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Response to a perturbation YRMberlin09 

Linear	
  optics	
  

Nonlinear	
  optics	
  

P
a
=

ab

(1)

χ E
b

€ 

P
a
=

ab

(1)

χ E
b
+

abc

(2)

χ E
b
E

c
+

abcd

(3)

χ E
b
E

c
E

d
+...

The	
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for	
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  terms	
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in the dipole approximation 
(Long wavelength limit) 



What can we learn from linear optics? 
(in condensed matter) 

•  Absorption and refraction 
•  Birefringence 
•  Luminescence 
•  Photoconductivity 
•  Photocatalysis  ... 



 
 
 

 
 

• Probe for materials : 
    Sensitivity to local symmetries and selection rules  
    for electronic transitions in χ(2)  

    ⇒ gives access to states with different symmetries,  
         compared to linear optics 

What can we learn from Second Harmonic Generation?  
(in condensed matter) 

•  Surfaces 
•  Thin films 
•  Interfaces 
•  Nanowires 
•  defects 
 

⇒ 

• Development and characterisation of new materials 

New optical devices 



What about surfaces? 

How optical properties of materials are  
modified by the presence of a surface? 

•  Nano-scaled objects 
•  Photo-catalysis 
•  Molecules deposited on a surface 



Outline 

•  Introduction: linear and nonlinear optics in solids 

•  How do we compute an optical spectrum for a solid? 
 
•  Response of the surface 

 



Starting point: band theory 

Fermi golden rule 

hν	
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Independent particle approximation: 
All the electrons make independent transitions 

(IPA) 



Linear response  

Independent Particle Approximation 

Starting point: band theory 
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(Reciprocal space) 
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Second-order response  

Independent Particle Approximation 

Starting point: band theory 

(Reciprocal space) 



Additional effects 



Additional effects 

•  Screening 

⇒ Shift of the conduction bands 

⇒ Opening of the gap 

GW approximation: 
Hedin’s equations (1965) 



Additional effects 

•  Screening 
•  Excitonic effects 

Bethe Salpeter Equation  
(2-particles) 

or 
Time-Dependent  

Density-Functional Theory  
(TDDFT)   



Additional effects 

•  Screening 
•  Excitonic effects 

•  Local fields (macroscopic response) 

Expected to be very  
important for surfaces 



Additional effects  : local fields (1) 

Perturbation= external macroscopic field 

Induces a microscopic response (polarisation of the atoms) 

Perturbation=external macroscopic + induced microscopic  

has to be taken into account in a self consistent way 

From Microscopic to Macroscopic polarization … 
 



How to obtain a macroscopic measurable quantity ? 

 
• Large compared to the cell dimension 
• Small compared to the wavelenght of the 
external perturbation 

average over distances 

YRMberlin09 

From Microscopic to Macroscopic polarization … 

Additional effects  : local fields (2) 

Macroscopic response 

Local fields = difference between micro and macro 



 Dyson equation: 
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Macroscopic response (local fields) 

DP code :  
linear response 

χ0
(1), χ0

(2)
Independent particle response functions 

χ (1)

Second harmonic generation 

Linear and Second-order Response Function  
in the framework of TDDFT  

Time-dependent Density Functional Theory 

χ (2)



1st order 

Macroscopic response (local fields) 

Crystal        3D periodicity          reciprocal space (plane waves) 
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Outline 

•  Introduction: linear and nonlinear optics in solids 

•  How do we get a spectrum for a solid? 
 
•  Response of the surface 

 



2D periodicity 3D periodicity 

Crystalline Solid Surface 

Unit Cell Super-cell 
(atoms + vacuum) 

Requirement: Results should not depend on the  
amount of vaccum introduced in the cell 

Si(001) 2x1 

Dangling bonds 



Effect of the vacuum on the spectra  

    z-
axis 

Void 1 Void 2 Void 3  

Vacuum  

Silicon surface (001)2×1  



Optical Response of Surfaces - IPA 
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V: volume  
of the super-cell 

In-plane 

Out-of-plane 



Optical Response of Surfaces – local fields 

In-plane 

Including 
 local field effects 
         (LFE) 



•  Strong LFE 
•  Position of the peak 

depends on the size 
of the vacuum 

   
Optical Response of Surfaces – local fields 

Out-of-plane 

•  Position of the peak 
•  Change of scale 



•  Strong LFE 
•  Position of the peak 

depends on the size 
of the vacuum 

Effective Medium Theory 

   
Optical Response of Surfaces – local fields 

Out-of-plane 



Optical properties in Real Space 

Independent Particles (IPA)  

 
 Local Field Effects included 

 (No Local Field Effects) 

Z 

Tiago, et al. PRB 73, 205334 (2006) 
Ogut, et al. PRL 90, 127401 (2003) 

+ 

εM from Macroscopic average 



Real Space and Supercell 

We define a mixed space 
(x,y,z)  è (qx+Gx,qy+Gy,z) è  (q//+G//,z) 

Approximation : we neglect in-plane local field effects 

G//=0   (x,y,z)  è (q//, z) 
 

The system is periodic in x and y-directions. 



Local Field effects from real space 

Out-of-plane IPA/LFE comparison 

 
 
 
 

Real Space - IPA   
   Real Space - LFE 



Local Field effects from real space   

Question :  Why is the real space approach different from  
the reciprocal  space approach? 

Answer :  The density is  
localized on the material. 
 

Real space: Contribution to the integrals 
in the Dyson equation comes only from 
the region where the density spreads  
  (independent of the vacuum size). 
 
Reciprocal space: Integrals are replaced by sums over G-vectors, 
defined according to the size of the super-cell  
     (depends on the vacuum size). 
 



Alternative approach in reciprocal space    
 

No approximation for the in-plane Local Fields 

One must solve the Dyson equation with : 

•  The subset of G-vectors corresponding to the matter 

•  Normalize to the volume of matter 
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Selected G approach 



Results: Linear Spectrum 
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Results: Second harmonic generation 



Ø  Real-space calculation 
 
Ø  Reciprocal space : based on the super-cell approach 

 (takes advantage of the 2-D periodicity of the system) 
 
Ø  Linear spectroscopy:  

  In-plane local fields are negligible (Reflectance   
  anisotropy spectroscopy “RAS”) 
  Out-of-plane local fields are important 

      (non-grazing light incidence) 

Ø  SHG for surfaces: all components seem to be affected 
                                      (work in progress) 

Conclusions 
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 Dyson equation for the density response function 

1− χ0
(1) (v+ fxc )"# $%χρρ

(1) = χ0
(1)

€ 

fxc =
∂Vxc

∂ρ

€ 

gxc =
∂2Vxc

∂ρ∂ρ

1st order 

2nd order 
[1− χ0

(1)(2ω) fuxc (2ω)]χρρρ
(2)(2ω,ω) = χ0

(2)(2ω,ω) 1+ fuxc (ω)χρρ
(1)(ω)"# $%

2

+ χ0
(1)(ω)gxc (ω)χρρ

(1)(ω)χρρ
(1)(ω)New kernel 

Macroscopic response (local fields) 

DP code 



DP code 
 
 
 
 

Real Space code 
 
 

Macroscopic  
Average 

 
 

1D Dyson-like 
equation 

 
 

Roadmap  for computing εM 


