Second order harmonic generation from bulk, interfaces and surfaces: an *ab initio* study

Valérie Véniard

ETSF France Laboratoire des Solides Irradies Ecole Polytechnique CNRS 91128 Palaiseau, France

Response to a perturbation

Nonlinear optics

for higher light intensities, higher order terms can be important

$$P^{a} = \chi_{ab}^{(1)} E^{b} + \chi_{abc}^{(2)} E^{b} E^{c} + \chi_{abcd}^{(3)} E^{b} E^{c} E^{d} + \dots$$

Second Harmonic Generation

Interest for Second Harmonic Generation: in condensed matter

• Probe for materials :

Sensitivity to local symmetries and selection rules for electronic transitions in $\chi^{(2)}$

⇒ gives access to states with different symmetries, compared to linear optics Surfaces Thin films Interfaces nanowires

 \Rightarrow

Development and characterisation of new materials

New optical devices

Outline

- Introduction: nonlinear optics in solids
- How do we get the spectrum for SHG
- 4 applications :
 - GaAs
 - Silicon under constraint
 - Si_n/Ge_n superlattices
 - Surfaces

How do we get the spectrum for SHG

Independent particle approximation: *All the electrons make independent transitions* (IPA) Fermi golden rule

How do we get the spectrum for SHG

Second-order response

Independent Particle Approximation

$$\chi_{abc}^{(2)}(-2\omega,\omega,\omega) = \frac{-ie3}{\hbar^2 m^3 \omega^3 V} \sum_{nml} \int d\vec{k} \frac{1}{E_m - E_n - 2\omega - 2i\eta} \\ \times \left[f_{nl}(\vec{k}) \frac{p_{nm}^a(\vec{k}) \left\{ p_{ml}^b(\vec{k}) p_{\ln}^c(\vec{k}) \right\}}{E_l - E_n - \omega - i\eta} + f_{ml}(\vec{k}) \frac{p_{nm}^a(\vec{k}) \left\{ p_{ml}^b(\vec{k}) p_{\ln}^c(\vec{k}) \right\}}{E_m - E_l - \omega - i\eta} \right]$$

Additional effect : screening

GW approximation: Hedin's equations (1965)

 \Rightarrow Shift of the conduction bands

 \Rightarrow Opening of the gap

Scissor operator

See B. Mendoza's talk

Screening: *Hole- (N-1) electrons*

Additional effects : local fields

From Microscopic to Macroscopic polarization ... See L. Mochan's talk

Perturbation= external macroscopic field

Induces a microscopic response (polarisation of the atoms)

Perturbation=external macroscopic + induced microscopic

has to be taken into account in a <u>self consistent way</u>

Additional effects: exciton

Electron-hole interaction (excitonic effect)

Bethe Salpeter Equation (2-particles equation)

or

Time-Dependent Density-Functional Theory (TDDFT)

Scheme of the derivation of the $\chi^{(2)}$

First step: microscopic polarisation in terms of the external electric field Second order time-dependent perturbation theory valid for low intensity

Second step: macroscopic polarisation in terms of

- the total electric field
- second-order response functions

R. Del Sole and E. Fiorino and PRB 29 (1984)

Third step: calculation of the response functions within time-dependent density functional theory

Macroscopic response and excitons

$$\chi_{xyz}^{(2)}(2\mathbf{q},2\omega) = -\frac{i}{12q_x q_y q_z} \left[\varepsilon_M^{LL}(\mathbf{q},\omega) \right]^2 \left[\varepsilon_M^{LL}(2\mathbf{q},2\omega) \right] \chi_{\rho\rho\rho}(2\mathbf{q},\mathbf{q},\mathbf{q},\omega,\omega)$$

Evaluated in the long wavelength limit $q \rightarrow 0$

Dyson equation for the density response function

1st order
$$\begin{bmatrix} 1 - \chi_{0}^{(1)}(v + f_{xc}) \end{bmatrix} \chi_{\rho\rho}^{(1)} = \chi_{0}^{(1)} \qquad f_{xc} = \frac{\partial V_{xc}}{\partial \rho}$$
2nd order
$$\begin{bmatrix} 1 - \chi_{0}^{(1)}(2\omega) f_{uxc}(2\omega) \end{bmatrix} \chi_{\rho\rho\rho}^{(2)}(2\omega,\omega) = \chi_{0}^{(2)}(2\omega,\omega) \begin{bmatrix} 1 + f_{uxc}(\omega) \chi_{\rho\rho}^{(1)}(\omega) \end{bmatrix}^{2}$$
New kernel
$$g_{xc} = \frac{\partial^{2} V_{xc}}{\partial \rho \partial \rho}$$
2light

Outline

- Introduction: nonlinear optics in solids
- How do we get the spectrum for SHG
- 4 applications :
 - GaAs
 - Silicon under constraint
 - Si_n/Ge_n superlattices
 - Surfaces

Some results for GaAs

FIG. 3. Comparison of $|\chi_{14}^{(2)}(2\omega)|$ of GaAs with available experimental data.

C. Y. Fong Y. R. Shen PRB (1975)

Dilation and translation of the energy scale

S. Bergfeld and W. Daum, PRL (2003) J. Hugues and J. Sipe, PRB (1996) B. Adolph and F. Bechstedt, PRB (1998)

Screening

Screening

Screening and local fields

Full calculation

Screening

Screening and local fields

Exciton (Long range kernel)

$$f_{xc} = \frac{\alpha}{q^2}$$

$$\epsilon_{M}$$
 for GaAs

$$\chi_{xyz}^{(2)}(2\mathbf{q},2\omega) = -\frac{i}{12q_xq_yq_z} \left[\varepsilon_M^{LL}(\mathbf{q},\omega)\right]^2 \left[\varepsilon_M^{LL}(2\mathbf{q},2\omega)\right] \chi_{\rho\rho\rho}(2\mathbf{q},\mathbf{q},\mathbf{q},\omega,\omega)$$

$$\epsilon_{\mathsf{M}}$$
 for GaAs

$$\chi_{xyz}^{(2)}(2\mathbf{q},2\omega) = -\frac{i}{12q_xq_yq_z} \left[\varepsilon_M^{LL}(\mathbf{q},\omega)\right]^2 \left[\varepsilon_M^{LL}(2\mathbf{q},2\omega)\right] \chi_{\rho\rho\rho}(2\mathbf{q},\mathbf{q},\mathbf{q},\omega,\omega)$$

Linear dielectric function

- TDDFT (Long rang kernel)
- Similar results with BSE

$$\epsilon_{\mathsf{M}}$$
 for GaAs

$$\chi_{xyz}^{(2)}(2\mathbf{q},2\omega) = -\frac{i}{12q_xq_yq_z} \left[\varepsilon_M^{LL}(\mathbf{q},\omega)\right]^2 \left[\varepsilon_M^{LL}(2\mathbf{q},2\omega)\right] \chi_{\rho\rho\rho}(2\mathbf{q},\mathbf{q},\mathbf{q},\omega,\omega)$$

Linear dielectric function

- TDDFT (Long rang kernel)
- Similar results with BSE

$$\chi_{xyz}^{(2)} \text{ and } \varepsilon_{M} \text{ for GaAs}$$

$$\chi_{xyz}^{(2)}(2q,2\omega) = -\frac{i}{12q_{x}q_{y}q_{z}} \left[\varepsilon_{M}^{(L)}(q,\omega) \right]^{2} \left[\varepsilon_{M}^{(L)}(2q,2\omega) \right] \chi_{\rho\rho\rho}(2q,q,q,\omega,\omega)$$

$$\int_{0}^{0} \int_{0}^{0} \int_{0}^{0$$

Outline

- Introduction: nonlinear optics in solids
- How do we construct a spectrum
- 4 applications :
 - GaAs
 - Silicon under constraint
 - Si_n/Ge_n superlattices
 - Surfaces

- Microelectronic devices
- Multiple optical functionalities
- Industrial processes

But : due to the centro-symetry of the crystal, $\chi^{(2)}=0$ in the dipole approximation

The first non-vanishing susceptbility : $\chi^{(3)}$

- Requires important optical power
- Competition with other nonlinear processes (Two-photon absorption)

- Uniaxial constraint (001) $\chi^{(2)} \neq 0$, $\chi^{(2)} < 0.5 \text{pm/V}$
- The more the lattice is distorded, the larger is $\chi^{(2)}$

The most favorable situation : biaxial compressive-tensile

Nature Materials (2012)

Theory

• χ⁽²⁾=200 pm/V

(GaAs $\chi^{(2)}$ =700 pm/V)

- Silicon surface $\chi^{(2)} \approx 3 \text{ pm/V}$
- Si/SiO₂ $\chi^{(2)}$ <1pm/V

Experiment

- The signal is linked to the inhomogeneity and to the amplitude of the constraint
- Similar to LiNbO₃

(considered as a good nonlinear crystal)

Outline

- Introduction: nonlinear optics in solids
- How do we construct a spectrum
- 4 applications :
 - GaAs
 - Silicon under constraint
 - Si_n/Ge_n superlattices
 - Surfaces

Si_n/Ge_n superlattices

- Role of the confinement in silicon-based structures
- Multilayers
- Nonlinear optical properties

Si and Ge are centrosymmetric

If n is even (Si₄/Ge₄), the crystal is centrosymmetric

$$\chi^{(2)} = 0$$

If n is odd, the nonlinear response is allowed and the signal can be large

Experimentally, it seems not to be the case!

- Mixture of odd and even layers ?
- Nonuniformity of the layer thickness ?
- Strained interface ?

Strain at the interface (relaxation effects)

- In all superlattices, strain enhances SHG
- Even superlattices: defects enhance SHG
- Odd superlattices : defects decrease SHG

Outline

- Introduction: nonlinear optics in solids
- How do we construct a spectrum
- 4 applications :
 - GaAs
 - Silicon under constraint
 - Si/Ge superlattices
 - Surfaces

Surfaces

It is possible to extract the signal from only one surface, using a new operator p, instead of p [1]

[1] L. Reining et al, Phys. Rev. B 50 8411 (1994)

Interpretation:

S(z) is introduced to screen the field inside the material

Two approaches are possible: Screen the two incoming fields at ω [1] Screen the outgoing field at 2ω [2] $\chi^{(2)}_{abc} = \frac{-i}{\omega^{3}V} \sum_{nml} \int d\vec{k} \frac{1}{E_{m} - E_{n} - 2\omega - 2i\eta} \left[f_{nl}(\vec{k}) \frac{p_{nm}^{a}(\vec{k})p_{ml}^{b}(\vec{k})p_{\ln}^{c}(\vec{k})}{E_{l} - E_{n} - \omega - i\eta} + \dots \right]$

[1] L. Reining et al, Phys. Rev. B 50 8411 (1994)[2] B. Mendoza et al, Phys. Rev. Lett. 81, 3781 (1998)

Two approaches are possible:

Screen the two impinging fields at ω [1] Screen the outgoing field at 2ω [2]

$$\chi_{abc}^{(2)} = \frac{-i}{\omega^{3}V} \sum_{nml} \int d\vec{k} \frac{1}{E_{m} - E_{n} - 2\omega - 2i\eta} \left[f_{nl}(\vec{k}) \frac{p_{nm}^{a}(\vec{k}) p_{ml}^{b}(\vec{k}) p_{ln}^{c}(\vec{k})}{E_{l} - E_{n} - \omega - i\eta} + \dots \right]$$

No divergence at ω =0

Related to Gauge invariance

[1] L. Reining et al, Phys. Rev. B 50 8411 (1994)

[2] B. Mendoza et al, Phys. Rev. Lett. 81, 3781 (1998)

Surfaces : numerical results

Non-reconstructed surface : *xxz; yyz; zxx; zyy; zzz* Reconstructed surface (Asymmetric dimers) :

yyx; xyy; yyz; zyy; xxx; zxx; xxz; xzz; zzx; zzz

Surfaces : numerical results

Non-reconstructed surface : *xxz; yyz; zxx; zyy; zzz* Reconstructed surface (Asymmetric dimers) :

yyx; xyy; yyz; zyy; xxx; zxx; xxz; xzz; zzx; zzz

Apply the method to an ab initio calculation (work in progress)

THE CHALLENGE : Local field effects

the Dyson equation has to be strongly modified, to take into account only the half slab.

Formalism and GaAs : E. Luppi and H. Hübener (PhD) LSI, Ecole Polytechnique

Si under contrainst:

Exp : L. Pavesi, M. Cazzanelli, F. Bianco, E. Borga, University of Trento. G. Pucker and M. Ghulinyan, Advanced Photonics
& Photovoltaics Unit, Trento. D. Modotto and S. Wabnitz, University of Brescia. R. Pierobon, CIVEN, Venezia
Theory : E. Degoli, S. Ossicini (University of Modena e Reggio Emilia), E. Luppi (Berkeley)

Si/Ge : M. Bertocchi (PhD), E. Luppi (LCT, Paris 6), E. Degoli, S. Ossicini (University of Modena e Reggio Emilia)

Surfaces : N. Tancogne-Dejean (PhD) LSI, Ecole Polytechnique Thank you for your attention