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IV. Nous suivons le passage le long du mur.
Il y a du monde, chacun est porteur du terme manquant
d’une équation destinée à rester sans solution. [...]

IX. On ne peut voir le mur que par parties,
la totalité est dans l’esprit.
Le texte ne devient complet
que lorsque vous arrivez à la crypte. [...]

XI. Certains murs vous incitent à demander:
qu’y a-t-il de l’autre côté ?
Ces murs-ci ne décrivent que leur propre limite.
Ils vous saisissent, mais ne vous demandent rien.

JOSEPH KOSUTH
‘ni apparence ni illusion’

Murs de l’enceinte de Paris
Carrousel du Louvre





This thesis is a story, and real stories hardly go straight.
This thesis is no exception: I have tried to condensate in the form of a sequential manuscript

three years of research, attempts, many errors, new ideas, trials, some successes, some results,
a bit of philosophy, discoveries of old ideas, new implementations, models, derivations, ...

With these ingredients, I have built this story.
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Preface

A quoi bon bouger, quand on peut
voyager si magnifiquement
dans une chaise?

JORIS–KARL HUYSMANS, À rebours

Condensed matter is an amazing field of research. New phenomena periodically pop up
out of nature, asking for an interpretation. It is the case of superconductivity, the quantum Hall
effect, Mott insulators, excitons, magnons, ...

Remarkably, all of these are emergent phenomena. They cannot easily be explained just by
focusing on the properties of the single components involved. On the contrary, they stem from
the collective behaviour of particles, which is often more than just the sum of single–particle
effects [1].

Typically, an important contribution to these phenomena is provided by electrons.

If in an extended system most of the electrons are usually attached to their nuclei, some
of them can move almost freely through the system. These electrons, called valence electrons,
wander around, explore and possibly establish coherent connections among themselves. They
lose their purely atomic nature, in which their energy is fixed by the atomic quantum numbers
n, l, m, and they enter a full many–body realm, where plenty of new energy states are available.

Some of these states can be considered as single–particle–like, and the many–electron sys-
tem behaves as if it were composed of several quasi–independent electrons with renormalized
properties. These are the famous Landau quasiparticles [2], which explain the success of the
free electron gas as a model for metals. Some other states cannot definitely be viewed as single–
particle–like, and they are the fingerprint of correlations between electrons. These states prove
that the many–body system behaves as a whole, and a true many–body approach should be
employed for its description.

Such a description exists, it has been developed in the fifties and the sixties, and it relies on
the formalism of the Green’s functions [3, 4, 5]. It is a very general theory with several ramifi-
cations. It yields, in principle, all the information that one could retrieve from the many–body
system (i.e., all the information enclosed in the many–particle wavefunction). It is the theory
of everything of condensed matter.

However, one is usually not interested in everything. Something is already enough. In par-
ticular, the spectral function alone already offers an excellent characterization of the system.
Moreover, the spectral function is a measurable quantity, that can be used to benchmark the
theoretical approach.

At this stage, this thesis enters the play. The aim of this work is to exactly target, from the

1
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theoretical point of view and in an effective way, the spectral function of a many–electron sys-
tem, which is measured in photoemission or inverse photoemission spectroscopy.

In particular, throughout the thesis (and explicitly in chapter 1) I refer to angle–integrat-
ed photoemission experiments. This is a spectroscopy technique based on the photoelectric
effect: schematically, a photon impinges on a sample, it transfers its energy to one of the elec-
trons, which is consequently kicked out of the material and finally collected by an analyzer. By
measuring the number of detected electrons at different energies, one has a clear map of the
energy distribution of the electrons in the material.

Such a map is of fundamental importance, as it establishes a true window on the micro-
scopic world of electronic states. Describing this map – if it is available – or predict it – when it
is not – is the challenge of theoretical spectroscopy1.

In the Green’s functions formalism I mentioned above, the one–particle Green’s function
G(r ,r ′,ω) exactly describes the physics of charged excitations, in which an electron is removed
from (photoemission) or added to (inverse photoemission) the system. While the microscopic
description requires the full Green’s function, the comparison with experiments is realized
through a much simpler quantity. It is the integrated spectral function A(ω), and it is derived
from the Green’s function via the following relation:

A(ω) ∼ 1

V

∫
d 3r ImG(r ,r ,ω).

This function is the microscopic quantity that makes the link with experiments possible. In
the standard approach (described in chapter 2), one first evaluates the full Green’s function
G(r ,r ′,ω), through the introduction of a non–local, complex and frequency–dependent poten-
tial, the self energy Σ(r ,r ′,ω). Once G(r ,r ′,ω) is at hand, all the off–diagonal elements and the
real part of the diagonal are discarded. Finally, one integrates ImG(r ,r ,ω) over space to obtain
A(ω). At the final stage, a lot of information is removed, and one could question the efficiency
of such a method.

In this thesis, an alternative is proposed. It is the joint venture of two shortcuts, presented
in part II and part III respectively.

The first shortcut deals with the issue just mentioned: instead of using a non–local and
complex potential, the self energy Σ(r ,r ′,ω), to obtain a non–local and complex object, the full
Green’s function G(r ,r ′,ω), and then remove most of the gained information, why not being
pragmatic and look for a method that directly focus on ImG(r ,r ,ω)? Its integral in space would
yield the energy spectrum A(ω), while its integral over frequency returns the local density n(r ).

This wish is formalized and realized in chapter 3. There, I introduce an auxiliary system,
in which fictitious particles interact via a real, local and frequency–dependent potential, the
spectral potential vSF(r ,ω) [6]. This is a much lighter object with respect to the self energy.
However, if it were known, it would yield the exact values of the integrated spectral function
A(ω) and the density n(r ).

In this sense, the spectral potential can be regarded as a dynamical generalization of the
Kohn–Sham potential of density functional theory (DFT) [7]. Also the latter is an effective po-
tential in an auxiliary system of fictitious particles. If its expression were known, one would
have access to the exact density n(r ). However, since it is static, even the exact Kohn–Sham
(KS) potential could not yield the exact spectral function. KS–DFT can only access the quasi-
particle part of the spectrum and, even there, it usually underestimates the fundamental gap of
semiconductors or insulators. By contrast, adding the frequency–dependence as an additional

1www.etsf.eu
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degree of freedom, the spectral potential yields in principle both the exact spectrum and the
exact density.

It can be shown that a real potential is the minimum requirement to have both A(ω) and
n(r ). However, a real but dynamical potential may break the usual causality rules (the Kramers–
Kronig relations), and it must be considered as no more than a mathematical tool.

A complex generalization of the spectral potential restores causality, and is formally given
by the effective potential of spectral density functional theory (SDFT) [8], which is in turn a gen-
eralization of dynamical mean field theory (DMFT) [9]. The latter is a successful approach to
treat Hubbard–like systems; by contrast, we here stick to an ab–initio, parameter–free system.
The former, on the other hand, has never been tested in practice. To complete the review of
existing approaches, time–dependent density functional theory (TDDFT) [10] focuses on time–
dependent phenomena, usually considering a system coupled to a time–dependent external
potential. This is not the case within our approach, where frequency is a time difference stem-
ming from a reduced description of a time–independent Hamiltonian [5].

An exact expression for the spectral potential can be found if the self energy is at hand,
through the solution of a generalized Sham–Schlüter equation [11, 6]. This is shown in chapter
4, for three prototypical examples.

The first system we consider is the Bethe lattice with infinite coordination number. It de-
scribes the Mott metal–insulator transition via the divergence of the imaginary part of the self
energy, which is a purely frequency–dependent complex number. The challenge is therefore to
describe the same transition via a real spectral potential, whose imaginary part, by definition,
is always zero. In a second example we treat the symmetric Hubbard dimer, in which the self
energy, besides being complex, is also non–local. As a consequence, the task of the spectral
potential is doubled. Finally, we move to continuous system by considering the homogeneous
electron gas (HEG), with a purely non–local self energy (the Heyd–Scuseria–Ernzerhof HSE06
one [12]). The challenge is transforming the non–locality of the self energy into the frequency
dependence of the spectral potential.

However, this method is efficient if it does not require the knowledge of the self energy.
Therefore, we propose a second shortcut (part III), which is pretty general and is inspired by
the local density approximation (LDA) to the Kohn–Sham potential of DFT.

The strategy consists in evaluating the unknown quantity (the spectral potential) in a model
system, and then import it in the auxiliary system through a suitable connector, that is a pre-
scription that explains how to use the model system result in the original system.

I explain the general idea of this approach in chapter 5 and I apply it to the study of the
asymmetric Hubbard model in chapter 6.

The real challenge, however, is treating realistic materials within this method. To this aim
we consider the homogeneous electron gas as a model system, like in LDA. The spectral po-
tential is evaluated there for a wide range of densities, and then imported each time a different
material is studied. For this task, we propose a very simple connector based on local quantities
only, hence the name dynamical local connector approximation (dynLCA) for this approach.
The results for four prototypical materials, sodium, aluminum, silicon, and solid argon, are
presented in chapter 7.

Note that the connector approach has a further practical advantage: in fact, the self energy
is used just once in the model system only. Once the latter is solved and the results are stored2

for many values of densities, nobody will ever repeat the calculation in the model, nor will
he/she perform a self energy calculation in the real material. One can completely abandon the

2https://etsf.polytechnique.fr/research/connector/dynLCA
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self energy, which is complex–valued and non–local, hence computationally heavy. At the same
time, one does not have to build it for every different system; only the local quantities present
in the connector are needed, and these can be obtained through a simple DFT calculation.

Besides the theoretical insight that it offers, this approach results in a drastic reduction of
the computational cost. Therefore, it is particularly well suited for studying the properties of
a large number of materials (material design), in which the use of a non–local self energy is
usually the most time–consuming part. On the one hand, indeed, a local and real potential is
computationally lighter. On the other, this method disentangles general properties due to the
electron–electron interaction (accounted for by the calculation in the homogeneous electron
gas) from specific properties of the material, that enter the form of the connector.

As I will show in this thesis, it is not easy to design a connector which is generally valid, and
more work will have to be done. However, the results of this thesis are meant to show that this
is a promising way to go, to answer some open questions and to open new ones.

4



Part I

Background

I needed to believe in a tale – however
unlikely – which placed the events

of this most terrible day in a sensible order.

RICHARD ZIMLER, The Last Kabbalist of Lisbon

La matière ne va pas jusqu’au bout,
et l’isolement n’est jamais complet.

Si la science va jusqu’au bout
et isole complètement,

c’est pour la commodité de l’étude.1

HENRY–LOUIS BERGSON, L’évolution créatrice

Though wisdom is common, the many
live as if they had a wisdom of their own.

HERACLITUS, Fragments

1Matter does not go to the end, and the isolation is never complete. If science does go to the end and isolate
completely, it is for convenience of study.
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Chapter 1
The experimental starting point

The aim of this thesis is to develop an efficient method for the description of observables re-
lated to the electronic structure of matter. To validate the approach, we will benchmark it with
the existing state–of–the–art theories. Therefore, we will not directly face the comparison with
experiments. However, the connection with the experimental world is still of primary impor-
tance, as it can guide us on choosing which quantities are important to reproduce theoretically.

All the chapters that follow will focus on one particular measurable quantity, the spectral
function. This is a key quantity for the interpretation of different crucial experiments, which
are based on phenomena that have marked the development of quantum theory itself: the
photoelectric effect and quantum tunnelling.

Indeed, the diagonal of the spectral function in real space is the fundamental observable for
describing scanning tunnelling spectroscopy. Its diagonal in reciprocal space is the cornerstone
of angle resolved photoemission spectroscopy. Finally its trace, which is basis independent, is
the many–body quantity that is needed for reproducing photoemission and inverse photoemis-
sion experiments.

Tunnelling spectroscopy is essentially a surface–sensitive technique. Also photoemission
and its variants, according to the photon energy, are sensitive to the surface. However, they are
extremely useful for investigating also the bulk properties of a system. In this thesis we con-
centrate on the bulk, and photoemission will therefore be our primary reference experiment.

1.1 Photoemission spectroscopy

Photoemission experiments are the modern times development of some famous investiga-
tions performed by Hertz in 1887, who observed what became known as photoelectric effect:
under particular circumstances, a beam of monochromatic light is able to knock out electrons,
thus called photoelectrons, from a solid. The quantum theoretical explanation [13] of this effect
earned Einstein his Nobel prize: in an independent–particle picture (see fig. 1.1), a photon of
frequency ω/2π is absorbed by one of the electrons of the material, with initial energy −εB −φ,
where φ is the work function (energy needed to eject an electron from the highest occupied
level, namely, in a metal, the vacuum minus the Fermi energy) and εB > 0 is the binding energy
of the electron, measured with respect to the Fermi energy µ. If the energy gain ħω is suffi-
ciently large, that is if ħω > εB +φ, the electron escapes the material into the vacuum, with
positive kinetic energy εk = ħω−φ−εB and momentum ħk , and is then collected by an anal-
yser.

This effect is at the basis of PhotoEmission Spectroscopy (PES), whose goal is to determine
the energy levels of electrons in materials. Since conservation of energy states that −εB = εk −

7
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μ

φ

filled
states

empty
states

hω

εk

μ-εB

εk

μ

E

filled
states

empty
states

hω

μ+εB

εk

0 0

PES IPES

Figure 1.1: Photoemission (PES) and inverse photoemission (IPES) processes
schematically, in an independent particle picture. The wavy red arrow indi-
cates a photon of energy ħω that enters the sample in PES (and exits in IPES);
after the interaction, the sample is left with a hole, indicated by the white cir-
cle, and N − 1 electrons (N + 1 in IPES), indicated by the blue spheres. The
photoemitted electron (incoming electron in IPES) has energy εk . As it is ev-
ident from this picture, PES probes the occupied states, while IPES the empty
ones.

ħω+φ, and since εk is measured by a detector, ħω is chosen by the experimentalist and φ

can be known, the electron binding energy can be determined from the kinetic energy of the
photoelectron released in the vacuum.

Plotting the intensity of the signal, which is proportional to the number of photoelectrons,
as a function of the binding energy, one obtains an extremely rich spectrum, where a series of
distinct features reflects the different electronic energy states allowed in the material.

To make the discussion concrete, I will refer to a particular experiment in which I have taken
part. It is an angle resolved photoemission experiment (ARPES, see below) on bulk aluminum,
performed at the PEARL beamline of the Swiss Light Source (SLS1). The aim was collecting
experimental data on the electronic structure of aluminum, and use a theoretical approach
(the cumulant expansion) to describe them. An overview of the measured angle–integrated
photoemission intensity as a function of the binding energy is shown in fig. 1.2, in logarithmic
scale.

The most evident isolated sharp peaks are a signature of very localized core states, where
electrons stick close to nuclei in an atomic–like way; their binding energies do not differ that
much from the corresponding isolated–atom energies, hence they are used as evidences of the
presence of a particular element in the sample (ESCA: electron spectroscopy for chemical anal-
ysis [14]). In particular, in fig. 1.2, the most prominent peaks can be identified with the 2s and
2p atomic states. The line coming from the 1s state is at even lower energy and it is not shown.

More complex to interpret is the region of the spectrum close to the vacuum level, the va-
lence band. The ARPES spectrum in the valence region at the k–point Γ is shown in fig. 1.3.

In this region, more energetic, less bound electrons are allowed to explore the lattice struc-
ture of the solid, exhibiting a stronger itinerant nature. The discrete atomic–like energy levels

1https://www.psi.ch/sls/
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Figure 1.2: Angle integrated X–ray (ħω= 700eV ) photoemission data for alu-
minum. Intensity (in logarithmic scale) of the photoemitted electrons as a
function of the binding energy, in eV. The core levels 2p and 2s yield very sharp
peaks in the signal, together with their plasmons. The valence band is, on the
contrary, less pronounced; however, it is possible to distinguish, by the Fermi
level, the quasiparticle with the characteristic ∼ p

ω shape, that creates its
own plasmons at lower binding energy (Experiment performed in collabora-
tion, at SLS; figure from ref. [15]).

(3s and 3p in the case of aluminum) merge into a continuous distribution of energy in which
electrons are allowed to dwell, the Bloch bands. In certain cases (Fermi liquids) the band pic-
ture is enough to catch the main part of valence spectrum. This is the case when a prominent
peak of finite width appears, the one at ∼ –10 eV in fig. 1.3 (see also fig. 1.4). It can still be
interpreted as the fingerprint of the propagation of one single electron. However, its motion is
now affected by the dynamical polarization of the medium: as one electron moves, the others
are repelled and a Coulomb hole in the electron probability distribution surrounds the propa-
gating electron. The interaction of the electron with the Coulomb hole slows it down and thus
decreases its kinetic energy once it is ejected. In particular, from the relation −εB = εk −ħω+φ,
such a photoelectron will appear red–shifted with respect to the single–particle state to which
it corresponds.

The higher the number of processes by which the electron can be decelerated, the wider the
peak in the resulting spectrum. The width of the peak is thus interpreted as the inverse lifetime
of the electron–plus–Coulomb–hole entity. The latter is called quasiparticle as long as it still
exhibits a particle–like behaviour, namely as long as it can be thought of as a dressed particle
with renormalized energy and mass. Quasiparticles, see fig. 1.4, get sharper and sharper as
they approach the Fermi level, as the possibilities of decaying into non–coherent features is
reduced by the kinematics of the process; on the contrary, well inside the Fermi sea (but still
in the valence region), their lifetime is smaller and one does not see, nor one does talk about,
quasiparticles there.

Bloch electrons in the valence band are an extraordinary source of other non–trivial many–
body effects. One of these explains the series of smaller features that appear to the left of each

9
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Figure 1.3: Angle resolved X–ray (ħω = 1100eV ) photoemission experiment
on aluminum, at the Γ point. Intensity (in linear scale) of the photoemitted
electrons as a function of the binding energy, in eV. (from ref. [15]).

most prominent peak in fig. 1.2. In fact, together with their neutralizing ions, valence electrons
generate a plasma–like medium in which quasiparticles (core and valence) propagate. This
medium, which is quantized and originally in its ground state, can take part in the photoemis-
sion process by subtracting from the outgoing electron part of its energy, ħωP . As the medium
gets excited by one additional plasmon, the photoelectron is emitted with a lower kinetic en-
ergy, resulting in a smaller peak to the left of the quasiparticle, called satellite (see for example
in fig. 1.2 the feature at around –20 eV). With lower probability, the medium can also take twice
the energy it needs to get excited, 2ħωP : it thus goes to a higher excited state, consisting of two
plasmons, and another satellite will show up in the photoemission spectrum, to the left of the
previous one (the feature at ∼ –35 eV in the aluminum spectrum). And so on and so forth with
lower and lower probability.

These series of satellites, smaller and smaller as they depart from their quasiparticle, show
up to the left of each prominent peak of the photoemission spectrum, in the valence as in the
core region. They are not energy levels in the one–particle sense, but they are a clear bench-
mark of the collective behaviour of the electronic system [1], and they require a full many–body
treatment to be theoretically reproduced.

Depending on the system, other mechanisms of energy–loss are possible [16], each resulting
in other satellites in the photoemission spectrum.

Furthermore, in a photoemission experiment, other peaks can show up: they are the conse-
quences of additional events like multiple scattering of the photoelectron before escaping the
surface, or filling of the photohole left behind. Secondary processes like inelastically scattered
electrons or results of “cascade” processes add up in the incoherent background which grows
to the left (smaller kinetic energy of the photoelectron) of the most prominent features.

Finally, all spectroscopy techniques that involve electrons are highly surface sensitive. In
particular, for kinetic energy of the photoelectron (which is determined by the photon energy
and the binding energy range of interest) ranging from 100 to 103 eV, the corresponding electron
inelastic mean free path λe is 4÷40 Å [17], a few lattice constants inside the material. Therefore,
in general, the measured electrons stem from a region quite close to the surface. If one wants to
probe the bulk, the surface must be as clean and as bulk–like as possible. Still, it will influence

10
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the spectra. As an example, in fig. 1.3, the big shoulder at the right onset of the spectrum, at
smaller binding energy than the quasiparticle, can indeed be interpreted as a non–dispersing
surface contribution.

The qualitative picture I have just sketched shows how large is the possible number of effects
that can occur in a photoemission experiment. To describe at least some of them, a reliable and
efficient theory is needed.

1.1.1 The photoemission process

The standard approach to deal with the photoemission process from a many–body point
of view simplifies the single photoemission event into the succession of three independent
steps (three–step model [18]): an electron is excited by a photon in the solid, it propagates to
the surface and it finally leaves the surface into the vacuum. Each of these steps contributes
to the final photocurrent (detected electrons per unit time): an effective mean free path and a
transmission probability through the surface take into account the last two steps [19], while the
intrinsic photoexcitation of the electron can be described by the transition rate w f i from the
ground state of the N –electron system |Ψ(N )

0 〉 to an excited state |Ψ(N )
f 〉 – driven by a perturbing

Hamiltonian Ĥint. This is given, to first order in Ĥint, by Fermi’s golden rule [20, 21]:

w f i =
2π

ħ
∣∣∣〈Ψ(N )

f | Ĥint |Ψ(N )
0 〉

∣∣∣2
δ

(
E (N )

f −E (N )
0 −ħω

)
. (1.1)

The perturbing Hamiltonian describes the interaction of the system with the electromagnetic
field (φ, A). The scalar potential φ(r ) can be set to zero by a gauge transformation. The vector
potential is supposed to be small (linear response: A ·A = 0) and not varying with space (dipole
approximation: ∇· A = 0). With these assumptions, the perturbing Hamiltonian can be written
as Ĥint =−i eħ

mc A ·∇ [17].
To evaluate the matrix element in eq. (1.1), a further simplification is usually made, called

the sudden approximation2: the photoemitted electron is treated as completely decoupled
from the sample; this allows one to factorize the final state |Ψ(N )

f 〉 into an antisymmetrized

product of a photoelectron in the vacuum ĉ†
k |0〉 and the (N −1) electron system left behind in

the excited state s, |Ψ(N−1)
s 〉. The photocurrent Jk (ω) is given by the total transition rate. It is

the sum over all possible excited states s:

Jk (ω) = 2π

ħ
∑

s

∣∣∣〈Ψ(N−1)
s | ĉk Ĥint |Ψ(N )

0 〉
∣∣∣2
δ

(
ε0

k +E (N−1)
s −E (N )

0 −ħω
)

,

where the difference E (N )
0 − E (N−1)

s can be interpreted as the energy εs of an electron in the
solid, measured from the Fermi energy µ, and ε0

k is the energy of the free photoelectron in
vacuum. The perturbing Hamiltonian can be expanded on a complete set of single–particle
wavefunctions φl as Ĥint =∑

l l ′ ĉ†
l ∆l l ′ ĉl ′ , with3 ∆l l ′ = 〈l | Ĥint |l ′〉. Assuming that the ground state

|Ψ(N )
0 〉 doesn’t have any component along |k〉, which is too high in energy4, one obtains:

〈Ψ(N−1)
s | ĉk Ĥint |Ψ(N )

0 〉 =∑
l
∆kl 〈Ψ(N−1)

s | ĉl |Ψ(N )
0 〉 ,

and the photocurrent becomes:

Jk (ω) = 2π

ħ
∑
l l ′

∆kl∆
∗
kl ′

{∑
s
〈Ψ(N−1)

s | ĉl |Ψ(N )
0 〉〈Ψ(N )

0 | ĉ†
l ′ |Ψ(N−1)

s 〉δ(
ε0

k −ħω−εs
)}

. (1.2)

2The sudden approximation is justified when the kinetic energy of the photoemitted electron is large, which is
the case for highly energetic impinging photons (see [22] to go beyond).

3In particular, for Ĥint =−i eħ
mc A ·∇ and constant A, in the reciprocal space basis the representation is diagonal:

Ĥint = eħ
mc A ·∑k k ĉ†

k ĉk and ∆kk ′ = δkk ′ eħ
mc A ·k .

4This assumption is justified for high energy photoelectrons in the three–step model.
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While the first factors of the formula contain the radiation–matter interaction through the ma-
trix elements ∆kl , the part in curly brackets involves properties of the system only, from the
excitation energies εs to the transition amplitudes 〈Ψ(N−1)

s | ĉl |Ψ(N )
0 〉. Such a quantity, for rea-

sons that will become clear later, is called spectral function and will be the main character of
this thesis:

Al l ′(ω) :=∑
s
〈Ψ(N−1)

s | ĉl |Ψ(N )
0 〉〈Ψ(N )

0 | ĉ†
l ′ |Ψ(N−1)

s 〉δ
(
ω− εs

ħ
)

. (1.3)

With its help, the photocurrent becomes:

Jk (ω) = 2π

ħ2

∑
l l ′

∆kl∆
∗
kl ′ Al l ′

(
ε0

k

ħ −ω

)
. (1.4)

Finally, the matrix elements ∆kl are evaluated in the basis l in which A is diagonal, and it is
often assumed that ∆kl = const :=∆. Thus one arrives at the final formula:

Jk (ω) = 2π

ħ2 |∆|2
∑

l
Al l

(
ε0

k

ħ −ω

)
(1.5)

namely the important result that the photocurrent is, to some multiplicative factors, the trace
of the spectral function which, as it is well known, is independent of the particular basis {|l〉}l .

Inverse photoemission (IPES) Strongly connected to photoemission is the specular process
of inverse photoemission, which can be considered its time–inverted counterpart, as initial and
final states swap their roles. Free electrons are sent on the sample, where they occupy empty
levels; as a result, photons are ejected and collected by an analyser (see fig. 1.1).

The excitation energies are here defined as εs = E (N+1)
s −E (N )

0 , and the conservation of energy
states that ε0

k =ħω−φ+εs . By repeating the argument just above, the transition rate is still given
by eq. (1.4) provided that the spectral function is defined as:

Al l ′(ω) :=∑
s
〈Ψ(N )

0 | ĉl |Ψ(N+1)
s 〉〈Ψ(N+1)

s | ĉ†
l ′ |Ψ(N )

0 〉δ
(
ω− εs

ħ
)

. (1.6)

Note that, besides being specular in time, IPES is also complementary to PES in the sense
that, in a single–particle picture, it probes the empty levels of the system, while PES explores the
occupied ones. The two approaches together give a full picture of the one–particle excitations
of an electronic system.

Independent particles Neglecting the electron–electron interaction, the many–body system
is equivalent to many one–body systems; the transition amplitudes in eq. (1.3) or (1.6) simplify
to 〈Ψ(N−1)

s | ĉl |Ψ(N )
0 〉 = δl s , and the spectral function becomes:

A0
l l ′(ω) := δl l ′δ

(
ω− εl

ħ
)

(1.7)

with corresponding photocurrent:

J 0
k (ω) = 2π

ħ |∆|2 ∑
l
δ

(
ε0

k −εl −ħω)
. (1.8)

This is a series of delta peaks (see fig. 1.4 (b)) that can approximate at best the quasiparticle
peaks; finite lifetime effects and collective excitations like plasmons are completely ruled out
in such a picture. This is why, although very powerful for describing several properties of a
many–electron system, effective one–particle approaches cannot in general catch the whole
photoemission spectrum, and a truly many–body theory comes into play.
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Figure 1.4: Angle–resolved photoemission spetroscopy: (a) geometry of an
ARPES experiment with specified emission direction (ϑ,ϕ); (b) momentum–
resolved spectral function for a noninteracting electron system with a sin-
gle energy band dispersing across µ; (c) the same spectra for an interacting
Fermi–liquid system (adapted from ref. [23]).

1.1.2 Angle Resolved Photo Emission Spectroscopy (ARPES)

In the last decades, Angle Resolved Photo Emission Spectroscopy (ARPES) has become fea-
sible: besides energy levels, also their dependence on the wavevector k is experimentally ac-
cessible (see fig. 1.4). ARPES is an extremely useful technique for investigating the dispersion
of valence states which, as already mentioned, present an important itinerant nature; in par-
ticular, for Fermi liquids, the position of the main quasiparticle peak as a function of k is the
measured band structure. Also the Fermi surface, as a mapping of the k–points with energy µ,
is directly accessible by ARPES.

To interpret ARPES experiments, one has to relate the measured momentum (in vacuum) to
the wave vector k inside the solid: crossing the surface, the parallel (to the surface) component
of the photoelectron momentum is conserved, while the perpendicular is not, and different
approaches are used to determine it [19]. Besides the conservation of energy that we imple-
mented above, also the momentum conservation in the solid must be taken into account: since
the photon carries a negligible momentum in most cases, only vertical transitions are allowed,
and the momentum of the electron in the material can be modified by reciprocal lattice vec-
tors G only. These vertical transitions between bands are determined by selection rules in the
matrix elements. Finally, the photocurrent emitted in the direction k is proportional to the
diagonal of the spectral function in k space [17, 19]:

Jk (ω) = 2π

ħ2
|∆kk |2 A

(
k ,

ε0
k

ħ −ω

)
, (1.9)

where A (k ,ω) ≡ Akk (ω). As in eq. (1.5), the squared dipole matrix element |∆kk |2 =
∣∣〈k | Ĥint |k〉

∣∣2

contains the radiation–matter interaction (in particular the dependence on the photon energy),
while the whole many–body effects are accounted for by the spectral function, as it is clear from
its definition:

A(k ,ω) =
{∑

s 〈Ψ(N−1)
s | ĉk |Ψ(N )

0 〉〈Ψ(N )
0 | ĉ†

k |Ψ(N−1)
s 〉δ(ω−εs) if εs = E (N )

0 −E (N−1)
s ≤µ∑

s 〈Ψ(N )
0 | ĉk |Ψ(N+1)

s 〉〈Ψ(N+1)
s | ĉ†

k |Ψ(N )
0 〉δ(ω−εs) if εs = E (N+1)

s −E (N )
0 ≥µ

(1.10)

consistent with eq. (1.3) and (1.6). The main difference with angle–integrated photoemission
is that ARPES selects a particular basis for the spectral function, while in photoemission only
the trace of it is needed. This is why, if one wants to reproduce the outcome of ARPES experi-
ments, the k–resolved spectral function must be evaluated, while any basis is fine for integrated
photoemission.
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Figure 1.5: Scanning Tunneling Spectroscopy schematically, in an indepen-
dent particle picture, for negative (left) and positive (right) bias V . The grey
box is the sample while the blue object is the probing tip. The process is anal-
ogous to the one of fig. 1.1. Alternatively occupied (V < 0) and empty states
(V > 0) of the sample are explored.

1.2 Scanning Tunnelling Spectroscopy (STS)

A completely different experimental technique is Scanning Tunnelling Spectroscopy (STS),
a purely surface–sensitive method based on the tunnel effect. The principle is very simple: a
conducting probing tip is moved closer and closer to the surface of the sample, till the many–
body wavefunctions of sample and tip overlap: in such a situation, if a suitable bias V is applied
between tip and sample, tunnelling of electrons through the vacuum between the two becomes
possible; thus, a tunnelling current J (V ) can be measured.

As the tip moves around, by measuring the tunnelling current one can achieve a complete
reconstruction and visualization of the surface with atomic resolution (∼ 10−1÷100Å), produc-
ing a real atomic microscope (STM: scanning tunnelling microscope [24]). Furthermore, be-
sides visualization ot single atoms [25], also the manipulation of them became feasible within
this technique [26].

Although the physical principle on which they are based is different (tunnelling a barrier
versus absorption of a photon), both in this technique and in photoemission electrons propa-
gate and eventually are emitted (or absorbed) from the sample, see fig. 1.5. Therefore it is not
surprising that, even though the matrix elements – that account for the experimental setups –
are unrelated, both currents are proportional to the same intrinsic quantity, namely the spectral
function. In particular, since here the tip probes locally the sample and only the least–bound
electrons partecipate to the current, the local spectral function evaluated in a neighborhood of
the chemical potential shows up [27, 28, 29, 30] (assuming for simplicity the same µ for both
electrodes):

Jr (V ) = 4πe

ħ
∫ µ

µ−eV
dω |T |2ρt (ω+eV )A(r ,r ,ω), (1.11)

where ρt (ω) is the density of states of the tip and T is a matrix element depending, e.g., on the
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geometry of the tip and the applied voltage V . It is not surprising that the densities of states of
the two electrodes enter the formula, as electrons can jump between tip and sample only if the
two can alternatively provide and accept electrons. In particular, depending on the sign of the
voltage, empty (V < 0) or occupied states (V > 0) of the sample are probed, as the tip grants or
gains electrons.

The sample enters eq. (1.11) through the spectral function in real space, defined as:

A(r ,r ′,ω) =
{∑

s 〈Ψ(N−1)
s |ψ̂(r ) |Ψ(N )

0 〉〈Ψ(N )
0 |ψ̂†(r ′) |Ψ(N−1)

s 〉δ(ω−εs) if εs = E (N )
0 −E (N−1)

s ≤µ∑
s 〈Ψ(N )

0 |ψ̂(r ) |Ψ(N+1)
s 〉〈Ψ(N+1)

s |ψ̂†(r ′) |Ψ(N )
0 〉δ(ω−εs) if εs = E (N+1)

s −E (N )
0 ≥µ

(1.12)
which can be derived from the generic Al l ′(ω) of eq. (1.3) and (1.6) via standard basis transfor-
mation.

In this chapter I have introduced an important object, the spectral function Al l ′(ω),
which appears as a fundamental and recurrent quantity when considering different
experimental techniques:

1) its trace
∑

l Al l (ω), that can be expressed in any basis, is needed to interpret pho-
toemission and inverse photoemission experiments;

2) written in the reciprocal space basis, A(k ,ω) constitutes the intrinsic (in the sense
of independent of the measurement procedure) part of ARPES spectra;

3) its diagonal in real space A(r ,r ,ω) is directly probed in scanning tunnelling spec-
troscopy.

The spectral function contains essential information on the electronic structure of
the sample, as can be seen from its definition, eq. (1.3) and (1.6). The challenge is
therefore to derive it in the most efficient way from an ab–initio theory, in which just
electrons and nuclei are present and no further parameters are used. I will show in the
next chapter the state–of–the–art theory for obtaining the spectral function, while in
the following I will develop a more efficient approach to the same goal.
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Chapter 2
The many–body problem

When Richard Feynman was asked which single knowledge had better survive a hypotheti-
cal fatal cataclysm, he replied with the atomic theory [31]: “that all things are made of atoms –
little particles that move around in perpetual motion, attracting each other when they are a little
distance apart, but repelling upon being squeezed into one another”.

The challenge was to transmit “the most information in the fewest words”, just one sentence
to pass on to the next generation of (surviving) creatures. Had he been granted with more room,
he would have probably specify that atoms – despite their name – were not the fundamental
lego–bricks of nature.

Since the beginning of the century, indeed, scientists [32] have been aware that atoms are
composed of big, heavy nuclei surrounded by light, tiny and fast electrons: their overall charge
neutrality is the reason for the stability of atoms themselves, while the interplay between neigh-
boring nuclei and electrons results in the attraction–repulsion dance that builds up the whole
chemistry.

Well, not quite: it would be unfair to treat both nuclei and electrons with the same honours.
The former, massive as they are, are pretty lazy compared to the far more active electrons. The
latter move, scatter, lose and gain energy while, in many cases, one may consider that the nuclei
stand by and watch, still approximately in their original state.

However, their only presence on stage is fundamental. Nuclei modify the properties of space
around them, begging electrons for staying close. According to the configuration they assume,
plenty of different materials come out, each one with its own characteristics.

Interacting electrons wandering in a lattice of nuclei will be the main character of the play
described in this thesis.

2.1 The system

From a physical point of view, we can say that whenever two different time scales arise, a
shorter one associated with electrons and a (much) longer one for the nuclear degrees of free-
dom, the nuclear motion can be considered as adiabatically frozen with respect to the elec-
tronic one; in this case, an adiabatic decoupling of their description is not only feasible but
valuable.

That is something physicists quickly became aware of...
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2.1.1 The Born–Oppenheimer decoupling

Indeed, soon after the birth of modern quantum mechanics [33, 34, 35], Born and Oppen-
heimer [36] showed how it was possible to deal with molecules by decoupling the slow nuclear
motion from the fast electronic one. Assigning a wavefunction for independently describing
each of them, Ψ for the electrons and Φ for the nuclei, the wavefunction of the coupled system
can be, in some cases [37, 38], just the direct product of the two, Ψ ·Φ.

Such a case occurs in particular in common solids, where massive1 nuclei slightly move2

and light electrons quickly adjust to the instantaneous configuration of the formers. Their “ac-
climatization” can be described by an electronic Schrödinger equation in which the nuclei en-
ter only as a fixed set of parameters {Rα}:[

E {Rα}
s − Ĥe (r 1, ..,r N )−

∑
i ,α

veN (|r i −Rα|)
]
Ψ

{Rα}
s (r 1, ..,r N ) = 0, (2.1)

where Ĥe (r 1, ..,r N ) is the purely electronic Hamiltonian (see below) that depends only on the
positions {r i }N

i=1 of the N electrons, veN (|r i −Rα|) is the Coulomb interaction between an elec-

tron in r i and a nucleus in Rα and Ψ
{Rα}
s (r 1, ..,r N ) is the electronic wavefunction, describing

electrons in r 1, ..,r N when the nuclei are in {Rα}, with the multilabel s that specifies a complete
set of quantum numbers for the electronic system.

The role of the eigenvalue E {Rα}
s is twofold: it is both the (output) total energy of the electron

system and an (input) effective electronic energy that, on a longer time scale, contributes in
determining the actual configuration of the nuclei. It is called (adiabatic) potential energy sur-
face, and it is nothing but an electronic glue [39] that adds up to the nuclear Coulomb repulsion
to set the dynamics of the lattice.

Indeed, the slower nuclear relaxation process can be described by the following nuclear
Schrödinger equation, in which the electrons enter only through the potential E {Rα}

s :[
E tot
ρ,s − ĤN ({Rα})−E {Rα}

s

]
Φρ,s ({Rα}) = 0, (2.2)

where ĤN ({Rα}) is the purely nuclear Hamiltonian, Φρ,s ({Rα}) is the nuclear wavefunction and
E tot
ρ,s is the total energy of the electrons plus nuclei system, with ρ a set of quantum numbers

for the nuclear Hamiltonian3.

Eq. (2.2) is a clear statement of adiabatic separation. It says that the nuclear motion does
not modify the electronic state s, that enters as a parameter. In particular, electrons stay in
their ground state E {Rα}

s=0 . The Born–Oppenheimer approximation breaks down when, on the

1Even for the lightest atom, Hydrogen, the ratio between the mass of the electron and the nucleus is approxi-
mately 1/1836: the non–relativistic two–body problem can be separated into a center–of–mass that behaves like a

free particle, of mass M = mp +me ∼ mp , plus an orbiting particle of mass µ =
(

1
me

+ 1
mp

)−1 ∼ me : eventually, in

the center–of–mass reference system, a fixed “quasi–proton” and an orbiting “quasi–electron”.
2In a classical picture, the third Newton’s law states that the Coulomb force that an electron exerts on a proton is

the same as the one that that proton exerts on the electron; as a consequence, their (change in) momentum is the
same, hence their velocity is controlled by the ratio between their masses.

3A common approximation to E {Rα}
0 is the harmonic one, where the adiabatic electronic potential is approxi-

mated by a quadratic function of the nuclear displacements, i.e., E {Rα}
0 ≈∑

α
1
2 Mω2(

Rα−Req
α

)2, with Req
α the equi-

librium position of the α–th nucleus: the Hamiltonian in eq. (2.2) results in a sum of independent harmonic oscil-
lators, i.e., free phonons; additional anharmonic contributions can be considered, resulting in interacting phonons.

A related approach, well suited in particular for molecules, is the separation of the nuclear dynamics into a rota-
tional, vibrational and translational motion, pushing even forward the adiabatic separation idea by observing that
different energy scales (i.e., time scales) are involved in the three mentioned processes.

Finally, we mention the Lennard–Jones [40] and the Morse potential [41], used to parametrize the energy surface
E{Rα}.
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contrary, there is an interplay between electronic states and lattice dynamics, that is when two
different energy surfaces E {Rα}

s and E {Rα}
s′ are so close to each other (eventually, they cross) that

the slow nuclear dynamics induces transitions between different electronic states.

To conclude, eq. (2.2) states that it is possible to include the dynamics of the nuclei, and
hence have access to the full many–body wavefunction in the Born–Oppenheimer approxima-
tion Ψ{Rα} (r 1, ..,r N ) ·Φ ({Rα}), once the potential energy surface, and therefore the dynamics of
the electrons, is at hand. The latter is controlled by eq. (2.1), the real bottleneck of the calcula-
tion. It is towards this very equation that we will now, and for the rest of the thesis, turn.

2.1.2 The electronic system

In atomic units4, which we will use for the rest of this thesis, the Hamiltonian that enters eq.
(2.1) reads:

Ĥ =
N∑

i=1

(
p̂2

i

2
+ vext(r̂ i )

)
+ 1

2

N∑
i 6= j=1

1∣∣r̂ i − r̂ j
∣∣ (2.3)

where we have replaced the nucleus–electron interaction veN (|r̂ i −Rα|) with a more generic
external potential vext(r̂ i ). This is the most general Hamiltonian we will consider. It describes
any realistic material in which 1) relativistic effects can be neglected, 2) spin–dependent inter-
actions can be ignored and 3) the Born–Oppenheimer approximation holds.

These three requirements apply to a wide range of real physical systems, and we will focus in
particular on crystalline solids, where the number of electrons is huge, of the order of the Avo-
gadro number N ∼ 1023, and the arrangements of nuclei {Rα} is regular, that is∀α ∃ (n1,n2,n3) ∈
Z3|Rα = n1a1 +n2a2 +n3a3, with {ai }3

i=1 primitive lattice vectors.

Furthermore, we will attach the innermost electrons, the core electrons, to their nuclei, freez-
ing them together into a positively–charged ion structure. This is called the frozen–core ap-
proximation, and is motivated by the fact that only the valence electrons (the outermost ones)
significantly contribute to the interatomic interaction. Hence N will be the number of valence
electrons only, and vext(r̂ i ) the potential felt by an electron in r i due to the presence of the
whole ion lattice. For the rest of the thesis, we will consider this lattice in a fixed configuration
{Rα}, and we will drop the label {Rα} from the formulas.

Finally, the Hamiltonian (2.3) completely defines the system, but we need the wavefunction
Ψ to have access to its physical properties: the wavefunction obeys the Schrödinger equation,
eq. (2.1), that reads5:

ĤΨs (r 1, ..,r N ) = EsΨs (r 1, ..,r N ) (2.4)

Finally, with eq. (2.4) and eq. (2.3):

“The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, ...”

2.2 The problem

“... and the difficulty is only that the exact application of these laws leads to
equations much too complicated to be soluble.” [42]

4By definition, me = e2 = ħ = 4πε0 = 1; as a consequence, the unit of length is the Bohr a0 = 1
α

ħc
me c2 = 0.529 Å,

and the unit of energy is the Hartree Eh =α2me c2 = 27.2114 eV.
5Since the Hamiltonian (2.3) does not couple spin and position variables, the total wavefunction will be factor-

ized into the product of its spatial and spin components. The latter is not relevant for this thesis, and it will be not
explicitly mentioned.
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Believe it or not, despite the fact that the electronic many–body problem is completely and
exactly defined, finding the wavefunction Ψs (r 1, ..,r N ) remains a formidable task. The reasons
are mainly three:

1. The number N of electrons in a solid is huge. Take for instance the sample we used for
the ARPES experiment that I mentioned in the previous chapter. It is a cylindric sample
of aluminum, 5 mm of diameter and 1.5 mm of height. It weights less than 0.1 g, but it
contains roughly 0.23 ·1023 electrons.

Is this a large number? Walter Kohn [43] tried to answer this question from an optimistic
perspective: if only we were to describe a molecule (or an atom!) of N ∼ 100 electrons,
by replacing each continuous coordinate (r (i ))k ∈ (−∞;∞) in the wavefunction by just
3 parameters (a very rough trade!), the total numbers of these would be something like
∼ 10150, to obtain an accuracy in energy of ∼ 1%! No way to handle such a number, nor
even to imagine it!

But let’s stay positive and assume that some intelligent being whispers to us the solution.
We start recording it, but still, needing at least two bits per parameter, we would quickly
run out of atoms to store our N = 100 electrons solution, since the total number of atoms
in the universe is estimated to be around 1080 (the situation is not always that drastic: in
many cases, symmetries can help – see later with Bloch’s theorem). This observation –
that goes under the name of van Vleck catastrophe [44] – pushed Kohn to the following
provocative statement [43]:

“In general the many–electron wave functionΨ (r 1, ..,r N ) for a system of N elec-
trons is not a legitimate scientific concept, when N & 103”.

2. The previous point would not be a big deal, if only electrons wouldn’t interact. But they
do, giving a job to thousands of physicists and, more importantly, life to billions of com-
pounds, molecules and, eventually, human beings.

The interaction between electrons prevents the separation of Ĥ into a direct sum of one–
particle hamiltonians ĥ(i ). In general, one cannot even resort to a nearest neighbours
model: the Coulomb interaction is long–range, meaning that each electron interacts, al-
though sometimes weakly, with everyone else (in our 0.1 g Al sample, 1

2 N (N −1) interac-
tions means approximately 1044 couplings)!

3. The third reason why eq. (2.4) poses a problem is a conceptual issue: having access to the
wavefunction Ψ is not our final goal.

The wavefunction is an intermediate object that completely describes (the knowledge we
have of) a system. It contains all the information that can be extracted from it. In order
to obtain in practice a piece of this information, one has to evaluate, from the wave-
function itself, some reduced, much reduced quantities with the properties of 1) being
observables (in order to be compared with experiments) and 2) depending on just a few
variables (in order to have a clear physical interpretation). The wavefunction itself is not
one of these quantities, being a complex object whose interpretation is not even always
unambiguous [45].

And struggling to build up a giant for finally picking up just a tiny pinch of it doesn’t seem
the most promising strategy.

Bearing these three arguments in mind – too many variables, an inseparable Hamiltonian
and eventually an answer containing too much information – one had better give up on the
quest for the full wavefunction Ψ, solution of eq. (2.4), and turn to what really matters.
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2.3 Observables

What really matters is essentially just a bunch of operators – each one depending on a few
degrees of freedom – whose expectation values are closely related to what is actually measured.

Being properties of the system, these expectation values are still functionals of the wave-
function but, containing (much) less information than Ψs , we expect them to describe the sys-
tem from a reduced perspective only. On the other hand, their immediate meaning makes it
easy(–ier) to speculate about their structure, and their relative small size makes them appeal-
ing quantities to work with.

The total energy The total energy of a system in the state s is formally defined by rearranging
the Schrödinger equation (2.4) for the eigenvalue Es , which becomes a functional Es = Es[Ψs]
of the wavefunction Ψs :

Es =
∫

d 3r1...d 3rNΨ∗
s (r 1, ...,r N ) ĤΨs (r 1, ...,r N ) . (2.5)

In particular, the ground state total energy E0 plays a crucial role. First, even at room tem-
perature (∼ 20 °C), most of common materials are in their ground state: take for instance
our favourite Al sample (rS = 2.07 a0); its free Fermi energy (the valence band width) is ε0

F =
11.65 eV, while kB T ∼ 25 meV; that makes a ratio of kB T /ε0

F ∼ 0.2% thermally–excited elec-
trons! Even perturbing the system, this is usually expected to finally relax to its ground state.
Finally, in the Born Oppenheimer approximation, by minimizing E0 = E {Rα}

0 with respect to the
lattice positions {Rα}, one can have access to many structural properties of the system itself
(lattice constant, stress tensor, ...).

In conclusion, having the total energy of a many–body system means a lot. So much that,
simply by inspecting Es as a functional of the wavefunction, eq. (2.5), we will be able to in-
troduce some very fundamental quantities, through which we will eventually reformulate the
many–body problem.

The density Probably one of the simplest observables is the electronic density n (r ). It de-
scribes the distribution of electrons in space when the system is described by the wavefunction
Ψ (that can either be the ground state Ψ0 or an excited state Ψs). Density is defined as the num-

ber of electrons per unit volume, namely n (r ) := d N
d 3r

∣∣∣
r

. It is directly related to the probability
amplitude of finding an electron in r , and its functional form in terms of the antisymmetric
many–body wavefunction is:

n (r ) = N
∫

d 3r2...d 3rNΨ∗ (r ,r 2, ...,r N )Ψ (r ,r 2, ...,r N ) , (2.6)

which is the expectation value on the state Ψ of the density operator n̂ (r ) := ∑N
i=1δ (r − r̂ i )6.

This is quite a simple quantity, depending on just three continuous variables (and not 3N as
the wavefunction), whose visualization is extremely human–friendly: everyone knows what
“dense” means.

Besides being in itself a compact and clear object, the electronic density is also a funda-
mental ingredient for the expectation value of the many–body Hamiltonian (2.3). Indeed, the
classical (self–)interaction energy of a cloud of charged electrons with density n (r ) is a simple
functional of the density:

EH = 1

2

∫
d 3r d 3r ′ n(r )n(r ′)

|r − r ′| . (2.7)

6The two definitions are completely equivalent provided the Pauli principle applies: if this is the case, summing
over all but the first argument of |Ψ|2 does not highlight this as a preferred variable. Otherwise, the proper definition
would be n (r ) =∑

i
∫

d3r1...d3rNδ
(
r − r i

)
Ψ∗ (r 1, ...,r N )Ψ (r 1, ...,r N ).
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Figure 2.1: Relative magnitudes of the different contributions to the total en-
ergy of Mn atoms (in eV), from ref. [46]. T0,V is the kinetic energy of the
valence electrons, ECV = ∫

d 3r n(r )vext(r ) the interaction energy between the
electrons and the ions, EVV = EH the Hartree energy, eq. (2.7) and Ex the ex-
change contribution, eq. (2.9). The correlation term is even smaller, and is
not represented.

This is the famous Hartree contribution (see Appendix B), which often plays an important role
(see figure 2.1) when evaluating the expectation value on the ground state of the electronic
interaction term 1

2

∑
i 6= j

1
|r̂ i−r̂ j | .

On the other hand, one would never think that density alone is enough to have access to
the whole ground state energy of the electronic system. The reason is simple: while density is a
local quantity, both the kinetic and the Coulomb terms involve non–local interactions between
particles. A new object pushes to be defined...

The density matrix A non–local generalization of density is the one particle reduced density
matrix (1P–RDM), whose definition is the following:

γ
(
r ,r ′) := N

∫
d 3r2...d 3rNΨ∗(r ′,r 2, ...,r N )Ψ(r ,r 2, ...,r N ). (2.8)

This hermitian quantity, whose diagonal is the usual density, plays a twofold role in the ground
state total energy.

First, electrons are fermions, and as such they obey the Pauli exclusion principle: no two
electrons can occupy the same quantum level. In other words, the wavefunction Ψ is antisym-
metric in its variables. This rule is powerful enough to go beyond the strictly classical Hartree
term, eq. (2.7), even by still sticking to an independent–particles picture, that is by considering
a factorized (but now also antisymmetrized) wavefunction: a Slater determinant. The corre-
sponding energy contribution (derived in appendix B) is called the exchange or Fock term:

Ex =−1

2

∫
d 3r d 3r ′γ(r ,r ′)γ(r ′,r )

|r − r ′| . (2.9)

This is the amount of energy that must be added to the classical Hartree term, for the reason
that electrons, being fermions, tend to stay further apart from each other than their classical
counterparts, and their Coulomb repulsion is therefore weaker (hence the minus sign [47]).

Not only does the density matrix enter the very first non–trivial ( = non–classical) term in
the interaction, but also the large (see figure 2.1) kinetic contribution to the total energy can be
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exactly expressed in terms of it (see appendix B for a derivation):

T ≡ 〈Ψ|∑
i

(
−∇2

i

2

)
|Ψ〉 =

∫
d 3r lim

r ′→r

(
−∇2

2

)
γ(r ,r ′). (2.10)

With these expressions, the total energy, so far, reads:∫
d 3r d 3r ′

{
δ

(
r ,r ′)[(

−∇2
r

2

)
+ vext (r )

]
γ(r ,r ′)+ 1

2

γ(r ,r )γ(r ′,r ′)−γ(r ,r ′)γ(r ′,r )

|r − r ′|
}

.

This is an explicit functional of γ(r ,r ′) only: “the whole state [...] is completely described simply
by this electric density [matrix]; it is not necessary to specify the individual three–dimensional
wave functions that make up the total electric density. Thus one can deal with any number of
electrons by working with just one matrix density function”. [48]

Thus Spoke Dirac. End of story. Isn’t it?

The pair density It is not. If the previous formula truly represented the total energy of Hamil-
tonian (2.3), nature would be very different from what we are used to, and definitely more bor-
ing. Indeed, while the first half of the formula is exact, the interaction contributions (2.7) and
(2.9) have been derived under the assumption that the wavefunction could be represented by
a single Slater determinant. That is usually not the case.

To catch what is missing, we introduce the pair density, proportional7 to the probability
amplitude8 of finding one electron in r and another in r ′:

n2(r ,r ′) := N (N −1)
∫

d 3r3...d 3rNΨ∗(r ,r ′,r 3, ...,r N )Ψ(r ,r ′,r 3, ...,r N ). (2.11)

Were Ψ a factorized wavefunction9, this quantity would reduce to n(r )n(r ′): the probability
of finding an electron in r and another in r ′ would be given by the probability of finding an
electron in r times the probability of finding another electron in r ′: two uncorrelated events.

But this is clearly not the case, for the probability of finding an electron in r ′ is conditioned
by the presence of another electron in r , since the two are interacting: the Pauli principle,
on the one hand, struggles to keep spin–like electrons further apart (exchange effects), and
the Coulomb interaction, on the other, does the same job for whatsoever electrons (strictly
correlated contribution). Pictorially, the electron in r digs a probability hole nxc(r ,r ′) around
itself, preventing the electron in r ′ from further approaching:

n2(r ,r ′) = n(r )n(r ′|r ) = n(r )n(r ′)+n(r )nxc(r ,r ′), (2.12)

where we have split the conditioned probability n(r ′|r ) in its uncorrelated part n(r ′) plus the
exchange–correlation hole nxc(r ,r ′). It is only by adding the exchange–correlation term that the
full interaction energy can be exactly expressed as:

〈Ψ| 1

2

∑
i 6= j

1∣∣r̂ i − r̂ j
∣∣ |Ψ〉 = 1

2

∫
d 3r d 3r ′ n2(r ,r ′)

|r − r ′| = EH + 1

2

∫
d 3r d 3r ′ n(r )nxc(r ,r ′)

|r − r ′| , (2.13)

7The pair density n2(r ,r ′) is normalized to the number of electron pairs N (N −1).
8 The corresponding operator, of which eq. (2.11) is the expectation value on the antisymmetrized state |Ψ〉, is:

n̂2(r ,r ′) := ∑
i 6= j

δ(r − r̂ i )δ(r ′− r̂ j ) = n̂(r )n̂(r ′)−δ(r − r ′)n̂(r )

9In the Hartree sense, see appendix B, and neglecting the self–interaction correction term.
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where the last term is the exchange–correlation energy Exc that, due to the particular form of
the Coulomb interaction, can be written as:

Exc = 1

2

∫
d 3r n(r )

∫
d 3u

nxc(r ,r +u)

|u| . (2.14)

That is all, we are done. Es is expressed as an exact functional of just two10 matrices, γ(s)(r ,r ′)
and n(s)

2 (r ,r ′), both obtained by integrating the information of the wavefunction Ψs :

Es = 〈Ψs | Ĥ |Ψs〉 =
∫

d 3r d 3r ′
{
δ

(
r ,r ′)[(

−∇2
r

2

)
+ vext (r )

]
γ(s)(r ,r ′)+ 1

2

n(s)
2 (r ,r ′)
|r − r ′|

}
. (2.15)

This equation represents an exact reformulation of the Schrödinger equation (2.4), as far as the
total energy is concerned.

The breakthrough with respect to eq. (2.5) is noteworthy: the total energy is no more a
functional of the huge wavefunction, but of just two hermitian matrices 1) whose size does not
depend on the number N of electrons, making this procedure extremely appealing for studying
extended systems, and 2) that are in principle observables, hence directly linked with experi-
ments11.

2.4 Reformulations of the problem: functionals

The observables introduced above are extremely useful to express in a concise way the total
energy of a system, eq. (2.15). Moreover, they are light and clear objects one would rather
handle over the wavefunction.

It turns out that some of these observables carry an important, fundamental reformulation
of quantum mechanics, eq. (2.4). To see that, we will focus on the ground state.

2.4.1 The Rayleigh-Ritz principle

The ground state Ψ0 stands out from the other states as it is associated to the lowest possible
value of energy E0. With such an extremum property, the task of solving the eigenvalue problem
of eq. (2.4) can be exactly recast, for s = 0 only, into the equivalent search for the minimum Ψ0

of the functional E0 [Φ] := ∫
Φ∗ĤΦ (where the integral is over all the degrees of freedom of Φ),

with Φ N –electrons trial wavefunctions (normalized and antisymmetric):

E0 = min
Φ

E0 [Φ] ⇐⇒ δE0 [Φ]

δΦ (r 1, ...,r N )

∣∣∣∣
Φ=Ψ0

= 0. (2.16)

In practice, one considers trial wavefunctions Φ depending on some adjustable parameters
{αi }i , and determines the latter by searching for the minimum energy, eq. (2.16). This is the key
principle of methods such as configuration interaction or variational Monte Carlo.

10Unfortunately, γ cannot be derived in a simple way from n2 or viceversa: only the diagonal of γ, namely the
usual density n, is n(r ) = γ(r ,r ) = 1

N−1

∫
d3r ′n2(r ,r ′); on the other hand, both can be derived from the two–

particles density matrix Γ(2)(r 1,r 2;r ′
1,r ′

2) := N (N − 1)
∫

d3r3...d3rNΨ∗(r ′
1,r ′

2,r 3, ...,r N )Ψ(r 1,r 2,r 3, ...,r N ) [49];

then n2(r ,r ′) = Γ(2)(r ,r ′;r ,r ′) and γ(r ,r ′) = 1
N−1

∫
d3r2Γ

(2)(r ,r 2;r ′,r 2). Therefore, one can write the total energy
as a functional of Γ(2)(r ,r 2;r ′,r 2) alone, even if it is not yet clear which are the sufficient conditions Γ(2) has to ful-
fill to represent a true physical state, namely to correspond to an antisymmetric wavefunction (N –representability
problem for Γ(2)).

11In particular, directly linked with experiments [50] is the pair correlation function g (r ,r ′), that describes the
departure from an uncorrelated pair density through the relation n2(r ,r ′) = n(r )g (r ,r ′)n(r ′); as a consequence, g

is related to the exchange–correlation hole via the equation g (r ,r ′) = 1+ nxc(r ,r ′)
n(r ′) .
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2.4.2 Hohenberg–Kohn Density Functional Theory (DFT)

What does the minimum principle (2.16) say in case the total energy is given by eq. (2.15)?
Let us start by rearranging the latter in the following form, for s = 0:

E0 =
{∫

d 3r lim
r ′→r

(
−∇2

r

2

)
γ(r ,r ′)+ 1

2

∫
d 3r d 3r ′ n2(r ,r ′)

|r − r ′|
}
+

∫
d 3r n(r )vext(r ) =

≡ T
[
γ
]+Vee [n2]+

∫
d 3r n(r )vext(r ),

where, from now on, γ and n2 are ground state s = 0 matrices. The external potential enters
explicitly in E0 only through the coupling with the density, and we can wonder whether or not
two different external potentials, vext

1 (r ) and vext
2 (r ), differing by more than a constant, can

yield the same density n(r ). Let us say so and see what happens.

The potential vext
1 (r ) determines the Hamiltonian Ĥ (1), whose ground state12 is Ψ(1)

0 , from
which we can build the matrices γ(1)(r ,r ′) and n(1)

2 (r ,r ′). The same construction holds for the
potential vext

2 (r ), which yield the matrices γ(2)(r ,r ′) and n(2)
2 (r ,r ′), different from the previ-

ous ones since Ψ(1)
0 6= e iθΨ(2)

0 , by the hypothesis that the two potentials differ by more than
a constant. Only the diagonal of the γ matrices, namely the density, is the same for the two
potentials: γ(1)(r ,r ) = γ(2)(r ,r ) = n(r ).

Let us first consider the system Ĥ (1); by the minimum principle (2.16) applied to a generic
wavefunction Φ 6= e iθΨ(1)

0 , we have E (1)
0 ≡ E (1)

0 [Ψ(1)
0 ] < E (1)

0 [Φ]. Take Φ=Ψ(2)
0 ; we have:

E (1)
0 < E (1)

0 [Ψ(2)
0 ] ≡ T [γ(2)]+Vee[n(2)

2 ]+
∫

d 3r n(r )vext
1 (r ) =

= E (2)
0 [Ψ(2)

0 ]+
∫

d 3r n(r )
[
vext

1 (r )− vext
2 (r )

]=
≡ E (2)

0 +
∫

d 3r n(r )
[
vext

1 (r )− vext
2 (r )

]
.

By repeating the same procedure for the system Ĥ (2) and summing the resulting inequality to
the one just above, one obtains the absurd conclusion that E (1)

0 +E (2)
0 < E (2)

0 +E (1)
0 .

The simplicity of this reasoning should not diminish the relevance of the result, that goes
under the name of first Hohenberg–Kohn theorem [52]: “vext(r ) is (to within a constant) a unique
functional of n(r )”. Therefore, since the external potential fixes the Hamiltonian Ĥ of eq. (2.3)
and this determines all the spectrum, incredible as it may seem, anything is a functional of
n(r ), from the ground state wavefunction Ψ0 =Ψ0[n] to any excited state Ψs =Ψs[n] to any of
the observables introduced above.

From being huge functionals of the wavefunction Ψ, O =O [Ψ], everything becomes a func-
tional of the density: O = O [Ψ] ≡ O [Ψ[n]] = O [n], hence the name Density Functional Theory
(DFT) for this approach. Clearly, there is also a downside: while functionals of Ψ are generally
explicit, see eq. (2.6) or (2.8), explicit functionals of density are most often unknown. All the
difficulty of solving the many–body problem translates in the search for explicit expressions of
the functionals. We will come back to this issue in the rest of the work.

As a particular case, the ground state total energy E0 = E0[n] is a functional of n, too, and
we can introduce a universal functional F [n] := T

[
γ[n]

]+Vee [n2[n]], independent of vext(r ),
through which E0[n] = F [n]+∫

d 3r n(r )vext(r ). The actual ground state density is the one that
minimizes the energy functional E0[ñ] (second Hohenberg–Kohn theorem), with ñ correspond-

12We assume that both Ψ(1)
0 and Ψ(2)

0 are non–degenerate ground states. In the degenerate situation, the conclu-
sions still hold, as can be seen, e.g., by the Levy and Lieb constrained–search method [51].
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ing to an antisymmetric N –electrons wavefunction13:

E0 = min
ñ→N

E0 [ñ] ⇐⇒ δE0 [ñ]

δñ(r )

∣∣∣∣
ñ=n

= δF [ñ]

δñ(r )

∣∣∣∣
ñ=n

+ vext(r )[n] = 0, (2.17)

which is exactly on the same footing of eq. (2.16), but requires a minimization with respect to
a function of three (ñ) instead of 3N (Φ) variables! Still, “the major part of the complexities of
the many–electron problems are associated with the determination of the universal functional
F [n]” [52].

2.4.3 One–body Reduced Density Matrix Functional Theory (RDMFT)

A clever strategy to bypass our ignorance of the functional F [n] is choosing the density
matrix as the fundamental quantity, working with a Reduced Density Matrix Functional The-
ory (RDMFT). The density matrix has indeed an additional degree of freedom (non–locality),
through which more explicit information could be displayed.

Gilbert [53] has shown that there is a one–to–one correspondence between the ground state
wavefunction and the ground–state density matrix. Moreover, we can extend the correspon-
dence also to the local external potential vext(r ) that enters the Hamiltonian (2.3).

The reason for using γ(r ,r ′), which is a non–local object, instead of the local density n(r ),
is simple: of the functional F [n] introduced above, DFT knows exactly only the Hartree con-
tribution EH, eq. (2.7). Of the corresponding functional F̃ [γ] := T [γ]+Vee

[
n2[γ]

]
that can be

analogously introduced here, RDMFT knows, at the exact level, the Hartree term, the exchange
contribution Ex, eq. (2.9), and the kinetic contribution T , eq. (2.10), the three most often largest
contributions to the total energy, see fig. 2.1. Only the purely correlation term Ec[γ] is left be-
hind, begging for an approximation:

F̃ [γ] = T [γ]+EH[γ]+Ex[γ]+Ec[γ].

Standard approximations to Ec[γ] are, e.g., the Müller–type functionals [54].

Both RDMFT [55, 56] and HK–DFT offer an appealing procedure to evaluate the diago-
nal of the spectral function, which is in principle an exact functional of density: A (r ,r ,ω) =
A (r ,r ,ω) [n]. Building in practice this functional is a different matter: it is “notoriously diffi-
cult” [57] to express a frequency–dependent quantity from a static one, and we would really
have a hard time in trying to directly do it. On the other hand, by adding to the density (or
to the density matrix) additional degrees of freedom, expressing A (r ,ω) as a functional will be
almost trivial, as it is shown in the next section.

2.5 Green’s function (GF)

A fundamental quantity for this thesis, strongly related to the physics of photoemission ex-
periments, is the time–ordered one–particle Green’s function G(r t ,r ′t ′) [3, 4, 58], defined (at
zero temperature) as the probability amplitude to detect an additional electron in (r , t ) if it has
been added to the N –electrons ground state |Ψ0〉 in (r ′, t ′) (or viceversa for a hole – PES):

iG(r t ,r ′t ′) := 〈Ψ0|T̂ ψ̂(r , t )ψ̂†(r ′, t ′) |Ψ0〉 , (2.18)

13This is the N –representability problem for the density, which is solved by any reasonable non–negative function
that integrates to N .
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reduced associated Energy functional
quantity theory known part unknown part

n(r ) DFT EH[n] F [n] = T
[
γ[n]

]+Vee [n2[n]]

γ(r ,r ′) RDMFT T [γ]+EH[γ]+Ex[γ] Ec[γ]

G(r ,r ′,ω) GF E0[G] ;

Table 2.1: Energy functionals.

where ψ̂ and ψ̂† are Heisenberg field operators that destroy and create particles14, and T̂ is the
time–ordering operator, that sets the operators to its right in chronological order, with a minus
sign for each swap of operators.

The Green’s function is a worth–studying quantity per se, as the expectation value of any
one–particle operator Ô (1) = ∫

d 3r d 3r ′ψ̂†(r )o(r ,r ′)ψ̂(r ′) is an explicit functional of the Green’s
function: 〈Ô (1)〉 = −i

∫
d 3r d 3r ′o(r ,r ′)G(r ′t ,r t+), with t+ ≡ t +η, η→ 0. Two important exam-

ples are the density and the density matrix, that can be expressed through the Green’s function
as:

n(r ) =−iG(r t ,r t+)

γ(r ,r ′) =−iG(r t ,r ′t+).
(2.19)

From the last of these relations, one can think to the Green’s function as a dynamical general-
ization of the density matrix. This additional degree of freedom – time – contains the dynamics
of the system set by the Hamiltonian, and allows one to express also the expectation value of
Ĥ – a two–particles operator – as an exact functional of G only, an unexpected result known as
Galitskii–Migdal theorem [59]:

E0 =− i

2

∫
d 3r lim

r ′→r
lim

t ′→t+

[
i
∂

∂t
+h0(r )

]
G(r t ,r ′t ′), (2.20)

with h0(r ) ≡ −∇2

2 + vext(r ) the one–particle Hamiltonian. With such an equation, the journey
that led us through different observables is now complete, as the whole total energy is an ex-
plicit functional of G : knowing the latter, the former would be at hand, too, with no additional
effort. On the contrary, even if one knew the exact n or γ, one would still need the functional F
or F̃ to get the total energy.

This is an example of a general truth about functionals: the simpler the function, the more
hidden the information; viceversa, the more degrees of freedom a function exhibits, the more
explicit is usually the functional, see table 5.1. A clear example is the transition from DFT to
RDMFT, and from that to Green’s function theory, as we did above: the fundamental function
that we use for the description of the system picks up additional degrees of freedom (from a lo-
cal density to a non–local density matrix, and then to a dynamical non–local Green’s function).
As a consequence, most or the whole of the ground–state energy functional becomes explicitly
known.

Viceversa, it is easier to express the conditions a quantity has to fulfill to be physical (the
N –representability problem) for smaller quantities than for larger ones. Indeed, while these
conditions are known for the density and the density matrix [49] and, they are still under debate
for the Green’s function [60].

14Field operators are in general spin–dependent, ψ̂σ(r , t ), hence the Green’s function, too, bears two spin–indices:
Gσσ′ . On the other hand, since Ĥ is spin–independent, the resulting Green’s function is diagonal in spin space,
Gσσ′ =Gδσσ′ . This last G is the one used throughout the text; spin shows up in some factors of 2 = ∑

σσ′ δσσ′ that
we omit for clarity.
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2.5.1 Lehmann representation

Besides the interesting relations above, the main reason – for our purposes – of working
with G becomes clear when realizing a particular feature of the many–body Hamiltonian (2.3),
which can be recast into the following N –independent second–quantized form:

Ĥ =
∫

d 3r ψ̂†(r )h0(r )ψ̂(r )+ 1

2

∫
d 3r d 3r ′ψ̂†(r )ψ̂†(r ′)vC (r ,r ′)ψ̂(r ′)ψ̂(r ), (2.3a)

where vC (r ,r ′) = 1/|r −r ′| is the bare Coulomb interaction. The Hamiltonian does not depend
on time, hence the time evolution of the field operators is ψ̂†(r , t ) = e i Ĥ t ψ̂†(r )e−i Ĥ t and anal-
ogously for ψ̂. As a consequence, the Green’s function (2.18) depends only on the difference
τ= t − t ′ between its time arguments, as it is explicit from the following representation:

iG(r ,r ′,τ) = θ (τ)〈Ψ0|ψ̂(r )e−i (Ĥ−E0)τψ̂†(r ′) |Ψ0〉−θ (−τ)〈Ψ0|ψ̂†(r ′)e i (Ĥ−E0)τψ̂(r ) |Ψ0〉 . (2.21)

We take advantage of this time translation symmetry by expressing the Green’s function in the
frequency domain. We get rid of the Hamiltonian operators by inserting two complete sets15

of energy eigenstates |Ψ(N±1)
s 〉, with Ĥ |Ψ(N±1)

s 〉 = E (N±1)
s |Ψ(N±1)

s 〉, between the field operators.
For a discrete system, the resulting expression is the Lehmann representation [61] of the Green’s
function:

G(r ,r ′,ω) =∑
s

fs(r ) f ∗
s (r ′)

ω−εs + iηsign
(
εs −µ

) , (2.22)

with the Lehmann amplitudes, that form a complete but not orthogonal set, defined as:

fs(r ) =
{
〈Ψ(N−1)

s |ψ̂(r ) |Ψ(N )
0 〉 if εs <µ

〈Ψ(N )
0 |ψ̂(r ) |Ψ(N+1)

s 〉 if εs >µ,
(2.23)

and the electron removal and addition energies as:

εs =
{

E (N )
0 −E (N−1)

s if εs <µ

E (N+1)
s −E (N )

0 if εs >µ,
(2.24)

as measured in IPES and PES, see section 1.1.1. In particular, the highest removal energy εv

is minus the ionization potential: εv = −IP := E (N )
0 −E (N−1)

0 , while the lowest addition energy
εc is minus the electron affinity: εc = −EA := E (N+1)

0 −E (N )
0

16 (v and c stand for valence and
conduction bands). In a non–metal, no poles are present between εv and εc, so that a gap in
the energy spectrum (the photoemission gap) can be defined as:

Eg := εc −εv = (−EA)− (−IP) = E (N+1)
0 +E (N−1)

0 −2E (N )
0 . (2.25)

In such a case, the chemical potential µ lies somewhere inside the gap, and the system is an
insulator. On the contrary, if the gap is zero, namely if −IP = −EA, then the system is metallic
and µ=−IP =−EA coincides with the Fermi energy.

15The identity we consider is complete in Fock space F (−), with all possible numbers N of particles: 1̂F (−) =∑∞
N=0 1̂H (−)

N
, where H (−)

N is the Hilbert space of N electrons; of all these identities, only the ones relative to the

(N +1) and (N −1) Hilbert space do survive, 1̂
H (−)

N±1
=∑

s |Ψ(N±1)
s 〉〈Ψ(N±1)

s |, respectively for τ> 0 and τ< 0, which

are the ones considered above.
16By using these concepts, the removal and addition energy can be re–expressed in terms of the purely excitations

energies ε(N±1)
s of the (N ±1)–particle system:

εs =
{

[E (N )
0 −E (N−1)

0 ]− [E (N−1)
s −E (N−1)

0 ] ≡−IP−ε(N−1)
s ≤−IP ≤µ if εs ≤µ

[E (N+1)
s −E (N+1)

0 ]+ [E (N+1)
0 −E (N )

0 ] ≡−EA+ε(N+1)
s ≥−EA ≥µ if εs ≥µ
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2.5.2 Analytic properties of the Green’s function: the spectral function

The representation (2.22) is of “limited value in actual calculations” [62], as it requires the
exact solutions {E (N )

s ; |Ψ(N )
s 〉}s of the many–body Schrödinger equation (2.4) for deriving both

the Lehmann amplitudes and the addition and removal energies. On the other hand, it is an ex-
tremely useful expression for investigating the analytical properties of the Green’s function: in-
deed, without specifying any particular form for the Hamiltonian, the space and the frequency
dependence of G are exactly decoupled, and frequency enters only the denominator of the
Lehmann representation. Furthermore, the singularities of G – isolated simple poles – are pre-
cisely the additional and removal energies εs , with a tiny imaginary part just above or below the
real axis. In the thermodynamic limit, these poles merge into a branch cut on certain regions of
the real axis; in such a case it becomes useful to analytically continue the physical G(ω) in the
complex plane z ≡ω+ iξ (for ξ≡ Im[z] 6= 0) via the following relations [63]:

G(r ,r ′,ω) = lim
η→0+ G̃

(
r ,r ′,ω+ iηsign

(
ω−µ

))
, G̃(r ,r ′, z) :=∑

s

fs(r ) f ∗
s (r ′)

z −εs
, (2.26)

from which eq. (2.22) is immediately recovered. G̃ describes an analytic function of z for
Im[z] 6= 0, with a branch cut in correspondence of the real axis Im[z] = 0. The discontinuity
of G̃ through the real axis [64] is called spectral function A(r ,r ′,ω):

A(r ,r ′,ω) := 1

2πi
lim
η→0+

[
G̃

(
r ,r ′,ω− iη

)−G̃
(
r ,r ′,ω+ iη

)]
(2.27)

=∑
s

fs(r ) f ∗
s (r ′)δ (ω−εs) , (2.28)

where we applied the Sokhotski–Plemelj relation limη→0+ 1
x±iη = P .V . 1

x ∓ iπδ(x) to G̃ . From

this expression and the anticommutation relation [ψ̂(r ),ψ̂†(r ′)]+ = δ(r −r ′), one can show that
the spectral function is normalized to one,

∫ +∞
−∞ dωA(r ,r ′,ω) =∑

s fs(r ) f ∗
s (r ′) = δ(r −r ′). From

eq. (2.28), the physical Green’s function of eq. (2.22) can be recast into the following spectral
representation:

G(r ,r ′,ω) =
∫

dω′ A(r ,r ′,ω′)
ω−ω′+ iηsign

(
ω′−µ

) . (2.29)

Furthermore, whenever the product fs(r ) f ∗
s (r ′) is real (which is most of the times the case, e.g.,

when it is symmetric under the interchange r ↔ r ′ [63]), also the spectral function is real and it
exhibits a straightforward connection with the physical Green’s function:

A(r ,r ′,ω) =− 1

π
sign

(
ω−µ

)
ImG(r ,r ′,ω). (2.30)

In such a situation, once the imaginary part of the Green’s function – the spectral function – is
at hand, its real part can be directly evaluated from it by an Hilbert transform:

ReG(r ,r ′,ω) =P .V .
∫

dω′ A(r ,r ′,ω′)
ω−ω′ =− 1

π
P .V .

∫
dω′ ImG(r ,r ′,ω′)sign

(
ω′−µ

)
ω−ω′ , (2.31)

which shows that the Green’s function is not an analytic function [3] (for the presence of the sign
operator at the very right, this differs from an usual Kramers–Kronig causal relation). Nonethe-
less, eq. (2.31) and more generally eq. (2.29) show that all the information of the Green’s func-
tion is actually contained in the spectral function only (and in the position of the chemical
potential µ, which the spectral function does not know). In particular, the density, the density
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matrix (2.19) and the total energy (2.20) are exact functionals of the spectral function:

n(r ) =
∫ µ

−∞
dωA(r ,r ,ω) (2.32)

γ(r ,r ′) =
∫ µ

−∞
dωA(r ,r ′,ω) (2.33)

E0 = 1

2

∫
d 3r lim

r ′→r

∫ µ

−∞
dω

[
ω+h0(r )

]
A(r ,r ′,ω) (2.34)

Finally, swapping from real space to a discrete single–particle basis {|l〉}l via the relation
ψ̂(r ) =∑

l φl (r )ĉl , withφl (r ) ≡ 〈r |l〉, the spectral function (2.28) can be expressed as A(r ,r ′,ω) =∑
l l ′ φl (r )Al l ′(ω)φ∗

l ′(r ′), with:

Al l ′(ω) =
{∑

s 〈Ψ(N−1)
s | ĉl |Ψ(N )

0 〉〈Ψ(N )
0 | ĉ†

l ′ |Ψ(N−1)
s 〉δ(ω−εs) if εs = E (N )

0 −E (N−1)
s ≤µ∑

s 〈Ψ(N )
0 | ĉl |Ψ(N+1)

s 〉〈Ψ(N+1)
s | ĉ†

l ′ |Ψ(N )
0 〉δ(ω−εs) if εs = E (N+1)

s −E (N )
0 ≥µ,

(2.35)

exactly the fundamental quantity that we introduced in eq. (1.3) and (1.6) to interpret pho-
toemission and inverse photomission experiments. In the previous chapter we focused on the
experimental meaning of the spectral function, directly related to the probability of detecting
photoelectrons with a particular energy. Here, on the other hand, we have shown the connec-
tion of the spectral function with the propagation of electrons and holes inside the material,
described by the Green’s function.

2.5.3 Standard route to the spectral function: the self energy

The standard way for evaluating the spectral function is through its definition in terms of
the Green’s function, eq. (2.30). Thus much time has been spent for calculating G , eq. (2.18).
Most of the works rely on the equation of motion for G , which can be derived from the time–
dependence of the field operators ψ̂ and ψ̂† [4] and reads:(

i
∂

∂t
−h0(r )

)
G(r t ,r ′t ′)+ i

∫
d 3r̄ vC (r − r̄ )G2(r t , r̄ t+;r ′t ′, r̄ t++) = δ(r − r ′)δ(t − t ′), (2.36)

where G2 is the two–particle Green’s function – describing the coupled propagation of two par-
ticles (electrons or holes) – defined as i 2G2(1,2;1′,2′) ≡ 〈Ψ0|T̂ ψ̂(1)ψ̂(2)ψ̂†(2′)ψ̂†(1′) |Ψ0〉, with
1 a shorthand for (r 1, t1) and so on. The two–particle Green’s function shows up as a con-
sequence of the two–body Coulomb interaction; were it possible to turn off vC , G0 would

be the solution of the simpler equation
(
i ∂
∂t −h0(r )

)
G0(r t ,r ′t ′) = δ(r − r ′)δ(t − t ′), namely

G−1
0 (r t ,r ′t ′) = δ(r − r ′)δ(t − t ′)

(
i ∂
∂t −h0(r )

)
.

G2 is as important for neutral excitation experiments (optical absorption, electron energy
loss, ...) as G is for photoemission: from it one can derive the 4–points polarizability L(1,2;1′,2′),
and hence the response function χ(1,2), the dielectric constant εM and so on in a straightfor-
ward way [65]. However, one can avoid the detour in the two–particles realm if the interest
is just in one–particle properties. Indeed, the previous equation can be exactly recast in the
form17:

G−1(1,1′) =G−1
0 (1,1′)+ i

∫
d2d2′vC (1,2)G2(1,2+;2′,2++)G−1(2′,1′).

If G only is needed, one does not have to evaluate the full G2(1,1′;2,2′), but just its reduced ver-
sion integrated with vC and G−1, corresponding to the rightmost term of the previous relation.

17We define the instantaneous Coulomb interaction as vC (1,2) := δ(t1 − t2)vC (r 1,r 2) ≡ δ(t1−t2)
|r 1−r 2| .
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This suggests the introduction of a far simpler object than G2, depending on just two (and not
four) space–time arguments, called the self energy Σ(r t ,r ′t ′):

iΣ(1,1′) :=
∫

d2d2′vC (1,2)G2(1,2+;2′,2++)G−1(2′,1′). (2.37)

The self energy contains less information than G2, but all that is needed for obtaining G . In this
sense, it is a kind of generalized effective potential, a notion that will become more clear and
more relevant in the following. By plugging the self energy in the equation of motion (2.36) in
frequency space, the latter becomes:

∫
d 3r̄

[
ωδ(r − r̄ )−

(
δ(r − r̄ )h0(r )+Σ(r , r̄ ,ω)

)]
G(r̄ ,r ′,ω) = δ(r − r ′), (2.38)

which has the same structure as the equation of motion for G0, but with the self energy that
acts as an additional non–local, complex and dynamical effective potential on top of the one–
particle Hamiltonian h0: this process generates an effective non–hermitian and frequency–
dependent Hamiltonian Heff(r ,r ′,ω) = h0(r )+Σ(r ,r ′,ω) that, as far as the one–particle Green’s
function is concerned, contains the same amount of information as the many–body one, eq.
(2.3).

Quasiparticles and satellites By continuing this Hamiltonian in the complex z plane, its left
and right eigenfunctionsΦ(L)

λ
(r , z) andΦ(R)

λ
(r , z), orthonormal in the sense that 〈Φ(L)

λ
(z)|Φ(R)

λ′ (z)〉 =
δλλ′ , correspond to the same complex eigenvalue ελ(z), and the solution to eq. (2.38) can be
formally written as:

G̃(r ,r ′, z) =∑
λ

Φ(R)
λ

(r , z)Φ(L)∗
λ

(r ′, z)

z −ελ(z)
, (2.39)

as can be proved by plugging this ansatz in eq. (2.38) and by using the completeness relation∑
λΦ

(R)
λ

(r , z)Φ(L)∗
λ

(r ′, z) = δ(r − r ′).

This is another exact representation of the Green’s function, alternative to the Lehmann
one: while to obtain the latter one needs to solve the many–body Hamiltonian for three dif-
ferent numbers of particles, here only a diagonalization of the effective Hamiltonian Heff(ω) is
needed. In particular, an essential role is played by regions of the complex plane in which the
denominator z−ελ(z) approaches zero: if ελ is (one of) the complex solution(s) to the equation
z−ελ(z)|z=ελ = 0, one can evaluate the Hamiltonian Heff in a neighborhood of ελ, obtaining an
effective single–particle static Schrödinger equation:

h0(r )Φ(R)
λ

(r ,ελ)+
∫

d 3r̄Σ(r , r̄ ,ελ)Φ(R)
λ

(r̄ ,ελ) = ελΦ
(R)
λ

(r ,ελ), (2.40)

which describes collective excitationsΦ(R)
λ

(r ,ελ): many real Lehmann poles εs (particles) merge
their amplitudes fs f ∗

s together to form coherent structures that can alternatively be described
by the single pole ελ in the complex plane. Note that, in general, the excitation ελ is a real
particle εs when its imaginary part is zero, hence when the self energy is real, which is the
case for independent particle propagation. As soon as particles interact in the thermodynamic
limit, many transitions among almost–degenerate energy levels are allowed and the energy of
the particle εs is spread into neighbouring energy levels. This is clear when considering the
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spectral function, eq. (2.27), with G in the representation (2.39)18 :

A(r ,r ′,ω) := 1

2πi
lim
η→0+

[
G̃

(
r ,r ′,ω− iη

)−G̃
(
r ,r ′,ω+ iη

)]
= 1

π

∑
λ

Φ(R)
λ

(r ,ω− iη)Φ(L)∗
λ

(r ′,ω− iη) Im

[
1

ω−ελ(ω)

]
. (2.41)

Assuming a prominent solution ελ of the equation ελ− ελ(ελ) = 0, this is called quasiparticle
whenever it can be connected – via a hypothetical switching–on of the Coulomb interaction
between particles – to a single particle excitation (a delta–peak) in an independent–particle
picture. One can Taylor–expand the equation ελ−ελ(ελ) = 0 around the quasiparticle ελ, z −
ελ(z) ≈ (z −ελ)

(
1− ∂ελ(z)

∂z

∣∣∣
z=ελ

)
, and obtain as a prominent feature in the spectral function the

following contribution:

AQP (r ,r ′,ω) =Φ(R)
λ

(r ,ελ)Φ(L)∗
λ

(r ′,ελ) Zλ

1
π Imελ

(ω−Reελ)2 + (Imελ)2 . (2.42)

Apart from the space–dependent prefactors, this term represents a Lorentzian peak, rescaled
by the renormalization factor Zλ = (1− ∂Reελ(z)/∂z|z=ελ)−1 [22]. It is centered on the energy
Reελ, and it has a broadening Imελ, interpreted as the inverse of the lifetime of the collective
excitation. Were the eigenvalue ελ real and static, we would be back to a delta–peak contribu-
tion with infinite lifetime.

If other local minima, or zeros, of z − ελ(z) are present, which can be the case only if the
self energy does depend on z, other coherent excitations will show up in the spectrum, with
usually a smaller weight. They are called satellites, and they are a fingerprint of non–negligible
correlation (in the sense of everything beyond Hartree–Fock) in the system.

As far as the quasiparticle dominates on the satellites, the many–body system can be re-
garded as a Fermi liquid. It is still a many–body system, in which particles are replaced by
quasiparticles (which can be thought of as dressed particles) that weakly interact among them-
selves. The emergent behaviour is therefore very close to that of a Fermi gas of non–interacting
particles with renormalized mass, in agreement with the phenomenology of most metals.

In the opposite situation, it becomes meaningless to identify a single prominent quasipar-
ticle, as many satellites have considerable weight. These systems are known as strongly corre-
lated, and they cannot be described as an almost free Fermi gas.

2.5.4 Dyson and Hedin equations

To build the quasiparticle Hamiltonian Heff(ω), an expression for the self energy is needed.
From its definition in terms of G2, eq. (2.37), one can extract the lower order terms of Σ –
in a hypothetic e2 expansion – by considering the independent–particle contributions to G2,
namely its disconnected (in the sense of factorized) components:

G indep
2 (1,2;1′,2′) =G(1,1′)G(2,2′)−G(1,2′)G(2,1′).

The resulting self energy expression is Σ(r ,r ′,ω) = δ(r −r ′)vH(r )+Σx (r ,r ′), both real and static,
with the local Hartree potential vH(r ) and the Fock self energy Σx (r ,r ′) defined by:

vH(r ) =
∫

d 3r̄
n(r̄ )

|r − r̄ | (2.43)

Σx (r ,r ′) =−γ(r ,r ′)
|r − r ′| , (2.44)

18We use the properties Φ(R)
λ

(r , z) =Φ(L)
λ

(r , z∗), ελ(z∗) = ε∗
λ

(z) that descend from the eigenvalue problem of the

non–hermitian Heff, and the symmetry of Φ(R)
λ

(r , z)Φ(L)∗
λ

(r ′, z) under the interchange r ↔ r ′ (hence its reality for z
real).
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which are closely linked to the energy contributions (2.7) and (2.9). It is common to isolate the
Hartree Hamiltonian hH(r ) := h0(r )+vH(r ) as the purely local contribution to Heff, and redefine
the self energy as its exchange–correlation part Σ→Σ−vH(r )δ(r −r ′), so that Heff = hH +Σ. To
obtain this last term, Lars Hedin [66] proposed a closed set of equations, the Hedin equations,
that involve, besides G and Σ, a polarization Π(1,2), a screened interaction W (1,2) and a vertex
function Γ(1,2;3). They read:

Σ(1,2) = iG(1, 1̄)Γ(1̄,2; 2̄)W (2̄,1+)

W (1,2) = vC (1,2)+ vC (1, 1̄)Π(1̄, 2̄)W (2̄,2)

Π(1,2) =−iΓ(1̄, 2̄;1)G(2, 1̄)G(2̄,2)

Γ(1,2;3) = δ(1,3)δ(2,3)+Γ(1̄, 2̄;3)G(3̄, 1̄)G(2̄, 4̄)
δΣ(1,2)

δG(3̄, 4̄)
,

(2.45)

where barred indices are integrated over. These equations are formally closed by the equation
of motion for G (2.38), that can be recast in the inspiring form:

G(1,2) =G0(1,2)+G0(1, 1̄)
[
vH(1̄)δ(1̄− 2̄)+Σ(1̄, 2̄)

]
G(2̄,2). (2.46)

This equation goes under the name of Dyson equation. By solving the set of these five coupled
equations, one has access to the exact Green’s function G of the system. Unfortunately, such
a solution seems unaccessible at the moment. Nevertheless, one can still truncate the Hedin
equations at some low order in the interaction strength e2 and look for an approximated form
of Σ: plugging it in the Dyson equation, its effects are automatically spread to higher orders by
the very form of the equation itself, as G = G0 +G0ΣG0 +G0ΣG0ΣG0 + .... One can then decide
to take the resulting G and update the expression for the self energy until self consistency (self
consistent calculation). Otherwise, one can stop at the first iteration, in which case the calcula-
tion is said to be one shot. In both cases, the spectral function A is finally obtained from G via
equation (2.30), and can be analyzed as a sum of quasiparticles and satellites.

Approximative solutions to the Hedin equations Both the Hartree and the Hartree–Fock ap-
proaches can be considered as approximations to the exchange–correlation self energy. The
former neglects it completely, while the latter – the Fock term – is:

Σx (1,2) = i vC (2,1+)G(1,2), (2.47)

which is nothing but eq. (2.44). Due to cancellation between exchange and correlation contri-
butions [67], even the simple Hartree approximation is sometimes meaningful. The non–local
Hartree–Fock self energy, which exactly treats the self–interaction problem, gives pretty good
results for atoms, but also a zero density of states at the Fermi level for metals, and it generally
overestimates the gap in semiconductors.

The state–of–the–art approximation for Σ is the GW one [66, 67, 5], where the vertex func-
tion Γ is set to its trivial delta contribution in both Σ and Π. The resulting self energy has the
same structure as the Fock term (2.47), but with the screened dynamical interaction W in place
of the bare Coulomb one vC , namely:

ΣGW(1,2) = iG(1,2)W (2,1+). (2.48)

The staticω= 0 contribution to the GW self energy can be further decomposed into a screened–
exchange (SEX) term plus a Coulomb–hole (COH) one, both Hermitian. The first is responsible
for the static screening of the exchange interaction in the Fock term, while the second digs a
correlation hole around each particle. Together, they form the COHSEX approximation, which
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is simpler than GW because it is static, but calculations are still time–consuming due to its
non–local nature.

The GW (or the simpler COHSEX) expression highlights some fundamental physical aspects
of the propagation of a particle (electron or hole) in a medium. Indeed, as already mentioned,
an exchange–correlation hole surrounds the propagating electron, creating shells of consecu-
tive depletion and accumulation of charge (Friedel oscillations [68, 69]): the medium polarizes
due to a non–zero polarization ΠGW(1,2) = −iG(1,2)G(1,2), which in turns generates a non–
trivial dielectric function ε := 1−vCΠ. As a consequence, the Coulomb interaction of the propa-
gating electron with all the other electrons is screened by the charge shells around it, W = ε−1vC ;
as it follows the particle which is moving, screening is dynamical in nature, hence the frequency
dependence of W .

In this picture, the propagating electron together with its surrounding cloud of screening
particles is detected as the quasiparticle of the system, while the charge density oscillations
characteristic of the screening process will be interpreted as the satellites of the system, called
plasmons. There is a non–trivial interplay between the two, as the polarized medium affects
the propagation of the quasiparticle, which in turns alters the properties of the surrounding
system: that is why G is a functional of Σ and viceversa.

Indeed, the set of Hedin equations should be solved self–consistently; on the other hand, it
has been pointed out that lack of self–consistency in the GW approximation often balances the
neglect of higher order corrections to the GW itself (vertex corrections, for instance) [67, 65].
That is why, to a large extent, one–shot or at least partially self–consistent calculations are still
widely performed.

2.6 The Hubbard model

As already mentioned, the quasiparticle picture we have just presented is not universally
valid. Indeed, whenever particle–like excitations are not robust enough to confront the adia-
batic switching–on of the interaction, a one–particle picture ceases to be meaningful and the
Fermi liquid theory breaks down.

In this regime, new phenomena appear, among which the well–known Mott transition [70,
71]: a strong electron–electron interaction reduces the itinerant nature of electrons, that there-
fore tend to localize; the system undergoes a metal–insulator transition which cannot be caught
by standard Fermi liquid methods. This is the case when electrons are sufficiently far apart
that their wavefunctions lightly overlap, and they are thus restrained from hopping between
different locations: hence the resulting insulating character. At the same time, the Coulomb
repulsion between electrons is enhanced by the long time spent in the localized state, hence
the characterization of these electrons as strongly correlated.

These situations occur for many transition metal oxides, in which two electrons with op-
posite spin occupy the same narrow energy band (a half–filled d– of f –band) [72]. Describ-
ing these systems from a theoretical point of view is challenging, as independent–particle ap-
proaches (like Hartree–Fock) break down, and correlation between electrons, which is often
treated as a small perturbation, is of primary importance. Moreover, methods based on Bloch’s
theorem highlight most often the wave–like nature of electrons, while in these systems the com-
petition with real space localization is fundamental.

A promising strategy to face these problems is to employ simplified models, which highlight
the physics of strong correlation. The most famous, and most studied, of such models is by far
the Hubbard model, which catches from its very form the opposite tendency between itinerant
(metals) and localized electrons (insulators).
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The model The single–band Hubbard model [73, 74, 75] can be defined on a lattice as:

Ĥ =−t
∑

〈i , j〉,σ

ĉ†
iσĉ jσ+

∑
i
εi n̂i +U

∑
i

n̂i↑n̂i↓, (2.49)

with i , j lattice sites, 〈i , j 〉 nearest neighbours, t ,U > 0 hopping parameter and interaction
strength, and εi the on–site energies. The operators ĉ†

iσ and ĉiσ are fermionic creation and

annihilation operators that act on the lattice site i with a certain spin σ, n̂iσ = ĉ†
iσĉiσ is the

spin–resolved density operator and finally n̂i =∑
i n̂iσ is the usual density operator for the site

i ; in the half–filling solution, 〈n̂i 〉 = 1: on average, there is one electron per site.
As for the interpretation of the lattice, one can refer to the original derivation of the model

[75] from the many–body Hamiltonian (2.3a), in which case i is a band index (see appendix H).
On the other hand, one can also view eq. (2.49) as a model by itself, in which the continuous
space variable r has been discretized into discrete lattice sites i ; this is the interpretation we
will stick to for the following discussion: local quantities in space will depend on a singe lattice
site i , bi–local quantities on two sites i and j and so on...

The Hamiltonian (2.49) represents electrons that, by jumping from one site to the other, gain
the amount of energy t . If a site i happens to be doubled occupied, U is the energy cost that
has to be paid: it represents the Coulomb interaction between electrons on the same site, and
it is the only interaction between electrons that is considered by the model (all the non–local
terms are neglected [76]).

Note that the kinetic term in eq. (2.49) is diagonal in reciprocal space, where it can be ex-
pressed as

∑
k ε

0
k ĉ†

kσĉkσ, while the interaction term is diagonal in real space. This is a result of
the competition between itinerant and localized electrons that this model catches since its very
form. It is also the reason why this model is so difficult to solve.

For large t , electrons tend to delocalize to lower their kinetic energy, no matter if they hap-
pen to occupy the same site twice. Eventually, when t is so large that U can be neglected, the
Hubbard Hamiltonian becomes equivalent to a tight–binding Hamiltonian, and the resulting
spectrum is the standard single–particle one, e.g., for a one–dimensional chain, ε0

k =−2t cosk:
free electrons travelling from one site to the other, a metallic behaviour (at half filling, the
chemical potential µ= 0 lies inside the band).

On the contrary, in the limit of large U , double occupancy of the same site becomes unfa-
vorable, and electrons prefer localizing on each lattice site. If U is much larger than t , electrons
crystallize on their sites, with an additional excitation energy U if two electrons happen to be
on the same site: in this limit, the system is a collection of independent two–levels sites.

The interesting physics – the Mott transition for example – is in between these two limits,
where an analytic solution is missing. Although its apparent simplicity, indeed, the model is –
so far [77] – analytically solvable only in one dimension (the celebrated Bethe ansatz solution
[78]), and in infinite dimensions, where an exact application of DMFT (see pag. 52) solves
numerically the model. Similarly to this last situation, also for the Bethe lattice with infinite
coordination number the solution is at hand (it is the DMFT exact solution). We will consider
explicitly this lattice in section 4.1.

The Green’s function The Green’s function for the Hubbard Hamiltonian (2.49) can be defined
in the usual way, eq. (2.18), with the field operators in real space replaced by the corresponding
ones in site space, ĉ†

iσ and ĉiσ. At zero temperature, it reads:

iGi j ,σ(t , t ′) := 〈Ψ0|T̂ ĉiσ(t )ĉ†
jσ(t ′) |Ψ0〉 . (2.50)

It is diagonal in spin, non–local in the sites and it depends only on the time difference t − t ′,
hence it can equivalently be expressed in frequency domain as Gi j ,σ(ω).
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As the non–interacting Hamiltonian is diagonal in reciprocal space, Ĥ 0 = ∑
k ε

0
k ĉ†

kσĉkσ, the
non–interacting limit of the Green’s function G0

i j ,σ(ω) reads:

G0
k (ω) = 1

ω−ε0
k + iηsign(ω−µ)

, (2.51)

with ε0
k =−2t

∑3
l=1 coskl for a three dimensional cubic lattice. Also the fully interacting Green’s

function is diagonal in reciprocal space, as the Hubbard Hamiltonian is translationally invari-
ant. Therefore we can introduce the self energy via the Dyson equation G−1

k (ω) = G0 −1
k (ω)−

Σk (ω), so that the Green’s function (2.50) reads:

Gk (ω) = 1

ω−ε0
k −Σk (ω)

. (2.52)

I have presented a framework in which the many–body problem can be dealt with.
In particular, for the description of photoemission and inverse photoemission exper-
iments, the Green’s function approach seems particularly suited, as it describes the
many–body processes a system undergoes when an additional particle (hole or elec-
tron) is added to it. In this theory, a fundamental role is played by the self energy, which
can be considered as a dynamical, non–local and non–hermitian effective potential felt
(and generated) by the elementary excitations of the system, quasiparticles and satel-
lites. However, the scope of this thesis is not to consider better approximations to the
self energy, but to avoid it. This is the content of the next chapter.
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Part II

Auxiliary systems

Ils ne cherchent rien, ils sont bien installés
au cœur de la norme et ne questionnent jamais

la légitimité de ce qui est légal.1

MIGUEL BENASAYAG, Résister dans une époque obscure

I tell you: one must still have chaos in one,
to give birth to a dancing star.

I tell you: ye have still chaos in you.

[...]

And even if one have all the virtues,
there is still one thing needful:

to send the virtues themselves to sleep
at the right time.

FRIEDRICH NIETZSCHE, Thus Spake Zarathustra

1They do not search for anything, they are comfortably installed at the heart of the norm, and never question the
legitimacy of what is legal.
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Chapter 3
Auxiliary systems: an introduction

If one is interested in every single small detail of a quantum system, there is no way out:
he/she must evaluate the wavefunction. Luckily, most of the times we are interested in other
quantities than the wavefunction, which depend on less degrees of freedom and have a direct
physical interpretation. In the previous chapter, I introduced some many–body approaches to
evaluate these quantities, from independent–particle approximations like Hartree or Hartree–
Fock, to reformulations like DFT or RDMFT, to the Green’s function formalism. Within these
approaches, the focus is moved from the wavefunction to a smaller quantity, and approxima-
tions are implemented in order to obtain that quantity.

An alternative path, that I will describe in this chapter, is represented by auxiliary systems.
An auxiliary system is another system described by another set of equations. It exactly targets a
specific quantity of interest p and it yields, in principle, the exact value of that quantity that one
could have alternatively obtained in the real system. Since the auxiliary system is by definition
simpler to solve with respect to the real system, one would rather work there in order to find p.

Actually, the raison d’être of the auxiliary system is precisely to yield the value of that quan-
tity. There is no guarantee that the value of any other physical quantity, evaluated in the auxil-
iary system, should agree with the one evaluated in the real system. On the contrary, this is not
usually the case: an auxiliary system is an apparatus specifically built for one quantity.

If solving the auxiliary system is usually easy (or easier), finding it (or, depending on the
viewpoint, building it) is the real nightmare. The reason is simple: all the difficulties of the
many–body problem, that were more or less explicit in the real system, are hidden in the quan-
tities that define the auxiliary system: there ain’t no such thing as a free lunch. In particular,
while the Hamiltonian of the real system is exactly known, eq. (2.3), building an Hamiltonian
for the auxiliary system is, in most cases, definitely not straightforward.

Thus, one is usually pushed to build approximated auxiliary systems. So, what is the gain in
the end, if both methods eventually need approximations? The benefits are basically two: on
the one hand, the auxiliary system is a conceptual tool that settles what can be achieved and
what cannot, and the minimal form of the Hamiltonian which is able to yield the former. On
the other, as the auxiliary system is suited to the particular quantity of interest p, it turns out
that approximating the auxiliary system Hamiltonian is a better strategy than approximating
the full many–body Hamiltonian, to finally obtain p.

Auxiliary systems are a very general tool that can be used whenever a quantity that carries
less information than the wavefunction is considered. In particular, we here narrow our focus
to quantities that can be derived from the one–particle Green’s function via a self energy calcu-
lation, and that carry less information than the Green’s function. The latter is what we will refer
to as the real system.
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3.1 Reduced quantities

In the previous chapter, we sketched the standard procedure to get the diagonal of the spec-
tral function. The central quantity is the one–particle Green’s function G(r ,r ′,ω), from which
the expectation value of any one–particle operator can be obtained as a different functional:
the density n(r ) and the density matrix γ(r ,r ′), eq. (2.19), the total kinetic energy T [4], the
on–site Green’s function Gl l (ω), the current density, the spin density, ..., till the diagonal of the
spectral function A(r ,r ,ω) itself through equation (2.30). Here I list again some of these quan-
tities expressed as functionals of the Green’s function:

n(r ) =
∫

dω

2πi
e iωηG(r ,r ,ω)

γ(r ,r ′) =
∫

dω

2πi
e iωηG(r ,r ′,ω)

T =
∫

dω

2πi
e iωη lim

r ′→r

(
−∇2

r

2

)
G(r ,r ′,ω)

Gl l (ω) =
∫

d 3r d 3r ′ϕ∗
l (r )G(r ,r ′,ω)ϕl (r ′)

...

A(r ,r ,ω) =− 1

π
sign

(
ω−µ

)
ImG(r ,r ,ω) .

(3.1)

These formula can be condensed in (and generalized to) the more general expression:

p
(
{λi }

)=P {λi }
[
G

]
, (3.2)

in which p is the observable that depends on some variables {λi }, and P {λi } is the linear1 func-
tional that, when applied to the Green’s function of the system, returns the quantity p eval-
uated at {λi }. For example, in the case of density, p ≡ n, {λi } ≡ r and P {λi } ≡ Pn(r ), with
Pn(r )[ f ] := ∫ dω

2πi e iωηδ(r − r 1)δ(r − r 2) f (r 1,r 2,ω) and Pn(r )[G] = n(r ).

Two aspects are noteworthy: each of the quantities we displayed depend on a smaller set
of variables than the Green’s function, which is a complex–valued, frequency–dependent, non–
local function: T is just a real number, γ(r ,r ′) depends on two space variables only, A(r ,r ,ω)
is a real function of one space variable and one frequency, and so on. The application of the
functional P reduces, in general, the number of degrees of freedom of the Green’s function.

Linked to this observation is the fact that each of the quantities p we presented contains a
reduced amount of explicit information with respect to the full Green’s function. In other words,
some structure has been lost in passing from the Green’s function to one of its functionals, and
reverse engineering, namely going from a quantity p

(
{λi }

)
back to the full Green’s function

G(r ,r ′,ω), is, in practice, not possible anymore.

These aspects define what we call reduced quantities, properties of the system that can be
expressed as functionals of the Green’s function, but reverse engineering is unfeasible. All the
quantities of eq. (3.1) are in general reduced quantities, apart from particular situations in
which, e.g., symmetry makes reverse engineering possible (see the next chapter for some of
these examples).

On the contrary, Gl l ′(ω), obtained as Gl l (ω) in eq. (3.1) with two different l and l ′, is not a
reduced quantity, as G(r ,r ′,ω) can be reconstructed from it. The same is true for Gnn′(k ,ω),
which is the Green’s function in the Bloch basis, or for any other Green’s function in another
basis.

1The linearity of the functional P will be important in the following, when G will be expressed via a Dyson
equation; the property we need is P [λ1G1 +λ2G2] =λ1P [G1]+λ2P [G2].
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...and how to find them To obtain the Green’s function in standard many–body perturbation
theory, one usually finds a form for the self energy, through an approximate implementation
of the Hedin equations (2.45). Then, plugging the expression for the self energy into the Dyson
equation (2.46), one obtains the Green’s function.

This procedure is computationally demanding, as the self energy is a complex, frequency–
dependent and non–local quantity, that has to be evaluated from scratch for each material.
Moreover, once the self energy is at hand, one should in principle solve the Dyson equation
G−1 =G−1

0 −Σ; this is a time–consuming procedure, even for simple approximations like Hartree–
Fock, eq. (2.44), basically for the non–local nature of Σ.

We can regard the cost issue as a technical problem that is becoming less and less relevant
with the progress of technology. Yet, the standard procedure is unsatisfying in principle, for the
same two reasons as above: first, for studying properties of a large number of materials (ma-
terial science), spending so much time in building up the self energy of each single system is
definitely not an efficient procedure. A more attractive scheme would be to isolate some com-
mon (and computationally costly) properties of the self energy and evaluate them just once and
for all, e.g., in a model system. Then, one could refer to that single calculation each time a new
material is considered, possibly correcting the model system self energy by some properties of
the specific material. This is the content of chapter 5.

The second reason why this approach is unsatisfying is related to the use of the Green’s
function once it has been evaluated. The Green’s function, as the many–body wavefunction, is
most often just an intermediate object, which cannot directly be compared with experiments.
On the contrary, the final target is usually one of the quantities in eq. (3.1), namely a reduced
quantity p

(
{λi }

)
, with a lower number of degrees of freedom than both the Green’s function or

the self energy.

The fact that the latter are well–studied, well–known objects, for which a perturbation ex-
pansion is at hand, should not obscure the fact that their evaluation constitutes a considerable
double detour with respect to the calculation of p. The whole Green’s function contains un-
needed information for the knowledge of p, which nonetheless are included in the standard
calculation. Also the complex, non–local and frequency–dependent self energy, employed to
obtain the Green’s function, is clearly too much to get the small p

(
{λi }

)
.

A better strategy would be to directly target p, without passing through the full Green’s func-
tion, and consequently without using the full self energy.

This is what auxiliary systems do.

3.2 How to build auxiliary systems

The possibility of building an auxiliary system rests on the concept of reduced quantity:
the plan must not be to obtain the full information carried by G (in which case the auxiliary
system discussed here would coincide with the real system itself), but just the reduced quantity
p =P [G].

For such a purpose one can introduce another system, the p–auxiliary system, which can be
described by another Green’s function Gp (r ,r ′,ω) that, however, yields the same quantity p for
all the λi s:

p
(
{λi }

)=P {λi }
[
Gp

] ∀λi . (3.3)

To be redundant and follow the notation in which the subscript p represents quantities of the
p–auxiliary system, eq. (3.3) would actually be:

pp
(
{λi }

)
:=P {λi }

[
Gp

] (3.3)= P {λi } [G] = p
(
{λi }

)
.
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Note that the same functional P {λi } has been employed in both the real and the auxiliary sys-
tem. One could also design another auxiliary system described by G̃p and say that p̃p

(
{λi }

)
:=

R{λi }
[
G̃p

]
with p̃p

(
{λi }

)= p
(
{λi }

)
. The functional R can be completely different from the func-

tional P , but they return the same quantity p when applied to G̃p and G respectively2.
Having another system, besides the real one, that yields the same quantity p is not of partic-

ular benefit, unless the auxiliary system is simpler to solve and therefore one could completely
avoid working in the real system. This is exactly the reasoning here, as we make the further
assumption that the role of the self energy is played, in the p–auxiliary system, by a simpler
p–effective potential vp

(
{µ j }

)
, that depends on some variables {µ j } (for all practical purposes,

we will see that {µ j } ≡ {λi }: the effective potential has the same degrees of freedom of p itself).
Therefore, omitting variables and integrations, we can write the Dyson equation for Gp as:

Gp =G0 +G0vpGp . (3.4)

Eq. (3.3) and eq. (3.4) completely define the p–auxiliary system. If the ansatz we made were
correct, namely if it were possible to obtain the quantity p from the effective potential vp

(
{µ j }

)
,

and if we knew this potential, we would obtain the same quantity p also in the auxiliary system.
We call the first “if” the vp –representability problem, summarized in the question: “which

is the class of the p functions that can be obtained, through eq. (3.3) and eq. (3.4), via the
p–effective potential vp

(
{µ j }

)
?”3 We will partly answer to this question in specific cases, by

referring to some systems in which the p–potential is explicit. However, we will not consider
this issue in general.

On the other hand, the second “if” represents the central question of this thesis: “can we
actually find this potential?” A general answer is given in the following section.

3.2.1 The generalized Sham–Schlüter equation

An in principle exact way of finding the effective potential vp
(
{µ j }

)
is based on a general-

ization of the Sham–Schlüter equation [11], obtained for the first time in [6]. This is based on a
reformulation of eq. (3.3) using eq. (3.4) and the Dyson equation of the real system, eq. (2.46).

Indeed, as both G and Gp can be referred to the same4 G0, the latter can be excluded by
writing a new Dyson equation that directly links G to Gp :

G =Gp +Gp
[
Σ− vp

]
G .

If p is vp –representable, we can implement eq. (3.3) by applying the linear functional P to
both sides of the previous equation, obtaining:

P {λi }

[
Gp

[
Σ− vp

]
G

]
= 0. (3.5)

2For example, take p → E the ground state energy of a system. Even if it is not a one–particle quantity, it can
nevertheless be obtained as a linear functional of the Green’s function through the Galitskii–Migdal equation (2.20).

The functional is E = 1

2

∫
d3r lim

r ′→r

∫
dω

2πi
eiωη [

ω+h0(r )
]
G(r ,r ′,ω) := PE [G]. We can introduce an E–auxiliary

system described by GE that returns the same value E when the functional PE is applied to GE , namely PE [GE ] =
EE = E . We can also introduce another auxiliary system described by G̃E that returns E only when the functional PT
(kinetic energy), and not the functional PE , is applied: PT [G̃E ] = TẼ = E : E is the total energy of the real system, the
total energy of the auxiliary system described by GE , but the kinetic energy of the system described by G̃E ; the total
energy of the system described by G̃E is ẼE and is different from E . This observation will be used in the discussion
at page 89.

3Note that what we refer to as the vp –representability problem is the generalization to p of the non–interacting
v–representability problem of DFT, see below.

4Note that it is not fundamental that the real and the auxiliary systems share the same G0: the previous equation,
indeed, would hold anyway with a shift of Σ− vp .
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having used that P {λi }
[
Gp

] = P {λi }
[
G

] = p
(
{λi }

)
. This is the generalized Sham–Schlüter equa-

tion, that has been derived for the first time in [6, 79]. It is a highly non–linear equation for
the unknown p–potential vp , that enters the equation also in Gp via eq. (3.4): one can solve it
iteratively, starting from a guess v (k=0)

p till, in principle, self–consistence.
The generalized Sham–Schlüter equation, which we will use throughout the thesis, is com-

pletely equivalent to eq. (3.3), with the aid of two Dyson equations. It explicitly displays the self
energy and the degrees of freedom of the various quantities involved, hence it is of fundamental
importance for discussing the existence of possible solutions.

3.2.2 What we have and what we have not

Consider an observable o, which is a functional O of the function p, o = O [p]. p is the
quantity reproduced by the p–auxiliary system via the potential vp ; if the latter is known, the
quantity pp evaluated in the p–auxiliary system coincides with p.

In the auxiliary system, everything gets a subscript p : the relation between op and pp is fixed
by the functional Op : op =Op [pp ], which is often simpler than O :

o =O [p] op =Op [pp ]. (3.6)

An important point is that, even if the exact effective potential vp were at hand, and thus
the exact p were known, we would not, in general, get o from Op [pp = p]:

o 6=Op [p].

In some cases, as o is a functional of p in the real system, a functional relation exists also in the
auxiliary system. However, the functional is not Op , the analogous of O in the auxiliary system,
but a different one, Õp :

o = Õp [p].

We will use this observation in several part of this thesis.

Auxiliary systems as presented above are generalizations to generic quantities p
(
{λi }

)
of a

particularly important auxiliary system, the prototype of all, the one relative to density.
It is the Kohn–Sham auxiliary system.

3.3 The Kohn–Sham system

The Kohn–Sham system is an auxiliary system we can build when the quantity of interest
p

(
{λi }

)
is the local density n(r ), and the associated functional is Pn(r )[G] = ∫ dω

2πi e iωηG(r ,r ,ω).
Density is a reduced quantity, depending on just one space variable. It is nevertheless a fun-

damental quantity, as the Hohenberg–Kohn theorems of section 2.4.2 ensure that any property
of the system is actually a density functional. The step forward represented by the paper of
Kohn and Sham [7] lays in a concrete procedure for obtaining the density n(r ).

Their starting point is assuming (non–interacting5) vn(r )–representability for the density
n(r ). In other words they suggest that the function n(r ) can be realized in a system in which
the exchange–correlation part of the self energy is replaced by the real, local and static potential
vn(r ) ≡ vxc(r ); therefore, the total potential felt by the electrons is the Kohn–Sham potential
vKS(r ):

vKS(r ) = vext(r )+ vH(r )+ vxc(r ). (3.7)

5A related concept, with which we will not deal, is the N –representability problem, which deals with the existence
of a physical system whose ground state yields the density n(r ).
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The idea rests on the observation that the Hohenberg–Kohn functional F [n] introduced at page
25 can be separated into a free electron contribution Ts[n] plus the Hartree term EH[n] of eq.
(2.7), plus the rest Exc[n], called exchange–correlation contribution6. Thus, eq. (2.17) can be
written:

δTs [ñ]

δñ(r )

∣∣∣∣
ñ=n

+ (
vext(r )+ vH(r )+ vxc(r )

)= 0, (3.8)

with vxc(r ) := δExc[n]
δn(r ) . The clever observation is that the equation above is “the same as one ob-

tains [...] for a system of non–interacting electrons moving in the given potential” vext(r )+
vH(r ) + vxc(r ) = vKS(r ) (provided that the same n is shared by both the real and the non–
interacting auxiliary system).

Therefore, one can completely forget about the original definition of vxc(r ) in terms of
Coulomb interactions, and move to a system of non–interacting electrons (the Kohn–Sham
system) which yields the same density as the real system as soon as the exact potential vxc(r ) is
known. Once the potential vKS(r ) is at hand, the Kohn–Sham system is relatively easy to solve,
as the equations of motion for the electrons are single–particle Schrödinger equations with an
external potential vKS(r ): [

−∇2

2
+ vKS(r )

]
ϕKS

l (r ) = εKS
l ϕKS

l (r ), (3.9)

with εKS
l and ϕKS

l (r ) eigenvalues and eigenfunctions. The expression for the density, too, is easy
in this framework, much easier than eq. (2.6):

nKS(r ) =∑
l
θ(µKS −εKS

l )|ϕKS
l (r )|2 = n(r ), (3.10)

with µKS the highest occupied level of the Kohn–Sham system. To solve the system, one usually
starts with a guess for vKS(r ), solves the Kohn–Sham equations (3.9), finds the density through
eq. (3.10) and with this new density updates the potential vKS(r ), till self–consistency.

Note that the Kohn–Sham system yields also the exact value E0 of the ground state total
energy of the real system, but not through the functional E KS

0 ; indeed, the ground state total
energy of the Kohn–Sham system is nothing but:

E KS
0 =∑

l
θ(µKS −εKS

l )εKS
l , (3.11)

while the total energy of the real system can be found as7:

E0 = E KS
0 −EH +Exc −

∫
d 3r n(r )vxc(r ). (3.12)

This is an application of the general discussion of section 3.2.2: in the same auxiliary system,
density stems from the standard functional while the total energy stems from another func-
tional.

6Although the name is the same, this “xc” has not the same physical meaning as the “xc” introduced in the pre-
vious chapter: the latter represents all the contributions to the electronic interaction energy beyond the Hartree–
Fock approximation; the former considers also the correction in the kinetic energy that results from taking only the
independent–particle contribution in Fs [n].

7Here is the proof:

E0 = F +
∫

d3r n(r )vext(r ) = Ts +EH +Exc +
∫

d3r n(r )vext(r ) =

=
(
Ts +

∫
d3r n(r )vKS(r )

)
+EH +Exc −

∫
d3r n(r )vKS(r )+

∫
d3r n(r )vext(r ) =

= E KS
0 −EH +Exc −

∫
d3r n(r )vxc(r )
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The same observation holds for the fundamental gap Eg . In the real system, this is given
by eq. (2.25), Eg = εc − εv = Eg [n], with εc and εv defined in eq. (2.24) for s the ground state.
Because of the Hohenberg–Kohn theorems, the gap is a functional of the density n. In the
Kohn–Sham system, the analogous functional is expressed as a difference of the Kohn–Sham
levels: E KS

g = εKS
c −εKS

v = E KS
g [nKS], which is still a functional of nKS. If we knew the exact Kohn–

Sham potential vKS, we would have the exact density: nKS = n; by contrast, it is well known that,
even with the exact density, E KS

g [nKS = n] 6= Eg [n] (indeed, KS usually underestimates the gap).
To have in principle the correct value of the gap, we must introduce another functional, which
is E KS

g [nKS]+∆KS[nKS], [80, 81, 11] through which:

E KS
g [n]+∆KS[n] = Eg [n].

This observation, together with the fact that the total energy of the real system cannot be
expressed as the sum of εKS

l , clarifies that the role of the Kohn–Sham states ϕKS
l (r ) is purely

ancillary: they are intermediate objects, useful to introduce in order to easily get the density
and the total energy; but they have no direct physical meaning. In particular the Kohn–Sham
eigenvalues cannot be interpreted as addition and removal excitation energies.

A general feature of auxiliary systems is the following: if on the one hand the equations of
motion are usually simpler (compare eq. (3.9) to eq. (2.4) or eq. (2.38)), on the other hand
the effective potential is more difficult to find. Indeed, all the difficulties of the many–body
problem are hidden in the form of the potential itself.

An exact way of obtaining the potential is the Sham–Schlüter equation (3.5), which was ac-
tually developed – in its original form – precisely for the density [11, 82].

3.3.1 The Sham–Schlüter equation

The information contained in the Kohn–Sham eigenvalues and eigenfunctions εKS
l andϕKS

l (r )
can be recast into a Green’s function Gn := GKS associated with the Kohn–Sham Hamiltonian
ĥKS(r ) = −∇2

2 + vKS(r ). Since particles are non–interacting, the Lehmann amplitudes (2.23) in
the basis {l } that diagonalizes ĥKS(r ) are the eigenfunctions ϕKS

l (r ) themselves, and the excita-
tion energies are the eigenvalues εKS

l . Therefore, the Kohn–Sham Green’s function reads:

GKS(r ,r ′,ω) =∑
l

ϕKS
l (r )ϕKS ∗

l (r ′)

ω−εKS
l + iηsign

(
εKS

l −µKS
) , (3.13)

with the sum over both occupied and empty Kohn–Sham orbitals8.

8Both the density and the ground state total energy can be recast into standard functionals of GKS:

nKS(r ) ≡Pn(r )[GKS] =
∫

dω

2πi
eiωηGKS(r ,r ,ω) =∑

l
|ϕKS

l (r )|2
∫

dω

2πi

eiωη

ω−εKS
l + iηsign

(
εKS

l −µKS
) =

=∑
l
|ϕKS

l (r )|2θ(µKS −εKS
l )

E KS
0 ≡PE [GKS] = 1

2

∫
d3r lim

r ′→r

∫
dω

2πi
eiωη[

ω+h0(r )
]
GKS(r ,r ′,ω) = 1

2

∑
l

∫
d3r |ϕKS

l (r )|2·

·
∫

dω

2πi

(ω+εKS
l )eiωη

ω−εKS
l + iηsign

(
εKS

l −µKS
) = 1

2

∑
l

∫
d3r |ϕKS

l (r )|22εKS
l θ(µKS −εKS

l ) =∑
l
εKS

l θ(µKS −εKS
l )

as in eq. (3.10) and (3.11). On the contrary, as already stated, E0 6= PE [GKS], but it is another functional of GKS:
E0 =RE [GKS], with R given by eq. (3.12) with everything expressed as a functional of GKS.
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Using the Green’s function, one can implement the Sham–Schlüter equation for the density;
indeed, from the request that both G and GKS yield the same density n(r ), eq. (3.5) reads:

Pn(r )

[
GKS[

Σ− vxc
]
G

]
= 0, (3.14)

or, writing explicitly the functional Pn(r )[ f ] and the integration variables, and using the fact
that vxc(r ) is a local and static potential:∫

d 3r1d 3r2

∫
dω

2πi
e iωηGKS(r ,r 1,ω)

[
Σ(r 1,r 2,ω)− vxc(r 1)δ(r 1 − r 2)

]
G(r 2,r ,ω) = 0. (3.15)

Introducing the quantity ζKS(r ,r ′) := ∫ dω
2πi e iωηGKS(r ,r ′,ω)G(r ′,r ,ω), a formal solution of the

previous equation exists if ζKS(r ,r ′) is invertible:

vxc(r ) =
∫

d 3r1ζ
−1
KS(r ,r 1)

∫
d 3r2d 3r3

∫
dω

2πi
e iωηGKS(r 1,r 2,ω)Σ(r 2,r 3,ω)G(r 3,r 1,ω).

The full Green’s function G is often replaced by GKS (also in the structure of the self energy),
obtaining the linear–response Sham–Schlüter equation [83]:∫

d 3r1d 3r2

∫
dω

2πi
e iωηGKS(r ,r 1,ω)

[
Σ(r 1,r 2,ω)[GKS]− vxc(r 1)δ(r 1 − r 2)

]
GKS(r 2,r ,ω) = 0.

(3.16)
This equation does not rest anymore on the idea that the real and the auxiliary systems share
the same density; therefore, its solution vxc(r ) is in general just an approximate version of the
exact vxc(r ). Nevertheless, eq. (3.16) is important in itself, as it coincides with the equation
for the optimized effective potential vOEP

xc (r ) introduced in [84, 85]. This is the variationally
best local potential that extremizes the energy evaluated through Σ; in particular, if Σ=Σx , eq.
(2.44), the potential is known as the “exact exchange” approximation to vxc(r ), and it represents
the best (as far as the total energy is concerned) local approximation to the non–local Σx [84,
85, 86].

As pointed out in [83], “attempts to improve on vOEP
xc (r ) as an approximation toΣ(r ,r ′,ω) [as

far as the total energy is considered] should involve non–locality either in space or in time”. The
two possibilities are investigated below: the first involves the density matrix, while the second
is linked to the diagonal of the spectral function.

3.4 An auxiliary system for the density matrix

As Kohn–Sham systems exist for the density, one could wonder if analogous auxiliary sys-
tems exist for the density matrix γ(r ,r ′). This amounts to a non–local generalization vγ(r ,r ′)
of the Kohn–Sham potential as an effective potential in a Kohn–Sham–like auxiliary system of
non–interacting particles.

Requiring that the potential vγ(r ,r ′) exactly reproduces the density matrix of the real sys-
tem, eq. (2.8), one would come out with the Sham–Schlüter equation (3.5) generalized to the
density matrix:∫

d 3r1d 3r2

∫
dω

2πi
e iωηGγ(r ,r 1,ω)

[
Σ(r 1,r 2,ω)− vγ

xc(r 1,r 2)
]
G(r 2,r ′,ω) = 0, (3.17)

with the auxiliary system Green’s function Gγ(r 1,r 2,ω) defined in terms of the γ–effective po-
tential vγ

xc(r 1,r 2) via the Dyson equation G−1
γ (r 1,r 2,ω) =G−1

H (r 1,r 2,ω)− vγ
xc(r 1,r 2).

Although eq. (3.17) looks a legitimate equation, it does not have any solution when Σ if fre-
quency dependent. Two examples of this statement are shown in appendix E, for two systems
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that we will consider in the next chapter, the Hubbard dimer and the homogeneous electron
gas.

Indeed, the fundamental question is: are density matrices vγ–representable? The general
answer is no: while the same density function n(r ) can be most often realized both in an inter-
acting and a non–interacting system, usually the same density matrix can not (at zero temper-
ature). This is a consequence of the structure of the density matrix. Indeed, being hermitian, it
can be diagonalized and expressed as:

γ(r ,r ′) =∑
α

nαφα(r )φ∗
α(r ′), (3.18)

with nα eigenvalues, 0 ≤ nα ≤ 1 and
∑

α nα = N (they can be interpreted as a probability distri-
bution), called occupation numbers, and φα(r ) the eigenvectors of γ, called natural orbitals.

A fractional occupation 0 < nα < 1 is the fingerprint of correlation, as any system of inde-
pendent particles displays only integer occupation numbers, nα = 1 if the one–particle state
described by |α〉 is occupied, and nα = 0 otherwise.

One can express the same concept by considering the squared density matrix γ2(r ,r ′) :=∫
d 3r1γ(r ,r 1)γ(r 1,r ′) = ∑

α n2
αφα(r )φ∗

α(r ′), having used the property that the natural orbitals
are orthogonal and normalized. For a system of independent particles, as nα = {0;1}, n2

α = nα

and therefore γ2
0 = γ0. By contrast, for a correlated system, n2

α < nα and in general γ2 6= γ. Even
the reverse is true: if γ2 = γ, then the occupation numbers are integers and γ describes a system
of independent particles.

Therefore, a density matrix γ0 corresponding to a non–interacting system will in general be
different from a real system density matrix, in which correlation is always present. This blocks
any attempt to build an independent–particle auxiliary system that reproduces γ.

In other words, eq. (3.17) has no solutions when Σ if frequency dependent. By contrast, the
linearized version of (3.17), in which G is replaced by Gγ everywhere, does have sometimes a
solution [83].

3.5 The spectral potential

The fundamental quantity of this work is A(r ,r ,ω), the diagonal of the spectral function in
real space. It is a reduced quantity, as it contains less information than the full Green’s func-
tion: the density n(r ), the interacting density of states DOS(ω), the diagonal of the Green’s
function G(r ,r ,ω) can all be derived from A(r ,r ,ω), while the full Green’s function, and conse-
quently the on–site Green’s function Gl l (ω) of DMFT (see below), the k–resolved Green’s func-
tion G(k ,ω), the density matrix γ(r ,r ′), the total energy E0, ..., cannot.

As the information content is reduced, one does not need the full self energy to obtain
A(r ,r ,ω), but just a part of the information carried by it. This is where the idea of an auxil-
iary system for the diagonal of the spectral function arises. In particular, as for reproducing
the density n(r ) we need a local potential vKS(r ) (KS–DFT), and for reproducing the on–site
Green’s function Gl l (ω) we need an on–site self energy Σl l (ω) (DMFT, see below), here we make
the ansatz that a local, real and frequency–dependent potential, the spectral potential vSF(r ,ω),
can reproduce the diagonal of the spectral function, which is indeed local, real and frequency–
dependent.

Therefore, we introduce an auxiliary system described by the Green’s function GSF(r ,r ′,ω),
defined by the following inverted Dyson equation:

G−1
SF (r ,r ′,ω) =G−1

0 (r ,r ′,ω)− vSF(r ,ω)δ(r − r ′). (3.19)
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To such a Green’s function, a spectral function is associated in the usual way, see eq. (2.30):

ASF(r ,r ′,ω) =− 1

π
sign

(
ω−µ

)
ImGSF(r ,r ′,ω). (3.20)

Finally, the spectral potential is fixed by the requirement, analogous to eq. (3.3):

ASF(r ,r ,ω) = A(r ,r ,ω) (3.21)

Note that, if the previous equation holds, so does the equation nSF(r ) = n(r ): not only the
diagonal of the spectral function, but also the density is reproduced by this new auxiliary sys-
tem, that can therefore be considered as a dynamical generalization of the Kohn–Sham system.
The excitation energies of the latter cannot be directly compared to the one–electron excitation
spectrum, while with this auxiliary system the spectrum is exact by definition, eq. (3.21). More-
over, the spectrum is quickly obtained via a local and real potential, computationally lighter
than the non–local and complex–valued self energy.

Generalized Sham–Schlüter equation The ansatz represented by the three equations above
is supported by the structure of the generalized Sham–Schlüter equation (3.5) applied to the
spectral function A(r ,r ,ω); it reads:

P A(r ,r ,ω)

[
GSF

[
Σ− vSF

xc

]
G

]
= 0, (3.22)

with P A(r ,r ,ω)[ f ] := − 1
π sign

(
ω−µ

)
Im f (r ,r ,ω). The exchange–correlation part of the spectral

potential vSF
xc (r ,ω) is introduced in the usual way as the non–classical part of the full potential:

vSF(r ,ω) = vext(r )+ vH(r )+ vSF
xc (r ,ω). Explicitly, the previous equation reads:∫

d 3r1d 3r2 Im
[
GSF(r ,r 1,ω)Σ(r 1,r 2,ω)G(r 2,r ,ω)

]= ∫
d 3r1vSF

xc (r 1,ω) Im
[
GSF(r ,r 1,ω)G(r 1,r ,ω)

]
(3.23)

which is a non–linear equation for the real potential vSF
xc (r ,ω) [6, 79].

By looking at the structure of eq. (3.23), it is clear that a static but non–local potential
vSF

xc (r 1,r 2), in place of vSF
xc (r ,ω), could not do the job. Indeed, the self energy will in general

add a non–trivial frequency dependence to the product of the two Green’s function on the left–
hand–side, hence a frequency–dependent potential is needed on the right–hand–side. By the
same reasoning, also a local and static potential vSF

xc (r ), like the Kohn–Sham one, is ruled out.
Indeed, as it is well known and as we mentioned already, Kohn–Sham spectra are a by–product
of the auxiliary system construction, and they are not related in any simple way to the spectra
of the corresponding real system [81]. Finally, a purely frequency–dependent potential vSF

xc (ω)
would not catch the space dependence of the self energy, while a complex spectral potential
looks superfluous, as the quantity to reproduce, A(r ,r ,ω), is real–valued.

Clearly, were the self energy real and local, the spectral potential would coincide with the
self energy itself. On the contrary, as soon as the self energy becomes complex or/and non–
local, eq. (3.23) becomes non–trivial: to get A(r ,r ,ω), the spectral potential condensates the
essential information carried by the self energy into just two degrees of freedom, locality and
frequency.

A formal solution of eq. (3.23) is possible. As in the Kohn–Sham case, we introduce the
quantity ζSF(r ,r ′,ω) := Im

[
GSF(r ,r ′,ω)G(r ′,r ,ω)

]
. If this is invertible, namely if ζ−1

SF (r ,r ′,ω)
exists, the formal solution to the previous equation reads:

vSF
xc (r ,ω) =

∫
d 3r1ζ

−1
SF (r ,r 1,ω)

∫
d 3r2d 3r3 Im

[
GSF(r 1,r 2,ω)Σ(r 2,r 3,ω)G(r 3,r 1,ω)

]
(3.24)
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Figure 3.1: A scheme of the auxiliary system approach for the spectral func-
tion: the blue box represents the real system, in which the local part of the
spectral function A(r ,ω) ≡ A(r ,r ,ω) stems from the non–local self energy
Σ(r ,r ′,ω) (reference calculation, arrow R). In the auxiliary system (red box),
the role of the self energy is played by the spectral potential vSF(r ,ω). To ob-
tain it, one solves the generalized Sham–Schlüter equation (3.24), arrow (1).
Once the spectral potential is at hand, one evaluates the spectral function,
arrow (2), which turns out to be exactly the same of the real system.

As vSF
xc (r ,ω) enters also the Green’s function GSF(r 1,r 2,ω) on the right hand side, one usually

has to solve eq. (3.24) iteratively in the spectral potential, till, in principle, self–consistency.
Note that, as in the Kohn–Sham case, also eq. (3.23) can be linearized by setting G = G̃SF

everywhere (also in the functional expression of the self energy in terms of G : Σ̃=Σ[G̃SF]):∫
r 1,r 2

Im
[
G̃SF(r ,r 1,ω)Σ̃(r 1,r 2,ω)G(r 2,r ,ω)

]= ∫
r 1

ṽSF
xc (r 1,ω) Im

[
G̃SF(r ,r 1,ω)G̃(r 1,r ,ω)

]
.

(3.25)
The system that results from such an equation, described by G̃SF, does not share any more the
diagonal of the spectral function with the real system. It rests on the weaker condition that the
linear response of the spectral function to the perturbation converting the auxiliary system into
the real system is zero [83], and it can be derived from a minimization condition on the total
energy [87]. The solution – if any – of this equation, ṽSF

xc (r ,ω), can therefore be interpreted as
the variationally best [83] local, real and frequency–dependent potential that approximates the
self energy for the evaluation of the total energy. Nothing to do with our approach, whose focus
is on the exact A(r ,r ,ω) rather than an approximated total energy.

Biorthonormal representation Eq. (3.23) holds for each single value of ω, independently
of all other frequencies. Therefore, one can treat frequency as an external parameter (a label)
attached to each quantity [79]. The auxiliary system itself can be viewed as a collection of Kohn–
Sham–like auxiliary systems, each labeled by a value of frequency: each of them reproduces the
local density n(r ), and together they yield the local spectral function A(r ,r ,ω). In particular,
the spectral potential, real and local, can be viewed as a dynamical generalization of the Kohn–
Sham potential.

Therefore, for a discrete system, one can easily generalize eq. (3.13) by expressing the Green’s
function of the auxiliary system, eq. (3.19), as:

GSF(r ,r ′,ω) =∑
l

φSF
l (r ,ω)φSF ∗

l (r ′,ω)

ω−εSF
l (ω)+ iηsign

(
εSF

l (ω)−µSF
) , (3.26)

with the frequency–dependent (or frequency–labelled) eigenvalues and eigenfunctions εSF
l (ω)

and φSF
l (r ,ω) that satisfy the following Schrödinger–like equation:[

−∇2

2
+ vSF(r ,ω)

]
φSF

l (r ,ω) = εSF
l (ω)φSF

l (r ,ω). (3.27)
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This equation of motion is in between eq. (3.9) and eq. (2.38), in the same way as the represen-
tation (3.26) is a compromise between the Lehmann representation of eq. (2.22), which exactly
applies to the Kohn–Sham Green’s function, eq. (3.13), and the biorthonormal representation
of eq. (2.39).

Not that, as the spectral potential is real, the one–particle effective Hamiltonian hSF
eff(r ,ω) :=[

−∇2

2 + vSF(r ,ω)
]
≡ h0(r )+ vSF

xc (r ,ω) is hermitian. As a consequence, its eigenvalues εSF
l (ω) are

real and its eigenfunctions are orthonormal. Therefore, even if the representation (3.26) is ex-
tremely similar to eq. (2.39), its mathematical properties are – frequency by frequency – similar
to the Kohn–Sham Lehmann representation. The difference with the latter is the frequency–
dependence that enters both the eigenvalues and the eigenfunctions.

From eq. (3.26), an explicit expression for the diagonal of the spectral function is:

ASF(r ,r ,ω) =∑
l

∣∣φSF
l (r ,ω)

∣∣2
δ

(
ω−εSF

l (ω)
)

. (3.28)

As the spectral potential is frequency–dependent, the equation ω− εSF
l (ω) = 0 has in general

more than one solution εSF
l . Therefore, the single delta function of above can be expressed as a

sum over several delta functions, each centered on one of the solutions εSF
l :

δ
(
ω−εSF

l (ω)
)=∑

εSF
l

Z SF
εSF

l

δ
(
ω−εSF

l

)
,

with Z SF −1
εSF

l

:= (
1−∂εSF

l (ω)/∂ω
)
ω=εSF

l
an analogous of the renormalization factor which is differ-

ent from one even for static self energies. Therefore, the diagonal of the spectral function in the
auxiliary system becomes:

ASF(r ,r ,ω) =∑
l

∑
εSF

l

Z SF
εSF

l

∣∣φSF
l

(
r ,εSF

l

)∣∣2
δ

(
ω−εSF

l

)
, (3.29)

namely a sum of weighted simple delta peaks. This quantity has to be compared to the real
system A(r ,r ,ω) given by:

A(r ,r ,ω) =∑
s

∣∣ fs(r )
∣∣2
δ (ω−εs) . (2.28)

The two are equal by construction, ASF(r ,r ,ω) = A(r ,r ,ω). On the contrary, the single delta
peaks need not, in principle, to match: if, for a certain ω, there exists a quantum number s such
that ω= εs , and therefore A(r ,r ,ω) 6= 0, there must be also (at least) a quantum number l such
that ω = εSF

l , with l not necessarily equal to s (if they are in the same basis)9 . For example, if
the spectral functions are represented on the Bloch basis, not necessarily εSF

nk = εnk : the band
structure is, in general, not reproduced.

Not only the peak position, but also their amplitudes must be the same at each frequency;
assuming, for simplicity, that the delta peak in the real system at ω = εs is reproduced by an-
other single delta peak in the auxiliary system at ω= εSF

l , the following relation must hold:

∣∣ fs(r )
∣∣2

s=s0(ω) = Z SF
ω

∣∣∣φSF
l SF

0 (ω)
(r ,ω)

∣∣∣2
(3.30)

with s0(ω) the solution to the equation ω−εs = 0 and l SF
0 (ω) the solution of ω−εSF

l = 0. This is
an exact relation, equivalent to eq. (3.21), that can be solved for vSF(r ,ω).

9Note also that a single peak δ (ω−εs ) can be reproduced by the sum of several delta peaks, corresponding to the
same quantum number l or to several ones.
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Lehmann representation In general, a Lehmann representation in the auxiliary system does
not hold. The Lehmann representation of a time–ordered Green’s function is linked to causal-
ity, which in turn rests on the symmetric treatment of electrons and holes. This is possible if,
whenever the self energy is frequency–dependent, it is also complex–valued.

Clearly, this is not the case in the auxiliary system, where the role of the self energy is played
by a real, yet frequency–dependent, spectral potential. Causality breaks down, as the Kramers–
Kronig relation that relates the real to the imaginary part of the self energy

ReΣ(r ,r ′,ω) =− 1

π
P .V .

∫
dω′sign(ω′−µ)

ImΣ(r ,r ′,ω)

ω−ω′ (3.31)

does not hold any more for Σ(r ,r ′,ω) → vSF(r ,ω). Therefore, the corresponding Kramers–
Kronig relation for the Green’s function,

ReG(r ,r ′,ω) =− 1

π
P .V .

∫
dω′sign(ω′−µ)

ImG(r ,r ′,ω)

ω−ω′ , (3.32)

is not fulfilled either when G =GSF. By adding to both sides of the previous equation the imag-
inary part of G , it becomes evident that eq. (3.32) is completely equivalent to eq. (2.29); this, in
turn, is equivalent to the Lehmann representation. We conclude, therefore, that, in general, a
Lehmann representation does not hold in the auxiliary system.

Another way of seeing the same thing is the following: from the bi–orthonormal represen-
tation (3.26), the real part of the diagonal of the Green’s function reads:

ReGSF(r ,r ,ω) =∑
l

∣∣φSF
l (r ,ω)

∣∣2

ω−εSF
l (ω)

, (3.33)

which is a consequence of the reality of the spectral potential. On the other hand, if the Lehmann
representation holds, ReGLeh

SF (r ,r ,ω) would be given by eq. (2.29), with ASF(r ,r ,ω) from eq.
(3.28):

ReGLeh
SF (r ,r ,ω) =P .V .

∫
dω′ ASF(r ,r ,ω)

ω−ω′ =∑
l

P .V .
∫

dω′
∣∣φSF

l (r ,ω′)
∣∣2

ω−ω′ δ
(
ω′−εSF

l (ω′)
)

.

Writing the last delta function as a sum over the contributions from the peaks εSF
l , the Hilbert

transform of ASF(r ,r ,ω) reads:

ReGLeh
SF (r ,r ,ω) =∑

l

∑
εSF

l

Z SF
εSF

l

∣∣φSF
l

(
r ,εSF

l

)∣∣2

ω−εSF
l

, (3.34)

which has a different frequency–dependence than the one in eq. (3.33). The Lehmann repre-
sentation, in general, yields an expression for ReGSF(r ,r ,ω), that is ReGLeh

SF (r ,r ,ω), which is not
the expected one, ReGSF(r ,r ,ω).

The same conclusion can be analyzed from the other way round: as ASF(r ,r ,ω) = A(r ,r ,ω),
also ReGLeh

SF (r ,r ,ω) obtained from the Lehmann representation, eq. (3.34), is the real system
one, ReG(r ,r ,ω). Therefore, the auxiliary system exhibits a ReGSF(r ,r ,ω), eq. (3.33), which
is not the one of the real system: the diagonal of the Green’s function is reproduced by the
auxiliary system only in its imaginary part (the spectral function), but not in its real part.

On the other hand, if one wants to have access also to ReG(r ,r ,ω), one can find it from the
Kramers–Kronig relation (3.32): as the imaginary part of G is exact by definition, also the real
part is the exact one. However, it is important to remark that one has used a relation, eq. (3.32),
that does not hold in the auxiliary system or, equivalently, one has employed another functional
(see section 3.2.2 for a general discussion).
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Of course, one could wonder whether a function that does not fulfill the Lehmann represen-
tation could be considered a Green’s function. Equivalently, one could be puzzled by having a
real and frequency–dependent function (the spectral potential) that replaces the self energy.

These objections are certainly pertinent. The simplest answer is that, in its basics, the aux-
iliary system is just a mathematical construction that yields the correct value of the reduced
quantity of interest, nothing less, nothing (in general) more.

3.6 DMFT and spectralDFT

Also dynamical mean field theory (DMFT) [88, 9, 89] in the spectral density functional theory
formulation [8] can be considered in the framework of auxiliary systems. DMFT is a powerful
theory to handle strongly correlated materials, whose focus is on the local (on–site) Green’s
function.

The real system, in this case, is the Hubbard model of eq. (2.49) and the one–particle prop-
erties of it are contained in the Green’s function (2.50), which is non–local in the site basis. To
obtain Gi j (ω), the standard route is to introduce the non–local self energy Σi j (ω), evaluate it
and then solve the Dyson equation.

DMFT is an alternative to this procedure when the interest is just in a smaller quantity. That
quantity is the on–site Green’s function Gi i (ω), which does not depend on the site i if the lattice
is regular: Gi i (ω) ≡ Gloc(ω). This is a reduced quantity, as it does not contain the information
on the off–diagonal elements of the Green’s function. DMFT is a method to evaluate Gloc(ω).

A way to view DMFT is the following [8]: one considers, besides the real system (the Hub-
bard model), an auxiliary system in which the self energy is local, and hence, for a regular lat-
tice, site–independent; we call it ΣGloc (ω) as it is – in the notations we used above – the Gloc–
effective potential that one needs to reproduce Gloc(ω). If this effective self energy were known,
the value of Gloc(ω) would be exactly reproduced in the auxiliary system.

Note that it is tacitly assumed that Gloc(ω) be ΣGloc (ω)–representable, namely that, in prin-
ciple, Gloc(ω) can be derived from a local – as opposed to a non–local – self energy. This as-
sumption – and consequently DMFT – is exact in two very important limits: the first one is the
non interacting limit, in which the self energy of the real system, and hence also of the auxiliary
system, is zero. The second one is the limit of infinite dimensions or infinite number of nearest
neighbours: it can be shown that in this case the self energy of the real system becomes local,
hence the auxiliary system self energy coincides with it [72].

Finding in practice the effective potential, namely the local self energy, is the big challenge
of DMFT. The solution is similar to the one proposed in this thesis for the spectral potential,
namely building a model system and importing its value from it. We will discuss this method
in chapter 5.

Spectral DFT Spectral density functional theory (SDFT) can be considered as a generalization
of DMFT to real systems described by the fully ab–initio many–body Hamiltonian, eq. (2.3a).
The Green’s function is therefore given by eq. (2.18) and the self energy by eq. (2.37).

As in DMFT, the interesting quantity is the local Green’s function, where the meaning of the
adjective “local” is broad: indeed, for every point r , a region Ωr around r is defined such that
θΩr (r ′) = 0 or 1 if, respectively, r ′ belongs or not to Ωr . The local Green’s function is defined as
Gloc(r ,r ′,ω) :=G(r ,r ′,ω)θΩr (r ′). In particular, ifΩr is shrinked to the point r itself, the quantity
of interest becomes G(r ,r ,ω), which can be viewed as the continuous generalization of Gi i (ω),
hence the relation to DMFT.

To obtain the quantity of interest Gloc(r ,r ′,ω), an auxiliary system is built, in which the role
of the full self energy Σ(r ,r ,ω) is played by a local self energy Σloc(r ,r ′,ω), which is clearly not
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simply Σ(r ,r ,ω)θΩr (r ′). Again, if we restrict ourselves to Ωr = {r }, then the effective potential
Σloc(r ,r ′,ω) is truly diagonal in real space, and can be written as ΣSDFT(r ,ω): a complex, local
and frequency–dependent effective potential.

Note that, in the purely local situation Ωr = {r }, G(r ,r ,ω) is very close to the quantity we
focus on in this thesis, A(r ,r ,ω). Actually, the two bear the same amount of information, and
hence the two descriptions are completely equivalent, whenever the Kramers–Kronig relations
hold. If that is the case, one can pass from A to G without any problem.

Does this mean that our approach is actually SDFT? The answer is no, exactly because the
Kramers–Kronig relations, as shown above, do not hold. Indeed, to reproduce the local Green’s
function, which is complex, a local self energy is needed, complex as well. On the contrary,
if one wants to reproduce only the spectral function, which is real, a real spectral potential is
enough. Clearly, being real, this potential does not fulfill the Kramers–Kronig relations, hence
the link from A to G is broken. Therefore, our approach can be viewed as a further restriction
of SDFT when only the spectral function is needed.

I have presented the effective framework in which I will move for the rest of the thesis. It
consists of an auxiliary system designed for targeting the diagonal of the spectral func-
tion of the real system exactly. To do so, a real, local and frequency–dependent potential
– the spectral potential – is introduced. It contains the minimal information required
for reproducing the diagonal of the spectral function, and it is computationally lighter
than the self energy. Exact relations have been given throughout the chapter, but can
we actually find this potential in practice? In the next chapter, I will show three exactly
solvable models in which the answer to that question is yes.
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Chapter 4
Auxiliary systems: explicit examples

The chapter of truth is here: for a given self energy, does a corresponding auxiliary system
actually exist? Can we really solve the generalized Sham–Schlüter equation for some system? Is
it feasible to write down and look at one of these spectral potentials? Do they have any physical
meaning?

I will answer these question by explicitly considering some systems for which the analytic
solution is at hand. I will show that for the three cases I will study, non trivial and very differ-
ent among themselves, auxiliary systems exist and the corresponding spectral potentials can
be explicitly evaluated. This shows that the set of vSF –representable spectral functions is not
completely empty: it contains, at least, three elements!

I will first consider the Hubbard model on the Bethe lattice with infinite number of nearest
neighbours: the self energy is local and frequency dependent, but complex–valued; the non–
trivial duty of the auxiliary system will be to enfold the information enclosed in the imaginary
part of the self energy into additional frequency dependence of the spectral potential.

A step forward is represented by the Hubbard model on two sites (a dimer): the self energy
is here not only complex, but also non–local; the efforts sustained by the auxiliary system are
therefore intensified, as also the information encoded in the non–locality of the self energy
must be transferred into the frequency dependence of the spectral potential.

Finally, the third example will be the homogeneous electron gas with a purely non–local self
energy: in contrast to the previous cases, there is no frequency dependence yet in the self en-
ergy, and the generalized Sham–Schlüter equation’s challenge will be to completely erase the
non–locality of the standard self energy approach in favour of a newly born frequency depen-
dence in the spectral potential. Moreover, the homogeneous electron gas will allow us to clarify
some aspects concerning the relation between discrete (Hubbard) and continuous systems.

4.1 The Hubbard model on the Bethe lattice

A Bethe lattice is an infinite graph with no cycles (a tree), in which every site has the same
number of neighbours z [90]. Apart from the simplest case z = 2, which describes a one–
dimensional chain, the Bethe lattice is not a crystal lattice, as there is no translational sym-
metry; an example with z = 4 is represented in fig. 4.1.

Here we will define the Hubbard Hamiltonian on a Bethe lattice as eq. (2.49) with i and j
sites of the lattice. We will take the on–site energies εi = 0, so that all sites are equivalent and
any local function fi becomes site–independent: fi = f .

We will further consider the infinite connectivity limit z →∞, an extremely important limit
in which the self energy Σi j (ω) associated with the Hubbard Hamiltonian becomes local (al-
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Figure 4.1: Part of the Bethe lattice with z = 4, from ref. [92].

though still complex) and site–independent [91, 76]: Σi j (ω)
z→∞−→ δi jΣ(ω).

In the z → ∞ limit, the scaling t → t/
p

z yields a finite free density of states, defined1 as
A0(ω) = − 1

π ImG0(ω), with G0(ω) ≡ G0 i i (ω) the on–site Green’s function at U = 0; this can be
evaluated by using non–Bloch based methods, as it is done in [93]; the result reads G0(ω) =

2
ω+

p
ω2−D2

, from which [91, 76] A0(ω) = θ (D −|ω|) 2
πD

√
1− (

ω
D

)2. This is a semielliptical density
of states, of half–bandwidth D = 2t , which closely resembles the gaussian density of states of a
hypercubic lattice [94].

We solve the fully interacting model in appendix C, at half–filling (µ= 0), within the coherent
potential approximation (CPA). The result is summarized by the following two relations:

G (ω) = 1

2

(
1

G−1
0 (ω)+ U

2

+ 1

G−1
0 (ω)− U

2

)
(4.1)

G−1
0 (ω) =ω− D2

4
G (ω) . (4.2)

The first of these is equivalent to a Dyson equation G−1(ω) = G−1
0 (ω)−Σ(ω) supplied with the

definition of the self energy Σ(ω) = U 2

4 G0(ω). The second is the self consistent relation of the
DMFT loop [72]; it links G(ω) to G0(ω); this is the impurity Green’s function2, which can be con-
sidered, for our purposes, as an auxiliary function. It permits to write down a closed equation
for G(ω): (

D2

4

)2 [
G(ω)

]3 − D2

2
ω

[
G(ω)

]2 +
(

D2

4
− U 2

4
+ω2

)
G(ω)−ω= 0 (4.3)

This is a third order equation that can be solved by standard methods, see appendix C. From
the solution G(ω), the corresponding spectral function is:

A (ω) =− 1

π
ImG (ω) (4.4)

which is positive and even, and it is evaluated numerically for different values of U in figure 4.2:

for U = 0, we recover the free density of states we started from, A0(ω) = θ (D −|ω|) 2
πD

√
1− (

ω
D

)2:

1For this section I use the retarded formalism, instead of the time–ordered one, as it is often done in DMFT.
2G0(ω) already contains part of the interaction; specifically, the on–site interaction evaluated in the Anderson

Impurity Model.
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(a) U = 0.0 (b) U = 0.5

(c) U = 0.75 (d) U = 0.9

(e) U = 1.0 (f) U = 2.0

Figure 4.2: Spectral function A(ω) as a function of ω, in units of D, for dif-
ferent values of U , as indicated. The coloured area represents the occupied
band: for U < D we have a metal, then a transition at U = D and finally an
insulator for U > D.

it represents a single band centered on ω=µ= 0; that is the quasi particle of the system, which
is in this stage a metal (no gap between occupied and unoccupied states).

For increasing U , the quasi particle band splits into two symmetric features that get further
and further away. Eventually, at U = D , the two features separate and, for U > D , they form
two different Hubbard bands, separated by a gap of the order of U : the system becomes an
insulator, and the critical point U = D models the Mott metal–insulator transition.

At the critical point U = D , the Green’s function at ω = 0 (where the gap opens) is zero, as
well as, through eq. (4.2), G−1

0 (ω = 0). Therefore, from its definition in terms of G0(ω), the self
energy blows up:

Σ(ω= 0)
U→D−→ ∞ (4.5)

both in its real as well as in its imaginary parts. Note that this is the opposite of what happens
in Fermi liquid systems, where the self energy at the Fermi level is zero.

The challenge is therefore to reproduce the opening of the gap with a spectral potential that,
being real by definition, has always a zero imaginary part.
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4.1.1 The auxiliary system

The auxiliary system’s job is to provide the exact value of the spectral function, eq. (4.4), with
a real and local potential. Therefore, to build the auxiliary system, we replace the complex–
valued self energy Σ(ω) with the spectral potential vSF(ω); both are local in the infinite coor-
dination limit; therefore, we expect the frequency dependence of the potential to account for
both the dynamics of the self energy and for the refolding of its real and imaginary part into a
single real number.

The definition of the auxiliary system Green’s function follows its counterpart in the real
system:

G−1
SF (ω) =G−1

0 (ω)− vSF(ω) (4.6)

with G−1
0 (ω) given by eq. (4.2). To such a Green’s function, it is associated the following spectral

function:

ASF (ω) =− 1

π
ImGSF (ω) = 1

π

ImG−1
SF (ω)[

ReG−1
SF (ω)

]2 + [
ImG−1

SF (ω)
]2 =

=
D2

4 A (ω)[
ω− vSF (ω)− D2

4 ReG (ω)
]2 +

[
πD2

4 A (ω)
]2

The spectral potential We now implement the generalized Sham–Schlüter equation in the
form ASF (ω) = A (ω); hence, wherever the spectral function is non–zero, the spectral potential
is given by:

vSF (ω) =ω− D2

4
ReG (ω)∓ D

2

√
1−

(
πD

2
A (ω)

)2

(4.7)

To assure that, like the self energy, vSF (ω) goes to zero as U → 0, we choose the upper sign for
ω≥ 0 and the lower otherwise. As a consequence, vSF (ω) is not an analytic function of ω.

When the spectral function in the real system A (ω) is zero, the spectral function in the aux-
iliary system is automatically zero, too, under the only condition that vSF (ω) 6=ω− D2

4 ReG (ω);
that leaves us a lot of freedom for defining the spectral potential in this region: we choose to
remove from vSF (ω) its U = 0 contribution, so that the potential is zero in the non–interacting
limit, like the self energy.

We have evaluated numerically eq. (4.7) for different values of U , at D = 1; the results are
presented in fig. 4.3: the potential – meaningful only where the spectral function is non–zero
– interpolates somehow the real and the imaginary part of the self energy. As both the real
as well as the imaginary part of the Green’s function in the real system are bounded, also the
spectral function vSF (ω) never blows up. This is not the case for the self energy, whose real and
imaginary parts diverge at ω= 0 for U ≥ D and for U = D respectively.

Note also that, at the critical point U = D , the spectral potential is finite, and its value is:

lim
ω→0±

vSF (ω) =∓U

2
.

On the other hand its first derivative is singular at ω= 0:

lim
ω→0±

d vSF (ω)

dω
=∓∞.

Therefore, as the critical point U = D is the singularity in which ImΣ(ω) →∞ in the real system,
in the auxiliary system the same singularity is reproduced and identified by d vSF(ω)

dω →∞.
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Figure 4.3: Spectral function, in black, for U = 0.0, U = 0.5, U = 0.75, U = 0.9, U = 1.0 and
U = 2.0, with D = 1.0. In blue the self energy, real (full) and imaginary part (dashed line), in red
the spectral potential vSF(ω) of eq. (4.7). I stress here that the spectral potential is meaningful
only where the spectral function is non zero.

The real part of the Green’s function As it is often the case with auxiliary systems, the spectral
potential yields what it is supposed to yield, but no more. In particular, the real part of the real
system Green’s function is not reproduced for any value of U larger than U = 0, as it is shown in
fig. (4.4).

The fact that the real part of the Green’s function ReG(ω) is not reproduced is not surprising:
a real spectral potential in general may not yield the full Green’s function, or it would be a
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Figure 4.4: Green’s functions for different values of U , with D = 1.0. In black the spectral func-
tion, in blue the real part of the real system Green’s function and in red the real part of the
auxiliary system Green’s function.

complex self energy. On the other hand, since the spectral function is exactly reproduced, one
can use another prescription – namely another functional – to obtain the exact real part of the
Green’s function, in the auxiliary system. This prescription is clearly the Hilbert transform, eq.
(2.29), which does not hold in the auxiliary system but can be implemented as a functional
found out of a hat:

ĤT
[

f
]

(ω) =
∫

dω′ f (ω′)
ω−ω′+ iηsign(ω′)

(4.8)

Since in the real system the Kramers–Kronig relations eq. (2.31) hold, ĤT[A] (ω) = G(ω) and,
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using the fact that ASF(ω) = A(ω), we also have:

ĤT[ASF] (ω) = ĤT[A] (ω) =G(ω) (4.9)

Therefore, in the auxiliary system, we can obtain also the real part of the real system Green’s
function by using the functional [ReG(ω)]SF = Re ĤT[ASF] (ω) and, by construction, [ReG(ω)]SF =
G(ω). We stress that this new functional does not yield an auxiliary system Green’s function GSF

whose real part is equal to ReG . On the contrary, it gives a function, Re
[
ĤT[ASF] (ω)

]
, which

is numerically equal to ReG(ω) but, in the auxiliary system, does not have any direct physical
meaning (see paragraph 3.2.2 for a general discussion of this topic).

To conclude, we finally obtained what we wanted: the spectral function is always repro-
duced by a real spectral potential. In particular, we reproduce the Mott metal–insulator tran-
sition, hallmark of strong correlation identified by the divergence of ImΣ(ω), by a finite real
potential.

Yet, this system cannot display the full power of the spectral potential: as far as the diagonal
of the spectral function is concerned, vSF(ω) is able to absorb not only the imaginary part of
the self energy, but also its non–locality. To explicitly show it, a non–local self energy is needed:
that is why we now move to the Hubbard dimer.

4.2 The symmetric Hubbard dimer

Let us consider a simplification of the Hubbard model that still exhibits a non–trivial com-
petition between localization and delocalization behaviour. Indeed, if the lattice consists of
just two sites, both at the same energy ε0, the Hamiltonian (2.49) describes what is known as a
symmetric Hubbard dimer:

Ĥ =−t
∑
σ

(
ĉ†

1σĉ2σ+ ĉ†
2σĉ1σ

)
+ε0

∑
i

n̂i +U
∑

i
n̂i↑n̂i↓ (4.10)

Such a model [95] is not only of academic interest, as some real systems calculations exhibit a
dimer behaviour, e.g., the simple hydrogen molecules H2 or H+

2 . For our purposes, the interest
in this model lays in the fact that it can be solved analytically, resulting in a self energy which is
complex, dynamical and non–local, too, as I show in the next section.

One–fourth filling solution We here consider the one–fourth filling case, in which there is
only N = 1 electron. In the site basis, defined and ordered as

{|↑,0〉 , |0,↑〉 , |↓,0〉 , |0,↓〉}, where
|σ,0〉 represents an electron with spin σ (measured on the z axis, with Sz (σ=↑) = 1

2 and Sz (σ=↓
) = −1

2 ) in the first site and zero electrons on the second site and so on, the Hamiltonian is
block–diagonal in spin–sectors:

Ĥ −→ H(i ,σ),( j ,σ′) ≡ 〈i ,σ| Ĥ | j ,σ′〉 =


ε0 −t 0 0
−t ε0 0 0
0 0 ε0 −t
0 0 −t ε0

 (4.11)

This Hamiltonian has spin–independent eigenvalues ε± = ε0 ± t , corresponding to the eigen-
states:

|±,σ〉 = 1p
2

[
|σ,0〉∓ |0,σ〉

]
(4.12)
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ordered as follows:
{|−,↑〉 , |+,↑〉 , |−,↓〉 , |+,↓〉} (henceforth called bonding–antibonding basis3).

We break the spin–symmetry by considering a ground state consisting of a spin–up electron
in the bonding state |GS〉 ≡ |−,↑〉; therefore, the chemical potential is µ = ε− = ε0 − t and the
excited state (antibonding orbital) is well separated with energy ε+ = ε0 + t .

Non-interacting Green’s function In the bonding–antibonding basis, where the operator ĉ†
α =∑

i ,σ 〈i ,σ|α〉 ĉ†
i creates a particle in the state |α〉 (α runs over the four possible states

{|±,σ〉}
ordered as above), it is simple to express the non–interacting Green’s function G0

αβ
(t , t ′) :=

−i 〈GS| T̂ ĉ0α(t )ĉ0
†
β

(t ′) |GS〉 ≡ δαβG0
α(t − t ′); indeed, ĉ0α(t ) ≡ e i Ĥ0t ĉαe−i Ĥ0t = e−iεαt ĉα, with εα =

ε0 ± t , from which:

G0
α(ω) =

{
δα,|−,↑〉

ω−εα− iη
+ 1−δα,|−,↑〉
ω−εα+ iη

}
−→


1

ω−ε−−iη 0 0 0

0 1
ω−ε++iη 0 0

0 0 1
ω−ε−+iη 0

0 0 0 1
ω−ε++iη


Back to the site basis via the relation G0

i j ,σ(ω) = ∑
α 〈i ,σ|α〉G0

α(ω)〈α| j ,σ〉, the non–interacting
Green’s function is:

G0
i j ,σ(ω) = 1

2

{
1

ω−ε−− iηsignσ
+ (−1)i− j

ω−ε++ iη

}
(4.13)

with signσ=+ (−) for σ=↑ (↓). Its interpretation goes as follows: we can remove (−iη) a spin-
up electron (σ =↑) from the ground state ε− or add it (+iη) to the excited state ε+; besides,
we can add (+iη) a spin–down electron (σ =↓) to both the ground and the excited state. The
prefactor 1

2 assures the normalization of the associated spectral function.

The Green’s function The full Green’s function Gi j ,σ(t , t ′) :=−i 〈GS| T̂ ĉiσ(t )ĉ†
jσ(t ′) |GS〉 can be

derived from the exact diagonalization of the N = 0 (trivial), N = 1, eq. (4.12), and N = 2 elec-
tron Hamiltonians, shown in appendix D, eq. (D.1), via the Lehmann representation (2.22); the
task is simplified in the bonding–antibonding basis, where the Green’s function Gαβ(t , t ′) :=
−i 〈GS| T̂ ĉα(t )ĉ†

β
(t ′) |GS〉 ≡ δαβGα(t − t ′) is diagonal because the two sites i = 1 and i = 2 have

the same on–site energy ε0.
The result for the spin–up case is trivial:

G−,↑(ω) = 1

ω−ε−− iη
G+,↑(ω) = 1

ω−ε++ iη
(4.14)

These expressions state that a spin–up electron in the state |−,↑〉 can only be removed from the
system (−iη) while it can be added (+iη) if it goes to the antibonding orbital (ε+). No other
possibility is allowed by the Pauli principle. In the site basis the spin–up Green’s function reads:

Gi j ,↑(ω) = 1

2

{
1

ω−ε−− iη
+ (−1)i− j

ω−ε++ iη

}
(4.15)

which coincides with its non–interacting U → 0 limit, eq. (4.13); indeed, having already a spin–
up electron in the bonding orbital, an additional (+iη) spin–up electron can only sit on the
antibonding orbital, where it doesn’t interact with the former.

3The transformation from the site basis
{|i ,σ〉} ≡ {|↑,0〉 , |0,↑〉 , |↓,0〉 , |0,↓〉} to the bonding–antibonding basis{|α〉} = {|±,σ〉} ≡ {|−,↑〉 , |+,↑〉 , |−,↓〉 , |+,↓〉} is fαβ = ∑

i j ,σσ′ 〈α|i ,σ〉 fiσ, jσ′ 〈 j ,σ′|β〉, with the change of basis matrix

〈α|i ,σ〉 given by 1p
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

.
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peak position peak amplitude

1st pole ω1 = ε0 + t + 1
2 (U − c) Z1 = 1

2 + 2t
c

2nd pole ω2 = ε0 + t Z2 = 1
2

3rd pole ω3 = ε0 + t +U Z3 = 1
2

4th pole ω4 = ε0 + t + 1
2 (U + c) Z4 = 1

2 − 2t
c

Table 4.1: Peaks positions ωs and amplitudes Zs .

The spin–down Green’s function is far more interesting: it doesn’t show any removal en-
ergy, as no spin–down electron is present in the system, but there are many addition channels
describing the different processes an incoming spin–down electron can undergo:

G−,↓(ω) =
(

1

2
+ 2t

c

)
1

ω−ω1 + iη
+

(
1

2
− 2t

c

)
1

ω−ω4 + iη
= ∑

s=1,4

Zs

ω−ωs + iη

G+,↓(ω) = 1

2

{
1

ω−ω2 + iη
+ 1

ω−ω3 + iη

}
= ∑

s=2,3

Zs

ω−ωs + iη

(4.16)

or, in the site basis:

Gi j ,↓(ω) =
(

1

4
+ t

c

)
1

ω−ω1 + iη
+ (−1)i− j

4

{
1

ω−ω2 + iη
+ 1

ω−ω3 + iη

}
+

(
1

4
− t

c

)
1

ω−ω4 + iη
=

= (−1)i− j

2

4∑
s=1

Zs

ω−ωs + iη
(4.17)

with the poles ωs and the amplitudes Zs defined in table 4.1.
The peaks ωs are excitation energies relative to the addition of a spin–down electron: ωs =

ε(N=2)
s − ε(N=1)− , with ε(N=2)

s the eigenenergies of the N = 2 system (appendix D), and ε(N=1)− =
ε0 − t the ground state energy of the N = 1 system. In particular, the first and the fourth poles
are associated to an additional spin–down electron in the bonding state, and the second and
the third to an antibonding state, in agreement with eq. (4.16).

We can characterize these peaks in a one–particle picture, by referring to the eigenstates
ε(N=2)

s =ωs+ε− displayed in appendix D, depending on the site and on the orbital the additional
spin–down electron goes:

• The pole ω1 represents the addition of a spin–down electron to the already–occupied
bonding orbital (E = 2(ε0−t )): then, since they are on the same orbital, electrons interact
with an effective interaction4 Ũ−− = 2t + 1

2

(
U − c

)
. Hence ε(N=2)

s=1 = 2(ε0 − t )+Ũ−− = 2ε0 +
1
2

(
U − c

)
and ω1 = ε0 + t + 1

2

(
U − c

)
.

• The pole ω2 describes two electrons sitting on two different sites and occupying two dif-
ferent orbitals (therefore, no interaction), namely a bonding (ε= ε0−t ) and an antibond-
ing (ε= ε0+t ) orbital, giving a total energy ε(N=2)

s=2 = (ε0−t )+(ε0+t ) = 2ε0, and ω2 = ε0+t .

• The pole ω3 is associated with two electrons occupying the same site (bare interaction:
U ) but in two different orbitals; the total energy is therefore ε(N=2)

s=3 = (ε0−t )+(ε0+t )+U =
2ε0 +U , and the position of the pole is ω3 = ε0 + t +U .

4U is the interaction term for two electrons on the same site, Ũ is the interaction for two electrons on the same
orbital: sites and orbitals are just two different basis, and if the electrons aren’t interacting in a basis, they are not
even in the other basis: for this reason, Ũ always goes to zero in the limit of zero bare interaction, and this is actually
the way in which the electrons are assigned to the bonding or to the antibonding orbitals in the picture given above.
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(a) Peak positions (b) Peak amplitudes

Figure 4.5: Peak positions and amplitudes of the spectral function (4.21) as a
function of U , in units of t ; in the left panel, the chemical potential µ= ε0 − t
is set to zero. See also table 4.1.

• Finally, the pole ω4 represents two electrons occupying the same antibonding orbital
(E = 2(ε0+t )) with an effective interaction Ũ++ =−2t+ 1

2

(
U+c

)
: a spin–down electron en-

ters the system in the bonding orbital, where a spin–up electron was already sitting; the
former excites (+4t ) the latter, and both end up in an excited state, the antibonding state,
where they interact via Ũ++. This process results in a total energy of the two–electron
state equals to ε(N=2)

s=4 = 2(ε0−t )+4t+Ũ++ = 2ε0+ 1
2

(
U+c

)
; the pole is ω4 = ε0+t+ 1

2

(
U+c

)
.

The effective interaction we just introduced is summarized as follows:

Ũαβ =


0 if 〈n̂i ,↑n̂i ,↓〉 = 0(
Ũ−− Ũ−+
Ũ+− Ũ++

)
=

(
2t + U−c

2 U

U −2t + U+c
2

)
if 〈n̂i ,↑n̂i ,↓〉 6= 0

(4.18)

where the first line corresponds to electrons occupying certainly different sites, while the sec-
ond line is for electrons with a non–zero probability of laying on the same site.

In the non–interacting limit U → 0, where both eq. (4.15) and (4.17) tend to eq. (4.13), ω2

andω3 merge to the antibonding pole ε0+t , whileω1 accounts for the bonding state. The fourth
pole goes to ε0 +3t : two electrons excited (+4t ) from the bonding 2(ε0 − t ) to the antibonding
2(ε0 + t ) orbital, which now do not interact. This process, not present in the non–interacting
Green’s function, is indeed suppressed by the amplitude of the associated peak, Z4 = 1

2 − 2t
c ,

which goes to zero like
( U

8t

)2
as U → 0, as expected. The positions and the amplitudes of these

poles as a function of U is shown in fig. 4.5.

The spectral function Since the Lehmann amplitudes are real, the definition (2.30) for the
spectral function applies in the form Ai j ,σ(ω) = − 1

π sign(ω− µ) ImGi j ,σ(ω); from equations
(4.15) and (4.17) we get:

Ai j ,↑(ω) = 1

2
δ
(
ω−ε−

)+ (−1)i− j

2
δ
(
ω−ε+

)
Ai j ,↓(ω) =

(
1

4
+ t

c

)
δ
(
ω−ω1

)+ (−1)i− j

4

[
δ
(
ω−ω2

)+δ
(
ω−ω3

)]+(
1

4
− t

c

)
δ
(
ω−ω4

) (4.19)
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Figure 4.6: Diagonal (left) and off-diagonal (right) elements of the spectral
function, Ai i ,↓(ω) and Ai 6= j ,↓(ω), as a function of ω for µ= 0, in units of t , for
U = 5. A broadening η= 0.1 is added for clarity reasons.

or, in the bonding–antibonding basis:

A−,↑(ω) = δ
(
ω−ε−

)
A+,↑(ω) = δ

(
ω−ε+

)
A−,↓(ω) =

(
1

2
+ 2t

c

)
δ
(
ω−ω1

)+(
1

2
− 2t

c

)
δ
(
ω−ω4

)
A+,↓(ω) = 1

2

[
δ
(
ω−ω2

)+δ
(
ω−ω3

)]
(4.20)

Since both sites are equal, the Green’s function is symmetric under exchange of the site
indices; in particular, the diagonal elements of the spectral function are the same and equal to:

Ai i ,↓(ω) =
(

1

4
+ 1

c

)
δ
(
ω−ω1

)+ 1

4

[
δ
(
ω−ω2

)+δ
(
ω−ω3

)]+(
1

4
− 1

c

)
δ
(
ω−ω4

)
(4.21)

Note that, while the previous quantity is non–negative, this is not the case for the off–diagonal
elements of the spectral function, in accordance with the Lehmann decomposition (2.22), see
fig. 4.6:

Ai 6= j ,↓(ω) =
(

1

4
+ 1

c

)
δ
(
ω−ω1

)− 1

4

[
δ
(
ω−ω2

)+δ
(
ω−ω3

)]+(
1

4
− 1

c

)
δ
(
ω−ω4

)
(4.22)

The behaviour of the spectral function for different values of U is presented in fig. 4.7: for
small U , there is a prominent peak at ω1 and two smaller peaks at ω2 and ω3, while the peak at
ω4 is negligible. Increasing U , the peak in ω1 loses weigth as the one in ω4 rises up; eventually,
merging with the two peaks in ω2 and ω3, they tend to a strong correlation regime U À t in
which two Hubbard bands emerge, separated by a distance of the order of U .

The self energy The spin–down self energy (the spin–up one is zero, as an additional spin–up
electron cannot interact) can be obtained from the inverted Dyson equation Σα(ω) =G0

−1
α (ω)−

G−1
α (ω), with G0

−1
α (ω) =ω−εα and G−1

α (ω) = 1/Gα(ω). It reads:

Σ−,↓(ω) = U

2
+

U 2

4

ω− (ε0 +3t + U
2 )+ iη

Σ+,↓(ω) = U

2
+

U 2

4

ω− (ε0 + t + U
2 )+ iη

(4.23)

or, in the site basis:

Σi j ,↓(ω) = U

2
δi j + U 2

8

[
(−1)i− j

ω− (ε0 + t + U
2 )+ iη

+ 1

ω− (ε0 +3t + U
2 )+ iη

]
(4.24)

65



4.2. HUBBARD DIMER CHAPTER 4. AUXILIARY SYSTEMS: EXPLICIT EXAMPLES

(a) U = 0.5 (b) U = 1.0

(c) U = 2.0 (d) U = 5.0

Figure 4.7: Diagonal of the spectral function Ai i ,↓(ω) as a function of ω for
µ = 0, in units of t , for different values of U , as indicated. A broadening η =
0.1 is added for clarity reasons.

which, as expected, goes to zero in the limit of U → 0 almost everywhere, namely apart from

Σ−,↓(ω4)
U→0−→ 4t , which is the energy needed to excite the system to the pole ω4, a process which

is suppressed for U = 0 but is nonetheless present for small interaction U 5. Note that this is a
truly non–local self energy in the site basis, with an imaginary part given by the sum of two
delta peaks:

ImΣi j ,↓(ω) =−πU 2

8

{
(−1)i− jδ

(
ω− (

ε0 + t + U
2

))+δ
(
ω− (

ε0 +3t + U
2

))}
(4.25)

The poles ωs can be arranged as quasiparticles and satellites of the system, determined by the
real part of the self energy. Indeed, from the relation ω−εα−ReΣα(ω) = 0 one obtains ω1 and ω4

when considerind the bonding state, and ω2 and ω3 when considering the antibonding. The
renormalization factors Z−1

s := 1− ∂ReΣα(s)(ω)/∂ω|ωs are nothing but the amplitudes of the
Green’s function in eq. (4.16) which, being diagonal, has positive amplitudes. They are:

Z1 :=
(
1− ∂ReΣα(ω)

∂ω

)−1

ω=ω1

= 1

2
+ 2t

c
Z2 = Z3 = 1

2
Z4 = 1

2
− 2t

c
(4.26)

From the fact that, in the non–interacting limit, all the weight of the bonding peaks is in ω1

and nothing in ω4, the pole ω1 can be considered as the quasiparticle, while the one at ω4 its
satellite: if the quasiparticle dominates at small interaction, for large U (strong correlation)
both ω1 and ω4 have the same weight 1

2 .

In the next section, we will reproduce the diagonal of the spectral function by replacing
the non–local and complex–valued self energy (4.24) with a real and local (in the site basis)
potential.

5Taking the limit is a continuous operation from positive values of U to U = 0; since the process described by
the pole ω4 is actually suppressed for U = 0, one could decide to redefine “by hand” Σ−,↓(ω4)|U=0 := 0 and nothing
would change. As a result, also vSF(ω4) – see below – would be redefined at U = 0 as vSF(ω4)|U=0 := 0.
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4.2.1 The auxiliary system

The auxiliary system is requested to provide the same local spectral function as the real
system one, eq. (4.19). Since the spin–symmetry is broken by the choice of a spin–up ground
state, we will furthermore consider a spin–dependent spectral potential; for reproducing the
spin–up spectral function, a zero spectral potential will trivially do the job, as Σi j ,↑(ω) = 0, too.

We will henceforth focus on the spin–down sector, dropping the ↓ notation. The auxiliary
system is defined by the following inverted Dyson equation:

G−1
SF i j (ω) =G−1

0 i j (ω)− vSF i (ω)δi j (4.27)

having introduced the local spectral potential vSF i (ω); since the two sites are equivalent, the
potential takes the same value vSF(ω) on both sites, and the previous equation can be written
as G−1

SF i j (ω) =G−1
0 i j

(
ω− vSF(ω)

)
or, using eq. (4.13), in the following form:

GSF i j (ω) =
1
2

ω− (ε0 − t + vSF(ω))+ iη
+ (−1)(i− j ) 1

2

ω− (ε0 + t + vSF(ω))+ iη
(4.28)

Instead of working in the site basis, we can move to the bonding–antibonding basis {±} ≡
{|−,↓〉 , |+,↓〉} where, by virtue of the symmetry of the problem, everything is diagonal. More-
over, in the bonding–antibonding basis the value of the potential is the same6, as vSF(ω) can
be considered as a frequency–dependent energy shift, no matter the basis. Therefore, the
bonding–antibonding character is settled by the non–interacting Green’s function G−1

0 ±(ω) =
ω−ε± only, and the inverted Green’s function in the bonding–antibonding basis simply reads:

G−1
SF ±(ω) =ω−ε±− vSF(ω) (4.29)

By definition the Green’s function in the site basis, eq. (4.28), must have the same local spectral
function as its real system counterpart, eq. (4.17):

− 1

π
ImGSF i i (ω) ≡ ASF i i (ω)

!= Ai i (ω) (4.30)

Since we are in a discrete system, this equation means that both the positions and the ampli-
tudes of the peaks must be reproduced by the auxiliary system.

Position of the peaks Since their position does not depend on the basis (see eq. (2.22)), and
we are in a discrete system, the poles of GSF ±(ω) and G±(ω) must be the same, namely:

ω−ε±− vSF(ω)|ω=ωs
= 0 (4.31)

with ωs the four poles of table 4.1, no more, no less. For small interaction U /t ¿ 1, the effect of
the potential will be to slightly move the poles from their U = 0 position, see fig. 4.5; we assume
that, since its effects are small, the spectral potential be small, too, in this regime, like the self
energy. It is therefore natural to assume that the nature of the poles be unchanged, namely that
(anti)bonding poles of the real system be reproduced by (anti)bonding poles of the auxiliary
system (to exchange their nature, a finite energy of the order of t should be needed at vanishing

6Indeed, considering a local potential vi , we have:(
v−− v−+
v+− v++

)
= 1

2

(
1 1
1 −1

)(
v1 0
0 v2

)(
1 1
1 −1

)
= 1

2

(
v1 + v2 v1 − v2

v1 − v2 v1 + v2

)
=

(
v 0
0 v

)
where in the last equality we implemented the site–symmetry property v1 = v2 := v ; therefore, the mixed terms are
zero and both the bonding v−− and antibonding v++ potentials are equal to v , too.
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(a) Σ−(ω) and A−(ω) (b) Σ+(ω) and A+(ω)

(c) Σi ,i (ω) and Ai ,i (ω) (d) Σi , j 6=i (ω) and Ai , j 6=i (ω)

Figure 4.8: Self energy, in black, real (thick) and imaginary part (dashed line)
and spectral function (gray dashed line) in different basis, as a function of ω,
aligned with µ = 0 for U = 2, with η = 0.01, in units of t ; the coloured dots
represent the values of the spectral potential at the poles: it is clear that, while
vSF(ωs) = Σ±(ωs) depending if ωs is a bonding or an antibonding pole, the
same is no more true in the site basis, where vSF(ωs) 6=Σi i (ωs).

U ). This assumption can be also written as ωSF
s = ωs , and it means that the “band structure”,

namely the dependence of the energy ωs on the state s, is automatically reproduced. Therefore,
the previous relation could be split into the following two:

ω−ε−− vSF(ω)|ω=ω1,ω4
= 0

ω−ε+− vSF(ω)|ω=ω2,ω3
= 0

(4.32)

from which the value of vSF(ω) at the poles is:

vSF(ω1) = 2t + U − c

2
vSF(ω2) = 0

vSF(ω3) =U

vSF(ω4) = 2t + U + c

2

(4.33)

which are shown in fig. 4.9a. Note that two equations analogous to eq. (4.32) hold in the real
system with Σ±(ω) in place of vSF(ω):

ω−ε−−Σ−(ω)|ω=ω1,ω4
= 0

ω−ε+−Σ+(ω)|ω=ω2,ω3
= 0

. (4.34)

Indeed, for a discrete system (not in the thermodynamic limit), the self energy is real at the
poles [63], see eq. (4.25), and in particular the spectral potential is nothing but the self energy
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(a) Spectral potential at the poles (b) Its derivative at the poles

Figure 4.9: Value of the spectral potential vSF(ω) and its first derivative (in
logarithmic scale) d vSF(ω)/dω at the poles ωs .

at the poles:

vSF(ωs) =
{
Σ−(ωs) if ωs =ω1,ω4

Σ+(ωs) if ωs =ω2,ω3
(4.35)

as can be explicitly checked and as shown in fig. 4.8. On the contrary, vSF(ω) 6= ReΣi i (ω), as one
could naively guess, because in the site basis the self energy is non local.

From these relations or directly from eq. (4.33), the spectral potential can be interpreted as
the additional energy which the auxiliary system needs to mimic the behaviour of the real one.
In particular, vSF(ωs) is related to the effective interactions we introduced in eq (4.18):

vSF(ω1) = Ũ 〈n̂i ,↑n̂i ,↓〉 6=0
−−

vSF(ω2) = Ũ 〈n̂i ,↑n̂i ,↓〉=0
αβ

vSF(ω3) = Ũ 〈n̂i ,↑n̂i ,↓〉 6=0
+−

vSF(ω4) = 4t +Ũ 〈n̂i ,↑n̂i ,↓〉 6=0
++

(4.36)

Only vSF(ω4) differs from the corresponding effective interaction Ũ++ by 4t : indeed, 4t is the
energy that must be provided to both electrons to go from the bonding to the antibonding
state, where they are then free to interact with an energy Ũ++; the spectral potential, like the
self energy, provides the system with both the activation energy 4t and the interaction Ũ++, so
that vSF(ω4) =Σ−(ω4) = 4t +Ũ++.

Amplitude of the peaks Eq. (4.35) holds whenever the system is discrete and the self energy
is diagonal. It could remind of the general observation that, whenever the self energy is local
and real (and it is, in the bonding–antibonding basis at the poles), the spectral potential is the
self energy. However, to write such a sentence, we still should prove that vSF(ω) reproduces also
the spectral function, peak positions and amplitudes, in the bonding–antibonding basis.

Indeed, not only GSF(ω) must have four poles in the four positions ωs , but also the pos-
itive (ASF i i (ω) is a diagonal spectral function, hence its peak amplitudes are non–negative)
amplitudes of the corresponding peaks must match the real system ones (4.21); for the sym-
metric dimer, the Lehmann weights

∣∣ fs(i ) f ∗
s ( j )

∣∣ = 2Zs are independent of i and j , see eq.
(4.19), and also, modulus 1

2 , even independent of the particular basis, compare eq. (4.19) and
(4.20). Therefore, we can simply match, in the bonding–antibonding basis, the positive weights∣∣ fs(±) f ∗

s (±)
∣∣= Zs of eq. (4.26) with the corresponding ones of the auxiliary system, defined by∣∣∣1− ∂vSF(ω)

∂ω

∣∣∣
ω=ωs

= 1/Z SF
s ; thus, besides a condition on vSF(ωs), we obtain four constraints on
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the derivatives of vSF(ω) evaluated at ωs , namely
∣∣∣1− ∂vSF(ω)

∂ω

∣∣∣
ω=ωs

= 1
Z SF

s
= 1

Zs
:

∂vSF(ω)

∂ω

∣∣∣∣
ω=ωs

=



2t
c +(

1
2±1

)
2t
c + 1

2

if ωs =ω1

−1∨+3 if ωs =ω2

−1∨+3 if ωs =ω3
2t
c −(

1
2±1

)
2t
c − 1

2

if ωs =ω4

(4.37)

where the double possibility for each pole reminds of the fact that Zs is just an absolute value;
the positive alternative is shown in fig. 4.9b.

Note that the requirement that eq. (4.31) do not have any other solutions than ω = ωs can
be relaxed: indeed, other poles ω̃s can show up as additional crossings of the two lines ω−ε±
with the function vSF(ω), provided that their weight Z̃s =

∣∣∣1− ∂vSF(ω)
∂ω

∣∣∣−1

ω=ω̃s

be zero, namely that

∂vSF(ω)
∂ω

∣∣∣
ω=ω̃s

diverge. Therefore, the potential – univocally fixed with its derivative by eq. (4.33)

and (4.37) wherever the spectral function is non–zero – can be arbitrarily defined also where
Ai i (ω) = 0 provided that, if it crosses the lines ω−ε±, its tangent be vertical.

With eq. (4.33) and eq. (4.37) the problem is solved: indeed, if eq. (4.32) do not have any
further solutions apart from the indicated ones and if the derivatives of the potential are fixed
to the values of eq. (4.37), the auxiliary system spectral function in the bonding–antibonding
basis is given by:

ASF −(ω) =− 1

π
ImGSF −(ω)

(4.29)= − 1

π
Im

1

ω− (ε0 − t )− vSF(ω)+ iη
=

= δ
[
ω−

(
ε0 − t + vSF(ω)

)]
(4.32)= ∑

ωs={ω1,ω4}

δ(ω−ωs)∣∣∣1− ∂vSF(ω)
∂ω

∣∣∣
ω=ωs

=

(4.37)= ∑
ωs={ω1,ω4}

Zsδ(ω−ωs)
(4.20)= A−(ω)

ASF +(ω) = ... = ∑
ωs={ω2,ω3}

Zsδ(ω−ωs)
(4.20)= A+(ω)

(4.38)

By transforming to the site basis, the spectral function can be expressed as:

[
ASF i j (ω)

]
i , j =

1

2

(
1 1
1 −1

)(
ASF −(ω) 0

0 ASF +(ω)

)(
1 1
1 −1

)
=

=
(

ASF −(ω)+ ASF +(ω) ASF −(ω)− ASF +(ω)
ASF −(ω)− ASF +(ω) ASF −(ω)+ ASF +(ω)

)
=

(4.38)=
(

A−(ω)+ A+(ω) A−(ω)− A+(ω)
A−(ω)− A+(ω) A−(ω)+ A+(ω)

)
=

(4.19)= [
Ai j (ω)

]
i , j

(4.39)

Note that, in particular, the spectral function is reproduced in the non–interacting limit U =
0 (trivial), and also in the atomic limit t → 0. In this latter case, the potential assumes the values
vSF(ω) = 0 in ω1 and ω2, and vSF(ω) = U in ω3 and ω4, yielding the two separated Hubbard
bands exactly, something that not only DFT, but not even the GW approximation is able to do
[96].

Summarizing, with the choice of eq. (4.33) and eq. (4.37), we obtain the following more–
than–welcome results:

ASF ±(ω) = A±(ω) ASF i j (ω) = Ai j (ω) (4.40)
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More than expected? Eq. (4.40) contains far more than what we expected: the spectral po-
tential vSF(ω), indeed, has the duty of reproducing only the diagonal of the spectral function in
the site basis, namely ASF i i (ω) = Ai i (ω), and that’s it. The reason we actually get also the off–
diagonal elements (and we could not avoid them) is due to the fact that the matrix of change
of basis is fixed; therefore, since the spectral function is reproduced in a basis (the bonding–
antibonding one, eq. (4.38)), it will be fully reproduced also in the other, diagonal and off–
diagonal elements.

One question remains: why is the bonding–antibonding spectral function fully reproduced?
The reasons are three: 1) for the symmetry of the problem (two equivalent sites), vSF(ω) is just a
frequency–dependent number in any basis, and in particular in the bonding–antibonding ba-
sis; 2) in a discrete system the number of poles is discrete and their position is independent of
the basis; their assignment to the correct bonding or antibonding character is done on the basis
of continuity with the U = 0 case; 3) in the bonding–antibonding basis the spectral function is
diagonal and, in particular, positive, as diagonal and positive is the Ai i (ω) we aim at reproduc-
ing; the difference in their weights (the 1

2 factor) is completely accounted for by the change of
basis matrix.

As a consequence, in a discrete system in which vSF(ω) is homogeneous (not site–dependent),
the whole spectral function in any diagonal basis (if any) is fully reproduced; therefore, not only
the diagonal but even the off–diagonal elements of the site–basis spectral function are exactly
reproduced.

In other words, it’s all a matter of symmetry and of a discrete number of poles. This is why
our effective theory yields more quantities than expected: just ask vSF(ω) to reproduce the di-
agonal of the spectral function in a certain basis, and it will automatically reproduce the whole
spectral function in any basis.

Lehmann representation and Kramers–Kronig relations As the spectral function is com-
pletely reproduced, both the peak positions and weights, one would be very tempted to assume
a Lehmann representation for GSF and conclude that, as ASF i j (ω) = Ai j (ω), also GSF i j (ω) =
Gi j (ω). This is actually not the case as the Lehmann representation is equivalent to the Kramers–
Kronig relations, which do not hold with a real spectral potential. Indeed, should one try to
impose a Lehmann decomposition for the Green’s function of eq. (4.28), with four simple poles
fixed to the position of the peaks of the spectral function and their amplitudes determined by
their weight, one would obtain the following splitting:

1
2

ω− (
ε−− vSF(ω)

)+ iη

↓= ∑
s=1,4

Zs

ω−ωs + iη
1
2

ω− (
ε+− vSF(ω)

)+ iη

↓= ∑
s=2,3

Zs

ω−ωs + iη
,

and it is possible to show that these equation have no solutions if vSF(ω) ∈ R; indeed, the only
solution of these equations is the complex–valued self energy itself. This, besides proving that
the Green’s function is not reproduced although the whole spectral function is, also explicitly
shows that a Lehmann decomposition does not hold in the auxiliary system, and therefore the
spectral potential is not a simple function of ω, as it will become evident in the next section.

4.2.2 Sham–Schlüter equation approach

The proceeding above has the merit of showing step by step the construction of the spectral
potential, providing a clear picture of its meaning and role. On the other hand, not always one
can afford to pursue this path, and in general a true solution of the generalized Sham–Schlüter
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(a) The spectral function resulting from v (k=3)
SF (ω), in red,

versus the real system spectral function, in blue, in loga-
rithmic scale.

(b) The spectral potential v (k=3)
SF (ω), in black; in blue, the

two lines ω−ε± = 0; the coloured dots are the expected val-
ues of the potential at the poles, eq. (4.33).

Figure 4.10: The result of the generalized Sham–Schlüter equation
(4.42) at the fourth iteration, using the prescription GSF i i (ω)[v (k)

SF ] =
Re[GSF i i ](ω)[v (k)

SF ]− iπAi i (ω) (third column of fig. 4.13 and 4.12) for U = 2,
t = 1, η= 10−6 and µ= 0.

equation (3.5) is needed; this equation is on the same footing of eq. (4.30), and can be written
as:

vSF(ω)
∑

j
Im

[
GSF i j (ω)G j i (ω)

]=∑
j l

Im
[
GSF i j (ω)Σ j l (ω)Gl i (ω)

]
(4.41)

The Sham–Schlüter equation can be solved iteratively, starting from an input v (k)
SF (ω), with

k = 0, and evaluating the output v (k+1)
SF (ω), till – in principle – self–consistency, according to the

following prescription7:

v (k+1)
SF (ω) =

Tr
[

Im
(
GSF(ω)

[
v (k)

SF

]
Σ(ω)G(ω)

)]
Tr

[
Im

(
GSF(ω)

[
v (k)

SF

]
G(ω)

)] (4.42)

The real system Green’s function and self energy are given by eq. (4.17) and (4.24) respec-
tively. They are exact, since we solved analytically the model. In most situation this is not the

7This is only one possible choice among others: one can decide to update the spectral potential in one of the
auxiliary system Green’s functions and treat the explicit spectral potential as an input, and so on...
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Figure 4.11: Same as figure 4.10b, but with the real part of the bonding (in
green) and antibonding (blue) self energies. Since the self energy is diagonal
in the bonding–antibonding basis, the potential coincides with the self energy
at the poles, both in its value (exactly) and in its first derivative (exactly at ω1

and ω4, almost at ω3 and not yet at ω2; as mentioned in the text, the reason
for this disagreement are instabilities of the amplitudes for small values of η.)

case, hence the linearized version of the Sham–Schlüter equation, eq. (3.25), is considered.

As for the auxiliary system Green’s function GSF i j (ω)
[
v (k)

SF

]
, given by eq. (4.28), only the

imaginary part of its diagonal can be considered as known; one can directly implement this
knowledge, substituting ImGSF i i (ω)

[
v (k)

SF

]
with −πAi i (ω) wherever found (let us call this ap-

proach “C”), or leave also the imaginary part of the diagonal as a functional of v (k)
SF (ω) (ap-

proach “B”). The latter seems a more egalitarian prescription, as every component is a func-
tional of the same spectral potential, while the former, in which any component is a functional
of v (k)

SF but ImGSF i i , which is exact and can be considered as a functional of v (k→∞)
SF , could

be a quicker approach. In a third implementation (approach “A”) we suppose (wrongly) that
also the real part of the diagonal of the Green’s function is reproduced, namely we use that
GSF i i (ω)[v (k)

SF ] = Re[Gi i ](ω)− iπAi i (ω), with the spectral potential that doesn’t enter at all the
diagonal of GSF. Here is a summary of the three approaches:

GSF i i (ω)[v (k)
SF ] =


Re[Gi i ](ω)− iπAi i (ω) 1st column (Ak)

Re[GSF i i ](ω)[v (k)
SF ]+ i Im[GSF i i ](ω)[v (k)

SF ] 2nd column (Bk)

Re[GSF i i ](ω)[v (k)
SF ]− iπAi i (ω) 3rd column (Ck)

I stress that, at self–consistency, only the second and the third choice are correct, while the first
is not from the beginning (it reproduces too much).

We implemented the three techniques in mathematica 10.1, starting from a zero spec-
tral potential v (k=0)

SF (ω) = 0 (the Kohn–Sham potential, actually) and updating till the fourth
interaction k = 4. The output potentials at each iteration and the relative spectral function are
presented in fig. 4.12 and fig. 4.13: the first column for the approach A, the second for B and
the third for C.

The final result at the fourth iteration – almost converged – in the approach C is presented
in fig. 4.10. We first notice that the potential vSF(ω) is defined on the whole frequency axis,
and not just at the poles. This is not a contradiction with our analytic results: numerically,
the spectral function, too, is defined on the whole axis, see fig. 4.10a, because η is small but
non zero. Therefore, also the spectral potential is univocally fixed for every frequency. This
is an important point: the numerical implementation is different from the analytical model I
discussed above. The former gets closer and closer to the latter the smaller the value of η. On
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(A1) (B1) (C1)
v (k=1)

SF (ω)

(A2) (B2) (C2)
v (k=2)

SF (ω)

(A3) (B3) (C3)
v (k=3)

SF (ω)

(A4) (B4) (C4)
v (k=4)

SF (ω)

Figure 4.12: Solution v (k)
SF (ω) at the k–th iteration of the generalized Sham–Schlüter equation

(4.42), for U = 2, t = 1, η= 10−6 and µ= 0. The scale is the same as in fig. 4.10b.

the other hand (see below) too small values of η generate numerical instabilities. Therefore, a
compromise was chosen with η= 10−6t .

An essential confirmation of the theory is that peaks in the spectral function arise wherever
the two lines ω−ε± = 0 cross the potential vSF(ω), the amplitude being larger the smaller the
derivative of the potential at the crossing. The potential of fig. 4.10b has indeed the expected
values at the four pole position ωs , eq. (4.33). Moreover, it crosses the two lines ω−ε± = 0 with a
derivative which is close to the expected one, eq. (4.37). Indeed, the generalized Sham–Schlüter
equation must be solved for a value of η very close to zero, in order to display delta peaks and
be as close as possible to the analytic model; with tiny values of η, the amplitudes become
numerically unstable, as can be seen also from the exact spectral function, that presents two
different amplitudes for the peaks at ω2 and ω3, which should instead be the same. Therefore,
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(A1) (B1) (C1)
A(k=1)

SF (ω)

(A2) (B2) (C2)
A(k=2)

SF (ω)

(A3) (B3) (C3)
A(k=3)

SF (ω)

(A4) (B4) (C4)
A(k=4)

SF (ω)

Figure 4.13: Spectral functions evaluated with the potentials of fig. 4.12, in red, and the real
system result, in blue. The scale is the same as in fig. 4.10a.

we cannot say much about the derivative of the potential at the poles from these plots.

Besides the four expected poles, there are other crossings between the lines ω−ε± = 0 and
the potential vSF(ω). In general, iterating the equation (see figure 4.12), the potential function
gets more and more vertical at these spurious crossings, and the spurious peaks in fig. 4.13
become less and less important. This is a confirmation of the fact that the auxiliary system can
display additional poles (crossings) provided that their weight is zero (vertical tangent).

By comparing the spectral functions at different iterations, we can conclude that the proce-
dure is converging to the expected result both in the second (B) and the third column (C), but
not, as expected, for the first one (A): for ω∼ 3, between the second and the third peak, and for
ω∼ 5, between the third and the fourth peak, the auxiliary system spectral function of the first
column does not match its real system counterpart, and the mismatch does not reduce with
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the iterations. On the contrary, for the other two schemes, in the same regions, the agreement
improves.

As for the corresponding spectral potentials, more and more features appear by increasing
the number of iterations, but they are mostly harmless as they are far from the poles and with
vertical tangent.

We have thus confirmed the general finding of above. Furthermore, we have shown that
even for a very small system (two sites), even when the real system Green’s function and self
energy are exactly known, solving the Sham–Schlüter equation is far from trivial. That is why
more efficient approaches, like the one developed in chapter 5, constitute appealing alterna-
tives.

4.3 The homogeneous electron gas

The homogeneous electron gas (HEG, for brevity) is a model whose importance cannot be
overestimated [47]. Besides giving an approximated picture of metals and plasmas [4], exhibit-
ing real phenomena like screening, Friedel oscillations and occurrence of plasmons, it is a test
for many theoretical approaches that take into account the electron–electron interaction, as
the further complication of inhomogeneity due to the lattice is lifted.

Indeed, the homogeneous electron gas consists of N interacting electrons in a volume V in
the thermodynamic limit N ,V →∞, whose finite density n = N /V is a constant that completely
characterizes the model; a uniform positively charged background of density n, too, which
mimics the inert and lifeless ions of the Born–Oppenheimer approximation, ensures the overall
neutrality of the system. An additional simplification due to homogeneity is the rotational and
translational symmetry of the whole system.

For such a model the Hamiltonian (2.3a) in reciprocal space, in the thermodynamic limit,
reads [4]:

ĤHEG =∑
k

k2

2
ĉ†

k ĉk + 1

2V

∑
k ,k ′

∑
q 6=0

ĉ†
k+q ĉ†

k ′−q

4π

|q |2 ĉk ′ ĉk (4.43)

where the zero transferred momentum q = 0 is exactly balanced by the interaction of the elec-
trons with the neutralizing background (and the self energy of the background, too): as a result,
the external and the Hartree potential sum to zero, plus a constant interaction energy of the
background with itself.

It is useful to introduce a quantity, the Wigner–Seitz radius rs , defined (in atomic units) as
the radius of a sphere containing exactly one electron: 4

3πr 3
s = 1

n : the denser the system, the
smaller rs and viceversa.

As the Fermi surface remains a sphere (for symmetry reasons) enclosing the same volume
both for non–interacting as well as for interacting electrons (Luttinger theorem), it is easy to

express the Fermi wave vector as a function of rs : kF = (9π
4

) 1
3 1

rs
= 1.9192

rs
; also the plasma fre-

quency, ωP =p
4πn, is ωP = 31/2

r 3/2
s

= 1.7320
r 3/2

s
.

As rs represents the average distance between electrons, it sets the behaviour of both the
kinetic and the Coulomb energy of the Hamiltonian (4.43): if the latter goes as 1/rs , the former
scales as 1/r 2

s (or as k2
F ); thus the system will be close to a free–electron gas in the high density

limit, rs ¿ 1 whereas it will exhibits particle–like behaviour in the low density regime rs À 1 till,
eventually, a crystallization of the electrons at fixed positions, the Wigner crystal [97] (strong
correlation regime).

Thus, in the high–density limit rs → 0, the electron–electron interaction can be considered
as a small perturbation of the kinetic term, although “the potential is not weak nor short range”

[4]; the ground state energy is therefore E0
rs→0= 3

5 NεF

(
1− ( 125

18π4

) 1
3 rs +O

(
r 2

s lnrs
))

[98], where
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(a) Real space potentials as a function
of r /λ, in units of 1/λ.

(b) Reciprocal space potentials as a
function of λk, in units of λ2.

Figure 4.14: Full (purple), short range (blue) and long range (red) Coulomb
potential in real and reciprocal space; the full potential is the sum of its short
and long range components, and it asymptotically approaches them (in real
space) in the limits r ¿λ and r Àλ respectively.

E (0)
0 = 3

5 NεF = 3
10

(9π
4

) 2
3 N

r 2
s

is the ground state energy of a free Fermi gas (of purely kinetic origin),

while the second term is the exchange energy Ex =−N 3
4

( 3
π

) 1
3 n

1
3 , and it is exact [99, 100].

On the opposite side, in the strongly–correlated regime rs À 1, the ground state total energy

has the asymptotic behaviour describing a Wigner crystal: E0
rs→∞= N

2

(
−1.79

rs
+ 2.66

r 3/2
s

+ ...
)
, which

is lower than the E rs→0
0 one: localization of electrons is favoured over their spreading.

In the intermediate situation, which is of the most relevance as the average densities of most
metals correspond to 1.8 < rs < 6 [101], one can resort to interpolating techniques [102], pertur-
bation expansions or Monte–Carlo simulations [103]: the ground state total energy expressed
as a functional of the density (or of rs) is, for the homogeneous electron gas, finally at hand.

The situation is not the same for the excited states...

4.3.1 Real system viewpoint: HSE06 solution

Despite the enormous simplification represented by eq. (4.43) with respect to eq. (2.3a),
namely a homogeneous system with no ions instead of a true ion–driven inhomogeneous one,
a full exact solution of ĤHEG is still out of reach. In particular, the exact spectral function that
corresponds to ĤHEG, as well as the exact Green’s function and self energy, are unknown.

To test the spectral potential approach, we must resort to approximate forms of Σ. We will
consider the HSE06 self energy [104, 12], as 1) it is non–local, hence it will provide a true chal-
lenge to our approach; 2) it is real and static, meaning all the frequency–dependence of the
corresponding vSF(r ,ω) will be just a consequence of non–locality and 3) it is a realistic self
energy, widely employed for studying real materials [105], from phonons [106] to impurities
[107].

The HSE06 functional stems from the observation that density functional theory and the
Hartree–Fock approximation usually depart from experiments in opposite directions: in DFT,
LDA and PBE [108] underestimate gap and bandwidth, while Hartree–Fock overestimates them;
LDA has overbinding tendencies, while Hartree–Fock favours dissociation and localization.
Moreover, from a theoretical viewpoint, most of DFT functionals suffer from a self–interaction
issue, but they include correlation to a certain extent; on the other hand, Hartree–Fock is self–
interaction free but does not include correlation.

These observations encouraged to compensate the opposite drawbacks of both approaches
by building hybrids of the two, from the simplest “half–and–half” one [109] to a more elaborate
semiempirical mixture (B3PW91 [110], B3LYP) to the PBE0 functional [111], which takes the
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Figure 4.15: Short range Coulomb potential as a function of r , for different
screening length λ: when there is no screening, λ→∞, we are back to the full
Coulomb result.

correlation contribution from the PBE functional of DFT [108], E PBE0
c = E DFT

c ≡ E PBE
c , while it

splits the exchange part E PBE0
x into:

E PBE0
x =αE HF

x + (1−α)E PBE
x (4.44)

with E HF
x the one of eq. (2.9), and the mixing parameter α set to 1

4 by perturbation theory8.

The HSE06 functional [104] is based on the further consideration that the Coulomb interac-
tion in solids is actually screened, a phenomenon that – among other things – prevents diver-
gences or unphysical behaviour in the exchange contribution. To take advantage of screening
in the simplest possible way, the Coulomb potential is separated into a short (SR) and a long
range (LR) parts via the introduction of a screening length λ9:

1

r
= erfc

( r
λ

)
r︸ ︷︷ ︸

vSR(r )

+ erf
( r
λ

)
r︸ ︷︷ ︸

vLR(r )

(4.45)

This separation is exact, as erfc(x) ≡ 1 − erf(x), with the error function defined as erf(x) :=
2p
π

∫ x
0 d te−t 2

; the behaviour of the short and long range components of the Coulomb poten-
tial is shown in fig. 4.14.

The proposal of [104] is to apply the range separation (4.45) [113] to the exchange part of the
PBE0 functional E PBE0

x ; as the long range parts of the PBE and the Fock exchange functionals are
small and tend to cancel each other, the exchange and correlation energy of eq. (4.44) becomes:

E HSE06
xc = E PBE

xc +α
(
E HF,SR

x −E PBE,SR
x

)
(4.46)

where the superscript SR means that only the short range part of the Coulomb potential must be
considered. Eq. (4.46) represents a hybrid functional in which only the short–range component
of exchange is affected by the Fock term. In the long screening–length limit, the short range

part dominates and tends to the full Coulomb potential, and E HSE06
xc

λÀ1−→ E PBE0
xc ; on the opposite

side, for large screening (small screening length), the long range component dominates and

the short range one goes to zero, so that we recover the usual PBE: E HSE06
xc

λ¿1−→ E PBE
xc . Here,

8Note that α itself can be interpreted as a screening of the Fock exchange term [112].
9The parameter λ is the inverse of ω, the symbol often used in literature; we prefer not to use the latter to avoid

confusion with frequency.
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Figure 4.16: Short range Fock self energy (4.50) in units of 2kF
π (the Hartree–

Fock value at k = 0), as a function of k/kF, for different screening length λ:
when there is no screening, λ → ∞, we are back to the Hartree Fock result,
which exhibits a vertical tangent for k = kF.

we consider an intermediate value λ = 9.0909Å, chosen from a fit to semiconductor results
[12, 114].

The energy functional (4.46) corresponds to the following exchange–correlation self energy
(or generalized Kohn–Sham potential):

ΣHSE06
xc (r ,r ′) =

[
vPBE

xc (r )−αvPBE,SR
x (r )

]
δ(r − r ′)+αΣSR

x (r ,r ′), (4.47)

which is real and static. Of all its ingredients, only the last term is a true non–local self energy,
from which all the frequency dependence of the spectral potential will stem.

In the homogeneous electron gas, the local contributions to ΣHSE06
xc are just numbers, and it

is useful to move to reciprocal space, where the self energy reads:

ΣHSE06
xc (k) =

[
vPBE

xc −αvPBE,SR
x

]
+αΣSR

x (k). (4.48)

For simplifying the notation, we call hloc
xc := vPBE

xc −αvPBE,SR
x the local (hence constant) part of

ΣHSE06
xc . The short range part of the Fock self energy ΣSR

x (k) is defined from an analogous of eq.
(2.47), with vSR(r ) in place of vC (r ):

ΣSR
x (k) = i

∫
d 3q

(2π)3

dω′

2π
e iω′ηG(|k +q |,ω+ω′)vSR(q) =−

∫
d 3q

(2π)3 vSR(q)n|k+q |, (4.49)

with the occupation number nq defined as nq = ∫ dω
2π e iωηG(q ,ω). The integral in eq. (4.49) can

be evaluated analytically, as we have done in appendix (F). The result is:

ΣSR
x (k) =−kF

π

[
1− k2 −k2

F

2kFk
ln

∣∣∣∣kF +k

kF −k

∣∣∣∣
]
+

+ 1

πλ2k

{
e−

λ2

4 (k+kF)2 −e−
λ2

4 (k−kF)2 +p
πλk

[
erf

(
λ(k +kF)

2

)
−erf

(
λ(k −kF)

2

)]
+

+ λ2

4
(k2 −k2

F)

[
Ei

(
−λ2

4

(
k −kF

)2
)
−Ei

(
−λ2

4

(
k +kF

)2
)]}

. (4.50)

where the first line is the usual Hartree–Fock self energy, while the rest is −ΣLR
x (k); the expo-

nential integral is defined as Ei(x) :=−∫ +∞
−x dt e−t

t . As it is clear from fig. (4.16), ΣSR
x (k) removes
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the divergence in the derivative of the Hartree–Fock self energy at k = kF, which is at the origin
of many unphysical behaviours like a zero density of states at the Fermi level.

Putting backΣSR
x (k) in eq. (4.48), one can evaluate the Green’s function G(k,ω) and therefore

the k–resolved spectral function A(k,ω), which is:

A(k,ω) =− 1

π
sign(ω−µ)ImG(k,ω) = δ

[
ω−

(
ε0

k +hloc
xc +αΣSR

x (k)
)]

, (4.51)

namely a single delta function centered on the single–particle energy εk = ε0
k +hloc

xc +αΣSR
x (k);

the latter equation defines the band structure, in which an energyω= εk is associated to each k .
Since, in the homogeneous electron gas with static self energy, the correspondence k ↔ εk =ω

is one to one, we can invert the relation ω= εk and get the inverse band structure k = k0(ω) (in
the most general case, other solutions k1(ω), k2(ω), ..., show up, corresponding to satellites).
Note that k0(ω) exists whenever ω≥µ−W, with the expression of the bandwidth W given in eq.
(F.7).

The full spectral function in real space is:

A(r ,r ′,ω) =
∫

d 3k

(2π)3 e i k ·(r−r ′) A(k,ω). (4.52)

This integral can be evaluated analytically, see appendix F, and the result is:

A(r ,r ′,ω) = θ
(
ω−µ+W

)
π2

∣∣∣∣∣∣
k2

2

k +α
dΣSR

x (k)
dk

∣∣∣∣∣∣ sin
(
k|r − r ′|)(

k|r − r ′|)
∣∣∣∣
k=k0(ω)

. (4.53)

The spectral function can also be expressed as:

A(r ,r ′,ω) = A(r ,r ,ω)

{
sin

(
k|r − r ′|)(

k|r − r ′|)
∣∣∣∣
k=k0(ω)

}
, (4.54)

which has not, in general, a definite sign. By contrast, its diagonal:

A(r ,r ,ω) = θ
(
ω−µ+W

)
π2

∣∣∣∣∣∣
k2

2

k +α
dΣSR

x (k)
dk

∣∣∣∣∣∣
k=k0(ω)

(4.55)

is positive, and has the behaviour shown in fig. 4.17. Note that the correspondence between
ω and A(r ,r ,ω) is one–to–one as far as A(r ,r ,ω) is monotonically increasing, namely as far as
there is no ω for which the derivative of A(r ,r ,ω) is zero; this condition can be further formal-
ized by saying that for no ω the corresponding k = k0(ω) fulfills the equation 1

α =Σ′′(k)− 2
k Σ

′(k);
for our scopes, the limit λ/ 65 (with kF = 1) is enough, as we will work with λkF ∼ 3÷10.

Relation between diagonal and off–diagonal elements An important consideration about
eq. (4.54) is the following: the knowledge of the diagonal of the spectral function is not enough

– at first sight – to obtain the full spectral function; also the additional term
sin(k|r−r ′|)

(k|r−r ′|) is needed,
that only apparently is a property of space only, independent of the form of the self energy; the
latter, indeed, enters the definition of k = k0(ω), and the relation k = k0(ω), namely the inverse
band structure, must be at hand in order to obtain the additional factor. One would conclude
that, as expected, even if we knew A(r ,r ,ω), we would still need the band structure k0(ω) to get
to A(r ,r ′,ω).

This conclusion, that should hold in general, is not true in this case, in which there is a
one–to–one correspondence both between k0(ω) and ω and between ω and A(r ,r ,ω), at least
for the λ we consider. Therefore one can express the band structure k0(ω) as a functional of
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Figure 4.17: Diagonal of the spectral function (4.54), in arbitrary units, for
different values of λ, as a function of frequency with µ = 0, for kF = 1. In the
unscreened situation, we recover the Hartree–Fock density of states, and the
free behaviour ∼p

ω for λ≤ 1.

A(r ,r ,ω), by inverting eq. (4.55), and get the whole spectral function from eq. (4.54): as soon
as the interaction is sufficiently screened, for a large class of static self energies, the knowledge of
the diagonal of the spectral function completely defines the system.

On the opposite side, were we in the Hartree–Fock limit λ→∞, the knowledge of A(r ,r ,ω)
would not be equivalent to the one of k0(ω), as the band structure ω↔ k0(ω) would still be one–
to–one, but the same value of A(r ,r ,ω) could correspond to up to three different frequencies:
more generally, dips (or peaks) in A(r ,r ,ω) are regions in which a true knowledge of the band
structure is needed, if one wants to reproduce also the off–diagonal elements: there, the diagonal
of the spectral function does not offer a complete description of the spectral properties; we will
come back to this observation when we will consider real materials.

Note also that the situation is analogous to the dimer of eq. (4.19): even there, we could
have written:

Ai j (ω) = Ai i (ω)
{
δωs ,ab(−1)(i− j )

}
,

which is on the same footing of eq. (4.54): it says that, whenever a peak ωs is associated to an
antibonding peak, the relative weight changes sign: that is the “band structure”, the knowledge
of the character of the peaks, namely if they are bonding or antibonding peaks.

Two simplifications happen in the dimer: first, since the poles are discrete, we can read
them from Ai i (ω): in the “band structure” analogy, we know the energy ω(k) without knowing
yet to which k it corresponds; but since the poles are well-separated, we can follow their be-
haviour from U = 0 to increasing U , adiabatically connecting the poles of the interacting dimer
to the ones of the non–interacting one; this trick allows us to infer the state dependence, namely
to connect each ωs to a bonding or an antibonding U = 0 peak (analogously, the band structure:
connect ω(k) to k), hence to know the factor δωs ,ab.

Furthermore, once we know whether we have to use it or not, the multiplicative factor
(−1)(i− j ) is completely independent of the approximation used for the self energy, and it is just
a property of space; hence, we would not even need the knowledge of the band structure here.

The situation would be analogous to a hypothetic discrete homogeneous electron gas, with
a discrete set of k–points: there, assuming the validity of eq. (4.54), we could read the poles
from A(r ,r ,ω) and infer their position from an adiabatic switching–on of the interaction; that
would be enough to know the band structure, and the full spectral function A(r ,r ′,ω) could be
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at hand.

4.3.2 The auxiliary system

We now aim at reproducing the diagonal of the spectral function, eq. (4.55), with a local
spectral potential which, in the homogeneous electron gas, does not depend on space: vSF(ω);
as the exchange–correlation self energy (4.47) is composed of a local and a non–local part,
Σxc(k) = hloc

xc +αΣSR
x (k), the truly frequency–dependent part of the spectral potential is the

one corresponding to the non–local part of the self energy; therefore we can write vSF(ω) =
hloc

xc +αvSR
x (ω), maintaining the symmetry of the two formulations.

Let us now build the system corresponding to a real, local and frequency dependent poten-
tial vSF(ω).

The auxiliary system The auxiliary system differs from the real one in the fact that the role of
the exchange correlation self energy is played by a real, local and frequency dependent poten-
tial vSF(ω). Therefore, the inverse Green’s function of it is, in reciprocal space:

G−1
SF (k,ω) =G−1

0 (k,ω)− vSF(ω) (4.56)

with G−1
0 (k,ω) =ω−ε0

k . The associated spectral function is:

ASF(k,ω) = δ
(
ω−ε0

k − vSF(ω)
)

(4.57)

This is nothing but A0
(
k,ω− vSF(ω)

)
, with A0(k,ω) = δ

(
ω−ε0

k

)
the non–interacting spectral

function associated to G0. From this observation, the auxiliary system full spectral function
ASF(r ,r ′,ω) will be the analogous of eq. (4.53), with Σxc = 0 and shifted frequency argument:

ASF(r ,r ′,ω) = θ
(
ω− vSF(ω)

)
π2

∣∣∣∣∣
k2

2

k

∣∣∣∣∣ sin
(
k|r − r ′|)(

k|r − r ′|)
∣∣∣∣
k=k0

0 (ω−vSF(ω))

as µ0 −W0 = 0. In the free case, the inverted band structure k0
0(ω) is trivial, as k0

0(ω) is the
positive solution to the simple equation ω = ε0

k , namely k0
0(ω) = p

2ω; therefore, the previous
expression becomes:

ASF(r ,r ′,ω) = ASF(r ,r ,ω)
sin

(
k|r − r ′|)(

k|r − r ′|)
∣∣∣∣
k=p2[ω−vSF(ω)]

(4.58)

with:

ASF(r ,r ,ω) = θ
(
ω− vSF(ω)

)
2π2

√
2
[
ω− vSF(ω)

]
(4.59)

These expressions are quite general, as we have not specified yet the form of the potential,
nor we have characterized in any way the auxiliary system, but for the fact that its self energy is
real and local; nevertheless, an important consequence of this last assumption already shows
up: we can explicitly notice that the knowledge of the diagonal of the spectral function only is
enough to reconstruct the off–diagonal terms, too:

ASF(r ,r ′,ω) =
sin

[
2π2|r − r ′|ASF(r ,r ,ω)

]
2π2|r − r ′| (4.60)

Note that in this case there is no condition on the form of the potential, or, which is the same,
on the magnitude of λ: that is a hint that the two formulations somehow differ.
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Figure 4.18: The purely frequency–dependent part of the spectral potential
vSR

x (ω) as a function of frequency with µ = 0, in units of 2kF
π for kF = 1, for

different values of λ. This figure has to be compared to fig. 4.16.

The generalized Sham–Schlüter equation The auxiliary system is defined once we imple-
ment the generalized Sham–Schlüter equation in the simple form ASF(r ,r ,ω) = A(r ,r ,ω), with
the real and the auxiliary system spectral functions given by eq. (4.55) and eq. (4.59) respec-
tively:

A(r ,r ,ω) = θ
(
ω−µ+W

)
π2

∣∣∣∣∣∣
k2

2

k +α
dΣSR

x (k)
dk

∣∣∣∣∣∣
k=k0(ω)

= θ
(
ω− vSF(ω)

)
2π2

√
2
[
ω− vSF(ω)

]
(4.61)

When ω ≤ µ−W, the spectral function is zero, and it is enough that vSF(ω) ≥ ω to make the
auxiliary system spectral function zero as well. On the other hand, when ω ≥ µ−W, a non
trivial relation links the spectral potential to the diagonal of the real system spectral function,
namely:

vSF(ω) =ω− 1

2

[
2π2 A(r ,r ,ω)

]2
(4.62)

which can be analytically continued also in the region where A(r ,r ,ω) = 0 by vSF(ω) =ω; we will
choose, instead, in agreement with [79], the alternative continuation vSF(ω) = µ−W, namely
a constant potential equals to its value at the bottom band; in this way, vSF(ω ≤ µ− W) =
ΣHSE06

xc (k = 0), as can be seen by comparing fig. 4.18 with fig. 4.16. Finally, the spectral po-
tential results in:

vSF(ω) =


const =µ−W if ω≤µ−W

ω−2

∣∣∣∣∣ k2

2

k+α dΣSR
x (k)
dk

∣∣∣∣∣
2

k=k0(ω)

if ω≥µ−W
(4.63)

represented, for different values of λ, in fig. 4.19. Comparing the spectral potential of fig. 4.18
with the self energy of fig. 4.16, we can appreciate the transformation of non–locality into fre-
quency dependence [6] that we obtained: the more the self energy is non–local, namely the
more it varies with k, the stronger the dependence on frequency of the spectral potential (in
this case, for large values of λ).

Off–diagonal elements With such a potential, the diagonal of the spectral function is ex-
act by construction; since, by eq. (4.54) and the discussion that follows, A(r ,r ′,ω) is linked
to A(r ,r ,ω), one could expect that also the off–diagonal elements are exactly reproduced by
vSF(ω): that is the content of eq. (4.60), which is even simpler than eq. (4.54).
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Figure 4.19: Same as fig. 4.19 but for the full spectral potential vSF(ω) = hloc
xc +

αvSR
x (ω), this time in eV.

However, this is not the case: as discussed in paragraph 3.2.2, functionals in the real and the
auxiliary system usually differ, and the same function (the exact A(r ,r ,ω)), plugged in the two
expressions, yields different results. This is what happens here, and the full spectral function
is given, in the real and the auxiliary system, respectively by eq. (4.54) and eq. (4.60), that can
both be expressed in terms of k = k0(ω) in the following way:

A(r ,r ′,ω) = θ
(
ω−µ+W

)
2π2

k2

k +α
dΣSR

x (k)
dk

sin
(
k|r − r ′|)(

k|r − r ′|)

ASF(r ,r ′,ω) = θ
(
ω−µ+W

)
2π2

k2

k +α
dΣSR

x (k)
dk

sin

(
k|r−r ′|

1+ α
k

dΣSR
x (k)
dk

)
(

k|r−r ′|
1+ α

k
dΣSR

x (k)
dk

) (4.64)

Clearly, if r 6= r ′, the two expressions usually differ; they yield the same result only for dΣSR
x /dk =

0, that is for k0(ω) = 0 and k0(ω) →∞; this corresponds to ω=µ−W and ω→∞.

The fact that the off–diagonal elements of the spectral function are non reproduced by the
auxiliary system pushes us to investigate the behaviour of the spectral function in k–space.

k–resolved spectral function Like the off–diagonal elements, also the k–resolved spectral
function is not a quantity we expect to be reproduced in the auxiliary system; indeed, the two
are just linked by a Fourier transform, eq. (4.52).

The k–resolved spectral function in the real system is given by eq. (4.51), namely a delta
function centered on the excitation energy εk :

εk = ε0
k +hloc

xc +αΣSR
x (k). (4.65)

In the auxiliary system, the inverse Fourier transform of the full real space spectral function,
eq. (4.60), yields:

ASF(k,ω) = δ
[
ω− (

ε0
k + vSF(ω)

)]
, (4.66)

which can be a single delta function as well as, in principle, a more complicated object. That
depends on the number of solutions of the equation ω= ε0

k +vSF(ω), namely on the number of
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Figure 4.20: Same as fig. 4.18, only the λ→∞ spectral potential vSF(ω), in eV.
Also the line ω−ε0

k is shown, for a particular value of k. It crosses the potential
for three values of frequencies, yielding three peaks in the spectral function.

crossings of the potential vSF(ω) with the line ω−ε0
k ; these can be more than one, as the spectral

potential depends non–trivially on frequency.

In the limit λ→∞, for instance, there are values of k for which three crossings are present,
see fig. 4.20: for one of the smallest of such ks, ASF(k,ω) is composed of three peaks: a more
intense one associated with the usual quasi particle, and two smaller ones around the Fermi
energy, that can be interpreted as satellites associated with the cusp of the potential; for in-
creasing k, some weight is transferred from the quasi particle to the satellites, until, finally, the
higher energy satellite acquires all the spectral weight and becomes the quasi particle itself.

For the screening that we consider, such a situation never occurs, and the crossing between
the potential vSF(ω) and ω− ε0

k is always unique: to any k there corresponds a single delta
function centered on the energy:

εSF
k = ε0

k + vSF(εSF
k ) ≡ ε0

k +hloc
xc +αvSR

x (εSF
k ). (4.67)

As the correspondence is always one–to–one, the map k → εSF
k constitutes the band struc-

ture of the auxiliary system, as well as the map k → εk , eq. (4.65), is the band structure of the
real system. The natural question is the connection between the two.

The band structure in the auxiliary system can be found by fixing the wavenumber k , and
then solving the equation ω−ε0

k = vSF(ω)
∣∣
ω=εSF

k
with the spectral potential given by eq. (4.63).

The result is:
k0

(
εSF

k

)
|k | = 1+ α

k0
(
εSF

k

) dΣSR
x (k)

dk

∣∣∣∣∣
k=k0(εSF

k )

(4.68)

which is an implicit equation that links the excitation energy εSF
k to the wave vector k , by pass-

ing through the intermediate object k0. In particular, from the fact that no quantity in the
previous equation is negative, we can directly affirm that k0

(
εSF

k

)≥ |k | for all k and, since k0(ω)
is an increasing function of ω, we can conclude that:

εSF
k ≥ εk ∀k (4.69)

with the equality holding when dΣSR
x (k)/dk = 0, namely for k = 0 and |k | → ∞. Eq. (4.68)

can be solved numerically and the result is shown in fig. 4.21, left panel: the red curve, which
represents the auxiliary system dispersion εSF

k , is always at higher energy than the blue curve,
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Figure 4.21: HEG (rs = 3.9315a0, Na average value) dispersion (left), spectral func-
tion (middle) and band structure (right). The blue curve has been calculated using
the self energy, while the red one is the auxiliary system approach (as a compari-
son, the green–dashed curve for Kohn–Sham in the LDA approximation). The high
symmetry points in the band structure refer to a simple cubic unit cell: R = (

0, 1
2 , 1

2

)
,

Z = (
0,0, 1

2

)
, Γ= (0,0,0) and M = (1

2 , 1
2 ,0

)
.

the standard dispersion εk . We call the difference between the two ∆k :

∆k : = εSF
k −εk = vSF

(
εSF

k

)−Σxc
(|k |)=

=α
[

vSR
x

(
εSF

k

)−ΣSR
x

(|k |)] (4.70)

This difference goes to zero as k = 0 or |k |→∞, as expected.

The two different band structures εSF
k and εk yield two different spectral functions, eq. (4.64),

as one would expect. What is more surprising is that εSF
k and εk , on the other hand, give rise to

the same diagonal of the spectral function, ASF(r ,r ,ω) = A(r ,r ,ω).

The reason why this is possible is that we are in a continuous system, the homogeneous
electron gas in the thermodynamic limit; in such a limit, the poles of the Green’s function merge
into a branch cut on the real axis [63], and their position becomes less relevant as far as the
amplitude is reproduced. This is shown in more details in the next paragraph.

Discrete and continuous systems Let us consider, indeed, the diagonal of the spectral func-
tion in real space as a sum over the band structure of the different peaks, both in the real and
in the auxiliary system, eq. (4.52); integrating out the angular coordinates, we have:

A(r ,r ,ω) = 1

2π2

∫ +∞

0
dk k2δ

(
ω−εk

)
ASF(r ,r ,ω) = 1

2π2

∫ +∞

0
dkSF k2

SFδ
(
ω−εSF

kSF
(ω)

), (4.71)

with kSF a dummy integration variable. Evaluating also the radial integrals in k and kSF would
result in eq. (4.55) and eq. (4.59). These integrals say that the diagonal of the spectral function
in real space is made up of many delta peaks, each centered on a one–particle energy, εk or εSF

kSF
,

where the latter is the solution of ω−εSF
kSF

(ω) = 0, with a weight given by k2 or k2
SF.

Were we in a discrete system, integrals would be sums and, to have A(r ,r ,ω) = ASF(r ,r ,ω),
we could simply match the pole positions, εSF

kSF
= εk , and their weights, k2

SF = k2. In one single
move, we would obtain both the spectral function and the band structure, and the off–diagonal
elements A(r ,r ′,ω) as well. This is exactly the procedure we followed in the homogeneous
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Figure 4.22: The diagonal of the auxiliary system spectral functions
ASF(r ,r ,ω) obtained with the spectral potential vSF(ω), in red, and
ÃSF(r ,r ,ω) corresponding to ṽSF(ω), in gray, as a function of frequency with
µ = 0 (rs = 3.9315a0,λ = 9.0909Å). In blue, the reference spectral function
A(r ,r ,ω).

dimer (indeed, a discrete system), and the quantities we obtained were analogous (the spec-
tral function in the bonding–antibonding basis and hence the full spectral function in the site
basis).

Moreover, in a discrete system, the spectral potential would be meaningful only where the
spectral function is non–zero, namely at the poles. From the conditions εSF

kSF
= εk and kSF = k,

that is εSF
k = εk , we would obtain the following discrete spectral potential ṽSF(εk ):

ṽSF(εk ) =Σxc(k) (4.72)

which is on the same footing of the dimer potential, eq. (4.35). Clearly, such a potential will
reproduce the band structure, and hence, in the discrete, the full spectral function.

Let us now move to the continuum N ,V → ∞ with n = N /V finite. In this limit, the sum
over k and the one over kSF span the same whole positive axis, and only the amplitude of each
delta peak becomes relevant; in the real system, the factor k2, which comes from the integra-
tion volume d 3k = 4πk2dk, is supplied by the additional factor 1

k+α dΣSR
x (k)
dk

, that comes from the

expression of the Dirac delta in k–space; the derivative of the self energy is well defined as k is a
continuum variable. The total weight becomes k2

k+α dΣSR
x (k)
dk

, and the real system A(r ,r ,ω) reads:

A(r ,r ,ω) = 1

2π2

∫ +∞

0
dk

k2

k +α
dΣSR

x (k)
dk

δ
(
k −k0(ω)

)
On the contrary, as the spectral potential vSF(ω) does not depend on k, the additional factor to
the weight k2 is simply 1

k , and the auxiliary system spectral function becomes:

ASF(r ,r ,ω) = 1

2π2

∫ +∞

0
dk

k2

k
δ
(
k −kSF

0 (ω)
)

with kSF
0 (ω) ≡ k0

0 (ω− vSF(ω)) =
√

2
(
ω− vSF(ω)

)
. As already mentioned, the position of the peaks

is irrelevant as far as the weights of two of them coincide for a determined value of ω; therefore,
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Figure 4.23: The ∆(ω) term introduced in eq. (4.76), as a function of frequency
for µ= 0, in eV (rs = 3.9315a0,λ= 9.0909Å).

for a given frequency ω, we can match the weights of the two peaks δ
(
k − kSF

0 (ω)
)

and δ
(
k −

k0(ω)
)
, and obtain the following relation:

kSF
0 (ω) = k2

k +α
dΣSR

x (k)
dk

∣∣∣∣∣∣
k=k0(ω)

∀ω

which is exactly the definition of the spectral potential and, as shown in eq. (4.68), states that, in
general, kSF

0 (ω) 6= k0(ω). In the continuum limit, one cannot reproduce both the peak positions
(the band structure) and amplitudes (the diagonal of the spectral function) at the same time.

An exactification of the band structure in the continuum As the quantities they yield are
different, it is clear that the continuum limit of ṽSF(εk ) is not vSF(ω) evaluated at ω = εk , but
another potential, associated with another auxiliary system, that we call ṽSF(ω):

ṽSF(ω) = lim
N ,V →∞

N/V=n

ṽSF(εk )
∣∣∣
ω=εk

(4.73)

From eq. (4.72), this potential is nothing but the self energy at k0(ω):

ṽSF(ω) =Σxc
(
k0(ω)

)
, (4.74)

which can also be expressed in terms of the spectral potential as:

ṽSF(ω) = vSF(ω)−∆(ω), (4.75)

with:

∆(ω) := vSF(ω)−Σxc
(
k0(ω)

)
(4.76)

In contrast to the spectral potential, ṽSF(ω) reproduces the band structure but not the spec-
tral function, as I will now show.

The band structure is the zero of the equation ω− ε̃SF
k (ω) = 0, with ε̃SF

k (ω) the energy associ-
ated to the potential ṽSF(ω), namely ε̃SF

k (ω) = ε0
k + ṽSF(ω). Using eq. (4.74) and the definition of

k0(ω), the equation ω− ε̃SF
k (ω) = 0 becomes:

ε0
k0(ω) −ε0

k = 0,
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effective quasi particle
band structure spectral function

potential equation

Σxc(k) ω−ε0
k −Σxc(k) = 0 εk = ε0

k +Σxc(k) A(r ,r ,ω) = 1
2π2

∫
dkk2δ(ω−εk )

vSF(ω) ω−εSF
k (ω) = 0 εSF

k = εSF
k (εSF

k ) ASF(r ,r ,ω) = 1
2π2

∫
dkk2δ

(
ω−εSF

k (ω)
)

ṽSF(ω) ω− ε̃SF
k (ω) = 0 ε̃SF

k = ε̃SF
k (ε̃SF

k ) = εk ÃSF(r ,r ,ω) = 1
2π2

∫
dkk2δ

(
ω− ε̃SF

k (ω)
)

Table 4.2: Band structure and diagonal of the spectral function for the real system and the two
auxiliary systems defined by vSF(ω) and ṽSF(ω).

with the only solution k = k0(ω), namely the band structure of the real system.

As for the diagonal of the spectral function, it reads:

ÃSF(r ,r ,ω) = 1

2π2

∫ +∞

0
dk k2δ

(
ω− ε̃SF

k (ω)
)= 1

2π2

∫ +∞

0
dk k2δ

(
ε0

k0(ω) −ε0
k

)
= 1

2π2 k0(ω), (4.77)

which is the analogous of eq. (4.59) with k0(ω) in place of kSF
0 (ω) =p

2(ω− vSF(ω)); as the two
k0s are different (apart from ω=µ−W and ω→∞, see eq. (4.64) or eq. (4.68)), also ÃSF(r ,r ,ω)
differs from ASF(r ,r ,ω), and so from the real A(r ,r ,ω), too, as it is shown in fig. (4.22).

To conclude, if with vSF(ω) we reproduce the exact A(r ,r ,ω) but the wrong band structure,
with ṽSF(ω) the band structure is exact but the spectral function is not, see also table 4.2. Thus
ṽSF(ω) is not a spectral potential, in accordance with the fact that the solution (4.63) of the
generalized Sham–Schlüter equation (4.61) is unique.

A trick to have both A natural question arises at this point: is there a way to have, in the con-
tinuum limit, both the band structure and the spectral function by using a real and frequency–
dependent local potential?

The answer is no, if we stick to the standard procedure of above; it is yes, if we change pre-
scription: we first employ ṽSF(ω) to get the correct band structure ε̃SF

k (ε̃SF
k ) = εk , and then, from

this, we evaluate the spectral function as a sum over delta peaks centered on εk :

˜̃ASF(r ,r ,ω) := 1

2π2

∫ +∞

0
dk k2δ

(
ω− ε̃SF

k

)
, (4.78)

which is equal to A(r ,r ,ω) as ε̃SF
k = εk . Note that this prescription differs from the usual one

that we used in eq. (4.77): there, ε̃SF
k (ω) was a function of ω, while here ε̃SF

k is a k–dependent
number, found from solving the equation ω− ε̃SF

k (ω) = 0.

Eq. (4.78) can alternatively be viewed as the functional that yields the exact diagonal of the
spectral function A(r ,r ,ω) in the system defined by ṽSF(ω). That is a special case of what we
discussed in paragraph 3.2.2. As in DFT there exists a functional of the density that yields the
correct gap, but it is not the gap of the Kohn–Sham system, here we have a functional of the
band structure, eq. (4.78), that yields the correct spectral function, even if it is not the spectral
function we would evaluate from ṽSF(ω).

To summarize, in the homogeneous electron gas the spectral potential vSF(ω) can be ex-
plicitly found, and it does exactly what it is requested to do: it reproduces the diagonal of the
spectral function of the real system, no more and no less; in particular, it does not reproduce
the off diagonal elements of the spectral function, nor the band structure. If one wanted to
have the latter, another potential must be introduced, which differs from the spectral poten-
tial by the additional term ∆(ω); with such a potential the band structure is exactly reproduced,
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but clearly not the spectral function. To have also the latter, another functional must be consid-
ered, the one of eq. (4.78), that yields the exact spectral function whenever the band structure
is reproduced.

In this chapter, I have shown the capabilities (and the limits) of the spectral poten-
tial for three very different systems: an infinitely extended discrete system, the Hubbard
model on the Bethe lattice, a finite and discrete system, the Hubbard dimer, and finally
an infinite continuous system, the homogeneous electron gas. These systems are char-
acterized by a non–trivial expression for the self energy: a complex–valued dynamical
self energy in the first case, a fully complex, dynamical and non–local one for the dimer
and a purely non–local self energy in the homogeneous electron gas. For each of these
situations, the spectral potential, real, local and frequency dependent, can be explicitly
found, and it can be used to replace the self energy for obtaining the diagonal of the
spectral function. In some cases, symmetry plays a fundamental role and more quanti-
ties than expected are reproduced in the auxiliary system; this is the case for the dimer,
where any element of the spectral function is reproduced, or the discrete homogeneous
electron gas, whose auxiliary system displays both the exact spectral function as well as
the exact band structure.
Still, the procedure employed here for obtaining the spectral potential always requires
the full knowledge of the self energy; this approach is not efficient as soon as we aban-
don academic interest and we want an efficient way to study real materials. This is the
issue of the next chapters.
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Part III

The connector and dynLCA

La spéculation est un luxe,
tandis que l’action est une nécessité.1

HENRY–LOUIS BERGSON, L’évolution créatrice

What to do? Mon dieu, quoi faire?
Improvize, you idiot.

PAUL GOLDING, The Abomination

1Speculation is a luxury, whilst action is a necessity.
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Chapter 5
The connector

An approach based on an exact solution of the generalized Sham–Schlüter equation (3.24)
(or its variants) is very interesting from the point of view of principle, but not efficient at all in
practice. Aside from the technical problem of actually solving the equation, which is in general
a non–linear integral matrix equation, an in principle dissatisfaction remains. Indeed, in that
framework, one has first to evaluate both the exact Green’s function G and the full self energy
Σ to feed the Sham–Schlüter equation, solve the equation self–consistently, find the spectral
potential vSF, and finally evaluate the spectral function from vSF. A much more convenient
strategy, if Σ and G are already at hand, is to directly calculate the spectral function from them,
without the detour in the auxiliary system.

Indeed, the auxiliary system approach is useful whenever it offers a true alternative to the
calculation in the real system. If, to evaluate the effective potential, we still have to pass through
Σ and G , there is no much practical gain.

Therefore, if we want to construct an efficient strategy, we must get the effective potential
somewhere else. A promising scheme, employed both in DFT and in DMFT, is represented by
the introduction of a model system and a connector. The model system is a system in which we
can afford to carry out the demanding calculation of the effective potential. Then, the effective
potential in the auxiliary system is the one evaluated in the model, adapted by the connector.
In other words, the connector is the prescription of how to import the effective potential in the
auxiliary system.

To clarify what all of this means, let us have a look at the prototypical example of this ap-
proach: the local density approximation for density functional theory.

5.1 The connector idea: Local Density Approximation (LDA)

In the Kohn–Sham approach to density functional theory, too, we face the problem of how
to find the Kohn–Sham potential vxc

KS(r ). The very first solution to this issue, already presented
in the same paper in which the general theory was developed [7], is to build a model system
and take the potential from it.

The procedure focuses on the exchange–correlation part of the total energy Exc[n] = F [n]−
Ts[n]−EH[n], introduced at page 44. For an extended system, it is assumed that Exc[n] can be
expressed as a sum of local contributions, each of which weighted by the local density, Exc[n] =∫

d 3r n(r )εxc(r ), see eq. (2.14).

One way to evaluate the purely Coulomb part of εxc(r ) is furnished by its exact expression
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in terms of the exchange–correlation hole, eq. (2.14):

ε(C)
xc (r ) = 1

2

∫
d 3r ′ nxc(r ,r ′)

|r − r ′| . (5.1)

An analogous expression holds true here, where Exc[n] contains also the kinetic contribution
T [n]−Ts[n], which is absent from the expression in eq. (2.14). To account also for this ad-
ditional term, nxc is not given by eq. (2.12), but by an integration of n(λ)

xc over the coupling
constant λ [115, 116], with n(λ)

xc obtained from eq. (2.12) in the case in which the bare Coulomb
interaction is λ

|r−r ′| and the local density is fixed to n(r ):

εxc(r ) = 1

2

∫
d 3r ′

∫ 1

0
dλ

n(λ)
xc (r ,r ′)
|r − r ′| . (5.2)

By the Hohenberg–Kohn theorem, n(λ)
xc (r ,r ′) is a functional of the density. However, it con-

tains all the non–trivial many–body effects of the Coulomb interaction as well as the difference
between T [n] and Ts[n], and an explicit form for it is hard to find.

On the other hand, εxc(r ) is a local quantity, to which a very important concept, the near-
sightedness principle [117, 118, 43], applies. In simple words, it states that local quantities
mostly depend on local properties of the system, like the local density, or the local external
potential: each electron, in most of the cases, cannot see beyond its first neighbouring shells.
Therefore, at least for slowly varying density, it seems reasonable to substitute each element of
volume d 3r around r with a homogeneous system having the same local density n(r ). This is
clearly an approximation, but it is motivated by physical insight and it avoids evaluating the
many–body quantity nxc(r ,r ′). Indeed, in this approach, εxc(r ) is given by its value in a homo-
geneous system with density nh = n(r ):

εLDA
xc (r ) = εh

xc

(
nh = n(r )

)
, (5.3)

which is a much simpler quantity than (5.2). Moreover, from being a functional of the density
function, eq. (5.2), εxc(r ) becomes a function of the local density n(r ). Therefore, the exchange–
correlation energy reads:

E LDA
xc [n] =

∫
d 3r n(r )εh

xc

(
nh = n(r )

)
. (5.4)

So far, Hohenberg and Kohn [52]. How does this translate in the Kohn–Sham formalism [7]?
There, an auxiliary system is introduced, in which particles interact with an external poten-
tial, the Kohn–Sham potential vKS(r ). Its exchange–correlation part vxc

KS(r ) is given by vxc(r ) :=
δExc[n]
δn(r ) . Using expression (5.4) for the exchange–correlation energy, the exchange–correlation

potential in the LDA approximation reads:

vxc
LDA(r ) = δE LDA

xc [n]

δn(r )
= εh

xc

(
nh = n(r )

)+∫
d 3r ′n(r ′)

δεh
xc

(
nh = n(r ′)

)
δn(r )

=

= εh
xc

(
nh = n(r )

)+ dεh
xc(nh)

dnh

∣∣∣∣∣
nh=n(r )

= vxc h
KS

(
nh = n(r )

)
,

(5.5)

being vxc h
KS (nh) = 1

V
dE h

xc(nh )
dnh and E h

xc(nh) = V nhεh
xc(nh). We thus obtain a very important result,

which descends from eq. (5.3):

vxc
LDA(r ) = vxc h

KS

(
nh = n(r )

)
. (5.6)

This equation can be interpreted as a practical prescription to obtain the Kohn–Sham potential:
for each point r we consider a model system, the homogeneous electron gas that has density
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Figure 5.1: A schematic representation of LDA: to the left, the solid, with the
real system (blue box) in which the density n(r ) is obtained from the self en-
ergy, and the auxiliary system (red box), in which the same density is ob-
tained from the Kohn–Sham potential. 1) To find the Kohn–Sham potential,
we build a model system, the HEG, to the right. There we obtain vh

xc, for ex-
ample from the self energy Σh ; both yield the same density nh . 2) The LDA
prescription is to set nh to the local density of the solid, n(r ). In this way, the
HEG potential vh

xc can be imported in the auxiliary system, where it becomes
vKS(r ). 3) Finally, from it, the density in the solid is evaluated.

nh equal to the local density n(r ); assuming we know the exchange–correlation potential in the
HEG for the density nh = n(r ), vxc h

KS

(
nh = n(r )

)
, we take this as the local value of the potential

in the auxiliary system, vxc
KS(r ).

The approach can be generalized in the following way: we first decide that we will import
vxc

KS(r ) from a model system. We then choose the homogeneous electron gas as the model
system, where the potential vxc h

KS

(
nh

)
is at hand. Some questions naturally arise: how do we

choose the density nh of the HEG? How can we obtain a local quantity, vxc
KS(r ), out of one

that does not depend on r , namely vxc h
KS

(
nh

)
? The answer dwells in the connector, that is the

prescription that tells us how to use the potential obtained in the model system to represent
the potential of the auxiliary system. The connector suggested by LDA is the local density,
nh = n(r ), see fig. 5.1.

Other connectors are possible. The average density n̄ corresponds to the mean density
approximation (MDA): vxc

MDA(r ) = vxc h
KS

(
nh = n̄

)
. A locally weighted density n(r ) yields the

weighted density approximation (WDA): vxc
WDA(r ) = vxc h

KS

(
nh = n(r )

)
. And so on.

In principle, we can even go beyond and introduce the concept of exact connector. It is a
presciption (a machine) that to every point r associates a homogeneous electron gas of density
nh = E (r )[n] such that the exact exchange-correlation potential in the auxiliary system is the
exchange–correlation potential of the model system:

∀r ∃nh = E (r )[n] | vxc
KS(r ) = vxc h

KS

(
nh)

. (5.7)

This equation holds true if the range spanned by the potential in the auxiliary system is a sub-
set of the range spanned by the potential of the model system. LDA, MDA and WDA can be
viewed as approximations to the exact functional E (r )[n]. For example, we recover LDA if we
set E (r )[n] = n(r ).

The LDA success The physical arguments that led to the LDA prescription, eq. (5.3), are rea-
sonable and valid in the limit of slowly varying density [52, 7]. However, the success of LDA
goes beyond this limit, and it is usually a very good approximation for a vast class of materials.
The reason for this success has been explained by an important exact constraint that the LDA
functional fulfills.
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Figure 5.2: A schematic view of DMFT, explained in the text; the blue box represents the
real system, the Hubbard model on the lattice. The red box is the auxiliary system, in
which the self energy is local. The green box is the Anderson Impurity Model, the model
system.

Indeed, due to the isotropic nature of the Coulomb interaction [46], eq. (5.1) reads:

εxc(r ) = 1

2

∫ +∞

0
dρρ

∫
4π

dΩρnxc(r ,r −ρ), (5.8)

with nxc =
∫ 1

0 dλn(λ)
xc . From this equation it is clear that only the spherical average of n(λ)

xc is rele-
vant to εxc, which is the quantity we import from the model. Although the exchange–correlation
hole n(λ)

xc (r ,r ′) in the LDA approximation can be very different from the expected one, it has
been shown that LDA yields, in general, a good spherical average of it [119].

The LDA database A more practical reason for the success of the LDA approximation is rep-
resented by the fact that the model system it refers to, the homogeneous electron gas, is one
system. It certainly depends on the value of the density nh , but that can be considered as a
parameter that can easily be tuned to the desired value.

This is a great advantage, as the LDA prescription does not require to solve a truly different
model system for any different material under study. On the contrary, for every material, it
always requires the solution of the same model for different parameters nh .

One can indeed just refer to a database, with entries
(
n, vxc h

KS (nh = n)
)
, that can be evaluated,

with a certain accuracy, just once and for all [103]. The information stored in the database can
be further compressed by a fitting [120] of the potential vxc h

KS (nh) as a function of nh ; a list of
some proposed fittings is displayed in [102].

To conclude, LDA rests on three ingredients: the choice of the quantity to import (the ex-
change correlation density of energy, or the exchange correlation potential), the choice of a
model system (the homogeneous electron gas), and finally the choice of the connector (the
local density).

Other approaches, that rest on the same viewpoint, are possible.

5.2 Dynamical Mean Field Theory (DMFT)

Dynamical mean field theory, too, fits this framework: I left halfway the discussion on DMFT
in section 3.6: an auxiliary system with a local self energy ΣGloc (ω) ≡ Σ(ω) was introduced to
reproduce the local part of the Green’s function Gloc(ω) ≡Gi i (ω).

How to find the effective potential Σ(ω) is the big issue. The DMFT strategy is to import it
from a model system, the Anderson Impurity model (AIM), which is a single site system embed-
ded in a bath, described by the Green’s function GAIM(ω). As the HEG was determined by the
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parameter nh , also the AIM is fixed by its non–interacting properties, namely the energy levels
of the bath and the coupling between the bath and the site; these define the non–interacting
Green’s function of the AIM, G−1

0 (ω) :=ω−∆(ω), with ∆(ω) hybridization function, which is of
fundamental importance for DMFT.

Once the hybridization function is at hand, one employs a solver to solve the model and
obtain the fully interacting Green’s function of the model, GAIM(ω) (step 1 in fig. 5.2). From the
Dyson equation, then, the self energy of the model is ΣAIM(ω) =G−1

0 (ω)−G−1
AIM(ω) (step 2).

This is then imported in the auxiliary system as the effective potential Σ(ω) =ΣAIM(ω) (step
3), and it is used to evaluate the local Green’s function Gi i (ω) (step 4).

But a question remains: which AIM should one use in the beginning? The answer dwells in
the connector, which has not – so far – been fixed. The DMFT approach is to use the Green’s
function itself as a connector: the AIM Green’s function GAIM(ω) must be equal to the local
Green’s function of the auxiliary system Gi i (ω) (step 5). This generates a loop, represented by
the following equations (with l number of the iteration):

1. G (l )
0 (ω)

solver−→ G (l )
AIM(ω)

2. Σ(l )
AIM(ω) =G (l ) −1

0 (ω)−G (l ) −1
AIM (ω)

3. Σ(l )(ω) =Σ(l )
AIM(ω)

4. Σ(l )(ω) −→G (l )
i i (ω)

5. Update: G (l+1)
AIM (ω) =G (l )

i i (ω)

G (l+1) −1
0 (ω) =G (l+1) −1

AIM (ω)+Σ(l )
AIM(ω),

(5.9)

that can be iterated until self consistency.
This way of viewing DMFT highlights the interplaying roles of the real system, the auxiliary

system and the model system, in pretty much the same way as LDA: the quantity to import is
different, the model system is different and the connector, too, is different, but the idea is the
same.

However, there is a more fundamental contrast between DMFT and LDA, which resides in
a difference between the model systems they employ, AIM and HEG. The latter, indeed, can
be solved for a wide range of densities even before a real material is considered: one has just
to fix a density nh and solve the system (as we did in section 4.3). The same procedure is not
pursued in the AIM: the hybridization factor ∆(ω), that defines the non–interacting part of the
AIM, depends on the particular real system under consideration, and the solver generates a
truly different solution for every different ∆(ω). Therefore, no database is available, and one
has to solve the model system from scratch, at each iteration step, every time a new system is
studied.

This is clearly not efficient if the aim is to have a reliable but quick way of obtaining the
spectral function.

5.3 A generalization

These two paradigmatic examples, LDA and DMFT, show how one can obtain the effective
potential of the auxiliary system from a model system. In the LDA case, the effective potential is
the exchange–correlation part of the Kohn–Sham potential; in DMFT, it is the local self energy.

We can generalize this approach to generic auxiliary systems, like the ones introduced in
section 3.2. There we focused on the observable p

(
{λi }

)
, whose value can alternatively be ob-

tained in the real system, through the self energy Σ, and in the auxiliary system, through the
effective potential vp

(
{µ j }

)
.
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Figure 5.3: A general model system approach to find the effective potential of
the auxiliary system.

The generalized Sham–Schlüter approach, eq. (3.5), is an in principle exact way of finding
the value of vp

(
{µ j }

)
. However, it is not efficient as it requires the knowledge of both Green’s

function and self energy of the real system.

The model An alternative strategy is followed by LDA and DMFT. It amounts to building an-
other system, the model system, with just two characteristics: 1) It must be solvable (even
approximately); 2) It must provide some quantity which we can identify as the analogous of
vp

(
{µ j }

)
, which we call vmod

p

(
{µmod

j }
)
. A third characteristic is desirable, but not mandatory: 3)

The model system, and therefore the quantity vmod
p

(
{µmod

j }
)
, should possess some tunable pa-

rameters {τmod
l } which we can change in order to be as close as possible to the auxiliary system.

A model system with no tunable parameters is still an acceptable model, but it is likely to be
too rigid to provide a good source for the effective potential in the auxiliary system (see next
chapter on the asymmetric Hubbard dimer).

In DMFT, the model system is the Anderson Impurity Model. Its non–interacting part is
described by the hybridization function ∆(ω), which plays the role of the tunable parameter.
Clearly, a tunable function means a huge amount of freedom to define the system; on the one
hand, this allows to be as close as possible to the auxiliary system; on the other, it makes more
difficult to find an a priori solution that could be saved and stored. However, once the tunable
parameter ∆(ω) is fixed, the model is solvable, via a solver. Finally, the self energy of the model
is considered as the analogous of the self energy of the auxiliary system, and therefore imported
there.

LDA is similar: the model system is the homogeneous electron gas. It has a single tunable
parameter, its density nh that, for instance, can be tuned to the local density, and it is solvable,
approximately or numerically [103]. LDA replicates the scheme real/auxiliary system also in
the model system (see fig. 5.1), hence the natural analogous of vxc

KS(r ) is vxc h
KS , and this is indeed

the quantity LDA imports.

The connector Set up and solved the model for vmod
p

(
{µmod

j }
)
, the question is how to use this

quantity in the auxiliary system: which is the prescription to transform vmod
p

(
{µmod

j }
)
, which

depends on the choice of the model through {τmod
l }, into the effective potential vp

(
{µ j }

)
of the

auxiliary system?

The answer is the connector. It is a prescription that states how to import the potential of
the model system into the auxiliary system. Such a prescription is extremely general: it can
consist of tuning the parameters of the model system, {τmod

l }, as well as in a relation between
the degrees of freedom {µmod

j } of the potential of the model system and the corresponding ones
in the auxiliary system, {µ j }.

Does the exact connector exist? As we already discussed in the case of LDA, if the range
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Figure 5.4: A schematic view of dynLCA; the blue box represents the real sys-
tem, the red one the auxiliary system. To the left the solid and to the right the
model.

spanned by the potential we want to find, vp
(
{µ j }

)
, is a subset of the range spanned by the

potential of the model system, vmod
p

(
{µmod

j }
)
, even changing the model system, namely tuning

the parameters {τmod
l }, then, in principle, an exact connector (a machine) does exist. In for-

mulas, there exists a functional C that, for every vp
(
{µ j }

)
in the auxiliary system associates the

corresponding potential in the model system: vmod
p

(
{µmod

j }
)=C{τmod

l }

[
vp

(
{µ j }

)]
.

Clearly, finding the exact connector in practice is another story. Indeed, the model system is
usually a simplified version of the real one, with less degrees of freedom. The exact connector,
therefore, must be able to bring back in vp the degrees of freedom needed for the evaluation of
p.

For example, in LDA, the model system, the HEG, does not account for the inhomogeneities
of the real system; the connector nh = n(r ) reestablishes a dependence on r ; however, the pos-
sible dependence of vxc

KS(r ) on densities other than n(r ) is not accounted for by this connector.
That is why attempts to go beyond LDA are, for instance, the GGA functionals, in which also
the derivative of the density is taken into account by the connector.

Note that, eventually, if one had exactly solved the model system for vmod
p

(
{µmod

j }
)

and knew

the exact connector, the exact quantity p
(
{λi }

)
would be available, without passing through the

real system. The amount of information carried by the self energy in the real system is exactly
equivalent to the information carried by the potential in the model system plus the information
carried by the connector.

To which extent one can disentangle the whole self energy information into a model poten-
tial plus a connector is an interesting issue. For example, if in DFT we choose to take the Kohn–
Sham potential from the homogeneous electron gas, it is clear that all the inhomogeneities
are lost there; if one wants the exact Kohn–Sham potential, these inhomogeneities must be
restored by the connector.

5.4 The dynamical local connector approximation (dynLCA)

Having introduced a general scheme to find the effective potential in a model system, it is
time to turn to the spectral function and its auxiliary system. In section 3.5, we have shown that
the diagonal of the spectral function in the real system, A(r ,r ,ω), can be obtained in an auxil-
iary system in which particles interact via a local, real, and frequency–dependent potential, the
spectral potential vSF(r ,ω).

One way to find this potential is solving the generalized Sham–Schlüter equation (3.23). As
already said, this method is not efficient, as it requires the knowledge of both Green’s function
and self energy in the real system, which we do not want to evaluate.

The strategy we want to follow, instead, is the same employed by LDA and DMFT: build a
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Figure 5.5: HSE06 spectral potential vh
SF (ω) (in eV) in the HEG as a func-

tion of frequency (in eV), for different values of densities (in a−3
0 ), ranging

from nh = 3.93 · 10−3a−3
0 (rs = 3.93a0, corresponding to sodium) to nh =

3.26 ·10−2a−3
0 (rs = 1.94a0, argon).

Figure 5.6: The purely frequency–dependent part vx h
SR (ω) of the spectral po-

tential of fig. 5.5 as a function of frequency, in eV, for the average densities of
the four materials that we will consider.

model system and import the effective potential from it.

The model system The first natural question is: which model system do we choose?

There is no one single exact response to this problem, but just different possible strategies.
The one we follow here is to stick to the LDA choice and use, as a model system, the homoge-
neous electron gas. The reasons are different: first, it is a sufficiently simple system, for which
one can find the spectral function corresponding to some approximation to the self energy
[121, 122, 123, 124], and therefore the spectral potential, as we did in section 4.3 for the hybrids
approximation.

Second, the model is determined by one simple tunable parameter nh , its density, nothing
more; therefore, one could consider of solving the model for a wide range of densities and store
the resulting spectral potentials, without need of solving the model each time a new system is
considered, like in DMFT.

Third, the homogeneous electron gas is already a good approximation for systems of slowly
varying density.
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LDA DMFT dynLCA

p
(
{λi }

)
n(r ) Gi i (ω) A(r ,r ,ω)

vp
(
{µ j }

)
vxc

KS(r ) Σ(ω) vSF(r ,ω)

model system HEG AIM HEG

vmod
p

(
{µmod

j }
)

vxc h
KS ΣAIM(ω) vh

SF(ω)

{τmod
l } nh ∆(ω) nh

connector nh = n(r ) GAIM(ω) =Gi i (ω) Ah(ω− c) = A(r ,r ,ω)

prescription
vxc

KS(r ) = ΣAIM(ω) = vSF(r ,ω) =
= vxc h

KS nh=n(r )
=Σ(ω)GAIM(ω)=Gi i (ω) = vh

SF nh=...
(ω+ ...)

Table 5.1: Auxiliary and model systems for LDA, DMFT and dynLCA: the quantity of interest
p

(
{λi }

)
, the effective potential in the auxiliary system vp

(
{µ j }

)
, model system potential and pa-

rameters and finally the connector.

Fourth, in most of the cases we can consider a system as locally similar to a homogeneous
electron gas at the local density (nearsightedness principle).

For these reasons, the homogeneous electron gas will be our model system. There, both the
real system and the auxiliary system are easier to solve. In particular, for the HSE06 approxi-
mation to the self energy, I showed in section 4.3 that the spectral function in the real system is
even analytical, eq. (4.53). From it, a closed expression for the spectral potential can be easily
obtained, eq. (4.63). The procedure Σh → Ah → vh

SF is in principle equivalent to a solution of
the generalized Sham–Schlüter equation in the HEG, which is represented by the arrow (1) in
figure 5.4.

Once the spectral potential vh
SF(ω)[nh] has been obtained for a value of nh , one should carry

out the same calculation for several values of nh , obtaining plenty of these potentials. Eventu-
ally one stores all of these data in a file. This file will be ready to be read whenever the potential
of the model for a particular density and at a particular frequency is needed in the auxiliary
system.

Note that, even if the evaluation of the spectral potential in the model system would be
time–consuming, it would be nonetheless worthwhile. Indeed, the model system we have cho-
sen must be solved just one time. In principle, every real material will refer to that same calcu-
lation. Therefore, a little effort is not a waste.

The result of this procedure for the HSE06 self energy of section 4.3 is shown in fig. 5.5: the
frequency–dependent spectral potential vh

SF(ω) for densities ranging from nh = 3.93 ·10−3a−3
0

(average density of sodium) to nh = 3.26 ·10−2a−3
0 (average density of argon). The data needed

to plot that picture are freely available on the ETSF website, https://etsf.polytechnique.
fr/research/connector/dynLCA. They can be downloaded and used by anyone who would
like to do a HSE06 calculation on whatever material.

Finally, note that the spectral potential, both as a function of frequency and of nh , is pretty
smooth 1. Therefore, one can think, in a second time, about fitting the dependence of vh

SF on ω

and nh , obtaining an even lighter (hence more efficient) method for carrying the model system
data.

1I remind that, below the bottom of the occupied band, many definitions of the potential are possible, that can
make the potential smooth even in the region around the bottom of the band itself (see section 4.3).
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5.5 The connector

Once the potential is at hand, it must be imported in the auxiliary system. This is the most
difficult part of the method, as we would like a universal connector, namely a single prescrip-
tion that, for any real material (a metal or an insulator), tells us how to modify the spectral
potential of the HEG in order to exactly reproduce the diagonal in space of its spectral func-
tion.

The connector must depend on simple quantities of the auxiliary system, like the Kohn–
Sham potential or the local density. Through these, it must be able to bring back some de-
pendence on r in the model system potential vh

SF(ω), which is clearly completely absent in the
HEG.

5.5.1 General structure of the connector

An equation that relates the diagonal of spectral function of the solid, ASF(r ,r ,ω), with the
one of the model (the homogeneous electron gas), Ah

SF|nh (ω), both seen in their correspond-
ing auxiliary system and both evaluated with the same expression for the self energy, is not
straightforward. The reason is that the two spectral functions are usually very different: for in-
stance, the homogeneous electron gas is always a well–behaved metal, while the real system
can present gaps, spikes, isolated non–dispersive bands, and so on.

This is where the connector idea comes into play. For each point r and each frequency
ω, ASF(r ,r ,ω) is just a real positive number. This number belongs for sure to the range of
Ah

SF|nh (ω), which is [0,+∞) in most cases (see fig. 4.17).

Naively, one could introduce a function F (r ,ω), which, by the Hohenberg–Kohn theorem,
is a functional of density, through which:

ASF(r ,r ,ω) = Ah
SF|nh=F (r ,ω)[n]

(
ω−µ+µh

nh=F (r ,ω)[n]

)
. (5.10)

In this formula the chemical potential of the solid µ has been aligned with the one of the model
system µh

nh in order to define energy in the two systems. In this way, one fixes the frequency ar-

gument of the model spectral function, and just selects a particular density nh of the model sys-
tem, taking advantage of the fact that, by tuning that parameter, Ah

SF|nh (ω−µ+µh) can assume
whatever positive number. However, this equation cannot hold in general. In particular, prob-
lems arise in the unoccupied region. There, the smallest possible value for Ah

SF|nh (ω−µ+µh) is

Ah
SF|nh=0

(ω−µ+µh
nh=0

), namely the spectral function of the homogeneous electron gas with no

electrons at all. If, for some r , ASF(r ,r ,ω−µ) is smaller than Ah
SF|nh=0

(ω−µh
nh=0

) (for instance,
a gap in the unoccupied band, where ASF(r ,r ,ω) = 0), it cannot be represented by eq. (5.10).
This is shown in figure 5.7.

The reason of the failure suggests also the way to overcome the problem. Indeed, as can be
seen from fig. 5.7 one just needs to shift the chemical potential of the model system to be able
to catch also the part of the spectrum in the shaded area. This new approach amounts to a shift
of the frequency argument, independent of the chemical potential µh

nh , that allows small values

of Ah
SF|nh (ω) also in the empty part of the spectrum of the solid. Therefore, we introduce a non–

trivial correction c(r ,ω) in the frequency argument of Ah
SF|nh (ω), which in principle allows for a

complete reshaping of the spectral function of the model system:

ASF(r ,r ,ω) = Ah
SF|nh=F (r ,ω)[n]

(
ω− c(r ,ω)

)
. (5.11)

With such a general c, we can restrict F to a simpler functional of the density, the local density.
Of course, different choices are possible, like an average density or a weighted density, or leave
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Figure 5.7: Schematic representation of the discussion at pag. 102. In blue,
ASF(r ,r ,ω) (the DOS of Argon obtained with the hybrids self energy), while
in different shades of red some Ah

SF|nh (ω) corresponding to different densities

nh (the curves corresponding to homogeneous electron gases with the average
densities of sodium, aluminum, silicon and argon are included). All spectra
are aligned with their Fermi energies at ω= 0. If the blue spectrum lays in the
shaded area, no homogeneous electron gas exists which is able to reproduce
it.

a more general functional F [n(r )]. It can be shown that the final results do not depend too
much on this choice. The important point is that we remove the frequency dependence from
the choice of the homogeneous electron gas (which nh) to use. Thus, we assume the following
ansatz:

ASF(r ,r ,ω) = Ah
SF|nh=n(r )

(
ω− c(r ,ω)

)
. (5.12)

Sham–Schlüter approach If eq. (5.12) holds, a Sham–Schlüter equation can be set up. The
auxiliary system Green’s functions for the solid and for the model are GSF and Gh

SF respectively,
where we drop the subscript nh = n(r ), which is implied. They can be derived from the same
non–interacting Green’s function G0 via the following inverted Dyson equations:

G−1
SF

(
r ,r ′,ω

)=G−1
0

(
r ,r ′,ω

)−[
vext (r )+ vH (r )+ vxc

SF (r ,ω)
]
δ

(
r − r ′)

Gh −1
SF

(
r ,r ′,ω

)=G−1
0

(
r ,r ′,ω

)− vh
SF (ω)δ

(
r − r ′) . (5.13)

with G−1
0

(
r ,r ′,ω

) = δ
(
r − r ′)[ω−

(
−∇2

2

)]
for both systems. In the framework of auxiliary sys-

tems, these relations are in principle exact. By shifting the frequency argument of c(r ,ω), from
the second of eq. (5.13), Gh −1

SF

(
r ,r ′,ω− c(r ,ω)

)
is equal to:

Gh −1
SF

(
r ,r ′,ω− c(r ,ω)

)=G−1
0

(
r ,r ′,ω

)−[
vh

SF

(
ω− c(r ,ω)

)+ c(r ,ω)
]
δ

(
r − r ′) (5.14)

This equation is exact in the homogeneous electron gas, and we implement it in the solid by
localizing c(ω) in the spirit of LDA. Thus, one can bypass G−1

0 and directly relate G−1
SF

(
r ,r ′,ω

)
to

Gh −1
SF

(
r ,r ′,ω− c (r ,ω)

)
:

G−1
SF

(
r ,r ′,ω

)=Gh −1
SF

(
r ,r ′,ω− c (r ,ω)

)+
−

{
vext (r )+ vH (r )+ vxc

SF (r ,ω)− c (r ,ω)− vh
SF

(
ω− c (r ,ω)

)}
δ

(
r − r ′) .
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Inverting this equation, we obtain a Dyson–like equation between GSF and Gh
SF:

GSF
(
r ,r ′,ω

)=Gh
SF

(
r ,r ′,ω− c (r ,ω)

)+∫
d r̄ Gh

SF (r , r̄ ,ω− c (r ,ω))
{

vxc
SF (r̄ ,ω)+

− vh
SF (ω− c (r̄ ,ω))− c (r̄ ,ω)+ vext (r̄ )+ vH (r̄ )

}
GSF

(
r̄ ,r ′,ω

)
.

To this expression one can now apply eq. (5.12), and obtain:

0 =
∫

d r̄
{

vxc
SF (r̄ ,ω)− vh

SF

(
ω− c (r̄ ,ω)

)− c (r̄ ,ω)+ vext (r̄ )+ vH (r̄ )
}
×

× Im
[
Gh

SF

(
r , r̄ ,ω− c (r ,ω)

)
GSF (r̄ ,r ,ω)

]
,

which can be solved by setting to zero the kernel in curly brackets. This yields the desired
relation between the potentials:

vxc
SF(r ,ω) = vh

SF|nh=n(r )

(
ω− c (r ,ω)

)+ c (r ,ω)− vext(r )− vH(r ) (5.15)

or, adding the external and the Hartree potentials to the exchange–correlation part of the spec-
tral potential:

vSF(r ,ω) = vh
SF|nh=n(r )

(
ω− c (r ,ω)

)+ c (r ,ω) . (5.16)

Homogeneous systems If the system under consideration is the homogeneous electron gas
itself, in which vext+vH = 0, the previous equation must be equivalent to the identity vxc

SF(r ,ω) =
vh

SF|nh=nh (ω); this is the case if ch(ω) = 0. More interesting is a homogeneous system in which

vext + vH 6= 0. In such a case, the resulting spectrum is just a rigid shift (by vext + vH) of the
spectrum of the homogeneous electron gas, hence, from eq. (5.12), c(ω) = vext + vH, and eq.
(5.15) reads:

vxc
SF(r ,ω) = vh

SF|nh=n

(
ω− vext − vH

)
if n(r ) = n

For such a system, the chemical potential is µ= k2
F

2 +vext+vH+Σh(kF ), with kF = (3π2n)1/3. For

the homogeneous electron gas with density nh = n, the chemical potential is µh = k2
F

2 +Σh(kF ),
with the same kF , which is determined by the density only. It follows that vext + vH = µ−µh ,
and the previous equation becomes:

vxc
SF(r ,ω) = vh

SF|nh=n

(
ω−µ+µh)

if n(r ) = n (5.17)

This is the connector we will start from to treat real system in the next chapter. We will finally
realize that a more powerful prescription is needed, in the spirit of eq. (5.15), with a non–trivial
choice of c (r ,ω).

5.5.2 Perturbation expansion

The structure of eq. (5.15) is confirmed by a first order perturbation expansion in the exter-
nal potential. Indeed, one can assume the existence of the spectral potential vh

SF (ω) in the ho-
mogeneous model system, where vext+vH = 0, and then turn on a small perturbation δvext(r ).
The analysis is carried out in appendix G, eq. (G.5); the resulting exchange–correlation part of
the spectral potential reads:

vxc
SF (r ,ω) = vh

SF (ω)+
∫

x ,y ,z
ζ̃h −1

SF (r , x ,ω) Im
[
Gh (

x , y ,ω
)[(

δvext(y)+δvH(y)
)
δ

(
y − z

)+
+δΣ(

y , z ,ω
)]

Gh (z , x ,ω)
]
− (

δvext(r )+δvH(r )
)

, (5.18)
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with, at the right hand side, the first order changes in the Hartree potential δvH(r ) and in the
self energy δΣ

(
y , z ,ω

)
, stemming from the small inhomogeneity driven by δvext(r ). These

quantities, pertaining to the real system, are handled by Green’s functions of the homoge-
neous system only, which we can in principle evaluate just once and for all, no matter δvext(r ).
These are the Green’s function Gh

(
r ,r ′,ω

)
, its auxiliary system counterpart Gh

SF

(
r ,r ′,ω

)
, and

the quantity ζ̃h
SF(r ,r ′,ω) := Im

[
Gh

SF(r ,r ′,ω)Gh
SF(r ′,r ,ω)

]
.

A further decomposition is useful for the discussion (compare with eq. (G.7) of appendix
G): we can gather the terms involving the external and the Hartree potential on the one hand,
and the term involving the self energy on the other. The result is:

vxc
SF (r ,ω) =

{
vh

SF (ω)+
∫

x ,y ,z
ζ̃h −1

SF (r , x ,ω) Im
[
Gh (

x , y ,ω
)
δΣ

(
y , z ,ω

)
Gh (z , x ,ω)

]}
+

+
∫

y

[∫
x
ζ̃h −1

SF (r , x ,ω) ζ̃h (
x , y ,ω

)−δ
(
r − y

)](
δvext(y)+δvH(y)

)
, (5.19)

with ζ̃h(r ,r ′,ω) := Im
[
Gh(r ,r ′,ω)Gh(r ′,r ,ω)

]
, the corresponding of ζ̃h

SF(r ,r ′,ω) in the real sys-
tem. This formula separates quantities related to the exchange–correlation part of the interac-
tion (first line) from quantities related to the lattice (vext(r )) and the classical interaction energy
vH(r ). In particular this last contribution is zero if ζ̃h = ζ̃h

SF, which is not the case as the Green’s
function Gh and Gh

SF are usually different (only the diagonal of their imaginary parts is the same
by definition).

Therefore, the last term measures both the departure of the auxiliary system Green’s func-
tion from its real system counterpart, through the factor

[
ζ̃h −1

SF ζ̃h −1
]
, and the inhomogeneity

of the system, via the explicit factors δvext(r ) and δvH(r ). We call it C
[
δvext(r )+δvH(r )

]−(
δvext(r )+δvH(r )

)
.

The terms in curly brackets, on the contrary, are non zero even if ζ̃h = ζ̃h
SF. They are both

due to the exchange–correlation part of the interaction, which is completely accounted for by
vh

SF (ω) in the homogeneous system. In the real system, the inhomogeneity correction δΣ is lo-
calized by the product of different Green’s function, all pertaining to the homogeneous electron
gas. The connector idea is based on this observation: if the triple integral in eq. (5.18) is small,
since the physics it contains is analogous to the one in vh

SF (ω), one can assume the existence
of a small corrector δc(r ,ω) such that the triple integral contribution can be absorbed by the
frequency dependence of vh

SF (ω) through a shift of it by δc(r ,ω). In formulas:

vh
SF (ω)+

∫
x ,y ,z

ζ̃h −1
SF (r , x ,ω) Im

[
Gh (

x , y ,ω
)
δΣ

(
y , z ,ω

)
Gh (z , x ,ω)

]
= vh

SF

(
ω−δc(r ,ω)

)
, (5.20)

with δc(r ,ω) defined through a Taylor expansion of vh
SF

(
ω−δc(r ,ω)

)
around vh

SF(ω):

−δc(r ,ω)
d vh

SF(ω)

dω
=

∫
x ,y ,z

ζ̃h −1
SF (r , x ,ω) Im

[
Gh (

x , y ,ω
)
δΣ

(
y , z ,ω

)
Gh (z , x ,ω)

]
. (5.21)

If these assumptions are correct, eq. (5.19) reads:

vxc
SF (r ,ω) = vh

SF

(
ω−δc(r ,ω)

)+C
[
δvext(r )+δvH(r )

]− (
δvext(r )+δvH(r )

)
, (5.22)

which is exactly2 eq. (5.15) once we identify the function c(r ,ω) with the functional C
[
vext + vH

]
r ≡∫

y ,x ζ̃
h −1
SF (r , x ,ω) ζ̃h

(
x , y ,ω

)(
vext(y)+ vH(y)

)
, both with the same homogeneous limit vext + vH.

2A slight difference with the previous derivation is that here the model system, the homogeneous electron gas, is
fixed to a certain predetermined value of density.
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5.6 Model systems without auxiliary systems

Three systems, the real one, the auxiliary one and the model one, are a lot. One could won-
der if the auxiliary system is needed at all.

Indeed, sometimes its introduction is completely avoided, and one uses the model system
and a connector to directly approximate the real system. This is the case for the Thomas–Fermi
approximation in DFT, DMFT as it is usually seen and the Sham–Kohn quasiparticle local den-
sity approximation.

Thomas–Fermi The Thomas–Fermi approach [125, 126] is a way to approximate the kinetic
energy density t (r ) of the real system, defined by T = ∫

d 3r n(r )t (r ). It follows exactly the same
line of thinking of LDA, just there is no Kohn–Sham system and the quantity to approximate
is t (r ) instead of vxc

KS(r ). The idea is to import t (r ) from a model system, the non–interacting
homogeneous electron gas, with the local density as a connector, nh = n(r ).

The kinetic energy density in the non–interacting HEG is given by t h = 3
10 (3π2)2/3nh 2/3.

Therefore, in the real system, using the local connector nh = n(r ), the kinetic energy reads:

T TF =
∫

d 3r n(r )t h
nh=(r )

= 3

10
(3π2)2/3

∫
d 3r

[
n(r )

]5/3.

This is an explicit density functional. Together with the external and the Hartree term, it can be
used to describe physical systems. However, its performances are limited [127], and the reason
is mainly to be searched in the poor description of the kinetic term, which often plays a domi-
nant role in the energy contributions, see fig. 2.1. Viceversa, the auxiliary system approach of
Kohn–Sham yields most often a very good description of the ground state, also because of the
exact, although non–interacting, treatment of the kinetic energy term.

DMFT (standard point of view) In DMFT, one can also think not to introduce the auxiliary
system in which the self energy is local. Simply, by referring to fig. 5.2, line 3, the self energy of
the model system ΣAIM is directly imported as the self energy of the real system. One therefore
makes the assumption that Σi j (ω) ≈ δi jΣ(ω) = δi jΣAIM(ω). Only the local diagrams of the self
energy are retained to evaluate the local Green’s function. This is clearly an approximation, as
the non–local diagrams, which in the real system should be considered, are disregarded.

On the other hand, if one introduces the auxiliary system, there are no non–local diagrams
for the self energy. In the auxiliary system, the local Green’s function is obtained exactly from a
local self energy, which can be found from a model system (the AIM in this case).

5.6.1 Sham–Kohn Quasi Particle LDA

An approach very close to dynLCA, which nevertheless does not rely on any auxiliary sys-
tem, is the local density approximation introduced by Sham and Kohn in the least known of
their three papers of 1965 [128]. Their idea is to approximate the self energy with a local ex-
pression, and then use this form to evaluate approximate excitation energies. Indeed, they
consider a system of almost constant density, n(r ) = n0 +n1(r ), where n1 is small and has zero
spatial average. They show that:

Σ(r ,r ′,ω) =Σh(
r − r ′,ω− vext(r 0)− vH(r 0)

)+∫
d 3s n1(s)Σ(1)(r ,r ′;r 0 − s,ω− vext(r 0)− vH(r 0)

)
with Σ(1) a short–range function of r 0−s, and r 0 the average position r+r ′

2 . Therefore, for slowly
varying densities, to a first approximation one can neglect the additional term on the right hand
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side, and simply take the non–local self energy Σ(r ,r ′,ω) from the model system. To set the
HEG, they use for a connector the density of the real system evaluated at r 0:

Σ(r ,r ′,ω) ≈Σh
nh=n(r 0)

(
r − r ′,ω− vext(r 0)− vH(r 0)

)
. (5.23)

This equation is very similar to the DMFT relation Σi j (ω) ≈ δi jΣAIM(ω). Note by contrast that
the connector acts also on the frequency argument, shifting it by the same local alignment of
the Fermi energies we will use also in our theory, see eq. (7.14). That shift is needed to re-
produce the limit of slowly varying density, [129, 128], where we expect the approximation to
well describe the system. It allows the model system to take into account both the external
and Hartree potentials, which sum to zero in the HEG. With such a choice for the frequency
argument, “the functional form of the self energy is independent of any uniform shift of the
electrostatic potential” [128]: indeed, the Schrödinger equation for the effective Hamiltonian,[
−∇2

2 + vext + vH +Σh(ω− vext − vH)
]
φ=ωφ, can be also written as

[
−∇2

2 +Σh(ω− vext + vH)
]
φ=

(ω−vext+vH)φ. If the density is constant, it reads
[
−∇2

2 +Σh(ω)
]
φ=ωφ, which is the expected

result.
Subsequently, they approximate the non–local operator (5.23) by a local one, with a WKB–

like argument; to this aim, consider the quasi particle equation (2.40):

hH(r )φn(r )+
∫

d 3r ′Σ
(
r ,r ′,εn

)
φn(r ′) = εnφn(r ), (5.24)

and, in the same limit of slowly varying density, restrict the set of eigenstates to plane waves
ϕk(r )(r ), labelled by a local momentum k(r ).

When the self energy (5.23) operates on ϕk(r )(r ) ∼ e i k(r )·r , since these are the eigenstates of
the HEG, we can substitute it with its eigenvalue (mathematically, a Fourier transform does the
job; the r -dependence of k is neglected):∫

d 3r ′Σh (
r − r ′,εk

)
ϕk (r ′) =Σh

nh=n(r )

(
k(r ),εk

)
ϕk (r ).

The idea is to use the local operator Σh
nh=n(r )

(
k(r ),ω− vext(r )− vH(r )

)
instead of the non–local

self energy, no matter if the eigenstate is not a plane wave. A third step is the Thomas–Fermi
approximation, µ = µh

nh=n(r )
+ vext(r )+ vH(r ), which allows one to remove the explicit spatial

dependence from eq. (5.24), that becomes:

ω−ε0
k −Σh

nh=n(r )

(
k,ω−µ+µh

nh=n(r )

)=µ−µh
nh=n(r )

. (5.25)

a relation that defines the local wavevector k = k(r ,ω); this choice guarantees that k = kF when
εk =µ (Fermi surface). The self energy is thus replaced by the following local operator:

vSK (r ,ω) =Σh
nh=n(r )

(
k(r ,ω),ω−µ+µh

nh=n(r )

)
. (5.26)

with k = k(r ,ω) the solution of eq. (5.25). Note that this potential is in principle an approx-
imation to the self energy, local and in general not real. It is not designed to have the exact,
e.g., spectral function. This approximation, called Quasi Particle Local Density Approximation
(QPLDA) has been first used in real materials by Pickett and Wang, to describe the spectra of
insulators [130, 131].

HEG In the homogeneous electron gas itself, these equations read:

vh
SK (ω) =Σh

nh

(
k(ω),ω

)
ω−ε0

k −Σh
nh (k,ω)

∣∣∣
k=k(ω)

= 0.
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Figure 5.8: A comparison between the spectral potential vh
SF (ω), eq. (4.63),

and the Sham–Kohn potential vh
SK (ω), eq. (5.27), in the HEG, corresponding

to the HSE06 self energy. Above, the potentials, and below the spectral func-
tion they yield.

Considering a static self energy Σh(k), the second equation is the definition of k0(ω), see page
80. Therefore the Sham–Kohn potential can be written as:

vh
SK (ω) =Σh

nh

(
k0(ω)

)=ω−2

∣∣∣∣∣
k2

2

k +0

∣∣∣∣∣
2

k=k0(ω)

. (5.27)

The last expression is extremely similar to the spectral potential vh
SF (ω) of eq. (4.63), with the

difference that here the derivative of the self energy has been replaced by a zero in the denom-
inator. As the two expressions are different and the spectral potential vh

SF(ω), eq. (4.63), is the
only potential that yields the correct diagonal of the spectral function, it is clear that vh

SK (ω) will
not yield the exact spectral function of the HEG, as can be shown.

On the other hand, this potential is, in the homogeneous electron gas, the one of eq. (4.74),
which we introduced to have the correct band structure, see fig. 4.23. There the exact spectral
function, too, could be recovered, by changing the prescription on how to evaluate it. Since we
were in an auxiliary system, having a new functional to get the spectral function was in princi-
ple admissible (compare with the total energy or the gap of the Kohn–Sham system). Here, on
the other hand, since there are no auxiliary systems but vh

SK (ω) is just an approximation to Σ,
we cannot easily implement a different prescription, and we must conclude that the spectral
function evaluated with vh

SK (ω) is not the expected one, see fig. 4.22 and fig. 5.8.
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After these three examples, we can appreciate the importance of having an auxiliary system,
in between the real and the model systems.

The auxiliary system fixes the quantity of interest, and by doing so it states what it is possi-
ble to obtain in principle and what it is not. Furthermore, it leaves more freedom in defining
functionals, as they do not have to be the same ones that one would define in the real system.
Finally, it often already constitutes a good basis to start approximating.

The connector approach is extremely useful when some quantity is needed, but its ex-
act expression is too difficult to evaluate. Therefore, one resorts to calculate that same
quantity, or something very similar, in a model system, and then to import it. The pre-
scription on how to import a particular quantity is the connector. It is based on physical
insight, and it is the most delicate part of the method. In the next two chapters, I will
test this approach for the asymmetric dimer and for realistic materials, showing how
different can be the results depending on the choice of the particular connector.
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Chapter 6
The connector for the Hubbard dimer

Before passing to real materials and test the connector idea there, I present here another
situation that presents non–trivial effect of inhomogeneity. In this case, the use of a model
system is particularly suited. I will focus on the choice of which quantity should one import
from the model system. Different choices clearly imply different performances.

The system I consider is a slightly modified version of the Hubbard dimer of section 4.2, in
which the two sites 1 and 2 are here at different energy e1 and e2, with e1 > e2:

Ĥ =−t
∑
σ

(
ĉ†

1σĉ2σ+ ĉ†
2σĉ1σ

)
+∑

i
ei n̂i +U

∑
i

n̂i↑n̂i↓. (6.1)

The on–site energy term e1n̂1 + e2n̂2 can be recast in the form: Ē (n̂1 + n̂2)+ D
2 (n̂1 − n̂2), with

Ē := e1+e2
2 the average energy and D := e1−e2 their difference. Through a redefinition of energy

(a shift of Ĥ) we can always choose1 Ē = 0; in this way, the parameters that define the system are
t , U and D , all positive. To simplify the notation, we measure the energy in units of t , defining
the reduced quantities Ĥ/t := Ĥ , U /t :=U and D/t := D . Thus, the Hamiltonian reads:

Ĥ =−∑
σ

(
ĉ†

1σĉ2σ+ ĉ†
2σĉ1σ

)
+ D

2
(n̂1 − n̂2)+U

∑
i

n̂i↑n̂i↓, (6.2)

which tends to the symmetric dimer Hamiltonian (4.10) in the limit D → 0. D can be regarded
as an external potential that alters the symmetry site 1 ←→ site 2 and creates inhomogeneities
in the dimer. Although it looks like an innocuous parameter, its non–zero value makes every-
thing more complicated. Indeed, even if this Hamiltonian looks pretty close to the one of eq.
(4.10), for D 6= 0 it is more difficult to obtain the Green’s function, and from that the spectral
function. The reason is the non–trivial interplay between the inhomogeneity set by D and the
interaction U . This is where the model system idea will come into play.

Note, finally, that the situation I just sketched is similar to the one that I will discuss in the
next chapter, when dealing with real materials. Also for real materials problems arise because
of the interplay between inhomogeneity, set by vext(r ), and the Coulomb interaction between
electrons; when the former is zero, we are in the homogeneous electron gas, which is easier
to solve. As soon as the external potential is switched on, on the other hand, everything be-
comes more complicated and, in general, one cannot easily disentangle inhomogeneity from
interaction effects.

1This choice is different from the one we made in the symmetric case: there, we set µ= 0. As a consequence, the

two energy axis are shifted by the amount
√

1+ D2

4 .
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Figure 6.1: Position of the poles of the Green’s function ωλ = eλ− e−, with eλ in eq. (6.6), as a
function of U , in units of t , for different values of D, as indicated.

6.1 The real system: one–fourth filling solution

As in the symmetric D = 0 case, we will focus on the case of N = 1 electrons. Diagonalizing
the Hamiltonian (6.2), we get the eigenvalues e± = ±1

2

p
4+D2. The Fermi energy is thus µ =

−1
2

p
4+D2, and the associated eigenstates are:

|±,σ〉 = cosρ± |σ,0〉+ sinρ± |0,σ〉 , (6.3)

with2
[
tanρ±

]−1 :=−1
2

(
D ±

p
4+D2

)
. As in the symmetric case, we break the spin symmetry by

choosing a spin–up electron as the ground state, |GS〉 ≡ |−,↑〉. The difference in the occupation

of the two sites is given by: n1 −n2 = 1−tan2 ρ−
1+tan2 ρ−

, which is zero in the symmetric case and tends to
n2 = 1 for large D , as the assumption e1 > e2 favours the occupation of the second site, lower in
energy.

The Green’s function Gi j ,σ(t , t ′) := −i 〈GS| T̂ ĉiσ(t )ĉ†
jσ(t ′) |GS〉 associated with this system is

evaluated in appendix D, via the Lehmann representation. The result is trivial for the spin–up
case: the single electron in the ground state can be removed, or another spin–up electron can
be added to the system and it will go to the antibonding orbital, where it will not interact with
the first. As a result, the spin–up Green’s function is always non–interacting:

Gi j ,↑(ω) =
Λ0 (−)

i j

ω−e−− iη
+

Λ0 (+)
i j

ω−e++ iη
, (6.4)

with weights defined as Λ0 (±)
i j :=

[
δi 1 cosρ±+δi 2 sinρ±

][
δ j 1 cosρ±+δ j 2 sinρ±

]
.

2In particular, cosρ+ = sinρ− and sinρ+ = −cosρ− and, for D = 0, cosρD=0− = sinρD=0− = 1p
2

. The ma-

trix of change of basis, from the site basis
{|i ,σ〉} ≡ {|↑,0〉 , |0,↑〉 , |↓,0〉 , |0,↓〉} to the bonding–antibonding basis

{|α〉}= {|±,σ〉}≡ {|−,↑〉 , |+,↑〉 , |−,↓〉 , |+,↓〉} is 〈α|i ,σ〉 =


cosρ− sinρ− 0 0
sinρ− −cosρ− 0 0

0 0 cosρ− sinρ−
0 0 sinρ− −cosρ−

.
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(a) D = 0.0 (b) D = 0.5

(c) D = 1.0 (d) D = 2.0

Figure 6.2: Diagonal of the spectral function Ai i ,↓(ω) as a function of ω and U , in units
of t , for different values of D, as indicated. A broadening η = 0.3 is added for clarity
reasons. The behaviour of the poles as a function of U is the one of fig. (6.1).

On the contrary, the interaction enters the spin–down Green’s function, that reads:

G11,↓(ω) =
1
2 sin2ρ−

ω− (e2 −e−)+ iη
+ ∑

λ=1,3,4

1
|Nλ|2

[
cosρ−

(
2

eλ+(D−U ) −eλ
)
+ sinρ−

]2

ω− (eλ−e−)+ iη

G12,↓(ω) =G21,↓(ω) = −1
2 sinρ− cosρ−

ω− (e2 −e−)+ iη
+

+ ∑
λ=1,3,4

1
|Nλ|2

[
cosρ−− sinρ− 2

eλ+(D−U )

][
cosρ−

(
2

eλ+(D−U ) −eλ
)
+ sinρ−

]
ω− (eλ−e−)+ iη

G22,↓(ω) =
1
2 cos2ρ−

ω− (e2 −e−)+ iη
+ ∑

λ=1,3,4

1
|Nλ|2

[
cosρ−− sinρ− 2

eλ+(D−U )

]2

ω− (eλ−e−)+ iη
,

(6.5)

with the relevant N = 2 excitation energies defined by:

e1 = 2

3

[
U − r cos

(
θ− π

3

)]
e2 = 0

e3 = 2

3

[
U − r cos

(
θ+ π

3

)]
e4 = 2

3

[
U − r cos(θ+π)

]
,

(6.6)
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with the parameters:
z2 := 9D2 −U 2 −18

r 2 := 3D2 +U 2 +12

cos3θ := z2U

r 3 ,

and the normalization factor defined as 1
2N 2

λ
= 1+2

(
1

eλ+D−U − eλ
2

)2+2
(

1
eλ+D−U

)2
. The poles of

the Green’s function are ωλ := eλ−e− ≡ eλ+ 1
2

p
4+D2, and they are shown in fig. 6.1. The diago-

nal of the spectral function Ai j ,σ(ω) := 1
π

∣∣ImGi j ,σ(ω)
∣∣ is shown in fig. 6.2. Although the Green’s

function (6.5) still presents four discrete poles, its expression is more complicated than its D = 0
counterpart; in particular, the poles ωλ with λ 6= 2, real solutions of a third order equation, are
intrinsically more sophisticated numbers than their D = 0 relatives, as, in general, they cannot
be expressed in closed radical form without the use of complex numbers or trigonometry [132].

Therefore it is clear that, although the exact solution is at hand, one would like a quicker
and more efficient way of obtaining the spectral function. Thus, one faces two alternatives:
approximating the real system or building an auxiliary system.

6.2 Approximations to the self energy

When the exact solution is out of reach, the standard approach is building approximations,
that can rely on an expansion of the self energy and a truncation of it.

The approximate self energy3 Σa
i j (ω) determines a frequency–dependent Hamiltonian H a

i j (ω) =
h0

i j +Σa
i j (ω). Its eigenvalues ea

λ
(ω) enter the pole equation ω− ea

λ
(ω) = 0, whose solutions ωa

λ

are the position of the poles within the approximation Σa . In particular, from the form of

h0
i j =

(
D
2 −1
−1 −D

2

)
and the fact that the off–diagonal elements of the self energy are equal, the

pole equation reads:

0̂ =ω1̂− Ĥ a(ω) ⇐⇒ ω−
Σa

11(ω)+Σa
22(ω)

2
±

√[
1−Σa

12(ω)
]2 +

[
D +Σa

11(ω)−Σa
22(ω)

2

]2
= 0.

(6.7)

6.2.1 Hartree approximation

The simplest approximations to the full self energy are the Hartree and the exchange ones,
that correspond to no correlation in the double occupation: 〈n̂i↑n̂i↓〉 −→ 〈n̂i↑〉〈n̂i↓〉 ≡ ni↑ni↓.
The interaction energy is thus EH +Ex =U

∑
i ni↑ni↓. Since the Hartree term does depend only

on the total density and, for N = 1, the exchange term is supposed to exactly balance and cancel
it, we can define4 5:

EH = U

2

∑
i

n2
i Ex =−U

2

∑
i

(
n2

i↑+n2
i↓

)
,

from which the Hartree potential is:

vH
i = ∂EH

∂ni
=Uni . (6.8)

3The self energy we consider here is the full one, and it also contains the Hartree term.
4For just one electron in the spin–polarized ground state that we have chosen, ni↑ ≡ ni and ni↓ = 0, thus Ex =

−EH as expected. For unpolarized systems, ni↑ = ni↓ = 1
2 ni leading to EX =−U

4
∑

i n2
i =− 1

2 EH .
5An alternative definition of the Hartree potential, in which the latter is spin–dependent, is presented in appendix

H.
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(a) D = 0.0 (b) D = 1.0 (c) D = 2.0

Figure 6.3: The Hartree approximation. The blue surface is the exact spectral function, the same
as in fig. 6.2, while in white the one evaluated with the Hartree approximation, eq. (6.8).

This is a static potential, unable to split the number of peaks of the non–interacting spectral
function. Indeed, from eq. (6.7) with Σa

i j (ω) = vH
i δi j , the poles are:

ωH
λ = U

2
±

√
1+h2, (6.9)

with h := D+U (n1−n2)
2 . The resulting spectral function is shown in fig. 6.3. The Hartree approx-

imation is nonetheless already a good description of the system: it is an improvement with
respect to the free–particle approximation U = 0, in which the position of the poles would be
U –independent. Since the Hartree potential vH

i depends on U , the two peaks ωH
λ

of the Hartree
spectral function interpolate well between the four peaks of the spectral function of the real
system. In particular, the Hartree approximation is always a good approximation for small U ,
independently of D . By contrast, for large U , where correlation effects become important, the
correspondence is worse.

6.2.2 The GW approximation

The non–interacting Green’s function has always two poles, in correspondence of the bond-
ing and the antibonding eigenenergies. Any static approximation to the self energy will at most
shift these two poles, but il will not change the number of them. To split the poles and have at
least four of them, like in the real system, a frequency–dependent self energy must be consid-
ered.

The GW self energy is one of them: it is a non–local, complex and frequency dependent
self–energy. In appendix H we propose two alternative GW–like approximations. In one of
them the bare and the screened interactions are spin–dependent; this formulation is closer to
the Feynman rules set by the Hubbard model (for instance, the exchange self energy is zero
and the spin–up Green’s function is always exact), and has the advantage of exactly solving the
D = 0 model.

The other formulation, instead, employs a spin–independent interaction [96], and it is closer
to usual GW in solids. It does treat spins on the same footing, adding additional poles to the
spin–up Green’s function (6.4). Moreover, it does not solve exactly the D = 0 system, and this
is precisely the reason why we employ this formulation, and not the former, for the following
discussion.

In particular, the self energy ΣG0W0 we consider is formed from the non–interacting Green’s
function G0 and the RPA polarization ΠRPA

0 ∼−iG0G0, that dresses the bare interaction, evalu-
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Figure 6.4: Position of the poles of the spin–down GW Green’s function as a function of U . Solid
line, exact results, as in fig. 6.1; dots, GW poles, from (H.25).

ated with non–interacting Green’s function, too. It reads:

Σ
G0W0

i j ,σ (ω) = i
∫

dω′

2π
e iω′ηG0

i j ,σ(ω+ω′)W RPA
0 i j (ω′) =

=−δσ,↑δi jUni +
(−1)(i− j ) U 2

2l√
1+ D2

4

 Λ0(−)
i j

ω− (
e−− l signσ

)− iηsignσ
+

Λ0(+)
i j

ω− (e++ l )+ iη

 ,

with l 2 := 4(1+D2

4 )+ 2U√
1+D2

4

. The poles of the Green’s function evaluated with this self energy are

the solution to the equation 0̂ =ω1̂−
[

ĥH + Σ̂
G0W0
σ (ω)

]
, explicitly given by eq. (H.25). In fig. 6.4,

we show the GW poles of the spin–down Green’s function for two values of D , as a function of
U . This approximation works well for small interaction, while it tends to close the gap between
the Hubbard bands for larger value of U . On the other hand, it seems that, apart from the fourth
pole, its performances improve for larger values of D .

6.3 Dynamical Connector Approach (dynCA)

6.3.1 The auxiliary system

Instead of approximately solving the real system, we can work with an auxiliary system that,
in principle, exactly targets the spectral function, precisely as we did in the symmetric case. We
can define the auxiliary system (for the spin–down part of the spectral function) by replacing
the self energy of the real system with a real and frequency–dependent potential vSF i (ω), which
in this case does truly depend on the site, as the two sites are no equivalent anymore:

G−1
SF i j (ω) =G0 −1

i j (ω)− vSF i (ω). (6.10)

The aim is reproducing the position of the poles. These are independent of the particular basis;
therefore, it is useful to express the previous relation in the bonding–antibonding basis, where
the non–interacting Green’s function G0 is diagonal, and the spectral potential reads:

vαβ(ω) = ∑
i=1,2

〈α|i 〉vSF i (ω)〈i |β〉→
V (ω)−

D
2p

D2+4
∆v(ω) 1p

D2+4
∆v(ω)

1p
D2+4

∆v(ω) V (ω)+
D
2p

D2+4
∆v(ω)

 , (6.11)

with V (ω) := 1
2

(
vSF 1(ω) + vSF 2(ω)

)
and ∆v(ω) := vSF 1(ω) − vSF 2(ω). A local potential in the

site basis, whose value depends on the particular site, is no local anymore in the bonding–
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antibonding basis. In this basis, the equation that defines the auxiliary system becomes:

G−1
SF αβ(ω) =G0 −1

α (ω)δαβ− vSF αβ(ω), (6.12)

with G0 −1
α (ω) = ω− eα, eα = e± = ±1

2

p
4+D2. The previous equation defines the frequency–

dependent effective Hamiltonian in the auxiliary system, namely:

HSF αβ(ω) = eαδαβ+ vSF αβ(ω). (6.13)

This Hamiltonian, which is not diagonal due to the presence of the local potential, can be di-
agonalized; it reads:

ĤSF(ω) →
V (ω)−

√
1+ (D+∆v(ω)

2

)2 0

0 V (ω)+
√

1+ (D+∆v(ω)
2

)2

 (6.14)

In this third basis, the Green’s function simply reads Ĝ−1
SF (ω) = ω1̂− ĤSF(ω). Since, as already

stated, the position of the poles in a discrete system does not depend on the basis, the poles of
the Green’s function GSF i j (ω) are determined by the equation:

0̂ =ω1̂− ĤSF(ω) ⇐⇒
ω−

[
V (ω)−

√
1+ (D+∆v(ω)

2

)2
]
= 0

ω−
[

V (ω)+
√

1+ (D+∆v(ω)
2

)2
]
= 0

(6.15)

If vSF i (ω) is the exact potential, these two equations must possess the four6 solutions ωλ, the
poles of the Green’s function of the real system.

However, we test the situation in which we would rather not solve the real system, because
the solution is too complicated, or too time–consuming. Therefore, we will pretend not to know
the exact position of the poles, solving the previous equations for vSF i (ω).

On the contrary, we will find the potential somewhere else, put it in eq. (6.15) and obtain
the resulting position of the poles ωSF λ. To benchmark our approach, we will compare ωSF λ to
the ones obtained via the reference calculation in the real system, ωλ.

6.3.2 The model system

The approach we will follow here is to import the spectral potential vSF i (ω) from a model
system. The natural candidate for this role is the symmetric Hubbard dimer, in the same way
as the homogeneous electron gas will be the model system for real crystals. In both cases,
inhomogeneities (or asymmetries) are absent, and an exact solution of these models is easier
to obtain (it is the solution of section 4.2). Once the potential in at hand in the model, we import
it in the auxiliary system via a suitable connector.

The connector is a very general prescription that states what to import and how to do that.
Both aspects are important. In this chapter we will focus on the first issue, while in the next
one, when we will discuss real materials, we will mainly discuss the second. The reason is that,
in this case, we do not have much freedom on choosing how to import things. Indeed, once
t , U and N are considered as fixed, there is no tunable parameter in the symmetric Hubbard
dimer.

We will adopt, as a connector, a pole–by–pole correspondence: that is a prescription on how
to fix the frequency argument in the model system, for a certain value of frequency in the real
system. As the two systems are discrete, the spectral function is zero for most of frequencies.
There, the spectral potential has an undefined value. On the other hand, we can imagine that,

6Other solutions are allowed if the derivative of the potential diverges, as in the D = 0 case
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switching on D from a D = 0 initial situation, the nature of the poles be unchanged, and the
potential needed to reproduce a certain pole ωλ is close to the potential we used to reproduce
ω(D=0)
λ

, even if ωλ 6=ω(D=0)
λ

. Therefore, it is not the energy ωλ that matters, but the state λ. We
use the latter as a connector, namely we set:

vSF i
(
ωλ

)= v s
SF

(
ωs
λ

)
, (6.16)

where s stands for the model system, the symmetric dimer. Note that the right hand side does
not depend on the site i , as the model system we are using is not flexible enough to account for
such a dependence. Note also that the same argument, a continuous behaviour of the position
of the poles of the auxiliary system as a function of D , pushes to consider, also for D 6= 0, ω1 and
ω4 as bonding poles, zeros of the first of eq. (6.15), while ω2 and ω3 as antibonding poles, zeros
of the second of eq. (6.15).

The second issue is what to import: the whole spectral potential, as in eq. 6.16, or just a
part of it? Clearly the idea is to treat exactly the spectral potential in the auxiliary system as
far as possible, and import from the model system the smallest possible correction. We will
investigate different prescriptions in the next section.

6.3.3 Different quantities to import

The strategy that we will follow is to provide a standard treatment of the real system up to a
certain level we can get to, let’s say Σa , with corresponding poles ωa

λ
. On top of this, we import

some corrections from the model system, which, by contrast, we are able to solve not only up
to Σa , but up to Σ, where Σ can be a higher–order approximation to the self energy, or even the
exact self energy (like in the symmetric Hubbard dimer).

Concretely, if the model system D = 0 is solved by using Σs
a i j (ω) as an approximated self en-

ergy, one can obtain the corresponding spectral potential v s
SF a(ω) that yields the same spectral

function as Σs
a , namely the same poles ωa s

λ
. If, in particular, the exact self energy Σs is at hand,

the corresponding spectral potential is the exact one, v s
SF(ω), with poles ωs

λ
. This is the content

of section 4.2. Note that the poles stemming from the two self energies are in general different.
However, as we have decided that the correspondence is set by the state λ and not by its energy
ωλ, we can compare the spectral potentials at the poles, and define their difference Ξs

a(ωs
λ

):

v s
SF(ωs

λ) = v s
SF a(ωa s

λ )+Ξs
a(ωs

λ). (6.17)

We can set up the same construction in the real D 6= 0 system. The exact spectral potential
is the spectral potential corresponding to the a approximation, plus a correction:

vSF i (ωλ) = vSF a i (ωa
λ)+Ξa i (ωλ), (6.18)

where vSF a i (ω) is treated exactly within the D 6= 0 system, whereas Ξa i (ω) accounts for all the
corrections beyond Σa , and it is not known. The idea of the model system approach is to import
the unknown Ξa i (ωλ) from the model system, which is here the symmetric dimer, namely to
set:

Ξa−dLCA
a i (ωλ) =Ξs

a(ωs
λ) (6.19)

where, as already said, the connection is made through the state label λ, which is indeed the
only quantity which is shared by both sides. Note that the right hand side does not depend
on the particular site i , but is a global quantity. This is due to the limitations imposed by this
choice of the model, which does not offer much freedom in order to tune, e.g., the density. By
contrast, in the general approach of dynamical local density approximation, a different model
system is considered for each point.
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Figure 6.5: Position of the poles of the spin–down Green’s function as a function of U . Solid line,
exact results; dashed lines, the poles in eq. (6.21).

Different approximations depend on the different starting point Σa . We expect the connec-
tor approach to work better in situations in which most of the inhomogeneity is treated exactly
within the real system, and all higher orders interaction corrections are provided by the model
system.

No explicit potential In the simplest case Σa = 0 and, as a consequence, also vSF a i (ω) and
v s

SF a(ω) are zero. From eq. (6.17), the quantity we import is Ξs
0(ωs

λ
) = v s

SF(ωs
λ

), the whole spec-
tral potential of the model system; the prescription reads:

v0−dLCA
SF i (ωλ) = v s

SF(ωs
λ) (6.20)

This is a global potential, independent of the site i . Still, inhomogeneity is accounted for by the
external potential term that modifies the free–particle Green’s function. By plugging expression
(6.20) in the pole equation, eq. (6.15), and by using the same equation also in the model system,
we get the four poles in this approximation:

ω0−dLCA
λ =ωs

λ±
(√

1+ D2

4 −1

)
(6.21)

where the upper (lower) sign is for ω2 and ω3 (ω1 and ω4). We have achieved an exact disentan-
glement of interaction, accounted for by ωs

λ
, and inhomogeneity, that results from the second

term. The performances of this relatively simple approach are pretty good, see fig. (6.5). Apart
from the pole ω4, the results are exact in the D → 0 limit. However, this expression is extremely
simple and does not well reproduce the position of the poles for larger values of D or U .

Explicit Hartree potential In principle, a better solution is to have an explicit local depen-
dence in the spectral potential, and import from the model system a smaller term. This is
possible if the Hartree potential v H

i =Uni is treated exactly in the real system (the asymmetric
dimer), and therefore just the exchange–correlation part of the spectral potential is imported
(from the symmetric dimer).

Indeed, from the separation vSF i (ω) = v H
i +v xc

SF i (ω), where v xc
SF i (ω) is ΞH

i (ω) in the notation
introduced above, we decide to take the unknown v xc

SF i (ω) from the model system. There, the
Hartree potential is simply U /2, hence v xc s

SF (ω) = v s
SF(ω)− U

2 . Using the state λ as a connector,
the analogous of eq. (6.18) and (6.19) reads:

vH−dLCA
SF i (ωλ) =Uni + v xc s

SF (ωs
λ) (6.22)
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Figure 6.6: Position of the poles of the spin–down Green’s function as a function of U . Solid line,
exact results; dashed lines, the poles in eq. (6.23).

This is another connector, which again reduces to the exact result for D → 0, and it explicitly
treats some inhomogeneities in the interaction through the Hartree potential of the real sys-
tem. Only the rest, namely the exchange–correlation part of the potential, is imported from the
model.

Implementing this potential in eq. (6.15) to find the position of the poles, we get:

ωH−dLCA
λ =ωs

λ±
(√

1+h2 −1
)

, (6.23)

which is very similar to the previous one, eq. (6.21) and it has the correct D → 0 limit. Here,
the interaction U enters also the square root, creating an interplay between inhomogeneity
and interaction in the position of the poles, even if the two were disentangled in the definition
of the potential, eq. (6.22). Still, as in the previous case, the pole ω4 is not catched by this
approximation for nonzero values of D .

Note, finally, that this approximation is an improvement with respect to:

1. The Hartree approximation itself, eq. (6.9). Indeed, with a frequency–dependent poten-
tial, the two poles (6.9) can be splitted. Furthermore, they are in good agreement with the
expected result, at least for small D , because the correction is imported from the model
system.

2. The model approach in which no Hartree term in the real system is explicitly considered,
for small values of U . For large U , the previous approximation is a better approximation.

Explicit GW term In the same spirit of what we have just done, we would like to go on in the
exact treatment of the real system up to the GW level7, and then add, on top, the correction
from the model system.

We already evaluated the position of the poles in the GW approximation, eq. (H.25) and
figure 6.4. These poles stem from the non–local and complex self energy Σ

G0W0

i j (ω) and, equiv-

alently, from the local and real spectral potential vG0W0

SF i (ω).

To find the latter in the model system is easy, as there is a one–to–one correspondence be-
tween the potential at the poles and the position of them. That is equation (4.32), that can be
solved for the potential whenever the poles are given. For D = 0, the GW poles are the ones of

7One possible definition of GW: the important point is to use the same GW recipe in both the model and the
auxiliary system.
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Figure 6.7: Corrections Ξs
a(ωs

λ
) for the potential of the model system D =

0 as a function of U , in units of t . Dotted lines are the corrections
Ξs

0(ωs
λ

) ≡ v s
SF(ωs

λ
). Dashed lines represent the corrections to the Hartree po-

tential, Ξs
H (ωs

λ
) ≡ v xc s

SF (ωs
λ

), while the continuous lines are the corrections
Ξs

G0W0
(ωs

λ
) to the GW potential of table 6.2 and

eq. (H.23):

ω
G0W0 s
λ

= l + U
2

2
± 1

2

√(
l ±2− U

2

)2

+ 2U 2

l
(6.24)

and they are shown in table 6.1.

λ ωs
λ

ω
G0W0 s
λ

1 1+ U−c
2

l+U
2

2 − 1
2

√(
l +2− U

2

)2 + 2U 2

l

2 1
l+U

2
2 − 1

2

√(
l −2− U

2

)2 + 2U 2

l

3 1+U
l+U

2
2 + 1

2

√(
l −2− U

2

)2 + 2U 2

l

4 1+ U+c
2

l+U
2

2 + 1
2

√(
l +2− U

2

)2 + 2U 2

l

Table 6.1: Exact and GW poles of the spin–down Green’s function in the model system.

The value of the potential that yields these poles, evaluated at the poles, is given by the
relation vG0W0 s

SF (ωG0W0 s
λ

) =ω
G0W0 s
λ

∓1, see eq. (4.32). It is shown in table 6.2.

Their differences Ξs
G0W0

(ωs
λ

) = v s
SF(ωs

λ
)− vG0W0 s

SF (ωG0W0 s
λ

) are the quantities we would like to
import in the auxiliary system. Their value is shown in table 6.2, while their behaviour as a
function of U is shown in fig. 6.7. In the same figure, I plot the analogous correction Ξs

0(ωs
λ

) ≡
v s

SF(ωs
λ

), occurring if no explicit potential is treated in the real system, and Ξs
H (ωs

λ
) ≡ vxc s

SF (ωs
λ

),
if instead of GW we would have considered only the Hartree approximation: we can see that
the more the spectral potential is treated exactly in the real system, the smaller the correction
to import.

It is clear that GW is a great improvement over the simpler Hartree approximation. Indeed,
the correction Ξs

G0W0
(ωs

λ
) that one needs to get the exact potential is smaller. Moreover, that
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Figure 6.8: Position of the poles of the spin–down Green’s function as a function of U . Solid
line, exact results. Small dots, the G0W0 poles of eq. (H.25) and fig. 6.4. Large dots, the poles
ω

G0W0−dLCA
λ

in eq. (6.26), within the G0W0–dynLCA approach.

λ v s
SF(ωs

λ
) vG0W0 s

SF (ωG0W0 s
λ

) Ξs
G0W0

(ωs
λ

)

1 2+ U−c
2

l+U
2

2 − 1
2

√(
l +2− U

2

)2 + 2U 2

l +1 1+
U
2 −c−l

2 + 1
2

√(
l +2− U

2

)2 + 2U 2

l

2 0
l+U

2
2 − 1

2

√(
l −2− U

2

)2 + 2U 2

l −1 1−
U
2 +l

2 + 1
2

√(
l −2− U

2

)2 + 2U 2

l

3 U
l+U

2
2 + 1

2

√(
l −2− U

2

)2 + 2U 2

l −1 1+
3
2 U−l

2 − 1
2

√(
l −2− U

2

)2 + 2U 2

l

4 2+ U+c
2

l+U
2

2 + 1
2

√(
l +2− U

2

)2 + 2U 2

l +1 1+
U
2 +c−l

2 − 1
2

√(
l +2− U

2

)2 + 2U 2

l

Table 6.2: Exact and GW potentials that give the poles of table 6.1, in the model system. Also their
difference Ξs

G0W0
(ωs

λ
) = v s

SF(ωs
λ

)− vG0W0 s
SF (ωG0W0 s

λ
) is shown.

same correction is always asymptotically zero for U → 0 (i.e., GW is asymptotically exact for
U → 0), even for the satellite ω4, whose physics is now clearly caught by the RPA polarization of
GW.

Connection Got the term Ξs
G0W0

(ωs
λ

) in the model system, we place it on top of the GW spec-

tral potential vG0W0

SF i (ωλ) in the auxiliary system, and we obtain:

vG0W0−dLCA
SF i (ωλ) = vG0W0

SF i (ωλ)+Ξs
G0W0

(ωs
λ) (6.25)

The GW spectral potential vG0W0

SF i (ωλ) is the spectral potential that exactly yields the GW poles,
eq. (H.25). In principle, it is found as the solution of the generalized Sham–Schlüter equation
when the self energy is ΣGW . In practice, we do not need its explicit form.

Indeed, plugging the previous expression in eq. (6.15) and using the fact that ωG0W0

λ
are the

solutions of eq. (6.15) when the spectral potential is vG0W0

SF i (ωλ), we obtain the following simple
expression for the poles:

ω
G0W0−dLCA
λ

=ω
G0W0

λ
+Ξs

G0W0
(ωs

λ), (6.26)

which, still, is exact in the limit of D → 0. These poles are represented in fig. 6.8.

For small D , the GW approximation in the real system was closing the gap between the
Hubbard bands, yielding poles that were blue–shifted in the lower band (ω1 and ω2) and red–
shifted for the upper band (ω3 and ω4), see fig. 6.4. Adding the correction Ξs

G0W0
(ωs

λ
) evaluated

in the model system restores the expected position of the poles, and the agreement between
our theory and the exact result is very good.
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Figure 6.9: Position of the poles of the spin–down Green’s function as a func-
tion of U , for D = 2. Solid line, exact results. Dotted lines for the poles of
eq. (6.21), dynLCA on top of nothing. Dashed lines for the poles of eq. (6.23),
dynLCA on top of Hartree. Dots, the poles of eq. (6.26), dynLCA on top of GW.

On the contrary, for larger values of D , the GW approximation was already extremely good
for ω1, ω2 and ω3, while it was not so good for ω4. With the model system approach, the agree-
ment is spoiled for the first three poles while it is again improved for the fourth pole.

This behaviour is due to the choice of the model system and the connector. Indeed, the
former is fixed, without possible parameters to tune. Therefore, the connector acts only on the
frequency part of the potential, without giving any site–dependence to the correction imported
from the model. As a consequence, the correction Ξs

G0W0
(ωs

λ
) that we import from the model

system, eq. (6.26), does not depend on D , as can be seen from fig. 6.8.

This issue could be overcome by introducing a local connector between the model and the
auxiliary system, like the local density of LDA. However, this is not straightforward, as the model
system, the N = 1 symmetric Hubbard dimer, misses a density that could be tuned: there, ni =
1
2 , and attempts to “localize” this value are not unequivocal.

I summarize the three different procedures of importing from a model system in fig. 6.9.
In general, the more pieces of the potential are put into evidence and treated exactly in the
auxiliary system, the more accurate the model system approach is. This is true when passing
from eq. (6.20) to eq. (6.22), for not too–large interaction, U / 2D , and when passing from eq.
(6.22) to eq. (6.25) for an even larger range of U .

The fact that, for small D , the dynLCA approximations work well is not surprising, as the
real system is closer to the model system itself, and therefore the dynLDA prescription is better
suited. Moreover, for small D , the real system is only slightly inhomogeneous, hence a mean
field description as the one proposed here works well. On the contrary, for higher values of
D , when properties are truly site–dependent, a global correction Ξs

a(ωs
λ

) shows its limits. In
this regime, a local connector is expected to work better but, as already explained, the model
system we have chosen is not flexible enough to account for this possibility (if t , U and N are
kept fixed).
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In this chapter, I have applied the strategy described in chapter 5 to a very simple model,
the asymmetric Hubbard dimer. Indeed, despite its simplicity, obtaining the exact so-
lution of the system is not elementary. Instead of exactly solving the real system, the
dynLCA approach prescribes to solve a model system – the symmetric dimer, in this case
– and then import the effective potential with a suitable connector. In this chapter, we
have discussed the choice of the best quantity to import. We have examined three differ-
ent possibilities: the whole spectral potential, its exchange–correlation part or, finally,
only the term beyond GW. As expected, the smaller the correction to import, the better
the agreement with the expected result. We have also considered the form of the connec-
tor, concluding that it is the state, and not its energy, that must be used to connect the
model and the auxiliary system. We will find the same thing in real materials, where a
shift of the frequency argument of the spectral potential will be implemented in order
to pass from the model to the auxiliary system.
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Chapter 7
Dynamical Local Connector
Approximation in practice: real systems

The connector idea that we developed in the chapter 5 is theoretically very appealing: it
allows one to bypass the calculation of the self energy for every different system, importing the
relevant information from a database generated once and forever.

In this chapter we present the results of this approach for four very different real materials:
bulk sodium, a nearly homogeneous metal; aluminum, still a metal but less homogeneous;
silicon, a semiconductor with a small gap; and finally solid argon, a wide–gap insulator with
very localized states. Their minimum, maximum and average densities, nmin, nmax and n̄, are
shown in table 7.1, as well as the standard deviation σn , defined via σ2

n := (nmin − n̄)2 + (nmax −
n̄)2, and its value normalized to the average density σn/n̄.

Inhomogeneity in the density stems from the presence of the lattice, which can modify to
different extent the motion of electrons. In general, for bulk sodium, the presence of the lattice
can be considered as a small perturbation to a free–electron motion, while this is less and less
true for aluminum and silicon, till the limit case of argon, whose valence bands can be regarded
as atomic–like, with very localized electrons. No matter to which degree, the homogeneous self
energy Σh(k,ω) is modified by the lattice.

The standard approach is, thus, to build a self energy Σ(k ,ω) for every different system,
suited to the particular lattice of that system. Our effective approach, on the contrary, accounts
for the lattice inhomogeneity in the properties of the connector, but the electron–electron in-
teraction described by the self energy is evaluated just once and forever in the model system,
the homogeneous electron gas. The challenge is therefore to reproduce realistic results ob-
tained via a k–dependent self energy through a potential evaluated in a homogeneous system.

7.1 Implementation

Since they often offer a realistic representation of a system, and they are a true challenge to
our local method, we consider the range–separated hybrids approximation for the self energy.
It is given by eq. (4.47):

ΣHSE06
xc (r ,r ′) = hloc

xc (r )δ(r − r ′)+αΣSR
x (r ,r ′) (7.1)

with the local part of it given by hloc
xc (r ) := vPBE

xc (r )−αvPBE,SR
x (r ). The PBE functional is the one

of ref. [108]. In the homogeneous electron gas, the self energy is expressed by eq. (4.50), and
the corresponding spectral potential by eq. (4.63).
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nmin[a−3
0 ] nmax[a−3

0 ] n̄[a−3
0 ] rs[a0] ωP[eV ] σn[a−3

0 ] σn/n̄

Na 3.3344 ·10−4 4.3731 ·10−3 3.9306 ·10−3 3.9312 6.0468 0.004 0.922
Al 2.2456 ·10−3 3.1902 ·10−2 2.6768 ·10−2 2.0738 15.7821 0.025 0.936
Si 3.4131 ·10−3 8.3875 ·10−2 2.9601 ·10−2 2.0054 16.5962 0.060 2.036
Ar 4.7366 ·10−4 3.7761 ·10−1 3.2659 ·10−2 1.9407 17.4325 0.346 10.608

Table 7.1: Minimum, maximum, and average densities of the four materials considered; a
measure of their inhomogeneity is given by the standard deviation σn and its value normal-
ized to the average density σn/n̄. Also the Wigner–Seitz radius rs and the plasma frequency
ωP =p

4πn̄ are shown.

We will follow a perturbative approach with respect to a ground state Kohn–Sham calcula-
tion in the local density approximation. In other words, we will evaluate the various quantities
using the Kohn–Sham density and orbitals, without updating the latter in a subsequent step,
till eventually self–consistence. This procedure is analogous to the one–shot GW @LDA.

The self energy standard calculation For the purpose of the implementation, the self energy
(7.1) can be expressed in the Bloch basis (see appendix I). In a perturbative approach, we con-
sider only the diagonal elements in the bands. Therefore, the self energy reads:

Σn(k) = hloc
xc n(k)+αΣSR

x n(k)

As a consequence, a generic excitation reads:

εn(k) =
[
ε0

n(k)+ vext
n (k)+ vH

n (k)+hloc
xc n(k)

]
+αΣSR

x n(k) (7.2)

This calculation, considered as a reference calculation to benchmark our approach, is done
through the use of the open source code Abinit, version 7.10.5 [133, 134], for a certain num-
ber of k–points in the irreducible part of the first Brillouin zone and for a certain number of
bands. Since we are perturbative in the LDA Kohn–Sham orbitals, the quantity in square brack-

ets is nothing but
[
εKS−LDA

n (k)− vxc−LDA
n (k)+hloc (PBE)

xc n (k)
]

: it is the sum of simple quantities
that can be obtained from a self consistent Kohn–Sham calculation, with little effort. On the
contrary, the bottleneck in the calculation is the non–local self energy, hence the total compu-
tation time is similar to the one of a Hartree–Fock calculation.

Once the excitation energies εn(k) are at hand, the spectral function in Bloch space is eval-
uated as:

An(k ,ω) = δ
(
ω−εn(k)

)
(7.3)

with the delta function represented by a Gaussian function with broadening η = 0.1eV. The
bandstructure is obtained from it as ω= εn(k). From An(k ,ω) we have access both to the diag-
onal in real space of the spectral function:

A(r ,r ,ω) = 1

V

∑
k∈1BZ

∑
n

unk (r )δ
(
ω−εn(k)

)
u∗

nk (r ), (7.4)

and to the interacting density of states A(ω) := 1
V

∫
d 3r A(r ,r ,ω), which is nothing but the inte-

grated spectral function and reads:

A(ω) = 1

V

∑
k∈1BZ

∑
n
δ
(
ω−εn(k)

)
(7.5)

This last quantity is the one that we will consider to benchmark our approach.
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(a) Na (b) Al

(c) Si (d) Ar

Figure 7.1: Integrated spectral function A(ω) in the HSE06 approximation (in atomic
units), as a function of frequency (in eV), aligned with µ = 0 (for insulators, alter-
natively the mid–gap or the highest occupied level), for the four systems considered:
sodium, aluminum, silicon and argon. The coloured area is the occupied band. Only
for this picture, the tetrahedron method [135] is used to perform the sum in eq. (7.5),
resulting in a very sharp integrated spectral function. This method has not yet been
implemented for our approach, therefore, for the next figures, we will use a simple sum
also for the self energy reference calculation.

The calculation is carried out for the four prototypical systems mentioned above: sodium,
aluminum, silicon and argon. Here are the physical and numerical characteristics of the four
systems considered:

Sodium Sodium is a metal, whose density range is shown in table 7.1. It crystallizes in a body–
centered cubic (BCC) lattice, with experimental [136] lattice constant a =4.225Å. To treat the
ions (each one formed by a nucleus and the core electrons), we employ a Trouiller–Martins
(TM) pseudopotential [137]. For the three calculations, LDA, reference and dynLCA, we use
a Γ–centered grid of 30×30×30 k–points, making 752 k–points in the irreducible part of the
first Brillouin zone, and 20 bands. We use a common cut–off energy of 20.0 Hartree (Ha), and a
gaussian smearing of 0.01 Ha to converge the k–integral. For the reference calculation, a cutoff
of 4.0 Ha in the exchange part of the self energy is used, and 6.0 Ha for the wavefunctions.

Aluminum Aluminum is still a metal, but less homogeneous, see table 7.1. It crystallizes in
a face–centered cubic (FCC) lattice, with a lattice constant a =4.049Å. In this case we use an
optimized norm–conserving Vanderbilt (ONCV) pseudopotential [138]. To converge, we em-
ployed a Γ–centered grid of 38×38×38 k–points, making 1440 k–points in the irreducible part
of the first Brillouin zone, and 20 bands. Cutoff energy of 20.0 Ha, and a temperature smearing
of 0.005 Ha. For the self energy calculation, a cutoff of 4.0 Ha for the exchange component is
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KS–LDA HSE06
W [eV] Eg [eV] W [eV] Eg [eV]

Na 3.25 0.00 3.83 0.00
Al 11.09 0.00 12.65 0.00
Si 11.96 0.56 13.26 1.20

Ar 14.41 8.31 15.71 10.74

Table 7.2: The occupied band width W and band gap Eg , in eV, for the four
materials considered (for Ar, also the s band is considered as a valence band),
in DFT within the LDA approximation and with the HSE06 self energy.

used, and 6.0 Ha for the wavefunctions.

Silicon Silicon is a semiconductor with a small experimental gap of 1.16 eV [139]. Its density
range is wider than for aluminum, see table 7.1. Silicon crystallizes in a FCC lattice, and it
has an experimental [136] lattice constant a =5.429Å. We use a TM pseudopotential [137]. A
Monkhorst–Pack [140] grid of 14×14×14 k–points with 4 shifts is considered, making 344 k–
points in the irreducible part of the first Brillouin zone, and 12 bands. We consider a cutoff
energy of 20.0 Ha. For the self energy calculation, we use a cutoff of 4.0 Ha in the exchange part
of it, and 10.0 Ha for the wavefunctions.

Argon Argon is a wide gap insulator, and it is definitely not homogeneous: its density range is
shown in table 7.1. It crystallizes into a FCC lattice, with an experimental [136] lattice constant
a =5.256 Å. We use a TM pseudopotential [137], and a Monkhorst–Pack [140] grid of 12×12×12
k–points with 4 shifts, making 231 k–points in the irreducible part of the first Brillouin zone,
and 12 bands. The cutoff energy is 20.0 Ha. For the reference calculation, a cutoff of 12.0 Ha in
the exchange part of it is considered, and a cutoff of 16.0 Ha for the wavefunctions.

The results of the self energy calculation, which constitute the benchmark for our approach,
are presented in fig. 7.1. Bandwidth W and gap Eg are given in table 7.2.

Implementation of dynLCA The self energy approach is what we have been referring to as
the real system calculation. In the auxiliary system, the role of the self energy is played by the
spectral potential. This is a local and frequency–dependent real potential which is nothing but
the self energy whenever the latter is real and local, and differs from it otherwise. Therefore, as
the self energy in eq. (7.1) contains a real and local part, it is natural to assume the following
structure for the exchange–correlation spectral potential:

vxc
SF(r ,ω) = hloc

xc (r )+αvSR
x (r ,ω), (7.6)

which1 in Bloch basis, see eq. (I.6), reads:

vxc
SF n(k ,ω) = hloc

xc n(k)+αvSR
x n(k ,ω) (7.7)

This potential yields, in a perturbative approach, the following excitation energies:

εSF
n (k ,ω) =

[
ε0

n(k)+ vext
n (k)+ vH

n (k)+hloc
xc n(k)

]
+αvSR

x n(k ,ω) (7.8)

1In the purely frequency–dependent part of the spectral potential, vSR
x (r ,ω), I drop the subscript SF for clarity

reasons.
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The quantity in square brackets is the same as in eq. (7.2), and it is evaluated in the real system
through a simple Kohn–Sham calculation.

On the contrary, the role of the non–local self energy is played here by the purely frequency–
dependent part of the spectral potential. We do not want to evaluate it exactly through the
Sham–Schlüter equation (3.24), nor we want to find an approximation to it via the linearized
Sham–Schlüter equation (3.25).

Here we stick to the connector approach, namely we import vSR
x (r ,ω) from the homoge-

neous electron gas database,
{

vSR h
x (ω)

}
nh , via different prescriptions that I illustrate below.

Then we evaluate the matrix element vSR
x n(k ,ω) and we plug it in eq. (7.8). Note that the calcu-

lation time is here drastically reduced: instead of the construction of a non–local self energy,
we just have to read an external file.

The spectral function in Bloch space is not a simple delta function, as eq. (7.3), because the
excitation energy is now frequency–dependent:

ASF
n (k ,ω) = δ

(
ω−εSF

n (k ,ω)
)

(7.9)

The band structure is obtained from solving the equation ω− εSF
n (k ,ω) = 0. The solution is

ω= εSF
n (k). On the other hand, the integrated spectral function in the auxiliary system reads:

ASF(ω) = 1

V

∑
k∈1BZ

∑
n
δ
(
ω−εSF

n (k ,ω)
)

(7.10)

We have implemented this procedure in abinit, version 7.10.5, and carried out the calcula-
tion for the same four prototypical materials, Na, Al, Si and Ar. To discuss the validity of this
approach, we benchmark the resulting ASF(ω) with its reference calculation counterpart A(ω).

Local density approximation We benchmark our results also to a simpler approach, Kohn–
Sham in the standard local density approximation, in which the potential vLD A

K S (r ), taken from
ref. [120], is static. In general, as can be seen from table 7.2, LDA underestimates both gaps and
the bandwidths with respect to HSE06.

LDA is very similar to an approximation to the Kohn–Sham potential that is on the same
footing of dynLCA but with a static potential. It consists in importing the exchange–correlation
potential ṽKS

xc (r ) from the homogeneous electron gas at the local density. However, in the HEG,
ṽKS h

xc reproduces the density obtained from an HSE06 calculation, and not the exact density of
[103]. The potential ṽKS h

xc can be viewed as the exact exchange potential ṽEX−HSE h
xc in which the

Fock self energy is replaced by the HSE06 one.

Such a potential, in the HEG, is given by:

ṽEX−HSE
xc = hloc

xc +αΣSR
x (kF) ≡ hloc

xc +αvSR
x =

= vPBE
xc +α

(
vSR

x − vSR (PBE)
x

)= vLDA
xc

as in the homogeneous electron gas PBE does not differ from LDA [141]. Therefore, importing
in the auxiliary system via the local density, ṽLDA

xc (r ) = ṽEX−HSE
xc nh=n(r )

, we finally get that ṽLDA
xc (r ) =

vLDA
xc (r ). Thus, vLD A

K S (r ) can be considered as a static version of vSF(r ,ω) and, by comparing our
results to LDA, we appreciate the importance of frequency–dependence in vSF(r ,ω).

7.2 The simplest connector: Fermi energy alignment

We start our investigation from the simplest connector applied to the simplest system. The
simplest system we consider is bulk sodium, which is very close to the model system itself. As
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Figure 7.2: Integrated spectral function of sodium, in eV, as a function of fre-
quency, in eV. In blue the reference calculation with the self energy, in green
LDA, in red our approach, dynLCA, with the connector of eq. (7.11). The three
curves are aligned with µ= 0.

Figure 7.3: Integrated spectral function of sodium, in eV, as a function of fre-
quency, in eV. In blue the reference calculation with the self energy, in gray the
homogeneous electron gas integrated spectral function with rs = 3.9315 (Na
average density).

the homogeneous electron gas, indeed, sodium is a metal, and it is almost homogeneous (see
table 7.1).

Since this system is almost homogeneous, we first implement the connector of eq. (5.17),
applied to the purely frequency–dependent part of the hybrid spectral potential. In the spirit of
eq. (5.15) (or of LDA), for each point r we consider a homogeneous electron gas with the same
local density n(r ) of the real system:

vSR
x (r ,ω) = vSR h

x nh=n(r )

(
ω−µ+µh

nh=n(r )

)
(7.11)

This formula is extremely simple, and it is the most obvious connector for a system that is very
close to the model. A drawback is that the Fermi energy µ of the auxiliary system appears,
which is in principle an output result of the calculation done with vSR

x (r ,ω) itself. To set its
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Figure 7.4: Integrated spectral function of sodium, in eV, as a function of fre-
quency, in eV. In blue the reference calculation with the self energy, in green
LDA, in red our approach, dynLCA, with the connector of eq. (7.14). The three
curves are aligned with µ= 0.

value, we here consider two possibilities: the first one is using the Fermi energy evaluated in
the reference calculation. This is a quick recipe for the purpose of illustrating the results, but
it is not efficient when studying real materials, as the aim of this whole thesis is to avoid a
time consuming reference calculation with the self energy. Thus, we are left with the second
possibility, namely finding the value of µ via an iteration cycle: one first guesses a value µ(in),
plugs it into eq. (7.11), performs the calculation and evaluates the resulting Fermi energy µ(out),
which becomes the new input parameter for the second cycle, until convergence is reached.
For the materials we consider (in the HSE06 approximation), this procedure is converging after
a few steps.

The result, shown in fig. 7.2, is already extremely promising: our approach reproduces the
exact shape of the integrated spectral function, from the valence band to high unoccupied
bands. It clearly overcomes the performances of LDA. In particular, the bandwidth is in ex-
cellent agreement with the reference calculation.

However, some shortcomings are still present: whenever the spectrum exhibits a spike (a
Van Hove singularity [142]), in correspondence of high symmetry points in the Brillouin zone,
this is always blue–shifted with respect to the reference calculation. It is a systematic shift,
as opposed, e.g., to the LDA one, which is a blue–shift for the valence band and a red–shift
in the unoccupied region. By contrast, the dynLCA shift is always towards higher values of
frequencies: it is zero at the bottom of the valence band, it increases for higher energies and
then it decreases to zero for high bands.

To conclude, we have already obtained an important result: in fact, as the spectral potential
of the homogeneous electron gas does not vary in a significant way over the density range of
sodium, the local density in eq. (7.11) could be harmlessly replaced by an average density n̄,
and the result would not change. The corresponding connector, different from the one in eq.
(7.11), would be:

vSR
x (r ,ω) = vSR h

x nh=n̄

(
ω−µ+µh

nh=n̄

)
(7.12)

This prescription – and basically also the one in eq. (7.11) – is simply to rigidly move the model
system on top of the real system by shifting the frequency argument and therefore aligning
their energy scales to a common one. As the right hand side of eq. (7.12) does not depend
on r , all the inhomogeneities of sodium are accounted for by the previous terms, vext(r ) +
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Figure 7.5: Band structure in the real system εnn(k), in blue, and in the auxil-
iary system, εSF

nn(k), in red, for three paths in the first Brillouin zone of sodium.
To the left, the spectral potential is the one of eq. (7.11), with the alignment
of the Fermi energies; to the right the one of eq. (7.14), with a shift of the
frequency argument by the external plus the Hartree potential. Also the cor-
responding integrated spectral function is shown.

vH(r )+hloc
xc (r ), and the electron–electron interaction effects described by ΣSR

x (r ,r ′) are dealt
with by vSR h

x n̄ . This complete disentanglement of inhomogeneity from the non–trivial part of
the electron–electron interaction works pretty well in this case, as the final result is astonish-
ingly good. This will not be the case for less homogeneous systems, where a complete disen-
tanglement is usually not achievable and indeed the right hand side of eq. (7.11) will acquire a
strong local dependence.

Note, finally, the importance of evaluating most of the terms directly in the real system, the
ones in square brackets in eq. (7.8): they constitute a valuable ground, already containing a
lot of information on the real system, on top of which vSR h

x n̄ acts. The opposite limit, in which
everything is imported from the model system (which is another way of saying that we approxi-
mate the system with a HEG at the average density), is shown as a shaded region in fig. 7.3. The
valence part of the spectrum, as well as the value of the bandwidth, are well reproduced; the
reason is that the valence band does not cross any high–symmetry point of the Brillouin zone,
hence the dispersion is close to the one of the corresponding homogeneous electron gas. On
the other hand, no feature coming from inhomogeneity (spikes, wells) is obviously caught by
this procedure.

7.3 A shortcut: local alignment

The alignment of the static Fermi energy µ to the Fermi energy of the model system µh in
eq. (7.11) depends on r , as the latter is evaluated at the local density n(r ). On the other hand,
µ is always just a number, and this does not leave much freedom to introduce locality in the
frequency–dependence.

Another issue linked to the chemical potential is the self–consistent iterative procedure we
discussed above: while the potential does not appreciably change over the density range of
sodium, it still varies a lot with frequency, see fig. 5.5. Therefore, a precise value for µ is re-
quired. Especially for metals, this is difficult to get, as a large number of k–points is needed to
locate the Fermi surface.

An alternative to the Fermi energy alignment is thus desirable. This is given by the Thomas–

132



CHAPTER 7. dynLCA IN PRACTICE 7.3. A SHORTCUT: LOCAL ALIGNMENT

Figure 7.6: Integrated spectral function of aluminum, in eV, as a function of
frequency, in eV. In blue the reference calculation with the self energy, in green
LDA, in red our approach, dynLCA, with the connector of eq. (7.11), above,
and the one of eq. (7.14), below. The three curves are aligned with µ= 0.

Fermi relation, valid for slowly varying density [128]:

µ= vext(r )+ vH(r )+µh
nh=n(r )

(7.13)

Therefore, we can switch from the Fermi energy alignment µ−µh
nh=n(r )

in eq. (7.11) to the sum
of the external and the Hartree potential, which are still functionals of the density:

vSR
x (r ,ω) = vSR h

x nh=n(r )

(
ω− vext(r )− vH(r )

)
(7.14)

This in another connector, in which the interplay between inhomogeneity and interaction is
possibly stronger, as more local dependence enters the frequency argument. Note that the
previous knowledge of the Fermi energy µ is no more needed here: we can avoid the self–
consistent iteration cycle µ(in) →µ(out) as well as a precise evaluation of the chemical potential
at the end of the calculation. Finally, this connector fits exactly the general form of eq. (5.15),
with c(r ,ω) = vext(r )+ vH(r ), and no external correction is needed.

The resulting integrated spectral function A(ω) is shown in fig. 7.4. The dynLCA result is
still on top of the reference calculation, and the blue–shift of the peaks has been reduced. This
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Figure 7.7: Band structure in the real system εnn(k), in blue, and in the aux-
iliary system, εSF

nn(k), in red, for two paths in the first Brillouin zone of alu-
minum. To the left, the spectral potential is the one of eq. (7.11), with the
alignment of the Fermi energies; to the right the one of eq. (7.14), with a shift
of the frequency argument by the external plus the Hartree potential.

is most evident if we consider the band structure, fig. 7.5: the discrepancies in the high energy
region have almost disappeared, and they are reduced even in the low energy region. Still,
these discrepancies are most evident at the high symmetry points of the first Brillouin zone. An
interesting remark is that this is qualitatively the same blue–shift of the band structure of the
homogeneous electron gas, fig. 4.21. We will come back to this point below.

Aluminum Aluminum, a less homogeneous metal, follows the same qualitative behaviour of
sodium, see fig. 7.6: a pretty good reproduction of the shape of the integrated spectral function,
in particular in the valence region, where the bandwidth is significantly improved with respect
to LDA. Furthermore, the local alignment of eq. (7.14) is an improvement over the Fermi energy
alignment of eq. (7.11), as in the case of sodium.

On the other hand, as well as in sodium, there is a systematic blue–shift of the intraband
peaks towards higher frequencies. This is most evident in the peaks at -3.3 eV, 6.1 eV, 13.0 eV
and for the deep dip at 28 eV for the Fermi energy alignment, and it still survives, even though
reduced, in the local alignment connector for the low energy peaks.

This discrepancy is most evident in the band structure, fig. 7.7. In principle, the band struc-
ture is not a quantity which is reproduced in the auxiliary system; indeed, for the whole valence
band in sodium and for the low energy region of the valence band of aluminum, although the
band structure is not reproduced, the integrated spectral function ASF(ω) is in excellent agree-
ment with A(ω). On the other hand, as soon as a band crosses a high symmetry point in the
Brillouin zone, the spectrum displays a peak and this is blue–shifted with respect to the refer-
ence calculation. Also for aluminum, as in sodium, this blue–shift is qualitatively the same that
we had in the homogeneous electron gas, fig. 4.21.

We will come back to this issue in the next section. For the moment, let us focus on the gen-
eral shape of the spectra, which is very well reproduced for the two metals we have considered.
We can conclude that this second connector, eq. (7.14), is not only a shortcut with respect to
the previous one, eq. (7.11), but also an improvement of it in the agreement with the reference
calculation.
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Figure 7.8: Integrated spectral function of silicon (above) and argon (below)
as a function of frequency. In blue the reference calculation with the self en-
ergy, in red the dynLCA approach: dotted line for eq. (7.11), continuous line
for the connector of eq. (7.14). The three curves are aligned with µ= 0.

Insulators On the other hand, not the Fermi energy alignment nor this simple local alignment
are able to reproduce the integrated spectral function of non–zero gap systems, silicon and
argon, as it is shown in fig. 7.8. As for silicon, we are not able to open the gap, and the bandwidth
is overestimated with both procedures. In argon the behaviour is similar: the gap is not zero
but largely underestimated, and the bandwidth is overestimated.

Note that, at least for silicon, which is not as inhomogeneous as argon (see table 7.1: actu-
ally, it is comparable to aluminum), we can still recover a HEG–like behaviour, as it is evident
from fig. 7.9: as for sodium and aluminum, the intraband peaks are blue–shifted with respect to
the reference calculation, resulting in an overestimation of the bandwidth; the shift increases
for increasing energy in the low energy region, and then fades out for higher energy. On the
contrary, argon is so inhomogeneous that this HEG–like picture breaks down and other effects
appear.

As a final remark, for both silicon and aluminum, the connector of eq. (7.14) is an improve-
ment over the one of eq. (7.11), but it is nevertheless clearly unsatisfactory.

A further refinement of the connector is required.
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Figure 7.9: Silicon as in fig. 7.8, but with the dynLCA curves aligned to the
bottom of the band: in this way it is clear that the behaviour of silicon, too, is
similar to that of sodium and aluminum: a larger blue–shift with respect to
the reference calculation for the connector of eq. (7.11), reduced by the con-
nector of eq. (7.14). The shift, that increases at low energies, then becomes
smaller for higher bands.

7.4 Band structure correction

To proceed further, we should gain a better understanding of how the HEG potential is mod-
ified in the solid. In order to do so and to avoid additional complications, it is useful to compare
the homogeneous electron gas to the system which is the closest to it, sodium.

Here, the free particle dispersion ωk = k2

2 is only slightly modified by the lattice, that opens
small gaps in correspondence of some high–symmetry points, like N [101]. However, apart
from this, the band structure remains generally close to the one of the homogeneous electron
gas, see fig. 7.10, left panels2.

The behaviour of the two band structures is so similar that we can try to make a parallelism
between them. Indeed, roughly up to the Fermi energy µ, both in sodium as in the HEG the
auxiliary system band structure (red line) is blue–shifted with respect to the real system one
(blue line), more or less of the same amount. This discrepancy in the band structure does not
prevent the resulting integrated spectral functions from matching. The reason for this in the
HEG was analytically explained at pag. 86: we need a non–zero difference ∆k , eq. (4.70), in
the band structures, to allow a purely frequency–dependent potential to reproduce Ah(ω). The
same holds true for sodium.

This argument, which holds also for higher bands, breaks down at the high–symmetry points
N and P. There, the discrepancies in the band structure are not absorbed by the HEG ∆k –
mechanism (that does not know what a gap is), and they become manifest in the integrated
spectral function.

A very elaborated connector, that modifies the frequency–dependence of the spectral po-

2Note that, to avoid numerical issues due to the numerical implementation inabinit, we have here considered
the homogeneous electron gas treated as a real material, hence the noise in the spectrum A(ω). No connector is
needed for reproducing the HEG spectral function. Put it differently, the connectors we introduced smoothly tend
towards the homogeneous spectral potential in the limit of constant density.

The homogeneous electron gas we have considered is the following: a fictitious empty simple cubic lattice with
lattice parameter a = 5.54a0 and rS = 3.9315a0 (Na average density). For the three calculations, LDA, self energy
and dynLCA, we use an unshifted grid of 30×30×30 k–points, making 2176 k–points in the first irreducible Brillouin
zone, and 15 bands. Cut–off energy of 6.0 Ha, gaussian smearing of 0.01 Ha. For the self energy calculation, a cut–off
of 4.0 Ha for both the exchange part of it and for the wavefunctions.
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Figure 7.10: Band structure and integrated spectral function of the homoge-
neous electron gas (left) and sodium (right), at the same average density. The
homogeneous electron gas results are evaluated numerically as for real sys-
tem.

tential of the HEG in a non–trivial way, would be, in principle, able to overcome this issue and
generate the exact spectral function even with a different band structure. In practice, finding
such a connector can be extremely difficult. Therefore, we here propose a pragmatic solution.

It is clear that a new spectral potential ṽSF(r ,ω), still real, local and frequency–dependent,
that do not rest on the∆k –mechanism but, on the contrary, explicitly reproduce the band struc-
ture (hence ∆̃k = 0) and, through it, the integrated spectral function, would have more chances,
when imported in the real material, to produce a band structure that stick to the true one and
thus do not blue–shift features like intraband peaks.

This potential is, in the HEG, exactly the one we introduced in the end of section 4.3, as a
trick to have both the band structure and the spectral function at once. It is connected to the
old potential by eq. (4.75):

vh
SF(ω) −→ ṽh

SF(ω) = vh
SF(ω)−∆h(ω), (7.15)

with ∆h(ω) defined by eq. (4.76):

∆h(ω) := vh
SF(ω)−Σh

xc

(
k0(ω)

)=α∆SR h
x (ω) (7.16)

with:
∆SR h

x (ω) := vSR h
x (ω)−ΣSR h

x

(
k0(ω)

)
(7.17)

Working with ṽh
SF(ω) in place of vh

SF(ω) in the auxiliary system, its band structure is exactly the
real system one by construction. To obtain also the exact value of the diagonal of the real system
spectral function, one has to employ the prescription (4.78):

ÃSF(r ,r ,ω) := 1

2π2

∫ +∞

0
dk k2δ

(
ω− ε̃SF

k

)
, (7.18)

in place of (4.77), which is the homogeneous electron gas version of the more general equation
(7.10), that we have used so far:

ÃSF(r ,r ,ω) = 1

2π2

∫ +∞

0
dk k2δ

(
ω− ε̃SF

k (ω)
)

(7.19)

with ε̃SF
k (ω) = ε0

k + ṽh
SF(ω), and ε̃SF

k the solution of the equation ω− ε̃SF
k (ω) = 0 for a given k ,

namely, with a non–extraordinary notation, ε̃SF
k = ε̃SF

k (ε̃SF
k ).

The difference between the two prescriptions is subtle. In the latter, we first evaluate the
k–integral, even without knowing the form of ṽh

SF(ω), which results in 1
2π2 k̃SF

0 (ω), see eq. (4.77);
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only later (or independently) we fix the band structure by saying that k̃SF
0 (ω) is the solution to

the equation ω− ε̃SF
k (ω) = 0 (at fixed ω); the integrated spectral function takes priority over the

band structure.

On the other hand, with the new prescription, eq. (7.18), we first fix the band structure
by solving the equation ω− ε̃SF

k (ω) = 0 (at fixed k) to find ε̃SF
k and then evaluate the spectral

function. In this case, the band structure comes first and the spectral function follows.

If we stick to this new potential in the homogeneous electron gas, and import it in the real
material through the connector (7.14), also the new prescription to evaluate the spectral func-
tion, eq. (7.18), must be implemented in the solid, or we would not be HEG–consistent when
treating real materials (indeed – in our opinion – one of the most important criteria to design
a connector is that it reduce to “the identity” in the uniform density limit, namely the HEG be
exact as an auxiliary system as it is exact as a model system).

Therefore, we update the dynLCA approach in the following way: we use the potential (7.15)
in place of vh

SF(ω); the connector (7.14) thus reads3:

vSR
x (r ,ω) = [

vSR
x −∆SR

x

]h
nh=n(r )

(
ω− vext(r )− vH(r )

)
(7.20)

From the potential vSR
x (r ,ω), we can build, via eq. (7.8), the frequency–dependent excitation

energy εSF
nn(k ,ω). Solving the equation ω−εSF

nn(k ,ω) = 0 we get the band structure of the auxil-
iary system, ω= εSF

nn(k). Finally, from the band structure we obtain the diagonal of the spectral
function via the formula:

ASF(ω) = 1

V

∑
k∈1BZ

∑
n
δ
(
ω−εSF

nn(k)
)
, (7.21)

which replaces eq. (7.10). This new approach is still exact in the HEG limit, namely it yields the
exact value of the diagonal of the real system spectral function. Furthermore, it also reproduces
the exact band structure of the HEG.

Its performances for the two prototypical metals, sodium and aluminum, are shown in fig.
7.11. The agreement of the dynLCA curves with the reference results is excellent, both for
sodium and for aluminum. Apart from a slight underestimation of the bandwidth, the dynLCA
curve matches exactly the behaviour of the reference calculation and, in particular, the intra-
band peaks – fingerprint of inhomogeneity – are in the expected position.

We can conclude that, at least for the two metals considered, the connector (7.20), together
with the prescription (7.21), disentangles to a large extent the interaction described by the non–
local self energy from inhomogeneity: the former is accounted for by the potential (and the ∆

term) in the HEG, the latter by the local quantities n(r ), vext(r ) and vH(r ) that enter the form
of the connector.

Besides the theoretical insight, this result is also noteworthy on the computational side, as
the cost for obtaining the dynLCA curves is similar to usual KS, much cheaper than the self
energy calculation we implemented to obtain the reference curves.

Finally, also for the non–zero gap systems we studied, silicon and argon, the improvement
with respect to the previous results, fig. 7.8, is impressive. This is shown in fig. 7.12. The
first consideration is that dynLCA is now in good agreement with the reference calculation; it
reproduces the shape of A(ω) and it definitely does a much better job than LDA. However, the
bandwidth, in both cases, is slightly smaller than expected (as in sodium and aluminum), and
the gap is underestimated.

3The meaning of the notation is that both quantities, vSR
x and ∆SR

x , are evaluated at the shifted frequency argu-
ment.
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Figure 7.11: Integrated spectral function of sodium (above) and aluminum
(below) as a function of frequency, with µ = 0. In blue the reference calcu-
lation with the self energy, in green LDA, in red the dynLCA approach of eq.
(7.20) and eq. (7.21).

That eq. (7.20) here shows its limits is expected. Its form is extremely simple, and it still
yields a potential which is very close to the one in the HEG, as the connector prescription ba-
sically consists in a local shift of frequency. To better handle gapped systems, we look for a
further refinement of the connector (7.20).

7.5 External correction

A hint for understanding the limitations of the simple connectors of the previous section
when tackling non–zero gap systems is provided by the general discussion of section 5.5.1:
whenever a gap, or a large depletion of spectral weight, shows up in the unoccupied band, a
connector based on the Fermi energy alignment can hardly reproduce it: a stronger depen-
dence on space is demanded.

Such a dependence is offered, formally, by the external correction to the HEG potential rep-
resented by the term c (r ,ω)−vext(r )−vH(r ) in eq. (5.15). Such a term was zero for the connec-
tors we have considered, in which c (r ,ω) = vext(r )+ vH(r ).

Therefore, to have an explicit non–zero correction, we generalize c (r ,ω) to c (r ,ω) = vKS(r )−
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Figure 7.12: Integrated spectral function of silicon (above) and argon (below)
as a function of frequency, with µ = 0. In blue the reference calculation with
the self energy, in green LDA, in red the dynLCA approach of eq. (7.20) and eq.
(7.21).

vh
KS nh=n̄

, which tends to the previous value for slowly varying density. With such an ansatz, the

external correction becomes c (r ,ω)− vext(r )− vH(r ) = vxc
KS(r )− vxc h

nh=n̄
.

Finally, we rescale frequencies by the plasmon energies ωP = p
4πn, which set the charac-

teristic energy scales [143]; the final connector reads:

vSR
x (r ,ω) = [

vSR
x −∆SR

x

]h
nh=n(r )

(
ωP(n(r ))

ωP(n̄)

(
ω− vKS(r )+ vh

KS nh=n̄

))
+

[
vxc

KS(r )− vxc h
nh=n̄

]
(7.22)

This is still a fairly simple connector, in which all ingredients are evaluated from the HEG or
from a cheap Kohn–Sham calculation on the real system. It is a generalization of the previous
one, eq. (7.14), for systems with a density that spans a wider range; indeed, the application of
this formula to sodium or aluminum is basically equivalent to the previous one, and yields the
same results of fig. 7.11.

On the contrary, this formula shows its potential for silicon and argon, as it is shown in fig.
7.13. For argon, the LDA values for gap and bandwidth (8.31 eV and 14.41 eV, respectively) are
increased to 10.74 eV and 15.71 eV, respectively, by the HSE06 calculation (see table 7.2). An
application of the connector (7.22) yields a gap of 10.85 eV and a bandwidth of 15.70 eV. This
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Figure 7.13: Integrated spectral function of silicon (above) and argon (below)
as a function of frequency, with µ = 0. In blue the reference calculation with
the self energy, in green LDA, in red the dynLCA approach of eq. (7.22).

reduces the gap error from 22% in the LDA to 0.9% in dynLCA, and the bandwidth error from
8.3% in the LDA to 0.06% in dynLCA.

As for silicon, the LDA gap and valence bandwidth of respectively 0.56 eV and 11.96 eV are
increased by the HSE06 calculation to the reference values of 1.20 eV and 13.26 eV. Implement-
ing eq. (7.22) reduces the bandwidth error from 10% in the LDA to 1% (13.11 eV), and the gap
error from 53% to 35% (0.78 eV); also the shape of the integrated spectral function is very good.

We argue that the better agreement we obtain in argon with respect to silicon is due to the
fact that, in argon, electrons are quite localized and therefore they are more easily accessible
by a local potential based on the local density. On the opposite side, metals are closer to the
model system, the homogeneous electron gas. In an intermediate range, represented by silicon,
deviations appear.

7.6 The dynLCA band structure

To obtain the quantity ASF(ω), we passed through the band structure ω= εSF
nn(k), eq. (7.21).

As already said, the excitation energies in the auxiliary system εSF
nn(k) have no a direct physi-

cal meaning, in the same way as the Kohn–Sham excitation energies εKS
nn(k) are not the exact
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Figure 7.14: Sodium, band structure (left) and integrated spectral function
(right). In blue the reference calculation with the self energy, in green LDA, in
red the dynLCA approach of eq. (7.22). The gray dots and the gray shaded re-
gion represent the band structure and spectral function of a HEG with density
equals to the average density of sodium (rs = 3.9315a0).

LΓX 0 4 8 12 16

Figure 7.15: Aluminum, band structure (left) and integrated spectral function
(right). In blue the reference calculation with the self energy, in green LDA, in
red the dynLCA approach of eq. (7.22). The gray dots and the gray shaded re-
gion represent the band structure and spectral function of a HEG with density
equals to the average density of aluminum (rs = 2.0738a0).

addition and removal energies. Both just represent an intermediate step to obtain what the
auxiliary system is supposed to yield, the local density in Kohn–Sham and the diagonal of the
spectral function in real space here.

In particular, to have the exact band structure from the relation Ann(k ,ω) = δ (ω−εnn(k)),
one must have also the exact off–diagonal elements of the spectral function in real space, as it
is clear from the following inverse Fourier transform (see appendix I):

Ann(k ,ω) = 1

V

∫
d 3r |unk (r )|2 A(r ,r ,ω)+ 1

V

∫
d 3r d 3r ′

r ′ 6=r
e−i k ·(r−r ′)u∗

nk (r )A(r ,r ′,ω)unk (r ′)

The auxiliary system, through the exact spectral potential, yields only the real system values of
the diagonal elements A(r ,r ,ω), but not of the off–diagonal ones. These, in principle, can be
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Figure 7.16: Silicon, band structure (left) and integrated spectral function
(right). In blue the reference calculation with the self energy, in green LDA,
in red the dynLCA approach of eq. (7.22). The gray dots and the gray shaded
region represent the band structure and spectral function of a HEG with den-
sity equals to the average density of silicon (rs = 2.0054a0).
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Figure 7.17: Argon, band structure (left) and integrated spectral function
(right). In blue the reference calculation with the self energy, in green LDA,
in red the dynLCA approach of eq. (7.22). The gray dots and the gray shaded
region represent the band structure and spectral function of a HEG with den-
sity equals to the average density of argon (rs = 1.9407a0).

completely unrelated from the real system ones, resulting in a band structure which is different
from the reference calculation.

Thus, it is remarkable that the band structures evaluated in the auxiliary systems of the four
materials considered are in excellent agreement with their counterparts in the real systems, see
fig. 7.14, 7.15, 7.16 and 7.17.

On the other hand, some aspects must be considered. The first is symmetry: as it was shown
for the dimer and for the homogeneous electron gas, the off–diagonal elements of the spectral
function are often connected to the diagonal elements by relations pertaining to the geometry
of the system only (the dimer), or to the diagonal of the spectral function itself (the HEG). In
these cases, an explicit knowledge of the off–diagonal elements A(r ,r ′,ω) is not even needed,
as all the information for the band structure is in A(r ,r ,ω) only. Therefore, if the latter is repro-
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duced, also the former is in principle at hand.
Furthermore, the spectral potential in the HEG–connector approach is a dynamical gener-

alization of LDA that targets, besides the density, also the diagonal of the spectral function. This
means further constraints that the auxiliary system has to fulfill or, in other words, additional
matches between auxiliary and real system quantities. Already the LDA band structure is not
particularly weird, see the figures: it usually just needs a rigid shift – a scissor operator [144] – to
match with the reference band structure. This shift is recovered in dynLCA by the fact that the
diagonal of the spectral function must match its real system counterpart; hence, in practice, no
much freedom is left to the band structure.

Finally, another element to consider is that the potential vSF−∆, in the HEG, reproduces also
the band structure by construction. Since the connectors (7.20) and (7.22) are HEG–consistent,
namely they generate a potential that reduces to the HEG potential in the limit of uniform
density, also the band structure that they produce reduces to the band structure of the HEG in
that limit.

These considerations show that, although in principle the band structure can be crazier
than expected, in practice this is not the case. One obtains, as a completely unforeseen by–
product, a band structure in an extremely good agreement with the reference calculation. This
result inaugurates the possibility of describing also angle resolved photoemission experiments,
for which Ann(k ,ω) = δ

(
ω−εnn(k)

)
, hence the band structure, is needed (see eq. (1.10)).

We finally got the result we were looking for: a real, local and frequency–dependent
potential, evaluated just once in a model system, is able to reproduce the integrated
spectral function of real materials, at least for the four system we have considered, to a
very good extent. Also the band structure, that was not expected to be recovered in the
beginning, is indeed in surprisingly good agreement with the result obtained in the real
system. As the computation time, one of the biggest issues in condensed matter physics,
is drastically diminished, one could think – as far as spectral properties are concerned
– to use this method instead of the standard one based on the self energy.
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We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time

THOMAS STEARNS ELIOT, Four Quartets

This thesis represents a modest contribution to the theoretical description of many–electron
systems. I have presented the formulation of the problem in chapter 2, together with its stan-
dard approach in terms of Green’s functions. These are powerful intermediate objects, through
which a full description of the many–body system can be accomplished. When focusing on
photoemission processes (chapter 1), the one–particle Green’s function furnishes a complete
description of the microscopic propagation of electrons and holes in the material. To obtain it,
one usually introduces a non–local, complex and frequency–dependent self energy. However,
to describe the outcome of an experiment, only the trace of the imaginary part of the Green’s
function is needed. Therefore, once the Green’s function has been evaluated, which is a com-
putationally expensive process because of the non–locality of the self energy, one integrates out
most of the information gained. This, clearly, does not seem to be the most efficient approach.

In this thesis, I have presented two powerful shortcuts that are particularly suited to at-
tack the many–body problem. The first is an effective way of focusing on a reduced quan-
tity, through the introduction of an auxiliary system and the corresponding effective potential.
The second is a practical method to find the potential in realistic calculations, without pass-
ing through the computationally heavy self energy but connecting to a model system, which is
solved just once and for all. The results in the model system are tabulated and publicly avail-
able4.

I have applied these methods to the study of the diagonal of the spectral function A(r ,r ,ω),
which is the fundamental many–body property that describes the outcome of direct and in-
verse photoemission experiments and, at the same time, yields the exact local density of the
system.

The results are particularly promising for the four systems that we have considered, sodium,
aluminum, silicon and solid argon, in the case in which the self energy is purely non–local
and expressed by the HSE06 approximation [12]. In particular, one of the simplest possible
forms of the connector, eq. (7.20), yields extremely accurate results for metals, while a more
refined version, eq. (7.22), is able to account also for argon and, to a good approximation, for
silicon. In the four cases, the results are in much better agreement with the reference self energy
calculation than the Kohn–Sham LDA is, showing the importance of frequency dependence in

4https://etsf.polytechnique.fr/research/connector/dynLCA
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the spectral potential.

The results that I have obtained for the four materials studied prove that this approach is
feasible in practice. A real and local potential, obtained via a simple connector from a model
system calculation, is able to reproduce – to a great extent – the diagonal of the spectral function
of realistic materials. However, to establish this method as a reliable tool, a systematic analy-
sis of different materials must be performed. In particular, is the final connector, eq. (7.22),
always a good approximation for metals? Does it generally underestimate the gap of semi-
conductors? For which class of materials can we really abandon the self energy approach and
completely trust the spectral potential method? To which extent can we disentangle properties
of specific materials from the electron–electron interaction treated in the homogeneous elec-
tron gas? These are pertinent questions to which an analysis of many more different materials
could answer.

Specifically, an attractive set of materials to examine is represented by transition metal ox-
ides, paradigm of strongly correlated materials. Their valence states are strongly localized in
space. Therefore, they are more suited, in principle, to an approach based on a local version of
the self energy. On the contrary, their physics is very different from the one described by the ho-
mogeneous electron gas, the model system we use to import the potential from. However, the
example of argon shows that the connector approach can work incredibly well even for highly
inhomogeneous systems.

In chapter 7 I have focused on a real and static form of the self energy, the HSE06 one. We
believe this to be the most challenging test for our method, as frequency dependence is not
present in the standard approach, and must be introduced from scratch. The natural outlook
is considering dynamical (and complex) generalizations for the self energy, like, e.g., the GW
one. A dynamical self energy yields, in general, a spectral function with more features. Besides
a renormalized quasiparticle, satellites can show up in the spectrum. Obtaining the spectral
function in the GW approximation is certainly more demanding than with the simpler HSE ap-
proach [124]. However, this calculation must be performed just in the homogeneous electron
gas, and just one time (for different values of frequencies). Storing the results and importing
them in the real material through a suitable connector would allow researchers to avoid time–
consuming GW calculations.

Note also that an alternative strategy is possible. Indeed, one can break the spectral po-
tential into one part that is treated exactly in the auxiliary system, plus a correction which is
imported from the model system. This is the method that I implemented in chapter 6 for the
Hubbard dimer. It is also – trivially – the method I used for real systems. There, the part treated
exactly in the auxiliary system was the local contribution to the hybrids self energy; only the
purely frequency–dependent part of the spectral potential, corresponding to the purely non–
local part of the self energy, was imported from the model system. This idea can be generalized
and applied, for instance, to hybrids and GW, or COHSEX and GW (or even GW and beyond
[145]). The former could be treated exactly in the auxiliary system, by solving the generalized
Sham–Schlüter equation (3.23) with Σ = ΣCOHSEX. The resulting spectral potential would ac-
count for the whole non–locality ofΣCOHSEX. The correctionΣGW−ΣCOHSEX, instead, is expected
to be dominated by its frequency dependence, and to be more local than the whole ΣGW. It is
this correction only, and not the whole ΣGW, that is finally imported from the model system.

Finding the spectral potential in the HEG seems relatively straightforward. Indeed, eq.
(4.62) still holds, even with a more accurate form of the spectral function. On the contrary, im-
porting the potential through the same connector is less obvious. In this thesis I have presented
different possible expressions for the connector. They are very simple, they are all dependent
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on the local density and they are based on physical insight. However, a systematic derivation
of a general expression for the connector is still missing. This is certainly a possible line of
research for the future.

To conclude, this thesis represents only the first step towards an extensive use of the dynLCA
approach in real materials. Many blanks are left to fill in and many results still need an explana-
tion (the astonishing agreement in the band structure, for instance, or the analytic properties
of the spectral potential). However, the agreement with the reference calculation that we ob-
tained in the last chapter is an encouraging starting point.

147





Acknowledgments

When we try to pick out anything
by itself, we find it hitched to
everything else in the Universe.

JOHN MUIR,
My First Summer in the Sierra

Il était assis seul et méditait là-dessus,
mais il ne pouvait rien y comprendre
lorsqu’une voix céleste se fit entendre et
lui dit : Veux-tu t’assimiler à moi? [...] toi,
en tant qu’être isolé, tu ne peux compren-
dre. Alors prends-toi un compagnon,
alors méditez tous les deux et vous com-
prendrez. Aussitôt Abraham alla chez son
Maître Sem, le fils de Noé, et ils restèrent
trois ans ensemble jusqu’à ce qu’ils aient
su créer le monde. Et jusqu’à maintenant
il n’y a personne qui puisse le comprendre
seul, mais deux savants sont nécessaires,
et encore ils ne le comprennent qu’au
bout de trois ans, sur quoi ils peuvent
faire tout ce que leur coeur demande.

G. SCHOLEM,
La Kabbale et sa symbolique

This work – ça va sans dire – is the result of a collective effort.
Even before I first visited Palaiseau in summer 2014, the main points on which this thesis

rests were already well focused in the minds of Lucia and Matteo.
On a surprisingly hot afternoon for a Parisian late September, indeed, sit on very old sofas

while sipping coffee, Matteo and Lucia proposed me the task of looking for a potential no one
had ever found before. And not just a potential, as the ones people are usually accustomed to,
but a frequency dependent one. Funny enough, the only concept I disliked more than “poten-
tial”, at that time, was certainly “frequency”.

On the contrary, as I grew older in the group, I got fascinated by the power of frequency,
which was able to split poles, generate new peaks, changing a dull delta into a realistic spec-
trum. I got enchanted by its origins, and finally won – and astonished – by the possibility of
folding into it degrees of freedom people would rather bypass.

149



ACKNOWLEDGEMENTS

For opening my eyes, I owe a great debt of gratitude to Lucia Reining and Matteo Gatti, to
their deep knowledge and their excellent teaching skills. They made me appreciate the power
of simple reasoning and dirty derivations, of doubting anywhere and everywhere looking, they
singled out the deepest physics in the simplest models.

Speaking about models, I acknowledge here the role of Prof. Sergio Ciuchi, who brought
to my attention the CPA solution of the Hubbard model on the Bethe lattice. Dealing with it
has been a challenging opportunity for our method. I also thank Stefano di Sabatino for the
half–filled solution of the Hubbard dimer.

And Fausto must enter the stage now, with his équipe of experimentalists. They showed me
that not only models, but even real systems do exist! And electrons as well, white dots on a
black screen. And photoemission is not (only) a gedankenexperiment.

In between, the power of ab initio calculations. Many thanks to Andrea and Francesco for
their constant help. I really needed it, they only know how much!

But a lab is much more than physics, and I’d like to thank everyone who made this statement
true: besides the aforementioned folks, Sky, Marilena, Ilya, Jaakko, Martin, Azima, Giorgia, Wal-
ter, Pier Luigi, Claudia, Iaroslav, John and Tetiana: I learnt something from each of you! As well
as from Lucie, Nicolas, Sophie, Christine, Valérie et Arnaud : le petit peu de français que je con-
nais, c’est surtout grâce à vous ! Et merci aussi à Marylène, Élodie et Sylvie, pour ne pas m’avoir
fait tomber dans le labyrinthe de la bureaucratie française.

Dans le labyrinthe qu’est Paris, par contre, je me suis perdu avec plaisir : je tiens à remercier
tous ceux qui m’ont allumé les lumières de la ville : Court, Denise, Alex, Olivier, Didier, Cédric,
Pierre, Paolo, Edoardo, Claudio. Ils m’ont permis de reprendre le RER, chaque lundi, jusqu’à
Palaiseau !

Au–delà de Paris, my deepest gratitude goes to Andrea (said with a strict British accent):
London–Paris exchanges could not have been more enjoyable; as well as to my M–list Italian
anchor–friends (said with a lavish Italian accent), Vaner & Vane + Emy & Michael; thanks to
Fede e Ciccia, who still softly tie me to kindergarten time. To Daniele, for whom reasons con-
stantly oscillate. And Andi, qui m’a poussé à l’X.

Infine, un immenso grazie alla mia famiglia, che mi ha portato fin qui.

150



Appendices

151





Appendix A
Résumé en français

Cette thèse propose une méthode théorique innovante pour l’étude des spectres d’excitation
à un électron, mesurée par spectroscopie de photoémission directe et inverse.

La plupart des calculs actuels au niveau de l’état de l’art reposent sur des fonctions de Green
à plusieurs corps et des self-énergies complexes et non locales, évaluées spécifiquement pour
chaque matériau. Même lorsque les spectres calculés sont en très bon accord avec les expéri-
ences, le coût de calcul est très important. La raison est que la méthode elle-même n’est pas
efficace, car elle fournit beaucoup d’informations superflues qui ne sont pas nécessaires pour
l’interprétation des données expérimentales.

Dans cette thèse, nous proposons deux raccourcis par rapport à la méthode standard. Le
premier est l’introduction d’un système auxiliaire qui cible, en principe, le spectre d’excitation
du système réel. L’exemple type est la théorie de la fonctionnelle de la densité, pour lequel
le système auxiliaire est le système de Kohn-Sham : elle reproduit exactement la densité du
système réel par l’intermédiaire d’un potentiel réel et statique, le potentiel de Kohn-Sham. La
théorie de la fonctionnelle de la densité est, cependant, une théorie de l’état fondamental, qui
ne fournit que rarement des propriétés pour les états excités : un exemple est le fameux prob-
lème de la sous-estimation de la bande interdite. Le potentiel que nous proposons (le poten-
tiel spectral), local et dépendant de la fréquence, mais réel, peut être considéré comme une
généralisation dynamique du potentiel de Kohn-Sham qui donne en principe le spectre exact.

Le deuxième raccourci est l’idée de calculer ce potentiel une fois pour toute dans un sys-
tème modèle, le gaz d’électrons homogène, et de le tabuler. Pour étudier des matériaux réels,
nous concevons un connecteur qui prescrit l’utilisation des résultats du gaz pour calculer les
spectres électroniques.

La première partie de la thèse traite de l’idée de systèmes auxiliaires, montrant le cadre
général dans lequel ils peuvent être introduits et les équations qu’ils doivent satisfaire. Nous
utilisons des modèles de Hubbard solubles exactement pour mieux comprendre le rôle du po-
tentiel spectral ; en particulier, il est démontré que le potentiel peut être défini de façon unique
chaque fois que le spectre est non nul, et donne toujours les spectres attendus, même lorsque la
partie imaginaire ou les contributions non locales de la self-énergie jouent un rôle de premier
plan.

Dans la deuxième partie de la thèse, nous nous concentrons sur les calculs pour les systèmes
réels. Nous évaluons d’abord le potentiel spectral dans le gaz d’électrons homogène, puis
l’importons dans le système auxiliaire pour évaluer le spectre d’excitation. Toute l’interdépen-
dence non triviale entre l’interaction électronique et l’inhomogénéité du système réel entre
dans la forme du connecteur. Trouver une expression pour cela est le véritable défi de la procé-
dure. Nous proposons une approximation raisonnable basée sur les propriétés locales du sys-
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tème, que nous appelons approximation du connecteur dynamique local.
Nous mettons en œuvre cette procédure pour quatre prototypes de matériaux différents

: le sodium, un métal presque homogène ; l’aluminium, encore un métal mais moins ho-
mogène ; le silicium, un semi-conducteur ; l’argon, un isolant inhomogène. Les spectres que
nous obtenons avec cette approche concordent de manière impressionnante avec ceux qui
sont évalués via la self-énergie, très coûteuse en temps de calcul, démontrant ainsi le potentiel
de cette théorie.
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Appendix B
Energy contributions

In this appendix we consider the different contributions to the total energy, proving eq.
(2.7), (2.9), (2.10) and (2.13). While the Hartree and the exchange contribution rely on a factor-
ized form for the wavefunction (independent particles), the kinetic and the whole interaction
terms are completely general.

The kinetic term To express the kinetic energy contribution as a functional of γ(r ,r ′), we do
not have to make any assumption on the structure of the wavefunction, apart from its antisim-
metry:

〈Ψ|∑
i

(
−∇2

i

2

)
|Ψ〉 =∑

i

∫
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)
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)
γ(r ,r ′) (2.10)

Hartree Energy Assuming the “most classical” wavefunction, a factorized product of one–
particle wavefunctions ui (r i ), that is Ψ(H) (r 1, ...,r N ) := ∏N

i=1 ui (r i ), the expectation value of
the interaction term in the Hamiltonian (2.3) is :

E (H)
int := 〈Ψ(H)| 1

2

∑
i 6= j

1∣∣r̂ i − r̂ j
∣∣ |Ψ(H)〉 =

= 1

2
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u1 (r 1) ...uN (r N ) =

= 1
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d 3r d 3r ′ u∗

i (r )ui (r )u∗
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|r − r ′| =

= 1
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d 3r d 3r ′ n(r )n(r ′)

|r − r ′| − 1

2

∑
i

∫
d 3r d 3r ′ |ui (r )|2|ui (r ′)|2

|r − r ′| (2.7)

where n(r ) ≡ 〈Ψ(H)| n̂(r ) |Ψ(H)〉 = ∑
i |ui (r )|2, with n̂(r ) := ∑N

i=1δ (r − r̂ i ). The very first term
is the classical electrostatic contribution, eq. (2.7), while the second term is the strict self–
interaction correction: a part of Fock is already here.
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Exchange contribution We can derive the exchange term following the same reasoning of
above, replacing the factorized wavefunction Ψ(H) (r 1, ...,r N ) := ∏N

i=1 ui (r i ) with its antisym-

metrized version Ψ(SL) (r 1, ...,r N ) := 1p
N !

det

∣∣∣∣∣∣∣
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... ... ...
uN (r 1) ... uN (r N )

∣∣∣∣∣∣∣; the interaction energy is:

E (HF)
int := 〈Ψ(SL)| 1

2

∑
i 6= j

1∣∣r̂ i − r̂ j
∣∣ |Ψ(SL)〉 =

= 1

2N !

∑
i 6= j

∫
d 3r1...d 3rN

[
u∗

1 (r 1) ...u∗
N (r N )− ...

] 1

|r i − r j |
[

u1 (r 1) ...uN (r N )− ...
]
=

= 1

2

∑
i j

∫
d 3r d 3r ′ u∗

i (r )u∗
j (r ′)

[
ui (r )u j (r ′)−ui (r ′)u j (r )

]
|r − r ′| =

= 1

2

∫
d 3r d 3r ′γ(r ,r )γ(r ′,r ′)−γ(r ,r ′)γ(r ′,r )

|r − r ′| (2.9)

with γ(r ,r ′) := ∑
i ui (r )u∗

i (r ′). The self–interaction correction of above is here completely ac-
counted for by the antisymmetry of the wavefunction, and generalized to the full exchange
term of eq. (2.9).

Interaction energy The Hartree and the exchange contributions can be included in the whole
interaction energy, expressed in terms of the pair density n2(r ,r ′). As for the kinetic term, this
procedure is independent of the particular form of the wavefunction:

〈Ψ|1
2

∑
i 6= j

1∣∣r̂ i − r̂ j
∣∣ |Ψ〉 =

=
∫

d 3r1...d 3rN d 3r ′
1...d 3r ′

NΨ∗ (
r ′

1, ...,r ′
N

) 1

2

∑
i 6= j

〈r ′
1, ...,r ′

N | 1∣∣r̂ i − r̂ j
∣∣ |r 1, ...,r N 〉Ψ (r 1, ...,r N ) =

= N (N −1)

2

∫
d 3r d 3r ′d 3r3....d 3rN

1

|r − r ′|Ψ
(
r ,r ′,r 3, ...,r N

)
Ψ∗ (

r ,r ′,r 3, ...,r N
)=

= 1

2

∫
d 3r d 3r ′ n2(r ,r ′)

|r − r ′| (2.13)

By comparing this exact relation with the corresponding ones (2.7) and (2.9), one can have
access to the Hartree and Hartree–Fock contributions to n2(r ,r ′):

nH
2 (r ,r ′) = n(r )n(r ′)−∑

i
|ui (r )|2|ui (r ′)|2

nHF
2 (r ,r ′) = γ(r ,r )γ(r ′,r ′)−γ(r ,r ′)γ(r ′,r )

From the last of these and eq. (2.12), the first–order (in e2) contribution to the exchange–
correlation hole is of purely exchange nature, and equal to:

n(1)
xc (r ,r ′) =−γ(r ,r ′)γ(r ′,r )

Some useful exact relations:

• By the Pauli principle, limr ′→r n2(r ,r ′) = 0 (no two electrons in the same state), hence:

lim
r ′→r

nxc(r ,r ′) =−n(r )

from which it is clear that n(1)
xc (r ,r ′) is “too much”: correlation reduces the hole.
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• Two very far electrons can be considedered as uncorrelated, hence:

lim
|r−r ′|→∞

nxc(r ,r ′) = 0

• From the positivity of n and n2, we have:

nxc(r ,r ′) ≤ n(r ′)

• From the definition of n(r ) and n2(r ,r ′),
∫

d 3n(r ) = N and
∫

d 3r ′n2(r ,r ′) = (N −1)n(r ),
hence integrating eq. (2.12) over r ′, we obtain:∫

d 3r ′nxc(r ,r ′) =−1

which says that the exchange–correlation hole contains exactly one electron: the electron
and its hole constitute a globally neutral object.
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Appendix C
Bethe lattice CPA solution

CPA solution of the Hubbard model on the Bethe lattice

In the infinite connectivity limit, the self energy becomes local and independent of the par-
ticular site i : Σi j (ω)

z→∞−→ δi jΣ(ω); the Green’s function in reciprocal space is thus G−1
k (ω) =

ω−ε0
k −Σ(ω): all the k–dependence of the Green’s function is due to the one–particle energy ε0

k
associated with the free Hamiltonian U = 0.

This constitutes an enormous simplification, as the on–site Green’s function Gi i (ω) :=G(ω)
can be evaluated as the Hilbert transform of the free density of states A0(ω), evaluated at ω−
Σ(ω):

G(ω) =∑
k

1

ω−ε0
k −Σ(ω)

=
∫
R

dω′A0(ω′)
ω−Σ(ω)−ω′ .

Inserting the expression A0(ω) = θ (D −|ω|) 2
πD

√
1− (

ω
D

)2, with D = 2t , the previous integral
reads:

G(ω) = 2

πD

∫ +1

−1
d x

p
1−x2

ω−Σ(ω)
D −x

= 2

D2

[
ω−Σ(ω)

]± 2

D

√
1

D2

[
ω−Σ(ω)

]2 −1.

Squaring both sides and dividing by G(ω) we get:

D2

4
G(ω)− [

ω−Σ(ω)
]+G−1(ω) = 0.

We now use the Dyson equation G−1(ω) =G−1
0 (ω)−Σ(ω) to arrive to the final result:

G−1
0 (ω) =ω− D2

4
G(ω) (C.1)

which is eq. (4.2): it is just a consequence of the lattice taken into consideration (a Bethe lattice
with z →∞), and the Dyson equation G−1(ω) = G−1

0 (ω)−Σ(ω), which relates the Bethe lattice
local self energy Σ(ω) and the Bethe lattice on–site Green’s function G(ω) to an impurity Green’s
function G0(ω); this is a self–consistent condition in DMFT, hence eq. (C.1) is called the self–
consistent relation.

On the other hand, we have not given yet any expression for the self energy, and for any
interaction term, the Hamiltonian (2.49) yields a Green’s function fulfilling eq. (C.1). Therefore
we supply eq. (C.1) with the Coherent Potential Approximation (CPA) expression for the Green’s
function, namely the relation [146, 147, 5]:

G (ω) = 1

2

(
1

G−1
0 (ω)+ U

2

+ 1

G−1
0 (ω)− U

2

)
, (C.2)

which is eq. (4.1).
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Solution of the third order equation

Eq. (4.3) can be solved by standard methods; first, we set to one the coefficient of the G3

term, with G ≡G(ω), and eq. (4.3) becomes:

G3 − 8ω

D2 G2 + 4

D2

(
1− U 2

D2 + 4ω2

D2

)
G −

(
4

D2

)2

ω= 0 (C.3)

By referring to the cubic equation x3 +ax2 +bx + c = 0, we build the following quantities:

∆≡ 18abc −4a3c +a2b2 −4b3 −27c2

∆0 ≡ a2 −3b =
(

4

D2

)2 (
ω2 − 3

4

(
D2 −U 2))

∆1 ≡ 2a3 −9ab +27c =−ω

4

(
4

D2

)3 (
9D2 +18U 2 −8ω2)

C ≡

∆1 −
√
∆2

1 −4∆3
0

2


1
3

≡
(
∆1 −

p−27∆

2

) 1
3

The three solutions of x3 +ax2 +bx + c = 0 are:

x(k) (ω) =−1

3

[
a +ξkC + ∆0

ξkC

]
k = 0,1,2

with ξ := 1
2

(−1+p
3i

)
cube root of unity. To apply it to our problem, we consider the following

auxiliary quantities:

z↑ =ω+ U

2
+ iη z↓ =ω− U

2
+ iη

and the three parameters a, b and c become:

a =− 4

D2

(
z↑+ z↓

)
b = 4

D2

[
1+ 4

D2 z↑ · z↓
]

c =−1

2

(
4

D2

)2 (
z↑+ z↓

)
For each value of frequency, of the three solutions G (k) (ω) we choose, among the two conju-
gates, the one with negative imaginary part. The corresponding spectral function is:

A(k) (ω) =− 1

π
ImG (k) (ω) = 1

3π

[
1− ∆0

|C |2
]

Im
[
ξkC

]
which is positive, and zero if ∆0 = |C |2 or if Im

[
ξkC

]= 0.

Non–interacting system If U = 0, from eq. (4.1) G (U=0)(ω) =G (U=0)
0 (ω) :=G0(ω), and eq. (4.3)

can be recast in the following form:(
D2

4
G0 −ω

)[(
D2

4
G0 −ω

)
G0 +1

]
= 0

with the solutions G0 = 4ω
D2 or G0 = 2

D2

{
ω±

p
ω2 −D2

}
. The first one is purely real, hence we

discard it, while among the other two we choose the one with negative imaginary part:

G0 (ω) = 2

D2

{
ω−

√
ω2 −D2

}
.
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The corresponding spectral function is:

A0 (ω) =− 1

π
ImG0 (ω) = θ (D −|ω|) 2

πD

√
1−

(ω
D

)2
, (C.4)

normalized to 1 as: 2
πD

∫ D
−D dω

√
1− ω2

D2 = 2
π

∫ 1
−1 d y

√
1− y2 = 2

π

∫ π/2
−π/2 dθcos2θ = 1. Note that G0

has no poles unless ω= 0 for D = 0. The inverse of G0 is:

G−1
0 (ω) = 1

2

(
ω+

√
ω2 −D2

)
(C.5)
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Appendix D
Hubbard dimer at half filling

Symmetric case D = 0

Energy spectrum

We present the result of the diagonalization of Hamiltonian (4.10) in the half–filling case N =
2. A possible choice for the ordering of the site basis is

{|↑,↑〉 , |↑,↓〉 , |↑↓,0〉 , |0,↑↓〉 , |↓,↑〉 , |↓,↓〉}.
Symbolically, we refer to this basis as |σ(1)

i=1σ
(2)
i=1,σ(1)

i=2σ
(2)
i=2〉. In this basis, the Hamiltonian (2.49)

is represented by the following matrix:

Ĥ −→ H ≡



2ε0 0 0 0 0 0
0 2ε0 −t −t 0 0
0 −t 2ε0 +U 0 +t 0
0 −t 0 2ε0 +U +t 0
0 0 +t +t 2ε0 0
0 0 0 0 0 2ε0


The corresponding eigenvalues are 2ε0 (three times degenerate), 2ε0 +U and 2ε0 + U±c

2 , c :=√
(4t )2 +U 2, with the following associated eigenvectors:{

Ĥ −2ε0
} |↑,↑〉 = 0{

Ĥ −2ε0
} |↓,↓〉 = 0{

Ĥ −2ε0
}[

1p
2

(
|↑,↓〉+ |↓,↑〉

)]
= 0

{
Ĥ − [2ε0 +U ]

}[
1p
2

(
|↑↓,0〉− |0,↑↓〉

)]
= 0{

Ĥ −
[

2ε0 + U − c

2

]}[
4t

a(c −U )

(
|↑,↓〉− |↓,↑〉

)
+ 1

a

(
|↑↓,0〉+ |0,↑↓〉

)]
= 0{

Ĥ −
[

2ε0 + U + c

2

]}[
4t

b(c +U )

(
|↑,↓〉− |↓,↑〉

)
− 1

b

(
|↑↓,0〉+ |0,↑↓〉

)]
= 0

(D.1)

with a2

2 := 1+ ( 4t
c−U

)2
and b2

2 := 1+ ( 4t
c+U

)2
.

The lower energy is represented by the fifth state, which is the ground state, completely
symmetric in spin:

|GS〉(N=2) = 4t

a(c −U )

(
|↑,↓〉− |↓,↑〉

)
+ 1

a

(
|↑↓,0〉+ |0,↑↓〉

)
One can introduce also for N = 2 a bonding–antibonding basis [148] |α1σ1,α2σ2〉, namely an
electron in the state α1 with spin σ1 and another in state α2 with spin σ2; this new basis is
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conventionally ordered as follows:
{|− ↑,+ ↑〉 , |− ↑,+ ↓〉 , |− ↑,− ↓〉 , |+ ↑,+ ↓〉 , |− ↓,+ ↑〉 , |− ↓,+ ↓〉},

and the matrix of change of basis is:

〈σ(1)
i=1σ

(2)
i=1,σ(1)

i=2σ
(2)
i=2|α1σ1,α2σ2〉 =



−1 0 0 0 0 0
0 −1

2
1
2 −1

2 −1
2 0

0 1
2

1
2

1
2 −1

2 0
0 −1

2
1
2

1
2

1
2 0

0 −1
2 −1

2
1
2 −1

2 0
0 0 0 0 0 −1


In this new basis the ground state reads:

|GS〉(N=2) =
√

1

2
+ 2t

c
|− ↑,− ↓〉−

√
1

2
− 2t

c
|+ ↑,+ ↓〉

Green’s function

One can build the Green’s function with the usual Lehmann decomposition; the N = 3 sec-
tor is analogous to the already diagonalized N = 1 sector (particle–hole symmetry). The result
is symmetric in spin, which we omit, and reads:

G−(ω) =
1
2 − 2t

c

ω− (
ε0 + t + U+c

2

)+ iη
+

1
2 + 2t

c

ω− (
ε0 + t + U−c

2

)− iη

G+(ω) =
1
2 + 2t

c

ω− (
ε0 − t + U+c

2

)+ iη
+

1
2 − 2t

c

ω− (
ε0 − t + U−c

2

)− iη

The non–interacting Green’s function is:

G0
−(ω) = 1

ω− (ε0 − t )− iη

G0
+(ω) = 1

ω− (ε0 + t )+ iη

Therefore, the self energy reads:

Σ−(ω) = U

2
+

U 2

4

ω− (
ε0 +3t + U

2

)+ iη

Σ+(ω) = U

2
+

U 2

4

ω− (
ε0 −3t + U

2

)− iη

Asymmetric case

We repeat the analysis for the Hamiltonian (6.2), with D 6= 0, t = 1 and N = 2.

Energy spectrum

To get the Green’s function, we must diagonalize the Hamiltonian in its sector relative to
the addition of a spin–down electron (the spin–up situation or the removal of a spin–down
electron are trivial). Therefore, we can restrict ourselves to the Hilbert space spanned by the

basis
{
|↑,↓〉 , |↑↓,0〉 , |0,↑↓〉 , |↓,↑〉

}
, where the Hamiltonian (6.2) reads:

Ĥ (N=2,Sz=0) −→


0 −1 −1 0
−1 U +D 0 1
−1 0 U −D 1
0 1 1 0

 (D.2)
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The eigenvalue equation det
[
Ĥ −eλ1̂

]= 0 reads eλ
{
e3
λ
−2U e2

λ
+ (

U 2 −D2 −4
)

eλ+4U
}= 0, which

has the solution eλ = 0 := e2 plus the three solutions of the third order equation e3
λ
− 2U e2

λ
−

eλ
(
D2 −U 2 +4

)+4U = 0:

e1 = 2

3

[
U − r cos

(
θ− π

3

)]
e2 = 0

e3 = 2

3

[
U − r cos

(
θ+ π

3

)]
e4 = 2

3

[
U − r cos(θ+π)

]
with:

z2 := 9D2 −U 2 −18

r 2 := 3D2 +U 2 +12

cos3θ := z2U

r 3

,

The corresponding normalized eigenvectors are:

|φλ〉 =


1
Nλ

[(
|↑,↓〉− |↓,↑〉

)
+ 2

eλ+(D−U )

(
|↑↓,0〉− |0,↑↓〉

)
−eλ |↑↓,0〉

]
λ= 1,3,4

1p
2

(|↑,↓〉+ |↓,↑〉) λ= 2

with Nλ =
p

2

[
1+2

(
1

eλ+D −U
− eλ

2

)2

+2

(
1

eλ+D −U

)2] 1
2

, with the expected behaviour in the

limit D → 0, see eq. (D.1). Finally, I show the action of the creation and annihilation operators1

on the ground state |−,↑〉 ≡ cosρ− |↑,0〉+ sinρ− |0,↑〉:

ĉ†
1↑ |−,↑〉 =−sinρ− |↑,↑〉 ĉ†

1↓ |−,↑〉 = cosρ− |↑↓,0〉− sinρ− |↓,↑〉
ĉ†

2↑ |−,↑〉 = cosρ− |↑,↑〉 ĉ†
2↓ |−,↑〉 = cosρ− |↑,↓〉+ sinρ− |0,↑↓〉

ĉ1↑ |−,↑〉 = cosρ− |0,0〉 ĉ1↓ |−,↑〉 = 0

ĉ2↑ |−,↑〉 = sinρ− |0,0〉 ĉ2↓ |−,↑〉 = 0

The Green’s function for N = 1

The spin-up case is trivial, since an additional spin-up electron would not interact with the
other one, and one would therefore get a non-interacting two-poles Green’s function:

Gi j ,↑(ω) =
[
δi 1 cosρ++δi 2 sinρ+

][
δ j 1 cosρ++δ j 2 sinρ+

]
ω−e++ iη

+

+
[
δi 1 cosρ−+δi 2 sinρ−

][
δ j 1 cosρ−+δ j 2 sinρ−

]
ω−e−− iη

The corresponding spectral function has two peaks:

Ai j ,↑(ω) =Λ(+)
i j ,↑δ

(
ω−e+

)
+Λ(−)

i j ,↑δ
(
ω−e−

)
(D.3)

with weights:

Λ(±)
i j ,↑ :=

[
δi 1 cosρ±+δi 2 sinρ±

][
δ j 1 cosρ±+δ j 2 sinρ±

]
=


1
2

[
1∓ (−)i Dp

D2+4

]
i = j

∓ 1p
D2+4

i 6= j

1As a convention, |↑↓,↑〉 = c†
2↑c†

1↓c†
1↑ |0,0〉.

165



APPENDIX D. HUBBARD DIMER AT HALF FILLING

Spin–down case: the Lehmann representation For the spin–down case, we must use the ex-
act diagonalization results to explicitly build the Green’s function via the Lehmann representa-
tion. The spin–down Green’s function involves a sum over the four eigenvectors φλ of the N = 2
Hamiltonian, that generate the four poles of the Green’s function:

Gi j ,↓(ω) =
4∑

λ=1

〈φλ| ĉ†
j↓ |−,↑〉〈−,↑| ĉi↓ |φλ〉

ω− (eλ−e−)+ iη
:=

4∑
λ=1

G (eλ)
i j ,↓(ω)

The contributions relative to the transitions from the ground state to the e1, e3 and e4 excited
state are:

G (eλ)
11,↓(ω) =

〈φλ| ĉ†
1↓ |−,↑〉〈−,↑| ĉ1↓ |φλ〉

ω− (eλ−e−)+ iη
=

1
|Nλ|2

[
cosρ−

(
2

eλ+(D−U ) −eλ
)
+ sinρ−

]2

ω− (eλ−e−)+ iη

G (eλ)
12,↓(ω) =G (eλ)

21,↓(ω) =
〈φλ| ĉ†

2↓ |−,↑〉〈−,↑| ĉ1↓ |φλ〉
ω− (eλ−e−)+ iη

=

=
1

|Nλ|2
[

cosρ−− sinρ− 2
eλ+(D−U )

][
cosρ−

(
2

eλ+(D−U ) −eλ
)
+ sinρ−

]
ω− (eλ−e−)+ iη

G (eλ)
22,↓(ω) =

〈φλ| ĉ†
2↓ |−,↑〉〈−,↑| ĉ2↓ |φλ〉

ω− (eλ−e−)+ iη
=

1
|Nλ|2

[
cosρ−− sinρ− 2

eλ+(D−U )

]2

ω− (eλ−e−)+ iη

while for the second pole:

G (e2)
11,↓(ω) =

〈φ2| ĉ†
1↓ |−,↑〉〈−,↑| ĉ1↓ |φ2〉
ω− (e2 −e−)+ iη

=
1
2 sin2ρ−

ω− (e2 −e−)+ iη

G (e2)
12,↓(ω) =G (e2)

21,↓(ω) =
〈φ2| ĉ†

2↓ |−,↑〉〈−,↑| ĉ1↓ |φ2〉
ω− (e2 −e−)+ iη

=

= −1
2 sinρ− cosρ−

ω− (e2 −e−)+ iη

G (e2)
22,↓(ω) =

〈φ2| ĉ†
2↓ |−,↑〉〈−,↑| ĉ2↓ |φ2〉
ω− (e2 −e−)+ iη

=
1
2 cos2ρ−

ω− (e2 −e−)+ iη

Putting everything together, the total Green’s function reads:

G11,↓(ω) =
1
2 sin2ρ−

ω− (e2 −e−)+ iη
+ ∑

λ=1,3,4

1
|Nλ|2

[
cosρ−

(
2

eλ+(D−U ) −eλ
)
+ sinρ−

]2

ω− (eλ−e−)+ iη

G12,↓(ω) =G21,↓(ω) = −1
2 sinρ− cosρ−

ω− (e2 −e−)+ iη
+

+ ∑
λ=1,3,4

1
|Nλ|2

[
cosρ−− sinρ− 2

eλ+(D−U )

][
cosρ−

(
2

eλ+(D−U ) −eλ
)
+ sinρ−

]
ω− (eλ−e−)+ iη

G22,↓(ω) =
1
2 cos2ρ−

ω− (e2 −e−)+ iη
+ ∑

λ=1,3,4

1
|Nλ|2

[
cosρ−− sinρ− 2

eλ+(D−U )

]2

ω− (eλ−e−)+ iη

from which the spectral function can be written as:

Ai j ,↓(ω) =
4∑

λ=1
Λ(λ)

i j ,↓δ(ω−ωλ)
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where the poles are ωλ := eλ−e− ≡ eλ+
√

1+ D2

4 and the intensities are:

Λ(λ=2)
i j ,↓ = 1

2

[
sinρ−δi 1 −cosρ−δi 2

][
sinρ−δ j 1 −cosρ−δ j 2

]

Λ(λ6=2)
i j ,↓ = 1

|Nλ|2
[(

cosρ−
(

2

eλ+ (D −U )
−eλ

)
+ sinρ−

)
δi 1+

+
(
cosρ−− sinρ−

2

eλ+ (D −U )

)
δi 2

]
·
[(

cosρ−
(

2

eλ+ (D −U )
−eλ

)
+ sinρ−

)
δ j 1+

+
(
cosρ−− sinρ−

2

eλ+ (D −U )

)
δ j 2

]

Non-interacting system

Setting U = 0, we have:

e(U=0)
1 =−

√
D2 +4

e(U=0)
2 = 0

e(U=0)
3 = 0

e(U=0)
4 =

√
D2 +4

while the eigenvectors become:

|φ1〉(U=0) = 1p
D2 +4

[
(|↑,↓〉− |↓,↑〉)+ 1

2

((√
D2 +4−D

)
|↑↓,0〉+

(√
D2 +4+D

)
|0,↑↓〉

)]
|φ2〉(U=0) = 1p

2
(|↑,↓〉+ |↓,↑〉)

|φ3〉(U=0) = 1p
D2 +4

[
Dp

2
(|↑,↓〉− |↓,↑〉)+

p
2(|↑↓,0〉− |0,↑↓〉)

]
|φ4〉(U=0) = 1p

D2 +4

[
(|↑,↓〉− |↓,↑〉)− 1

2

((√
D2 +4+D

)
|↑↓,0〉+

(√
D2 +4−D

)
|0,↑↓〉

)]
The amplitudes of the peaks of the SF are:

Λ(λ6=2)
i j ,↓ = sin2ρ−

|Nλ|2
[(

tan−1ρ−
(

2

eλ+D
−eλ

)
+1

)
δi 1 +

(
tan−1ρ−− 2

eλ+D

)
δi 2

]
·

·
[(

tan−1ρ−
(

2

eλ+D
−eλ

)
+1

)
δ j 1 +

(
tan−1ρ−− 2

eλ+D

)
δ j 2

]
that is, finally, a non-interacting two-peaks SF:

A(U=0)
11,↓ (ω) = 1

2

(
1− Dp

D2 +4

)
δ(ω−ω1)+ 1

2

(
1+ Dp

D2 +4

)
δ(ω−ω2)

A(U=0)
12,↓ (ω) = 1p

D2 +4
δ(ω−ω1)− 1p

D2 +4
δ(ω−ω2)

A(U=0)
22,↓ (ω) = 1

2

(
1+ Dp

D2 +4

)
δ(ω−ω1)+ 1

2

(
1− Dp

D2 +4

)
δ(ω−ω2)

having used the fact that e(U=0)
2 = e(U=0)

1 . As expected, the fourth pole e(U=0)
4 =

p
D2 +4 has

a vanishing amplitude in the limit U → 0, and doesn’t show up in the previous expressions.
Moreover, the spectral weights depend on the site: for D À t , A(U=0)

11,↓ (ω) ∼ δ(ω−ω2), while

A(U=0)
22,↓ (ω) ∼ δ(ω−ω1). By contrast, for D ∼ 0 one is back to the symmetric result.
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Symmetric system Setting D = 0, we’re supposed to go back to the symmetric dimer results.
Solving the equation cos3θD=0 =−U U 2+18

(U 2+12)3/2 , we are left with three solutions, namely:

cosθD=0 = 3
p

U 2 +16−U

4
p

U 2 +12

cosθD=0 = −3
p

U 2 +16−U

4
p

U 2 +12

cosθD=0 = U

2
p

U 2 +12

These different solutions correspond to different orderings of the D = 0 poles: chosen one of
the previous θD=0, the poles derived from it are always the same: in this sense, there is no
ambiguity.

Small displacement If D ¿ 1, a power-series expansion in D is convenient; here is the be-
haviour of the position of the poles:

ω1
D∼0∼

(
1+ U − c

2

)
+ D2

8

1+
p

2U
c

(
U 2 +14

)p
U 2 −Uc +8−2(U +3c)

U 2 +12

+O (D4)

ω2
D∼0∼ 1+ D2

8
+O (D4)

ω3
D∼0∼ (1+U )+ D2

8

1+ 1p
6

12
p

U 2 −Uc +8−
p

2U
c

(
U 2 +14

)
(U +3c)

U 2 +12

+O (D4)

ω4
D∼0∼

(
1+ U + c

2

)
+ D2

8

1+
p

2U
c

(
U 2 +14

)p
U 2 −Uc +8+2(U +3c)

U 2 +12

+O (D4)

or:

ωi
D∼0∼ ω(h)

i + D2

8

(
1+∆(2)ωi

)+O (D4)

where ∆(2)ωi ≡ 4 ∂2ωi /∂D2
∣∣
D=0 −1.
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Appendix E
Sham–Schlüter equation
for the density matrix

Hubbard dimer at half filling

If continuous space is discretized into lattice sites i , the analogous of the generalized Sham–
Schlüter equation (3.17) for the density matrix γi j =

∫ dω
2πi e iωηGi j (ω) is:

∑
kl

∫
dω

2πi
e iωηGγ

i k (ω)Σkl (ω)Gl j (ω) =∑
kl

vγ

kl

∫
dω

2πi
e iωηGγ

i k (ω)Gl j (ω) (E.1)

with the non-local γ–effective potential vγ

i j . We take the Hubbard dimer, eq. (4.10), as a model
to which applying the previous equation. As both Green’s function and self energy are di-
agonal in the bonding–antibonding basis {α} = {±}, with α = ± in the antibonding and the
bonding state respectively, we express the Sham–Schlüter equation in that basis, with vγ

i j =∑
α 〈i |α〉vγ

α 〈α| j 〉: ∫
dω

2πi
e iωηGγ

α(ω)Σα(ω)Gα(ω) = vγ
α

∫
dω

2πi
e iωηGγ

α(ω)Gα(ω) (E.2)

Note that its DFT counterpart would involve a local potential vKS
i , which corresponds to an

α–independent vKS. The Sham–Schlüter equation for the density would be:∫
dω

2πi
e iωη

∑
α

GKS
α (ω)Σα(ω)Gα(ω) = vKS

∫
dω

2πi
e iωη

∑
α

GKS
α (ω)Gα(ω) (E.3)

which is more likely to have a solution as a sum over α is performed.
Let us check if a solution to eq. (E.2) exists. If the ground state is composed of a single

electron in the ground state, as we considered in chapter 4.2, the previous equation will always
have an undetermined solution vγ

i j . Indeed, with a single spin–up electron, the ground state is
a trivial Slater determinant, and the density matrix is already idempotent and independent of
the interaction: γαβ,σ = δσ,↑δαβδα,− or γi j ,σ = 1

2δσ,↑.
Therefore, to check if non–trivial solutions of eq. (E.2) exist, we have to move to the N = 2

sector (half–filling): the result is displayed in appedix D:

G−(ω) =
1
2 − 2t

c

ω− (
ε0 + t + U+c

2

)+ iη
+

1
2 + 2t

c

ω− (
ε0 + t + U−c

2

)− iη

G+(ω) =
1
2 + 2t

c

ω− (
ε0 − t + U+c

2

)+ iη
+

1
2 − 2t

c

ω− (
ε0 − t + U−c

2

)− iη

169



APPENDIX E. SHAM–SCHLÜTER FOR THE DENSITY MATRIX

with the self energy:

Σ−(ω) = U

2
+

U 2

4

ω− (
ε0 +3t + U

2

)+ iη

Σ+(ω) = U

2
+

U 2

4

ω− (
ε0 −3t + U

2

)− iη

The auxiliary system Green’s function Gγ
α(ω) can be read from the real system Green’s func-

tion, by setting U = 0 and introducing an state–dependent potential vγ
α:

Gγ
−(ω) = 1

ω− (
ε0 − t + vγ−

)− iη

Gγ
+(ω) = 1

ω− (
ε0 + t + vγ

+
)+ iη

Let us now plug all these quantities in eq. (E.2), assuming t = 1 and ε0 = 0 for simplicity. We
first consider the bonding state; the right hand side reads:

vγ
−

∫
dω

2πi
e iωηGγ

−(ω)G−(ω) =

vγ
−

∫
dω

2πi

e iωη

ω− (−1+ vγ−
)− iη

[
1
2

(
1− 4

c

)
ω− (

1+ c+U
2

)+ iη
+

1
2

(
1+ 4

c

)
ω− (

1− c−U
2

)− iη

]
=

vγ
−

2

(
1− 4

c

)
vγ−−2− c+U

2

As for the left hand side, it reads:∫
dω

2πi
e iωηGγ

−(ω)Σ−(ω)G−(ω) =

=
∫

dω

2πi

e iωη

ω− (−1+ vγ−
)− iη

[
U

2
+

U 2

4

ω− (
3+ U

2

)+ iη

][
1
2

(
1− 4

c

)
ω− (

1+ c+U
2

)+ iη
+

1
2

(
1+ 4

c

)
ω− (

1− c−U
2

)− iη

]
=

=
U
4

(
1− 4

c

)
vγ−−2− c+U

2

+ U 2

8

(
1− 4

c

)∫
dω

2πi

e iωη

ω− (−1+ vγ−
)− iη

1

ω− (
3+ U

2

)+ iη

1

ω− (
1+ c+U

2

)+ iη
+

+ U 2

8

(
1+ 4

c

)∫
dω

2πi

e iωη

ω− (−1+ vγ−
)− iη

1

ω− (
3+ U

2

)+ iη

1

ω− (
1− c−U

2

)− iη
=

=
U
4

(
1− 4

c

)
vγ−−2− c+U

2

+ U 2

8

(
1− 4

c

)
1

vγ−−4− U
2

1

vγ−−2− U+c
2

+

+ U 2

8

(
1+ 4

c

)[
1

vγ−−4− U
2

1

vγ−−2− U−c
2

+ 1

vγ−−2− U−c
2

1

2+ c
2

]
=

= U

4

(
1− 4

c

){
1[

vγ−−2− c+U
2

] + U
2[

vγ−−4− U
2

][
vγ−−2− c+U

2

] +

+U

2

(
1+ 4

c

1− 4
c

)[
1[

vγ−−4− U
2

][
vγ−−2− U−c

2

] + 1[
2+ c

2

][
vγ−−2− U−c

2

]]}

Therefore, the Sham-Schlüter equation reads:

0 = U

4

(
1− 4

c

){
1− 2vγ

−
U[

vγ−−2− c+U
2

] + U
2[

vγ−−4− U
2

][
vγ−−2− c+U

2

]+
+ U

2

(
1+ 4

c

1− 4
c

)[
1[

vγ−−4− U
2

][
vγ−−2− U−c

2

] + 1[
2+ c

2

][
vγ−−2− U−c

2

]]}
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which simplifies to:

0 =−1

2

(
1− 4

c

)
vγ−− (

2+ U+c
2

)
vγ−− (

2+ U+c
2

)
which never holds, apart when U = 0, when it displays an undetermined solution. Of course,
this is a trivial case as the density matrix is already idempotent. Note that, even with a complex–
valued auxiliary system potential vγ− ∈C, we would arrive at the same conclusions.

Homogeneous electron gas

In the case of the homogeneous electron gas, the non–local potential vγ(r ,r ′) = vγ(|r − r ′)|
can be written in reciprocal space as a k–dependent function vγ (k), and the density matrix of
the auxiliary system in reciprocal space reads:

γγ (k) =
∫ µ

−∞
dω Aγ (k,ω) =

∫ +∞

−∞
dωθ

(
µ−ω

)
δ

(
ω−ε0

k − vγ(k)
)= θ

(
µ−ε0

k − vγ(k)
)

On the contrary, using the standard self–energy, the density matrix is:

γ (k) =
∫ µ

−∞
dω A (k,ω) =

∫ +∞

−∞
dωθ

(
µ−ω

)
δ

(
ω−ε0

k −Σ(k,ω)
)

In the most general case, when there is correlation and the self energy is frequency–dependent,
there exists more than one single solution ω0(k) to the pole equation ω−ε0

k −Σ(k,ω)
∣∣
ω=ω0(k)

=
0; therefore, the delta function splits into:

δ
(
ω−ε0

k −Σ(k,ω)
)= ∑

ω0(k)

δ (ω−ω0(k))∣∣∣1− ∂Σ(k,ω)
∂ω

∣∣∣
ω=ω0(k)

and the density matrix becomes:

γ (k) =
∑

ω0(k)

θ
(
µ−ω0(k)

)∣∣∣1− ∂Σ(k,ω)
∂ω

∣∣∣
ω=ω0(k)

Thus, the generalized Sham–Schlüter equation 3.17 for the density matrix becomes:

θ
(
µ−ε0

k − vγ(k)
)= ∑

ω0(k)

θ
(
µ−ω0(k)

)∣∣∣1− ∂Σ(k,ω)
∂ω

∣∣∣
ω=ω0(k)

or, introducing the excitation energies of both the auxiliary and the real system, εγk := ε0
k −vγ(k)

and ε(i )
k =ω(i )

0 (k), and the renormalization factors Z−1
i :=

∣∣∣1− ∂Σ(k,ω)
∂ω

∣∣∣
ω=ω(i )

0 (k)
:

θ
(
µ−ε

γ

k

)=∑
i

Ziθ
(
µ−ε(i )

k

)
This equation cannot hold in general for any k: the left hand side is a simple theta function that
is alternatively one or zero, depending on k. This single theta function cannot stem from the
sum of different thetas: their weights must sum to one, resulting in a step function that starts
with one and goes to zero as ω0(k) goes from lower to higher values. Indeed, for very small k,
the energies ε(i )

k lie inside the Fermi sphere, hence the sum is over all the terms and results in∑
i Zi = 1: the equality can hold. By contrast, for larger values of k, some terms will not be inside

the Fermi sphere and will not be included in the summation, hence a resulting value less than
one (the steps), that cannot be reproduced by the single theta function on the left hand side.
Finally, for larger k, there will be no terms in the summation, yielding a zero density matrix
that, again, can be reproduced by vγ

k .
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Appendix F
Homogeneous Electron Gas integrals

We will prove here some expressions given in the text relative to the homogeneous electron
gas; such a system is homogeneous and isotropic: local quantities like f (r ) cannot depend on
a specific location r , hence they are constant; bilocal quantities like f (r ,r ′) will depend just on
the distance between the arguments, f (r ,r ′) = f (|r −r ′|); the same holds true when performing
Fourier transforms into reciprocal space.

Screened exchange self energy

I will prove here eq. (4.50), the Fock self energy evaluated with a Coulomb potential multi-
plied by a screening function; in particular, I will first consider the screened potential in recip-
rocal space, then I will evaluate the long range contribution ΣLR

x,λ(k), from which the pure Fock
self energy Σx(k) as its limit for λ→ 0, and finally, from the relation erfc(x) ≡ 1−erf(x), the short
range part ΣSR

x,λ(k), which is equals to Σx(k)−ΣLR
x,λ(k).

The screened potential Consider the long range part of the Coulomb potential in the error
function parametrization, vLR(r ) = erf(|r |/λ)

|r | ; its Fourier transform is vLR(k) = ∫
d 3r e−i k ·r vLR(r ).

For r := |r | À λ, vLR(r ) asymptotically goes as 1/r , whose Fourier transform is ill–defined; we
therefore add an artificial Yukawa damping e−µr to the function vLR(r ), that becomes vµ

LR(r ) =
vLR(r )e−µr , keeping in mind to take the limit µ→ 0+ at the end of the calculation [4].

The Fourier transform of vµ

LR(r ) is therefore:

vµ

LR(k) =
∫

d 3r e−i k ·r vµ

LR(r ) = 2π
∫ +∞

0
dr r 2 erf(r /λ)

r
e−µr

∫ +1

−1
dξe−i |k |rξ =

= 2πiλ

|k |
∫ +∞

0
d x erf(x)

{
e−λ(µ+i k)x −e−λ(µ−i k)x

} (F.1)

with x = r /λ. The integral
∫ +∞

0 d x erf(x)e−zx with Rez > 0 can be evaluated by parts [149], and
the result is

∫ +∞
0 d x erf(x)e−zx = 1

z ez2/4erfc z
2 . Therefore, eq. (F.1) becomes:

vµ

LR(k) = 2πiλ

|k |

e
λ2

4 (µ+i k)2

λ(µ+ i k)
erfc

(
λ(µ+ i k)

2

)
− e

λ2

4 (µ−i k)2

λ(µ− i k)
erfc

(
λ(µ− i k)

2

) (F.2)

One can now take the limit µ→ 0 and recover the original potential vLR(k), which reads:

vLR(k) = 4π

k2 e−
λ2k2

4 (F.3)
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having used the property that, since erf(−x) = −erf(x), erfc(−x) = 2− erfc(x). Its short range
counterpart vSR(k) is v(k)− vLR(k), with v(k) the Fourier transform of the Coulomb potential:

vSR(k) = 4π

k2

(
1−e−

λ2k2

4

)
(F.4)

The behaviour of the potentials vLR(k) and vSR(k) as functions of k are shown in fig. 4.14b.

The long range self energy The general form of a screened Fock self energy is given by eq.
(2.47) with vC (r ) replaced by vscreened(r ); in particular, using erf(r /λ) as a screening function
results in the long range potential vLR(r ) introduced in eq. (4.45); transforming to reciprocal
and frequency space, the self energy thus reads:

ΣLR
x (k) = i

∫
d 3q

(2π)3

dω′

2π
e iω′ηG(|k +q |,ω+ω′)vLR(q)

with vLR(q) given by eq. (F.3): since that is a static potential, the frequency integral can be
done straightforwardly by moving to the complex plane: the convergence factor e iω′η selects
the upper half plane, where the poles of the Green’s function refer to occupied states; therefore
it is not surprising that the occupation number np = ∫ µ

−∞ dωA(p ,ω) = θ(kF −|p|) pops up, and
the previous expression simplifies to:

ΣLR
x (k) =−

∫
d 3q

(2π)3 vLR(q)n|k+q |

or, in polar coordinates, with k ·q = kq cosϑ := kqξ:

ΣLR
x (k) =− 1

π

∫ kF

0
d q q2

∫ +1

−1
dξ

e−
λ2

4 |q−k |2

|q −k |2

Replacing ξ by the variable t := λ2

4 |q −k |2, the last integral becomes:

∫ +1

−1
dξ

e−
λ2

4 |q−k |2

|q −k |2 = 1

2kq

∫ λ2

4 (q+k)2

λ2

4 (q−k)2
d t

e−t

t
= 1

2kq

{
Ei

(
−λ2

4
(q +k)2

)
−Ei

(
−λ2

4
(q −k)2

)}

having introduced the Exponential Integral function, defined for x ∈R\0 as Ei(x) :=−∫ +∞
−x d t e−t

t .
Its derivative is d

d x Ei(x) = ex

x . Therefore, the self energy becomes:

ΣLR
x (k) =− 1

2πk

∫ kF

0
d q q

{
Ei

(
−λ2

4
(q +k)2

)
−Ei

(
−λ2

4
(q −k)2

)}
It is useful to introduce the dimensionless variables x := λ

2 (k ± q) in the first and the second
term respectively; the self energy assumes the compact form:

ΣLR
x (k) =−

( 2
λ

)2

2πk

∫ λ
2 (k+kF)

λ
2 (k−kF)

d x

(
x − λ

2
k

)
Ei

(−x2)
We now use the integrals [150]:∫

d x x Ei
(−x2)= x2

2
Ei

(−x2)−∫
d x

x2

2

(
2

x
e−x2

)
= x2

2
Ei

(−x2)+ 1

2
e−x2

∫
d x Ei

(−x2)= x Ei
(−x2)−∫

d x x

(
2

x
e−x2

)
= x Ei

(−x2)−p
πerf(x)
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and the previous expression becomes:

ΣLR
x (k) =− 1

πλ2k

{
e−x2 +p

πλkerf(x)+x(x −λk)Ei
(−x2)} λ

2 (k+kF)

λ
2 (k−kF)

namely:

ΣLR
x (k) =− 1

πλ2k

{
e−

λ2

4 (k+kF)2 −e−
λ2

4 (k−kF)2 +p
πλk

[
erf

(
λ(k +kF)

2

)
−erf

(
λ(k −kF)

2

)]
+

+ λ2

4
(k2 −k2

F)

[
Ei

(
−λ2

4

(
k −kF

)2
)
−Ei

(
−λ2

4

(
k +kF

)2
)]}

(F.5)

which is an even function of k: ΣLR
x (−k) = ΣLR

x (k). Note that, like the Fock self energy, also the
derivative of ΣLR

x (k) is singular for k = kF; indeed, both vLR(r ) and the full Coulomb potential
have the same unscreened long range behaviour.

Some properties of ΣLR
x (k) are the following:

ΣLR
x (k = 0) =− 1p

πλ

[
erf

(
λkF

2

)
−erf

(
−λkF

2

)]
λ→0−→−2kF

π

ΣLR
x (k = kF) =−kF

π

[
p
π

erf(λkF)

λkF
− 1

λ2k2
F

(
1−e−λ

2k2
F

)]
λ→0−→−kF

π

The Fock self energy Taking the limit λ→ 0, the long range part of the Coulomb potential (F.3)
tends to the full Coulomb potential, and eq. (F.5) becomes the usual Fock self energy; using the

limits erf(x)
x→0≈ 2p

π
x and Ei(x)

x→0≈ γ+ln |x|+O (x), with γ= 0.577... Euler–Mascheroni constant,
eq. (F.5) becomes:

Σx(k) = lim
λ→0

ΣLR
x (k) =−kF

π

{
1+ k2 −k2

F

2kFk
ln

∣∣∣∣k −kF

k +kF

∣∣∣∣} (F.6)

which is the usual Fock self energy [99].

The short range self energy Finally, as vSR(r ) = v(r )− vLR(r ), the short range self energy can
be found from ΣSR

x,λ(k) =Σx(k)−ΣLR
x,λ(k). The result is:

ΣSR
x (k) =−kF

π

[
1− k2 −k2

F

2kFk
ln

∣∣∣∣kF +k

kF −k

∣∣∣∣
]
+

+ 1

πλ2k

{
e−

λ2

4 (k+kF)2 −e−
λ2

4 (k−kF)2 +p
πλk

[
erf

(
λ(k +kF)

2

)
−erf

(
λ(k −kF)

2

)]
+

+ λ2

4
(k2 −k2

F)

[
Ei

(
−λ2

4

(
k −kF

)2
)
−Ei

(
−λ2

4

(
k +kF

)2
)]}

(4.50)

Some properties of ΣSR
x (k) are:

ΣSR
x (k = 0) =−2kF

π

1−
p
π

2

erf
(
λkF

2

)
(
λkF

2

)


ΣSR
x (k = kF) =−kF

π

[
1−p

π
erf(λkF)

λkF
+ 1

λ2k2
F

(
1−e−λ

2k2
F

)]

Note that, as the Kohn–Sham potential in the homogeneous electron gas is the self energy at the
Fermi level, vDFT

xc =Σxc(kF,µ), the last line represents also the short range exchange potential of
DFT: vDFT,SR

x =ΣSR
x (kF), that we will need for defining the HSE06 hybrids self energy.
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Moreover, from the definition of the Fermi energy µ as the single particle energy εk at the
Fermi wave vector kF, namely µ = εkF = ε0

kF
+hloc

xc +αΣSR
x (k = kF), since hloc

xc = vDFT
xc −αvDFT,SR

x

and vDFT,SR
x = ΣSR

x (kF), we obtain the important result that the Fermi energy in the HSE06 ap-
proximation is the same as the Fermi energy in DFT: µ=µDFT = ε0

kF
+ vDFT

xc .
Also the bandwidth W =µ−εk=0 can be directly related to the self energy: in the free as well

as in the DFT case, the bandwidth is WDFT = ε0
kF

. In the HSE06 case, the bandwidth is larger:

WHSE06 = WDFT −α
[
ΣSR

x (k = 0)−ΣSR
x (k = kF)

]=
= WDFT −α

kF

π

[(
1−e−λ

2k2
F

λ2k2
F

−1

)
+

p
π

λkF

(
2erf

(
λkF

2

)
−erf

(
λkF

))] (F.7)

The correction in square brackets is zero for λkF = 0 (pure DFT limit) and goes asymptotically
to –1 for λkF →∞ (the correction of the PBE0 functional).

The first and second derivatives of ΣSR
x (k) are:

dΣSR
x (k)

dk
= 1

π

{
1

4

(
1+ k2

F

k2

)[
Ei

(
−λ2

4

(
k −kF

)2
)
−Ei

(
−λ2

4

(
k +kF

)2
)
− ln

∣∣∣∣k −kF

k +kF

∣∣∣∣2]
+

− kF

k
+ 1

λ2k2 e−
λ2

4

(
k+kF

)2 (
eλ

2kFk −1
)}

(F.8)

d 2ΣSR
x (k)

dk2 = 1

2πk3(k2 −k2
F)

{
k2

F(k2
F−k2)

[
Ei

(
−λ2

4

(
k −kF

)2
)
−Ei

(
−λ2

4

(
k +kF

)2
)
− ln

∣∣∣∣k −kF

k +kF

∣∣∣∣2]
+

−4k3
Fk +2e−

λ2

4

(
k+kF

)2
[(

eλ
2kFk −1

)
(k +kF)

[
kFk2 − 2(k −kF)

λ2

]
+2kFk3

]}
(F.9)

Their values at the Fermi wave vector are:

dΣSR
x (k)

dk

∣∣∣∣
k=kF

= 1

π

{
γ

2
−1+ 1

2
ln(−λ2k2

F)− 1

2
Ei

(−λ2k2
F

)+ 1

λ2k2
F

(
1−e−λ

2k2
F

)}
d 2ΣSR

x (k)

dk2

∣∣∣∣
k=kF

=− 1

kF

dΣSR
x (k)

dk

∣∣∣∣
k=kF

+ 1

πkF

{
1+e−λ

2k2
F

2
− 1−e−λ

2k2
F

λ2k2
F

}

which diverge for λ→ 0 (Hartree–Fock limit). Finally, also the short range self energy ΣSR
x is an

even function of k: ΣSR
x (−k) =ΣSR

x (k); as a consequence, its derivative is odd. We will use these
properties in the next section.

Spectral function

I will consider here the full spectral function defined in eq. (4.52), which reads:

A(r ,r ′,ω) =
∫

d 3k

(2π)3 e i k ·(r−r ′) A(k,ω) = 1

(2π)2

∫ +∞

0
dk k2δ(ω−εk )

∫ +1

−1
dξe i k∆rξ

having introduced ∆r := |r − r ′| and ξ= cosϑ with ϑ the angle between k and the vector r − r ′.
Evaluating the last integral, A(∆r,ω) becomes:

A(r ,r ′,ω) = 1

4iπ2∆r

∫ +∞

−∞
dk k e i k∆rδ(ω−εk )

The delta function can be expressed as a sum over the two symmetric (εk is an even function of
k) zeros ±k0(ω), solutions of the equation 0 = ω−ε0

k −hloc
xc −αΣSR

x (k)
∣∣
k=±k0(ω)

, with +k0(ω) the
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positive one; such a solution exists whenever ω ≥ mink εk = µ−W, with the bandwidth given
by eq. (F.7); if no solution exists, the spectral function is identically zero. Therefore:

A(r ,r ′,ω) = θ
(
ω−µ+W

)
4iπ2∆r

∫ +∞

−∞
dk k e i k∆r

 δ(k −k0(ω))∣∣∣k +α
dΣSR

x (k)
dk

∣∣∣
k0(ω)

+ δ(k +k0(ω))∣∣∣k +α
dΣSR

x (k)
dk

∣∣∣−k0(ω)


Since both k and

dΣSR
x (k)
dk are odd functions of k, the previous expression simplifies to:

A(r ,r ′,ω) = θ
(
ω−µ+W

)
4iπ2∆r

∫ +∞

−∞
dk

ke i k∆r∣∣∣k +α
dΣSR

x (k)
dk

∣∣∣
k0(ω)

{
δ
(
k −k0(ω)

)+δ
(
k +k0(ω)

)}

Finally, we can integrate out the delta functions and obtain:

A(r ,r ′,ω) = θ
(
ω−µ+W

)
2π2

k2
0(ω)∣∣∣k0(ω)+α

dΣSR
x (k)
dk

∣∣∣
k0(ω)

e i k0(ω)∆r −e−i k0(ω)∆r

2i k0(ω)∆r

or:

A(r ,r ′,ω) = θ
(
ω−µ+W

)
π2

∣∣∣∣∣∣
k2

2

k +α
dΣSR

x (k)
dk

∣∣∣∣∣∣ sin(k∆r )

k∆r

∣∣∣∣
k=k0(ω)

which is eq. (4.53).
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Appendix G
First order perturbation in vext of the
generalized Sham–Schlüter equation

In this appendix, from the viewpoint of the generalized Sham–Schlüter equation, we derive
a relation between the spectral potentials of a homogeneous system in which vext +vH = 0 and
a system in which the external potential is considered as a small perturbation δvext(r ) to vext.

We therefore consider four systems: the homogeneous electron gas Gh and its auxiliary sys-
tem Gh

SF on the one hand; the actual system G in which we turn on δvext(r ) with its auxiliary
system GSF on the other.

A first consequence of turning on δvext is the modification of the Hartree Green’s function,
which becomes:

G−1
H (r ,r ′,ω) = δ

(
r − r ′)[ω−

(
−∇2

2
+ vext +δvext(r )+ vH +δvH(r )

)]
=

=Gh−1
0 (r ,r ′,ω)− [

δvext(r )+δvH(r )
]
δ

(
r − r ′)

Consider now the actual system Green’s function G ; its inverse is given by G−1 =G−1
H −Σ, where

the self energy can be written as Σ = Σh +δΣ, and δΣ ∼ O (δvext). It follows that (variables and
integrations implied):

G−1 =Gh −1
0 −

[
δvext +δvH +Σh +δΣ

]
=

=Gh −1 − [
δvext +δvH +δΣ

]
being Gh −1 =Gh −1

0 − [
vext + vH +Σh

]
and vext + vH = 0. Inverting this equation we get:

G =Gh +Gh[
δvext +δvH +δΣ

]
G

and to its first order in δvext:

G ≈Gh +Gh[
δvext +δvH +δΣ

]
Gh (G.1)

The same proceeding for the auxiliary systems Gh
SF and GSF yields, to its first order in δvext:

GSF ≈Gh
SF +Gh

SF(δvext +δvH +δvxc
SF)Gh

SF (G.2)

having written the exchange–correlation part of the spectral potential as vxc
SF = vxc h

SF +δvxc
SF, and

δvxc
SF ∼O (δvext).
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Require now Im[G]r ,r = Im[GSF]r ,r and alike in the homogeneous system: Im
[
Gh

]
r ,r =

Im
[
Gh

SF

]
r ,r . Using the expansions (G.1) and (G.2), the zero order terms (the spectral function

of the homogeneous system) cancel exactly and we are left with the following relation:

Im
[
Gh(δvext +δvH +δΣ)Gh

]
r ,r

= Im
[
Gh

SF(δvext +δvH +δvxc
SF)Gh

SF

]
r ,r

(G.3)

which is the first order perturbation term to the generalized Sham–Schlüter equation (3.23).
Introducing the quantity ζ̃h

SF(r ,r ′,ω) := Im
[
Gh

SF(r ,r ′,ω)Gh
SF(r ′,r ,ω)

]
, its solution is:

δvxc
SF (r ,ω) =

∫
x
ζ̃h −1

SF (r , x ,ω)
∫

y ,z
Im

[
Gh (

x , y ,ω
)[(

δvext(y)+δvH(y)
)
δ

(
y − z

)+
+δΣ(

y , z ,ω
)]

Gh (z , x ,ω)
]
− (

δvext(r )+δvH(r )
)

(G.4)

Therefore, the full spectral potential in the actual system vxc
SF (r ,ω) = vh

SF (ω)+δvxc
SF (r ,ω) reads:

vxc
SF (r ,ω) = vh

SF (ω)+
∫

x ,y ,z
ζ̃h −1

SF (r , x ,ω) Im
[
Gh (

x , y ,ω
)[(

δvext(y)+δvH(y)
)
δ

(
y − z

)+
+δΣ(

y , z ,ω
)]

Gh (z , x ,ω)
]
− (

δvext(r )+δvH(r )
)

(G.5)

Possibly, one could consider the linearized form of eq. (G.3) by replacing Gh with Gh
SF every-

where (also in the definition of Σ), and get the following simplified version:

Im
[
G̃h

SFδΣ̃G̃h
SF

]
r ,r

= Im
[
G̃h

SFδṽxc
SFG̃h

SF

]
r ,r

, (G.6)

whose solution is:

δṽxc
SF (r ,ω) =

∫
x

˜̃ζh −1
SF (r , x ,ω)

∫
y ,z

Im
[
G̃h (

x , y ,ω
)
δΣ̃

(
y , z ,ω

)
G̃h (z , x ,ω)

]
. (G.7)

which is similar to eq. (G.5) but the external and the Hartree potential do not explicitly appear.

The previous solutions, eq. (G.7) and eq. (G.4), have been achieved by directly relating
the real system Green’s functions to their homogeneous counterparts; on the other hand, one
can first relate them to their common Hartree Green’s function GH, and the Sham–Schlüter
equation would read Im[GHΣG]r ,r = Im

[
GHvxc

SFGSF
]

r ,r , with:

GHΣG =
[
Gh

0 +Gh
0 (δvext +δvH)Gh

0

][
Σh +δΣ

][
Gh +Gh(δvext +δvH +δΣ)Gh

]
=

≈Gh
0 Σ

hGh +Gh
0 δΣGh +Gh

0 Σ
hGh(δvext +δvH +δΣ)Gh +Gh

0 (δvext +δvH)Gh
0 Σ

hGh =
=Gh

0 Σ
hGh +Gh

0

[
δΣ+ΣhGh(δvext +δvH +δΣ)+ (δvext +δvH)Gh

0 Σ
h
]

Gh =
=Gh

0 Σ
hGh +Gh

0

[(
1+ΣhGh

)
δΣ+ΣhGh (

δvext +δvH
)+ (

δvext +δvH
)

Gh
0 Σ

h
]

Gh =
=Gh

0 Σ
hGh +GhδΣGh +

(
Gh −Gh

0

)(
δvext +δvH

)
Gh +Gh

0

(
δvext +δvH

)(
Gh −Gh

0

)
=

=Gh
0 Σ

hGh +Gh (
δvext +δvH +δΣ

)
Gh −Gh

0

(
δvext +δvH

)
Gh

0

and:

GHvxc
SFGSF =

[
Gh

0 +Gh
0 (δvext +δvH)Gh

0

][
vh

SF +δvxc
SF

][
Gh

SF +Gh
SF(δvext +δvH +δvxc

SF)Gh
SF

]
=

≈Gh
0 vh

SFGh
SF +Gh

0

[(
1+ vh

SFGh
SF

)
δvxc

SF + vh
SFGh

SF

(
δvext +δvH

)+ (
δvext +δvH

)
Gh

0 vh
SF

]
Gh

SF =
=Gh

0 vh
SFGh

SF +Gh
SFδvxc

SFGh
SF +

(
Gh

SF −Gh
0

)(
δvext +δvH

)
Gh

SF +Gh
0

(
δvext +δvH

)(
Gh

SF −Gh
0

)
=

=Gh
0 vh

SFGh
SF +Gh

SF

(
δvext +δvH +δvxc

SF

)
Gh

SF −Gh
0

(
δvext +δvH

)
Gh

0
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Assuming the Sham–Schlüter equation to hold in the homogeneous system, Im
[
Gh

HΣ
hGh

]
r ,r =

Im
[
Gh

Hvh
SFGh

SF

]
r ,r , we are left with the relation:

Im
[
Gh(δvext +δvH +δΣ)Gh

]
r ,r

= Im
[
Gh

SF(δvext +δvH +δvxc
SF)Gh

SF

]
r ,r

which is exactly eq. (G.3), again.
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Appendix H
GW for the Hubbard dimer

In this appendix, I will present two different diagrammatic approaches for studying the
Green’s function of the Hubbard dimer. They rely on two different ways of considering the
on–site interaction.

As the diagrammatic approach has been carried out for Coulomb systems in an external
potential, it is useful to start from the link between the Hubbard model and the many–body
Hamiltonian.

The Hubbard dimer as a simplified electron gas

Taking explicitly spin into account, which will be important for the Hubbard model, the
many–body Hamiltonian (2.3a) reads:

Ĥ =∑
σ

∫
d 3r ψ̂†

σ(r)h0(r)ψ̂σ(r)+ 1

2

∑
σσ′

∫
d 3r d 3r ′ψ̂†

σ(r)ψ̂†
σ′(r′)vC (|r− r′|)ψ̂σ′(r′)ψ̂σ(r)

We rewrite this Hamiltonian in a new basis, using the expansion: ψ̂†
σ(r) := ψ̂†(x) = ∑

I χ
∗
I (x)ĉ†

I ,
with χI (x) := 〈x|I 〉 ≡ 〈r,σ|RI ,σI 〉, and the compact notation x ≡ (r,σ) and I ≡ (RI ,σI ) ≡ (i ,σI ).
We then define the following parameters:

hI J :=∑
σ

∫
d 3r χ∗

I (x)h0(r)χJ (x)

UI JK L := ∑
σσ′

∫
d 3r d 3r ′χ∗

I (x)χ∗
J (x′)vC (|r− r′|)χK (x′)χL(x)

, (H.1)

through which the many–body Hamiltonian becomes:

Ĥ =∑
I J

hI J ĉ†
I ĉ J + 1

2

∑
I JK L

UI JK L ĉ†
I ĉ†

J ĉK ĉL (H.2)

To finally obtain the asymmetric Hubbard dimer, the indices I , J , K and L run over the discrete
set {(i1,σ1), (i2,σ2)}, with i called “site”, and:

hI J = eiδi jδσIσJ − t (1−δi j )δσIσJ

UI JK L =UI JδI LδJK

UI J =Uδi j (1−δσIσJ )

(H.3)

The Hamiltonian finally becomes the dimer one, eq. (6.1):

Ĥ =−t
∑
σ

(
ĉ†

1σĉ2σ+ ĉ†
2σĉ1σ

)
+∑

i
ei n̂i +U

∑
i

n̂i↑n̂i↓ (6.1)
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The connection between real space quantities and site quantities can be done via eq. (H.1).
For example, the spin density in real space is:

nσ(r) := 〈GS|ψ̂†
σ(r)ψ̂σ(r) |GS〉 =∑

I J
χ∗

I (r,σ)χJ (r,σ)nI J (H.4)

while the spin density matrix is:

γσσ′(r,r′) := 〈GS|ψ̂†
σ(r)ψ̂σ′(r′) |GS〉 =∑

I J
χ∗

I (r,σ)χJ (r′,σ′)nI J (H.5)

with nI J = 〈GS| ĉ†
I ĉ J |GS〉 = δσI ,↑δσJ ,↑(cosρ−δi 1+sinρ−δi 2)(cosρ−δ j 1+sinρ−δ j 2) ≡ δσI ,↑δσJ ,↑Λ0(−)

i j

and nI := nI I = δσI ,↑(cos2ρ−δi 1 + sin2ρ−δi 2).

Spin–dependent GW

Hartree and exchange energy contributions With the rules (H.3) to connect the Hubbard
dimer Hamiltonian to the many body Hamiltonian, we can address the Hartree energy:

EH = 1

2

∫
d 3r d 3r ′ n(r)n(r′)

|r− r′| = 1

2

∑
I JK L

nI J nK L

∫
d 3r d 3r ′χ∗

I (r)χJ (r)vC (|r− r′|)χ∗
K (r′)χL(r′) =

= 1

2

∑
I JK L

UI JK LnI Ln JK = 1

2

∑
I J

UI J nI I n J J = U

2

∑
i ,σ

n(i ,σ),(i ,σ)n(i ,−σ),(i ,−σ) =

=U
∑

i
ni↑,i↑ni↓,i↓ ≡U

∑
i

ni↑ni↓

From this derivation, the Hartree term is responsible for the whole mean field energy (which is
zero, for one-fourth filling), that one obtains disregarding correlation, as explained in the main
text.

In the same way, the exchange energy is:

EX =−1

2

∫
d 3r d 3r ′ γ(r,r′)γ(r′,r)

|r− r′| = −1

2

∑
I JK L

UI JK LnI K n JL =−1

2

∑
I J

UI J nI J n J I =

=−U

2

∑
i ,σ

n(i ,σ),(i ,−σ)n(i ,−σ),(i ,σ) ≡−U
∑

i
ni↑,i↓ni↓,i↑

which is zero because the density matrix nI J is diagonal in spin space, and “for the Hubbard
model with only one orbital per site, there is no exchange energy, Ex = 0, because only unlike
spins interact” [151]. This result is consistent with the fact that the whole mean field energy is
due to the Hartree term, and no additional contribution is required at a mean field level.

Hartree potential and Exchange self energy

The Green’s function in the basis {I } is defined as:

iG I J (t , t ′) := 〈GS|T̂ ĉI (t )ĉ†
J (t ′) |GS〉

Applying the Gell–Mann and Low theorem [4], we have:

iG I J (t , t ′) = 〈GS|T̂ ĉI (t )ĉ†
J (t ′)exp−i

∫
dτdτ′

∑
K L

ûK L(τ,τ′) |GS〉

where now ground state and operators are referred to the U = 0 Hamiltonian, and ûK L(τ,τ′) :=
1
2 ĉ†

K (τ)ĉ†
L(τ′)UK Lδ(τ−τ′)ĉL(τ′)ĉK (τ). At zero order in U , we get the following non–interacting

Green’s function:

G0
i j ,σ(ω) =

Λ0 (−)
i j

ω−e−− iηsignσ
+

Λ0 (+)
i j

ω−e++ iη

with weights defined as Λ0 (±)
i j :=

[
δi 1 cosρ±+δi 2 sinρ±

][
δ j 1 cosρ±+δ j 2 sinρ±

]
.
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First order diagrams At first order in U , we have:

iG (1)
I J (t , t ′) = iG0

I J (t , t ′)− i
∫

dτdτ′
∑
K L

〈GS|T̂ ĉI (t )ĉ†
J (t ′)ûK L(τ,τ′) |GS〉

so that the six-points function we have to evaluate is:

〈GS|T̂ ĉI (t )ĉ†
J (t ′)ĉ†

K (τ+)ĉ†
L(τ′+)ĉL(τ′)ĉK (τ) |GS〉

Contracting via Wick’s theorem and disregarding vacuum diagrams, we are left with:

− i

2

∫
dτdτ′

∑
K L

UK Lδ(τ−τ′)〈GS|T̂ ĉI (t )ĉ†
J (t ′)ĉ†

K (τ+)ĉ†
L(τ′+)ĉL(τ′)ĉK (τ) |GS〉 =

=
∫

dτdτ′
∑
K L

UK Lδ(τ−τ′)
[
G0

I K (t ,τ+)G0
LL(τ′,τ′+)G0

K J (τ, t ′)+

−G0
I K (t ,τ+)G0

K L(τ,τ′+)G0
LJ (τ′, t ′)

]
That is, finally:

G I J (t , t ′) =G0
I J (t , t ′)− i

∫
dτdτ′

∑
K L

UK Lδ(τ−τ′)·

· [G0
I K (t ,τ+)G0

LL(τ′,τ′+)G0
K J (τ, t ′)−G0

I K (t ,τ+)G0
K L(τ,τ′+)G0

LJ (τ′, t ′)
]

Since, at first order in the interaction, the Dyson equation is G =G0+G0ΣG0, the first order self
energy, identified with the Hartree plus the exchange one, is given by:

Σ(H)
I J (t , t ′) =−iδ(t − t ′)δI J

∑
K

UI K G0
K K (τ′,τ′+)

Σ(X )
I J (t , t ′) = iδ(t − t ′)UI JG0

I J (t , t ′+)

In frequency space we get static self energies, depending only on occupied orbitals:

Σ(H)
I J =−iδI J

∑
K

UI K

∫
dω

2π
e iωηG0

K K (ω)

Σ(X )
I J = iUI J

∫
dω

2π
e iωηG0

I J (ω)

If we apply these results to the dimer in the spin–up ground state, via eq. (H.3), we get the
following results:

Σ(H)
i j ,σ =−iUδi j

∫
dω

2π
e iωηG0

i i ,−σ(ω) = δi jδσ,↓Uni

Σ(X )
i j ,σσ′ = iUi j ,σσ′

∫
dω

2π
e iωηG0

I J (ω) =−Ui j ,σσ′δσσ′δσ,↑ni j = 0
(H.6)

where the last equality can be understood by the fact that a spin–conserving Green’s function
is multiplied by an interaction which is purely off–diagonal in spin–space. Stated differently,
adding a spin–down electron to a spin–up ground state doesn’t require any exchange term,
since the two particles are distinguishable.
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Therefore, in this formulation, the Hartree potential is spin–dependent1. It reads:

v H
i ,σ := ∂EH

∂ni ,σ
=Uni ,−σ =

{
Uni ,↓ = 0 σ=↑
Uni ,↑ =Uni σ=↓

(H.7)

Hartree Green’s function For later use, it is useful to introduce the Green’s function associated
to the Hartree potential, G H −1

i j ,σ (ω) =G0 −1
i j ,σ (ω)−v H

i ,σ. The Hartree Hamiltonian, spin–dependent

because of the spin–dependent Hartree potential, is hH
i j ,σ = (

ei +δσ,↓Uni
)
δi j − t (1−δi j ). Di-

agonalizing it, its eigenvalues are eH
±,↑ = ±

√
1+ D2

4 ≡ e± and eH
±,↓ = U

2 ±
√

1+ (D+U∆n
2

)2
, with

∆n := n1 −n2. Note that the Hartree potential does not modify the spin–up eigenvalues, which
are already the poles of the fully interacting spin–up Green’s function.

The eigenvectors of hH
i j ,σ define a new bonding–antibonding basis, with the parameter αH

±

in place of ρ±, defined by
[
tanαH

±,σ

]−1 = −D+U∆n
2 ∓

√
1+ (D+U∆n

2

)2
. In this basis, the Hartree

Green’s function reads:

G H
±,↑(ω) = 1

ω−eH
±,↑± iη

G H
±,↓(ω) = 1

ω−eH
±,↓+ iη

In the site basis, the Green’s function is G H
i j ,σ(ω) =∑

± 〈i ,σ|±,σ〉G H
±,σ(ω)〈±,σ| j ,σ〉, with the ma-

trix of change of basis 〈i ,σ|±,σ〉 = δi 1 cosαH
±,σ+δi 2 sinαH

±,σ. Thus, for the spin–down sector:

G H
i j ,↓(ω) =

ΛH (−)
i j

ω−eH
−,↓+ iη

+
ΛH (+)

i j

ω−eH
+,↓+ iη

(H.8)

with ΛH (±)
i j =

(
cos2αH

±,↓ cosαH
±,↓ sinαH

±,↓
cosαH

±,↓ sinαH
±,↓ sin2αH

±,↓

)
. It is useful to introduce the parameter h :=

D+∆v H

2 ≡ D+U∆n
2 , through which ΛH (±)

i j assumes the following compact form:

ΛH (±)
i j = 1

2

(
1± hp

1+h2
∓ 1p

1+h2

∓ 1p
1+h2

1∓ hp
1+h2

)
(H.9)

whose limit for U → 0 is Λ0(±)
i j =

[
δi 1 cosρ± +δi 2 sinρ±

][
δ j 1 cosρ± +δ j 2 sinρ±

]
, with D/2 in

place of h, or ρ± in place of αH
± .

Trivially, G H
i j ,↑(ω) ≡G0

i j ,↑(ω) so that, in general:

G H
i j ,σ(ω) =

ΛH (−)
i j ,σ

ω−eH−,σ− iηsignσ
+

ΛH (+)
i j ,σ

ω−eH+,σ+ iη
(H.10)

with ΛH (±)
i j ,↑ = Λ0(±)

i j and ΛH (±)
i j ,↓ = ΛH (±)

i j . With respect to the non–interacting Green’s function,
the Hartree approximation (H.10) modifies the amplitudes and the position of the poles, but
keeps the structure (two poles, spin–diagonal) of it.

1Note that, although in the site basis the Hartree potential depends on spin, the real space Hartree potential is
still spin–independent:

v H (r) := δEH

δn(r)
=U

∑
i ,σ

δni ,σ

δn(r)
ni ,−σ

and the connection between the two is provided by:

v H
i ,σ = ∂EH

∂ni ,σ
=∑

σ′

∫
d3r

δEH

δn(r)

∂nσ′ (r)

∂ni ,σ
=

∫
d3r v H (r)

∑
σ′

∂nσ′ (r)

∂ni ,σ
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The GW self energy

We build GW in the usual way, as the dressed–interaction counterpart of the exchange self
energy. We consider the Hartree approximation as our starting point. The RPA polarizability
evaluated with Hartree Green’s functions, iΠH

σσ′(1,2) :=∑
ρ G H

σρ(1,2)G H
ρσ′(2,1+), with 1 ≡ (i1, t1),

is spin-diagonal and, in frequency space, it reads:

iΠH
i j ,σ(ω) =

∫
dω′

2π
e iω′ηG H

i j ,σ(ω+ω′)G H
j i ,σ(ω′)

where G H
j i ,σ(ω) is given by eq. (H.10). As expected, only the occupied states do contribute,

hence ΠH
i j ,σ(ω) ≡Π(0)

i j ,σ(ω), the non-interacting polarizability:

Π(0)
i j ,σ(ω) = δσ,↑Λ0(+)

i j Λ0(−)
i j

[
1

ω− (e+−e−)+2iη
− 1

ω+ (e+−e−)−2iη

]
≡

≡ (−1)(i− j )δσ,↑
D2 +4

Π(0)(ω)

(H.11)

where Π(0)(ω) is the quantity in square brackets, e+− e− =
p

D2 +4 is the gap between the ex-
cited (antibonding) and the ground (bonding) states, and we used the fact that Λ0(+)

i j Λ0(−)
i j =

(−1)(i− j )/(D2+4). As it is a non–interacting quantity, this result is consistent with the definition
of GW that we will give in the next section [96].

The polarization screens the bare interaction UI J = Uδi jδσI ,−σJ via the Dyson equation
WI J =UI J +UI K ΠK LWLJ that, for the asymmetric dimer at one-fourth filling, reads:

W RPA
i j ,σσ′(ω) =Uδi jδσ,−σ′ + Uδσ,↓

D2 +4
Π(0)(ω)

∑
l

(−1)(i−l )W RPA
l j ,↑σ′(ω).

Considering the four possible spin combinations:

W RPA
i j ,↑↑ (ω) = 0

W RPA
i j ,↑↓ (ω) =Uδi j

W RPA
i j ,↓↑ (ω) =Uδi j + U

D2 +4
Π(0)(ω)

∑
l

(−1)(i−l )W RPA
l j ,↑↑ (ω) =Uδi j +0 =Uδi j

W RPA
i j ,↓↓ (ω) = U

D2 +4
Π(0)(ω)

∑
l

(−1)(i−l )W RPA
l j ,↑↓ (ω) = U

D2 +4
Π(0)(ω)

∑
l

(−1)(i−l )Uδl j =

= (−1)(i− j ) U 2

D2 +4
Π(0)(ω)

(H.12)

which is an expected result: at the RPA level, where just a simple spin–up bubble polarization is
present, two spin–up electrons cannot interact (W RPA

i j ,↑↑ (ω) = 0), different spins interact through

the bare interaction (W RPA
i j ,↑↓ (ω) = W RPA

i j ,↓↑ (ω) = Uδi j ) but now two spin–down electrons are al-
lowed to interact through the polarization of the medium, which reflects in a non–zero value
for W RPA

i j ,↓↓ (ω); in this last case, the dressed interaction is proportional to U 2 because two ver-
tices are needed for the interaction to take place. Finally, the “perturbation” expansion that led
us to the closed form of the screened interaction has been possible in just “one step” because
only a single bubble can be formed. In this sense, RPA is a second–order expansion in U , and
not an infinite expansion in e2 as in the continuum.

Note that here, in order to remain as close as possible to the Feynman rules of the model,
we have obtained a (not even diagonal) spin-dependent screened interaction, as in ref. [152],
whereas in [96] a spin-independent potential is used. For a comparison between the two ap-
proaches, see [153, 152, 154, 155, 156].
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Let us now consider, with G =G H , the self energy induced by this screened interaction at the
GW level, namely ΣGW

σ (1,2) := iG H
σ (1,2)W RPA

σ (2,1+) which is diagonal in spin-space because
G H is; in frequency space, it becomes:

ΣGW
i j ,σ(ω) = i

∫
dω′

2π
e iω′ηG H

i j ,σ(ω+ω′)W RPA
j i ,σ (ω′)

From the form of the screened interaction, only the spin-down block is non-zero:

ΣGW
i j ,↓ (ω) = i

∫
dω′

2π
e iω′ηG H

i j ,↓(ω+ω′)W RPA
j i ,↓ (ω′) =

= i (−1)(i− j ) U 2

D2 +4

∫
dω′

2π
e iω′ηG H

i j ,↓(ω+ω′)Π(0)(ω′) =

= (−1)(i− j ) U 2

D2 +4

 ΛH (−)
i j

ω− (eH
−,↓−2eF )+3iη

+
ΛH (+)

i j

ω− (eH
+,↓−2eF )+3iη


(H.13)

This contribution to the self energy corresponds to a dynamic exchange term due to the polar-
ization of the medium (the direct exchange term – the Fock term – was ruled out by the very
form of the interaction). From an analysis of the second–order Feynman diagrams, the RPA
term is the only non–zero proper one (see, e.g., fig. 9.8 of ref. [4]: (e), (g ), (h) and ( j ) have
spin–diagonal interactions, while ( f ) is zero for ni ,↓ = 0).

Once the self energy is at hand, the poles of the corresponding Green’s function are the solu-
tion to the equation 0 = det

[
GH

−1(ω)−ΣGW (ω)
]
, which can be solved numerically for different

values of D and U . The result is shown in fig. H.1: while this GW approximation is exact for
D = 0 (see below), it departs from the expected result for larger D , for the spin–down case. On
the contrary, since the self energy is zero for the spin–up sector, the result for the poles of the
spin–up Green’s function is always exact (non–interacting poles).

GW for the symmetric dimer In the symmetric case, restoring a t 6= 1 in the poles, the self
energy (H.13) reads:

ΣGW
i j ,↓ (ω)

D=0= U 2

8

[
(−1)(i− j )

ω− (
t + U

2

)+ iη
+ 1

ω− (
3t + U

2

)+ iη

]
(H.14)

Adding the Hartree contribution, we have precisely obtained the exact result of eq. (4.24):

Σi j ,↓(ω) = v H
i ,↓δi j +ΣGW

i j ,↓ (ω).

This is an extremely nice and unexpected result which holds only for the symmetric case D = 0.
It is the consequence of exact cancellations between vertex corrections and self-consistency in
the Green’s function, as already pointed out in an approximate way in [152, 154, 156].

GW with spin–independent interaction

The issue with a diagrammatic approach to the Hubbard model is the choice of the Feyn-
man rules to apply; in this section we will stick to the standard GW approach in which a spin–
independent interaction is considered [96]: therefore, among other things, exchange diagrams
will arise, in order to cancel the spurious interaction introduced in the model (e.g., a non–zero
spin–up self energy will show up, and a corresponding exchange term as well).
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(a) D = 0.5 (b) D = 1.0 (c) D = 2.0

Figure H.1: The four poles of the spin–down Green’s function as a function of U , in the GW
approximation which is exact for D = 0. The solid lines are the expected result, from eq. (6.6),
while the dashed ones the numerical solutions to the pole equation 0 = det

[
GH

−1(ω)−ΣGW (ω)
]
.

Hartree and Exchange re-defined

We introduce a spin–independent Hartree potential, v H
i = Uni . It must be balanced by a

spin–dependent exchange contribution, v X
i ,σ, which reads:

ΣX
i j ,σ(ω) = i

∫
dω′

2π
e iω′ηG0

i j ,σ(ω+ω′)vi j =−δσ,↑ni j vi j =−δσ,↑δi jUni

having used a spin–independent bare interaction vi j =Uδi j . At this level this approach can be
considered as a rearrangement of the previous one, as the sum of the Hartree and the exchange
term is still the same. On the contrary, going to higher orders, we expect a different behaviour
of the two, since they are built on top of different Hartree terms.

The Hartree Green’s function will now be different from the non–interacting one also in its
spin–up component. In place of eq. (H.10), we have:

G H
i j ,σ(ω) =

ΛH (−)
i j

ω−eH
−↓− iηsignσ

+
ΛH (+)

i j

ω−eH
+↓+ iη

(H.15)

As it is clear from these expressions, the spin does not influence any more the position of the
poles or the height of the peaks, but only tells us if the state is occupied or empty.

Polarization and Screened Interaction

If we decide to build the polarization from the Hartree Green’s function (H.15), its expression
ΠH

σσ′(1,2) :=−i
∑

ρ G H
σρ(1,2)G H

ρσ′(2,1+) is still diagonal in spin and, in frequency space, it reads:

iΠH
i j ,σ(ω) =

∫
dω′

2π
e iω′ηG H

i j ,σ(ω+ω′)G H
j i ,σ(ω′)

Still, only the occupied states do contribute, hence:

ΠH
i j ,σ(ω) = δσ,↑ΛH (+)

i j ΛH (−)
i j

[
1

ω− (eH
+↓−eH

−↓)+2iη
− 1

ω+ (eH
+↓−eH

−↓)−2iη

]
≡

≡ (−1)(i− j )

4

δσ,↑
1+h2 Π

H (ω)

(H.16)

where ΠH (ω) is the quantity in square brackets and eH
+↓−eH

−↓ = 2
p

1+h2 is now the gap between
the Hartree antibonding and bonding states.

We define the screened interaction as a spin–independent quantity, like its bare counter-
part. To do so, we introduce the spin–independent polarizationΠH

i j (ω) :=∑
σΠ

H
i j ,σ(ω) ≡ΠH

i j ,↑(ω).
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The Dyson equation W RPA
i j (ω) =Uδi j +UΠH

i k (ω)W RPA
k j (ω) can be inverted, and yields:

W RPA
i j (ω) =Uδi j + (−1)(i− j )

U 2p
1+h2

ω2 −4(1+h2)− 2Up
1+h2

(H.17)

where the first term Uδi j represents the exchange interaction and the rest is the screening due
to the polarization of the spin–up electron (only a single bubble). Manipulating the previous
expression and treating with care the ±iη terms, we finally get:

W RPA
i j (ω) =Uδi j + (−1)(i− j )

U 2

2kp
1+h2

[
1

ω−k + iη
− 1

ω+k − iη

]
(H.18)

with k :=
√

4(1+h2)+ 2Up
1+h2

.

GW self energy

In a G0W0 approach, the self energy reads:

Σ
GH W
i j ,σ (ω) = i

∫
dω′

2π
e iω′ηG H

i j ,σ(ω+ω′)W RPA
i j (ω′) =

=ΣX
i j ,σ−

(−1)(i− j ) U 2

2kp
1+h2

∫
dω′

2πi
e iω′ηG H

i j ,σ(ω+ω′)
[

1

ω′−k + iη
− 1

ω′+k − iη

]
=

=ΣX
i j ,σ+

(−1)(i− j ) U 2

2kp
1+h2

 ΛH (−)
i j

ω−
(
eH
−↓−k signσ

)
− iηsignσ

+
ΛH (+)

i j

ω−
(
eH
+↓+k

)
+ iη


which, for D → 0 and restoring a t 6= 1, reduces to:

Σ
GH W
i j ,σ (ω)

D=0= ΣX
i j ,σ+

U 2t

4k

[
(−1)(i− j )

ω− (U
2 − t −k signσ

)− iηsignσ
+ 1

ω− (U
2 + t +k

)+ iη

]
(H.19)

with k2
D=0 = 4t 2 + 2U t . Note that inserting a non–interacting k → k0 = 2t in the previous ex-

pression, we would obtain the exact spin–down self energy for the symmetric dimer.

Let us use this D = 0 self energy to build the corresponding Green’s function. As for the
position of the poles, it suffices to solve the equation 0 = det

[
GH

−1 −ΣGH W
]
, with

(
G−1

H

)
i j ,σ =

(ω−ei −Uni )δi j + t (1−δi j ). The result is:

ω
GH W ↓
1,2,3,4

D=0= k +U

2
± 1

2

√(
k ±2

)2 + 2U 2

l
(H.20)

for the spin-down part, with the two sets of “±” signs unrelated (four poles), while for the spin-
up component, the poles are:

ω
GH W ↑
1,2,3,4

D=0= ±k + U
2

2
± 1

2

√(
k +2± U

2

)2

+ 2U 2

k
(H.21)

where the second “±” is unrelated from the other two (which are related among themselves).
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Figure H.2: Position of the poles of the D = 0 Green’s function as a function of U . Solid line, exact
results; dotted lines, G̃H W̃ RPA , eq. (H.21) and (H.20); dashed lines, G0W̃ RPA0

, eq. (H.24) and
(H.23).

Another approach is building a GW self energy with G0 as the Green’s function and with
the polarization built from G0 and not from G H , as it has been done in [96]. What we get for
polarization and RPA interaction is:

Π0
i j ,σ(ω) = (−1)(i− j )

4

δσ,↑
1+ D2

4

[
1

ω− (e+−e−)+ iη
− 1

ω+ (e+−e−)− iη

]

W RPA0

i j (ω) =Uδi j + (−1)(i− j )
U 2

2l√
1+ D2

4

[
1

ω− l + iη
− 1

ω+ l − iη

]

with l 2 := 4(1+ D2

4 )+ 2U√
1+D2

4

. The corresponding GW self energy is:

Σ
G0W
i j ,σ (ω) = i

∫
dω′

2π
e iω′ηG0

i j ,σ(ω+ω′)W RPA0

i j (ω′) =

=ΣX
i j ,σ+

(−1)(i− j ) U 2

2l√
1+ D2

4

 Λ0(−)
i j

ω− (
e−− l signσ

)− iηsignσ
+

Λ0(+)
i j

ω− (e++ l )+ iη


which, for D → 0 and restoring a t 6= 1, reduces to:

Σ
G0W
i j ,σ (ω)

D=0= ΣX
i j ,σ+

U 2t

4l

[
(−1)(i− j )

ω+ (
t + l signσ

)− iηsignσ
+ 1

ω− (t + l )+ iη

]
(H.22)

with l 2
D=0 = 4t 2+2U t ≡ k2

D=0 [96]. Solving the equation det
[
GH

−1 −ΣG0W
]= 0, one gets, for the

spin–down symmetric dimer Green’s function, the following four pole positions:

ω
G0W ↓
1,2,3,4

D=0= l + U
2

2
± 1

2

√(
l ±2− U

2

)2

+ 2U 2

l
(H.23)

while for the spin–up part:

ω
G0W ↑
1,2,3,4

D=0= ± l

2
± 1

2

√(
l +2

)2 + 2U 2

l
(H.24)

where in both expressions the “±” signs are unrelated in order to form four poles each.
The poles we end up with are presented in figure H.2. The behaviour is similar for the two

GW approaches: they both shrink the (atomic limit) gap for the spin–down component and
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open it in the spin–up case. A difference is that the spin–down G0W RPA0
has level–crossing,

while GH W RPA does not, as the exact solution. Furthermore, G0W RPA0
is very good for ω1 and

ω2, but not that good for ω3 and ω4, while the opposite is true for GH W RPA .
Back to the asymmetric case in the G0W RPA0

approximation, the spin–down poles are the
solutions to the following equation:

det


(
ω− (U

2 +h
)

1
1 ω− (U

2 −h
))−

U 2

2l
1√

1+D2

4

(ω− l )2 −
(
1+ D2

4

) (
ω− l + D2

4 1

1 ω− l − D2

4

)= 0 (H.25)
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Appendix I
Bilocal functions in Bloch basis

In this appendix, I show the form of generic non–local functions f (r ,r ′) when expressed in
the Bloch basis, for functions f (r ,r ′) describing some physical property of a Bravais lattice.

In general, f (r ,r ′) can be seen as a matrix whose change of basis transformation from the
set {α} to the set {r } reads:

f (r ,r ′) =∑
αβ

〈r |α〉 fαβ 〈β|r ′〉

We now consider the set {k} of momenta for the basis {α}, with |k | ∈ [0,+∞). A generic element
of the matrix of change of basis is 〈r |k〉 = 1p

V
e i k ·r . The previous equation reads:

f (r ,r ′) = 1

V

∑
kk ′

e i k ·r f (k ,k ′)e−i k ′·r ′

This is nothing but the usual Fourier transform of a non–local function. For a lattice, a Brillouin
zone in reciprocal space is defined: each sum over k can be decomposed into a sum over vec-
tors k belonging to the first Brillouin zone (1BZ) and another sum over reciprocal lattice vectors
G :

∑
k =∑

k∈1BZ
∑

G , with k = k +G :

f (r ,r ′) = 1

V

∑
kk ′∈1BZ

∑
GG ′

e i (k+G)·r fGG ′(k ,k ′)e−i (k ′+G ′)·r ′

where fGG ′(k ,k ′) is just a standard convention of writing f (k +G ,k ′+G ′).
We now focus on the fact that f (r ,r ′) describes some physical property of a Bravais lattice. It

follows that it must be invariant under the simultaneous shift of both its arguments by a generic
lattice vector R :

f (r +R ,r ′+R) = 1

V

∑
kk ′∈1BZ

∑
GG ′

e i (k−k ′)·R e i (k+G)·r fGG ′(k ,k ′)e−i (k ′+G ′)·r ′ ↓= f (r ,r ′)

having used the fact that e iG ·R = 1. Therefore, we are left with the requirement e i (k−k ′)·R = 1,
which holds whenever k −k ′ is a reciprocal lattice vector; since both vectors are in the 1BZ, it
follows that k −k ′ = 0, and the Fourier transform becomes diagonal in k :

f (r ,r ′) = 1

V

∑
k∈1BZ

∑
GG ′

e i k ·(r−r ′)e iG ·r fGG ′(k)e−iG ′·r ′
(I.1)

This expression is valid also in the non–periodic case, in which the unit cell covers the whole
system, the Brillouin zone disappears and the G vectors are unrestricted vectors in R3.

An equivalent expression can be given in terms of bands and Bloch states, instead of G
vectors and plane waves; in fact a G vector is equivalent to a k vector in the 1BZ with a certain

193



APPENDIX I. BILOCAL FUNCTIONS IN BLOCH BASIS

band index n:
∑

k∈1BZ
∑

GG ′ →∑
k∈1BZ

∑
nn′ ; the matrix element of change of basis is now a Bloch

wavefunction [101] 〈r |kn〉 = ϕnk (r ) = e i k ·r unk (r ), with unk (r +R) = unk (r ). Therefore, the
previous expression can equivalently be written as:

f (r ,r ′) = 1

V

∑
k∈1BZ

∑
nn′

e i k ·(r−r ′)unk (r ) fnn′(k)u∗
n′k (r ′) (I.2)

which is the expression we use to implement our theory. Note that the diagonal elements r ′ = r
are still non–diagonal in the bands:

f (r ,r ) = 1

V

∑
k∈1BZ

∑
nn′

unk (r ) fnn′(k)u∗
n′k (r ) (I.3)

By contrast, integrating over space results in a diagonal expression also in the band indices:

1

V

∫
d 3r f (r ,r ) = 1

V

∑
k∈1BZ

∑
n

fnn(k) (I.4)

having used the orthogonality of the functions unk (r ).
The inverse transformation reads:

fnn′(k) = 1

V

∫
d 3r d 3r ′e−i k ·(r−r ′)u∗

nk (r ) f (r ,r ′)un′k (r ′) (I.5)

and, for a local quantity f (r ,r ′) = v(r )δ(r − r ′), it simplifies to:

vnn′(k) = 1

V

∫
d 3r u∗

nk (r )v(r )un′k (r ) (I.6)

194



Bibliography

[1] P. W. Anderson, “More Is Different,” Science, vol. 177, no. 4047, pp. 393–396, 1972.

[2] L. D. Landau, “The Theory of a Fermi Liquid,” Soviet Physics JETP, vol. 3, pp. 920–925, Jan
1957.

[3] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory
in Statistical Physics. Dover, 1963.

[4] A. L. Fetter and J. D. Walecka, Quantum Theory of Many Particle Systems. Dover, 1971.

[5] R. M. Martin, L. Reining, and D. M. Ceperley, Interacting Electrons: Theory and Compu-
tational Approaches. Cambridge University Press, June 2016.

[6] M. Gatti, V. Olevano, L. Reining, and I. V. Tokatly, “Transforming Nonlocality into a Fre-
quency Dependence: A Shortcut to Spectroscopy,” Phys. Rev. Lett., vol. 99, p. 057401, Aug
2007.

[7] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation
Effects,” Phys. Rev., vol. 140, pp. A1133–A1138, Nov 1965.

[8] S. Y. Savrasov and G. Kotliar, “Spectral density functionals for electronic structure calcu-
lations,” Phys. Rev. B, vol. 69, p. 245101, Jun 2004.

[9] A. Georges and G. Kotliar, “Hubbard model in infinite dimensions,” Phys. Rev. B, vol. 45,
pp. 6479–6483, Mar 1992.

[10] E. Runge and E. K. U. Gross, “Density-Functional Theory for Time-Dependent Systems,”
Phys. Rev. Lett., vol. 52, pp. 997–1000, Mar 1984.

[11] L. J. Sham and M. Schlüter, “Density-Functional Theory of the Energy Gap,” Phys. Rev.
Lett., vol. 51, pp. 1888–1891, Nov 1983.

[12] J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Erratum: “Hybrid functionals based on a
screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)],” The Journal of Chem-
ical Physics, vol. 124, no. 21, p. 219906, 2006.

[13] A. Einstein, “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden
heuristischen Gesichtspunkt,” Annalen der Physik, vol. 322, no. 6, pp. 132–148, 1905.

[14] K. M. Siegbahn, “Nobel Lecture: Electron Spectroscopy for Atoms, Molecules and Con-
densed Matter,” Dec 1981.

195



BIBLIOGRAPHY BIBLIOGRAPHY

[15] J. S. Zhou et al., “ARPES on valence aluminum.” in preparation.

[16] L. Venema, B. Verberck, I. Georgescu, G. Prando, E. Couderc, S. Milana, M. Maragkou,
L. Persechini, G. Pacchioni, and L. Fleet, “The quasiparticle zoo,” Nat. Phys., vol. 12,
no. 12, pp. 1085–1089, 2016.

[17] S. Hüfner, Photoelectron Spectroscopy, Principles and Applications. Springer–Verlag
Berlin Heidelberg, 2003.

[18] C. N. Berglund and W. E. Spicer, “Photoemission Studies of Copper and Silver: Theory,”
Phys. Rev., vol. 136, pp. A1030–A1044, Nov 1964.

[19] A. Damascelli, “Probing the Electronic Structure of Complex Systems by ARPES,” Physica
Scripta, vol. 2004, no. T109, p. 61, 2004.

[20] P. A. M. Dirac, “The Quantum Theory of the Emission and Absorption of Radiation,” Pro-
ceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sci-
ences, vol. 114, no. 767, pp. 243–265, 1927.

[21] E. Fermi, Nuclear Physics. University of Chicago Press, 1950.

[22] L. Hedin, “On correlation effects in electron spectroscopies and the GW approximation,”
Journal of Physics: Condensed Matter, vol. 11, no. 42, p. R489, 1999.

[23] A. Damascelli, Z. Hussain, and Z.-X. Shen, “Angle-resolved photoemission studies of the
cuprate superconductors,” Rev. Mod. Phys., vol. 75, pp. 473–541, Apr 2003.

[24] G. Binnig and H. Rohrer, “Scanning tunneling microscopy—from birth to adolescence,”
Rev. Mod. Phys., vol. 59, pp. 615–625, Jul 1987.

[25] E. Ruska, “The development of the electron microscope and of electron microscopy,”
Rev. Mod. Phys., vol. 59, pp. 627–638, Jul 1987.

[26] J. Stroscio and D. M. Eigler, “Atomic and Molecular Manipulation with the Scanning Tun-
neling Microscope,” Science, vol. 254, no. 5036, pp. 1319–1326, 1991.

[27] C. Hellenthal, R. Heimbuch, K. Sotthewes, E. S. Kooij, and H. J. W. Zandvliet, “Determin-
ing the local density of states in the constant current STM mode,” Phys. Rev. B, vol. 88,
p. 035425, Jul 2013.

[28] J. Tersoff and D. R. Hamann, “Theory and Application for the Scanning Tunneling Micro-
scope,” Phys. Rev. Lett., vol. 50, pp. 1998–2001, Jun 1983.

[29] J. R. Schrieffer, D. J. Scalapino, and J. W. Wilkins, “Effective tunneling density of states in
superconductors,” Phys. Rev. Lett., vol. 10, pp. 336–339, Apr 1963.

[30] M. M. Ervasti, F. Schulz, P. Liljeroth, and A. Harju, “Single- and many-particle descrip-
tion of scanning tunneling spectroscopy,” Journal of Electron Spectroscopy and Related
Phenomena, vol. 219, no. Supplement C, pp. 63 – 71, 2017.

[31] R. P. Feynman, R. B. Leighton, and M. L. Sands, The Feynman lectures on physics. Reading,
Mass, Addison-Wesley Pub. Co., 1964-1966.

[32] E. Rutherford, “LXXIX. The Scattering of α− and β− Particles by Matter and the Structure
of the Atom,” Philosophical Magazine, vol. 21, no. 6, pp. 669 – 688, 1911.

196



BIBLIOGRAPHY BIBLIOGRAPHY

[33] M. Born, W. Heisenberg, and P. Z. Jordan, “Zur Quantenmechanik. II.,” Zeitschrift für
Physik, vol. 35, pp. 557–615, 1926.

[34] P. A. M. Dirac, “The Fundamental Equations of Quantum Mechanics,” Proc. R. Soc. Lond.
A, vol. 109, pp. 642–653, 1925.

[35] E. Schrödinger, “An Undulatory Theory of the Mechanics of Atoms and Molecules,” Phys.
Rev., vol. 28, pp. 1049–1070, Dec 1926.

[36] M. Born and R. Oppenheimer, “Zur Quantentheorie der Molekeln,” Annalen der Physik,
vol. 389, no. 20, pp. 457–484, 1927.

[37] N. I. Gidopoulos and E. K. U. Gross, “Electronic non–adiabatic states: towards a density
functional theory beyond the Born–Oppenheimer approximation,” Philosophical trans-
actions. Series A, Mathematical, physical, and engineering sciences, vol. 372, p. 20130059,
03 2014.

[38] S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri,
“Breakdown of the adiabatic Born–Oppenheimer approximation in graphene,” Nature
Materials, vol. 6, pp. 198 – 201, 2007.

[39] F. Sottile, Response functions of semiconductors and insulators: from the Bethe-Salpeter
equation to time-dependent density functional theory. PhD thesis, École Polytechnique,
2003.

[40] J. E. Jones, “On the Determination of Molecular Fields. II. From the Equation of State of
a Gas,” Proceedings of the Royal Society of London. Series A, vol. 106, p. 463, 10 1924.

[41] P. M. Morse, “Diatomic Molecules According to the Wave Mechanics. II. Vibrational Lev-
els,” Phys. Rev., vol. 34, pp. 57–64, Jul 1929.

[42] P. A. M. Dirac, “Quantum Mechanics of Many-Electron Systems,” Proceedings of the Royal
Society of London. Series A, Containing Papers of a Mathematical and Physical Character,
vol. 123, Apr 1929.

[43] W. Kohn, “Nobel Lecture: Electronic structure of matter—wave functions and density
functionals,” Rev. Mod. Phys., vol. 71, pp. 1253–1266, Oct 1999.

[44] J. H. van Vleck, “Nonorthogonality and Ferromagnetism,” Phys. Rev., vol. 49, pp. 232–240,
Feb 1936.

[45] M. Schlosshauer, J. Kofler, and A. Zeilinger, “A snapshot of foundational attitudes toward
quantum mechanics,” Studies in History and Philosophy of Science Part B: Studies in His-
tory and Philosophy of Modern Physics, vol. 44, no. 3, pp. 222 – 230, 2013.

[46] R. O. Jones and O. Gunnarsson, “The density functional formalism, its applications and
prospects,” Rev. Mod. Phys., vol. 61, pp. 689–746, Jul 1989.

[47] G. F. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid. Cambridge Univer-
sity Press, 2005.

[48] P. A. M. Dirac, “Note on Exchange Phenomena in the Thomas Atom,” Mathematical Pro-
ceedings of the Cambridge Philosophical Society, vol. 26, no. 3, p. 376–385, 1930.

[49] R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules. Oxford Uni-
versity Press, 1989.

197



BIBLIOGRAPHY BIBLIOGRAPHY

[50] R. M. Martin, Electronic Structure: Basic Theory and Applications. Cambridge University
Press, 2004.

[51] M. Levy, “Universal variational functionals of electron densities, first-order density ma-
trices, and natural spin-orbitals and solution of the v-representability problem,” Proceed-
ings of the National Academy of Sciences, vol. 76, no. 12, pp. 6062–6065, 1979.

[52] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., vol. 136, pp. B864–
B871, 1964.

[53] T. L. Gilbert, “Hohenberg-Kohn theorem for nonlocal external potentials,” Phys. Rev. B,
vol. 12, pp. 2111–2120, Sep 1975.

[54] A. M. K. Müller, “Explicit approximate relation between reduced two- and one-particle
density matrices,” Phys. Lett. A, vol. 105, pp. 446–452, Nov 1984.

[55] S. Sharma, J. K. Dewhurst, S. Shallcross, and E. K. U. Gross, “Spectral Density and Metal-
Insulator Phase Transition in Mott Insulators within Reduced Density Matrix Functional
Theory,” Phys. Rev. Lett., vol. 110, p. 116403, Mar 2013.

[56] S. Di Sabatino, J. A. Berger, L. Reining, and P. Romaniello, “Photoemission spectra from
reduced density matrices: The band gap in strongly correlated systems,” Phys. Rev. B,
vol. 94, p. 155141, Oct 2016.

[57] E. K. U. Gross, J. F. Dobson, and M. Petersilka, Density functional theory of time-
dependent phenomena, vol. 181. Springer, 1996.

[58] P. Nozières, Theory of Interacting Fermi Systems. Westview Press, 1964.

[59] V. M. Galitskii and A. B. Migdal, “Application of Quantum Field Theory Methods to the
Many Body Problem,” Sov. Phys. JETP, vol. 34, p. 96, July 1958.

[60] W. Tarantino, P. Romaniello, J. A. Berger, and L. Reining, “Self-consistent Dyson equation
and self-energy functionals: An analysis and illustration on the example of the Hubbard
atom,” Phys. Rev. B, vol. 96, p. 045124, Jul 2017.

[61] H. Lehmann, “Über Eigenschaften von Ausbreitungsfunktionen und
Renormierungskonstanten quantisierter Felder,” Nuovo Cim., vol. 11, p. 342, 1954.

[62] B. Farid, Towards ab initio calculation of electron energies in semiconductors. PhD thesis,
Technische Universiteit Eindhoven, 1989.

[63] B. Farid, “Ground and Low-Lying Excited States of Interacting Electron Systems: A Survey
and Some Critical Analyses,” in Electron Correlation in the Solid State (N. H. March, ed.),
pp. 103–261, Imperial College Press, 2011.

[64] J. M. Luttinger, “Analytic Properties of Single-Particle Propagators for Many-Fermion Sys-
tems,” Phys. Rev., vol. 121, pp. 942–949, Feb 1961.

[65] G. Onida, L. Reining, and A. Rubio, “Electronic excitations: density-functional versus
many-body Green’s-function approaches,” Rev. Mod. Phys., vol. 74, pp. 601–659, Jun 2002.

[66] L. Hedin, “New Method for Calculating the One-Particle Green’s Function with Applica-
tion to the Electron-Gas Problem,” Phys. Rev., vol. 139, pp. A796–A823, Aug 1965.

198



BIBLIOGRAPHY BIBLIOGRAPHY

[67] F. Aryasetiawan and O. Gunnarsson, “The GW method,” Reports on Progress in Physics,
vol. 61, no. 3, p. 237, 1998.

[68] E. Jensen and E. W. Plummer, “Experimental Band Structure of Na,” Phys. Rev. Lett.,
vol. 55, pp. 1912–1915, Oct 1985.

[69] E. G. Dalla Torre, D. Benjamin, Y. He, D. Dentelski, and E. Demler, “Friedel oscillations as
a probe of fermionic quasiparticles,” Phys. Rev. B, vol. 93, p. 205117, May 2016.

[70] N. F. Mott, “The Basis of the Electron Theory of Metals, with Special Reference to the
Transition Metals,” Proceedings of the Physical Society. Section A, vol. 62, no. 7, p. 416,
1949.

[71] N. F. Mott, “Metal-Insulator Transition,” Rev. Mod. Phys., vol. 40, pp. 677–683, Oct 1968.

[72] A. Georges, “Strongly Correlated Electron Materials: Dynamical Mean–Field Theory and
Electronic Structure,” AIP Conference Proceedings, vol. 715, no. 1, pp. 3–74, 2004.

[73] M. C. Gutzwiller, “Effect of Correlation on the Ferromagnetism of Transition Metals,”
Phys. Rev. Lett., vol. 10, pp. 159–162, Mar 1963.

[74] J. Kanamori, “Electron Correlation and Ferromagnetism of Transition Metals,” Progress
of Theoretical Physics, vol. 30, pp. 275–289, Sep 1963.

[75] J. Hubbard, “Electron correlations in narrow energy bands,” Proceedings of the Royal So-
ciety of London A: Mathematical, Physical and Engineering Sciences, vol. 276, pp. 238–257,
Nov 1963.

[76] D. Vollhardt, “Dynamical Mean–Field Theory of Electronic Correlations in Models and
Materials,” AIP Conference Proceedings, vol. 1297, no. 1, pp. 339–403, 2010.

[77] J. P. F. LeBlanc, A. E. Antipov, F. Becca, I. W. Bulik, G. K.-L. Chan, C.-M. Chung, Y. Deng,
M. Ferrero, T. M. Henderson, C. A. Jiménez-Hoyos, E. Kozik, X.-W. Liu, A. J. Millis, N. V.
Prokof’ev, M. Qin, G. E. Scuseria, H. Shi, B. V. Svistunov, L. F. Tocchio, I. S. Tupitsyn, S. R.
White, S. Zhang, B.-X. Zheng, Z. Zhu, and E. Gull, “Solutions of the Two-Dimensional
Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms,”
Phys. Rev. X, vol. 5, p. 041041, Dec 2015.

[78] H. Bethe, “Zur theorie der metalle,” Zeitschrift für Physik, vol. 71, pp. 205–226, Mar 1931.

[79] M. Gatti, Correlation effects in valence–electron spectroscopy of transition–metal oxydes:
many–body perturbation theory and alternative approaches. PhD thesis, École Polytech-
nique, 2007.

[80] J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, “Density-Functional Theory for Frac-
tional Particle Number: Derivative Discontinuities of the Energy,” Phys. Rev. Lett., vol. 49,
pp. 1691–1694, Dec 1982.

[81] J. P. Perdew and M. Levy, “Physical Content of the Exact Kohn-Sham Orbital Energies:
Band Gaps and Derivative Discontinuities,” Phys. Rev. Lett., vol. 51, pp. 1884–1887, Nov
1983.

[82] L. J. Sham, “Exchange and correlation in density-functional theory,” Phys. Rev. B, vol. 32,
pp. 3876–3882, Sep 1985.

199



BIBLIOGRAPHY BIBLIOGRAPHY

[83] M. E. Casida, “Generalization of the optimized-effective-potential model to include elec-
tron correlation: A variational derivation of the Sham-Schlüter equation for the exact
exchange-correlation potential,” Phys. Rev. A, vol. 51, pp. 2005–2013, Mar 1995.

[84] R. T. Sharp and G. K. Horton, “A Variational Approach to the Unipotential Many-Electron
Problem,” Phys. Rev., vol. 90, pp. 317–317, Apr 1953.

[85] J. D. Talman and W. F. Shadwick, “Optimized effective atomic central potential,” Phys.
Rev. A, vol. 14, pp. 36–40, Jul 1976.

[86] P. Rinke, A. Qteish, J. Neugebauer, and M. Scheffler, “Exciting prospects for solids: Exact-
exchange based functionals meet quasiparticle energy calculations,” phys. stat. sol. (b),
vol. 245, pp. 929–945, 2008.

[87] A. Ferretti, I. Dabo, M. Cococcioni, and N. Marzari, “Bridging density-functional and
many-body perturbation theory: Orbital-density dependence in electronic-structure
functionals,” Phys. Rev. B, vol. 89, p. 195134, May 2014.

[88] W. Metzner and D. Vollhardt, “Correlated Lattice Fermions in d =∞ Dimensions,” Phys.
Rev. Lett., vol. 62, pp. 324–327, Jan 1989.

[89] M. Jarrell, “Hubbard model in infinite dimensions: A quantum Monte Carlo study,” Phys.
Rev. Lett., vol. 69, pp. 168–171, Jul 1992.

[90] M. Ostilli, “Cayley trees and bethe lattices: A concise analysis for mathematicians and
physicists,” Physica A, vol. 391, no. 12, pp. 3417 – 3423, 2012.

[91] W. Metzner and D. Vollhardt, “Correlated Lattice Fermions in d =∞ Dimensions,” Phys.
Rev. Lett., vol. 62, pp. 324–327, Jan 1989.

[92] M. Eckstein, M. Kollar, K. Byczuk, and D. Vollhardt, “Hopping on the Bethe lattice: Exact
results for densities of states and dynamical mean-field theory,” Phys. Rev. B, vol. 71,
p. 235119, Jun 2005.

[93] E. Economou, Green’s Functions in Quantum Physics. Springer Series in Solid-State Sci-
ences, Springer, 2006.

[94] R. Bulla, “Zero Temperature Metal-Insulator Transition in the Infinite-Dimensional Hub-
bard Model,” Phys. Rev. Lett., vol. 83, pp. 136–139, Jul 1999.

[95] D. J. Carrascal, J. Ferrer, J. C. Smith, and K. Burke, “The Hubbard dimer: a density func-
tional case study of a many-body problem,” Journal of Physics: Condensed Matter, vol. 27,
no. 39, p. 393001, 2015.

[96] P. Romaniello, F. Bechstedt, and L. Reining, “Beyond the GW approximation: Combining
correlation channels,” Phys. Rev. B, vol. 85, p. 155131, Apr 2012.

[97] E. Wigner, “On the Interaction of Electrons in Metals,” Phys. Rev., vol. 46, pp. 1002–1011,
Dec 1934.

[98] M. Gell-Mann and K. A. Brueckner, “Correlation Energy of an Electron Gas at High Den-
sity,” Phys. Rev., vol. 106, pp. 364–368, Apr 1957.

[99] P. A. M. Dirac, “Note on Exchange Phenomena in the Thomas Atom,” Mathematical Pro-
ceedings of the Cambridge Philosophical Society, vol. 26, no. 3, p. 376–385, 1930.

200



BIBLIOGRAPHY BIBLIOGRAPHY

[100] J. C. Slater, “A Simplification of the Hartree–Fock Method,” Phys. Rev., vol. 81, pp. 385–
390, Feb 1951.

[101] N. W. Ashcroft and N. D. Mermin, Solid State Physics. Saunders College, 1976.

[102] R. M. Dreizler and E. K. U. Gross, Density Functional Theory. Springer Verlag, 1990.

[103] D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,”
Phys. Rev. Lett., vol. 45, pp. 566–569, Aug 1980.

[104] J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened
Coulomb potential,” The Journal of Chemical Physics, vol. 118, no. 18, pp. 8207–8215,
2003.

[105] T. M. Henderson, J. Paier, and G. E. Scuseria, “Accurate treatment of solids with the HSE
screened hybrid,” physica status solidi (b), vol. 248, no. 4, pp. 767–774, 2011.

[106] K. Hummer, J. Harl, and G. Kresse, “Heyd-scuseria-ernzerhof hybrid functional for cal-
culating the lattice dynamics of semiconductors,” Phys. Rev. B, vol. 80, p. 115205, Sep
2009.

[107] A. Sharan, Z. Gui, and A. Janotti, “Hybrid-Functional Calculations of the Copper Impurity
in Silicon,” Phys. Rev. Applied, vol. 8, p. 024023, Aug 2017.

[108] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made
Simple,” Phys. Rev. Lett., vol. 77, pp. 3865–3868, Oct 1996.

[109] A. D. Becke, “Density functional thermochemistry. III. The role of exact exchange,” The
Journal of Chemical Physics, vol. 98, no. 7, pp. 5648–5652, 1993.

[110] A. D. Becke, “A new mixing of hartree–fock and local density–functional theories,” The
Journal of Chemical Physics, vol. 98, no. 2, pp. 1372–1377, 1993.

[111] J. P. Perdew, M. Ernzerhof, and K. Burke, “Rationale for mixing exact exchange with
density functional approximations,” The Journal of Chemical Physics, vol. 105, no. 22,
pp. 9982–9985, 1996.

[112] M. A. L. Marques, J. Vidal, M. J. T. Oliveira, L. Reining, and S. Botti, “Density-based mixing
parameter for hybrid functionals,” Phys. Rev. B, vol. 83, p. 035119, Jan 2011.

[113] J. Toulouse, I. C. Gerber, G. Jansen, A. Savin, and J. G. Ángyán, “Adiabatic-Connection
Fluctuation-Dissipation Density-Functional Theory Based on Range Separation,” Phys.
Rev. Lett., vol. 102, p. 096404, Mar 2009.

[114] T. Stein, H. Eisenberg, L. Kronik, and R. Baer, “Fundamental Gaps in Finite Systems from
Eigenvalues of a Generalized Kohn-Sham Method,” Phys. Rev. Lett., vol. 105, p. 266802,
Dec 2010.

[115] J. Harris and R. O. Jones, “The surface energy of a bounded electron gas,” Journal of
Physics F: Metal Physics, vol. 4, no. 8, p. 1170, 1974.

[116] O. Gunnarsson and B. I. Lundqvist, “Exchange and correlation in atoms, molecules, and
solids by the spin-density-functional formalism,” Phys. Rev. B, vol. 13, pp. 4274–4298,
May 1976.

201



BIBLIOGRAPHY BIBLIOGRAPHY

[117] W. Kohn, “Density Functional and Density Matrix Method Scaling Linearly with the Num-
ber of Atoms,” Phys. Rev. Lett., vol. 76, pp. 3168–3171, Apr 1996.

[118] E. Prodan and W. Kohn, “Nearsightedness of electronic matter,” Proceedings of the Na-
tional Academy of Sciences of the United States of America, vol. 102, no. 33, pp. 11635–
11638, 2005.

[119] O. Gunnarsson, M. Jonson, and B. I. Lundqvist, “Descriptions of exchange and correla-
tion effects in inhomogeneous electron systems,” Phys. Rev. B, vol. 20, pp. 3136–3164, Oct
1979.

[120] S. Goedecker, M. Teter, and J. Hutter, “Separable dual-space Gaussian pseudopotentials,”
Phys. Rev. B, vol. 54, pp. 1703–1710, Jul 1996.

[121] B. I. Lundqvist, “Single-particle spectrum of the degenerate electron gas,” Physik der kon-
densierten Materie, vol. 6, pp. 193–205, Sep 1967.

[122] B. I. Lundqvist, “Single-particle spectrum of the degenerate electron gas,” Physik der kon-
densierten Materie, vol. 6, pp. 206–217, Sep 1967.

[123] B. I. Lundqvist, “Single-particle spectrum of the degenerate electron gas,” Physik der kon-
densierten Materie, vol. 7, pp. 117–123, Mar 1968.

[124] U. von Barth and B. Holm, “Self-consistent GW 0 results for the electron gas: Fixed
screened potential W0 within the random-phase approximation,” Phys. Rev. B, vol. 54,
pp. 8411–8419, Sep 1996.

[125] L. H. Thomas, “The calculation of atomic fields,” Mathematical Proceedings of the Cam-
bridge Philosophical Society, vol. 23, no. 5, p. 542–548, 1927.

[126] E. Fermi, “Un Metodo Statistico per la Determinazione di alcune Prioprietà dell’Atomo,”
Rend. Accad. Naz. Lincei, vol. 6, pp. 602–607, 1927.

[127] E. Teller, “On the Stability of Molecules in the Thomas-Fermi Theory,” Rev. Mod. Phys.,
vol. 34, pp. 627–631, Oct 1962.

[128] L. J. Sham and W. Kohn, “One-Particle Properties of an Inhomogeneous Interacting Elec-
tron Gas,” Phys. Rev., vol. 145, pp. 561–567, May 1966.

[129] L. Hedin and B. I. Lundqvist, “Explicit local exchange-correlation potentials,” Journal of
Physics C: Solid State Physics, vol. 4, no. 14, p. 2064, 1971.

[130] C. S. Wang and W. E. Pickett, “Density-Functional Theory of Excitation Spectra of Semi-
conductors: Application to Si,” Phys. Rev. Lett., vol. 51, pp. 597–600, Aug 1983.

[131] W. E. Pickett and C. S. Wang, “Local-density approximation for dynamical correlation
corrections to single-particle excitations in insulators,” Phys. Rev. B, vol. 30, pp. 4719–
4733, Oct 1984.

[132] L. Wantzel, “Classification des nombres incommensurables d’origine algébrique,” Nou-
velles annales de mathématiques : journal des candidats aux écoles polytechnique et nor-
male, Série 1, vol. 2, pp. 117–127, 1843.

202



BIBLIOGRAPHY BIBLIOGRAPHY

[133] X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi,
S. Goedecker, D. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini,
S. Mazevet, M. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli,
R. Shaltaf, M. Torrent, M. Verstraete, G. Zerah, and J. Zwanziger, “Abinit: First-principles
approach to material and nanosystem properties,” Computer Physics Communications,
vol. 180, no. 12, pp. 2582 – 2615, 2009.

[134] X. Gonze, G. Rignanese, M. Verstraete, J. Betiken, Y. Pouillon, R. Caracas, F. Jollet, M. Tor-
rent, G. Zerah, M. Mikami, P. Ghosez, M. Veithen, J.-Y. Raty, V. Olevano, F. Bruneval,
L. Reining, R. Godby, G. Onida, D. Hamann, and D. Allan, “A brief introduction to the
ABINIT software package,” Zeitschrift für Kristallographie. (Special issue on Computa-
tional Crystallography.), vol. 220, pp. 558–562, 2005.

[135] P. E. Blöchl, O. Jepsen, and O. K. Andersen, “Improved tetrahedron method for Brillouin-
zone integrations,” Phys. Rev. B, vol. 49, pp. 16223–16233, Jun 1994.

[136] R. Wyckoff, Crystal structures, vol. 1. New York: Interscience Publishers, second ed., 1963.

[137] N. Troullier and J. L. Martins, “Efficient pseudopotentials for plane-wave calculations,”
Phys. Rev. B, vol. 43, pp. 1993–2006, Jan 1991.

[138] D. R. Hamann, “Optimized norm-conserving Vanderbilt pseudopotentials,” Phys. Rev. B,
vol. 88, p. 085117, Aug 2013.

[139] J. W. Precker and M. A. da Silva, “Experimental estimation of the band gap in silicon
and germanium from the temperature–voltage curve of diode thermometers,” American
Journal of Physics, vol. 70, no. 11, pp. 1150–1153, 2002.

[140] H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev.
B, vol. 13, pp. 5188–5192, Jun 1976.

[141] J. P. Perdew and S. Kurth, “Density functionals for non-relativistic coulomb systems in
the new century,” in A Primer in Density Functional Theory, Springer, 2003.

[142] L. Van Hove, “The Occurrence of Singularities in the Elastic Frequency Distribution of a
Crystal,” Phys. Rev., vol. 89, pp. 1189–1193, Mar 1953.

[143] G. Cappellini, R. Del Sole, L. Reining, and F. Bechstedt, “Model dielectric function for
semiconductors,” Phys. Rev. B, vol. 47, pp. 9892–9895, Apr 1993.

[144] G. A. Baraff and M. Schlüter, “Migration of interstitials in silicon,” Phys. Rev. B, vol. 30,
pp. 3460–3469, Sep 1984.

[145] A. Schindlmayr and R. W. Godby, “Systematic Vertex Corrections through Iterative So-
lution of Hedin’s Equations Beyond the GW Approximation,” Phys. Rev. Lett., vol. 80,
pp. 1702–1705, Feb 1998.

[146] “Electron correlations in narrow energy bands III. An improved solution,” Proceedings of
the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 281,
no. 1386, pp. 401–419, 1964.

[147] F. Gebhard, The Mott Metal–Insulator Transition, Models and Methods. Springer, 1997.

203



BIBLIOGRAPHY BIBLIOGRAPHY

[148] J. M. Tomczak, Spectral and Optical Properties of Correlated Materials. PhD thesis, École
Polytechnique, 2007.

[149] E. W. Ng and M. Geller, “A table of Integrals of the Error Functions,” J. Res. Natl. Bur.
Stand., Sec. B: Math. Sci., vol. 73B, no. 1, p. 1, 1969.

[150] M. Geller and E. W. Ng, “A table of Integrals of the Exponential Integral,” J. Res. Natl. Bur.
Stand., Sec. B: Math. Sci., vol. 73B, no. 3, p. 191, 1969.

[151] K. Capelle and V. L. Campo, “Density functionals and model hamiltonians: Pillars of
many-particle physics,” Physics Reports, vol. 528, no. 3, pp. 91 – 159, 2013.

[152] X. Wang, C. D. Spataru, M. S. Hybertsen, and A. J. Millis, “Electronic correlation in
nanoscale junctions: Comparison of the GW approximation to a numerically exact so-
lution of the single-impurity Anderson model,” Phys. Rev. B, vol. 77, p. 045119, Jan 2008.

[153] K. S. Thygesen, “Impact of Exchange-Correlation Effects on the IV Characteristics of a
Molecular Junction,” Phys. Rev. Lett., vol. 100, p. 166804, Apr 2008.

[154] C. Verdozzi, R. W. Godby, and S. Holloway, “Evaluation of GW Approximations for the
Self-Energy of a Hubbard Cluster,” Phys. Rev. Lett., vol. 74, pp. 2327–2330, Mar 1995.

[155] K. S. Thygesen and A. Rubio, “Conserving GW scheme for nonequilibrium quantum
transport in molecular contacts,” Phys. Rev. B, vol. 77, p. 115333, Mar 2008.

[156] M. P. von Friesen, C. Verdozzi, and C.-O. Almbladh, “Successes and Failures of Kadanoff-
Baym Dynamics in Hubbard Nanoclusters,” Phys. Rev. Lett., vol. 103, p. 176404, Oct 2009.

204





TITRE : SYSTÈMES AUXILIAIRES POUR LES OBSERVABLES : APPROXIMATION DU CONNECTEUR

DYNAMIQUE LOCAL POUR LES SPECTRES D’ADDITION ET D’ÉMISSION D’ÉLECTRONS.

MOTS–CLÉS : APPROCHES EFFICACES, FONCTION SPECTRALE, SPECTROSCOPIE THÉORIQUE.

RÉSUMÉ : cette thèse propose une méthode
théorique innovante pour l’étude des spec-
tres d’excitation à un électron.
Nous proposons deux raccourcis par rap-
port à la méthode standard, qui repose sur
des self-énergies complexes et non locales.
Le premier est l’introduction d’un système
auxiliaire qui cible précisément le spectre
d’excitation du système réel via un potentiel
réel, local et dynamique, le potentiel spec-
tral. Le deuxième consiste à ne calculer
ce potentiel qu’une fois pour toute dans
un système modèle, le gaz d’électrons ho-

mogène. Pour étudier des matériaux réels,
nous concevons un connecteur qui prescrit
l’utilisation des résultats du gaz pour cal-
culer les spectres électroniques. Nous pro-
posons une approximation basée sur les pro-
priétés locales du système: l’approximation
du connecteur dynamique local. Nous met-
tons en œuvre cette procédure pour qua-
tre matériaux: le sodium, l’aluminium, le
silicium et l’argon. Les spectres que nous
obtenons démontrent le potentiel de cette
théorie.

TITLE: AUXILIARY SYSTEMS FOR OBSERVABLES: DYNAMICAL LOCAL CONNECTOR APPROXIMA-
TION FOR ELECTRON ADDITION AND REMOVAL SPECTRA.

KEYWORDS: EFFECTIVE APPROACHES, SPECTRAL FUNCTION, THEORETICAL SPECTROSCOPY.

ABSTRACT: this thesis proposes an inno-
vative theoretical method for studying one-
electron excitation spectra.
We propose two shortcuts to the standard
method, which relies on complex, non-local
self energies evaluated specifically for each
material. The first one is the introduc-
tion of an auxiliary system that exactly tar-
gets, in principle, the excitation spectrum of
the real system, via a local and frequency-
dependent, yet real, potential (the spectral
potential). The second shortcut consists in

calculating this potential just once and for-
ever in a model system, the homogeneous
electron gas. To study real materials, we de-
sign a connector which prescribes the use
of the gas results for calculating electronic
spectra. We propose an approximation for
it, based on local properties of the system:
the dynamical local connector approxima-
tion. We implement this procedure for four
prototypical materials: sodium, aluminum,
silicon and argon. The spectra we obtain
demonstrate the potential of this theory.
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