculation and/or
to further reduce H.

Symmetry Properties of the Hamiltonian

The Hamiltonianin momentum space has as essential ingrédients the diagonal part,
the matrix éléments p and the inverse dielectric matrix è~x. We will consider each
part separately in the following to find a relation of the form Hpkpk> = Hkk>.

Diagonal Part This part is trivial as enk = enpk from Eq. (2.40).

Matrix éléments The application of symmetry opérations to the matrix éléments
is complicated for degenerate bands and due to the fact that the opérations used to
expand a k point from the irreducible Brillouin zone into the full Brillouin to a full
star are not uniquely defined (see also Eq. (2.39) and thereafter). We refer to Eq.
(3.95).

In order to dérive the rules for matrix éléments we take k = DkiBz and k' =
D'kiBZ, with D and D' being rotations of the point group. Then we get, applying
Eq. (2.39),

hv(G) = /dr^,k,(r)e-^+G)-r^nk(r)
nk J

= /^^kiBZ(D'-lr)e-^+G)^nklBZ(D-lr). (3.104)
The phases are deliberately chosen as indicated, <£>nDklBZ(r) = Lpnk (D~1r).

We want to find a rule to go from pn>D>k> , to pn'k> , thus we transform r ->• D'r
i.D£J IBZ

nk nD'_1k
in the above équation. In the case of degenerate bands, which we consider now, this
leads to a linear combination of bands for the degenerate wavefunction as given by
Eq. (2.41).
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For ease we assume hère that n at k is degenerate, while n' at k' is not. Fur
thermore, we demand D ^ D'. Then we obtain from the last expression in Eq.
(3.104),

Pn'D<k<IBZ(G) = /dD'v LP*n%Jr) e-^+ '̂r ^Wr)
ï Pn'k'IBZ (D'-XG), (3.105)

nD'_1k

with k = D' xk = D' ^Dkrsz = TkffiZ. The new wavefunction £>nklBZ is the resuit of
the linear combination of degenerate bands, Eq. (2.41). We hâve furthermore used

(q+ G) •D'r = D'-^q + G) •r. (3.106)

It is essential to note that the inequakty in Eq. (3.105) is due to the fact that
Prik'm7 (D'~XG) is indeed consistently taken as,

VIBZ

Pn%BZ (D'̂ G) =f dv ^k,Jv) (T^^h+G)* ^klBZ(T"lr). (3.107)

Evidently, we must be very careful when applying symmetry opérations to p
and we will consider several cases in the following. Immediately we see from the
construction of the p that we hâve in the spécial case D = D', and also for degenerate
bands,

Pn'Dk'IBZ(G) ^n'k^D^G). (3.108)
nDlciBz nierez

This is very usefol and easy to apply for q = 0, Le., kJBZ = kIBZ.
The freedom of phase of pn'k'1BZ in the above example, Eq. (3.105), for the case

nD'^lc

of degenerate bands is restricted when D'-1 = D', since twice the application of D'
on k' must then lead back to the identical old phase ofpn<k>. This argument leads us
to the rule for degenerate bands and could be generalized for an Abelian subgroup
of the point group.

Still, however, there might be some ambiguity about the rotation T in Eq.
(3.105), since it is not necessarily unique. As it will be discussed below, this does
not cause any problems in practice, if we expand the IBZ into the full BZ by first
applying ail rotations R and then the inversion plus R. Then the choice of phase is
consistently fixed for the wavefunctions with k = TkiBz-

Thus, for non-degenerate bands in gênerai and ak rotations R-1 = Rin particular
we obtain the rule

Pn'Rk'(G) = p„'k'(R_1G). (3.109)
nRk nk '
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The inversion has to be applied with care. The phase is only then consistently
chosen, if we use time reversai only in those cases, where the k points cannot be
related by a proper rotation. Therefore, we must first apply ail rotations and then
the rotations plus the inversion (time reversai) in order to expand the IBZ into the
full BZ, as we hâve already noted above. This insures a correct book-keeping ofthe
rotations Din the relations kBZ = Dkmz. We hâve from Eq. (2.43),

pn'-k'(G) = #;,k,(-G). (3.110)
ra-k nk

In practice we hâve only a finite set of q vectors. Forming the différence

q = k-k' (3.111)

may lead to a vector outside the first Brillouin zone. However it can be translated
back by an appropriately chosen reciprocal lattice vector G0, since

Pn'k-q(G) = pn/k_q_Go(G - G0). (3.112)
nk nk

Finally, we would like to consider non-symmorphic opérations as well, although
we are not employing them in the program. For a space group operator {p | w} we
obtain for non-degenerate bands, using Eq. (2.39), and following the same reasoning
as above,

Pn'pk'(G) =Â»v(p_1G) e-'<w+°K (3.113)
npk nk

Inverse Dielectric Function In real space the dielectric matrix has the space-
group symmetry of the crystal [42], as applied to both arguments. The periodicity
is, with Rj being a lattice translation vector,

e~\v, v') = e~\v+ R*, r' + RA. (3.114)

The space group symmetry for the operator {p | w} is given by

£_1(r,r') =e-1(Pr + w,pr' + w). (3.115)

We can readily obtain the properties in reciprocal space by inspecting Eq. (2.56),

£GG'(Pq)=ei(G'-G)^1Gp-1G'(q). (3.116)
If we use only the rotations of the point group, we need the inversion from time
reversai,

£GG'(-q) = fcU'W]*» (3.117)
since e_1(r, r') is real.

The length |q + G| changes like

Ipq + Gl^q+p^Gl. (3.II8)
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Hamiltonian Matrix From the above relations it is straightforward to obtain
the formula for a space group operator {p | w} and non-degenerate bands,

Hpkpki = Hkki, (3.119)

where we hâve suppressed band indices. Thus we can obtain by symmetry the
éléments of H in the row pk from the row k, since from the above Eq. (3.119),

Hpkk'= Hkp-ik>. (3.120)

It must be noted that in going from k to pk we must stay within the Brillouin
zone sampling as used in the program. For example, in a face-centered cubic lattice,
the X point Xi = (1,0,0) (in units of 2f-, with oto being the lattice constant) is
équivalent to within a reciprocal lattice vector G0 to the point X2 = (—1,0,0).
Instead of taking Xi and X2 into the k point sampling with each weight one half, we
may find it more convenient to take only one of them, say Xi, with weight one. Then,
however, the inversion of Xj leads to X2, not being part of the k point sampling of
the BZ. In thèse and corresponding cases the Eq. (3.119) is not valid.

We only use the rotations of the point group and restrict us furthermore to
rotations R-1 = R in order to account also for degenerate bands,

#RkRk' = Hkki. (3.121)

The inversion is applied as time-reversal as done for the wavefunctions,

-ff-k-k' = [-Hkk'] • (3.122)

We remind that the résonant part flSw,,^), Eq. (3.g2), alone of the Hamil
tonian is Hermitian, thus

rrexc,res

•"(uck),(t;'c'k')
*

o-exc,res

n(v'c'k'),(vck) (3.123)

while the coupling part H^^v,k,y Eq. (3.101), is symmetric,
rrcoupling _ rrcoupling f-l-IOA\
n(vck),(c'v'k') —n(c'v'k'),(vck)- (0.-U4J

In practice we only apply Hermiticity and time-reversal explicitly. The relation
#RkRk' = -ffkk' of Eq. (3.121) is impkcitly used in order to reduce the Hamiltonian
by symmetry as explained in the next section.

It is interesting to look on theproperties of-H"-1. Since H~^Hk<k2 = ôkk2 = <5pkpk2,
we hâve

]C iïkD'k'IBZiïD'k'IBZk2 = ^2 •ffkD'k'IBZjffk'IBZD'-ik2 =«ÏD'-ikD'-ika- (3.125)
D'k' IVk'

Thus,

^fcD'kiez =-ffD'-ikkiBZ' (3.126)
and we hâve the same symmetry properties for H*1 as for H.
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Réduction by Symmetry

Until now, we hâve found that, when degenerate bands are represented in the k
point sampling, only opérations from an Abelian subgroup of the space group can
be employed for the réduction of the dimension, and in a différent manner, only the
inversion by time reversai and the Hermiticity are applicable to construct parts of
the Hamiltonian by symmetry without explicitly calculating them. In the following
we explain the réduction of the dimension of the Hamiltonian matrix by symmetry.

As already mentioned in the introduction to this section we choose the 180°
rotations around the x and the y axis, respectively, for the réduction of H. They
fulfill R-1 = R and form an Abelian subgroup together with the 180° rotation around
the z axis and the identity.

Principle Procédure The idea is to split the k space into the points kj in a
reduced zone and Rkj in the rest. Hère we first assume for ease Rkj ^ kj. Later we
will drop this restriction. The Schrôdinger équation HwA^ = ExAk can then be
rewritten as

0 E [Hk<KAa* +B^A*!] = ExAk% (3.127a)
K

ii) J2[H^iHA]x +H^i^AK] = EXA™«. (3.127b)
K

With i?RkRk' = Hkki and R-1 = R we can add i) and ii) to obtain

hkikl = H^u. + ifk.Rk/, (3.128a)

af = A^+Af*, (3.128b)
frkik'̂ A = Exa%, (3.128c)

and subtract ii) from i) to get

Kk = Hk.k,. - Hw., (3.120a)
âf = Af-Alki, (3.129b)

hkiKâf = E-Xâki. (3.129c)
Since normally, Ex^ Ex, we can reconstruct the original eigenvectors Ak from a^.
For the solutions Àwe hâve â$ =0, and therefore with the correct normalization,

^Ai=^Aki =̂ «Ai- (3-130)
Correspondingly, for the solutions Àwe get a^ = 0, thus,

At =~4ki =7faf- (3-131)
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Now wemight hâvea k point set, where there are somekj with Rk; == kj. Then we
must transform the Hamiltonian intoblock-diagonal form by an appropriate unitary
mapping. We take as example three k points in the reduced zone with k0 = Rk0,
k2 =s Rki ^ ki. The Hamiltonian H looks like

H=\ Hw Hn H12 , (3.132)

with Hqi = H02, Hio = H2Q, E\2 = H21 and Hn = H22. H does not need to be
Hermitian in gênerai.

The transformation matrix S is

S = ° T2 71 i • (3-133)
0 0
1 1

V2 V2
1 1

V2 V2

We hâve S = S-1 = ST and det S = -1. The transformed Hamiltonian H' = SHS'1
can be found as

H'=\ V2H10 Hu + H12 0 . (3.134)

From there we can deduce the gênerai rule how to reduce the Hamiltonian matrix
from one large to two small matrices. For the solutions À we hâve

f HkiK + HkiRk,, ki # Rk,, k< ? Rk'i
KiK = l V2HkiK, ki ? Rkh k^ = Rk; , (3.135)

( HktK, ki = Rki, k'i = Rk<

Ak . J A\ = ^a *= 7faA*' ^ ^ RkiAx\ Ak*=af, ki =Rki ' (3-136)
and for the solutions A, we get

k^~\ 0, otherwise ' (3137)

A^. i At =~Alki =M^ k^Rk,A*\ Af=0, ki =Rki • (3-138)
Setting the corresponding rows and columns of h to zéro, reduces the dimension of
the matrix. We can either reorder the matrix to a smaller dimension or ekminate
after the diagonalization the eigenvalues equal to zéro, as they stem from exactly
those rows and columns set to zéro.

If we use spécial k points [38, 39], we can reduce the size of the Hamiltonian
matrix by precisely two in each dimension, as we always hâve the case kj ^ Rkj.
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Combination of Two Rotations We can successively apply twice the above
outlined procédure with two 180° rotations Ri and R2. Then we can define four
volumes in the Brillouin zone, Vn being the reduced zone, which are connected by

R1K1 = V21, R1V12 = V22, (3.139a)
Wu = V12, R2V21 = V22, (3.139b)

since RXR2 = R2RX. First we will apply Rx,

hlik>(Vn,Vn) = HkiK(Vn,Vn)
+sgn(Ri)iyk.Rlk/(T/n, V21), (3.140a)

hUtU'iViuVu) = HkiR2k,(Vn,V12)
+sgn(Ri)Jffk.RlR2k,(T/11, V22). (3.140b)

The corresponding volumes of the k points are indicated in the brackets. sgn(Ri)
stands for the sign + or -. The respective Eqs. (3.135) or (3.137) hâve to be used.

Thus we only hâve to calculate one forth of the Hamiltonian, namely the part
H(VUtVu •••V22). Also for that small part we can still apply time-reversal and Her
miticity to reduce the computational effort.

In the next step we combine the two h1 with the same sgn(Ri) using rotation R2,
h2kiK(Vn, Vn) = hiiK{Vlu Vu) +sgn(R2)/ik.R2k,(F11, V12). (3.141)

This gives us altogether four équations for the h2. For spécial k points ail four
matrices hâve one fourth of H in size in each dimension.

One case has to be separately considered: Rxk^ = R2k< = k, Le., k'{ = RiR2k'.
We can include this constellation, which can also happen for spécial k points, in our
scheme by treating k for the rotation R2 like

k^ = R2k< with sgn(R2) = +, for sgn(Rx) x sgn(R2) = +,
k< = R2k^ with sgn(R2) = -, for sgn(Ri) x sgn(R2) = -, (3.142a)

in order to avoid double counting.
The opérations Rx and R2 must commute in order to préserve the relation

hkkiRtk'= hkik,. (3.143)
This can be seen from

/lR2kiR2kj — HR2k.R2k>. + #R2kiRlR2k/
= HR2kiR2ki. + iyR2k.R2Rlk,

= Hkik>. + HkiRlk,.

= hlik's (3.144)
The eigenvectors are reconstructed going backwards according to Eqs. (3.136)

and (3.138). First we apply Vu %Vu, then Vn %V21 and V12 ^ V22 to obtain ail
Ak in the full BZ.

(
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Some Approximations

The calculation has several important parameters: the size of the k point sampling
in the BZ, the number of valence and conduction bands included and the cutoff of
the summation over the reciprocal lattice vectors in Eqs. (3.94) and (3.96) for the
résonant part and the corresponding Eqs. (3.102) and (3.103) for the coupling part
of the Hamiltonian. In particular, the inverse dielectric function can be considerably
simplified. Thus there are several possibikties to minimize the computational effort.
We will explore them in practice in the next chapter.

Bands Typically, for silicon as standard test material, we need four conduction
bands in addition to the four valence bands in the pseudopotential formalism in
order to get a converged absorption spectrum [7, 9] . However, we might only need
the higher two valence bands and lower two conduction bands, or so, in order to
understand already the main feature of the calculation.

A more severe approximation is the decoupling of the bands in the Hamiltonian
matrix. This neglects the mixing of band pairs in the exciton wave function: that is,
an exciton state is associated with valence band V\ and conduction band c%, another
exciton state with bands vx and c2, and so on. The résonant part of the Hamiltonian

looks then like Hf^Mj^vtfà'c,* and its size is omy determined by the k point
sampling for each band-pair subspace.

This approximation is reasonable when the bands are energetically well sepa
rated, but might be bad in the case of degenerate bands. It avoids band-pair mixing
in the exciton wavefunctions and can limit the possibikty of constructing strongly
bound electron-hole states. It might work well, for example, for bound exciton
states below the gap, if the bands do only skghtly interact.

The nonlocakty of space is represented by the off-diagonal éléments of the inverse
dielectric function Eq. (2.56). Although this nonlocakty is important for the GW
calculations, even for the quite homogeneous material silicon [5], in case of the
excitonic interaction, it is more the mixing of the various single particle states,
which créâtes the effect. Thus, it is well possible to ignore the off-diagonal éléments
ofeGG,{q) in certain cases, as will be shown in Chapters 4 and 5. Furthermore, the
long-range character of the Coulomb interaction might demand for only a smaller
cutoff in the summation over the reciprocal lattice vectors than the short-range
contact exchange contribution.

Moreover, also with a model dielectric function, as used in Refs. [68, 69] by
Shirley et al, one can obtain quite good results for a range of semiconductors and
also insulators.

In the limit of a long range interaction, we can replace the screened electron-
hole interaction W(v, v') with the Coulomb interaction screened by the macroscopic
dielectric constant, —l/eo|r —r'|, like in a Mott-Wannier model. This corresponds
to taking sGG,(q) = 1/so •SGG', overlooking in this way the réduction of screening
at short distances. This approximation overestimates the screening and therefore
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underestimates the electron-hole interaction.



Chapter 4

Optical Absorption: Silicon

In this chapter we will apply the theory developed to optical absorption calculations
of bulk silicon, which is représentative for the group IV, III-V, and II-VI semicon
ductors. Thèse materials show qualitatively similar optical spectra, with two major
structures at 3-5 eV. The first peak (Ex) has been interpreted as a Mx type critical
point transition, and the second peak (E2) as a M2 type one [7].

First, from a ground state calculation in a standard plane wave pseudopotential
Car-Parrinello approach, we can readily obtain an LDA absorption spectrum. Like
early empirical pseudopotential approaches [70, 71] and many other ab initio DFT-
LDA works, e.g. [9], we get an underestimation of the Ex peak by as much as
50%, reducing it to a weak shoulder of the generally overestimated E2 peak. Then,
after applying the GW corrections to the Kohn-Sham eigenvalues we obtain the
quasiparticle band structure and theindependent-particle (quasiparticle) absorption
spectrum Eq. (3.21), which is, like the LDA spectrum, also quite différent from the
expérimental spectrum [72, 73, 74].

In order to go beyond, we include local-field effects in the calculation of the
dielectric matrix. Louie et al. [75] showed that the resulting spectrum is significantly
improved at higher énergies (above 15 eV), but not in the région of interest around
4 eV. As also reported by Hanke and Sham [11, 12], who performed a semi-empirical
LCAO (linear combination of atomic orbitals) calculation, we find that local-field
effects alone transfer oscillator strength to higher énergies and hence increase the
discrepancy with experiment at lower énergies.

Several authors suggested that strong contributions to the Ex peak could arise
from saddle point excitons [12, 76, 77, 78, 70], related to van Hove singularities in
the joint density ofstates. Experimentally, excitonic effects allowed to explain the
measured température and pressure dependence ofthe lineshape and the symmetry
in wavelength modulation reflectivity spectra [78, 7g].

Until recently, the most sophisticated calculation ofexcitonic effects on the spec
tral lineshape of silicon was the LCAO calculation of Hanke and Sham [11, 12]. The
electron-hole interaction shifted the position of the Ex peak to lower énergies, and
almost doubled its intensity, while the oscillator strength ofthe higher energy peaks

61
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was decreased. The overall agreement with experiment was hence improved, and
clear évidence was given for the importance of excitonic effects. However, the final
intensity ratio between the Ex and E2 peaks was reversed, in disagreement with
the expérimental spectrum. As pointed out by Wang et al. [7], the rekabikty of
semi-empirical approaches is limited. For instance, there are important différences,
already at the one-electron level, between the spectra of Refs. [12] and [75].

Hère we will examine in détail the influence of the local-field and excitonic effects

on the absorption spectrum in our ab initio approach demonstrating the performance
of the method. We report the rekabikty of various approximations and interpolation
schemes in order to speed up the calculation.

4.1 One-Particle Calculations

4.1.1 Kohn-Sham LDA Results

Ground State Calculations

We use a norm-conserving pseudopotential [80], which was generated within the
Martins-Troulker scheme [81] (see also Appendix A). The cutoff radii are rc = 1.80
for each orbit, with the local référence potential being the d orbital (spd).

The space group ofsilicon is the diamond structure 07h, with a basis of two atoms
in a face-centered cubic (fcc) cell,

000; lii; (fcc). (4.1)

The coordinates are measured relative to the Bravais lattice in units of the lattice

constant ao. The point group has 24 non-symmorphic rotations together with 24
symmorphic opérations.

In reciprocal space the fcc direct lattice transforms to a body-centered (bec)
Bravais lattice with lattice parameter ^-. The first Brillouin zone (BZ) is shown in
Fig. 4.1. Some high symmetry points are given in Tab. 4.1.

We take a cutoff energy Eq. (2.32) of 15 Ry and ten spécial k points [38, 39]
in the IBZ, which give 256 k points in the full BZ, for the ground state, which is
sufficient for the following electronic structure calculations [42].

The Kleinman-Bylander (KB) form of the pseudopotential [82] offers an efficient
computational scheme to obtain the DFT Hamiltonian for the Kohn-Sham electronic
structure (see also Appendix A). In order to examine its influence on the Kohn-
Sham eigenvalues we perform the ground state calculations with and without this
séparation. In each case we take about 8 values around the expérimental lattice
constant of a0exp = 10.260 a.u. [83] and fit the total énergies with the Murnaghan
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Figure 4.1: First Brillouin zone of the fcc cell. It has the shape of a bec cell.

x y z

r 0 0 0

A .5 0 0

E .5 .5 0

L .5 .5 .5

K .75 .75 0

X 1 0 0

U 1 .25 .25

W 1 .50 0

Table 4.1: Some high symmetry points in units of |£ along reciprocal Cartesian axes. The
points K and U are équivalent.
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équation of state [84] to obtain the theoretical equilibrium lattice constant a0 and
the bulk modulus B0. The results are given in Tab. 4.2.

a0

B0

KB sep. no KB sep. Exp.
10.127 a.u. 10.145 a.u. 10.260 a.u.
1.01 Mbar 1.01 Mbar 0.990 Mbar

Table 4.2: Theoretical lattice constant a0 and bulk modulus B0 for Si with and without
Kleinman-Bylander (KB) séparation. Expérimental data from Réf. [83].

The différences in the values are rather unimportant concerning the Kleinman-
Bylander séparation. However, as typically in the LDA, the theoretical lattice con
stant is underestimated with respect to measurement.

It is interesting to look on the Kohn-Sham eigenvalues. The minimum gap of
silicon is indirect and between the highest occupied band at T and around 0.85 in di
rection X. With and without using the KB séparation we obtain EGap(T - 0.85X) =
0.55 eV, calculated at the respective theoretical o0. For the values calculated at
the expérimental lattice constant we get 0.61 eV. The higher value is due to the
stretched lattice. At the expérimental lattice constant the différences between én
ergies, obtained with and without using the Kleinman-Bylander séparation, at high
symmetry points like F, X, A, or L are largest for the lowest valence band (up to
60 meV) and only up to 20 meV for bands around the Fermi level.

Acloser examination ofthe eigenvalues at the points T, Xand Lin Fig. 4.2 shows
that up to about 40eV above the Fermi level there is virtually no différence induced
by the Kleinman-Bylander séparation on the energy scale presented. For higher
values, the eigenvalues shift and regroup in a somewhat différent manner. However,
thèse changes are not significant for the optical absorption properties studied in
this work. Thèse are mainly described by the four lowest conduction bands, i.e.
typically below 20 eV. Also, even for sums over many conduction bands, like some
100 bands for the independent particle polarization x° in Eq. (2.57), the changes
are small and unimportant with respect to the différence to the Fermi level.

In Fig. 4.3 we show the band structure for the four valence and first eight conduc
tion bands without using the Kleinman-Bylander séparation. Although the influence
of the KB séparation is small, we will not use it in the following for silicon, unless
otherwise stated, in order not to bias our results. The eigenvalues are akgned with
r25. For optical properties the nearly parallel bands around the gap especially from
the T point in the directions of the X and the L point are important. They lead to
Mi type criticalpoint transitions and are responsible for strongcontinuum excitonic
effects [12].
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with r25.
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Figure 4.3: Kohn-Sham LDA band structure of Si for four valence and the first eight
conduction bands. Eigenvalues are aligned with T'25.
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LDA Absorption Spectrum

The absorption spectrumin the independent particleapproximation with the Kohn-
Sham LDA eigenvalues as transition énergies is calculated according to Eq. (3.21)
with ail énergies taken to be the Kohn-Sham LDA eigenvalues. Eight bands (four
valence and four conduction bands) areenough in the région ofinterest ofexcitations
around the gap [7, 9]. For a fully converged spectrum we need 408 k points in the
IBZ, which give 16384 k points in the full BZ.

60 T I I I I I I I I I I • | I I I I | I I I

LDA 408 k

LDA 505 k

Q ri' i i I i i i i I i • i • I- • • • • I • • . • I . • . .

4 5 6

Energy (eV)

Figure 4.4: LDA absorption spectraof Si with 408 and 505 k points in the IBZ. 8 bands
are used.

In Fig. 4.4 we show two spectra in order to verify the convergence of the k
point sampling. The 408 k point set is shifted to high symmetry points, including
T, leading to a set with 505 k points in the IBZ, which gives by construction also
16384 k points in the full BZ. We take 0.10 eV for the broadening parameter y,
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which is also used in ail other spectra of Si in the following, if not otherwise stated.
The two curves are very close to each other and we can add them up in Fig.

4.5 to one single curve with 913 k points in the IBZ in order to compare with the
expérimental resuit [74] measured elkpsometricallyat 30 K. Like already mentioned
in the introduction to this chapter we get an underestimation of the Ex peak at
3.2 eV in the theoretical spectrum by as much as 50%. It is only a weak shoulder
next to the overestimated E2 peak around 3.9 eV. Furthermore, the LDA spectrum
is shifted towards lower énergies by about 0.2 eV with respect to the Ex peak at
3.4 eV and the E2 peak at 4.25 eV in measurement.
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Figure 4.5: LDA absorption spectrum of Si with 913 k points in the IBZ. 8 bands are
used. Expérimental curve from Réf. [74] at 30 K.

The theoretical curve shows three small structures on the shoulder around 3.0 eV,
3.2 eV and 3.7 eV. The first one stems from transitions around the F point, with
some dispersion in the X and L directions. The second one is also close to F, but
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with more weight shifted further along the X and also the L direction. The third
structure is less concentrated at one point in k space, but mainly from some région
around A. The main peak at 3.g eV has contributions from large régions, primarily
around E in K direction and A in X direction. In ail cases, only bands around the
gap contribute. This identification is conform with Wang and Klein [7], although
some authors hâve reported skghtly différent attributions [7g, 85, 86].

4.1.2 GW Calculations

Quasiparticle Band Structure

The band structure with the physical quasiparticle énergies is obtained by applying
the GW corrections to the Kohn-Sham eigenvalues as outlined in Section 2.3.2.

For silicon we take the parameters from Réf. [6] and use 65 bands and 169
wavefunctions for the calculation of the independent particle polarization x°, Eq.
(2.57), and the GW corrections, Eq. (2.106). The polarization x° is calculated with
10 k points in the IBZ, giving 256 k points in the full BZ. The head of the dielectric
matrix in the long wavelength limit, e0o(q -*• 0), is 16.14, while the inclusion of
local-field effects, l/ç^q-» 0), leads to 14.51. This is not a too well converged
value for the macroscopic dielectric constant inthe LDA-RPA formulation. Atypical
value from Réf. [42] is 12.2. The inclusion of the nonlocal commutator in the matrix
éléments, like in Eq. (3.20), would decrease the dielectric constant by about 10%
[42].

The élément e0o(q -> 0) converges much slower than the large rest ofthe matrix.
It must be noted that since it is only one entry in a large matrix used for the
GW (and also excitonic) calculations we can tolerate the error. Furthermore, the
contribution ofthis élément vanishes in full convergence with respect to the k point
sampling.

The GW corrections are obtained for the first eight bands. In order to correctly
treat high symmetry points in the band structure, we shift the 10 spécial k points
to a set with 19 high symmetry points in the IBZ, including T, which gives by
construction also 256 k points in the full BZ. With thèse high symmetry points we
calculate the quasiparticle énergies for the band structure.

The calculated minimum GW gap is 1.19 eV, with a correction of 0.64 eV for
the LDA value. At F, the gap is widened by 0.66 eV, which is représentative for
other high symmetry points. The expérimental gap is 1.17 eV [83]. This is a typical
resuit for silicon [5, 6].

InFig. 4.6 we show the quasiparticle band structure as a full line for the first eight
bands (four valence and four conduction bands) together with the corresponding
LDA Kohn-Sham eigenvalues, represented by the dashes. The GW corrections hâve
been interpolated with splines from 10 calculated values for each band, which is
justified since the dispersion of the band structure is only changed by about 0.2 eV
for each band, although with a maximum of 0.5 eV for the lowest valence band.
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Figure 4.6: GW (full lines) and Kohn-Sham LDA (dashed lines) band structures of Si for
the first eight bands. Eigenvalues are aligned with T25.
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The plasmon pôle model defined in Eq. (2.64) can lead to pôles in the GW
calculation for certain band énergies. Thèse pôles, which correspond to unbroadened
résonances, drop out in a full intégration over the whole Brillouin zone, as positive
and négative contributions cancel. The divergencies occur most likely for high and
especially low bands, notably the lowest valence band. Since the GW corrections
typically alter the band dispersion only skghtly, we can correct diverged calculations
by inspection. For the lowest valence band, however, we normally hâve to omit ail
plasmon frequencies tbGG> (q) lying within the valence bandwidth. The induced error
can be estimated by repeating the procédure for an non-divergent band, e.g., T'25,
and turns out to be of the order of some 10 meV for silicon and is thus within

the overall error range of about 50 meV for the GW corrections in gênerai. The
positive corrections for the énergies of the lowest valence band hâve rather to be
attributed to the plasmon pôle model Eq. (2.64) than to the energy cutoff in the
plasmon frequencies.

Quasiparticle Absorption Spectrum

The spectrum using the physical quasiparticle énergies, obtained in a GW calcu
lation described above, is obtained according to Eq. (3.21). The GW corrections
are interpolated from values obtained with 10 spécial k points in the IBZ with a
tetrahedron interpolation method [87, 88], which works quite well due to the small
dispersion of the corrections.

The comparison of the quasiparticle spectrum with experiment in Fig. 4.7 shows
about the same discrepancy as the LDA one with experiment, now only with a
blueshift instead of a redshift. As for the LDA spectrum we hâve a weak shoulder
instead of the Ex peak, which shows three small structures at around 3.7 eV, 3.9 eV
and 4.4 eV. The main E2 peak is at 4.6 eV. Their attributions to régions in k space
are the same as for the LDA spectrum, since the dispersion of the band structure is
only skghtly changed.

4.1.3 Réduction of k Point Sampling

Oneofthe bottlenecks in the calculations ofabsorption spectra is the very largenum
ber of k points necessary in the sampling over the Brillouin zone. Indeed, though in
the independent-particle approximation we hâve been able to include quite a large
number of spécial k points, the considération of many-particle interactions, in par
ticular excitonic effects, in the next section drastically increases the computational
effort and one would désire to hâve a k point set as small as possible.

Regular Grid for k Point Sampling

The spécial k point schemes, like [38, 39], hâve been developed in order to hâve a
maximum accuracy when using a limited number of k points for summing a complex
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Figure 4.7: QP and LDA absorption spectra of Si with 913 k points in the IBZ. 8 bands
are used. Expérimental curve from Réf. [74] at 30 K.
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valued function /over the Brillouin zone, see also Eq. (2.36),

Increasing the number of spécial k points in our optical calculations enhances the
accuracy of our spectra in gênerai. However, the spécial k points are not optimized
for spectral calculations by construction. The independent-particle absorption spec
trum, for example, has the structure, from Eq. (3.2),

eMM~^LUk)|. (4.3)
k,c,v

Thus, only real valued functions are summed up, and most important, the band
structure and dispersion play a crucial rôle for the resuit. This is an important
notion, since, naturally the spécial k point schemes do not consider the material
dépendent band dispersion when constructing the k point set. Indeed, the spécial
k points are regularly dispersed in the Brillouin zone and lie along high-symmetry
directions. Thus, they may reflect to some extent local band maxima and minima
rather than giving a good average of the band dispersion.

A naive and simple way to construct a k point set could be a regular grid in the
Brillouin zone. We hâve started from the Cartesian fcc cell and placed a regular grid
with 576 k points along and parallel to the high-symmetry axes. This is, of course,
a rather insufncient approach to sample over the Brillouin zone. A better way is
to shift the regular grid skghtly in a non-symmetric direction, like (1,2,3), thus
breaking the symmetry of the k point sampling, but using a set more représentative
for the bulk volume properties.

In Fig. 4.8 we show two independent-particle spectra using thèse regular grids.
The first one (dotted line) uses a Cartesian high symmetry grid with a nearest
distance of s = 2/11 (in units of ^) between the points, giving 576 k points in the
full BZ. The différences with the converged spectrum (full line) using 408 spécial k
points in the IBZ are quite drastic. The second regular grid (in the above sensé) has
been created from a high-symmetry grid, with s = 2/10, which has been shifted by
(1,2,3) -s/8 in order to break symmetry. This gives 456 k points in the full BZ. Using
this latter set for the spectrum (dotted-dashed line), we obtain good agreement with
the converged full curve. The différences are mainly the exact position of the E2
peak and its flanks.

However, since this k point set has no symmetry, we cannot, for example, re
duce the size of the excitonic Hamiltonian as discussed in Section 3.2.4. Since we

are primarily interested in the low energy part of the spectrum, especially in the
positions and shapes of the first peaks, we will use the spécial k point scheme, as it
gives a better représentation of this part of the spectrum (see also the discussion to
Fig. 4.12 in Section 4.2.1). It may be noted that Shirley et al. used a Brillouin zone
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with the shape ofa rhombohedron and slightly shifted a regular k point grid in an
off-symmetric direction for their optical spectra calculations [68].
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Figure 4.8: LDA absorption spectra of Si. 8 bands are used. Full curve: 408 spécial k
points in the IBZ. Dotted-dashed curve: Regular grid of 456 k in the full BZ (slightly
shifted to break symmetry). Dotted curve: Regular grid of 576 k in the full BZ (along
high-symmetry directions).

Taylor Expansion in Imaginary Plane

We hâve also applied a method proposed by Godby et al. [89], which exploits the
smooth behavior of the dielectric function in the complex plane in order to reduce
the basis set needed to represent the dielectric function.

In the work of Godby et al. [89] the Taylor expansion scheme proved to be
quite efficient in minimizing the number of bands and plane waves needed for the
calculation of the dielectric function in a basis of reciprocal lattice vectors. Hère,

j
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however, we want to minimize the k point sampling in the Brillouin zone used for
the absorption spectrum.

Following Réf. [89] we represent eM as a Taylor séries expansion derived from
function values further away from the real axis. We expect a faster convergence of
our calculations, since much of the noise resulting from a too small basis will be
smoothened out. For a function /, this expansion from a point zQ is given by

m-'Ê^i—'f- <4-4>
/(*) is the k-th dérivation of / with respect to its argument.

In order to get a numerically stable algorithm we take advantage of the analytic
nature of eM and use Cauchy's expression for the derivative. We evaluate the contour
intégral numerically with m values lying on a circle of radius r, centered on zQ. Thus
we hâve

/(*)(*„) = -±-J2 f (zo +ré2*Hm) e~i2^m. (4.5)
mr j=0

The expansion is made for Em(v) with uj lying in the complex plane. Some
heuristic search shows that a good choice is zq = (0.05, 0.5) eV, r = 0.10 eV,
m = 10 and y = 0.10 eV. The z0 are shifted by steps of 0.1 eV along the real axis.
In going much further away from the real axis than one eV for the expansion center
we loose too much information about the absorption curve. It is not possible to
take many more orders in the Taylor expansion than 10 for a numerically stable
procédure. Depending somewhat on Imz0> the radius r can be varied over almost
one order of magnitude without influencing the results.

We can best see the différence to a simple Lorentzian broadening, which is of
course also included in the Taylor expansion scheme, by using a small basis set like
10 k points in the IBZ. In Fig. 4.9 we note that several small wiggles, especially in
the higher energy régime, are washed out. However, the main discrepancy to the
fully converged spectrum with 913 k points in the IBZ remains.

Furthermore, in excitonic calculations, where the size of the k point sampling is
most crucial, we generally only use the résonant part of the Hamiltonian, Eq. (3.78).
In shifting the absorption frequency u into the complex plane in Eq. (3.88), the anti-
resonant part for the négative frequencies together with the coupling terms of the
Hamiltonian get more and more important, the larger Imw is, which makes the
approximation of taking only the résonant part doubtfol. Although the expansion
is in principle exact, the limited number of Taylor coefficients influences the resuit
depending on the expansion center z0.

Thus we do not further employ the Taylor expansion method in our calculations.
Indeed, the best way to minimize the basis set is to use an optimized one for the
spécifie purpose, maybe along the lines of Réf. [90] or of the rather simple, but
effective scheme, using a regular, slightly shifted grid of k points in the Brillouin
zone as discussed in the previous section, if one does not want to use symmetry.
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Figure 4.9: QP absorption spectrum of Si with 10 k points in the IBZ with Taylor ex
pansion method and with standard Lorentzian broadening. The QP spectrum with 913
k points in IBZ is also shown for référence. 8 bands are used. Values for expansion:
zq = (0.05, 0.5) eV, r = 0.10 eV, m = 10. y = 0.10 eV.
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4.2 Many-Particle Calculations

The interaction of the one-particle quasiparticle states leads to considérable défor
mations of the independent-particle absorption spectrum. The non-locality of space
introduces the local-field effects, which are baptized exchange effects in the exciton
terminology, while the created electron-hole pairs give rise to the excitonic effects.

In the following we will examine our approach, outlined in Section 3.2, to the
inclusion of local-field effects in the absorption spectrum and compare it to the
standard formulation in a basis of reciprocal lattice vectors and of valence and
conduction bands [9].

We présent our results for the optical absorption and reflectivity spectra of silicon
including excitonic interaction [66]. The effects of degenerate bands on the appli
cation of symmetry properties are explained, and some approximations in order to
simphfy the calculations, already proposed in Section 3.2, are discussed [91].

4.2.1 Local-Field Effects

Comparison with Plane Wave Basis Calculations

The standard approach to the inclusion of local-field effects in the calculation of
optical spectra is done by, in principle, inverting the dielectric matrix for each ab
sorption frequency u [9].

Using the RPA formulation Eq. (2.59b) of the dielectric matrix, we obtain the
macroscopic dielectric function after Fourier transforming to momentum space from
Eq. (3.1). Indeed, we already calculate eGG,(q,u)) in the GW approximation for
two frequencies, 0 and iE0, in the plasmon pôle model Eq. (2.64).

The code of Godby and Needs [6, 47] allows us to make several tests and com-
parisons with our approach, where we describe the Hamiltonian in a basis of Bloch
functions. First, we investigate the convergence with respect to the number of wave
functions and bands of the approach in reciprocal space. Using 6 spécial k points in
the IBZ, which give 108 k points in the full BZ, and 27 wavefunctions, we find that
already 8 bands (4 valence and 4 conduction bands) give reasonable values for the
local-field effects, as can be seen from Tab. 4.3. The small différences between the

values of [s^W] an^ £u are due to the rounding errors.

We want to know the influence on the local-field effects, if we evaluate the di
electric matrix for imaginary frequencies u. Taking 27 wavefunctions, 8 bands and
using 10 spécial k points, we find in Tab. 4.4 that the relative effect of the local field
does not notably change in the range of about 1 eV away from the real axis. This is
relevant for the Taylor expansion method, introduced in Section 4.1.2, and also for
the Lorentzian broadening.
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iv = 0, 6 k IBZ 5 bnds 6 bnds 8 bnds 65 bnds 65 bnds

£oo(0) 14.23 15.79 17.50 17.73 18.15

[eôoHO)]'1 13.76 14.97 16.26

eu = l —vP 13.76 14.98 16.25 16.38 16.41
LF effects 3.4% 5.5% 7.6% 8.2% 10.6%

Table 4.3: Standard reciprocal space approach. Results for w = 0 for several numbers of
bands for the head ofthe dielectric matrix in the long wavelength limit, eoo(0); the inverse
of the head of the inverse dielectric matrix in the long wavelength limit, [e^t0)]~*5 tne
macroscopic dielectric constant, eM, calculated according to Eq. (3.33); andthepercentage
ofthe local-field (LF) effects on the values for each number ofbands. In the last column,
we use 169 wavefunctions instead of 27 for the basis sets.

27 wfc, 8 bands, 10 k IBZ iv = 0 iv - î0.5 eV iv = il.O eV

£oo(0)

Local-field effects

15.50

14.31

8.3%

15.25

14.08

8.3%

14.56

13.46

8.2%

Table 4.4: Influence on local-field effects taking imaginary frequencies w. The calculations
are done with the standard reciprocal space method.

Now we compare the standard approach in reciprocal space with our method of
representing the dielectric matrix in a basis of Bloch functions like in Eq. (3.66).
For only a limited number of frequencies, we can perform a direct inversion of the
matrix [Hexc - I iv] -i

(ni,n,2),(ns,n4

of Hexc in gênerai. The resulting équation is

eM(<v) =1- lim v0{q) ]P (ni |e~iq"r| n2) l

|} thus avoiding to take care of the non-Hermiticity

n2)(n4
711...714

Dïq-r'

•>n3/P(n1,n2)>(n3,n4)M, (4-6)

with P from Eq. (3.66). We hâve to include the full excitonic Hamiltonian Hexc,
Eq. (3.64), including the anti-resonant and coupling parts, for this comparison.

We are using two sets ofparameters in Tabs. 4.5 and 4.6. For purely imaginary
values of iv we find excellent agreement of the two approaches in Tab. 4.5.

In Tab. 4.6, the différences at u = (3 + i0.05) eV are due to a sharply peaked
structure in sx = Re eM around 3 eV causing numerical noise.

The excellent agreement of the two approaches confirms the analytical dériva
tion of the Bloch représentation and is a good check of the overall structure and
implementation of our code.
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27 wfc, 5 bands, 6 k IBZ u = 0 iv = i0.27 eV u = H3.6 eV

Eu (std. basis)
Eu (Bloch basis)

13.76 13.68 1.87

13.76 13.68 1.87

Table 4.5: Comparison of standard reciprocal space method with représentation in Bloch
basis for macroscopic dielectric function eu from Eq. (4.6) for w on imaginary axis.

27 wfc, 8 bands, 6 k IBZ
Eu (std. basis)

Eu (Bloch basis)

iv = (2 + iO.05) eV iv = (3 + »0.05) eV
23.22 + t0.55 -34.48 + «86.90

23.22 + i0.56 —31.27 + £86.28

Table 4.6: Comparison of standard reciprocal space method with représentation in Bloch
basis for macroscopic dielectric function eu from Eq. (4.6) for u along real axis.

Absorption Spectrum

The diagonalization of the Hamiltonian matrix in order to find the eigenvalues and
eigenstates limits the maximal size of the basis set. The Cray C98 of IDRIS-CNRS
can treat in the standard job queues complex matrices in the memory with up to
about 5000 éléments in each of two dimensions. We can reduce the number of k
points by a factor of four using symmetry properties as outlined in Section 3.2.4.
Then the maximal size of the k point set with four valence and four conduction
bands is about 1250, since we only use the résonant part ofHexc, Eq. (3.78), for the
absorption spectra, if not otherwise stated.

Actually, even for the exchange contribution we do not need 8 bands for a reason-
able absorption spectrum. In Fig. 4.10 we show by the full line a spectrum including
the local-field effects obtained with 28 spécial k points in the IBZ, which give 864
k points in the full BZ, and 8 bands compared to one with only 6 bands (dashed
line). The number of reciprocal lattice vectors in the évaluations of the matrix él
éments of Eq. (3.20) is taken as 160, like in the other spectra shown for silicon, if
not otherwise stated. We will test the convergence of this summation in the next
section on excitonic effects. Also the sum in Eq. (3.94) over the reciprocal lattice is
taken, as in the other spectra, over 169 G vectors.

The agreement is quite good and we can restrict ourselves to four valence and
two conduction bands in order to compare the effects of the local field with the
independent-quasiparticle spectrum and the expérimental curve in Fig. 4.11, now
using 60 spécial k points in the IBZ, expanding to 2048 k points in the full BZ. The
findings are interesting. First, at about 5 eV we find an anomalous peak in both
theoretical spectra, which reduces to a small shoulder at full convergence, as can be
seen from Fig. 4.12. There we compare the independent-quasiparticle spectra for 60
and 913 k points in the IBZ. We can see that 60 k points are enough for our région
of interest up to 5 eV in that graph, but not for higher énergies.

More important, the two main peaks Ex and E2 areshifted toward higher énergies
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Figure 4.10: Absorption spectra of Si with QP énergies and exchange effects included. 28
k points in the IBZ are used. 8 bands (full curve) and 6 bands (dashed curve) are used.
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Figure 4.11: Absorption spectra of Si with QP énergies (dotted-dashed curve) and ex
change effects (full curve) included. 60 k points in the IBZ and 6 bands are used. Expér
imental data (dotted curve) from Réf. [74] at 30 K.
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Figure 4.12: QP absorption spectra ofSi with 913 (full curve) and 60 (dashed curve) k
points in the IBZ. 8 bands are used. n = 0.10 eV.
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by about 0.15 eV and both peaks are decreased in height. This increases even further
the discrepancy with experiment. Our results are in gênerai agreement with Louie et
al. [75], using an empirical pseudopotential method and with Hanke and Sham [12],
using a linear combination of atomic orbitals method, who also observe a decrease
of the spectrum in the région of the two main peaks and an increase for higher
énergies.

On the contrary, an ab initio plane wave pseudopotential calculation of Gavri-
lenko and Bechstedt [9] shows a decrease of the Ex peak and an increase of E2 due
to local-field effects. They employ the standard reciprocal space method and use a
tetrahedron interpolation scheme [87, 88] also for the one-particle LDA energy levels
and matrix éléments, not only for the GW corrections as we do.

4.2.2 Excitonic Effects

Effects of Degenerate Bands on Symmetry

In Section 3.2.4 we hâve discussed the correct use of symmetry properties when ap
plying to the excitonic Hamiltonian in order to reduce the dimension of the matrix,
making four small matrices from the large Hamiltonian, and to minimize the num
ber of éléments which hâve to be calculated, constructing the others by symmetry
according to Eq. (3.121).

Hère we want to show the effect on the spectrum using the property Hpkpk> —
Hkk', Eq. (3.119) to obtain éléments of Hamiltonian matrix when degenerate bands
are involved. We take two spécial k points in the IBZ (ki = (0.25,0.25,0.25) and
k2 = (0.25,0.25,0.75) in Cartesian coordinates), which give 32 k points in the full
BZ, and 5 bands. The only degenerate bands are then 3 and 4 of k2. We compare
the full Hamiltonian matrix obtained from iïpkk' = Hkp-ikt (hère p: rotation and
inversion by time reversai) and the application of Hermiticity with a full Hamiltonian
matrix, where we hâve calculated ail éléments explicitly, unless we can obtain them
from Hermiticity. Although the gain in computer time is considérable, we cannot
use ail symmetry opérations p.

Indeed, the twomatrices- oneobtained using ifPkk' = Hkp-ikt and onecalculated
not using this relation - are only différent for éléments of #(„ck),(i;'c'k') {c = c1 = 5)
with k = kx and k' = k2, v' = {3,4}, looking onlyon onetriangle due to Hermiticity.
For k = k' = ki we observe no différences, since the first 5 bands of ki are not
degenerate. For k = k' = k2, we also get no différences, since only 180° rotations
around the axes x, y, z together with the identity and inversion are used to construct
the star of k2 in the full BZ. Thus, the problems with degenerate bands do not
arise calculating éléments according to HPk2k'2 = Hk2P-ik>2, as has been explained in
Section 3.2.4.

In Fig. 4.13 we depict the influence on the spectrum of the wrong application
of the symmetry properties to the excitonic Hamiltonian, again using two spécial k
points in the IBZ, but now 6 bands. Also in this case, the only degenerate bands
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are 3 and 4 of k2. The spectrum, obtained using Hpkpk> = Hkk, (dotted curve), is
considerably différent from the one obtained using only the Hermiticity (full curve)
in order to reduce the number of éléments of H to be calculated.

In Fig. 4.13we also show a spectrum (dotted-dashed curve) taking ail 32 k points
of the BZ into the IBZ, thus not applying any symmetry opérations (besides the
identity) to the expansion of the k points in the IBZ into the full BZ and also not for
the construction of the wavefunctions from the IBZ. The full and the dotted-dashed
curve are very close together, the tiny différences probably stemming from the inverse
dielectric matrix in the Coulomb interaction term Eq. (3.g6). For technical reasons
it has been constructed in both cases by application of ail symmetry opérations to
£gff(q). Thèse findings confirm the importance of a consistent use of symmetry
properties.

Now we want to check the réduction of the dimension of the excitonic Hamilto

nian. In Fig. 4.14 we show a spectrum calculated from the full Hamiltonian, using
only the Hermiticity (full curve) in order to reduce the number of éléments of H to
be calculated and a spectrum obtained with an Hamiltonian split into four smaller
matrices as outkned in Section 3.2.4, employing both time reversai and Hermiticity
to speed up the calculation (dotted curve). The two curves are virtually indistin-
guishable.

In addition, we look at the Kleinman-Bylander séparation. In Fig. 4.15 the
dotted curve gives the spectrum using only Hermiticity, but without the Kleinman-
Bylander séparation, which has been used in this section for ail other calculations
with 2 k points in the IBZ. The influence in comparison to the non-Kleinman-By-
lander séparation is very small and supports our arguments discussing Fig. 4.2.

Some Approximations

The computational cost can be considerably reduced by introducing some approxi
mations as discussed in Section 3.2.4.

Dielectric function First, we will ignore the off-diagonal éléments of eë1G/(q) in
the screening in Eq. (3.g6). In Fig. 4.16 we depict a calculation with 10 k points
in the IBZ and 8 bands, clearly indicating that it is enough to take the diagonal
éléments oîsGG,(q). In fact, this approximation is sogood that we will not explicitly
mention for each spectrum shown for Si, whether the off-diagonal éléments hâve been
neglected or not. Physically, the electron-hole pair does evidently not dépend on
the microscopic angular distribution of the local field. This might be due to a
relative movement of the two-body system around each other, averaging over the
angles, and/or to such a large distance re_h between électron and hole that only the
macroscopic, long-range dielectric constant e0 is relevant.

The latter can be easily ruled out, setting £QQ/(q) = 1/eo •5GG/, e0 = H-7,
in the screening in Eq. (3.96). Fig. 4.17 shows clearly that the overestimation of
screening at short distances destroys most of the excitonic effect. We follow that the
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Figure 4.13: Absorption spectra of Si with excitonic and exchange effects included using
2 spécial k points in the IBZ and 6 bands. Bands 3 and 4 of k2 are degenerate. Full
curve: only Hermiticity is used to reduce the number of éléments of Hamiltonian H to be
calculated. Dotted curve: In addition, also relation Hpkpk, = Hkk! is used. Dotted-dashed
curve: No symmetry opérations are used for k points and their wavefunctions besides
identity (and Hermiticity for H): 32 k points in the BZ, which is taken as IBZ.
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Figure 4.14: Absorption spectra of Si with excitonic and exchange effects included using
2 spécial k points in the IBZ and 6 bands. Bands 3 and 4 of k2 are degenerate. Full
curve: Only Hermiticity is used to reduce the number of éléments of Hamiltonian H to be
calculated. Dotted curve: Like before, but H is split by symmetry into four matrices of
one quarter in size in each dimension.
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Figure 4.15: Absorption spectra ofSi with excitonic and exchange effects included using
32 spécial k points in the BZ and 6 bands. Only Hermiticity is used to reduce the number
oféléments ofHamiltonian H to be calculated. Full curve: Kleinman-Bylander séparation
used. Dotted curve: Kleinman-Bylander séparation not used.
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Figure 4.16: Absorption spectra of Si with excitonic and exchange effects included using
10 spécial k points in the IBZ and 8 bands. Full curve: Full eGG,(q) taken as screening.
Dotted curve: Diagonal approximation to £qq/(q)-
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distance re_h between électron and hole is too short for a Mott-Wannier model to be
applicable. re_h does thus not extend over a very large number of lattice constants.

90 ....... | , . . 1 • • 1 ' 1 HXC 10 K

80

70

- Diag Bands

- Const Screen

-

, r%
—

60
\i\

-

f * al

I * 1 '«* . * _

s" 50
f • i

/ • ' "\v'i -

O)

/ • ' • ' —

a 40 1•"•!11 il
I ' '

J : '
1 •• '
v •"••*•• "•••

M 1 '. •

/ •' '
—

30 f " •f •

/ •' '
\i i
\ • *

20

10

•

\> •

v» •

n ^ ,, 1.... 1

2.5 3.5 4 4.5

Energy (eV)

5.5

Figure 4.17: Absorption spectra of Si with excitonic and exchange effects included using
10 spécial k points in the IBZ and 8 bands. Full curve: Standard calculation with full

dielectric matrix and ail bands coupled. Dotted-dashed curve: Bands decoupled, but
full screening. Dotted curve: Constant screening, eQ^/(q) = 1/eo •^gg'> Dut au" bands
coupled.

Bands The decoupling of the bands in the Hamiltonian matrix reduces consider
ably the computational effort, since each pair of valence and conduction bands can
be separately considered. The size of each matrix is thus given by the number of k
points in the reduced Brillouin zone alone. However, this approximation is not valid
for silicon, as can been seen from Fig. 4.17. The mixing of the bands in addition to
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the one of the k points is essential for the excitonic effects. The effect on the low
energy side of the decoupling of the bands is very close to the effect of a constant
screening, discussed in the above paragraph.

Next, we also study for the excitonic calculations the number of bands needed
for a converged spectrum. Fig. 4.18, calculated with 28 k points in the IBZ, depicts
various choices of bands taken into account. The abbreviation '3-6', for example,
means that the bands 3, 4, 5, and 6 hâve been considered in the calculation. Ob-
viously, already '3-6' gives quite a reasonably spectrum, which is close to '1-8' and
almost identical to '1-6'. Thus the lowest valence as well as higher conduction bands
above the Fermi level are not very relevant for the spectrum in the interesting energy
range up to 6 eV.

Indeed, a very good combination is '2-7'. This can be seen from Fig. 4.19, where
hâve only used 10 k points in the IBZ.

Optical Properties

First, we want to test the convergence with respect of the number of reciprocal
lattice vectors in the sums over G and G' in Eqs. (3.94) and (3.96). Usually, we take
169 vectors, but already 27 (taken in Fig. 4.18) give very good results, as can be
seen from Fig. 4.20 for 28 k points in the IBZ.

Absorption Spectrum A well converged absorption spectrum can be obtained,
after what we hâve learned from the previous sections, with 6 bands and 60 k
points in the IBZ. To confirai this for the excitonic effects, we depict in Fig. 4.21
an excitonic spectrum using the bands '2-7' compare it with '1-6'. The différence is
only small.

Now we can présent the main resuit of this chapter, using thèse parameters.
In Fig. 4.22 we compare an RPA calculation with the correct quasiparticle éner
gies (short-dashed curve), Eq. (3.21), a spectrum obtained including the local-field
effects (long-dashed curve) and a full calculation including the electron-hole inter
action (continuous curve), Eq. (3.88), with experiment (dotted curve) [74] measured
elkpsometrically at 30 K. The absolute intensifies of the excitonic spectrum agrée
well with experiment.

The remaining slight overestimate is of the order of what has been predicted
to be the contribution of dynamical effects. The inclusion of dynamical effects
only in the Green's function, used to construct the polarization function, largely
reduces the curve and even increases the discrepancy with experiment at this level
of approximation [92]. This réduction is compensated by the inclusion of dynamical
effects also in the vertex correction [64].

More important, the peak positions and the relative intensity of the main struc
tures are both in good agreement with experiment. The structure at 3.8 eV is
overestimated due to the finite k point sampling. It is, however, not completely ar
tificial and has been repeatedly observed in both theoretical [7, 85] and expérimental
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Figure 4.18: Absorption spectra of Si with excitonic and exchangeeffects included using 28
spécial k points in the IBZ and various combinations of bands. '3-7', e.g., means including
the bands 3, 4, 5, 6 and 7. 27 reciprocal lattice vectors hâve been taken in the respective
sums of the Hamiltonian.
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Figure 4.19: Absorption spectra of Si with excitonic and exchange effects included using
10 spécial k points in the IBZ and two combinations of bands. '2-7', e.g., means including
the bands 2, 3, 4, 5, 6 and 7.
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Figure 4.20: Absorption spectra of Si with excitonic and exchange effects included using 28
spécial k points in the IBZ and 6 bands. 169 (full curve) and 27 (dashed curve) reciprocal
lattice vectors hâve been taken in the respective sums of the Hamiltonian.
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Figure 4.21: Absorption spectra of Si using 60 spécial k points in the IBZ with excitonic
and exchange effects included and bands '2-7' (full curve) and bands '1-6' (dotted-dashed
curve). Dotted curve: Experiment [74].
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Figure 4.22: Absorption spectra of Si using 60 spécial k points in the IBZ and 6 bands.
Full curve: Excitonic and exchange effects included. Dotted-dashed curve: Only exchange
effects included. Short-dashed curve: RPA calculation with the quasiparticle énergies.
Dotted curve: Experiment [74].
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work [79, 86, 93] of reflectivity measurements, which we shall examine below.
This resuit opens the way to first-principle calculations of optical properties with

a précision comparable to that typically achieved in ground state calculations. We
can thus expect to obtain quantitatively correct theoretical absorption spectra as a
référence for the interprétation and even prédiction of expérimental results.

Anti-Resonant Part and Coupling Terms Until now we hâve only used the
résonant part of the Hamiltonian Eq. (3.92) for the spectra shown and we hâve not
considered the full matrix Eq. (3.83) with the anti-resonant part and the coupling
éléments Eq. (3.101).

If we directly calculate the imaginary part of the macroscopic dielectric function
Eq. (3.88) from the résonant part of the Hamiltonian and compare it with a full
calculation of eM(w), Eq. (3.87), the major différence is a small réduction of the
main peak E2. However, the real part of eu(iv) cannot be properly obtained by
taking only the résonant part. In Fig. 4.23 we show calculations made with 10
spécial k points in the IBZ, bands '2-7' and 169 wavefunctions.

Including the anti-resonant part of Hexc, but neglecting the coupling parts ac
cording to Eq. (3.89), we find good agreement of Re em(iv) in the same Fig. 4.23
with a full calculation. The indirect way of incorporating the anti-resonant term by
a Kramers-Kronig transformation, Eq. (3.91), taking the s2 obtained by considering
only the résonant part, leads to an almost indistinguishable curve. The différences
hâve to be attributed to the numerical procédure and the necessary, though very
small smoothing (y = 0.001 eV) in going from e2 to sx.

In both cases only a small différence with the curve from the full Hamiltonian
rests, which is more relevant if one wants to obtain a correct static value for the
dielectric function (dielectric constant, see also inset in Fig. 4.23). Indeed the dielec
tric constant is lowered by about 4% by the coupling terms of Hexc. Thus a précise
évaluation of the dielectric constant would need a considération of the full excitonic
Hamiltonian (see also next section).

Obviously, one can with confidence only take the résonant excitonic matrix for
the absorption spectra, which is done in this work, if not otherwise mentioned.

Dielectric Constant In the previous section we hâve seen that for an exact cal
culation of the dielectric constant we hâve to consider the full excitonic Hamiltonian
rrexc

Nevertheless, we can examine the convergence parameters hère and give values
using the results obtained so far in this work. We do not consider the coupling parts
of Hexc, but include the anti-resonant terms in ail values given in Tab. 4.7.

Evidently, it is enough to take 60 spécial k points in the irreducible Brillouin
zone and 12 bands in the summation over the states. However, using only bands
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Figure 4.23: Macroscopic dielectric function ofSi using 10 spécial k points in theIBZ and
bands '2-7'. Real and imaginary parts are depicted in the main figure. The inset shows
the real part only. Full curves: Full excitonic matrix including anti-resonant and coupling
terms. Dotted curves: Including anti-resonant, but excluding coupling terms (according
to Eq. (3.89)). The curves are virtually indistinguishable from the respective full curves on
the large scale. Dashed curve: Real part obtained with Kramers-Kronig transformation
from imaginary part. Dotted-dashed curve: Only résonant excitonic matrix (imaginary
part only).
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77 = 0

B2-7

60 k

B2-7

408 k

B 1-12

10 k

B 1-65

10 k

B 1-65

60 k

B 1-200

10 k

LDA 14.61 16.12 16.14 15.21 16.14

QP 12.64 12.64

Exc + LF 13.82

Table 4.7: Dielectric constant of Si for various choices of parameters. The anti-resonant

terms are included, however, - for the excitonic calculation - not the coupling terms.
'LDA' ('QP') means independent-particle spectrum using LDA (QP) énergies. 'Exc +
LF' includes excitonic and local-field effects. 'B' stands for bands and the number of

(spécial) k points refers to the IBZ. The broadening is y = 0, but eo generally decreases
by 0.01 for y = 0.10 eV.

'2-7' does not give a converged value for ç0. If we take a Lorentzian broadening of
y = 0.10 eV in Tab. 4.7, the values generally decrease by 0.01.

Thus, we hâve to find a method to include more bands in our excitonic calculation
in order to obtain a converged value for the dielectric constant. We remind that
besides the anti-resonant term, also the coupling terms should be considered. Since
the calculation of Eo becomes computationally rather involved and demands for
additional theoretical considérations on the correct choice of the interaction kernel,
see, e.g., Refs. [42, 94, 95], we hâve postponed it to a later project after this thesis.

Reflectivity Spectrum The optical absorption spectra of silicon hâve tradition-
ally been indirectly obtained from reflectivity measurements [72, 73]. Depending
on data interprétation, détails of the measurements may get lost. In ellipsometry
measurements, however, this should not be the case [74].

The calculated reflectivity spectrum can reveal other structure than the absorp
tion curve and it is interesting to compare it with experiment. In Section 3.1.1 we
introduced the complex refraction index, N = n + ik, which is related to the di
electric function by s = AT2. Then the reflectivity for perpendicular incidence onto
a plane surface is given as, by matching both the electric and magnetic fields at the
surface [96]:

R =
l-N

1 + AT

(n - 1) + k2
(n + l) + k2'

Actually, in réflectance-modulation measurements, like wavelength-modulation
[79, 86], the logarithmic derivative reflectivity is obtained,

1 AR

RAE'

(4.7)

(4.8)

In Fig. 4.24 we depict both the reflectivity and the logarithmic derivative reflec
tivity spectra obtained with 60 k points in the IBZ and bands '2-7'. The Lorentzian
broadening is chosen as y = 0.15 eV in order to smoothen the small wiggles of the
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logarithmic derivative reflectivity spectrum. The anti-resonant part of Hexc is in
cluded, but not the coupling terms. The agreement with experiment is quite good
[79, 86, 93]. Even the theoretically overestimated peak at 3.8 eV is visible as a
shoulder in measurements [86, 79, 93].
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Figure 4.24: Reflectivity (dotted-dashed curve) and logarithmic derivative reflectivity (full
curve) spectra ofSi with excitonic and exchange effects included using 60 spécial k points
in the IBZ and bands '2-7'. Anti-resonant part ofexcitonic Hamiltonian included, but not
coupling terms. y = 0.15 eV. Experiment from Réf. [86].

The excitonic effects are not easily identified in a logarithmic derivative reflec
tivity spectrum, when we compare it to a spectrum taking only the exchange effects
into account. Although the energetic shifts of the peaks are évident in Fig. 4.25, the
shapes of the curves are quite similar to each other. Hère we only use the résonant
part of Hexc for ease.
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Figure 4.25: Logarithmic derivative reflectivity spectra of Si with excitonic (full curve)
and exchange only (dotted curve) effects included using 60 spécial k points in the IBZ.
Bands '2-7' for excitonic and '1-6' for exchange effects. y = 0.15 eV.
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Origin of Peaks It is interesting to examine the origin of the two excitonic peaks
Ex and Px denoted in Fig. 4.26. If we restrict the energy range of the excitonic spec
trum Eq. (3.88) to a certain interval [EXl,EM) and take in the absorption formula
the quasiparticle transition énergies instead of the excitonic énergies,

£*•%) =l+21imt;o(q)f;^||(ï;k|e-^r|ck)AÎ,ck)
A=Ai v,c,k ^

XU+q-4pl-(-+4+ï+q-eïV(, +̂)}^ ^
with the sum over ail AG {A \EM < Ex < EX2}, we get the contributions to the
selected interval, weighted by the excitonic wavefunctions, from the independent-
quasiparticle spectrum. The anti-resonant part is considered, though it does not
contribute to the imaginary part of sM(iv) for positive absorption frequencies iv.
Fig. 4.26 shows that the small structures around 3.6 eV and 3.9 eV in the inde
pendent-quasiparticle spectrum are at the origin of the excitonic peaks Ex and Px.
Thèse two peaks are shifted by only 0.10 eV - 0.15 eV toward lower énergies in
contrast to E2, which is displaced by 0.4 eV.

Joint Density of States In the independent-particle picture the optical transi
tion énergies are given by the différences (eck - evk) in Eq. (3.23). However, the
correct values considering many-body effects are given by the excitonic eigenvalues
Ex of Eq. (3.70). Thus, using thèse énergies in Jcv(iv), we obtain an excitonic density
of states,

J«H =J5ImÇ;g-rl_-, (4.10)
which can be directly compared with the independent-quasiparticle one. The différ
ences between the two transition energy densities indicate theshifts ofthetransition
énergies due to excitonic and exchange effects.

In Fig. 4.27 we see that the QP transition énergies are mostly unaltered and
that the excitonic and local-field effects change the energy spectrum by less than
0.1 eV. Thus, the shift of the Ex peak in the absorption spectrum Fig. 4.22 is not
due to a mère réduction of the transitions énergies, but stems from a redistribution
of spectral weight due to excitonic effects. The electron-hole interaction leads at
lower énergies to a cohérent superposition and to a destructive superposition at
énergies around about 4eV. Thus, the formerly largely underestimated Ex peak in
the absorption spectrum is almost doubled in intensity and shifted, like the E2 peak,
to lower énergies.
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Figure4.26: Absorption spectra of Si using 60 spécial k points in the IBZ and bands '2-7'.
Full curve: Excitonic and exchange effects included. Dotted curve: RPA spectrum with
QP énergies. Dotted-dashed curve: According to Eq. (4.9) with 3.4 eV< co < 3.6 eV for
Ex. Dashed curve: Same, but with 3.65 eV< uj < 3.9 eV for Px.
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Figure 4.27: Joint density of states of silicon using QP transition énergies (dashed curve),
Eq. (3.23), compared with excitonic density of states (full curve), Eq. (4.10). 60 k points
in the IBZ and bands '2-7' are used. y = 0.10 eV.



Chapter 5

Optical Absorption: Diamond

In the previous chapter we hâve discussed in détail the optical properties of the
prototype semiconductor Si. Although clearly not a métal, the charge distribution
of silicon is quite homogeneous [85]. However, diamond, which has the same space
group as Si, has a less uniform charge more closely concentrated to the atoms [97].
The band gap is as wide as 5.48 eV, compared to 1.17 eV of Si [83]. Thus, we expect
différent aspects of the optical absorption process to be important. An application
of our theory will allow us to further examine the vakdity of some approximations
and to better understand the importance of excitonic effects in optical spectra.

Starting with a ground state calculation like for silicon, we get the Kohn-Sham
band structure and the LDA absorption spectrum inthe DFT-LDA framework. The
discrepancy with experiment is much smaller than for Si, as the Ex peak is quite
well reproduced. However, the E2 structure is overestimated, giving rise to a peak
with a higher intensity than observed in measurement. The absorption spectrum
using the correct quasiparticle énergies basically only shifts the spectrum to higher
énergies without changing the shape significantly [9].

Like other authors before, we include local-field effects inthecalculation ofthedi
electric matrix. However, contrary to Gavrilenko and Bechstedt [9] and Van Vechten
and Martin [98], we find that the exchange effects decrease the overestimated E2 and
in addition transfer spectral weight to higher énergies, although the overall effect is
less significant than for Si.

In the literature, two realistic calculations hâve shown that the inclusion of
excitonic effects is mandatory in order obtain good agreement with experiment.
Hanke and Sham performed a tight-binding LCAO calculation [10]. Starting from
an independent-quasiparticle absorption spectrum, which underestimates consider
ably the Ex and E2 peaks, they got close agreement with the measured data after
inclusion of excitonic effects in an unscreened close contact approximation. Re-
cently, Shirley et al. published an ab initio calculation of diamond [68], presenting
good agreement with experiment.

Hère we will report calculations including the GW corrections for the transition
énergies and consider the exchange as also the excitonic effects.
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5.1 One-Particle Calculations

5.1.1 Ground State Calculations

We use a norm-conserving pseudopotential (PP) generated within the Martins-Troul-
lier (MT) scheme [81] (see also Appendix A). The atomic state configuration is
2sV with cutoff radk of rc(s) = 1.50 a.u. and rc(p) = 1.60 a.u. The local référence
potential is the p orbital (sp). The space group is the diamond structure Ol (see
Section 4.1.1).

We take a cutoff energy Eq. (2.32) of 50 Ry and ten spécial k points [38, 30] in
the IBZ for theground state, which is sufficient for the following electronic structure
calculations [42, 81]. The Kleinman-Bylander formulation [82] (see also Appendix
A) is used throughout for diamond.

We calculate 7values around the expérimental lattice constant aeQxp = 6.741 a.u.
[99] and fit the total énergies with the Murnaghan équation of state [84] to obtain
the theoretical equilibrium lattice constant a0 and the bulk modulus B0 (£qXP =
4.43 Mbar [100]). The results are a^601 = 6.698 a.u. and 5*heor = 4.47 Mbar.

The minimum gap of diamond is indirect and between the highest occupied
band at Tand around 0.73 indirection X. At the theoretical a0, we obtain ECltJT-
0.73X) = 4.26 eV.

In Fig. 5.1 we show the band structure for the four valence and first eight con
duction bands. The eigenvalues are aligned with r'25. In contrast to silicon (see Fig.
4.3) the bands around the gap, especially from theTpoint in the directions ofthe X
and the Lpoint, are not parallel. Therefore, their contributions to Mi type critical
point transitions and strong continuum excitonic effects are not as important as for
Si [68].

For the following spectral calculations, we investigate the gap at the X point,
around which a large région of the Brillouin zone contributes to the most prominent
E2 peak ofthe absorption spectrum [101], see also Fig. 5.5 and discussion in Section
5.1.3. The above configuration (MT PP with sp référence at a^heor) gives a gap at X
of 11.29 eV. Taking the expérimental lattice constant leads to EGap(X) = 11.13 eV,
which is about 0.2 eV lower. This resuit is also obtained when using 28 spécial k
points instead of ten. The inclusion of the dorbital into the pseudopotential (spd)
gives 11.19 eV at 4heor, being 0.1 eV lower than our référence calculation.

Finally, the influence of an insufficient cutoff energy can further shrink the gap.
Using a cutoff energy of 30 Ry instead of 50 Ry for the (spd) configuration, we obtain
#GaP(X) = 11.03 eV, which is about 0.2 eV lower. The same effect can be observed
using a relatively hard Bachelet-Hamann-Schluter (BHS) type PP for diamond [80]
with a (spd) configuration and a cutoff energy of 50 Ry. We obtain at a™* a gap of
10.78 eV for the X point, which is the value also reported by Hybertsen and Louie
in Refs. [5, 42]. In contrast we get 11.01 eV with a cutoff energy of 100 Ry. Again
the différence is about 0.2 eV. We note that the différence at the Vpoint for this
case is only 0.07 eV, so the calculation would be falsely considered to be converged
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Figure 5.1: Kohn-Sham LDA band structure of diamond for four valence and the first
eight conduction bands. Eigenvalues are aligned with P
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looking only on this point. In Tab. 5.1 our findings are summarized.

PP configuration: (sp) -> (spd)
Lattice constant: a£heor -4 a|fp

Low cutoff energy: BHS PP 100 Ry -» 50 Ry

Change in gap at X
-0.1 eV

-0.2 eV

-0.2 eV

Table 5.1: Effects on the gap at the Xpoint for diamond, using différent PPconfigurations.
See explanations inthe text. Making ail changes the gap would be reduced by about 0.5 eV.

Thus one can lower the gap at the Xpoint by about half an eV using différent,
but acceptable choices of the PP configuration. Since we hâve made a well converged
ground state calculation, we could reduce the gap for about 0.3 eV, by including
the d channel into the pseudopotential and by taking the expérimental instead of
the theoretical lattice constant. While the first choice would be préférable, although
not mandatory, it is ambiguous which lattice constant to choose.

5.1.2 GW Calculations

The independent particle polarization x°, Eq. (2.57), and the GW corrections, Eq.
(2.106) are obtained with 10 k points in the IBZ, using 65 bands and 339 wavefunc
tions. The head of the dielectric matrix in the long wavelength limit, £0o(q -4 0),
is 6.71, while the inclusion of local-field effects, 1/e^(q -4 0), leads to 6.23. This
value is not too well converged, compared to, e.g., 5.62 from Réf. [42]. The expér
imental value of the dielectric constant is 5.66 [83]. Like discussed in the case of
silicon (see Section 4.1.2) the élément e0o(q -4 0) converges much slower than the
rest of the dielectric matrix. In addition, the omission of the nonlocal commutator
in the matrix éléments is especially crucial for diamond for the dielectric constant
[61], however, not so for the GW calculations, since only one élément out of a large
matrix is concerned (see also Section 4.1.2 on silicon).

The GW corrections are obtained for the first eight bands. In order to correctly
treat high-symmetry points in the band structure, we shift the 10 spécial k points
to a set with 19 high-symmetry points in the IBZ, including T, which gives by
construction also 256 k points in the full BZ.

The plasmon pôle model defined in Eq. (2.64) does not lead to expressed pôles
in the évaluation of the self-energy operator for diamond and we can correct small
divergencies by inspection. The calculated minimum GW gap is 5.64 eV, with a
correction of 1.38 eV for the LDA value. At T, the gap is widened by 1.75 eV, which
is typical for other high-symmetry points, although the band dispersion is changed

—•mm
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by up to 0.4 eV. The expérimental gap is 5.48 eV [83]. Thèse results are typical for
diamond [5, 6].

A calculation with 65 bands and 169 wavefunctions [6] does lead to the same
GW corrections to within about 50 meV, disregarding the fact that the bands 7, 8
and especially 1 converge much slower. Nevertheless, we use ail 339 wavefunctions
as stated above.

In Fig. 5.2 we show thequasiparticle band structure as a full line for thefirst eight
bands (four valence and four conduction bands) together with the corresponding
LDA Kohn-Sham eigenvalues, represented by the dashes. The GW corrections hâve
been interpolated with splines from 10 calculated values for each band.

Although silicon has the same group symmetry as diamond, we do find some
différences in the band structures of thèse two materials. Besides the much smaller
gap of Si and the overall larger dispersion in diamond, the important observation
for optical properties is the fact that there are no parallel bands around the gap for
diamond. Thus a continuum excitonic effect will be, if at ail présent, only small.

5.1.3 Independent-Particle Absorption Spectrum

Using the physical quasiparticle énergies, obtained in a GW calculation described
above, we calculate the independent-particle absorption spectrum according to Eq.
(3.21). The GW corrections are interpolated from 10 spécial k points in the IBZ
with a tetrahedron method [87, 88] for each band.

Like for silicon, 8 bands are enough for the région of interest up to 20 eV. The
number of wavefunctions used for the matrix éléments in Eq. (3.21) is taken as 411.
For a very dense k point sampling set the optimal choice of the broadening parameter
y turns out to be 0.20 eV. In Fig. 5.3 we compare theconvergence ofseveral k points
sets, namely 10, 60 and 408 spécial k points in the IBZ. The curve with 60 k points
is still quite rough. However, a broader smoothening with y = 0.30 eV, using only
the bands '2-7' leads to a reasonable agreement with the converged curve with 408
k points (see Fig. 5.4 ).

The comparison of the quasiparticle spectrum with experiment [101, 102] in Fig.
5.5 shows a much greater discrepancy than the LDA one with experiment. Indeed,
while the main peak E2 is overestimated for both calculated curves, its energy is
quite correct for the LDA spectrum, but has a large shift to higher énergies for the
QP one.

The inclusion ofthe nonlocal commutator into the optical matrix éléments Eq.
(3.20) improves the resuit, as can be seen in Fig. 5.5. The curve is lowered by about
15% in the interesting energy range from 7 to 17 eV, while the énergies are only
very slightly affected. The height of the main peak E2 is now in good agreement
with experiment.

Gavrilenko and Bechstedt find an absorption curve in Réf. [9], using a tetrahe
dron interpolation scheme, with again a sharp E2 peak like for silicon. Shirley et al.
depict an independent quasiparticle spectrum, where the E2 peak also has a higher
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Figure 5.2: GW (full lines) and Kohn-Sham LDA (dashed lines) band structures of dia
mond for the first eight bands. Eigenvalues are aligned with F'25.
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Figure 5.3: QP absorption spectra of diamond with 408 (full curve), 60 (dotted-dashed
curve) and 10 (dotted curve) k points in the IBZ. 8 bands are used.
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Figure 5.4: QP absorption spectra ofdiamond using various k points in the IBZ, broad
ening y and bands. Full curve: 408 k, bands '1-8', y = 0.20 eV. Dotted curve: 60 k, bands
'1-8', y = 0.20 eV. Dotted-dashed curve: 60 k, bands '2-7', 77 = 0.30 eV. The bands 1 and
8 do not notably contribute in the shown energy range.
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Figure 5.5: QP and LDA absorption spectra of diamond with 408 k points in the IBZ.
8 bands are used. Full curve: QP énergies, with inclusion of nonlocal commutator in
the optical matrix éléments Eq. (3.20). Short-dashed curve: Same, but without nonlocal
commutator. Long-dashed curve: LDA énergies, without nonlocal commutator. Dotted-
dashed curve: Expérimental curve from Réf. [101].
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intensity than in the measured curve [68]. The latter use a slightly shifted regular
grid in the Brillouin zone in order to get a better average of the band dispersion in
the k point sampling.

5.2 Many-Particle Calculations

Hère we will examine the influence of the exchange and the excitonic effects for
diamond. First we will détermine some convergence parameters and validate the
diagonal approximation to the inverse dielectric function. Then we discuss the
absorption and the reflectivity spectrum in comparison with experiment. Finally we
consider the coupkng and anti-resonant terms of the full excitonic matrix.

Like for silicon (see Section 4.2.2) we can ignore the off-diagonal éléments of
^GG'fa) in tne screening in Eq. (3.96). In Fig. 5.6 we depict a calculation with 10 k
points in the IBZ, 8 bands and 27 wavefunctions in the summations of the excitonic
matrix. It is sufficient to take the diagonal éléments of £GlGi'(q)-. We will use this
approximation in the following, if not otherwise stated.

The number of plane waves used in the sums over G and G' in Eqs. (3.94)
and (3.g6) of the excitonic matrix could be truncated already at 27, as can also
be seen from Fig. 5.6. However, we will use 339 wavefunctions in order to assure
full convergence. The number of reciprocal lattice vectors in the évaluation of the
matrix éléments of Eq. (3.20) for the absorption spectrum itselfis taken as high as
411, like in the other spectra shown for diamond.

5.2.1 Absorption Spectrum

Converged Spectrum

Like for silicon in the previous chapter, we take the bands '2-7' and 60 k points in
the IBZ for the absorption spectrum ofdiamond, as the band structure has roughly
a similar dispersion. In Fig. 5.7 we compare an RPA calculation with the correct
quasiparticle énergies (short-dashed curve), a spectrum obtained including the local-
field effects (long-dashed curve) and a full calculation including the electron-hole
interaction (full curve) with experiment (dotted curve) [101, 102].

The already overestimated E2 peak in the independent-quasiparticle spectrum
sharpens due to the excitonic effects and rises above the expérimental curve. Also
its energy is still about 0.7 eV too high, though it is shifted by around 1.5 eV from
the peak including the exchange effects only. On the low and the high energy side of
the main peak the agreement with experiment has benefitted from a redistribution
of spectral weight (compare also with the LDA curve of Fig. 5.5). The Ex peak does
not arise as for Si, which is a direct effect of the non-parallel bands around the gap.

The inclusion of local-field effects alone in the calculation of the dielectric matrix
decreases the E2 peak and transfers spectral weight to higher énergies. This effect is

K:
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Figure 5.6: Absorption spectra of diamond with excitonic and exchange effects included
using 10 spécial k points in the IBZ, 8 bands. Full curve: Diagonal approximation to
£gg' (q) in screening and 339 plane waves in excitonic matrix. Dashed curve: Like before,
but 27 plane waves. Dotted curve: Full eGG, (q) taken as screening with 27 plane waves.
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Figure 5.7: Absorption spectraofdiamond using 60 spécial k points in the IBZ and bands
'2-7'. Full curve: Excitonic and exchange effects included. Dotted-dashed curve: Only
exchange effects included. Short-dashed curve: RPA calculation with thequasiparticle én
ergies. Dotted curve: Experiment [101]. See also Fig. 5.8, where the nonlocal commutator
is included.
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less significant than for Si. As already mentioned in the introduction to this chapter,
this is in contrast to Van Vechten and Martin [98] and Gavrilenko and Bechstedt
[9] and is similar to the situation we hâve found for silicon. One may speculate if
thèse discrepancies are due to the employed techniques. Van Vechten and Martin
use an empirical pseudopotential method, while Gavrilenko and Bechstedt use the
standard reciprocal space method and apply a tetrahedron interpolation scheme
[87, 88]. Since we observe the same tendency as already done for silicon in the
previous chapter, where we hâve carefully checked our approach, we believe in the
effects reported hère.

It is essential to include also the nonlocal commutator into the optical matrix
éléments Eq. (3.20), which can be seen in Fig. 5.8. Like for the independent-quasi
particle spectrum the curve is lowered by 15% in the important energy range from
7 to 17 eV and even more for the main peak E2, while the énergies are only very
slightly affected. The height of the main peak E2 is now in much better agreement
with experiment.

In Tab. 5.1 we hâve explained that différent, but valid choices of the PP config
uration can shrink the gap at the X point by about 0.3 eV in our case. The direct
effect on the RPA spectrum for independent particles is a shift of the E2 peak (at
10.35 eV in the LDA absorption spectrum in Fig. 5.5) to lower énergies, since the
région around the X point in the Brillouin zone, besides the région around the E
point, contributes most to the E2 peak [101]. Evidently, this shiftalso translates into
the excitonic spectrum and would give a better alignment with measurement in Fig.
5.8. Thus small and often not considered features of the ground state calculation
can hâve noticeable effects on the spectral properties.

Dense k Point Set

In order to understand the influence of a limited k point set, like 60 k points in
the IBZ as used above, on the excitonic effects, we only use the bands '4-5', but
408 k points in the IBZ. This set for the Brillouin zone sampling should be dense
enough to overcome spurious effects in the Coulomb interaction. In Fig. 5.9 we
show a spectrum including the excitonic and exchange effects in comparison with
a calculation in the RPA picture for independent quasiparticles for 60 and 408 k
points in the IBZ.

Although there are some différences in the two RPA spectra, which are indeed
bigger than in Fig. 5.4, where more bands are included, the excitonic spectra are
very close to each other. This confirms the use of 60 k points in the IBZ for the
excitonic calculations. The choice ofthebroadening is taken from Fig. 5.4 to account
for the différent roughness of the curves due to the différent k point samplings.
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Figure 5.8: Absorption spectra of diamond using 60 spécial k points in the IBZ and bands
'2-7'. Full curve: Excitonic and exchange effects with inclusion of nonlocal commutator
in the optical matrix éléments Eq. (3.20). Dotted-dashed curve: Like before, but nonlocal
commutator not included. Dashed curve: RPA calculation with the quasiparticle énergies
and nonlocal commutator included. Dotted curve: Experiment [101].
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Figure 5.9: Absorption spectra of diamond using bands '4-5' with différent k point sam-
plings and broadening paramters y. Full curve: Excitonic and exchange effects included,
408 spécial k points inthe IBZ, y = 0.20 eV. Dotted-dashed curve: Like before, but RPA
calculation with quasiparticle énergies. Long-dashed line: Excitonic and exchange effects
included, 60 spécial k points in the IBZ, y = 0.30 eV. Short-dashed curve: Like before,
but RPA calculation with quasiparticle énergies.
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5.2.2 Anti-Resonant Part and Coupling Terms

We want to consider the full Hamiltonian matrix Eq. (3.83) with the anti-resonant
part and the coupling éléments.

10

Energy (eV)

Figure 5.10: Macroscopic dielectric function ofdiamond using 60 spécial k points in the
IBZ and bands '4-5'. Real and imaginary parts are depicted. The inset shows the real
part only. Full curves: Full excitonic matrix including anti-resonant and coupling terms.
Dashed curves: Including anti-resonant, but excluding coupling terms (according to Eq.
(3.89)). Dotted curve: Only résonant excitonic matrix (only for imaginary part).

In Fig. 5.10 we show calculations made with 60 spécial k points in the IBZ,
bands '4-5' and 339 wavefunctions for the sums over the G vectors in the excitonic
Hamiltonian. Like for silicon, the full exciton matrix does give very similar results
for Re Sm(iv) compared to the résonant one, ifthe anti-resonant solutions - though
omitting the coupling terms - are properiy included. For the imaginary part of
em(iv), Eq. (3.87), there is hardly any différence visible between the full matrix,
omitting the coupling term, but including the anti-resonant part and taking only
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the résonant part.

Inclusion of the anti-resonant matrix according to Eq. (3.89) gives very close
agreement with the full Hamiltonian for the real as well as the imaginary part of eM.
Thus, again we can restrict ourselves to the résonant excitonic matrix for absorption
spectra.

Also the static value of the macroscopic dielectric function (dielectric constant)
is only slightly influenced by the coupling terms of H exc. The exact évaluation of
the dielectric constant for diamond does hence not demand a considération of the
full excitonic Hamiltonian.

5.2.3 Dielectric Constant

The dielectric constant of diamond can be calculated in very good approximation
including only the anti-resonant term, but not the coupling terms in Hexc, as seen
in the previous section.

Like for silicon in Tab. 4.7, we examine the convergence parameters and give
values using the results obtained so far in this work. We do not consider the coupling
parts of Hexc, but include the anti-resonant terms in ail values given in Tab. 4.7.

?7 = 0
B 2-7

60 k

B 1-12

10 k

B 1-65

10 k

B 1-65

60 k

B 1-200

10 k

LDA (no NLC)
LDA (with NLC)

6.22 6.69

5.80

6.71 6.71 6.71

QP (no NLC)
QP (with NLC)

5.45

4.78

Exc + LF (no NLC)
Exc + LF (with NLC)

6.14

5.38

6.70

5.81

Table 5.2: Dielectric constant of diamond for various choices of parameters. The anti-
resonant terms are included, however, - for the excitonic calculation - not the coupling
terms. 'LDA' ('QP') means independent-particle spectrum using LDA (QP) énergies. 'Exc
+ LF' includes excitonic and local-field effects. 'B' stands for bands and the number of
(spécial) k points refers to the IBZ. 'NLC means the nonlocal commutator in the optical
matrix éléments. The broadening is y = 0, but e0 generally decreases by only 001 for
y = 0.30 eV.

Evidently, it is enough to take 10 spécial k points in the irreducible Brillouin
zone and 12 bands in the summation over the states. Using only bands '2-7' does
not give a converged value for e0. Ifwe take a Lorentzian broadening of y = 0.30 eV
in Tab. 5.2, the values generally decrease by 0.01.
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The dielectric constant measured at ambient température is 5.66 [83]. Our con
verged value of e0 = 5.81, including excitonic and local-field effects, agrées within
less than 3%. We note that almost the same number is obtained with a simple RPA
calculation using Kohn-Sham LDA eigenvalues, whereas the RPA QP calculation
gives a much lower value.

5.2.4 Reflectivity Spectrum

In Fig. 5.11 we depict the reflectivity, Eq. (4.7), obtained with 60 k points in the
IBZ and bands '2-7'. The anti-resonant part of Hexc is included for the excitonic
spectrum, but not the coupling terms. Also in the RPA spectrum the anti-resonant
contributions hâve been considered. The nonlocal commutator in theoptical matrix
éléments Eq. (3.20) has been included. For the excitonic calculation the agreement
with experiment for the reflectivity is quite good for énergies up to 12 eV [101, 102],
while the RPA spectrum isshifted to higher énergies andshows a somewhat différent
curvature. For higher énergies one must use more bands and also a denser k point
set in order to better represent the band structure in thèse energy transition régions.

5.2.5 Joint Density of States

Like for silicon in Fig. 4.27 we find that the excitonic effects only slightly shift the
transition énergies ofindependent quasiparticles, (eck - evk), by up to 0.2 eV to the
excitonic eigenstates Ex. This can be seen in Fig. 5.12, where we compare the joint
density of states, Eq. (3.23), with the excitonic density of states, Eq. (4.10). Again
the changes in the excitonic spectrum, compared to the RPA QP calculation, see
Fig. 5.8, is due to a redistribution of spectral weight and not to a simple shift of
transition énergies.

• "
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Figure 5.11: Reflectivity spectra of diamond using 60 spécial k points in the IBZ and
bands '2-7'. y = 0.30 eV. Anti-resonant parts ofspectra included, but not coupling terms
of excitonic Hamiltonian. The nonlocal commutator in the optical matrix éléments has
been included. Full curve: Excitonic and exchange effects included. Long-dashed curve:
RPA calculation with quasiparticle énergies. Short-dashed curve: Experiment [101].
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Figure 5.12: Joint density of states of diamond using QP transition énergies (dashed
curve), Eq. (3.23), compared with excitonic density of states, Eq. (4.10), (full curve). 60
k points in the IZB and bands '2-7' are used. y = 0.30 eV.



Chapter 6

Conclusion

In this thesis we hâve for the first time presented an ab initio approach to include
excitonic effects in optical absorption spectra of semiconductors and insulators. We
hâve demonstrated the feasibikty ofourmethod at the examples silicon and diamond
obtaining results in good agreement with experiment.

We hâve derived the relevant formulas in a consistent way and developed and
tested the computer codes of the excitonic calculations with, inparticular, the imple-
mentation of the symmetry properties in order to reduce the excitonic Hamiltonian.
In addition, the routines to obtain the macroscopic dielectric function in various
ways presented in the course of this work hâve been written: independent-particle
picture, inclusion of excitonic and/or local-field effects, considération of the anti-
resonant and coupling terms, Taylor expansion scheme ofSection 4.1.3, and others.

Furthermore, several changes in the existing Car-Parrinello code for the ground
state calculations and the GW programs for the RPA inverse dielectric matrix and
the self-energy corrections to the Kohn-Sham LDA énergies hâve been made. Fi
nally, some small, but important routines, like the tetrahedron interpolation scheme,
hère used for the GW corrections of the Kohn-Sham LDA énergies in the spectral
calculations, hâve been developed.

6.1 Theoretical Developments

From the theoretical point of view, the observed spectrum is given by the imaginary
part ofthe macroscopic dielçctric function, which essentially dépends on the polar
ization being the response of the system to an external perturbation. Schematically
this can be written in the form, Eq. (3.33),

eM = l- vP. (6.1)

In the absorption process two principal many-body effects can be identified: the
excitoniceffects, resulting from electron-hole Coulomb interaction and the electron-
hole exchange contributions, reflecting the microscopic structure ofthe system, thus
also called local-field effects.
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Starting from Hedin's coupled intégral équations we hâve derived an intégral
équation for the polarization by an itération beyond the GW approximation, Eq.
(3-45),

P = Po - PWP0. (6.2)

This expression can be used as an input for another intégral équation describing the
connection between the polarization propagator and - indirectly - the macroscopic
dielectric function, Eq. (3.37),

P = P + PvP. (6.3)

The resulting Bethe-Salpeter équation, Eq. (3.47),

P = P0 + P0(v-W)P, (6.4)

is the fondamental four-point équation governing the optical response ofthe system,
which we hâve to solve for P [67,103]. The interaction kernel includes the exchange,
v, as well as the excitonic, W, effects. The dash indicates the omission of the long-
range term of vanishing wave vector in the bare Coulomb interaction v for the
macroscopic dielectric function.

The task of solving for P is technically very demanding, since even in a natural
basis of Bloch function, given by valence and conduction bands and k vectors in the
Brillouin zone, we hâve to represent P as a matrix of the order of some 104xl04
éléments.

Our ansatz starts with the transformation of Eq. (6.4) to an eigensystem [66],
Eq. (3.68),

H |A> = Ex |A), (6.5)
with the excitonic, in gênerai non-Hermitian Hamiltonian having the structure, Eq.
(3.64),

H= AEQP + (v-W). (6.6)
Thus we avoid an inversion process for each absorption frequency, since from the
spectral décomposition, we can then directly obtain P as, Eq. (3.86),

s, n ^-^ |A>{A|A'>_1<A'|

îv Ex~u
The Hamiltonian H has four principal blocks contributing to the macroscopic

dielectric function. The most important block for absorption is the résonant part
with positive independent-particle énergies AEQP on its diagonal, Eq. (3.78). It has
positive absorption frequencies and is by itself Hermitian. The second block is the
anti-resonant part, being the négative Hermitian complex conjugate of the résonant
part, see also Eq. (3.83). It is especially relevant for the static dielectric constant.
Thèse two blocks are connected by the coupling parts having only the interaction
kernel (v —W) as contribution.
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An important advantage ofour approach is the explicit knowledge ofthe excitonic
eigenstates [A) and eigenvalues Ex, which allows us a detailed analysis ofthe optical
properties. Knowing the wavefunctions we can, for example, plot the charge densities
of the excited électron and hole. This is particularly instructive in the case of a bound
excitonic state in a cluster, where strong mixing of independent-particle transitions
to the excitonic eigenstate occurs, as has been demonstrated in Appendix B with
the sodium tetramer. The analysis in the solid is more compkcated, but we can still
identify the principal independent-particle transitions to a given energy région, see
Fig. 4.26 for silicon.

We can also find the transverse-longitudinal splitting in the excitonic eigenvalues
by including the long-range term of vanishing wave vector in the bare Coulomb
interaction v, although it does not contribute to the macroscopic dielectric function.
In the case of Li20 we hâve found a split of about 50 meV for the lowest excitonic
eigenvalue being a bound state with a binding energy of 0.8 eV compared to a
minimum direct gap of 7.4 eV [23]. This eigenstate has been identified as the onset
of optical absorption (see Appendix A).

Parallel to this work, Shirley and co-workers presented an approach in a mixed
basis in real and reciprocal space [68, 69], which enables an ab initio solution by
inversion. Using the Lanczos or Haydock recursion method [104], their ansatz is nu
merically very efficient. However, they only obtain the spectral curve and therefore
do not directly get information about the excitonic eigenstates. Furthermore, the
repeated recursion process does not allow to obtain fine détails of the spectrum due
to limited resolution.

Recently, Rohlfing and Louie hâve demonstrated the advantages of our method
[105]. They hâve calculated, using a localized basis set, the absorption spectrum
for GaAs and determined the bound excitonic states below the fondamental gap,
including the transverse-longitudinal splitting, in good agreement with experiment.
Furthermore, they hâve shown that also a highly ionic material, LiF, with strongly
bound excitons below the gap can be adequately described. The spectrum including
excitonic and exchange effects isdramatically changed, now in good agreement with
experiment compared to the calculation in the independent-particle picture.

6.2 Optical Absorption: Silicon

The paradigmatic case for the optical absorption in solids is silicon, being the stan
dard example of a semiconductor. It has served as a test case for our programs
and then as the first application ofour method to a real material. Indeed, silicon is
quite a demanding system considering its large excitonic effects, mixing states lying
in broad régions of the Brillouin zone.

The simple RPA picture of independent-particle transitions from the valence
to the conduction bands in the absorption process does not lead to a satisfying
agreement with experiment. This resuit has been know since a long time, see, e.g.,
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Refs. [7, 9]. In this context the spectrum does not improve when using GW énergies,
i.e., the real quasiparticle énergies, instead of Kohn-Sham LDA eigenvalues for the
one-particle transition énergies, as can be seen in Fig. 4.7.

Also the inclusion of local-field effects is not enhancing the agreement with ex
periment. Rather we hâve found in Fig. 4.11 that oscillator strength is transferred to
higher énergies in contrast to the measured curve and agreement is even worsened,
as already reported by other workers before, see Refs. [9] or [12].

Only after the inclusion of excitonic effects in the calculation of the absorption
curve we hâve been able to obtain good agreement with experiment in Fig. 4.22. This
resuit for silicon was previously reported in the LCAO tight-binding calculation of
Hanke and Sham [11] and has recently been confirmed by Shirley et al. [68]. We
hâve seen in Fig. 4.27 that a redistribution of spectral weight due to excitonic effects
doubles the formerly largely underestimated Ex peak in the absorption spectrum.
Such modifications of spectra also occur in other semiconductors [68, 105].

At the example of silicon we hâve investigated the possibikties to approximate
the Hamiltonian matrix by neglecting the coupling between the bands or to consider
only aconstant screening in the electron-hole interaction. Thèse simple assumptions
are part of the Mott-Wannier model. In Fig. 4.17 we hâve shown that both approx
imations are not able to reproduce the excitonic effects in the Ex peak. The nearly
parallel conduction and valence bands around the gap lead to expressed continuum-
excitonic effects and several bands around the gap couple. The spatial extension of
the electron-hole pair is obviously not big enough to be accounted for by only tak
ing a macroscopic long-range screening. However, the electron-hole screening can
be taken diagonal, thus neglecting the off-diagonal éléments of sGG,(q), as shown
in Fig. 4.16. This approximation has also been applied to diamond (see below and
Fig. 5.6).

Neglecting the coupling parts, the Hamiltonian, Eq. (3.83), becomes block-
diagonal and the anti-resonant contributions can be easily incorporated, Eq. (3.89).
In the real part of the macroscopic dielectric function the anti-resonant part of the
excitonic Hamiltonian is essential, while the coupling terms can be neglected for the
spectrum in good approximation, see Fig. 4.23. However, the macroscopic dielectric
constant, eM(0), is notably changed by the coupling parts: about 4% for a limited k
point sampling, Tab. 4.7. For a converged value we would hâve to include at least 8
conduction bands. The imaginary part of su(iv) is only slightly influenced by both
the anti-resonant as well as the couplings terms.

In the reflectivity spectra, both the real and the imaginary part ofsu are included
and we hâve obtained good agreement with experiment in Fig. 4.24. The excitonic
effects are by far not as évident in the logarithmic derivative reflectivity spectrum
as in the absorption spectrum, see Fig. 4.25.
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6.3 Optical Absorption: Diamond

Although diamond has the same space group as silicon, there are two important
différences concerning the optical properties: i) diamond has a much larger band gap
of5.48 eVinsteadof1.17 eVfor silicon [83], which reduces the dielectric constant and
thus the screening; ii) diamond does not hâve parallel ornearly parallel bands around
the band gap, see Fig. 5.2. The reduced screening leads to a stronger electron-
hole interaction and one would therefore expect more expressed excitonic effects.
However, the minimum gap is indirect - like for silicon - and the nonparallel bands
around the gap do give a less cohérent superposition ofthe oscillator strengths.

Starting with an RPA calculation and using LDA énergies, we hâve noted in Fig.
5.5 that the inclusion ofthe self-energy corrections worsens agreement with exper
iment. The curve using the quasiparticle énergies is shifted to higher énergies. In
both cases the shape of the spectrum is not in too good agreement with experiment.
The inclusion ofthe nonlocal commutator (see also next section) in the optical ma
trix éléments, Eq. (3.20), is found to be crucial for diamond, in particular to reduce
the overestimated E2 peak.

Considération of the local-field effect détériorâtes agreement with experiment.
Like for silicon, we hâve found a decrease of the spectrum on the low energy side and
a shift of oscillator strength to higher énergies, see Fig. 5.7. Only after including the
excitonic effects we corne to good agreement with experiment in Fig. 5.8. The shift
of the absorption curve is due to, as for silicon, a redistribution of spectral weight
and not just to a réduction of the transition énergies (Fig. 5.12). The inclusion of
the nonlocal commutator is even more important for the excitonic spectrum than
for the simple RPA spectrum.

The excitonic absorption spectrum still suffers from a small misalignment ofthe
most prominent E2 peak, which can, however, be partly attributed to the choices
made in the pseudopotential configuration in the ground state calculation (see also
next section). Thus small changes in the first step, the DFT-LDA calculation, can
be more expressed in the final step, the spectral calculation.

The coupling éléments of the full excitonic Hamiltonian, Eq. (3.83), hâve been
shown to be less important for diamond than for silicon in Fig. 5.10, which is at
tributed to the larger gap, making the diagonal RPA transition éléments relatively
more important. Again, we hâve to include the anti-resonant part of Hexc into
the real part of £M((v) for the spectrum, while we can neglect it for the imaginary
part, the absorption spectrum. The calculated dielectric constant of 5.81 is in good
agreement with experiment, see Tab. 5.2.

Finally, the reflectivity spectrum agrées up to énergies ofabout 12 eV quite well
with experiment and excitonic effects are not more expressed than in the absorption
spectrum, see Fig. 5.11. For higher énergies above 14 eV, more bands and also k
points should be included in the calculation.
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6.4 Ground State Calculations and Spectroscopic
Properties

The choice ofthe pseudopotential (see Appendix A) can be important for the optical
spectrum and we hâve investigated this aspect at various points. Indeed, already
the first step, namely the ground state calculation, is crucial for the détails in the
final spectrum. In the case of diamond we hâve seen that différent, but reasonable
choices of the pseudopotential (PP) configuration can shift the main peak in the
absorption spectrum by up to half an eV, which is of the same order as the GW
corrections for the Kohn-Sham LDA énergies or the excitonic effects for the shift of
oscillator strength in the absorption spectrum, see Tab. 5.1.

The ground state calculations are generally speeded up using the separable
Kleinman-Bylander (KB) form of the pseudopotential. However, this can influence
the minimal Kohn-Sham LDA gap. In Tab. A.3 we hâve shown at the example
of Li20 that even when the theoretical minimal lattice constant a0 is only slightly
changed by the KB séparation, Tab. A.l, the gaps and therefore the position of the
peaks in the absorption spectrum can nevertheless be somewhat différent according
to the chosen PP configuration.

We note that silicon is generally not very sensitive to the PP configuration and
consequently we hâve observed only a small influence of the KB séparation. Nev
ertheless, in order not to bias our results we hâve not employed the KB séparation
being silicon the first application of our method.

Furthermore, for spectral calculations we hâve to be careful about the individual
optical matrix éléments, since they give the transition probability. ForLi20 we hâve
used a test model System to check the optical matrix éléments, taking only the T
point in the Brillouin zone sampling, and we hâve compared three PP configurations
with and without employing the KB séparation, Figs. A.5-A.9. The results support
the use of the KB séparation and of very soft PPs, though the application of very
soft PPs in spectral calculations reduces to some extent the accuracy. We hâve
hence learned from Li20 that we can apply very soft PPs of the Martins-Troulker
type even for highly ionic materials for the ground state and the GW as well as the
excitonic eigenvalues calculations, but for spectral calculations we might encounter
worse results than when using hard PPs.

The nonlocal commutator i [Vnh r] (see Appendix A) in the optical matrix élé
ments, Eq. (3.20), generally tends to decrease the absorption spectrum for about
15% in certain energy régions of the spectrum. Its contribution dépends on the
nonlocakty of the pseudopotential of the studied system and thus we hâve included
it in diamond (Fig. 5.8).
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6.5 k Point Sampling for Spectral Calculations

The size of the excitonic Hamiltonian matrix, which is one of the bottlenecks in
the calculations ofthe absorption spectrum, is given by the number ofbands and k
points included in the basis of the electron-hole pairs. Since the minimal number of
bands is determined by the energy range we want to investigate, we can effectively
only minimize the basis by choosing an optimal set ofk points.

In this thesis we hâve used the spécial k point scheme of Chadi and Cohen [38]
for the sampling and developed an efficient method, using symmetry properties of
the Hamiltonian, to reduce one big Hamiltonian matrix into several small ones. At
the examples ofthe diamond group materials silicon and diamond, we hâve obtained
four small matrices. The excitonic eigenstates hâve been reconstructed by symmetry
from the eigenvectors of the small matrices. This scheme has proven todeliver results
in good agreement with experiment. However, the implementation is rather involved
and depending on the symmetry properties of the material.

It would be better to hâve an approach which is easier to apply. Although not
used hère, Shirley et al. [68] and Rohlfing and Louie [105] hâve used a relatively
small regular k point grid ofaround 500 points in the full Brillouin zone and shifted
the grid slightly into an off-symmetry direction in order to better map the band
dispersion of the bulk as a whole, and not just at high-symmetry points and in
high-symmetry directions. The former hâve used a Brillouin zone with the shape of
a rhombohedron, while the latter hâve employed the usual fcc Brillouin zone and
used a shifted grid of Monkhorst and Pack points [39]. In both cases the agreement
with experiment has been good.

However, the shifted grid destroys the symmetry of the crystal and thus does
not allow the use of symmetry opérations like we hâve done. It would be désirable
to develop a k point sampling scheme, which gives a grid minimal in size and still
possessing the full symmetry of the crystal. Indeed, this is not ail obvious and it
may be best to use an optimized one for the spécifie purpose, maybe along the lines
ofRef. [90].

We note that the k point grid for the excitonic Hamiltonian matrix must be
regular in order to be able to use only a small number of q vectors for the inverse
dielectric matrix, Eq. (2.56), in the évaluation of the Coulomb terms Eqs. (3.96) and
(3.103) of the excitonic Hamiltonian.

6.6 Summary

We hâve developed a method for including excitonic and exchange effects in ab initio
calculations of optical properties. Starting from Hedin's coupled intégral équations,
we hâve rederived the fondamental équation for the absorption process, the Bethe-
Salpeter équation, and we hâve discussed the ingrédients of our approach. Our
method allows us to study in détail the various two-particle channels contributing
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to each excitonic eigenstate.
We hâve discussed the results of applications to silicon, diamond, lithium oxide

and the sodium tetramer. Good agreement with experiment has been obtained for
the absorption spectra of Si and diamond, the static dielectric constant of diamond
and for the onset of optical absorption of Li20 due to discrète bound excitons. We
hâve discussed various approximations of our method and hâve shown the strong
mixing of independent-particle transitions to a bound excitonic state in the Na4
cluster.

Furthermore, the influence of ground state calculations on optical spectra has
been investigated under particular considération of the pseudopotential génération
and we hâve discussed the use ofdifférent Brillouin zone point sampling schemes for
spectral calculations.



Appendix A

Pseudopotentials

Since the early work of Fermi [106] there has been great interest in replacing the effect
exerted by the chemically inert core states on the chemically active valence states by
an effective pseudopotential. With the introduction of empirical pseudopotentials
realistic band structure calculations of semiconductors and simple metals could be
performed. Although expérimental data had to be fitted in the construction, the
results demonstrated the feasibikty of the concept [107, 108]. The development
of ab initio, i.e., parameter free, and norm-conserving pseudopotentials marked an
important step forward [80, 109].

In this appendix we give an overview over the construction and the use of pseu
dopotentials in the framework of density functional calculations. Some aspects of
pseudopotentials will be discussed at the example of lithium oxide.

A.l Concept of Pseudopotentials

We are considering one isolated atom and estimate that well within the core the
potential felt by an électron is roughly given by

-•T' (A-1)

with ZeS being some effective charge due to the positive nucleus screened by other
électrons.

The high négative Coulomb energy V gives from the Virial theorem [110, Chap
3.4],

T=~V, (A.2)

also a high positive kinetic energy f for the core électrons. Since the velocity oper
ator, used in the évaluation of the kinetic energy, is basically measuring the spatial
change of the wavefunctions, the core électron wavefunctions will hâve significant
wiggles typical for low lying atomic states. Compared to the core électrons, the
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valence électrons hâve in total a higher energy. Of course, in the core région the
valence électrons are far less likely to be found. However, they expérience the same
Coulomb potential there and must therefore hâve an even higher kinetic energy.
This results in very rapidly changing wavefunctions.

The expressed oscillations of the valence states can also be understood by noting
the orthogonality relation between core and valence states, 0ck(r) and <f)vk(r),

I dr </>*ck(*)<t>vM = 0. (A.3)

Within the core région the oscillations hâve to interlace in order to give a vanishing
intégral.

Many computational codes use a plane wave basis for the wave functions. The
rapid oscillations of the wave functions in real space would resuit in a very large
number of expansion coefficients in reciprocal space, see Eq. (2.31), after Fourier
transforming and therefore in extremely expensive calculations. The problem is
even worse, as the energy range of the core states is of the order of keV, while the
relevant bonding énergies are in the range of some eV. So one needs a very high
relative précision for total énergies, despite the fact that normally only différences
are of interest.

Since the core is virtually inert to changes in the chemical environment, we can
construct a pseudopotential from atomic wavefunctions following the lines of Phillips
and Kleinman [111]. The true wavefunction <f> is expressed as the sum of a smooth
wavefunction ip and a sum over occupied core states ipc,

(p = f +^2bcipc. (A.4)
c

The wavefunction is forced to be orthonormal to the core states (ipc \<j)) = 0. Solving
for bc yields

0=f ~23-^c W) <Pc> (A.5)
c

Operating on <j> with the Hamiltonian H = T+ VC (where Vc is the attractive
core potential) gives the correct energy eigenvalue E. Substituting H<j> = Ecj) yields
after some rearrangement

(H + VR)ip - Eip, (A.6)
where

VR =J^iE - Ec) \ipc) (<pe\, (A.7)
c

and

H<pe = Ecipc. (A.8)
The potential VR acts like a short-ranged répulsive potential. The pseudopoten

tial is in gênerai spatially nonlocal and dépends on r and r'.
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The Eq. (A.6) is the new wave équation for the pseudowavefunction ip. It is
important to note that the eigenvalue E is the true energy corresponding to the
true wavefunction <f> of the system. The potential of Eq. (A.6), V = Vc + VR, is
the sum of an attractive long-ranged and a répulsive short-ranged part. °Near the
core both parts cancel fairly completely and the whole potential is well-behaved and
weak over the whole range (Phillips-Kleinman cancellation theorem).

If the true wavefunction cf> is normalized to unity, then ip is only approximately
normalized in the Phillips-Kleinman scheme. The condition (<j> \<f>) = 1 with Eq.
(A.5) gives

1=(tp \<p) - 2^ (<pe \<p) (<p \Vc) +J2 \(ipc \ip)\2 . (A.9)
c c

(<P\<P) = l +Y,\((Pc\'P)\2, (A.10)
c

The incorrect distribution of the valence charge between the core and valence ré
gion is known as orthogonality hole and causes serious problems in self-consistent
calculations.

Finally, we would like to mention that the Phillips-Kleinman pseudopotential is
non-unique. This can be seen by noting that replacing <p -> y+£ Sac<pc still gives
the same true wavefunction <f> in Eq. (A.5).

A.2 Construction of Pseudopotentials
Modem ab initio pseudopotential avoid the problems arising from the above de-
scribed orthogonality hole by choosing a différent approach [80, 109, 112]. Hère, we
first describe agênerai prescription given by Martins and Troulker [81] to construct
norm-conserving pseudopotentials and introduce then the Martins-Troulker method
itself. Finally, we discuss the separable pseudopotentials as invented by Kleinman
and Bylander [82].

A.2.1 General Description

Pseudopotentials are constructed from isolated atoms, whose electronic structure is
obtained in an all-electron (AE) calculation within density-functional theory. In free
space we can assume spherical symmetry and décompose each atomic wavefunction
(with aprincipal quantum number n) in aradial and an angular part [81],

<f>AE(r) =J2RtE(r)Ylm((l). (A.11)
l,m

The Yim are spherical harmonies.

Therefore,



•* " •

136 Appendix A. Pseudopotentials

The radial Kohn-Sham équations for spherical screening,

(-5^ +̂¥3il +yiE(r))rBfEW =e'ABrB"(r)' (A'12)
are solved self-consistently, where VAE(r) istheself-consistent one-electron potential
in the local-density approximation,

T/AE(r) =_Z_ +Ur) +yU>A (n(r)) (A13)

Z is the atomic number and Vh the Hartree potential from Eq. (2.83). The solutions
of Eq. (A.12) give the all-electron radial wavefunctions Rf"E(r) and eigenvalues ef-E.

The radial pseudopotential (PP) wavefunction Rfp(r) is then constructed ac
cording to the following quite gênerai conditions:

1. The pseudowavefunction Rpp(r) originating from the solution of the pseu-
doatom Kohn-Sham équation,

+̂ pp(r))rlîP(r) =6rPrifp(r)ï (A.14)
must be nodeless in order to be smooth and free of unwanted wiggles. Note
the Z-dependence of the pseudopotential.

2. Beyond a certain cutoff radius rc(l) characterizing the core radius, the wave
function Rpp(r) must be equal to .RzAE(r) :

Rfp(r) = R**{r) for r > rc(l), (A.15)

or at least converge rapidly to that value.

3. The charge enclosed within rc(l) for the two wavefunctions must be equal,

/•MO 0 /-MO
/ dr\Rpp(r)\\2= dr\R^(r)\\2. (A.16)

Jo Jo

4. Clearly, the valence all-electron and pseudopotential eigenvalues must beequal

lg_ 1(1 +1)
2dr2+ 2r2

efP = efE. (A.17)

Pseudopotentials meeting the above conditions are referred to as norm-conser-
ving and are relatively well transférable. The latter means that the PP is adéquate
to describe well the electronic structure also in a changed chemical environment,
like in a solid or an excited atomic state, and not only in the atomic state for which
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it is has been constructed. The freedom given within the gênerai rules allows the
construction of soft pseudopotentials, i.e., having a low cutoffenergy Eq. (2.32).

By analytically inverting the effective Schrôdinger équation (A.14) we obtain the
screened (scr) pseudopotential

W^-^+̂ KW]. (A.18)
For a nodeless pseudowavefunction the pseudopotential Eq. (A.18) does not hâve
any singularities, except possibly at the origin. They can be avoided by choosing a
pseudowavefunction behaving like r1 near the origin. For a continuous pseudopoten
tial the pseudowavefunction must hâve continuous derivatives up to and including
the second derivative.

The screening from the valence électrons, which is contained in Vs(r) and in
V£PA (n(r)), is then removed (unscreening). For that purpose, we split the density
in the core density nc and the part coming from the pseudowavefunctions nv , n =
nc + nv.

The ionic pseudopotential is now constructed by subtracting the Hartree V^.(r)
and the exchange-correlation Vpp(r) potentials, calculated from the valence pseu
dowavefunctions, from the screened potential,

^W = ^(r)-^(r)-KPcP(r). (A.19)

Hère we are assuming the core to be completely inert to changes in the electronic
environment (frozen core approximation). The valence électrons, on the other hand,
are, ofcourse, strongly influenced by the chemical bonding. In subséquent solidstate
calculations the removed valence part of the pseudopotential is then again added,
now self-consistently in order to describe the new screening. In the following we
omit the index ion for convenience.

Due to the construction of the pseudopotential we hâve an explicit dependence
on the components of the angular momentum l, which can be expressed via the
projection operators

vpp =£Mvr<H = £Mpp- (A.20)
l,m l

Writing the above in real space représentation,

Vpp(r,n,n') = -£\Ylm(n))Vpp(r)(Ylm(V)\, (A.21)
l,m

shows the explicit nonlocakty in the angular coordinates. Since the radialcomponent
is local, we hâve a semilocal pseudopotential. It can be further split into a local and
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a semilocal part by using a local référence potential V£f. We get
oo

^PP = vpp+vpp=j2\l)d\(y^+Avpp)
1=0

oo

fpp +X>>av;pp<z|
1=0

(A.22)

One often chooses VPP to be equal to the one of the nonlocal components, V;pfp =
'ref ' '

AVpp = Vpp-VPeP (A.23)
vanishes for that l. The truncation ofthe sum over l, J. < fis unavoidable and takes
high angular momentum contributions, which are unimportant for the chemical
bond, to be equal to V,pp.

'ref

The maximal l orbital up to which the sum in Eq. (A.22) is developed dépends
not only on the atom, but also on the electronic environment in which it is placed.
In the solid the atomic electronic charge is redistributed and may effectively be in
an excited state compared with the atomic ground state. For the construction of
excited angular momentum pseudopotential components one rearranges thus the
valence charge into excited states to get bound states of the atom, maybe even in
an ionic configuration (e.g. I= 2for Si: Si [Ne] 3s13p0-783d0-25 [80]).

POTENTIAL

Figure A.l: Schematic représentation of the pseudopotential method. The all-electron
(AE) potential VAE and the AE wavefunction are modified inside the core radius rc to
the pseudopotential (PP) V^p and the PP wavefunction Rfp.

Fig. A.l shows schematically the PP- and the AE-radial wavefunctions as well
as the pseudopotential and the all-electron potentials for some angular momentum
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l. The PP wavefunction has no nodes and is much smoother near the core than
the AE one. The PP does not hâve the Coulomb singularity for r ->• 0, but rather
tends to be flat near r = 0. This is especially characteristic for the Martins-Troulker
scheme, which is discussed in the next section.

The transferability of a pseudopotential is largely influenced by the cutoff radius
rc(ï). Ahigh radius reduces the influence of the oscillating core states and permits
a smoother pseudopotential. However, the transferability is lowered due to a loss of
physically relevant information. In any case one has to assure that rc(l) is greater
than the radius of the outermost node of ail AE wavefunctions.

Agood first criterion for transferability is given by the logarithmic derivative of
the wavefunction R(r). Since the Schrôdinger équation is a second order differential
équation, the value at a certain radius in combination with its first derivative and
the proper normalization condition (see condition 3above) uniquely defines R(r).
From condition 2 we hâve for any r >rc:

1 dRïP(r,t) 1 dRA*(r,e)
RfP(r,e) dr ~ rJ^T) Jr ' <A"24)

For a perfect pseudopotential Eq. (A.24) holds for every value e, not just for et
(condition 4). However, from aversion of Friedel's sum rule [109, 113, 114] for R(r)
it follows together with the norm-conserving condition that also in a région around
et the Eq. (A.24) is closely satisfied.

An additional quality requirement is the check that the AE excited state énergies
should be equal to the ones obtained from the ionic pseudopotential. Afinal answer
on the quality of a pseudopotential can, of course, only be given by the results of
realistic calculations of molécules or condensed matter phases. For each atom the
appropriate cutoff radius has to be chosen as a compromise between fast conver
gence and transferability. In addition, one should avoid overlaps of neighboring core
régions.

A.2.2 Martins-Troullier Pseudopotentials

The four conditions for a norm-conserving pseudopotential given in the last section
are by far not sufficient to uniquely define apseudopotential. The remaining freedom
can be used to construct smooth pseudopotentials which hâve arelatively high cutoff
radius rc(l), while still guaranteeing satisfying logarithmic derivatives in Eq. (A.24).
Especially for atoms with ls, 2p, 3d, 4/ or 5g valence électrons highly efficient
pseudopotentials are crucial. In the expansion in angular momentum components
in Eq. (A.20) the répulsive short-ranged potential VR of Eq. (A.6) is missing, which
stemmed form the condition of the orthogonality of the true wavefunction Vwith
respect to the core states. Therefore, calculations involving atoms of the above type
are computationally quite demanding. In this work we are faced with this kind of
problem by the diamond and the oxygen atom, which hâve 2p valence électrons.
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Martins and Troulker hâve introduced a procédure based on the method of
Kerker [112] to construct fairly soft pseudopotentials [81]:

The radial PP wavefunction is modeled inside the core by

Rfp(r)=rlep^2\ (A.25)

where pi is a polynomial of order six in r2 fulfilling the conditions:

1. Norm-conservation of charge within the core radius rc(l) according to Eq.
(A.16).

2. The continuity of the PP wavefunction and its first four derivatives at rc(l),
which in effect imposes the continuity of VPPt(r), Eq. (A.18), and its first two
derivatives at rc(l).

3. The zéro curvature of the screened pseudopotential at the origin. This con
tributes significantly to the smoothness of the pseudopotential.

Although there are still no absolute criteria for efficient pseudopotentials, thèse
characteristics hâve been proven to deliver excellent results concerning high trans
ferability in combination with a fast convergence with respect to the basis set size.

A.2.3 Separable Pseudopotentials

We use a basis set of plane waves for the wavefunctions, Eq. (2.31), in the computer
codes and thus perform the total energy calculations, at least partly, in momentum
space. The semilocal part of the pseudopotential Eq. (A.22) is then essentially
described - after Fourier transforming - by

53 |k +G) Vpp(k +G, k+G') (k +G'|, (A.26)
G,G'

which scales like N£w, where ATPW is the number of plane waves Eq. (2.33) and V^p
dénotes the nonlocal part of the pseudopotential. This is prohibitively expensive in
time and memory use for many large Systems like defects or surfaces.

The coupling of the two sums over the reciprocal lattice vectors can be avoided
by writing the nonlocal pseudopotential after Kleinman and Bylander (KB) [82] in
a separable form

avkB _v |Atfvs)(Avrv£i
" tr (vZ\Avr\vZ) • ( 7)

The eigenfunctions of the atomic Hamiltonian, given in radial form in Eq. (A.14),
^Pm(r) = RÏF(r)Ylm(Q), are obtained with the atomic pseudopotential. Evidently,
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the Fourier transform of Eq. (A.27),

f-' (ippp\AVFp \(pfp) ~^L' (A-28)

scales like A"PW due to the separate dependence on G and G'.
Both nonlocal pseudopotentials deliver the same pseudowavefunctions in Eq.

(A.14), but not necessarily the same physical results in a solid state calculation. It
is possible that ghost states appear, e.g. in GaAs: thèse are unphysical eigenstates
of the KB Hamiltonian which are possible, since it does not obey the Wronskian
theorem [115]. The latter implies that atomic eigenfunctions are energetically or-
dered such that the énergies increase with the number of nodes (for agiven quantum
number l). The unphysically bound ghost states can be avoided using certain pre
scriptions and care in the pseudopotential construction [116].

Nonlocal Commutator

In Section 3.1.1 we discussed the contribution of the nonlocal pseudopotential to the
electric dipole matrix élément Eq. (3.12). For the GW and excitonic calculations
this contribution is naturally very small, since only one élément of the - in principle
- infinitely large dielectric matrix is affected. The negligible influence on the results
in easily verified.

However, the transition probabikty in absorption spectra is essentially given by
the absolute square of just this electric dipole, as seen in Eqs. (3.21) or (3.88). It can
thus be important to include thèse contributions into the code for the absorption
spectra in order to obtain quantitatively correct spectra.

We will follow the lines of Refs. [42], [61] and [117]. The code has developed
by Valerio Olevano [117] and has then been integrated in our programs for spectral
calculations.

The required matrix élément is, from Eqs. (2.31) and (3.20),

ê-(vk\i[Vnhr]\ck) =

= ê-JdvJdr'ip*vk(r)Vnl(v,r')i(r'-r)ipck(T')
= ô'(f E <4(G)cck(G') fdv fdv' e-(k+G)-r v^t,*) i(r' - r) e^+G')<

0 G,G' J J

(A.29)

The hat indicates a normalized vector: v = v /v , with v= |v|. For ease of notation
we set K = k + G, K'= k + G' and define

Kl(K' K'} ~kJdT JdT' e~ÎKr V^ r') eiK''r'" (A.30)

E|k + G)<k + G|AVf*V^)
LG

E(A^pp|k + G')(k + G'|
.G'
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Then we obtain

ê- (wk|i[T4i,r]|ck) =

ë-J2<k(G)cck(G') (Vk + Vk0 Ki(K,K').
G,G'

In the KB formulation the matrix éléments Ki become

KfB(K,K') =£V*(k-k')-t, J2Pl(K •K')Fsl(K)Fsl(K'),
s l

with, using Eq. (A.23) for AVfp,

Fsi(K) = ^(2l+l)fal(K),
fsi(K) = j drr2AVpp(r)Ji(Kr)Rpp(r).

For later use, we also give the derivative

dJ^ =jdrr*AVr(r)Jl(Kr)Rr(r).

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

The atomic structure factor e-*(K-K')-rs reflects the basis of the superceri# The Pt(x)
are Legendre polynomials and the jt(x) are Bessel functions, with the j[(x) being
the first derivatives of them with respect to their argument. The fsi(K) are called
KB form factors.

Finally, the matrix élément is

ê-(uk|i[Ki,r]|ck) =

=.> E c:k(G)cck(G') E e-«K-K')- £ {p/(K •K')A(K, K')Fsl(K)Fsl(K')
G,G'

+

with

Pt(K •K') [B(K, K') +B(K',K)}} ,

A(K,K') = (VK +VK.)ïy£
1 \K(1.^S)+Ki(1_^^'

KK' K2 K'2

being the derivative of the argument in the Legendre polynomials, and

B(K,K') s VKFsl(K)Fsl(K')

••••••MH

dFsl(K)
ÔK

K Fsl(K').
K

(A.36)

(A.37)

(A.38)
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A.3 Soft Pseudopotentials: Lithium Oxide

In this section we will examine the use of soft pseudopotentials (PP) of the Martins-
Troulher (MT) type [81] at the example of an highly ionic crystal, lithium oxide,
Li20. In an earlier work we hâve already investigated the properties Li20 [18].

In the course of this thesis we hâve revisited lithium oxide under spécial con
sidération of the PP configuration, in particular the use of the Kleinman-Bylander
séparation, on the ground state and also on the optical properties. We will discuss
the effects on the optical matrix éléments Eq. (3.12), or explicitly Eq. (3.20), us
ing différent pseudopotential configurations. To this end, we will compare a 'very
soft MT PP with a harder MT one and with a standard Bachelet-Hamann-Schlùter
(BHS) PP [80].

Lithium oxide is a material of technological interest, with possible applications
mdeutenum-tritium fusion reactors as blanket breeding material [118], and in solid-
state batteries [119]. Therefore, many expérimental [120] and theoretical [121] stud-
îes are devoted to its defects, from the properties of simple point defects [118, 119]
to the formation of Li colloids under irradiation [122]. The electronic structure of
the material plays an important rôle in most of the studied processes, and is needed
for the interprétation of the results of many of the applied expérimental techniques
hke optical absorption [123]. On the other hand, only few investigations of the elec
tronic structure of bulk Li20 itself hâve been published: like the measurement of
the absorption onset [124], or the Hartree-Fock calculations of the occupied valence
states [125]. Further theoretical investigations of the electronic properties of lithium
oxide hâve also been suggested by a récent photoemission and electron-loss study
[126].

A.3.1 Electronic Structure Calculations

Our procédure starts with a DFT-LDA calculation of the ground state properties
and the KS electronic structure. We hâve carefully tested the very soft, norm-
conserving pseudopotentials used in the calculations, and we discuss in particular
their influence on the electronic structure. We then détermine the QP énergies by
evaluating self-energy corrections in first order perturbation theory, using Hedin's
GW approximation. This yields a précise picture of the occupied and the empty
bands of Li20. Finally, we détermine the optical transition énergies - including ex
citonic effects - from a two-particle effective équation derived from Green's function
theory Eq. (3.78), which includes the screened electron-hole interaction as well as
an unscreened electron-hole exchange term. This calculation allows to analyze in
détail the nature of the electronic excitations which contribute to the results [23].
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DFT-LDA Results

Pseudopotentials and Ground State Lithium oxide has anti-fluorite struc
ture and can be described by an fcc cell with one oxygen and two lithium atoms.
We détermine the ground state properties within the DFT-LDA pseudopotential-
based Car-Parrinello method [41]. Since plane wave calculations with the tradi-
tional Bachelet-Hamann-Schkiter pseudopotentials for the oxygen atom demand for
extremely large computational efforts, we use the Martins-Troulker pseudopotential
génération scheme, in order to obtain a considerably softer norm-conserving pseu
dopotential. We hâve first used, as référence configuration, a relatively smooth MT
PP for oxygen which has already been applied and tested in the past [127]. The
cutoff radk are 1.45 a.u. for both the s and the p component, and the latter is taken
as local référence (sp). This potential (denoted hMTO in the following) has yielded
perfect convergence with a plane wave cutoff of 80 Ry, which means about 2100
plane waves for the Li20 primitive unit cell.

In order to reduce the computational effort we hâve investigated the properties
of a smoothed version (denoted sMTO), which has also already been used in the
past [128]. The cutoff radk are 2.30 a.u. for the s component and 1.95 a.u. for the
p component. In this case, the required cutoff energy for full convergence is 50 Ry
(1000 plane waves). For the lithium atom we choose a pseudopotential with cutoff
radk of 1.75 a.u. for both the local s as well as the p component (sp), the latter
one created from a slightly excited atomic configuration. Using two spécial k points
[39], we obtained very good agreement with experiment [129] for the lattice constant
and the bulk modulus with both pseudopotential configurations (see Tab. A.l). The
influence of the Kleinman-Bylander séparation on the lattice constant and the bulk
modulus is negligible. Increasing the number of spécial k points to ten changes the
total energy per atom by less than 1 meV.

a0

B0

with KB non KB Exp.
4.534 À 4.525 À 4.573 À

0.90 Mbar 0.91 Mbar 0.90 Mbar

Table A.l: Lattice constant ûo and bulk modulus Bq of Li20 calculated with and without

the Kleinman-Bylander séparation. Expérimental data from Ref. [129]. Both pseudopo
tential configurations yield the same results with KB séparation. Only for the softer oxygen
pseudopotential (sMTO) the calculation without the KB séparation has been done.

The good agreement of the two pseudopotential configurations for the ground
state calculations is particularly remarkable, if we compare the cutoff radk with the
nearest atomic distance in the crystal. It is between the Li and the O atom and - for
a0 = 4.573 Â (exp. value) - we hâve LiO = ^a0 = 1.98 Â. The other distances are
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LÏLÏ = |o0 = 2.29 Àand UÔ~ = ^ a0 = 3.23 À. In Tab. A.2 we compare the Li-0
distance with the sums of the various cutoff radii for the hMTO and the sMTO with
the lithium PP cutoff radius. We find that there is an overlap of the oxygen sMTO
s orbital with the lithium s and p orbitals: the ratio of [rc(Li, s,p) + rc(0 s)]/LÎO
for the sMTO is 1.08.

hMTO sMTO

rc(Li,s,p) + rc(0,s)
rc(Li,s,p) + rc(0,p)

Ratio w.r.t. LiO

1.69 À

1.69 Â
0.85

2.14 A

1.96 Â
1.08

Table A.2: Comparison of the sums of the cutoffradii of the hMTO and the sMTO with
the lithium PP cutoff radius. The ratio of the larger sum for each MTO is given with
respect to the nearest atomic distance LiO = 1.98 Âfor a0 = 4.573 À (exp. value).

Clearly, this is not supposed to happen. Therefore, one is surprised by the
excellent agreement of the two PP configurations with experiment for the ground
state calculations. Indeed, as we shall see in the following sections, also the GW
corrections and even the optical matrix éléments are close to each other for the two
configurations.

Charge Distribution Due to the norm-conserving pseudopotentials the total
charge is correct in each case and the détails of the wavefunctions are obviously
less important. In Fig. A.2 the total charge is depicted in the (110) plane of the
conventional unit cell. Characteristically for a strongly ionic bond, the valence
charge is almost entirely concentrated around the oxygen atom.

In addition, the use of large cutoff radii is not unusual in the literature. Hybertsen
and Louie [42] applied soft pseudopotentials of the Kerker type [112] for the highly
ionic material LiCl. This pseudopotential génération scheme is similar to the one
of the Martins-Troulker used by us. In their work, the rc for Li and Cl add up to
2.24 Â, while the nearest Li-Cl distance is 2.57 Â. The ratio of the sum of rc to the
nearest distance (0.87) is thus comparable in our case, if one takes the harder of the
two oxygen pseudopotentials (0.85 in our work). In a récent publication [130] Surh,
Chacham and Louie used Martins-Troulker type soft pseudopotentials for electronic
structure calculations of an F center in LiCl. In that case the defect states are, of
course, strongly localized around the halogen vacancy and it is not difficult to see
that the reasoning concerning norm-conservation, charge distribution and detailed
knowledge of the wavefunctions is similar to our case.
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Figure A.2: Total charge density of Li20 in the (110) plane of the conventional unit cell.
Large and small dots indicate the positions of the Oand Li atoms, respectively. Distances
in a.u. Density in électrons per unit cell.
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Kohn-Sham LDA Eigenvalues Although the Kohn-Sham LDA eigenvalues are
converged to better than 10 meV for the two pseudopotential configurations, we find
that with the low-cutoff one the gap is slightly overestimated (for about 0.15 eV).
This error can be tolerated: the minimum LDA gap is direct, at the T point, and
as large as 5.3 eV without the KB séparation and 5.5 eV using it - calculated at
the respective theoretical equilibrium lattice constant a0, see Tab. A.3 -, so that the
relative error is small. Nevertheless, it should be noted that a shift of 0.3 eV, like
for the T point in Tab. A.3, is visible in an absorption spectrum. Also the possible
choice of the expérimental lattice constant instead of the theoretical one influences
the calculated minimal gap.

Gaps
T (min.)

X

L

KB, jgg KB KB, a°xp- non-KB, q*heor- non-KB
5.52 5.33 5.24

6.62 6.50 6.54

10.10 9.89 10.17

Table A.3: Kohn-Sham LDA gaps of Li20 at some high-symmetry points in the BZ using
the sMTO with and without the KB séparation at the indicated lattice constant. Values
in eV.

The dashed lines in Fig. A.3 show our results for the LDA band structure. The
occupied bands are mostly due to the oxygen (2s, 2p) and are very flat. The lowest
unoccupied band is also mostly localized on the oxygen atoms and is very flat along
the TX direction, consistent with the geometry of the underlying oxygen sublattice.

As expected, the LDA gap underestimates the value of the onset of optical ab
sorption, found experimentally at about 6.6 eV [124].

GW and Excitonic Calculations

Using 10 spécial k points the GW corrections open the gap at the T point by 2.1 eV,
yielding a minimum direct gap of 7.4 eV, using the LDA gap of the KB calculation at
the expérimental lattice constant. Convergence of about 30 meV for the eigenvalues
around the gap and for the gap itself is obtained with 941 wavefunctions for the
hMTO, and with 531 plane waves for the sMTO. The convergence in the number
of k points is about 0.15 eV. Comparison of the corrections shows that shifts are
identical to within 30 meV for both pseudopotentials. This can be expected from
a first-order perturbation correction, since the energy correction is an expectation
value using very similar wavefunctions. Roughly, the unoccupied bands are shifted
down and the occupied ones up by about 1 eV in either case (Fig. A.3). The band
dispersion is only slightly modified, up to 0.40 eV.
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Figure A.3: QP (full lines) and DFT-LDA (dashed lines) band structure of Li20 along
high-symmetry directions for the valence and the first four unoccupied bands. The top of
the LDA valence bands at T is set at -3.9 eV.
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In spite ofthe well established rekabikty of ab initio GW calculations, we hâve
hence found a QP gap which differs by more than half an eV from the measured
"optical gap". The situation would not improve if the calculations were done at the
theoretical instead ofthe expérimental lattice constant: the GW gap would be even
slightly bigger, 7.6 eV.

However, screening in Li20 is weak: as a by-product of the GW calculation, we
obtain the macroscopic dielectric constant e0, which is 3.46 for both pseudopotential
configurations. This value overestimates the expérimental value of 2.68 [131]. This
is partly due to the well-known gênerai overestimation of the LDA dielectric con
stant [132], and also to the neglect of the nonlocakty of the pseudopotential in the
évaluation of the q ->• 0 limit of the polarization matrix éléments [42]. (It must be
emphasized that the results of our calculations are not sensitive to the exact value
of e0, see also Section 4.1.2.) This fact, together with the small dispersion of the top
valence and bottom conduction bands, suggests that the electron-hole interaction
should be large, which would lead to optical transitions at énergies well below the
QP gap.

We compute the binding énergies of the excitons from the two-particle effective
équation (3.79), using the sMTO. In order to obtain convergence (within 30 meV),
we use 19 high symmetry points in the IBZ, including T, which give 256 k points
in the full BZ, 8 bands and about 300 plane waves. The excitonic Hamiltonian has
not been reduced by symmetry as outkned in Section 3.2.4.

We find the lowest exciton eigenvalue at 6.6 eV for the two transverse transitions
(see Eq. (3.94)) with a small split of about 50 meV to the longitudinal component;
this value is of the order of the global précision of our calculations. The dominant
contribution cornes from the transitions from the threefold degenerate 2p bands to
the 3s band mostly due to the oxygen. The corresponding electric dipole transition
Eq. (3.12) is allowed. Thus, this lowest eigenvalue of 6.6 eV corresponds to the onset
of the optical absorption. We hâve hence found agreement with experiment [124].

Concerning the choice of the pseudopotential in the case of the exciton calcula
tion, we hâve to consider two contributions: the répulsive exchange and the attrac
tive Coulomb part. Since the pseudopotential is norm-conserving, total charges are
correct and the long-range Coulomb interaction is adequately described. Only for
very small distances we introduce an error due to the finite size of the core région
given by the cutoff radius, inside of which the pseudowavefunctions are not cor
rect. The exchange part is in fact short-range. It reflects the explicit shape of the
wavefunctions used and will thus be influenced by the choice of the pseudopotential.
However, the matrix éléments dépend only weakly on the cutoff radius, as shown
below, and, more important, the Coulomb attraction is as big as +0.95 eV, while
the exchange part contributes only -0.09 eV to the total binding energy of'about
0.8 eV of the exciton. This is typical for this type of material.

Thèse calculations hâve been made with wavefunctions generated by using the
Kleinman-Bylander séparation. The influence on the GW and excitonic calculations
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isexpected, incontrast to the Kohn-Sham LDA gaps (see Tab. A.3), to bevery small,
as will be further demonstrated in the next section.

A.3.2 Optical Transitions

In this section we examine the influence of the pseudopotential and the Kleinman-
Bylander séparation on the optical matrix éléments. They are essential ingrédients
in the évaluation ofthe absorption spectrum, see, for example, Eqs. (3.4) or (3.87).
Compared to ground state and GW or excitonic calculations the calculation of
optical spectra is différent in two main aspects.

Firstly and most important, pseudopotentials are generally constructed in order
to find the ground state and excited states are not directly accessible for higher
énergies. The Eq. (A.24) for transferability of the PP is typically only fulfilled for
some 15 eV around theFermi level. Nevertheless, in the GW calculations we sum up
eigenstates up to100 eV and more above the Fermi energy in Eqs. (2.54) and (2.106).
It is, however, not necessary for a reasonable GW correction that each individual
state is exact. Only the sums must be correct and we can thus tolerate errors in
the energy level and the matrix éléments, if they average out on the whole in the
sums. This situation is différent for the absorption spectrum, as - in particular for
the independent-particle approximation Eqs. (3.4) - each transition is considered
separately and the optical matrix éléments give the probabikty of the transition
and thus the height of the absorption curve. On the other hand, only the first
20 eV above the Fermi level are important in the optical and ultraviolet range and
the transferability of the PP is normally good. One can therefore assume the PP
description to work.

The second différence with respect to ground state calculations is the crucial
importance of the band dispersion. The choice of the pseudopotential influences
somewhat the band structure, which is reflected in the spectrum. In order to pre
cisely détermine the energy of prominent peaks in the spectrum, we need even for
large band gap materials a small absolute error in the band dispersion.

Test System: T Point Only

Hère we will consider a test system with only Tas sampling point in order tosimplify
the calculations. We take an fcc cell for lithium oxide with only the T point for the
Brillouin zone sampling at the expérimental lattice constant of a0 = 4.573 Â. In
addition to the sMTO and the hMTO we also use a Bachelet-Hamann-Schkiter
pseudopotential [80] for oxygen (BHSO) with cutoff radii of rc(s) = 0.48 a.u. and
rc(p) = 0.28 a.u. This pseudopotential is much harder than both MT PP are. The
local référence component isp (sp) and the required cutoff energy for full convergence
is 200 Ry (7727 plane waves).
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Eigenvalues Ail PP configurations hâve been calculated with and without using
the Kleinman-Bylander séparation. In Tab. A.4 we summarize the gaps of the Kohn-
Sham LDA eigenvalues. The gaps of the sMTO and the BHSO are closer to each
other for the KB séparation than to the hMTO, which a maximal différence of 10%
for ail PP.

GapT
KB

non KB

sMTO hMTO BHSO

3.02 2.85 3.06

2.80 2.79 3.08

Table A.4: Kohn-Sham LDA gaps of Li20 for various PP configurations using only the T
point for the BZ sampling with and without the KB séparation at the expérimental lattice
constant. Values in eV.

Similar to silicon in Fig. 4.2 we examine the eigenvalues at the T point in Fig.
A.4 for the first 100 bands. Up to about 40 eV above the Fermi level there is
virtually no différence induced by the Kleinman-Bylander séparation on the energy
scale presented and the various PP configurations resemble each other very much.
For higher values, the eigenvalues shift and regroup again in a somewhat différent
manner. Thèse changes are unimportant for sums over many conduction bands, like
for the independent particle polarization x° in Eq. (2.57), since they are small and
unimportant with respect to the différence to the Fermi level.

Optical Matrix Eléments We hâve investigated the optical matrix éléments for
the first 100 bands by comparing the results of the three pseudopotential configura
tions (sMTO, hMTO and BHSO) at the r point. Only the three highest, degenerate
valence bands (bands 2-4) are considered, as they give the major contribution in the
excitonic calculations and the absorption spectra. Groups of degenerate valence and
conduction bands are summed over. The plotted data is thus,

^fn) = E E lM-(r)|2, (A.39)
î>=2 c=cmin

where

Mcu(k) = (ck
V

i
vk ) , (A.40)

from Eq. (3.20), and the sum over the conduction bands c includes in each case i
ail bands of a degenerate group. The index cfin is the number of the lowest band
of that group.
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In Fig. A.5 we compare the three PPs using the KB séparation, while in Fig. A.6
we do not employ it. In both figures the différences between the PP configurations
are generally less than 10%, though in some cases it can be larger.

The KB séparation induces only small différences. This can be more explicitly
seen in Figs. A.7-A.9, where we directly compare for each PP configuration the
influence of the KB séparation. Evidently, especially in the région near the Fermi
level, which is most important for the exciton calculation and the absorption spectra,
the différences between the three configuration are within 10%. This is the typical
error margin of experiment and, thus, our results should be compared within this
global précision.

We hâve hence shown that not only standard, already soft Martins-Troulker
pseudopotentials are very well applicable for ground state and electronic structure
calculations for oxides. One can make even softer pseudopotentials ofthis type and
still get good results. However, différences, which are unimportant for ground state
or electronic structure calculations, can be more visible in optical properties.
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Figure A.5: Comparison of optical matrix éléments \MCV(T)\2 of Li20 for the first 100
bands using only the T point in the BZ sampling and the KB séparation for various PP
configurations at the expérimental lattice constant according to Eq. (A.39). A- sMTO x-
hMTO, •: BHSO.
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Appendix B

Excited Charge Density in Na4

In this appendix we présent an example how to analyze excitonic states using the
explicit knowledge of the wavefunctions: we calculate and plot the charge density
of an excitonic hole in an Na4 cluster. Whereas GW calculations benefit from
the crucial fact that LDA eigenfunctions are very close to quasiparticle ones, and
energy shifts can hence be calculated without diagonakzation, this is not true for
the exciton problem: adiagonakzation, or, équivalent, matrix inversions or repeated
multiplications, cannot be avoided.

The sodium tetramer consists of four Na atoms in a plane [67]. DFT-LDA, GW
and exciton calculation hâve been performed in the past by Onida et al. [48]. They
hâve shown that the inclusion of excitonic effects is crucial in order to obtain an
absorption spectrum in agreement with experiment.

The décomposition of the optical transitions in terms of LDA electron-hole pairs,
Eq. (3.72), given by the coefficients of the state |A), allows to identify the strong
mixing of LDA transitions. In Fig. B.l we show the différence in the charge density
of the cluster between the ground state and the excited state corresponding to the
first optically allowed transition. Hère we hâve plotted the négative contributions,
Eq. (3.73), which represent the hole. Acomparison of Fig. B.l(a) (lowest occupied
LDA state charge density), Fig. B.l(b) (LDA highest occupied molecular orbital
(HOMO) charge density) and Fig. B.l(c) (true hole charge of the excited state)
shows that Figs. B.l(a) and B.l(b) both strongly contribute to the hole, illustrating
that the excited state would be very badly approximated by a single LDA electron-
hole pair.
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Appendix B. Excited ChargeDensity in Na^,

y-Sytnmetry axis (a.u.)
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pied LDA state.
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(c) Charge density of the true hole.

Figure B.l: Hole charge density of the first optically excited state of a sodium tetramer.
The four Na atoms lie in the plane z = 0 at (±2.86, 0) a.u. and (0, ±5.83) a.u.
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