Local field effects for optical linear and nonlinear properties of surfaces

Nicolas Tancogne-Dejean, Christine Giorgetti and Valérie Véniard

Laboratoire des Solides Irradiés and ETSF France Ecole Polytechnique, CNRS and CEA 91128 Palaiseau, France

Response to a perturbation

Linear optics

The response depends linearly on the electric field

Nonlinear optics

for higher light intensities, higher order terms can be important

$$
P^{a} = \chi^{(1)}_{ab} E^{b} + \chi^{(2)}_{abc} E^{b} E^{c} + \chi^{(3)}_{abcd} E^{b} E^{c} E^{d} + ...
$$

Second Harmonic Generation

What can we learn from linear optics? (in condensed matter)

- Absorption and refraction
- Birefringence
- Luminescence
- Photoconductivity
- Photocatalysis ...

What can we learn from Second Harmonic Generation? (in condensed matter)

•Probe for materials :

 Sensitivity to local symmetries and selection rules for electronic transitions in $\chi^{(2)}$

 \Rightarrow gives access to states with different symmetries, compared to linear optics

• Surfaces

- Thin films
- **Interfaces**
- **Nanowires**
- defects

⇒

•Development and characterisation of new materials

New optical devices

What about surfaces?

How optical properties of materials are modified by the presence of a surface?

- Nano-scaled objects
- Photo-catalysis
- Molecules deposited on a surface

- Introduction: linear and nonlinear optics in solids
- How do we compute an optical spectrum for a solid?
- Response of the surface

Starting point: band theory

Fermi golden rule Independent particle approximation: *All the electrons make independent transitions* (IPA)

Starting point: band theory

Linear response

Independent Particle Approximation

$$
\varepsilon_{ab}(\omega) = \delta_{ab} + \frac{8\pi e^2}{\hbar m^2 \omega^2 V} \sum_{nm} \int d\vec{k} f_{nm}(\vec{k}) \frac{p_{nm}^a(\vec{k}) p_{mn}^b(\vec{k})}{E_m - E_n - \omega - i\eta}
$$

(Reciprocal space)

Starting point: band theory

Second-order response

Independent Particle Approximation

$$
\chi_{abc}^{(2)}(-2\omega,\omega,\omega) = \frac{-ie^3}{\hbar^2 m^3 \omega^3 V} \sum_{nml} \int d\vec{k} \frac{1}{E_n - E_n - 2\omega - 2i\eta}
$$

$$
\times \left[f_{nl}(\vec{k}) \frac{p_{nm}^a(\vec{k}) \left\{ p_{ml}^b(\vec{k}) p_{ln}^c(\vec{k}) \right\}}{E_l - E_n - \omega - i\eta} + f_{ml}(\vec{k}) \frac{p_{nm}^a(\vec{k}) \left\{ p_{ml}^b(\vec{k}) p_{ln}^c(\vec{k}) \right\}}{E_n - E_l - \omega - i\eta} \right]
$$

(Reciprocal space)

Additional effects

• Screening

GW approximation: *Hedin's equations (1965)*

⇒Shift of the conduction bands

⇒Opening of the gap

Additional effects

- Screening
- Excitonic effects

Bethe Salpeter Equation (2-particles)

or *Time-Dependent Density-Functional Theory* (TDDFT)

Additional effects

- Screening
- Excitonic effects

• Local fields (macroscopic response)

Expected to be very important for surfaces

Additional effects : local fields (1)

From Microscopic to Macroscopic polarization …

Perturbation= external macroscopic field

Induces a microscopic response (polarisation of the atoms)

Perturbation=external macroscopic + induced microscopic

has to be taken into account in a self consistent way

Additional effects : local fields (2)

From Microscopic to Macroscopic polarization …

How to obtain a macroscopic measurable quantity ?

average over distances

•Large compared to the cell dimension •Small compared to the wavelenght of the external perturbation

Macroscopic response

Local fields = difference between micro and macro

Macroscopic response (local fields)

Linear and Second-order Response Function in the framework of TDDFT

Time-dependent Density Functional Theory

Dyson equation:

1st order
$$
\left[1 - \chi_0^{(1)}v\right] \chi^{(1)} = \chi_0^{(1)}
$$

2nd order $[1 - \chi_0^{(1)}(2\omega)v] \chi^{(2)}(2\omega,\omega) = \chi_0^{(2)}(2\omega,\omega)\left[1 + v\chi^{(1)}(\omega)\right]^2$

 χ_0^{\cdot} $\chi_0^{(1)},\chi_0^{(2)}$

Independent particle response functions

 $\mathsf{DP}\ \mathsf{code}:\ \boldsymbol{\chi}^{(1)}$

linear response

 $\frac{1}{2}$ $\chi^{(2)}$

Second harmonic generation

Macroscopic response (local fields)

Crystal \implies 3D periodicity \implies reciprocal space (plane waves)

1st order

$$
\left[\left[1-\chi_0^{(1)}v\right]\chi^{(1)}=\chi_0^{(1)}\right]
$$

$$
\sum_{G''}\left[\delta_{G,G''}-\chi^{(1)}_{0}\left(\vec{q}+\vec{G},\vec{q}+\vec{G}'',\omega\right)\nu(\vec{q}+\vec{G}'')\right]\chi^{(1)}(\vec{q}+\vec{G}'',\vec{q}+\vec{G}',\omega)=\chi^{(1)}_{0}(\vec{q}+\vec{G},\vec{q}+\vec{G}',\omega)\right]
$$

$$
\varepsilon_M(\vec{q}) = \frac{1}{1 + v(\vec{q})\chi^{(1)}(\vec{q}, \vec{q})}
$$

- Introduction: linear and nonlinear optics in solids
- How do we get a spectrum for a solid?
- Response of the surface

Effect of the vacuum on the spectra

Optical Response of Surfaces - IPA

Optical Response of Surfaces – local fields

Optical Response of Surfaces – local fields

Out-of-plane

- Position of the peak
- Change of scale

- Strong LFE
- Position of the peak depends on the size of the vacuum

Optical Response of Surfaces – local fields

Out-of-plane

Optical properties in Real Space

$$
\chi^{(0)}(\mathbf{r}, \mathbf{r}', \omega) = 2 \sum_{i,j} (f_i - f_j) \frac{\phi_i(\mathbf{r}) \phi_j^*(\mathbf{r}) \phi_i^*(\mathbf{r}') \phi_j(\mathbf{r}')}{E_i - E_j - \omega - i\eta}
$$
\n**Independent Particles (IPA)**

\n**Local Field Effects included**

\n
$$
\epsilon(\mathbf{r}, \mathbf{r}') = \delta(\mathbf{r}, \mathbf{r}') - \int d\mathbf{r}'' V(\mathbf{r}, \mathbf{r}'') \chi_0(\mathbf{r}''', \mathbf{r}') \begin{bmatrix} \text{Local Field Effects included} \\ \chi(\mathbf{r}, \mathbf{r}') = \chi^{(0)}(\mathbf{r}, \mathbf{r}') + \int \chi^{(0)} \mathbf{r}, \mathbf{r}_1 \nu(\mathbf{r}_1 - \mathbf{r}_2) \chi(\mathbf{r}_2, \mathbf{r}') \\ \epsilon^{-1}(\mathbf{r}, \mathbf{r}') = \delta(\mathbf{r}, \mathbf{r}') + \int d\mathbf{r}'' V(\mathbf{r}, \mathbf{r}'') \chi(\mathbf{r}''', \mathbf{r}') \end{bmatrix}
$$
\n(No Local Field Effects)

\n**Tago, et al. PRB 73, 205334 (2006)**

\n**Gout, et al. PRB 90, 127401 (2003)**

\n**Equation**

\n**Equ**

The system is periodic in x and y-directions.

We define a mixed space $(x,y,z) \rightarrow (q_x+G_x,q_y+G_y,z) \rightarrow (q_{11}+G_{11},z)$

Approximation : we neglect in-plane local field effects

$$
\mathbf{G}_{//}=0 \qquad (x,y,z) \Rightarrow (\mathbf{q}_{//}, z)
$$

Local Field effects from real space

Out-of-plane IPA/LFE comparison

Local Field effects from real space

Question : Why is the real space approach different from the reciprocal space approach?

Answer : The density is localized on the material.

Real space: Contribution to the integrals in the Dyson equation comes only from the region where the density spreads (independent of the vacuum size).

Reciprocal space: Integrals are replaced by sums over G-vectors, defined according to the size of the super-cell

(depends on the vacuum size).

Alternative approach in reciprocal space

One must solve the Dyson equation with :

• The subset of G-vectors corresponding to the matter

• Normalize to the volume of matter

No approximation for the in-plane Local Fields

Selected G approach

Results: Linear Spectrum

Results: Second harmonic generation

Conclusions

- \triangleright Real-space calculation
- \triangleright Reciprocal space : based on the super-cell approach (takes advantage of the 2-D periodicity of the system)
- \triangleright Linear spectroscopy:

 In-plane local fields are negligible (Reflectance anisotropy spectroscopy "RAS") Out-of-plane local fields are important (non-grazing light incidence)

 \triangleright SHG for surfaces: all components seem to be affected (work in progress)

Acknowledgment

Theoretical spectroscopy group Laboratoire des Solides Irradiés, Ecole Polytechnique

Thank you for your attention

Macroscopic response (local fields)

Dyson equation for the density response function

1st order
$$
\left[1 - \chi_0^{(1)}(v + f_{xc})\right] \chi_{\rho\rho}^{(1)} = \chi_0^{(1)} \qquad f_{xc} = \frac{\partial V_{xc}}{\partial \rho}
$$

\n2nd order
\n
$$
\left[1 - \chi_0^{(1)}(2\omega) f_{uxc}(2\omega) \right] \chi_{\rho\rho\rho}^{(2)}(2\omega,\omega) = \chi_0^{(2)}(2\omega,\omega) \left[1 + f_{uxc}(\omega) \chi_{\rho\rho}^{(1)}(\omega)\right]^2
$$

\nNewkernel
\n
$$
g_{xc} = \frac{\partial^2 V_{xc}}{\partial \rho \partial \rho}
$$

\n
$$
g_{xc} = \frac{\partial^2 V_{xc}}{\partial \rho \partial \rho}
$$

\n
$$
\omega \chi_{\rho\rho}^{(1)}(\omega) \chi_{\rho\rho}^{(1)}(\omega) \chi_{\rho\rho}^{(1)}(\omega)
$$

\n
$$
\omega \chi_{\rho\rho}^{(1)}(\omega)
$$

\n
$$
\omega \chi_{\rho\rho}^{(1)}(\omega)
$$

Roadmap for computing ε_{M}

