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préparée à École Polytechnique
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Preface

In recent years, significant progress in research has elevated our understanding of condensed matter to

unprecedented levels, leading to a new era with more advanced technology. With the rich diversity of

chemical elements and their combinations, technological advancements have been made thanks to the

comprehension and research in various domains, including physics, materials science, and chemistry.

Electronic structure, a crucial field in this continuum, has witnessed a surge in publications, under-

scoring its significant impact. Many theories have been proposed and rigorously examined within the

electronic structure field, translated into practical calculations through computer codes that are now

indispensable.

This thesis delves into a specific part within electronic structure, aiming to enhance total energy cal-

culations for the electronic ground-state using Green’s functions. While Green’s functions approaches

are commonly favored for band structure calculations, with a certain number of approximations,

density-functional theory is often thought to be designed for exploring the ground-state properties of

interacting-electron systems. However, the ignorance of functionals in terms of the density poses a

challenge for density-functional theory. Hence, investigations concerning the ground-state total en-

ergy using Green’s functions become crucial, offering a more direct, or at least alternative, route for

development compared to density-functional theory. Recognizing the potential synergy between these

two approaches, it is also promising to search for combinations toward a unified pursuit of the same

observable, which is the ground-state total energy. In this thesis, we start with a motivating introduc-

tion that highlights the importance of the total energy calculations. We then provide a foundational

overview of mean field, density-functional and many-body Green’s function theories in the theoretical

background part, offering an introduction to the subject. In the theoretical developments part, various

methods aimed at improving ground-state total energy calculations beyond the state-of-the-art are

proposed, discussed, and investigated. For illustrations, we use the symmetric Hubbard dimer model.

In presenting this thesis, we aspire to contribute, albeit modestly, to the vast realm of research.

vi



Notation

Coordinates, orbitals and operators

r electron position

σ electron spin projection

x combined space/spin coordinates (r,σ)

1 combined space/spin/time coordinates (x1, t1)

ĉ, ĉ† annihilation and creation operators for fermions

Ψ̂, Ψ̂† field operators for fermions

φiσ(x) = ϕiσ(r)χσ(s) single-particle “spin orbital”

Most used acronyms

HF Hartree-Fock

DFT density functional theory

TDDFT time-dependent density functional theory

HK Hohenberg-Kohn

KS Kohn-Sham

LDA local density approximation

GGA generalized gradient approximation

ALDA adiabatic local density approximation

MBPT many-body perturbation theory

GWA GW approximation

RPA random phase approximation

QP quasi-particle

xc exchange-correlation

GM Galitskii-Migdal

TCTC test-charge test-charge

TCTE test-charge test-electron

LDE linearized dyson equation

AC adiabatic connection

HOMO highest occupied molecular orbital

LUMO lowest unoccupied molecular orbital

SCD self-consistency diagram
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General physical quantities

Ĥ many-body hamiltonian

Ψ many-body wavefunction

ΦH Hartree wavefunction

ΦHF Hartree-Fock wavefunction

E0 ground-state total energy

vc bare Coulomb interaction

vext external potential

vH Hartree potential

n one-body density

EHF Hartree-Fock total energy

EH Hartree energy

Ex exchange energy

vx exchange potential

EKS Kohn-Sham total energy

Exc exchange-correlation energy

vKS Kohn-Sham potential

vxc exchange-correlation potential

fxc exchange-correlation kernel

1-GF one-body Green’s function

γ one-body density matrix

A spectral function

2-GF two-body Green’s function

3-GF three-body Green’s function

G0 non-interacting 1-GF

GH Hartree 1-GF

Σxc exchange-correlation self-energy

vcl total classical potential: Hartree + external potentials

W test-charge test-charge screened Coulomb interaction

χ reducible polarizability

L four-point reducible polarizability

P irreducible polarizability

P0 non-interacting irreducible polarizability

χ0 non-interacting reducible polarizability, equal to P0 when the same framework is used

Γ̃ irreducible vertex function

W̃ test-charge test-electron screened Coulomb interaction

veff , v̄ effective potential

Weff effective Coulomb interaction making the first-order self-energy exact

W̄ effective screened Coulomb interaction
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Introduction

Interacting particles

The world around us consists of interacting many-particle systems, making it essential to comprehend

these systems in order to understand the nature of our reality, and therefore transforming this under-

standing into beneficial applications for a better life. This necessity has led to the division of human

efforts into various disciplines, including physics and chemistry, which are further subdivided into

specialized fields. For example, material science includes areas such as atomic, molecular, condensed

matter, and nuclear physics, all of which attempt to describe the diverse behaviors of these systems.

These studies, which have been made throughout human history, are directly linked to the techno-

logical advancements that shape our modern lives. In particular, the comprehension of interacting

electrons systems, which is the focus of this thesis, holds significant importance for our daily lives. It

underlies numerous practical applications and meets essential needs for individuals and communities

around the world. Electrons are governed by “quantum physics”, which was developed in the early

Figure I: Our earth from outside. This is to illustrate that everything is built with interacting many-
particle systems. This photo is taken from Pixabay.

20th century to describe the behavior of particles at the atomic and subatomic scales. Its birth is often

attributed to some key contributors, but its development was a collaborative effort involving many

scientists over more than two decades. The literature is full of descriptions of the birth of quantum

mechanics, from different points of view. A nice historical one is the compendium book on the Solvay

1927 Conference [1], that is also available on arXiv [2].

3
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The electronic structure problem

To understand the behavior of electrons in many-body interacting systems, it is necessary to delve into

the quantum level. From a theoretical perspective, this can in principle be accomplished by solving

the Schrödinger equation, which is the fundamental equation in quantum mechanics governing the

evolution of the system’s wavefunction.

Ĥ |Ψ(t)〉 = i~
∂

∂t
|Ψ(t)〉 , (1)

where Ψ(r1σ1, r2σ2, ..., rNσN , t) is the many-body wavefunction. It contains all the electronic infor-

mation about the system and describes the distribution of electrons in space r, spin σ and time t.

The electronic hamiltonian operator, denoted as Ĥ, already includes the Born-Oppenheimer (adia-

batic) approximation[3]. This approximation assumes that the motion of atomic nuclei is much slower

compared to the motion of electrons, allowing for the separation of electronic and nuclear degrees of

freedom. The electronic hamiltonian is written as follows,

Ĥ = − ~2

2me

∑
i

∇2
i︸ ︷︷ ︸

T̂

−
∑
i,I

ZIe
2

|ri −RI |︸ ︷︷ ︸
V̂ext

+
1

2

∑
i 6=j

e2

|ri − rj |︸ ︷︷ ︸
V̂ee

, (2)

where electrons are denoted by lowercase subscripts and coordinates ri and nuclei are denoted by

uppercase subscripts and coordinates RI . T̂ , V̂ext and V̂ee are the kinetic energy of electrons, electron-

nuclei interaction and electron-electron interaction, respectively. In this thesis, we will use atomic

units defined such that ~ = me = e = 4π/ε0 = 1.

The Coulomb interaction Vee indeed introduces significant complexity into the problem. Due to Vee, Ψ

can not be factorized into independent single-particle wavefunctions. As a result, the dimensionality of

Ψ becomes immense and grows exponentially with the number of electrons in the system [4]. Therefore,

the computation of the many-body wavefunction Ψ is restricted to systems with a small number of

electrons, as storing and manipulating Ψ becomes impractical for larger systems. Additionally, since

Ψ contains an immense amount of informations, it is often not necessary to explicitly calculate Ψ

itself. Instead, the focus is on obtaining observables of interest from Ψ. Given these considerations,

it becomes clear that exploring alternative approaches to solve the many-body problem is essential.

Various theories that do not rely on Ψ to solve the many-body problem will be discussed later.

Why the ground-state total energy?

In this thesis, our main interest concerns the calculation of the ground-state total energy, which is the

lowest energy E0 of the static Schrödinger equation ĤΨ = EΨ. But why we are interested in the total

energy, and in general what practical applications does it have?

In nature, interacting particle systems tend to adopt configurations that minimize their energies,

a principle governed by the laws of physics. This is beautifully exemplified by a water droplet on a

surface, illustrated by the left-hand panel of Fig. II, which assumes an almost spherical shape. This

4



Figure II: These figures are presented to illustrate the energy minimization concept in nature. They
are taken from Pixabay. Left-panel: the spherical form of a water droplet minimizes the energy in play
(in this case, surface tension). Right-panel: the lake is created such that it minimizes the potential
energy.

spherical form is the configuration that minimizes energy, and in this case the only “free” force field is

the surface tension that tends to minimize the surface. The same holds for the lakes in the right-hand

panel of Fig. II, where the lake is formed such that the water distribution minimizes the potential en-

ergy. Thus, the concept of energy minimization provided by nature serves as a main motivation for our

research. For instance, total energy calculations are commonly employed in many domains of science,

ranging from chemistry (predict chemical reaction or catalysis pathways) to biology (protein-ligand

interaction, drug binding affinities), from environmental science (interaction pollutant-substances) to

astrophysics (stellar formation, matter in extreme conditions). Very often in material science, and not

surprisingly also in this thesis, the main use of the minimization principle is to study the existence and

stability of a system, as a function of the atomic position of its constituents. Since nature presents

a rich availability of chemical elements organized in a well-known periodic table, where each element

is characterized by a specific electronic configuration, it is crucial to understand these elements and

their combinations. For instance, hydrogen and oxygen naturally do not exist in isolation, but they

are available as H2 and O2 molecules. This is due to the fact that the energy cost of forming chemical

bonds is less than the energy required for dissociation. This phenomenon can be understood from the

perspective of electronic configurations, for example, a hydrogen atom, with its single electron, tends

to form a doubly occupied bond with another hydrogen atom for stability.

In practice, determining the existence of a chemical system, which is an interacting particle system,

in the form AxBy involves examining the total energy as a function of the distance between the atoms.

If a minimum is observed over a range of distances, from close proximity between atoms to dissociation,

it implies the stability and existence of the chemical system. This is illustrated by the left-hand panel

of Fig. III, where the hydrogen molecule exhibits a minimum, indicating the existence of the H2 system.

Therefore, the left-hand panel of Fig. III illustrates the interest of total energy calculations.

The search as a function of the distance is not the only strategy. In order to make a connection

5
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with the present thesis work, we show in the right panel of Fig. III the ground-state total energy of

the symmetric Hubbard dimer (for more details about this model see Chap. 6) as a function of the

hopping parameter t, which plays the role of the interatomic distance. Here, t → 0 represents the

dissociation limit and t→∞ represents the very short distance between the two atoms. We are using

this exactly solvable model as a model system for our theoretical investigations.

Besides the question of the existence of a system using, total energy calculations can also determine

details of geometry. For example, a water molecule H2O has its specific geometry with 104.5 degrees

as an angle for H−O−H. This is also defined by the total energy minimization concept.

In summary, any stochiometric combination, existence and geometrical structure of a system can

in principle be investigated by total energy calculations.

Figure III: Left panel: ground-state total energy E0 of the hydrogen molecule as a function of the bond
length. This result has been obtained using abinit [5, 6] within the density-functional theory formalism
[7], where the exchange-correlation potential is approximated within the local-density approximation
[8]. Right panel: ground-state total energy of the symmetric Hubbard dimer at half-filling as a function
of the hopping parameter t, where the Coulomb interaction U = 4 eV. 1 and 2 refer to the first and
second atom, respectively.

This thesis involves theoretical developments aimed at devising novel approaches to evaluate the

ground-state total energy of a quantum many-body system of electrons. Calculations of total energies

can, in principle, be addressed by solving the Schrödinger equation using the hamiltonian Eq.(2),

and various quantum chemistry methods are available for this purpose [9]. Among the numerous ap-

proaches, some employ expansions of the many-body wavefunction in terms of Slater determinants built

with one-particle wavefunctions (such as configuration interaction and coupled cluster [9]), while oth-

ers rely on stochastic approaches to handle the multi-dimensional integrals involved (such as quantum

monte carlo [10]). However, these methods suffer from unfavorable scaling and are typically applicable

to systems with only a few electrons. Total energy calculations for real and complex materials are

commonly performed within the framework of Density Functional Theory (DFT) [7, 11–13], which

stands out as one of the most successful and widely used methods in physics [14]. This success arises

from the good results achievable with very simple approximations. The time-dependent extension

of DFT (TDDFT) can be also used, to evaluate total energies, via the use of the adiabatic connec-

tion fluctuation dissipation theorem [15–23]. Nevertheless, the drawback of the density functional

approach lies in the challenge of systematically improving the approximations to yield more accurate

results. Green’s functions (GF) methods represent an intermediate approach, standing between the
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complexity and reliability of wavefunction based methods and the ease and cost-effectiveness of DFT.

The GF framework is recognized as state-of-the-art concerning spectral quantities related to various

electronic excitation experiments, such as photoemission, absorption, or scattering spectroscopy. It

usually operates on the premise of the self-energy concept, which constitutes a non-local, energy-

dependent effective potential governing the behavior of (quasi) electrons. Developing approximations

for the self-energy stands as the primary and most arduous task within this framework. The most

widely used approximation is probably the GW approximation within many-body perturbation theory

(MBPT) [24–26], so called because it formulates the self-energy as a product of a Green’s function

G times the screened Coulomb interaction W . This approximation has proven highly successful for

the calculation of the quasi-particle (QP) part of electron addition and removal spectra in finite and

extended systems [4, 26–33]. In addition, the functional derivative of GW yields an effective interac-

tion kernel utilized in an equation known as the Bethe-Salpeter equation [34–39]. The solution of this

equation gives us, among other quantities, the dielectric function, resulting in outstanding predictions

for absorption spectra across a broad spectrum of materials [40–50]. However, while successful for

spectra and band-gap for weakly to moderately correlated systems, the GW approximation often falls

short in accurately predicting total energies [51–53]. Therefore, the primary goal of this thesis is to

devise strategies to go beyond the GW approximation and systematically improve the results for the

total energy calculation, within the framework of GF and MBPT.

By using the exactly solvable symmetric Hubbard dimer [54–58] as a reference tool and benchmark,

our research has led to the development of three distinct strategies. Each strategy possesses its unique

advantages and challenges, yet all of them enable both qualitative and quantitative enhancements

beyond the limitations of the GW approximation. In the first strategy, we utilize linear response

quantities to represent the exact total energy using a self-energy constructed from density-functional

components [59–70]. We provide a computer code to illustrate and test this strategy, called “Symmetric

Hubbard Dimer”, it is available at the following address: https://gitlab.com/tsg1860938/symmetric-

hubbard-dimer. The second strategy introduces an effective screened Coulomb interaction, denoted as

Weff , in a formula akin to GW but ensuring an exact exchange-correlation self-energy (Σxc). Notably,

the approximations within this formulation (Σxc = iGWeff) demonstrate significant improvements

compared to the original GW approximation. Lastly, the third strategy involves expanding the self-

energy to second order in W [71–81], where various interesting questions are discussed. All these

strategies offer promising avenues for achieving improved accuracy in spectral features and total energy

calculations of electronic system.

7

https://gitlab.com/tsg1860938/symmetric-hubbard-dimer
https://gitlab.com/tsg1860938/symmetric-hubbard-dimer


Part I
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Chapter 1

Mean field theories

The many-body problem is an exponentially hard problem. Several strategies tackle this problem.

Very often these strategies depend on the community working on it: quantum chemists, solid-state or

nucler physicists. Here, we begin with the mean field approach, which will be used as a starting point

for our strategy, based on many-body Green’s functions.

1.1 Hartree approximation

The numerical solution to the Schrödinger equation was initially introduced by Douglas Hartree in

1928 [82, 83]. Hartree proposed an ansatz, known as the Hartree ansatz, which assumes that the total

many-body wavefunction can be approximated as a simple product of single-particle orbitals:

ΦH(r1, r2..., rN ) = ϕ1(r1).....ϕN (rN ) , (1.1)

where ϕi(r) is the single-particle orbital, with r = (x, y, z) a 3-d vector and spin is neglected for the

moment. The expectation value of the hamiltonian Eq.(2) using ΦH is

〈ΦH|Ĥ|ΦH〉 (1.2)

= 〈ΦH|T̂ + V̂ext|ΦH〉+ 〈ΦH|V̂ee|ΦH〉 (1.3)

=
∑
i

〈ϕi(r)| −
∇2
r

2
+ vext(r)|ϕi(r)〉+

1

2

∑
i 6=j
〈ϕi(r)ϕj(r′)|vc(r, r

′)|ϕi(r)ϕj(r′)〉 (1.4)

=
∑
i

∫
dr ϕ∗i (r)

[
− ∇

2
r

2
+ vext(r)

]
ϕi(r) +

1

2

∑
i 6=j

∫
drdr′ ϕ∗i (r)ϕ

∗
j (r
′)vc(r, r

′)ϕi(r)ϕj(r
′) , (1.5)

where vc(r, r
′) = 1

|r−r′| . To derive the Hartree equations, we utilize the concept of total energy

minimization with respect to the single-particle orbitals. One approach is to employ the Lagrange

multipliers method and the variational principle:

δ

δϕ∗i (r)

[
〈ΦH|Ĥ|ΦH〉 −

∑
j

εj

∫
dr′ ϕ∗j (r

′)ϕj(r
′)

]
= 0 , (1.6)

where the Lagrangian multipliers εi in Eq.(1.6) arise from the constraint that the single-particle orbitals

are normalized, i.e,
∫
drϕ∗j (r)ϕj(r) = 1. This leads to the Hartree equations,
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(
− ∇

2
r

2
+ vext(r)

)
ϕi(r) +

∑
j,j 6=i

∫
dr′ ϕ∗j (r

′)ϕj(r
′)vc(r, r

′)ϕi(r) = εiϕi(r) , (1.7)

where i, j run over occupied orbitals, i.e, orbitals contained in the product Eq.(1.1). As a conclusion,

in the Hartree approach, each electron, labeled by the quantum number i, interacts with the mean-

field potential created by the other N − 1 electrons. The Hartree term in Eq.(1.7) is not the same for

all electrons, as it involves a summation over all orbitals except the one corresponding to the electron

under consideration. As a result, each electron i experiences a different density ni(r
′) =

∑
j 6=i
| ϕj(r′) |,

as it is excluded from the density calculation based on its own orbital. The Hartree term can be

interpreted as an effective classical interaction between charges, treating electrons as distinguishable

particles and neglecting their quantum nature as fermions.1 It is worth noting that today applications

of Hartree equations do not use the orbital dependent density as Eq.(1.7), but a modified form that

makes the potential term as a functional of the full density as,

(
− ∇

2
r

2
+ vext(r)

)
ϕi(r) +

∫
dr′ n(r′)vc(r, r

′)ϕi(r) = εiϕi(r) , (1.8)

where one can define the Hartree potential as,

vH(r) =

∫
dr′ n(r′)vc(r, r

′) . (1.9)

Unlike Eq.(1.7), the new Eq.(1.8) contains a self-interaction error.

1.2 Hartree-Fock approximation

Since the Hartree wavefunction neglects the fermionic nature of electrons, it is necessary to go beyond

and incorporate it into the description. The Hartree-Fock (HF) approximation [84, 85] is an extension

that considers the fermionic nature of electrons. In this approach, the many-body wavefunction is

approximated as a single Slater determinant, which properly accounts for the antisymmetry requirement

of fermions. By using this ansatz, the interacting electrons system can be approximately described

in terms of an effective single-particle problem, taking into consideration the fermionic statistics. In

order to derive the HF effective potential and the HF equation, we evaluate the expectation value of

the hamiltonian using the following HF wavefunction,

ΦHF =

∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ1(x2) φ1(x3) ...

φ2(x1) φ2(x2) φ2(x3) ...

φ3(x1) φ3(x2) φ3(x3) ...

. . . ...

. . . ...

∣∣∣∣∣∣∣∣∣∣∣∣
, (1.10)

1In practical Hartree calculations, one partially takes into account the fermionic nature, by filling the states with
only 2 electrons, from the lowest energy level and moving upward.

10



where φ1(x1) = ϕiσ1(r1)χσ1(s1) is the single-particle “spin-orbital”, satisfying the following ortonor-

malization condition,

〈φi(x)|φj(x)〉 =

∫
dxφ∗i (x)φj(x) (1.11)

=
∑
s

χ∗σi(s)χσj (s)

∫
dr ϕ∗iσi(r)ϕjσj (r) = δijδσiσj . (1.12)

To facilitate the calculation, we express the hamiltonian in second quantization formalism, which

provides a more convenient mathematical framework for dealing with many-particle systems.

Ĥ =
∑
ijσσ′

〈iσ|ĥ|jσ′〉 ĉ†iσ ĉjσ′ +
1

2

∑
ijkl

∑
σ1σ2σ3σ4

〈iσ1jσ2|v̂c|kσ3lσ4〉 ĉ†iσ1
ĉ†jσ2

ĉlσ4 ĉkσ3 , (1.13)

where 〈iσ|ĥ|jσ′〉 =
∫
dxφ∗iσ(x)

(
−∇

2
r

2 +vext(x)
)
φjσ′(x) with ĥ the one-body operator (kinetic energy and

electron-nuclei interaction operators) and 〈iσ1jσ2|v̂c|kσ3lσ4〉 =
∫ ∫

dxdx′φ∗iσ1
(x)φ∗jσ2

(x′)vc(x, x
′)φlσ4(x)

φkσ3(x′) with v̂c the two-body Coulomb interaction operator. The hamiltonian expectation value

within ΦHF is

〈ΦHF|Ĥ|ΦHF〉 =

N∑
ij=1

∑
σσ′

〈iσ|ĥ|jσ′〉 〈ΦHF|ĉ†iσ ĉjσ′ |ΦHF〉

+
1

2

N∑
ijkl=1

∑
σ1σ2σ3σ4

〈iσ1jσ2|v̂c|kσ3lσ4〉 〈ΦHF|ĉ†iσ1
ĉ†jσ2

ĉlσ4 ĉkσ3 |ΦHF〉 , (1.14)

where we will treat below each term separately. The one-body term becomes

N∑
ij=1

∑
σσ′

〈iσ|ĥ|jσ′〉 〈ΦHF|ĉ†iσ ĉjσ′ |ΦHF〉 =

N∑
ij=1

∑
σσ′

〈iσ|ĥ|jσ′〉 δijδσσ′ (1.15)

=
N∑
i,σ

〈i|ĥ|i〉 =
∑
i=1,σ

∫
dxφ∗iσ(x)

[
− ∇

2
r

2
+ vext(x)

]
φiσ(x) .

(1.16)

Th two-body term is written as

1

2

∑
ijkl=1

∑
σ1σ2σ3σ4

〈iσ1jσ2|v̂c|kσ3lσ4〉 〈ΦHF|ĉ†iσ1
ĉ†jσ2

ĉlσ4 ĉkσ3 |ΦHF〉 , (1.17)

where it turns out that we must have either

1. k = j, σ3 = σ2 and l = i, σ1 = σ4 or

2. k = i, σ1 = σ3 and l = j, σ2 = σ4 .

In this case, by using the anticommutation relations of fermions, we have

1.

ĉ†iσ1
ĉ†jσ2

ĉlσ4 ĉkσ3 |ΦHF〉 = ĉ†iσ1
ĉ†jσ2

ĉiσ1 ĉjσ2 |Φ HF〉 (1.18)

= δijδσ1σ2 ĉ
†
iσ1
ĉiσ1 |ΦHF〉 − niσ1njσ2 |ΦHF〉 , (1.19)
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2.

ĉ†iσ1
ĉ†jσ2

ĉlσ4 ĉkσ3 |ΦHF〉 = ĉ†iσ1
ĉ†jσ2

ĉjσ2 ĉiσ1 |ΦHF〉 (1.20)

= −δijδσ1σ2niσ1 |ΦHF〉+ niσ1njσ2 |ΦHF〉 , (1.21)

where niσ = ĉ†iσ ĉiσ is the occupation number operator for a given spin. So, the two-body term of

Eq.(1.17) becomes

1

2

∑
ijkl=1

∑
σ1σ2σ3σ4

〈iσ1jσ2|v̂c|kσ3lσ4〉 〈ΦHF|ĉ†iσ1
ĉ†jσ2

ĉlσ4 ĉkσ3 |ΦHF〉 =
1

2

∑
ij

∑
σ1σ2

niσ1njσ2

(
〈iσ1jσ2|v̂c|iσ1jσ2〉

− 〈iσ1jσ2|v̂c|jσ2iσ1〉
)
, (1.22)

and the total energy can be finally written as,

〈ΦHF|Ĥ|ΦHF〉 =
∑
iσ

∫
dxφ∗iσ(x)

[
− ∇

2
r

2
+ vext(x)

]
φiσ(x)

+
1

2

∑
ijσ1σ2

∫
dxdx′ φ∗iσ1

(x)φ∗jσ2
(x′)vc(x, x

′)φiσ1(x)φjσ2(x′)

− 1

2

∑
ij,σ1σ2

∫
dxdx′ φ∗iσ1

(x)φ∗jσ2
(x′)vc(x, x

′)φiσ1(x′)φjσ2(x) . (1.23)

By writing explicitly the spins, Eq.(1.23) becomes

〈ΦHF|Ĥ|ΦHF〉 =
∑
iσ

∑
s

χ∗σ(s)χσ(s)

∫
dr ϕ∗iσ(r)

[
− ∇

2
r

2
+ vext(x)

]
ϕiσ(r)

+
1

2

∑
ijσ1σ2

∑
s

χ∗σ1
(s)χσ1(s)

∑
s′

χ∗σ2
(s′)χσ2(s′)

∫
drdr′ ϕ∗iσ1

(r)ϕ∗jσ2
(r′)vc(r, r

′)ϕiσ1(r)ϕjσ2(r′)

− 1

2

∑
ij,σ1σ2

∑
s

χ∗σ1
(s)χσ2(s)

∑
s′

χ∗σ2
(s′)χσ1(s′)

∫
drdr′ ϕ∗iσ1

(r)ϕ∗jσ2
(r′)vc(r, r

′)ϕiσ1(r′)ϕjσ2(r) , (1.24)

and by using
∑
s
χ∗σ1

(s)χσ2(s) = δσ1σ2 , we obtain

EHF = 〈ΦHF|Ĥ|ΦHF〉 =
∑
iσ

∫
dr ϕ∗iσ(r)

[
− ∇

2
r

2
+ vext(x)

]
ϕiσ(r)

+
1

2

∑
ijσ1σ2

∫
drdr′ ϕ∗iσ1

(r)ϕ∗jσ2
(r′)vc(r, r

′)ϕiσ1(r)ϕjσ2(r′)︸ ︷︷ ︸
EH

−1

2

∑
ij,σ1

∫
drdr′ ϕ∗iσ1

(r)ϕ∗jσ1
(r′)vc(r, r

′)ϕiσ1(r′)ϕjσ1(r)︸ ︷︷ ︸
Ex

, (1.25)

where EH is the Hartree energy and Ex is the exchange energy. Given that the one-body density is

defined as

n(r) =
∑
iσ

ϕ∗iσ(r)ϕiσ(r) , (1.26)
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which describes the probability of finding an electron at r, the Hartree energy in terms of n is

EH =
1

2

∫ ∫
drdr′

n(r)n(r′)

|r − r′|
. (1.27)

It is important to note that the EH contains a self-interaction error within the HF context. This

error arises because each electron, which contributes to the electron density, interacts with the overall

density including itself. On the other hand, the one-body spin-resolved density-matrix is defined as

γσ(r, r′) =
∑
i

ϕ∗iσ(r′)ϕiσ(r) , (1.28)

so, the exchange energy is

Ex = −
∑
σ

1

2

∫ ∫
drdr′

γσ(r, r′)γσ(r′, r)

|r − r′|
. (1.29)

Interestingly, the Hartree self-interaction error is corrected by the exchange term when i = j in

Eq.(1.25) . To derive the HF equation, we use the same principle as in the Hartree equation in

the previous section,

δ

δϕ∗iσ(r)

[
〈ΦHF|Ĥ|ΦHF〉 −

∑
jσ′

εjσ′

∫
drϕ∗jσ′(r

′)ϕiσ(r′)

]
= 0 . (1.30)

Hence, we obtain the HF equation as follows,(
− 1

2
∇2
r +vext(r)+

∑
jσ′

∫
dr′ϕ∗jσ′(r

′)ϕjσ′(r
′)vc(r, r

′)

)
ϕiσ(r)−

∑
j

∫
dr′ ϕ∗jσ(r′)ϕjσ(r)vc(r, r

′)ϕiσ(r′)

= εiσϕiσ(r) . (1.31)

From Eq.(1.31), we obtain the Hartree potential as previously defined in Eq.(1.9) and

vx(r, r′) =
∑
j

∫
dr′ ϕ∗jσ(r′)ϕjσ(r)ϕiσ(r′)vc(r, r

′) , (1.32)

which is the exchange Fock potential. It accounts for the effect of the Pauli exclusion principle, which

states that two electrons with the same spin cannot occupy the same spatial location. The exchange

term in the HF equation reflects this principle. The exchange interaction only occurs between electrons

with parallel spins, and there is no sum over spin in the exchange term. When i = j in the HF

equation, the exchange term cancels out the self-interaction error present in the Hartree potential,

effectively solving this problem. It ensures that each electron does not interact with itself, leading to

an improved description of the electronic interactions. It is important to note that in the HF equation,

the motions of fermions with equal spin are correlated, meaning that their behavior is influenced by

each other. However, there are no such restrictions for particles with different spins, and their motions

are uncorrelated in the HF approximation. The difference between the exact ground-state energy and

the HF ground-state energy is known as the “correlation energy”. It captures the additional electronic

correlations beyond the HF approximation.2

2The many-body wavefunction could be seen as a superposition of an infinite sum over Slater determinants. So, the
HF is a useful approximation of the full many-body wavefunction.
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Chapter 2

Density Functional Theory

Density Functional Theory (DFT), introduced by Hohenberg and Kohn in 1964 [7], has gained immense

popularity and is now one of the most widely employed theories globally. In its essence, DFT is an

exact theory for describing “at least” the ground state of interacting many-body systems. It acts

in contrast to the straightforward procedure, which relies on starting from the Schrödinger equation

for the system of interest and find the desired observable from the wavefunction. The wavefunction

contains vastly more information than one would care to know about, unless one would like to calculate

all possible observables, which is usually not the case. DFT instead simplifies the electronic problem

by focusing on a much easier quantity: “the electron density n”, which, as will be shown, contains

enough information to determine all we need for any system.

2.1 The Hohenberg-Kohn theorems

The hamiltonian of an interacting many-electron system can be divided into a universal part that

includes the electronic kinetic energy and Coulomb interaction between electrons and an external part

that represents the effect of an external potential vext due to the nuclei and other sources,

Ĥ = T̂ + V̂ee + V̂ext , (2.1)

where T̂ and V̂ee are the kinetic energy and Coulomb interaction operators, respectively. The only

component that varies between different systems is the external potential vext, while T̂ + V̂ee can be

considered universal because it is the same for any electronic system. As a result, it is the external

potential that defines the hamiltonian and, consequently, the ground-state many-body wavefunction,

denoted as Ψ0. This means that Ψ0 depends on vext. Consequently Ψ0 can be expressed as a functional

of vext. The question that we should adress now is: is this relation unique? Or in mathematical terms,

can we consider the relation between vext and Ψ0 as a bijective relation? If yes, we would able, in

principle, to express each observable of the ground-state as a unique functional of the external potential

as follows,

O = O[vext] = 〈Ψ0[vext]| Ô |Ψ0[vext]〉 . (2.2)

This would be represented by the right-panel of Fig. 2.1. While this may seem self-evident, it can
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Figure 2.1: One-to-one correspondence between vext and Ψ0

be formally proven by establishing a one-to-one correspondence between vext and Ψ0. To exclude the

scenario on the left-panel of Fig. 2.1, we just exclude the case in which the ground-state is degenerate.

In order to address the scenario of the central-panel of Fig. 2.1, we assume that two different potentials

(that differ by more than a constant) can lead to the same Ψ0. Therefore, the derivation takes the

following form,

v
(1)
ext 6= v

(2)
ext + constant , (2.3)

meaning that we have two different hamiltonians,

Ĥ1 = T̂ + V̂ee + V̂
(1)

ext , (2.4)

and,

Ĥ2 = T̂ + V̂ee + V̂
(2)

ext . (2.5)

Using these two different hamiltonians, since they have the same Ψ0, we obtain

Ĥ1 |Ψ0〉 − Ĥ2 |Ψ0〉 = V̂
(1)

ext |Ψ0〉 − V̂ (2)
ext |Ψ0〉 (2.6)

= V
(1)

ext |Ψ0〉 − V (2)
ext |Ψ0〉 (2.7)

= E1 − E2 |Ψ0〉 , (2.8)

which is a contradiction with our initial assumption where the two selected external potentials differ

by more than a constant. Thus, we conclude that there is a one-to-one correspondence between vext

and Ψ0, which is represented by the right side of Fig. 2.1. Consequently, every observable in the

ground-state is a unique functional of vext.

The next question is: “is there a one-to-one correspondence between the vext and the ground-state

density n0?”.

If yes, there should be a one-to-one correspondence between Ψ0 and n0. Let us consider that two

different ground-states with their one-to-one correspondence external potentials yield the same density

as represented in the left-hand subfigure of Fig. 2.2. So, we have two hamiltonians,

Ĥ1 = T̂ + V̂ee + V̂
(1)

ext , (2.9)

with Ψ1 as the ground-state wavefunction and,
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Figure 2.2: One-to-one correspondence between vext and n0

Ĥ2 = T̂ + V̂ee + V̂
(2)

ext , (2.10)

with Ψ2 as the ground-state wavefunction. Then, the ground-state energy for H1, called E1 evaluated

with Ψ1 is the minimum among all possible wavefunctions1. So, we have

E1 = 〈Ψ1| Ĥ1 |Ψ1〉 < 〈Ψ2| Ĥ1 |Ψ2〉 = 〈Ψ2| Ĥ1 + Ĥ2 − Ĥ2 |Ψ2〉 (2.11)

= E2 + 〈Ψ2| V̂ (1)
ext − V̂

(2)
ext |Ψ2〉 (2.12)

= E2 +

∫
dr
(
v

(1)
ext(r)− v

(2)
ext(r)

)
n2(r) , (2.13)

where n2(r) is the density obtained using Ψ2 (to understand the transition to the last equation from

the one before see Subsec. 2.2). We repeat exactly the same steps, by exchanging the role of system

1 and 2. This leads to,

E2 = 〈Ψ2| Ĥ2 |Ψ2〉 < 〈Ψ1| Ĥ2 |Ψ1〉 = 〈Ψ1| Ĥ2 + Ĥ1 − Ĥ1 |Ψ1〉 (2.14)

= E1 + 〈Ψ1| V̂ (2)
ext − V̂

(1)
ext |Ψ1〉 (2.15)

= E1 +

∫
dr
(
v

(2)
ext(r)− v

(1)
ext(r)

)
n1(r) , (2.16)

where n1(r) is the density built by Ψ1, knowing that our initial assumption was to consider that

n1 = n2. So, by adding the Eq.(2.13) to Eq.(2.16), we obtain the following contradiction,

E1 + E2 < E1 + E2 . (2.17)

In conculsion, there is a one-to-one correspondence between vext and n0 as shown in the right-hand

panel of Fig. 2.2. Consequently, every observable is a functional of the ground-state density. This is

the first HK theorem. So, the first HK theorem shows that the ground-state total energy, which is an

observable, can be written as a functional of the density,

EHK[n] = FHK[n] +

∫
dr vext(r)n(r) , (2.18)

where FHK[n] = 〈T̂ 〉+ 〈V̂ee〉 is a universal functional of the density, which is the same for any many-

electron system.

1The extension to degenerate ground-states is possible [86].
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The theory continues with a second HK theorem that establishes the variational property of the total

energy,

E = E[n] = 〈Ψ0[n]| Ĥ |Ψ0[n]〉 , (2.19)

with respect to the density. So, the ground-state total energy can be found by varying the density to

minimize the energy,

E0 = min
n→n0

E[n] . (2.20)

As a summary, DFT has three essential messages: (1) there is one-to-one correspondence between

the external potential and the ground-state density, meaning that the ground-state properties are

functional of the ground-state density. (2) The total energy has also a variational character in terms

of the density. (3) The universality of FHK[n].

2.2 Difficulty to find a density functional

We can notice that the external potential observable can be expressed in terms of the density, as

indicated in Eq.(2.18). Below, we present the justification for this relationship, where any observable

can be defined in terms of the full many-body wavefunction.

〈V̂ext〉 =

∫
dr1...drN Ψ∗(r1, ..., rN )

∑
i

vext(ri)Ψ(r1, ...rN ) (2.21)

=

∫
dr1...drN Ψ∗(r1, ..., rN )vext(r1)Ψ(r1, ..., rN ) + ...+

∫
dr1...drN Ψ∗(r1, ..., rN )vext(rN )

Ψ(r1, ..., rN ) .

(2.22)

Since the electrons are indistinguishable particles, the integrals above are the same. So,

〈V̂ext〉 = N

∫
dr1...drN Ψ∗(r1, ..., rN )vext(r1)Ψ(r1, ...rN ) (2.23)

=

∫
dr1 vext(r1)N

∫
dr2...drN Ψ∗(r1, ..., rN )Ψ(r1, ...rN )︸ ︷︷ ︸

n(r1)

(2.24)

=

∫
dr1 vext(r1)n(r1) , (2.25)

where n(r1) is the electron density at position r1.
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For the kinetic energy operator, we do the same,

〈T̂ 〉 =

∫
dr1...drN Ψ∗(r1, ..., rN )

(
−
∑
i

∇2
ri

2

)
Ψ(r1, ..., rN ) (2.26)

=

∫
dr1...drN Ψ∗(r1, ..., rN )

(
−
∇2
r1

2

)
Ψ(r1, ..., rN ) + ...

+

∫
dr1...drNΨ∗(r1, ..., rN )

(
−
∇2
rN

2

)
Ψ(r1, ..., rN )

(2.27)

= N

∫
dr1...drN Ψ∗(r1, ..., rN )

(
−
∇2
r1

2

)
Ψ(r1, ..., rN ) (2.28)

=

∫
dr1 lim

r1→r

(
− ∇

2
r

2

)
N

∫
dr2...drNΨ∗(r1, ..., rN )Ψ(r, ...rN )︸ ︷︷ ︸

γ(r1,r)

(2.29)

=

∫
dr1 lim

r1→r

(
− ∇

2
r

2

)
γ(r1, r) , (2.30)

where γ(r1, r) is the one-body density matrix. The remaining observable is the two-body Coulomb

interaction energy, derived as follows,

〈V̂ee〉 =

∫
dr1...drN Ψ∗(r1, ..., rN )

1

2

∑
i 6=j

1

|ri − rj |
Ψ(r1, ..., rN ) (2.31)

= N

(∫
dr1...drN Ψ∗(r1, ..., rN )

1

2

1

|r1 − r2|
Ψ(r1, ..., rN )

+

∫
dr1...drN Ψ∗(r1, ..., rN )

1

2

1

|r1 − r3|
Ψ(r1, ..., rN ) + ...

+

∫
dr1...drN Ψ∗(r1, ..., rN )

1

2

1

|r1 − rN |
Ψ(r1, ..., rN )

)
,

(2.32)

where the last equation is multiplied by N due to the double summation. So, we obtain

〈V̂ee〉 =
1

2

∫
dr1dr2

1

|r1 − r2|
N(N − 1)

∫
dr3...drN Ψ∗(r1, ..., rN )Ψ(r1, ..., rN )︸ ︷︷ ︸

n(2)(r1,r2)

(2.33)

=
1

2

∫
dr1dr2

1

|r1 − r2|
n(2)(r1, r2) , (2.34)

where n(2)(r1, r2) is the two-body density. So, among the three terms in the hamiltonian, only the

external potential energy can be written as an explicit functional of the density, while FHK[n] is an

unknown functional of the density.

2.3 The Kohn-Sham auxiliary system

The HK theorem, despite its intriguing concept, did not initially provide a practical computational

method for real systems. The difficulty to develop such a computational method is mainly related

to the electron-electron Coulomb interaction. However, Kohn and Sham [8] addressed this issue by
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introducing an auxiliary system known today as the “Kohn-Sham (KS) system,” which made DFT a

practical computational approach. The KS ansatz involves replacing the original interacting system

with a non-interacting one, constructed such that the two densities coincide. Within the KS scheme,

the role of the Coulomb interaction is taken by the Hartree, exchange and correlations potentials. By

using the non-interacting auxiliary system, and by adding and subtracting the kinetic energy of an

independent-particle system and the Hartree energy, the total energy can be written in the KS form

as

EKS[n] = Ts[s] +

∫
dr vext(r)n(r) + EH[n] + Exc[n] , (2.35)

where Ts is the kinetic energy for the independent-particle system, EH is the Hartree energy and Exc

is the exchange-correlation contribution, defined as

Exc[n] = 〈T̂ 〉 − Ts[n] + 〈V̂ee〉 − EH[n] , (2.36)

where 〈T̂ 〉+ 〈V̂ee〉 = FHK[n]. The KS single-particle equations are derived through the application of

the variational principle. This involves minimizing the ground-state energy, denoted as EKS[n], with

respect to the one-particle wavefunctions of the non-interacting auxiliary system, with the condition

of normalization of the single-particle wavefunctions
∫
dr ϕ∗i (r)ϕi(r) = 1,

δ

δϕ∗i (r)

(
EKS[n]−

∑
i

εi

∫
dr ϕ∗i (r)ϕi(r)

)
= 0 . (2.37)

The KS equations are then obtained by using the chain-rule δ
δϕ = δ

δn
δn
δϕ with the density in Eq.(2.37),

which yields (
− 1

2
∇2
r + vKS(r)

)
ϕi(r) = εiϕi(r) , (2.38)

where

vKS(r) = vext(r) + vH([n], r) + vxc([n], r) (2.39)

= vext(r) +
δEH[n]

δn(r)
+
δExc[n]

δn(r)
. (2.40)

The KS equations must be solved in a self-consistent scheme. The resulting KS density matches the

interacting density. However, the lack of knowledge regarding the exact expression for the exchange-

correlation potential in terms of the density makes the theory only exact in principle. Approximations

are needed to be able to obtain results for real systems.

2.4 Approximate exchange-correlation functional

As the exchange-correlation (xc) energy remains unknown in DFT, it necessitates approximation. The

quest for suitable approximations has been and still is a prominent focus in DFT research, yielding

numerous proposals and investigations. In this section, we delve into some of these approximations,

assessing their effectiveness and limitations.

The Local Density Approximation (LDA), introduced by Kohn and Sham [8], is indeed one of the

earliest approximations for the xc energy in DFT. This approximation is based on the hypothesis
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that the xc energy depends locally on the electron density, and it assumes that the xc energy can be

approximated using the xc energy of the homogeneous electron gas (HEG) at that density as

ELDA
xc [n] =

∫
dr n(r)εHEG

xc (n(r)) , (2.41)

where εHEG
xc (n(r)) is the xc energy per particle for the HEG [14]. LDA has found successful applications

in inhomogeneous systems , particularly in cases where electrons are highly delocalized, but it does

have its limitations. One significant limitation is its applicability primarily to low-density systems,

where electrons are localized. Additionally, LDA is not entirely free from self-interaction errors. This

is because the exchange energy, which is intended to correct errors in the Hartree term as we have

seen in Chap. 1, is not exact within the LDA framework.

One approach to extend beyond the LDA is to introduce a density gradient dependence into the

functional. Various generalized gradient approximations (GGA) [87] have been proposed, and they

often yield improved results compared to LDA. However, it is important to note that GGA, like LDA,

is not entirely free from self-interaction errors.

2.5 Is the band gap energy a functional of the density?

As discussed earlier, observables can be expressed as functionals of the ground-state density within the

framework of DFT. However, when it comes to observables like the energy gap (Eg), which involves

changes in the number of electrons, we need to be more careful when using DFT. Another strategy

to treat this can be ensemble DFT [88]. The definition of Eg is typically expressed in terms of energy

differences as

Eg = (EN+1
0 − EN

0 )− (EN
0 − EN-1

0 ) , (2.42)

where all of the energies are ground-state energies but for different particle number. In principle,

ground-state DFT has the potential to yield the exact ground-state energy, and one might expect that

by performing three ground-state DFT calculations for systems with N − 1, N , and N + 1 electrons,

we should obtain the exact Eg. However, in practice, this is most often not the case. This is the

so-called ∆SCF method. This method cannot be applied directly to a solid, where the effect of adding

or removing one electron (out of the 1023 electrons) is difficult to capture. Good results can be instead

obtained for molecules. For solids, people often rely on the KS eigenvalues, which in principle do

not carry the addition and removal energies meaning. In other words, they do not fulfill Koopmans’

theorem.
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Chapter 3

Time Dependent Density Functional

Theory

While DFT has been extremely successful for ground-state properties, there are many important issues

which extend beyond its reach. Most notably, time-dependent processes and excited state properties

of electronic systems either are not included at all or are not easily accessible. This has motivated the

development of time-dependent density functional theory (TDDFT). The formal foundation of TDDFT

is the Runge–Gross (RG) theorem (1984) [89] - the time-dependent analogue of the Hohenberg-Kohn

(HK) theorem. In the spirit of DFT, the TDDFT core idea is that the dynamics of any many-electron

system is encoded in its time-dependent density, which makes the knowledge of the wavefunction

unnecessary.

3.1 The Runge-Gross theorem

The hamiltonian of N interacting nonrelativistic electrons moving in a time-dependent external po-

tential is given as

Ĥ(t) = T̂ + V̂ee + V̂ext(t) , (3.1)

where V̂ext(t) =
N∑
i=1

vext(ri, t). The dynamic evolution of the system is governed by the time-dependent

Schrödinger equation,

i
∂

∂t
Ψ(r1, ..., rN , t) = Ĥ(t)Ψ(r1, ..., rN , t) . (3.2)

The time-dependent external potential defines the hamiltonian and produces a time-dependent

wavefunction Ψ(t) for a given initial state Ψ0. Therefore, Ψ(t) generates a time-dependent density

n(r, t). This can be illustrated in the following map,

Figure 3.1: Map showing that the time dependent system is defined by the time dependent external
potential.
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To develop a TDDFT, one needs to establish an inversion of the map shown above. In the context

of DFT, it was shown that the external potential uniquely determines the ground-state density and

vice versa. In TDDFT, the goal is to demonstrate that the time-dependent density, denoted as n(r, t),

uniquely determines the dynamic behavior of the electronic system over time. In other words, we

need to demonstrate that there is one-to-one correspondence between the time dependent densities

and potentials. What we aim to demonstrate is that when we have two different potentials, both

acting on a fixed initial quantum state denoted as Ψ0, these two potentials will result in two distinct

time-dependent electron densities. To clarify the concept of “different potentials”, we consider that

these potentials vary only by an additional time-dependent function added to one of them. In other

words, they differ by a time-dependent additive term,

v
(1)
ext(t) = v

(2)
ext(t) + c(t) , (3.3)

where the corresponding wavefunctions differ by a phase factor Ψ(1)(t) = e−iαtΨ(2)(t), where dα
dt = c(t).

In this case, the resulting two densities will be identical,

n(1)(r, t) = 〈Ψ(1)| n̂(r) |Ψ(1)(t)〉 (3.4)

= 〈Ψ(2)| eiα(t)n̂(r)e−iαt |Ψ(2)(t)〉 (3.5)

= 〈Ψ(2)| n̂(r) |Ψ(2)(t)〉 (3.6)

= n(2)(r, t). (3.7)

Thus, we need to consider two potentials that differ by more than a constant v
(1)
ext(t) 6= v

(2)
ext(t) + c(t),

which is the same as we do in DFT. The proof proceeds into two steps: we first prove the uniqueness

of the current densities, then from there to the densities. The equation of motion for the current

density j is given as follows,

i
∂

∂t
j(r, t) = 〈Ψ(t)| [ĵ(r), Ĥ(t)] |Ψ(t)〉 , (3.8)

where

ĵ(r) =
1

2i

N∑
j=1

[
∇jδ(r − rj) + δ(r − rj)∇j

]
. (3.9)

So, since the two different external potentials yield two different wavefunctions that evolve from the

same initial state Ψ0, we obtain

∂

∂t

(
j(1)(r, t)− j(2)(r, t)

)∣∣∣∣
t=t0

= −i 〈Ψ0| [ĵ(r), Ĥ(1)(t0)− Ĥ(2)(t0)] |Ψ0〉 (3.10)

= −n(r, t0)∇
(
v

(1)
ext(r, t0)− v(2)

ext(r, t0)
)
, (3.11)

where if the two potentials are different by more a constant at t0, then the derivative of the two

current densities is different from zero. In other words, the two current densities j(1) and j(2) have a

different time derivative at t0, which means that they could be equivalent at t0 but their time evolution

will be different. But does that hold true if we have two different potentials, that are equal at t0?
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The two different potentials, if they are equivalent at t0, would have different time derivative, i.e,
∂v

(1)
ext(r,t0)
∂t 6= ∂v

(2)
ext(r,t0)
∂t . So, the second derivative of the current densities,

∂2

∂t2

(
j(1)(r, t)− j(2)(r, t)

)∣∣∣∣
t=t0

= −n(r, t0)∇
(
∂v

(1)
ext(r, t0)

∂t
− ∂v

(2)
ext(r, t0)

∂t

)∣∣∣∣
t=t0

, (3.12)

will be different. Thus, the two current densities are different. However, what happens if the two

different potentials have the same time derivative at t0, or even the second time derivative? In fact,

there must be a finite time derivative, which is different for the two potentials at t0, otherwise v
(1)
ext

and V
(2)

ext are equivalent. So, at some finite time derivative we have

∂k+1

∂tk+1

(
j(1)(r, t)− j(2)(r, t)

)∣∣∣∣
t=t0

= −n(r, t0)∇
(
∂kv

(1)
ext(r, t0)

∂tk
− ∂kv

(2)
ext(r, t0)

∂tk

)∣∣∣∣
t=t0

, (3.13)

meaning that the two current densities are different if the potentials differ by more than a constant.

Figure 3.2: Runge-Gross theorem: two different external potential having the same ground-state at
t0, generate two different densities.

With this, we have demonstrated the first part of the Runge-Gross theorem. The second part consists

in showing that having different current densities means that the densities themselves are different.

To do that, we need a relation between the density and the current density, which is given by the

continuity equation,
∂

∂t
n(r, t) = −∇.j(r, t) , (3.14)

which leads to

∂k+2

∂tk+2

(
n(1)(r, t)− n(2)(r, t)

)∣∣∣∣
t=t0

= −∇. ∂
k+1

∂tk+1

(
j(1)(r, t)− j(2)(r, t)

)∣∣∣∣
t=t0

(3.15)

= ∇.
[
n(r, t0)∇

(
∂kv

(1)
ext(r, t0)

∂tk
− ∂kv

(2)
ext(r, t0)

∂tk

)∣∣∣∣
t=t0

]
. (3.16)

So, two different potentials will generate two different densities, meaning that there is a one-to-one

correspondence between the external potential and the density, given in the initial state. Thus, the

map in Fig. 3.1 is invertible and the Runge-Gross theorem is demonstrated.1

1This demonstration holds if the divergence in Eq.(3.16) is different from zero [90].
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3.2 The time-dependent KS scheme

The Runge-Gross theorem asserts that given the initial state, any time-dependent observable can be

expressed as a unique functional of the time-dependent density. However, like in the case of DFT,

the exact functionals are generally unknown. Consequently, a Kohn-Sham (KS) scheme has been

introduced to render TDDFT computationally feasible and practical [90]. The TDDFT KS equation

is given as follows: (
− ∇

2

2
+ vKS[n](r, t)

)
ϕKS
i (r, t) = i

∂

∂t
ϕKS
i (r, t) , (3.17)

where the time-dependent KS orbitals construct the time-dependent density,

n(r, t) =
∑
i=occ

|ϕKS
i (r, t)|2 . (3.18)

The time-dependent KS potential vKS(r, t) is

vKS[n](r, t) = vext[n](r, t) + vH[n](r, t) + vxc[n](r, t) , (3.19)

where

vH[n](r, t) =

∫
dr′

n(r′, t)

|r − r′|
, (3.20)

and vxc[n](r, t) is, like in the DFT case, an unknown potential. It is in principle much more com-

plicated than its static equivalent vxc[n](r), because its dependence is in terms of the densities at all

previous times, and in terms of the initial many-body and KS states.

This thesis does not involve TDDFT calculations in real time. However, some ingredients of linear

response TDDFT will be used in Chap. 7. We will therefore move directly to the linear response

formalism.

3.3 Time-dependent density functional theory in linear response

The linear response polarizability, often denoted as χ, is a vital quantity that encapsulates essential

informations about electronic systems, in particular about their optical properties. It contains details

about the system’s excitation energies and can be used to compute absorption and electron energy

loss spectra. In principle, it can be calculated exactly within the TDDFT framework. χ is defined as

the linear relation between an external applied potential and the variation of the density,

χ(r1, t1; r2, t2) =
δn(r1, t1)

δvext(r2, t2)
(3.21)

=

∫
dr3dt3

δn(r1, t1)

δvKS(r3, t3)

δvKS(r3, t3)

δvext(r2, t2)
. (3.22)

(3.23)
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By using the vKS expression of Eq.(3.19), we obtain

χ(r1, t1; r2, t2) =

∫
dr3dt3 χ

KS
0 (r1, t1; r3, t3)

(
δ(r3 − r2)δ(t3 − t2) +

∫
dr4dt4 vc(r3, r4)

δn(r4, t4)

δvext(r2, t2)

+
δvxc[n](r3, t3)

δvext(r2, t2)

)
(3.24)

= χKS
0 (r1, t1; r2, t2) +

∫
dr3dt3dr4dt4 χ

KS
0 (r1, t1; r3, t3)

(
vc(r3, r4)χ(r4, t4; r2, t2)

+
δvxc[n](r3, t3)

δn(r4, t4)

δn(r4, t4)

δvext(r2, t2)

)
(3.25)

= χKS
0 (r1, t1; r2, t2) +

∫
dr3dt3dr4dt4 χ

KS
0 (r1, t1; r3, t3)

(
vc(r3, r4)

+ fxc(r3, t3; r4, t4)

)
χ(r4, t4; r2, t2) ,

(3.26)

where χKS
0 = δn

δvKS
is the KS non-interacting polarizability and fxc = δvxc

δn is called the exchange-

correlation kernel. In a static system χ0, χ and fxc depend only on a time difference. In frequency

space Eq.(3.26) reads

χ(r1, r2;ω) = χ0(r1, r2;ω) +

∫
dr3dr4 χ0(r1, r3, )

(
vc(r3, r4) + fxc(r3, r4;ω)

)
χ(x4, x2;ω) . (3.27)

From the polarizability χ, one obtains the inverse dielectric function ε−1, defined as

ε−1(r1, r2;ω) = δ(r1 − r2) +

∫
dr3 vc(r1, r3)χ(r3, r2;ω) , (3.28)

which is a key quantity for spectroscopy and in MBPT. The inverse dielectric function also screens

the Coulomb interaction, yielding the screened interaction W = ε−1vc.

3.4 fxc kernel in practice

The fxc kernel is a critical quantity of interest, because its knowledge enables the calculation of χ.

However, since the exact vxc functionals are unknown, so the fxc is unknown, and approximations are

necessary, which leads to approximated χ. The simplest approximation for χ is to use χ ≈ χKS
0 , relying

on independent electronic transitions between the KS orbitals. Unfortunately, this method has shown

significant errors when compared to experimental results [4]. Taking a step beyond the independent

particle approximation, one can set fxc = 0, resulting in the well-known Random Phase Approxi-

mation (RPA), which includes the variation of the Hartree potential upon excitations. However, the

RPA is not an efficient method to describe optical properties of solids. Finding feasible and accurate

approximations for fxc has been and continues to be a significant challenge. Several approximations

have been proposed, including the Adiabatic Local Density Approximation (ALDA), which eliminates

frequency dependence and long-range effects [91]. While ALDA provides improvements beyond the
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RPA in some cases, it still has limitations, as the long-range effects and frequency dependence are

important factors that need to be addressed [49].

While in this thesis we will not propose new fxc for TDDFT, we will propose a link between

time-dependent density functional theory and Green’s function theory for the determination of total

energies. This will be discussed in Chap. 7.
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Chapter 4

Many-Body Green’s function methods

As pointed out in the previous chapters, in theoretical condensed matter physics, the focus is often

on obtaining observables and properties of materials without relying on the explicit knowledge of

the full many-body wavefunction. This is because the wavefunction becomes prohibitively large and

difficult to handle for systems with a large number of particles [92]. Therefore, the challenge lies in

finding alternative methods that can provide accurate and reliable predictions for observables and

properties using more tractable quantities. One such approach is to work within the framework of

Density Functional Theory (DFT) (see Chap. 2) and its time-dependent extension (TDDFT) ( see

Chap. 3), which use instead of the full many-body wavefunction the electron one-body density as the

central quantity, defined below in terms of the field operators at zero-temperature T = 0 K and in

equilibrium:

n(x) = 〈N0|ψ̂†(x)ψ(x)|N0〉 , (4.1)

where |N0〉 is the many-body wavefunction in the ground-state for N electrons. x stands for position

r and spin σ. ψ̂ and ψ̂† are the annihilation and creation field operators, respectively. They can be

expanded in a single-particle basis φi(x),

Ψ̂(x) =
∑
i

φi(x)ĉi , (4.2)

and

Ψ̂†(x) =
∑
i

φ∗i (x)ĉ†i . (4.3)

It is important to note that these operators satisfy the same commutation relations as the operators

ĉ†i and ĉi, so we have {
Ψ̂(x), Ψ̂(x′)

}
= 0 , (4.4){

Ψ̂†(x), Ψ̂†(x′)
}

= 0 , (4.5){
Ψ̂(x), Ψ̂†(x′)

}
= δ(x− x′) . (4.6)

As discussed in Chap.2, DFT has been successful in describing ground-state properties of materials by

approximating the unknown exchange-correlation energy functional. However, developments in DFT
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are often difficult due to our ignorance of the exchange-correlation potential (vxc) as well as the lack of

knowledge about how some observables or other important quantities can be written in terms of the

density. For instance, we do not know how the exchange energy can be written in terms of the density.

Therefore, we need to move on and define other objects than can be used as central quantities to find

observables. Another possible object is the spin-resolved one-body density-matrix defined as follows,

γ(x, x′) = 〈N0|ψ̂†(x′)ψ(x)|N0〉 , (4.7)

which is non-local in space and spin coordinates. It is possible to write explicitly the exchange energy

in terms of γ. However, the quantities n and γ are static quantities (local in time and time independent

in equilibrium) that do not capture the internal time-dependent behavior of the system. It is therefore

difficult to describe quantities that depend on the internal temporal evolution or frequency-dependent

properties, in particular spectra. Thus, the need for a time non-local object that incorporates temporal

aspects of a system is obvious.

4.1 Why are Green’s functions important?

The object that we are looking for, which besides the non-locality in space and spin is non-local in

time, is the time-ordered one-body Green’s function (1-GF), defined at T = 0 K as

G(1, 2) = −i 〈N0|T̂
[
ψ̂(1)ψ̂†(2)

]
|N0〉 (4.8)

= −iθ(t1 − t2) 〈N0|ψ̂(1)ψ̂†(2)|N0〉+ iθ(t2 − t1) 〈N0|ψ̂†(2)ψ̂(1)|N0〉 , (4.9)

where 1 = x1, t1 and 2 = x2, t2. T̂ is the time-ordering operator and θ is the heaviside function. The

1-GF, which is non-local in space, spin and time, describes the propagation of an electron (or hole)

from a space-spin-time point to another. At equilibrium, the 1-GF depends only on the time difference

t1 − t2. Its frequency Fourier transform reads

G(x, x′;ω) =
∑
s

[
〈N0|Ψ̂†(x′) |N − 1〉s 〈N − 1|s Ψ̂(x)|N0〉

ω − (EN0 − EN−1
s )− iη

+
〈N0|Ψ̂(x) |N + 1〉s 〈N + 1|sΨ̂†(x′)|N0|〉

ω − (EN+1
s − EN0 ) + iη

]
,

(4.10)

where |N − 1〉s and |N + 1〉s are the many-body states for N − 1 and N + 1 electrons, respectively.

The
∑
s

stands for the sum over all possible states, including ground and excited states, whereas |N0〉

remains the ground-state wavefunction since T = 0 K. The poles of the 1-GF in Eq.(4.10) have a

significant implication. These poles correspond to the energy differences between systems with N and

N − 1 electrons, as well as between systems with N and N + 1 electrons. These energies are directly

related to the measured energies in the photoemission spectrum. It establishes a direct connection

between experiment and the integrated spectral function of the 1-GF expressed as
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A(ω) =
1

π
|
∫
dx Im

(
G(x, x;ω)

)
| (4.11)

=
∑
s

〈N0|Ψ̂†(x′) |N − 1〉s 〈N − 1|s Ψ̂(x)|N0〉 δ(ω − (EN0 − EN−1
s ))

+
∑
s

〈N0|Ψ̂(x) |N + 1〉s 〈N + 1|sΨ̂†(x′)|N0|〉 δ(ω − (EN+1
s − EN0 )) .

(4.12)

In practice one of the main purposes of using the 1-GF is to access the band structure informations

of materials [93]. However, many more observables can be written in terms of the 1-GF, such as

the one-body density n(x) = −iG(x, t;x, t+), density-matrix γ(x, x′) = −iG(x, t;x′, t+) and total

energy. The main interest of this thesis is ground-state total energy (E0) calculations using Green’s

functions. Among the different possibilities that link E0 with the 1-GF, we use the Galitskii-Migdal

[94] expression, written as the following,

E0 =
1

2
lim

x′→x,t′→t+

∫
dx

(
∂

∂t
− ih(x)

)
G(x, t;x′, t′) , (4.13)

where h is the one-body hamiltonian including the kinetic energy and the external potential. Another

way to write E0 in terms of the 1-GF with explicitly appearing self-energy (the self-energy will be

discussed in the next chapter) is also used in this thesis, particularly in Chap. 7. Both expressions of

E0 are derived in App. C.

The significance of the 1-GF is due to its ability to provide a wealth of observables. However,

this relies on the knowledge of the 1-GF, which itself relies on the knowledge of the many-body

wavefunctions |N − 1〉, |N0〉 and |N + 1〉 as shown in Eq.(4.10). This is absolutely useless, since

it does not avoid the many-body wavefunction calculations: it even requires calculations for many

many-body wavefunctions including a set of excited states. Hence, alternative methods are necessary

to calculate the 1-GF, making it essential to address the question: how do we get the 1-GF, by avoiding

the many-body wavefunctions? This question will be discussed in Sec. 4.2.

4.2 The equation of motion for the Green’s function

The way to make the 1-GF calculation independent from the many-body wavefunctions, is via deriving

an equation of motion for the 1-GF. In this section, we derive in detail the 1-GF equation of motion.

So, we begin by introducing the second quantization version of the exact hamiltonian in terms of field

operators:

Ĥ =

∫
dx Ψ̂†(x)h(x)Ψ̂(x)︸ ︷︷ ︸

Ĥ1

+
1

2

∫
dxdx′ Ψ̂†(x)Ψ̂†(x′)vc(x, x

′)Ψ̂(x′)Ψ̂(x)︸ ︷︷ ︸
Ĥ2

, (4.14)
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where Ĥ1 and Ĥ2 are the one-body and two-body operators, respectively. We derive the 1-GF expres-

sion defined in Eq.(4.9) with respect to the time t,

∂G(x, t;x′, t′)

∂t
= −i 〈N0|

∂Ψ̂(x, t)

∂t
Ψ̂†(x′, t′)|N0〉 θ(t− t′)− i 〈N0|Ψ̂(x, t)Ψ̂†(x′, t′)|N0〉

∂θ(t− t′)
∂t

+ i 〈N0|Ψ̂†(x′, t′)
∂Ψ̂(x, t)

∂t
|N0〉 θ(t′ − t) + i 〈N0|Ψ̂†(x′, t′)Ψ̂(x, t)|N0〉

∂θ(t′ − t)
∂t

. (4.15)

By using the following definition of the field operator evolution within the Heisenberg scheme,

∂Ψ̂(x, t)

∂t
= ieiĤt

[
Ĥ, Ψ̂(x)

]
e−iĤt (4.16)

= i
[
Ĥ, Ψ̂†(x, t)

]
(4.17)

= −ieiĤt
[
Ψ̂(x), Ĥ

]
e−iĤt , (4.18)

where

Ψ̂(x, t) = eiĤtΨ̂(x)e−iĤt , (4.19)

we obtain

∂G(x, t;x′, t′)

∂t
= −〈N0|

[
Ψ̂(x, t), Ĥ

]
Ψ̂†(x′, t′)|N0〉 θ(t− t′)− i 〈N0|Ψ̂(x)Ψ̂†(x′)|N0〉 δ(t− t′)

+ 〈N0|Ψ̂†(x′, t′)
[
Ψ̂(x, t), Ĥ

]
|N0〉 θ(t′ − t)− i 〈N0|Ψ̂†(x′)Ψ̂(x)|N0〉 δ(t− t′) . (4.20)

Then, by using the anticommutation relations, defined in Eq.(4.6), in the last term in Eq.(4.20), we

obtain

∂G(x, t, x′, t′)

∂t
= −iδ(x− x′)δ(t− t′)− 〈N0|

[
Ψ̂(x, t), Ĥ

]
Ψ̂†(x′, t′)|N0〉 θ(t− t′)

+ 〈N0|Ψ̂†(x′, t′)
[
Ψ̂(x, t), Ĥ

]
|N0〉 θ(t′ − t) . (4.21)

Now, we divide the calculation of the hamiltonian Eq.(4.14) and the field operator commutators into

two steps. We first start with the Ĥ1 part of Eq.(4.14)

[
Ψ̂(x), Ĥ1

]
=

∫
dy Ψ̂(x)Ψ̂†(y)h(y)Ψ̂(y)−

∫
dy Ψ̂†(y)h(y)Ψ̂(y)Ψ̂(x) (4.22)

=

∫
dy h(y)Ψ̂(y)δ(x− y)−

∫
dy Ψ̂†(y)Ψ̂(x)h(y)Ψ̂(y) +

∫
dy Ψ̂†(y)h(y)Ψ̂(x)Ψ̂(y) (4.23)

= h(x)Ψ̂(x)−
∫
dy Ψ̂†(y)

[
Ψ̂(x), h(y)

]
Ψ̂(y)︸ ︷︷ ︸

0

, (4.24)

and,[
Ψ̂(x), Ĥ2

]
=

∫
dyΨ̂†(y)vc(x, y)Ψ̂(y)Ψ̂(x) +

1

2

∫
dydzΨ̂†(z)Ψ̂†(y)[Ψ̂(x), vc(y, z)

]
Ψ̂(y)Ψ̂(z)︸ ︷︷ ︸

0

. (4.25)

Thus, we obtain [
Ψ̂(x), Ĥ

]
= h(x)Ψ̂(x) +

∫
dyΨ̂†(y)vc(x, y)Ψ̂(y)Ψ̂(x) . (4.26)
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So, with this, Eq.(4.21) becomes

∂G(x, t;x′, t′)

∂t
= −iδ(x− x′)δ(t− t′)− 〈N0| eiĤt

[
h(x) +

∫
dy Ψ̂†(y)vc(x, y)Ψ̂(y)

]
Ψ̂(x)e−iĤtΨ̂†(x′, t′) |N0〉 θ(t− t′)

+ 〈N0|Ψ̂†(x′, t′)eiĤt
[
h(x) +

∫
dy Ψ̂†(y)vc(x, y)Ψ̂(y)

]
Ψ̂(x)e−iĤt|N0〉 θ(t′ − t) , (4.27)

which can be written as

∂G(x, t, x′, t′)

∂t
= −iδ(x− x′)δ(t− t′)− 〈N0|Ψ̂(x, t)h(x)Ψ̂†(x′, t′)|N0〉 θ(t− t′)

+ 〈N0|Ψ̂†(x′, t′)Ψ̂(x, t)ĥ(x)|N0〉 θ(t′ − t)

−
∫
dy vc(x, y)

[
〈N0|eiĤtΨ̂†(y)Ψ̂(y)Ψ̂(x)e−iĤtΨ̂†(x′, t′)|N0〉 θ(t− t′)−

〈N0|Ψ̂†(x′, t′)eiĤtΨ̂†(y)Ψ̂(y)Ψ̂(x)e−iĤt|N0〉 θ(t′ − t)
]
. (4.28)

By using Eq.(4.19) in Eq.(4.28), we obtain

∂G(x, t, x′, t′)

∂t
= −iδ(x− x′)δ(t− t′) + h(x)

[
− 〈N0|Ψ̂(x, t)Ψ̂†(x′, t′)|N0〉 θ(t− t′)

+ 〈N0|Ψ̂†(x′, t′)Ψ̂(x, t)|N0〉 θ(t′ − t)
]

−
∫
dy vc(x, y)

[
〈N0|Ψ̂†(y, t)Ψ̂(y, t)Ψ̂(x, t)Ψ̂†(x′, t′)|N0〉 θ(t− t′)

− 〈N0|Ψ̂†(x′, t′)Ψ̂†(y, t)Ψ̂(y, t)Ψ̂(x, t)|N0〉 θ(t′ − t)
]
. (4.29)

Finally, we obtain the equation of motion for the 1-GF as

∂G(x, t, x′, t′)

∂t
= −iδ(x− x′)δ(t− t′)− ih(x)G(x, t, x′, t′)−

∫
dy vc(x, y)G2(x, t, y, t+;x′, t′, y, t++) ,

(4.30)

where t+ = t+ η and η −→ 0. G2 is two-body Green’s function (2-GF), defined as follows:

G2(x1, t1, x2, t2;x3, t3, x4, t4) = (−i2) 〈N |T̂
[
Ψ̂(x1, t1)Ψ̂(x2, t2)Ψ̂†(x4, t4)Ψ̂†(x3, t3)|N〉 . (4.31)

In a more compact notation, we write(
∂

∂t1
− h(1)

)
G(1, 2) + i

∫
d3 vc(1, 3)G2(1, 3+; 2, 3++) = δ(1, 2) , (4.32)

where 1 = x1, t1 and vc(1, 3) = vc(x1, x3)δ(t1 − t3). The equation of motion for the 1-GF derived in

this section, as shown in Eq.(4.32), cannot be solved directly due to the appearance of the 2-GF. If we

attempt to write an equation of motion for the 2-GF, it would involve the three-body Green’s function

(3-GF), leading to a series of equations called Martin-Schwinger hierarchy [95] with no analytical so-

lution. In the next chapter, we discuss how to overcome this.
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On the other hand, it is worth noting that for small systems, one can use exact diagonalization

(ED), where it is possible to calculate the many-body states. This is what we do for the Hubbard

dimer model Chap. 6. For still relatively simple systems, and on the imaginary frequency axis at

non-vanishing temperature, one can use quantum Monte Carlo (QMC) [96]. Another way is to use

dynamical mean field theory (DMFT) that uses high-level approaches such as ED or QMC for a small

model system, and that then uses the result to reconstruct the 1-GF of more complex systems [97].

In this thesis, the framework of choice is instead many-body perturbation theory (MBPT).
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Chapter 5

Many-Body Perturbation Theory and

GW approximation

As discussed in the previous chapter, the equation of motion for the 1-GF does not have an analytical

solution due to the appearance of the 2-GF, which arises from the Coulomb interaction coupling. This

presents a challenge in solving the electronic problem directly. To address this challenge, in this thesis

we employ the many-body perturbation theory (MBPT) approach, which involves starting from an

independent-particle problem and treating the Coulomb interaction as a perturbation. The usual way is

to expand the time evolution operator in the interaction picture in terms of the Coulomb interaction.

Here, we follow an approach based on functional derivatives. The idea is to describe a system by

probing its reaction to an external perturbation [95, 98, 99]. So, we define below the interaction

hamiltonian that depends on external potential (which will be taken to zero at the end) and which

will be added to the many-body hamiltonian in Eq.(4.14),

Ĥ ′(t) =

∫
dxdx′ Ψ̂†(x)vext(x, t)Ψ̂(x′) . (5.1)

Since the time-dependent field operators are given in Heisenberg scheme as Eq.(4.19), we similarly

can write the interaction hamiltonian as follows:

Ĥ ′I(t) = eiĤtĤ ′(t)e−iĤt =

∫
dxdx′ Ψ̂†(x, t+)vext(x, t)Ψ̂(x′, t) . (5.2)

When a time-dependent external potential is applied and the system is therefore out of equilibirium

[100], the 1-GF will be defined as the following,

G(x, t;x′, t′) = −i
〈N0|T̂

[
ŜΨ̂(x, t)Ψ̂†(x′, t′)

]
|N0〉

〈N0|T̂ [Ŝ]|N0〉
, (5.3)

where Ŝ is the operator that takes the system from the ground-state to the perturbed one due to

external potential. Ŝ reads

Ŝ = e−i
∫ +∞
−∞ dtĤ′I(t). (5.4)

In the following sections, we will present two different derivations within MBPT, one involving

a local external potential and the other a non-local external potential. This is because, during this
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thesis, the time non-locality of the external potential was a crucial factor, especially when dealing with

total energy calculations. In such cases, considering infinitesimal time differences, such as t+, and

t++, becomes highly important as this can influence the results by altering the contour of integration.

Therefore, we emphasize the presentation of both derivations. We aim to provide a comprehensive

account of this journey in detail. The subtleties of using a time non-local external potential are

discussed in [101].

5.1 Derivation of many-body perturbation theory in terms of a

local external potential

We start by deriving the 1-GF with respect to the local external potential. So, the 1-GF derivative is

proportional to the operator Ŝ derivative as follows:

δG(x, t;x′, t′)

δvext(y, t′′)
−→ δŜ

δvext(y, t′′)
−→

∫ t2

t1

dτ

∫
dz δ(τ − t′′)δ(y − z) ∂

∂vext(z, τ)

[
Ψ̂†(z, τ)vext(z, τ)

Ψ̂(z, τ)
]
Ŝ −→ Ψ̂†(y, t′′+)Ψ̂(y, t′′)Ŝ . (5.5)

Therefore, we obtain

δG(x, t;x′, t′)

δvext(y, t′′)
= −i

〈N0|T̂
[

δŜ
δvext(y,t′′)

Ψ̂(x, t)Ψ̂†(x′, t′)
]
|N0〉

〈N0|T̂ [Ŝ]|N0〉

+ i
〈N0|T̂ δŜ

δvext(y,t′′)
|N0〉 〈N0|T̂

[
ŜΨ̂(x, t)Ψ̂†(x′, t′)

]
|N〉

〈N0|T̂ [Ŝ]|N0〉
, (5.6)

where by using Eq.(5.5), we obtain

δG(x, t;x′, t′)

δvext(y, t′′)
= −i

〈N0|T̂
[
− iΨ̂†(y, t′′+)Ψ̂(y, t′′)ŜΨ̂(x, t)Ψ̂†(x′, t′)

]
|N0〉

〈N0|T̂ [Ŝ]|N0〉

+ i
〈N0|T̂

[
− iΨ̂†(y, t′′+)Ψ̂(y, t′′)Ŝ

]
|N0〉 〈N0|T̂

[
ŜΨ̂(x, t)Ψ̂†(x′, t′)

]
|N0〉

〈N0|T̂ [Ŝ]|N0〉
2 . (5.7)

By taking the external potential to zero, Ŝ → 1, and we have

δG(x, t;x′, t′)

δvext(y, t′′)
= (−i)2 〈N0|T̂

[
Ψ̂†(y, t′′+)Ψ̂(y, t′′)Ψ̂(x, t)Ψ̂†(x′, t′)

]
|N0〉

+ i 〈N0|T̂
[
− iΨ̂†(y, t′′+)Ψ̂(y, t′′)

]
|N0〉 〈N0|T̂

[
Ψ̂(x, t)Ψ̂†(x′, t′)

]
|N0〉 . (5.8)

So, finally we obtain

δG(x, t;x′, t′)

δvext(y, t+)
= −G2(y, t+, x, t; y, t++, x′, t′) +G(x, x′; t, t′)G(y, t+; y, t++) , (5.9)

which is a direct relation between the 1-GF and the 2-GF. This can be used in Eq.(4.32) to obtain an

equation of motion that depends only on the 1-GF. It reads
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∂G(x, t;x′, t′)

∂t
= −iδ(x− x′)δ(t− t′)− iG(x, t, x′, t′)h(x) +

∫
dy vc(x, y)

δG(x, t;x′, t′)

δvext(y, t+)

−
∫
dy vc(x, y)G(y, t+; y, t++)G(x, t;x′, t′) . (5.10)

We can already recognize the last term in Eq.(5.10), which is the Hartree potential vH since, as pointed

out in Chap. 4, the 1-GF G(1, 2) at equal time t2 → t+1 is proportional to the density. Therefore, we

have (
i
∂

∂t
− h(x, t)− vH(x, t)− i

∫
dy vc(x, y)

δ

δvext(y, t+)

)
G(1, 2) = δ(1, 2) . (5.11)

5.1.1 The exchange-correlation self-energy

We write down again Eq.(5.11) by changing arguments,

(
i
∂

∂t
− h(1)− vH(1)

)
G(1, 2)− i

∫
dx3dt3 vc(x1, x3)δ(t+1 − t3)

δG(1, 2)

δvext(3)
= δ(1, 2) (5.12)(

i
∂

∂t
− h(1)− vH(1)

)
G(1, 2)− i

∫
d3 vc(1

+, 3)
δG(1, 2)

δvext(3)
= δ(1, 2) . (5.13)

In order to find an expression for δG(1,2)
δvext(3) in terms of G−1, we do the following:

δG(1, 2)

δvext(3)
=

∫
d(4)

δG(1, 4)

δvext(3)
δ(4, 2) , (5.14)

where by using ∫
d3G−1(1, 3)G(3, 2) =

∫
d3G(1, 3)G−1(3, 2) = δ(1, 2) , (5.15)

we have

δG(1, 2)

δvext(3)
=

∫
d4
δG(1, 4)

δvext(3)
δ(4, 2) (5.16)

=

∫
d(45)

δG(1, 4)

δvext(3)
G−1(4, 5)G(5, 2) (5.17)

= −
∫
d(45)G(1, 4)

δG−1(4, 5)

δvext(3)
G(5, 2) . (5.18)

This yields the equation of motion,(
i
∂

∂t1
− h(1)− vH(1)

)
G(1, 2) + i

∫
d(345) vc(1

+, 3)G(1, 4)
δG−1(4, 5)

δvext(3)
G(5, 2) = δ(1, 2). (5.19)

The advantage of transforming δG
δvext

to δG−1

δvext
in the equation of motion is the fact that this introduces

direct derivations of the effective potential contained in G−1 with respect to vext, since G−1 is

G−1(1, 2) =

(
i
∂

∂t1
+
∇2
r1

2
− vext(1, 2)δ(1, 2)− vH(1, 2)δ(1, 2)

)
− Σxc(1, 2) , (5.20)
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where Σxc is the exchange-correlation self-energy that contains all the many-body quantum effects

acting on the motion of a particle (electron or hole). Σxc is defined as

Σxc(1, 5) = −i
∫
d(34) vc(1

+, 3)G(1, 4)
δG−1(4, 5)

δvext(3)
. (5.21)

Hence, the equation of motion in terms of Σxc is(
i
∂

∂t1
− h(1)− vH(1)

)
G(1, 2)−

∫
d3 Σxc(1, 3)G(3, 2) = δ(1, 2) . (5.22)

5.1.2 The Dyson equation

In the following, we will derive the Dyson equation, which provides an alternative formulation of the

equation of motion for the 1-GF in a simpler and more practical form. So, starting from Eq.(5.22),

the derivation proceeds as follows:∫
d3 δ(1, 3)

(
i
∂

∂t3
− h(3)

)
G(3, 2)−

∫
d3

(
vH(1, 3)δ(1, 3) + Σxc(1, 3)

)
G(3, 2) = δ(1, 2) (5.23)∫

d3

(
G−1

0 (1, 3)− Σ(1, 3)

)
G(3, 2) = δ(1, 2) (5.24)∫

d(23)

(
G−1

0 (1, 3)− Σ(1, 3)

)
G(3, 2)G−1(2, 4) =

∫
d2 δ(1, 2)G−1(2, 4)

(5.25)

G−1
0 (1, 4)− Σ(1, 4) = G−1(1, 4) , (5.26)

where Σ = vH + Σxc and G0 is the non-interacting 1-GF with G−1
0 defined as

G−1
0 (1, 3) = δ(1, 3)

(
i
∂

∂t3
− h(3)

)
. (5.27)

Then, we complete the derivation starting from Eq.(5.26) as∫
d1G0(2, 1)G−1

0 (1, 4)−
∫
d1G0(2, 1)Σ(1, 4) =

∫
d1G0(2, 1)G−1(1, 4) (5.28)

δ(2, 4)−
∫
d1G0(2, 1)Σ(1, 4) =

∫
d1G0(2, 1)G−1(1, 4) (5.29)∫

d4 δ(2, 4)G(4, 3)−
∫
d(14)G0(2, 1)Σ(1, 4)G(4, 3) =

∫
d(14)G0(2, 1)G−1(1, 4)G(4, 3) (5.30)

G(2, 3)−
∫
d(14)G0(2, 1)Σ(1, 4)G(4, 3) = G0(2, 3) , (5.31)

So, finally the Dyson equation is

G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)Σ(3, 4)G(4, 2) . (5.32)

It provides a direct relation between the non-interacting 1-GF and the interacting one.
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5.2 Derivation of many-body perturbation theory in terms of a

non-local external potential

Up to here, in this chapter we have only transformed expressions involving the 1-GF. However, in this

thesis response functions play a crucial role. They are based on the 2-GF. In order to include the full

2-GF, which contains 4 space-spin-time arguments, a space and time non-local potential is needed.

5.2.1 The non-locality in the Hartree potential

Using a non-local external potential in the hamiltonian, the relation in Eq.(5.9) becomes

L(1, 2, 3, 4) = G(1, 3)G(2, 4)−G2(1, 2, 3, 4) , (5.33)

where L(1, 2, 3, 4) = δG(1,3)
vext(4,2) . This generalization has important consequences. During this thesis, we

have found that taking this properly into account is necessary in order to derive the expressions for the

total energy in a clean way. One can appreciate this by deriving the Dyson equation of the reducible

polarizability χ(1, 2) that yields the density change due to a local external potential, and that can, for

example, be calculated in TDDFT (see Chap. 3), from the Green’s function framework:

χ(1, 2) =
δn(1)

δvext(2)
(5.34)

=

∫
d3

δn(1)

δvcl(3)

δvcl(3)

δvext(2)
(5.35)

=

∫
d3

δn(1)

δvcl(3)

δ

δvext(2)

(
vext(3) + vH(3)

)
(5.36)

= P (1, 2) +

∫
d(34)P (1, 3)vc(3, 4)χ(4, 2) , (5.37)

where vcl = vext + vH is the total classical potential and P is the irreducible polarizability δn
δvcl

. To

find a similar equation in the Green’s function framework, we use the link between the density and

the 1-GF,

χ(1, 2) = −i δG(1, 1+)

δvext(2+, 2)
(5.38)

= −i
∫
d(34)

δG(1, 1+)

vcl(3, 4)

δvcl(3, 4)

δvext(2+, 2)
(5.39)

= −i
∫
d(34)

δG(1, 1+)

δvcl(34)
δ(3, 2+)δ(2, 4)− i

∫
d(34)

δG(1, 1+)

δvcl(3, 4)

δvH(34)

vext(2+, 2)
(5.40)

= −i δG(1, 1+)

δvcl(2+, 2)
− i
∫
d(34)

δG(1, 1+)

δvcl(3, 4)

δvH(3, 4)

vext(2+, 2)
. (5.41)
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Here for consistency, we have to suppose that all potentials, including vH, are non-local. The correct

Dyson equation for χ is obtained if the generalized vH is defined as

vH(3, 4) = −i
∫
d5 δ(3, 4+)vc(4, 5)G(5, 5+) (5.42)

= −i
∫
d(56) δ(3, 4+)vc(4, 6)δ(6, 5+)G(5+, 5++) (5.43)

= −i
∫
d(56)V (3, 4, 6, 5)G(5+, 5++) . (5.44)

With this, we have

χ(1, 2) = P (1, 2)− i
∫
d(345)

δG(1, 1+)

δvcl(3, 4)
δ(3, 4+)vc(4, 5)

−iδG(5, 5+)

δvext(2+, 2)
(5.45)

= P (1, 2) +

∫
d(45)P (1, 4)vc(4, 5)χ(5, 2) , (5.46)

which is the same as Eq.(5.37). As one can see from Eq.(5.44), we have to introduce the generalized

Coulomb interaction

V (3, 4, 6, 5) = δ(3, 4+)vc(4, 6)δ(6, 5+) . (5.47)

Otherwise, Eq.(5.46) will not be equal to Eq.(5.37).

5.2.2 The Dyson equation of the Green’s function

The equation of motion of the 1-GF derived in the previous Chapter in Eq.(4.32), using the generalized

interaction V in terms of G2, reads [4]

G(1, 2) = G0(1, 2)− i
∫
d(34)G0(1, 3)vc(3, 4)G2(3, 4+, 2, 4++) , (5.48)

This equation, however, was derived for a time-local potential and has to be changed for our purpose.

Such a 4-argument Coulomb interaction has already been introduced in Ref. [101] in conjunction with

time non-local potentials. Indeed, let us first derive the Hartree potential expression from the Dyson

equation in Eq.(5.48) by using the relation between G2 and L in Eq.(5.33):

GH(1, 2) = G0(1, 2)− i
∫
d(34)G0(1, 3)vc(3, 4)GH2 (3, 4+, 2, 4++) (5.49)

= G0(1, 2)− i
∫
d(34)G0(1, 3)vc(3, 4)G(4+, 4++)G(3, 2) (5.50)

= G0(1, 2) +

∫
d3G0(1, 3)

∫
d4(−i)vc(3, 4)G(4+, 4++)G(3, 2) , (5.51)

where GH
2 is the Hartree approximation for G2, which relies on neglecting L in Eq.(5.33). Thus, the

vH defined in the equation of motion (5.48) is

vH(3) = −i
∫
d4 vc(3, 4)G(4+, 4++) , (5.52)
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which is local and not compatible with Eq.(5.44). Instead, we have to replace vc in the equation

of motion the generalized interaction V , which yields the desired non-local Hartree potential. The

Hartree Dyson equation becomes

GH(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)vH(3, 4)GH(4, 2) (5.53)

= G0(1, 2) +

∫
d(3456)G0(1, 3)δ(3, 4+)vc(4, 6)δ(6, 5+)G(5+, 5++)GH(4, 2) (5.54)

= G0(1, 2)− i
∫
d(345)G0(1, 3)δ(3, 4+)vc(4, 5

+)G(5+, 5++)GH(4, 2) (5.55)

= G0(1, 2)− i
∫
d(45)G0(1, 4+)vc(4, 5)G(5, 5+)GH(4, 2) (5.56)

= G0(1, 2)− i
∫
d(34)G0(1, 3+)vc(3, 4)G(4, 4+)GH(3, 2) , (5.57)

and the general equation of motion reads

G(1, 2) = G0(1, 2)− i
∫
d(34)G0(1, 3+)vc(3, 4)

(
G(3, 2)G(4, 4+)− L(3, 4, 2, 4+)

)
. (5.58)

This differs from Eq.(5.48) by some “simple” +, which are actually essential in order to be able to

obtain the correct Dyson equation for χ in a consistent way and therefore, for example, to obtain the

same result for the total energy using the Dyson equation for χ or the Bethe-Salpeter equation (BSE)

for L [34, 37].

5.2.3 The exchange-correlation self-energy

Given that the Dyson equation of the 1-GF should be in the form of Eq.(5.58), we can find the

expression for Σxc. Starting by approximating L ≈ L0, we get the exchange self-energy,

GHF(1, 2) = GH(1, 2) + i

∫
d(34)GH(1, 3+)vc(3, 4)L0(3, 4, 2, 4+) (5.59)

= GH(1, 2) + i

∫
d(34)GH(1, 3+)vc(3, 4)G(3, 4+)G(4, 2) (5.60)

= GH(1, 2) + i

∫
d(34)GH(1, 3)vc(3, 4

+)G(3−, 4+)G(4, 2) (5.61)

= GH(1, 2) + i

∫
d(34)GH(1, 3)Σx(3, 4)G(4, 2) , (5.62)

where Σx(3, 4) = iG(3−, 4+)vc(3, 4
+). To go beyond, we write the BSE for L [34, 37], which can be

done as follows:

L(1, 2, 3, 4) =
δG(1, 3)

δvext(4, 2)
(5.63)

=

∫
d5

δG(1, 5)

δvext(4, 2)
δ(5, 3) (5.64)

=

∫
d(56)

δG(1, 5)

δvext(4, 2)
G−1(5, 6)G(6, 3) (5.65)

= −
∫
d(56)G(1, 5)

δG−1(5, 6)

δvext(4, 2)
G(6, 3) , (5.66)
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where

G−1(5, 6) = G−1
0 (5, 6)− vext(5, 6)− vH(5, 6)− Σxc(5, 6) . (5.67)

So,

L(1, 2, 3, 4) =

∫
d(56)G(1, 5)δ(5, 4)δ(2, 6)G(6, 3) +

∫
d(56)G(1, 5)

δvH(5, 6)

δvext(4, 2)
G(6, 3)

+

∫
d(56)G(1, 5)

δΣxc(5, 6)

δvext(4, 2)
G(6, 3) .

(5.68)

Before proceeding, we can again see the importance of the generalized Coulomb interaction. From

the BSE for L given in Eq.(5.68), we can conclude the Dyson equation for χ, which is defined as

χ(1, 2) = −iL(1, 2, 1+, 2+). So, at the RPA level, we have

χ(1, 2) = χ0(1, 2)− i
∫
d(56)G(1, 5)

δvH(5, 6)

δvext(2+, 2)
G(6, 1+) (5.69)

= χ0(1, 2)− i
∫
d(567)G(1, 5)δ(5, 6+)vc(6, 7

+)
−iδG(7+, 7++)

δvext(2+, 2)
G(6, 1+) (5.70)

= χ0(1, 2)− i
∫
d(67)G(1, 6+)G(6, 1+)vc(6, 7)χ(7, 2) (5.71)

= χ0(1, 2) +

∫
d(67)χ0(1, 6)vc(6, 7)χ(7, 2) , (5.72)

which is the same equation for χ that we obtained in the previous subsection. This highlights the

importance of the generalized Coulomb interaction to make everything consistent.

Then, the L used in the Dyson equation (5.58) becomes

L(3, 4, 2, 4+) = L0(3, 4, 2, 4+) +

∫
d(56)G(3, 5)

δvH(5, 6)

δvext(4+, 4)
G(6, 2)

+

∫
d(56)G(3, 5)

δΣxc(5, 6)

δvext(4+, 4)
G(6, 2) .

(5.73)

The random phase approximate (RPA) for L consists in neglecting Σxc
δvext

, this leads to the GW ap-

proximation as a first step beyond HF [24]: Using LRPA in Eq.(5.58) we obtain

GGW (1, 2) = GHF(1, 2) + i

∫
d(34)GHF(1, 3+)vc(3, 4)

∫
d(56)G(3, 5)

δvH(5, 6)

δvext(4+, 4)
G(6, 2) (5.74)

= GHF(1, 2) + i

∫
d(34567)GHF(1, 3+)vc(3, 4)G(3, 5)δ(5, 6+)vc(6, 7

+)
−iδG(7+, 7++)

δvext(4+, 4)
G(6, 2)

(5.75)

= GHF(1, 2) + i

∫
d(3467)GHF(1, 3+)vc(3, 4)G(3, 6+)vc(6, 7)

−iδG(7, 7+)

δvext(4+, 4)
G(6, 2) (5.76)

= GHF(1, 2) + i

∫
d(3467)GHF(1, 3+)vc(3, 4)G(3, 6+)vc(6, 7)χ(7, 4)G(6, 2) (5.77)

= GHF(1, 2) + i

∫
d(36)GHF(1, 3+)G(3, 6+)

∫
d(47)vc(3, 4)χ(4, 7)vc(7, 6)G(6, 2) (5.78)

= GHF(1, 2) + i

∫
d(36)GHF(1, 3)ΣGW

c (3, 6)G(6, 2) . (5.79)
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This defines the correlation GW self-energy as

ΣGW
c (3, 6) = iG(3−, 6+)WP (3−, 6) , (5.80)

with WP , the polarization part of W , which is

W (1, 2) = vc(1, 2) +

∫
d(34) vc(1, 3)χ(3, 4)vc(4, 2) , (5.81)

where only time differences are important. In equilibirium, ΣGW
c (3, 6) = iG(3, 6++)WP (3, 6+). Thus,

the exchange-correlation self-energy within the GW approximation is

ΣGW
xc (1, 2) = Σx(1, 2) + ΣGW

c (1, 2) (5.82)

= iG(1, 2++)vc(1, 2
+) +G(1, 2++)WP (1, 2+) (5.83)

= iG(1, 2++)W (1, 2+) . (5.84)

Note that this expression for the xc self-energy is equivalent to the more familiar expression ΣGW
xc (1, 2)→

Σxc(1
++, 2) = iG(1, 2)W (1+, 2) [35]. The general expression for Σxc reads

Σxc(1, 2) = −i
∫
d(34)G(1, 4+)W (1, 3+)

δG−1(4, 2)

δvcl(3+, 3)
, (5.85)

as well as the Dyson equation,

G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)

(
vH(3, 4) + Σxc(3, 4)

)
G(4, 2) . (5.86)

App. E gives expressions beyond this derivation by introducing the non-equilibirium concept, although

these derivations are not be used in this thesis.

In the following, every definition will be based on the derivations of the current section 5.2. More-

over, we will use this extended derivation with the generalized Coulomb interaction V in Chap. 7,

where we discovered its importance when deriving the total energy using the response functions. The

rest of the theoretical developments will be based on the standard formulation, which does not lead to

any changes in the final results in those cases.

5.2.4 Hedin’s equations

We addressed, in the above, the challenge of solving the equation of motion for the 1-GF, which involved

the 2-GF and posed difficulties for finding a direct solution. To tackle this problem, we employed the

functional derivative approach, which allowed us to establish a direct relationship between the 1-GF

and the 2-GF Eq.(5.33). We also derived the Dyson equation that relates the non-interacting 1-GF

with the interacting one Eq.(5.86). However, this does not mean that we are able to solve the equation

exactly and get the 1-GF. The exact solution of the Dyson equation relies on the exact Σxc, which

is written in Eq.(5.85).The Σxc plays a critical role as it is responsible for obtaining the exact 1-GF.

However, to find the solution for Σxc, we need the knowledge of the 1-GF itself which creates a self-

consistency loop, and we need the dependence of the 1-GF on the time non-local external potential. This
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makes it impossible to obtain the exact solution. Therefore, approximations and numerical methods

are commonly employed to tackle this issue. Lars Hedin has proposed a set of self-consistent equations

that highlight important physical contributions, in particular the screened Coulomb interaction W ,

introduced in Chap. 3, that appears at any level approximation [24]. The motivation for this is the fact

that the Coulomb interaction is strongly modified by the rearrangement of the charges in the system

as a response to a perturbation, which is known as screening effects. Therefore, the appearance of

the weaker (often W is weaker than vc), screened interaction instead of the bare one at any level of

approximation is crucial, especially in the case of extended systems, where screening is important.

Figure 5.1: Hedin’s Pentagon.

The functional derivative of G−1 in Eq.(5.85) defines the irreducible vertex function Γ̃,

Γ̃(1, 2, 3) = −δG
−1(1, 2)

δvcl(3+, 3)
(5.87)

= −
G−1

H (1, 2)

δvcl(3+, 3)
+
δΣxc(1, 2)

δvcl(3+, 3)
(5.88)

= δ(1, 3+)δ(2, 3) +

∫
d(456)

δΣxc(1, 2)

δG(4, 6)

δG(4, 6)

δvcl(3+, 3)
δ(6, 5) (5.89)

= δ(1, 3+)δ(2, 3) +

∫
d(4567)

δΣxc(1, 2)

δG(4, 6)

δG(4, 6)

δvcl(3+, 3)
G−1(6, 7)G(7, 5) (5.90)

= δ(1, 3+)δ(2, 3)−
∫
d(4567)

δΣxc(1, 2)

δG(4, 6)
G(4, 6)

δG−1(6, 7)

δvcl(3+, 3)
G(7, 5) (5.91)

= δ(1, 3+)δ(2, 3) +

∫
d(4567)

δΣxc(1, 2)

δG(4, 6)
G(4, 6)G(7, 5)Γ̃(6, 7, 3) . (5.92)

So, Hedin’s equations are summarized in Fig. 5.1 as

1.

Σxc(1, 2) = i

∫
d(34)G(1, 4+)W (1, 3+)Γ̃(4, 2, 3) , (5.93)
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2.

G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)

(
vH(3, 4) + Σxc(3, 4)

)
G(4, 2) , (5.94)

3.

Γ̃(1, 2, 3) = δ(1, 3+)δ(2, 3) +

∫
d(4567)

δΣxc(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ̃(6, 7, 3) , (5.95)

4.

P (1, 2) = −i
∫
d(34)G(1, 3)G(4, 1+)Γ̃(3, 4, 2) , (5.96)

where P is the irreducible polarizability, P (1, 2) = −i δG(1,1+)
δvcl(2+,2)

.

5.

W (1, 2) = vc(1, 2) +

∫
d(34) vc(1, 3)P (3, 4)W (4, 2) . (5.97)

These equations are in principle exact, but difficult to solve. Therefore, one may think to approaching

the solutions iteratively, as illustrated in Hedin’s pentagon Fig. 5.1.

5.2.5 The GW approximation for the self-energy and the random phase

approximation for the polarizability

Figure 5.2: Photos representing the difference between the bare and the screened Coulomb interactions.
These photos are taken from Pixabay.

By neglecting the vertex corrections in Γ̃, i.e , Γ̃ ≈ δ in Eq.(5.95), Σxc Eq.(5.93) becomes

ΣGW
xc (1, 2) = iG(1, 2++)W (1, 2+) , (5.98)

the same as Eq.(5.84). The GW xc self-energy is the multiplication of the 1-GF and the screened

Coulomb interaction W , hence the name “GW approximation” (GWA) [24]. It looks similar to the

HF self-energy, but the bare interaction is replaced by the screened one. So, the difference between

the HF and the GW self-energies is the screening, which is a long range correlation. Screening is an

important feature, represented by “satellites” (explained in Subsec. 5.2.6) in the spectral function. It

is important for total energies calculation as well as it allows for the van der Waals dispersion, which
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is a major challenge for density functional theory functionals. On the other hand, Hedin suggested to

approximate his equations consistently, so by using the approximate vertex function Γ̃ ≈ δ, we obtain

the Random Phase Approximation (RPA) for the irreducible polarizability in Eq.(5.96),

PRPA(1, 2) = −iG(1, 2+)G(2, 1+) , (5.99)

which is used to calculate W in Eq.(5.97).

The GW approximation, established in the 60’s [24], was developed within an ab initio framework

in the 80’s [25, 26] and it has since become the state-of-the-art for the description of charged electronic

excitations, [4, 53, 102–111], especially thanks to self-consistent approaches [52, 53, 112–119].

An illustrative way to understand the difference between the electron motion within the two con-

texts, HF and GW , is shown in Fig. 5.2 [93]. In the HF framework, the electron moves through the

system without experiencing any response from the other electrons. This can be compared to a person

skiing on the ice, where the person’s movement is unaffected by the surrounding environment. In

contrast, within the GW framework, the electron’s motion creates a perturbation in the system. This

perturbation induces a response from the other electrons (including itself, actually GW suffers from

a self-screening error [54, 120]), resulting in screening effects. This can be linked to a boat moving

on the sea, where the boat’s motion causes ripples and waves in the water, and the water reacts by

exerting forces on the boat.

Another way to grasp the additional capabilities of GW with respect to HF is by examining the

spectral function. GW is able to exhibit the presence of satellites (which will be discussed in the next

subsection 5.2.6), which are indicative of the dynamical correlations occurring within the electronic

system.

5.2.6 What are the satellites?

One might wonder about the physical significance of satellites and how they come into existence. The

simplest explanation is as follows: picture a single electron moving through a system containing N

electrons. If we isolate this electron from the other electrons, and examine its spectral function (for

simplicity we only consider the removal part), we would observe a narrow peak. On the other hand,

when we take into account the interactions, we observe a broader peak with reduced intensity and the

appearance of additional stucture called satellites. This is illustrated in Fig. 5.3, where we present the

spectral function of the symmetric Hubbard dimer with two-electrons (this model is presented in detail

in Chap. 6). As shown, the non-interacting spectral function does not exhibit satellites whereas the

exact one does. So, it is the interactions that give rise to satellites. But which part of the interaction

is responsible? In our context, the interaction potential can be divided into Hartree, exchange, and

correlation potentials. It is the correlation potential, which is dynamic, that leads to the satellites.

As a particle (electron or hole) moves through the system, it gives a portion of its energy to create

neutral excitations. The neutral excitations are represented by the removal and addition satellites

that appear when removing and adding an electron, respectively. In Fig. 5.3 we only show the removal
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satellites. Moreover, it is noticeable that the intensity of the main peak, which is called quasi-particle

(QP), decreases within the exact solution compared to the non-interacting one. This missing intensity

goes to the satellite.

Furthermore, the intensities of these satellites, as they are generated by correlations, are contingent

on the strength of these correlations. Stronger correlations result in more pronounced satellite peaks,

while weaker correlations lead to less prominent ones (compare left and right panels of Fig. 5.3).

This is why weakly correlated systems, where satellites are negligible, can be approximated as almost

non-interacting systems. The right-panel of Fig. 5.3 represents strong correlation as the strength U/t

becomes higher, and ideed one can notice that the satellite intensity becomes higher.

Figure 5.3: Non-interacting and exact spectral functions (removal part of the spin-up diagonal element)
of the symmetric Hubbard dimer model with two electrons. The on-site interaction U = 4 eV and the
the hopping t is 2 eV and 0.5 eV in the left and right figure, respectively.

5.2.7 How does the self-energy contribute to the generation of the spectral

function?

In order to discuss in detail, the spectral function features introduced in the previous subsection, one

can write the spectral function directly in terms of the self-energy. In the bonding (b) and anti-bonding

(ab) basis, we have

Ab-b/ab-ab(ω) = (1/π)
ImΣb-b/ab-ab(ω)(

ω − (ε0b-b/ab-ab)− ReΣb-b/ab-ab(ω)

)2

+

(
ImΣb-b/ab-ab(ω)

)2 . (5.100)

In Fig. 5.4, we illustrate the spectral function A(ω), the numerator of Eq.(5.100) and the first term

of the denominator for the symmetric Hubbard dimer model at half-filling. From Eq.(5.100), we can

comprehend the different components of the spectral function, namely satellites and QP. Generally,

satellites are generated due to ImΣ, and the QP peaks emerge when ω − (ε0) − ReΣ(ω) = 0. This

is often assumed for infinite systems. However, the situation is slightly more complicated for finite

systems, as illustrated by the Hubbard dimer solutions in Fig. 5.4. The satellites appear almost at the

same position as ImΣ in the upper panels when t = 6 eV and t = 4 eV. However, this does not imply

that these satellites are directly given by ImΣ. They are actually produced by an additional solution
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Figure 5.4: Spectral function features of the symmetric Hubbard dimer at half-filling for a given spin
as a function of frequency, where U = 4 eV. The spectral function is shown in the black solid lines.
The imaginary part of the self-energy is given by the red lines. The first term of the denominator
in Eq.(5.100) for the bonding-bonding and antibonding-antibonding matrix elements is given in the
dashed green and blue lines, respectively.

of ω − (ε0)−ReΣ(ω) = 0 , as clearly shown in the insets. More evidently, this can be observed in the

lower panels when t decreases, i.e when correlations increase. Here, the satellites are quite far from

the position of the peak of ImΣ. Note that this is unlikely to happen in infinite systems, where the

broadening is very high due to a continuum of states; therefore, ω− (ε0)−ReΣ(ω) = 0 does not yield

satellites. Instead, these are formed at the peak of ImΣ.
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Chapter 6

GW successes and failures: insights

from the Hubbard dimer model

Exactly solvable models are crucial for theoretical investigations and illustrations. Having the exact

result at hand, we are able to explore any approximation. As pointed out before, in the present thesis

we use, for illustrations, the widely used Hubbard dimer model [54–58], which is made up of two

equivalent sites, each has one single orbital and on-site Coulomb interaction U [121, 122] as illustrated

by the left-hand and right-hand panels of Fig. 6.1, respectively. The orbitals are localized, since this

model is performed initially to deal with strongly correlated physics. Therefore the electron can go to

the nearest neighboor site with a hopping integral t, representing the kinetic energy as illustrated by

the middle panel of Fig. 6.1.

On the other hand, besides the exact solution that the model provides, it also allows for exploring

systems with different ranges of correlations such as, weakly, moderately and strong correlated systems.

This is due to the fact that the Coulomb interaction and the kinetic energy are parameters that can

be changed to change the correlations.

Figure 6.1: Left panel: the atom in this model has only one single orbital. Middle panel: the orbital
localization imposes an electronic displacement to the nearest neighboor site. This approximation
does not make sense in the case of the two-site model, but it will be meaningful if we want to extend
the dimer. Right panel: the electrons are short-range interacting, they do not interact with each other
unless they are on the same site.
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6.1 Hubbard hamiltonian

Starting from the exact hamiltonian, written in second quantization in Eq.(1.13), the derivation of

the Hubbard hamiltonian proceeds as follows, where we treat each part of the exact hamiltonian

separately. We start with the external potential term,
∞∑
ij=1

∑
σσ′

∫
dxφ∗iσ(x)vext(x)φjσ′(x)ĉ†iσ ĉjσ′ (6.1)

=

∞∑
ij=1

∑
σσ′

∑
s

χ∗σ(s)χσ′(s)

∫
dr ϕ∗iσ(r)vext(r)ϕjσ′(r)ĉ

†
iσ ĉjσ′ (6.2)

=
∞∑
ij=1

∑
σσ′

δσσ′

∫
dr ϕ∗iσ(r)vext(r)ϕjσ′(r)ĉ

†
iσ ĉjσ′ , (6.3)

where using the fact that the orbitals are localized, we obtain
∞∑
i=1

∑
σ

∫
dr ϕ∗iσ(r)vext(r)ϕiσ(r)ĉ†iσ ĉiσ =

∞∑
i=1,σ

vext,iσ ĉ
†
iσ ĉiσ . (6.4)

For the kinetic energy operator, we have
∞∑
ij=1

∑
σσ′

∫
dxφ∗iσ(x)(−∇

2
r

2
)φjσ′(x)ĉ†iσ ĉjσ′ (6.5)

=

∞∑
<i,j>,i6=j

∑
σσ′

∑
s

χ∗σ(s)χσ′(s)

∫
dr ϕ∗iσ(r)(−∇

2
r

2
)ϕjσ′(r)ĉ

†
iσ ĉjσ′ . (6.6)

In this case, even though we have localized orbitals, we cannot consider that i = j to avoid neglecting

the kinetic energy. So, we obtain
∞∑

<i,j>,i6=j

∑
σ

∫
dr ϕ∗iσ(r)(−∇

2
r

2
)ϕjσ(r)ĉ†iσ ĉjσ = −

∞∑
<i,j>,i6=j,σ

tij ĉ
†
iσ ĉjσ , (6.7)

where tij is called hopping integral and defined as,

tij =

∫
drϕ∗iσ(r)

∇2
r

2
ϕjσ(r) . (6.8)

For the Coulomb interaction operator, we make two approximations, localization of orbitals and short

range interactions. Thus, we have

1

2

∞∑
ijkl=1

∑
σ1σ2σ3σ4

∫ ∫
dxdx′ φ∗iσ1

(x)φ∗jσ2
(x′)vc(x, x

′)φlσ3(x′)φkσ4(x)ĉ†iσ1
ĉ†jσ2

ĉlσ3 ĉkσ4 (6.9)

=
1

2

∞∑
ijkl=1

∑
σ1σ2σ3σ4

∑
s

χ∗σ1
(s)χσ4(s)

∑
s′

χ∗σ2
(s′)χσ3(s′)

∫ ∫
drdr′ ϕ∗iσ1

(r)ϕ∗jσ2
(r′)vc(r, r

′)ϕlσ3(r′)

ϕkσ4(r)ĉ†iσ1
ĉ†jσ2

ĉlσ3 ĉkσ4

(6.10)

=
1

2

∞∑
ijkl=1

∑
σ1σ2

∫ ∫
drdr′ ϕ∗iσ1

(r)ϕ∗jσ2
(r′)vc(r, r

′)ϕlσ2(r′)ϕkσ1(r)ĉ†iσ1
ĉ†jσ2

ĉlσ2 ĉkσ1 , (6.11)
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which, by considering the localization of orbitals, becomes

1

2

∞∑
ij=1

∑
σ1σ2

∫ ∫
drdr′ϕ∗iσ1

(r)ϕ∗jσ2
(r′)vc(r, r

′)ϕjσ2(r′)ϕiσ1(r)ĉ†iσ1
ĉ†jσ2

ĉjσ2 ĉiσ1 . (6.12)

Then, since the two electrons can only interact if they are on the same site, we put i = j, meaning

that in this case, the two electrons cannot have the same spin. Thus, we obtain

1

2

∞∑
i=1

∑
σ1σ2,σ1 6=σ2

∫ ∫
drdr′ϕ∗i (r)ϕ

∗
i (r
′)vc(r, r

′)ϕi(r)ϕi(r
′)ĉ†iσ1

ĉ†iσ2
ĉiσ2 ĉiσ1 (6.13)

=
U

2

∞∑
i=1

∑
σ1σ2,σ1 6=σ2

ĉ†iσ1
ĉ†iσ2

ĉiσ2 ĉiσ1 , (6.14)

where σ1 and σ2 are two opposite spins projections. Finally, we write down the symmetric Hubbard

hamiltonian as

Ĥ = ε0
∑
i,σ

n̂iσ −
∑

<i,j>,i6=j,σ
tij ĉ
†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓ , (6.15)

where for the dimer i, j = 1, 2. The conventions are reminded here:

ε0: external on-site potential.

tij : kinetic energy.

U : on-site Coulomb repulsion.

n̂iσ = ĉ†iσ ĉiσ : particle number operator, where ĉ† and ĉ are creation and annihilation operators,

respectively.

6.2 Illustrations within the quarter-filled case (one-electron

system)

After deriving the symmetric Hubbard hamiltonian in the previous section, where exact and GW

solutions are given in Sec. 6.5, we begin with the quarter-filled case (one-electron system) to represent

successes and failures of GW .

6.2.1 Spectral function: the GW self-screening problem

The one-electron system provides a useful example to illustrate the self-screening error present in the

GWA. As shown in Fig. 6.2, within the exact solution, the electron-electron interactions are absent,

as the removed and added electrons do not interact with any other electrons. In the case of electron

addition, this is due to the fact that the added spin-up electron must go to the empty site and the

Hubbard U is an onsite interaction. However, the GW approximation introduces two satellites in

the spectral function, which are indicative of screening correlations contributions. This indicates

that when an electron is removed within GWA, it induces a reaction of the system density, which is

effectively its own density. This issue is akin to the Hartree self-interaction error and is referred to as

the self-screening error or variational self-interaction error [55]. The self-screening error arises due to
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Figure 6.2: Spin-up spectral function of the symmetric two-site Hubbard model at quarter-filling: the
exact result is represented by the black solid line and the G0W0 result is given in the dashed red line.
U = 4 eV, t = 1 eV.

the limitation of using only the GW self-energy, which neglects the vertex corrections. As a result, the

screened Coulomb interaction within GWA depends on the system density, including the density of

the specific electron under consideration, leading to errors in the interaction description. Conversely,

the satellite attached to the added spin-up electron (the satellite which is in the positive frequency

range) is not directly due to the self-screening error because the additional electron interacts with the

density of the other electron, not its own density. Nevertheless, in the case of the Hubbard short-range

interaction, this interaction between the two electrons should not occur due to the Pauli principle,

which prohibits two electrons from occupying the same site. Thus, this indicates another problem,

related to the treatment of spins within the GW framework. Overall, these issues emphasize the need

for improved treatments beyond GW to accurately capture the electronic interactions and correlations

even in very simple systems.

6.2.2 Strong correlation limitations of GW

Figure 6.3: Spin-down spectral function as a function of frequency for different values of t, where
U = 4 eV: the exact results are represented by the black solid lines and G0W0 results are given by
the dashed red lines.
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In the case of the spin-down spectral function, there are only addition parts since there is no spin-

down electron to remove. In Fig. 6.3, we illustrate how the performance of the GW approximation

changes with the correlation strength U/t. The smaller U/t, the weaker the correlations. For small

U/t, GW shows a good performance, as shown in the upper panels. As U/t increases and correlations

become more significant, the accuracy of the GW approximation decreases, leading to increasingly

inaccurate results in the atomic limit where t → 0, as depicted in the right-hand lower panel. Here,

the exact result shows 2 peaks splitted by the U interaction. Instead, G0W0 yields a single peak

at U/2. This is due to the fact that the average occupation of the sites in the ground-state is 1/2.

This highlights the sensitivity of the GW to the strength of electronic correlations, and the need for

alternative methods when dealing with strongly correlated systems.

6.2.3 Violation of exact constraints

Figure 6.4: Difference between the highest occupied molecular orbital (HOMO) energy of the N = 2
electron system and the lowest unoccpied molecular orbital (LUMO) energy of the N = 1 electron as
a function of t, where U = 4 eV. The exact result is given by the black solid line. The G0W0 result
is shown in the red dashed line with dot markers.

The highest occupied molecular orbital (HOMO) for N = 2 is defined as the energy difference

between the ground-state energies of the N = 2 and N = 1 electron systems, which can be expressed

as εN=2
HOMO = EN=2

0 −EN=1
0 . Similarly, the lowest unoccupied molecular orbital (LUMO) for N = 1 is

defined as εN=1
LUMO = EN=2

0 − EN=1
0 , and thus these two quantities should be equivalent.

However, in the GWA (G0W0 as shown in Fig. 6.4), this symmetry is violated. The reason behind

this discrepancy is due to the test-charge test-charge TCTC screened interaction of GW , that depends

on the charge density of the system without taking into account that the charge is added or removed.

This leads to two different screened interactions for N = 2 and N = 1, since the density of the two

systems is different. This reason is also the origin of the self-screening error.

6.2.4 Total energy

The exact ground-state total energy for the Hubbard dimer with one electron is calculated using exact

diagonalization in Sec. 6.5. Here, we show the calculation using the exact 1-GF (which is, for the one
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electron system, the non-interacting 1-GF) by solving the GM formula written in Eq.(C.12). It can

be solved analytically, since we have the exact 1-GF.

E0 = − i

4π

∑
iσ

∫ +∞

−∞
dω ωGiiσ(ω)eiωη +

it

4π

∑
<i,j>,i6=j,σ

∫ +∞

−∞
dωGijσ(ω)eiωη − iε0

4π

∑
iσ

∫ +∞

−∞
dωGiiσ(ω)eiωη

(6.16)

= − i

4π

∫ +∞

−∞
dω

ωeiωη

ω − (ε0 − t)− iη
+

it

4π

∫ +∞

−∞
dω

eiωη

ω − (ε0 − t)− iη
− iε0

4π

∫ +∞

−∞
dω

eiωη

ω − (ε0 − t)− iη
,

(6.17)

where the integration should only be over occupied states of the 1-GF. Indeed, the presence of eiωη

decides that the integration is over the upper contour, which contains the occupied poles. Physically

speaking, to calculate the ground-state total energy, the additional energies coming from the additional

electrons should be excluded. So, we obtain

E0 = ε0 − t , (6.18)

which is the non-interacting total energy of the bonding-state. Similarly, by using the G0W0 1-GF

given in Eq.(6.87), we have

EG0W0
0 = ε0 −

A

4
+ (

2t+ h

4A
)(h− 2t) . (6.19)

For U = 0, EG0W0
0 yields the non-interacting solution. It is important to note that we do not plot

the analytical solutions for total energies, as it is not always possible to have the analytical 1-GF.

However, it is crucial to compare both solutions, numerical and analytical ones, when it is possible in

order to create reliable codes.

Figure 6.5: Ground-state total energy as a function of t, where U = 4 eV: the exact result is represented
by the black solid line and the G0W0 result is given in the red dashed line. The left and right panels
show different range of t.

In Fig. 6.5, we compare the G0W0 ground-state total energy with the exact result in different

regimes of correlations. In the left-hand figure, we focus on the strong correlations regime, where

G0W0 encounters more difficulties. Interestingly, the self-screening error does not affect the total

energy in the atomic limit (t → 0) because, in this case, the two atoms are isolated, and each atom
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has only one single orbital. Therefore, the electron cannot be excited due to the lack of available

orbitals. Consequently, there is no more screening, which was the origin of the G0W0 errors observed

in this scenario.

In contrast, the right-hand figure illustrates a situation where correlations become progressively

less important, and as a result, the G0W0 error decreases, indicating that the G0W0 approximation

is more suitable for weakly to moderately correlated systems. It is also worth noting that the strong

correlations problem observed when t → 0 does not impact the G0W0 result, as the spin-down 1-GF

is not included in the calculation due to its only having addition parts.

6.2.5 G0W results

The GW calculations can be approached from different angles, involving choices in the utilized ingre-

dients such as the 1-GF and the screened interaction. In our present discussion, we maintain the use

of the 1-GF while modifying the screened interaction. Rather than relying on the RPA, we accurately

calculate the screened interaction W . This alteration enables us to explore the impact of this change

on our GW calculations. The exact W can be calculated from Eq.(5.81) using the exact reducible

polarizability, which is equal to the non-interacting χ0.

χ0ij↑(ω) =
(−1)i−j

4

(
1

ω − 2t+ 2iη
− 1

ω + 2t− 2iη

)
, (6.20)

and χ0ij↓ = 0 since there is no spin-down to polarize. This exact polarizability can be used to calculate

the exact screened interaction W by solving the following equation derived for the Hubbard model,

Wij(ω) = Uδij + U2
∑
σσ′

χ0ijσσ′(ω) . (6.21)

This yields the exact screened Coulomb interaction matrix elements,

Wij(ω) = Uδij +
(−1)i−jU2

4

(
1

ω − 2t+ 2iη
− 1

ω + 2t− 2iη

)
. (6.22)

It is crucial to emphasize that even though we have the exact W , this adjustment does not rectify the

issues related to self-screening, constraint violations, and strong correlations. These challenges persist

due to the nature of the GW approximation, which inherently involves approximations. Regardless

of the choices that we make for the 1-GF and W , achieving an exact outcome is unattainable within

the framework of GW . It is worth noting that W remains a classical TCTC interaction, intrinsically

linked to the charge density of the system, not the electron under consideration.

The G0W xc self-energy ΣG0W
xc solutions are

Σxc,ij↑(ω) = −U
2
δij +

U2

8

(
1

ω − (ε0 + 3t) + 3iη
+

(−1)i−j

ω − (ε0 − 3t)− 3iη

)
, (6.23)

Σxc,ij↓(ω) =
U2

8

(
1

ω − (ε0 + 3t) + 3iη
+

(−1)i−j

ω − (ε0 + t) + 3iη

)
. (6.24)

In Fig. 6.6, we engage in a comparative analysis of the spectral functions generated by the two GW

variants, namelyG0W0 andG0W . Clearly, G0W suffers from its own self-screening error (as depicted in
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Figure 6.6: Spectral function as a function of frequency, where U = 4 eV. Spin-up and spin-down
components are shown in the upper and lower panels, respectively. t = 1 eV and t → 0 are given in
the left and right-panels, respectively. The exact results are shown in the black solid lines. G0W0 and
G0W are represented by the red dashed and dot-dashed purple lines, respectively.

the upper left panel). This stems from its reliance on W , whose behavior hinges on the charge density

of the system, irrespective of whether the underlying χ is exact or an approximation. In striking

contrast to G0W0, the G0W approach produces an erroneous spin-up spectral function (as shown

in the upper right panel) in the atomic limit, a situation that deviates from physical expectations.

Specifically, as t→ 0, the screening effects should subside, causing the correlation contribution of the

self-energy ΣGW
c to vanish. This, however, is not observed in the case of G0W .

In the context of the spin-down component, it is apparent that G0W manifests only two peaks,

whereas G0W0 exhibits four, aligning more closely with the exact result (as seen in the lower right-

panel). As we delve into the atomic limit, we find that both G0W and G0W0 deviate from the exact

outcome, albeit each manifesting its own distinct deviation.

Figure 6.7: Ground-state total energy as a function of t. The exact result is given in the black solid
line. G0W0 and G0W are represented by the red dashed and dot-dashed purple lines, respectively.

In Fig. 6.7, we show the ground-state total energy comparison between G0W0 and G0W with re-
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spect to the exact result. G0W0 outperforms G0W in the whole range of correlations. Moreover, G0W

does not yield the exact result when t→ 0.

6.3 Illustrations within the half-filled case (two-electron system)

In the two electron filling case, where the ground-state involves electron-electron interactions, the

underlying physics becomes more complex and intricate. We present and discuss in this the section

the GW solutions of this system in comparison with the exact results. We calculate self-energies

within the same flavors of GW as used previously in the one-electron case, namely G0W0 and G0W ,

where G0 is the non-interacting 1-GF (U = 0). W and W0 are the screened Coulomb interactions

calculated using the exact polarizability and the one within the RPA, respectively. In the present

section, we discuss the spectral function and total energy results within GWA in comparison with the

exact ones.

6.3.1 Spectral function

The GW self-screening problem has been represented by an additional satellite, which should not

exist in the case of the one-electron. In the two-electron case, there should be a satellite as shown

by the exact result in Fig. 6.8. The GW self-screening problem is then represented by the big energy

difference between the exact and the GW (both flavors). Indeed, this difference is lower in the case

of G0W since W contains the exact χ. The vertex corrections in χ decrease the neutral excitation

energies, therefore the satellites are closer to the exact ones (except for the particular value t = 1 eV).

Figure 6.8: Spin-up diagonal spectral function matrix-element (the spin-down elements are equal to
the spin-up ones) for the symmetric Hubbard dimer model at half-filling as a function of frequency,
where different values of t are shown with U = 4 eV. The exact results are given in black solid lines.
G0W0 and G0W results are the red dashed and purple dot-dashed lines, respectively. The black, red
and purple arrows indicate the presence of exact, G0W0 and G0W satellites, respectively.

Although the G0W satellites exhibit better agreement with the exact results compared to the G0W0
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satellites, this does not hold true for the QP energies. As depicted in Fig. 6.9, the HOMO and LUMO

energies are better described within G0W0, where the approximate screening is employed. This is

similar to the observations in the one electron system.

Figure 6.9: Error of the QP energy as a function of the hopping t, where U = 4 eV. The HOMO and
LUMO energy errors are shown in the left and right panels, respectively. G0W0 and G0W results are
given in the red dashed and purple dot-dashed lines, respectively.

6.3.2 Ground-state total energy

In Fig. 6.10, we show the ground-state total energy errors with respect to the exact result for both the

G0W0 and G0W flavors. It is again noticed, as in the case of the QP results that the use of the RPA

screening leads to a better performance of the total energy calculations. It is worth mentioning that

G0W0 has the correct result in the atomic limit t→ 0 due to a problem in the electrons number that

is shown in Fig. 6.11 and discussed below. In general and as in the one electron case, GW performs

well when correlation is not strong, and becomes less accurate in the strong correlation ranges. This

can be seen in Fig. 6.10, where the errors decrease in both GW flavors, when U/t decreases.

Figure 6.10: Error of the ground-state total energy as a function of the hopping t, where U = 4 eV.
G0W0 and G0W results are given in the red dashed and purple dot-dashed lines, respectively.
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6.3.3 Electrons number

It is commonly known that the one-shot GW (G0W0) violates the electrons number [123]. This means

that using the 1-GF resulting from the Dyson equation the integral
∫
dωA(ω) does not yield N . This

is illustrated using the Hubbard dimer in Fig. 6.11. The problem is less severe when the exact W is

used instead of the RPA one, where G0W0 yields zero electrons in the atomic limit. This explains

using G0W0 why we get the exact HOMO and E0 in this strong correlations regime where GW is

supposed to fail. In both cases, the electrons number converge to the exact result in the range of weak

correlations (U/t small).

Figure 6.11: Electrons number N as a function of the hopping t, where U = 4 eV. G0W0 and G0W
results are given in the red dashed and purple dot-dashed lines, respectively.

6.4 Conclusions

After getting insights into the GW performance using two different screened interactions, namely the

RPA and the exact ones, within the Hubbard dimer model at quarter and half-fillings, we summarize

our findings about successes and failures of GWA, making a link with observations found in real

systems.

• The GW method is capable of capturing spectral satellites, which are indicative of correlation

effects and are important for total energies calculations. However, the GWA, besides giving a

poor description of satellites, it is afflicted by a self-screening issue, particularly evident in the

removal portions of the spectral function.

• There are instances where the GW approach violates exact constraints, notably the addition-

removal symmetry and the electron number [55, 123].

• The accuracy of GW is most favorable for systems characterized by moderate to weak correla-

tions. In such cases, it tends to yield reasonable results. For instance, in practice, the first and

probably most well-known success of the GWA was to overcome the band gap underestimate
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of Kohn-Sham eigenvalue differences in simple semiconductors [26, 64, 124, 125]. On the other

hand, GW reduces the band gap overestimation by the HF since W is weaker than vc. More-

over, the band structure or other properties such as effective masses and band widths have been

calculated successfully for many other simple semiconductors and insulators [4, 102, 103].

However, its accuracy decreases significantly for systems exhibiting strong correlation, thereby

limiting its applicability and reliability in these scenarios. For example, similarly to the failure

describing the atomic limit of the symmetric Hubbard dimer, the GWA also fails in describing

bulk NiO, predicting a metal character, where in reality the system is a paramagnetic insulator

[126]. This is, therefore, a strong indication that GW falls down in describing systems with

strong correlations.

• Using the exact TCTC screened Coulomb interactionW instead of the RPAW0 does not improve,

but rather worsens the results. The choice of the optimal screened Coulomb interaction is a

question of interest that will be addressed in Chap. 9.

In conclusion, having introduced various approaches addressing the many-body electronic system,

ranging from mean-field methods to many-body Green’s functions, and having discussed the strengths

and limitations of the GW approximation, the next part of this work introduces several strategies to

go beyond GW .

6.5 Supporting informations: analytical solutions

In the present section, we provide the exact and approximate solutions for the Hubbard dimer model,

where approximations are within the GW framework.

6.5.1 Exact solutions

Quarter-filling case: one electron system

We begin with the quarter-filling case of the symmetric Hubbard dimer model. It is a one-electron

problem, where both choices of spin-up and down are equivalent. The hamiltonian becomes

Ĥ = ε0
∑

i=1,2σ=↑↓
n̂iσ −

∑
<i,j>=1,2 i 6=j,σ

tij ĉ
†
iσ ĉjσ . (6.25)

Solving this one-electron hamiltonian analytically requires a basis-set of Slater determinants, de-

noted as |1, 2〉 where 1 and 2 are the indices of the first and second atoms, respectively. Each atom

can be occupied by 0, ↑, ↓ and ↑↓. So, for one-electron, the basis is:

[
|↑, 0〉 , |0, ↑〉 , |↓, 0〉 , |0, ↓〉

]
. Thus,

the hamiltonian is written as follows,

H =


〈↑, 0|Ĥ| ↑, 0〉 〈↑, 0|Ĥ|0, ↑〉 〈↑, 0|Ĥ| ↓, 0〉 〈↑, 0|Ĥ|0, ↓〉
〈0, ↑ |Ĥ| ↑, 0〉 〈0, ↑ |Ĥ|0, ↑〉 〈0, ↑ |Ĥ| ↓, 0〉 〈0, ↑ |Ĥ|0, ↓〉
〈0, ↓ |Ĥ| ↑, 0〉 〈0, ↓ |Ĥ|0, ↑〉 〈0, ↓ |Ĥ|0, ↓〉 〈0, ↓ |Ĥ|0, ↓〉
〈↓, 0|Ĥ| ↑, 0〉 〈↓, 0|Ĥ|0, ↑〉 〈↓, 0|Ĥ| ↓, 0〉 〈↓, 0|Ĥ|0, ↓〉

 , (6.26)

58



so, H =


ε0 −t 0 0

−t ε0 0 0

0 0 ε0 −t
0 0 −t ε0

 . (6.27)

Eq.(6.27) can be written in the basis of eigenvectors, which are

φ1 = 1√
2


1

1

0

0

, φ2 = 1√
2


0

0

1

1

, φ3 = 1√
2


1

−1

0

0

, φ4 = 1√
2


0

0

1

−1

 . In this basis, a diagonal matrix

D can be obtained by using the following basis transformations,

D = P−1HP, (6.28)

where P is constructed by the eigenvectors

P =
1√
2


1 0 1 0

1 0 −1 0

0 1 0 1

0 1 0 −1

 , (6.29)

with P−1, the inverse of P . By solving Eq.(6.28), we obtain the diagonal hamiltonian as,

D =


ε0 − t 0 0 0

0 ε0 − t 0 0

0 0 ε0 + t 0

0 0 0 ε0 + t

 . (6.30)

In Tab. 6.1, we write the eigenvectors and eigenvalues for the one-electron system.

The ground-state for a one-electron system is the bonding-bonding molecular orbital, which is a

constructive overlop between the atomic orbitals,

|N = 1〉 =
1√
2

(
|↑, 0〉+ |0, ↑〉

)
, (6.31)

with ε0− t the ground- state total energy. Regarding the ground-state, it is degenerate, meaning there

are multiple states with the same energy. The ground-state can be a bonding state with a spin-up

electron or a bonding state with a spin-down electron, or a linear combination. In reality, the choice of

the ground-state for a one-electron system would be naturally the spin-up electron due to the presence

of a magnetic field coming from earth. Following this, we select the spin-up electron as a ground-state

for the quater-filling case.
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Eigenvector Eigenvalue

1√
2

(
|↑, 0〉+ |0, ↑〉

)
= 1√

2


1
1
0
0

 ε0 − t

1√
2

(
|↓, 0〉+ |0, ↓〉

)
= 1√

2


0
0
1
1

 ε0 − t

1√
2

(
|↑, 0〉 − |0, ↑〉

)
= 1√

2


1
−1
0
0

 ε0 + t

1√
2

(
|↓, 0〉 − |0, ↓〉

)
= 1√

2


0
0
1
−1

 ε0 + t

Table 6.1: Eigenvectors and eigenvalues of the symmetric two-site Hubbard modelat quarter-filling.

Half-filling case: two-electron system

In the case of a two-electron system, the basis of Slater determinants is
(
|↑, ↑〉 , |↓, ↓〉 , |↑, ↓〉 , |↓, ↑〉 , |↑↓, 0〉 , |0, ↑↓〉

)
.

So, the hamiltonian becomes

H =



2ε0 0 0 0 0 0

0 2ε0 0 0 0 0

0 0 2ε0 0 −t −t
0 0 0 2ε0 t t

0 0 −t t 2ε0 + U 0

0 0 −t t 0 2ε0 + U


. (6.32)

In the diagonal basis, we have

D =



2ε0 0 0 0 0 0

0 2ε0 0 0 0 0

0 0 2ε0 0 0 0

0 0 0 2ε0 + U 0 0

0 0 0 0 2ε0 + (U − c)/2 0

0 0 0 0 0 2ε0 + (U + c)/2


, (6.33)

where c =
√

16t2 + U2, a =
√

2((16t2/(c− U)2) + 1) and b =
√

2((16t2/(c+ U)2) + 1).

The ground-state for N = 2 electrons system is

|N = 2〉 =
4t

a(c− U)

(
|↑, ↓〉 − |↓, ↑〉

)
+

1

a

(
|↑↓, 0〉+ |0, ↑↓〉

)
, (6.34)

where the ground-state energy E0 is, E0 = 2ε0 + U−c
2 .
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Eigenvector Sector Eigenvalue

|↑, ↑〉



1
0
0
0
0
0

 2ε0

|↓, ↓〉



0
1
0
0
0
0

 2ε0

1√
2

(
|↑, ↓〉+ |↓, ↑〉

)
1√
2



0
0
1
1
0
0

 2ε0

1√
2

(
|↑↓, 0〉 − |0, ↑↓〉

)
1√
2



0
0
0
0
1
−1

 2ε0 + U

4t
a(c−U)

(
|↑, ↓〉 − |↓, ↑〉

)
+ 1/a

(
|↑↓, 0〉+ |0, ↑↓〉

)


0
0
4t

a(c−U)

− 4t
a(c−U)

1/a
1/a


2ε0 + (U − c)/2

4t
b(c+U)

(
|↓, ↑〉 − |↑, ↓〉

)
+ 1/b

(
|↑↓, 0〉+ |0, ↑↓〉

)


0
0

− 4t
b(c+U)

4t
b(c+U)

1/b
1/b


2ε0 + (U + c)/2

Table 6.2: Eigenvectors and eigenvalues of the symmetric Hubbard dimer model at half-filling.

Three-electron system

For three-electron system, the basis of Slater determinants consists of:

(
|↑↓, ↑〉 , |↑, ↑↓〉 , |↑↓, ↓〉 , |↓, ↑↓〉

)
.

So, the hamiltonian is built as
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H =


〈↑↓, ↑ |Ĥ| ↑↓, ↑〉 〈↑↓, ↑ |Ĥ| ↑, ↑↓〉 〈↑↓, ↑ |Ĥ| ↑↓, ↓〉 〈↑↓, ↑ /Ĥ/ ↓, ↑↓〉
〈↑, ↓↑ |Ĥ| ↑↓, ↑〉 〈↑, ↑↓ |Ĥ| ↑, ↑↓〉 〈↑, ↑↓ |Ĥ| ↑↓, ↓〉 〈↑, ↑↓ |Ĥ| ↓, ↑↓〉
〈↑↓, ↓ |Ĥ| ↑↓, ↑〉 〈↑↓, ↓ |Ĥ| ↑, ↑↓〉 〈↑↓, ↓ |Ĥ| ↑↓, ↓〉 〈↑↓, ↓ |Ĥ| ↓, ↑↓〉
〈↓, ↑↓ |Ĥ| ↑↓, ↑〉 〈↓, ↑↓ |Ĥ| ↑, ↑↓〉 〈↓, ↑↓ |Ĥ| ↑↓, ↓〉 〈↓, ↑↓, |Ĥ| ↓, ↑↓〉

 . (6.35)

It is solved as

H =


3ε0 + U −t 0 0

−t 3ε0 + U 0 0

0 0 3ε0 + U −t
0 0 −t 3ε0 + U

 . (6.36)

Eigenvector Sector Eigenvalue

1√
2
(|↑↓, ↑〉+ |↑, ↑↓〉) 1/

√
2


1
1
0
0

 −t+ U + 3ε0

1√
2
(|↑↓, ↓〉+ |↓, ↑↓〉) 1/

√
2


0
0
1
1

 −t+ U + 3ε0

1√
2
(|↑↓, ↑〉 − |↑, ↑↓〉) 1/

√
2


1
−1
0
0

 t+ U + 3ε0

1√
2
(|↑↓, ↓〉 − |↓, ↑↓〉) 1/

√
2


0
0
1
−1

 t+ U + 3ε0

Table 6.3: Eigenvectors and eigenvalues of the symmetric Hubbard dimer model with three-electron.

Exact Green’s functions for the Hubbard model

The 1-GF in the discrete space is defined in Eq.(B.13). We derive its expression in frequency space as

follows.

Gijσσ′(t− t′) = −i
[
θ(t− t′) 〈N |ĉiσ(t)ĉ†jσ′(t

′)|N〉 − θ(t′ − t) 〈N |ĉ†jσ′(t
′)ĉiσ(t)|N〉

]
, (6.37)

where θ(t) is the heaviside function, which is defined as,

θ(t) =


1 if t > 0
1
2 if t = 0

0 if t < 0 .
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Then, by using the following definition of the time dependent operators within the Heisenberg scheme,

ĉ(t) = eiĤtĉe−iĤt , (6.38)

we have

Gijσσ′(t− t′) = −iθ(t− t′) 〈N |eiĤtĉiσe−iĤteiĤt
′
ĉ†jσ′e

−iĤt′ |N〉

+ iθ(t′ − t) 〈N |eiĤt′ ĉ†jσ′e
−iĤt′eiĤtĉiσe

−iĤt|N〉 . (6.39)

Now, we insert the completeness relations for N − 1 and N + 1 electrons systems,

Gijσσ′(t, t
′) = −iθ(t− t′) 〈N0|eiĤtĉiσe−iĤt

∑
s

|N + 1〉s 〈N + 1|s e
iĤt′ ĉ†jσ′e

−iĤt′ |N0〉+

iθ(t′ − t) 〈N0|eiĤt
′
ĉ†jσ′e

−iĤt′
∑
s

|N − 1〉s 〈N − 1|s e
iĤtĉiσe

−iĤt|N0〉 , (6.40)

where |N − 1〉 and |N + 1〉 are the many-body wavefunctions for N − 1 and N + 1 electron systems.

The
∑

s is the sum over all the states, ground and excited states, with |N0〉 is the ground-state for

the N electrons system. So, we have

Gijσσ′(t− t′) = − iθ(t− t′)
∑
s

eiE
N
0 t 〈N0|ĉiσ|N + 1〉s e

−iEN+1
s te(iEN+1

s )t′ 〈N + 1|sĉ†jσ′ |N0〉 e−(iEN0 )t′

+ iθ(t′ − t)
∑
s

eiE
N
0 t
′ 〈N0|ĉ†jσ′ |N − 1〉

s
e−iE

N−1
s t′eiE

N−1
s t 〈N − 1|sĉiσ|N0〉 e−iE

N
0 t

(6.41)

= − iθ(t− t′)
∑
s

ei(E
N
0 −EN+1

s )(t−t′) 〈N0|ĉiσ|N + 1〉s 〈N + 1|sĉ†jσ′ |N0〉

+ iθ(t′ − t)
∑
s

ei(E
N−1
s −E0)(t−t′) 〈N0|ĉ†jσ′ |N − 1〉

s
〈N − 1|sĉiσ|N0〉

. (6.42)

Now, we move to the frequency space, by using the inverse Fourier transform of the heaviside function,

θ(t− t′) = − 1

2πi

∫
dω′

e−iω
′(t−t′)

ω′ + iη
, (6.43)

so, this yields

Gijσσ′(t− t′) =
∑
s

∫
dω′

2π

e−i(E
N+1
s −EN0 +ω′)(t−t′)

ω′ + iη
〈N0|ĉiσ|N + 1〉s 〈N + 1|sĉ†jσ′ |N0〉

−
∑
s

∫
dω′

2π

e−i(E
N
0 −EN−1

s −ω′)(t−t′)

ω′ + iη
〈N0|ĉ†jσ′ |N − 1〉

s
〈N − 1|sĉiσ|N0〉 . (6.44)

Finally, we obtain the 1-GF definition in frequency and discrete space,

Gijσσ′(ω) =
∑
s

[〈N0|ĉ†jσ′ |N − 1〉s 〈N − 1|s ĉiσ|N0〉
ω − (EN0 − EN−1

s )− iη
+
〈N0|ĉiσ |N + 1〉s 〈N + 1|sĉ†jσ′ |N0|〉

ω + (EN0 − EN+1
s ) + iη

]
. (6.45)
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Figure 6.12: Removal (left panel) and addition (right panel) parts of the spin-up 1-GF for the sym-
metric two-site Hubbard model with one-electron. ε0 − t and ε0 + t are the bonding and antibonding
energies, respectively.

By using Eq.(6.45) for the Hubbard model with different electron number, we calculate the 1-GF

for the different systems. For N = 1, the exact 1-GF matrix ij elements are

Gij↑(ω) =
1

2

[
1

ω − (ε0 − t)− iη
+

(−1)i−j

ω − (ε0 + t) + iη

]
, (6.46)

which is equivalent to the non-interacting 1-GF, because since the 1-GF describes the removal and

addition of electron, the spin-up electron when it is removed has no other electrons to interact with.

When we add a spin-up electron, it should be added to the unoccupied state, since another spin-up

electron is in the ground-state. Therefore, the added electrob also does not interact with the other

spin-up electron, because they occupy different sites. This is illustrated in Fig. 6.12.

On the other hand, the spin-down 1-GF involves interaction since the additional electron can

occupy the same site as the spin-up electron. The matrix elements for the spin-down components are

Gij↓(ω) = (−1)i−j
1

4

(
1

ω − (ε0 + t) + iη
+

1

ω − (ε0 + t+ U) + iη

)
+

1
2a2

(
1 + 4t/(c− U)

)2

ω − (ε0 + t+ (U − c)/2) + iη

+

1
2b2

(
1− 4t/(c+ U)

)2

ω − (ε0 + t+ (U + c)/2) + iη
. (6.47)

There are only addition parts, because there is no spin-down electron in the ground-state.

For N = 2, the 1-GF matrix elements are

Gijσ(ω) =
1

2a2

(
1 + 4t/(c− U)

)2
ω −

(
ε0 + t− (c− U)/2

)
− iη

+

(−1)i−j

2a2

(
1− 4t/(c− U)

)2
ω −

(
ε0 − t− (c− U)/2

)
− iη

+

(−1)i−j

2a2

(
1 + 4t/(c− U)

)2
ω −

(
ε0 − t+ (c+ U)/2

)
+ iη

+
1

2a2

(
1− 4t/(c− U)

)2
ω −

(
ε0 + t+ (c+ U)/2

)
+ iη

, (6.48)

where Gij↑ = Gij↓.
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6.5.2 GW solutions

Quarter-filling case: one-electron system

For illustration and discussion, we first present results for the dimer with one spin-up electron in the

ground state. These results can be also found in literature, e.g, in Ref. [55].

The 1-GF solution within GWA (GGW ) can be obtained by solving the Dyson equation, which is

written in matrix form in site basis and in frequency space as follows,

GGW (ω) = G0(ω)− vH − ΣGW
xc (ω) , (6.49)

where G0 is the non-interacting 1-GF matrix, vH is the Hartree potential matrix and ΣGW is the

exchange-correlation (xc) self-energy matrix within GWA. To obtain G, we need G0, vH and ΣGW
xc .

The G0 matrix elements are given below,

G0ij↑(ω) =
(−1)i−j

2

(
(−1)i−j

ω − (ε0 − t)− iη
+

1

ω − (ε0 + t) + iη

)
, (6.50)

and,

G0ij↓(ω) =
(−1)i−j

2

(
(−1)i−j

ω − (ε0 − t) + iη
+

1

ω − (ε0 + t) + iη

)
, (6.51)

where the G0 matrix is

G0(ω) =


G011↑ G012↑ 0 0

G021↑ G022↑ 0 0

0 0 G011↓ G012↓

0 0 G021↓ G022↓

 . (6.52)

The Hartree potential within the Hubbard dimer is

vH(ij)(ω) =
∑
σ1

〈N0|ĉ†iσ1
ĉjσ1 |N0〉 δijU . (6.53)

Thus, the Hartree matrix becomes

vH(ω) =


U
2 0 0 0

0 U
2 0 0

0 0 U
2 0

0 0 0 U
2

 . (6.54)

By using the Hartree potential in the Dyson equation, one obtains the Hartree 1-GF matrix-elements,

GHij↑(ω) =
1

2

(
1

ω − (ε0 − t+ U/2)− iη
+

1

ω − (ε0 + t+ U/2) + iη

)
, (6.55)

and,

GHij↓(ω) =
1

2

(
1

ω − (ε0 − t+ U/2) + iη
+

1

ω − (ε0 + t+ U/2) + iη

)
. (6.56)
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Now, we calculate ΣGW
xc within one-shot calculations usingG0 and the screened Coulomb interaction

within the RPA (W0). Therefore, we would solve the following integral, written in the Hubbard site-

basis,

ΣG0W0
xcij,σ (ω) =

i

2π

∫
dωG0ijσ(ω)W0ji(ω)eiωη , (6.57)

where W0 matrix-elements are obtained by using the Dyson equation,

W0,ij(ω) = Uδij + U
∑
kσ

PRPA
ik=1,2σ=↑,↓(ω)W0kj(ω) . (6.58)

where PRPA is the irreducible polarizability P within the RPA that can be calculated from

PRPA
ijσ (ω) = −i

∫
dω

2π
G0ijσ(ω + ω′)G0jiσ(ω′)eiωη . (6.59)

It has the following solutions,

PRPAij↑ (ω) =
(−1)i−j

4

(
1

ω − 2t+ iη
− 1

ω + 2t− iη

)
, (6.60)

and,

PRPAij↓ (ω) = 0 . (6.61)

Since there is no spin-down electron to polarize, the spin-down matrix-elements are zero. Note that

PRPA describes the non-interacting electron excitations, where the pole 2t represents the bonding-

antibonding energy difference. Using PRPA in Eq.(6.58), we obtain

W011(ω) = U + U

(
P11↑(ω)W11(ω) + P12↑(ω)W21(ω) + P11↓(ω)W11(ω) + P12↓(ω)W21(ω)

)
(6.62)

W011(ω)

(
1− UP11↑(ω)

)
= U + UP12↑(ω)W21(ω) . (6.63)

For the off-diagonal elements,

W021(ω) = 0 + U

(
P21↑(ω)W011(ω) + P22↑(ω)W021(ω)

)
(6.64)

W021(ω) =
UP21↑(ω)

W011(ω)1− UP22↑(ω)
. (6.65)

So,
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W011(ω)

(
1− UP11↑(ω)

)
= U +

U2P 2
12↑(ω)W11(ω)

1− UP22↑(ω)
(6.66)

W011(ω)

(
1− UP11↑(ω)−

U2P 2
12↑(ω)

1− UP22↑(ω)

)
= U (6.67)

W011(ω)

(
(1− UP11↑(ω))2 − U2P 2

12↑(ω)

)
= U

(
1− UP22↑(ω)

)
(6.68)

W011(ω)

(
1− 2UP11↑(ω) + U2P 2

11↑(ω)− U2P 2
12↑(ω)

)
= U

(
1− UP22↑(ω)

)
(6.69)

W011(ω) = U
1− UP22↑(ω)

1− 2UP11↑(ω)
(6.70)

W011(ω) = U
1− Ut

ω2−4t2+iη

1− 2Ut
ω2−4t2+iη

(6.71)

W011(ω) = U
1− Ut

ω2−4t2+iη

1− 2Ut
ω2−4t2+iη

(6.72)

W011(ω) = U
1− Ut

ω2−4t2+iη

1− 2Ut
ω2−4t2+iη

(6.73)

W011(ω) = U +
U2t

ω2 − 4t2 − 2Ut+ iη
. (6.74)

Moreover,

W021(ω) =
UP21↑

1− UP22↑(ω)
W011(ω) (6.75)

=
−Ut

ω2 − 4t2 − Ut+ iη
W011(ω) (6.76)

W021(ω) = − U2t

ω2 − 4t2 − Ut+ iη
− U3t2

(ω2 − 4t2 − Ut+ iη)(ω2 − 4t2 − 2Ut+ iη)
(6.77)

W021(w) = − U2t

ω2 − 4t2 − Ut+ iη

(
1 +

Ut

ω2 − 4t2 − 2Ut+ iη

)
(6.78)

W021(ω) = − U2t

ω2 − 4t2 − 2Ut+ iη
. (6.79)

So, the W0 matrix-elements are

W0ij(ω) = Uδij + (−1)i−j
U2t

2h

(
1

ω − h+ 2iη
− 1

ω + h− 2iη

)
, (6.80)

where h2 = 4t2 + 2Ut. Now, the necessary ingredients are obtained to solve the GW integral 6.57,

which can be done by using the Cauchy’s residue theorem, which is∫
C
dzf(z) = 2πi

∑
k

Resz=akf(z), (6.81)

where Resz=ak denotes the residue of the function f with respect to the pole k. For a simple pole,

Resz=akf(z) = limz→ak(z − ak)f(z) . (6.82)
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For poles of ordre n,

Resz=akf(z) =
1

(n− 1)!
limz→ak

dn−1

dzn−1

[
(z − ak)nf(z)

]
. (6.83)

By using this theorem, we obtain the ΣG0W0
xc

ΣG0W0
xc (ω) =


ΣG0W0

xc,11↑(ω) ΣG0W0
xc,12↑(ω) 0 0

ΣG0W0
xc,21↑(ω) ΣG0W0

xc,22↑(ω) 0 0

0 0 ΣG0W0
xc,11↓(ω) ΣG0W0

xc,12↓(ω)

0 0 ΣG0W0
xc,21↓(ω) ΣG0W0

xc,22↓(ω)

 , (6.84)

where

ΣG0W0
xc,ij↑ (ω) = −U

2
δij +

U2t

4h

(
(−1)i−j

ω − (ε0 − t− h)− 3iη
+

1

ω − (ε0 + t+ h) + 3iη

)
, (6.85)

ΣG0W0
xc,ij↓ (ω) =

U2t

4h

(
1

ω − (ε0 + t+ h) + 3iη
+

(−1)i−j

ω − (ε0 − t+ h) + 3iη

)
. (6.86)

It is worth mentioning that the exchange spin-up self-energy −U
2 corrects the Hartree self-interaction.

The remaining part of Σxc↑ is the dynamical correlation that describes the screening. For the spin-down

self-energy, there is no exchange term, since the exchange interaction occurs between electrons with

parallel spins. Additionally, it is important to attract attention to the fact that we keep all the broad-

ening accumulation iη, 2iη, 3iη... despite the fact that η → 0, because numerically η has a finite value.

Thus the G0W0 1-GF can be obtained by solving the matrix equation 6.49, numerically or analyt-

ically, leading to the following analytic result,

GG0W0
ij↑ (ω) = (−1)i−j

1
4 + 2t+h

4A

ω − ω1 + iη
+ (−1)i−j

1
4 −

2t+h
4A

ω − ω2 − iη
+

1
4 −

2t+h
4A

ω − ω3 + iη
+

1
4 + 2t+h

4A

ω − ω4 − iη
, (6.87)

where A =
√

(h+ 2t)2 + 2U2t
h , ω1 = 2ε0−h+A

2 , ω2 = 2ε0−h−A
2 , ω3 = 2ε0+h+A

2 and ω4 = 2ε0+h−A
2 . And,

GG0W0
ij↓ (ω) = (−1)i−j

1
4 + 2t−h+U/2

4B

ω − ω5 + iη
+ (−1)i−j

1
4 −

2t−h+U/2
4B

ω − ω6 + iη
+

1
4 −

2t+h−U/2
4C

ω − ω7 + iη
+

1
4 + 2t+h−U/2

4C

ω − ω8 + iη
, (6.88)

where B =
√

(h− 2t− U/2)2 + 2U2t
h and C =

√
(h+ 2t− U/2)2 + 2U2t

h . ω5 = 2ε0+h+U/2+B
2 , ω6 =

2ε0+h+U/2−B
2 , ω7 = 2ε0+h+U/2+C

2 and ω8 = 2ε0+h+U/2−C
2 .

Half-filling case: two-electron system

The non-interacting 1-GF holds the same definition as the one electron system, where the only dif-

ference is that the spin-down element has a removal pole since it exists in the ground-state. So, we

have

G0,ijσ(ω) =
1

2

(
1

ω − (ε0 − t)− iη
+

(−1)i−j

ω − (ε0 + t) + iη

)
, (6.89)
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where G0,ij↑ = G0,ij↓. The screened interaction within the RPA (W0) is obtained from PRPA(ω),

which still has the same definition as the one-electron case, but the difference is that the spin-down

components exist. Thus, using the W definition derived in Eq.(6.58), we obtain

W0,ij(ω) = Uδij + (−1)i−j
U2t

h2

(
1

ω − h2 + iη
− 1

ω + h2 − iη

)
, (6.90)

where h2 =
√

4t2 + 4Ut. The exact W is calculated in Sec. 7.5 of Chap. 7, where the exact χ and its

structure is discussed. Here, we use the final answer,

Wij(ω) = Uδij + (−1)i−j
2U2

a2

(
1

ω − (c+ U)/2 + iη
− 1

ω + (c+ U)/2− iη

)
.

Using these two screened interactions together with G0, we get the two different Σxc matrix elements,

ΣG0W0
xc,ijσ(ω) = −U

2
δij +

U2t

2h2

(
1

ω − (ε0 + t+ h2) + iη
+

(−1)i−j

ω − (ε0 − t− h2)− iη

)
, (6.91)

where ΣG0W0
xc,ij↑ = ΣG0W0

xc,ij↓ and,

ΣG0W
xc,ijσ(ω) = −U

2
δij +

U2

a2

(
1

ω − (ε0 + t+ c+U
2 ) + iη

+
(−1)i−j

ω − (ε0 − t− c+U
2 )− iη

)
, (6.92)

where ΣG0W
xc,ij↑ = ΣG0W

xc,ij↓. In both cases, the exact Hartree potential vH matrix elements that will be

added to Σxc to solve the Dyson equation are vH,ij = Uδij .
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Part II

Theoretical Development
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Chapter 7

Total energy beyond GW using

density-functional ingredients

Many important properties of materials are linked to observables that can be expressed in principle

as expectation values in the many-body ground-state or in thermal equilibrium. In practice, the use

of many-body wavefunctions is often avoided by rather describing the observables as functionals of

more compact quantities, i.e., quantities that depend on less arguments, such as the density [7], one-

body reduced density matrix [127–129], or one- or two-body Green’s functions [4]. This represents a

trade-off: often, one does not know the exact functional for an observable in terms of these quantities,

and approximations have to be designed. One important example is the total energy: it can be

straightforwardly formulated in terms of the one-body Green’s function (1-GF) [94], whereas no exact

explicit expression in terms of the density is known. The same holds for electron addition and removal

spectral functions. Excitation spectra involving neutral excitations in linear response, instead, are

easily expressed in terms of a two-body Green’s function, but not in terms of the ground-state density

or the one-body Green’s function [4]. Even when the expressions are known, one faces another problem:

while the use of the compact quantities carries the promise of reduced computational load, they are

themselves only known explicitly as expectation values involving many-body wavefunctions. Therefore,

nothing is gained, unless one finds ways to calculate them in a different way, which may be in principle

exact, and in practice, require approximations. Typically, the density is obtained from the Kohn-

Sham equations [8] with an approximate exchange-correlation (xc) potential, and the 1-GF, from a

Dyson equation with an approximate xc self-energy Σxc [63]. It is therefore not always obvious which

framework (Density Functional Theory (DFT), Green’s Function Functional Theory (etc.) is the best

choice to access a given observable. This holds in particular for the total ground-state energy E0.

While the Galitskii-Migdal formula [94] or functional expressions such as the Luttinger-Ward [130] or

Klein [131] functionals yield an in principal exact and, in the latter two cases, even variational, form

in terms of the 1-GF G, the need for approximations to the 1-GF itself strongly impacts the quality of

the results. Together with a computational load far heavier than that of the most widely used density

functionals, this explains why the vast majority of total energy calculations is performed using DFT,

not Green’s functions. Still, research concerning total energy calculations using Green’s functions is

active and important [51, 53, 117, 132].
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Besides the - important - fact that in principle expressions for E0 as functional of G and/or Σxc are

known, the Green’s functions framework benefits from the existence of powerful approximations. In

particular, Many-Body Perturbation Theory (MBPT) [63] suggests a way to expand the self-energy

in diagrams that carry physical meaning and that are therefore helpful to describe phenomena such

as the van der Waals dispersion interaction [133]. For situations that show only weak to moderate

interaction effects, MBPT is often considered to be a systematic way to proceed, although in practice

renormalizations, such as screening of the Coulomb interaction, are needed. In particular, even the

lowest order of an expansion of the self-energy in terms of the screened Coulomb interaction W ,

which is the widely used GW approximation [24], has been very successful for the calculation of the

quasi-particle (QP) part of electron addition and removal spectra in finite and extended systems [4,

26–33].

However, there are many cases where the GW approximation is not sufficient. On one hand,

the description of QP energies is not always good and certainly worsens in more strongly correlated

systems [4, 54]. On the other hand, other quantities, such as satellite features in the electron addition

and removal spectra, are often less well described, even in absence of strong correlation [134, 135].

Most importantly, GW does not necessarily yield total energies of better quality than currently used

density functionals [51–53]. Research on total energies in terms of 1-GFs goes therefore hand in hand

with research on approximations to the self-energy beyond GW . The most straightforward way to go

would be to explore higher orders in W , and important research in this direction is ongoing [71–81].

In many cases it cannot, however, bring a practical solution, since the resulting expressions become

quickly very cumbersome and costly, and since perturbation theory will diverge when the interaction

is too strong. Therefore, it would be desirable to find an efficient way to terminate the series.

In the various possible ways to express the xc energy contribution to the total energy such as the

adiabatic connection fluctuation dissipation theorem [136, 137], the polarizability plays a key role. This

suggests to explore links to other frameworks that are used to access the polarizability, in particular,

Time-Dependent DFT (TDDFT) [89]. Indeed, there is a long, and sometimes very successful, history

of attempts to use TDDFT in order to go beyond GW in terms of vertex corrections based on the

xc kernel fxc [59–66, 68, 70], the functional derivative with respect to the density of the xc potential

vxc of TDDFT [138], or related linear response kernels that may be closer to the many-body Green’s

functions framework [139–142]. This kind of combination leads to the so-called GW̃ self-energy, where

the Coulomb interaction is screened by a test charge-test electron (TCTE) dielectric function instead

of the test charge-test charge (TCTC) one used in the GW approximation [143, 144]. Independently of

the specific recipe that is used in the various GW̃ expressions, these approaches replace the complicated

exact vertex function Γ that depends on three space, spin and time arguments by a two-arguments

function (1 − fxcχ0)−1, where χ0 is an independent-particle polarizability. Therefore, the resulting

self-energy is always approximate [65]. Nevertheless, using a GW̃ self-energy instead of GW often

improves the QP energies [59, 68, 70]. At the same time, the idea is much less explored when it comes

to total energies. Moreover, to the best of our knowledge a systematic study for both total energy

and spectra that would discern the effect of the replacement of the full Γ by a two-arguments vertex

on one side, from the effect of approximations to the fxc itself on the other side, is still missing.
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The present chapter has a focus on the total xc energy, while making a link to other aspects of the

1-GF when interesting. It addresses the following questions: Could a self-energy with a two-arguments

vertex correction, and in particular, a TDDFT-derived one, yield in principle exact results? If yes,

how do we have to build the corresponding expressions for the total xc energy? How do widely used

approximations impact the results? And what happens to the kinetic energy and to spectra? As we

will show, there are indeed different possibilities to obtain in principle exact expressions for the total

xc energy, which are moreover quite robust when widely used approximations are made. Consistent

combination of ingredients is a key requirement for this to be true. With these self-energies, the kinetic

energy is not exact in principle, but we examine the possibility to use the virial theorem in order to

overcome this problem. This allows us moreover to make an interesting comparison to the widely used

adiabatic connection approach, which also makes use of the polarizability, but without involving a

self-energy. Spectra are also approximate in principle when a two-arguments vertex correction is used,

but we find that the GW̃ results still exhibit improvements over GW .

Our investigation and discussion is general, and it is accompanied by an illustration using the

exactly solvable symmetric Hubbard dimer at half-filling.

7.1 Brief theoretical background

It is important to present the following theoretical background derivations in this chapter to provide

the necessary foundation for understanding our proposed derivations.

7.1.1 Total energy and spectral function in terms of the Green’s function

The ground-state total energy E0 can be expressed in terms of the time ordered GF [53, 94]

E0 = −i lim
t2→t+1

∫
dx1

[
−
∇2
r1

2
+ vext(x1)

]
G(x1, x1; t1 − t2)︸ ︷︷ ︸

Ek+Eext

− i
2

lim
t2→t+1

∫
dx1 vH(x1)G(x1, x1; t1 − t2)︸ ︷︷ ︸

EH

− i
2

lim
t2→t1

∫
dx1dx3dt3 Σxc(x1, x3; t1 − t3)G(x3, x1; t3 − t2)︸ ︷︷ ︸

Exc

, (7.1)

where x = (r, σ) stands for position and spin 1. Here, we have highlighted the different contributions

to the total energy, namely the kinetic energy Ek, the contribution Eext coming from the external

potential vext, the Hartree energy EH given in terms of the Hartree potential vH, and the exchange-

correlation energy Exc expressed in terms of the exchange-correlation self-energy Σxc. The last two

terms compose the interaction energy Einter ≡ EH + Exc. Note that here, in the context of MBPT,

1In the publication [145, 146], in the last term of Eq.(7.1) lim
t2→t1

is replaced by lim
t2→t++

1

since we were using the usual

expression for the GW Σxc, see the remark after (5.84)
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Exc refers specifically to the exchange-correlation energy of the Coulomb interaction, in contrast to

the DFT framework where the xc energy also includes the correlation contribution from the kinetic

energy. The specific form Eq.(7.1) of the Galitskii-Migdal equation is convenient in order to discuss

separately the different contributions to the total energy, and to find specific improvements for each

part. While such a strategy does not benefit from error canceling and therefore does not necessarily

lead to globally improved results, it helps to obtain deeper insight, and eventually to arrive to the

good result for the good reason.

7.1.2 Interaction energy in terms of the polarizability

Our focus is to find accurate expressions for the interaction energy Einter. For this purpose, it is useful

to express it in terms of the reducible polarizability χ [147].

For a system with N electrons in its ground-state, the interaction energy is given by the expectation

value of the Coulomb interaction operator V̂ in the many-body ground-state |N0〉,

Einter = 〈N0|V̂ |N0〉 =
1

2

∫
dx1dx2 vc(x1, x2) 〈N0| ψ̂†(x2)ψ̂†(x1)ψ̂(x1)ψ̂(x2) |N0〉 , (7.2)

where ψ̂ and ψ̂† are the annihilation and creation field operators, respectively. On the other hand, the

reducible polarizability χ is defined as,

χ(x1, t1;x2, t2) = −iG(x1, t1;x1, t
+
1 )G(x2, t2;x2, t

+
2 )

− i 〈N0| T̂
[
ψ̂†(x1, t

+
1 )ψ̂(x1, t1)ψ̂†(x2, t

+
2 )ψ̂(x2, t2)

]
|N0〉 . (7.3)

In the limit t2 = t++
1 ,

χ(x1, t1;x2, t
++
1 ) = −iG(x1, t1;x1, t

+
1 )G(x2, t

++
1 ;x2, t

+++
1 )

− i 〈N0|ψ̂†(x2)ψ̂(x1)|N0〉 δ(x2 − x1)− i 〈N0|ψ̂†(x2)ψ̂†(x1)ψ̂(x1)ψ̂(x2)|N0〉

= i n(x1)n(x2)− i γ(x1, x2)δ(x2 − x1)− i 〈N0|ψ̂†(x2)ψ̂†(x1)ψ̂(x1)ψ̂(x2)|N0〉 , (7.4)

where we used the anticommutation relation {ψ(x2), ψ†(x1)} = δ(x2 − x1), and where we introduced

the one-body reduced density-matrix γ(x1, x2) = 〈N0| ψ̂†(x2)ψ̂(x1) |N0〉 = −iG(x1, t, x2, t
+), with the

electron density n(x1) = γ(x1, x1). The last term in Eq.(7.4) enters the definition of the interaction

energy in Eq.(7.2). The interaction energy can therefore be expressed in terms of the polarizability χ

as

Einter =
1

2

∫
dx1dx2 vc(x1, x2)n(x1)n(x2)

+
i

2

∫
dx1dx2 vc(x1, x2)χ(x1, t1;x2, t

++
1 )− 1

2

∫
dx1dx2vc(x1, x2)γ(x1, x2)δ(x2 − x1) , (7.5)

where the first term is the Hartree energy and the last two terms are the exchange-correlation energy.

This formulation of Exc is not directly suitable for practical purposes, since it consists of terms con-

taining a divergence that cancels in the sum. It is, however, a good starting point for the developments

in the next section.
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7.2 Diving into the topic

The preceding section served as our point of departure. In this section, we present our proposed

theoretical developments.

7.2.1 A freedom of choice

In order to eliminate the problematic last term in Eq.(7.5), we introduce a generalized independent-

particle polarizability defined as χ0(1, 2) ≡ −iḠ(1, 2+)Ḡ(2̄, 1+). Its time diagonal is

χ0(x1, t, x2, t
++) = −iḠ(x1, t;x2, t

+++)Ḡ(x2, t
++;x1, t

+) (7.6)

= γ̄(x1, x2)

(
− i 〈N̄0| ψ̂(x2)ψ̂†(x1) |N̄0〉

)
(7.7)

= −iγ̄(x1, x2) 〈N̄0| δ(x2 − x1)− ψ̂†(x1)ψ̂(x2) |N̄0〉 (7.8)

= −iγ̄(x1, x2)δ(x2 − x1) + iγ̄(x1, x2)γ̄(x2, x1) , (7.9)

where |N̄0〉 is the many-body ground-state corresponding to a system that could be the true interacting

system or an auxiliary interacting or non-interacting system. Ḡ and γ̄ are the corresponding 1-GF

and the corresponding density matrix, respectively.

In the last term of Eq.(7.5), only the diagonal of the density matrix is needed. In order to replace

this term, we can therefore consider all systems that yield the exact density γ̄(x, x) = n(x), such as

the true interacting system, or the Kohn-Sham auxiliary system. This leaves considerable freedom,

which we can use to derive different exact expressions for Einter and to design efficient approximations.

Indeed, when γ̄(x, x) = n(x) we have, from Eq.(7.9)

n(x1)δ(x2 − x1) = iχ0(x1, t;x2, t
++) + γ̄(x1, x2)γ̄(x2, x1) , (7.10)

which, replaced in Eq.(7.5), yields

Exc = − 1

2

∫
dx1dx2 vc(x1, x2)γ̄(x1, x2)γ̄(x2, x1)

+
i

2

∫
dx1dx2 vc(x1, x2)

(
χ(x1, t1;x2, t

++
1 )− χ0(x1, t1;x2, t

++
1 )

) (7.11)

= Ēx + Ēc = Ēx + Ec +
(
Ex − Ēx

)
. (7.12)

The first term in Eq.(7.11) is Ēx, the exchange energy corresponding to |N̄0〉. Since the derivation

shows that the sum of all terms is the exact exchange-correlation energy, the second term in Eq.(7.11)

Ēc contains the exact correlation energy plus a correction that compensates the error of Ēx with

respect to the exact exchange energy Ex. It is crucial to note that one can use any system defined by

a ground-state |N̄0〉, as long as this system yields the exact density: this will yield the exact Coulomb

interaction energy, although γ̄ is not the density matrix of the true interacting system. Two most

obvious choices are either the true many-body system with Ḡ = G, which leads to χMB
0 ≡ −iGG

and γ̄(x1, x2) = γ(x1, x2) the true density matrix, or the Kohn-Sham (KS) system with χ0 → χKS
0 ≡

−iGKSGKS the independent-particle polarizability built with the Kohn-Sham Green’s function, and

γ̄ → γKS the KS density matrix.
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7.2.2 Exact exchange-correlation energy from approximate self-energies

Our next goal is to make a self-energy appear in the expression of Exc. To this aim, we rewrite

Eq.(7.11) as

Exc =
1

2

∫
dx1d2 Ḡ(1, 2+)Ḡ(2, 1+)vc(2, 1) +

i

2

∫
dx1d3 vc(3, 1)

[
χ(1, 3++)− χ0(1, 3++)

]
(7.13)

=
1

2

∫
dx1d2 Ḡ(1, 2+)Ḡ(2, 1+)vc(2, 1)

+
i

2

∫
dx1d(234)χ0(1, 2)

[
vc(2, 4) + f̄xc(2, 4)

]
χ(4, 3++)vc(3, 1) ,

(7.14)

where we have introduced the generalized exchange-correlation kernel f̄xc that, once a choice for χ0 is

made, is defined from the Dyson-like equation

χ(1, 2) = χ0(1, 2) +

∫
d(34)χ0(1, 3)

(
vc(3, 4) + f̄xc(3, 4)

)
χ(4, 2) , (7.15)

keeping in mind that χ is always the exact reducible polarizability. When χ0 is chosen to be the KS

independent particle polarizability, f̄xc = fxc, the xc kernel of linear response TDDFT[138], but, as

pointed out above, other choices are possible.2 By using the definition of χ0, given in the beginning

of 7.2.1, Eq.(7.14) can be written as

Exc =

∫
dx1d2 Ḡ(1, 2+)Ḡ(2, 1+)

(
vc(2, 1) +

∫
d(34)

(
vc(2, 4) + f̄xc(2, 4)

)
χ(4, 3++)vc(3, 1)

)
(7.16)

=

∫
dx1d2 Ḡ(1, 2)Ḡ(2, 1++)

(
vc(2, 1

+) +

∫
d(34)

(
vc(2, 4) + f̄xc(2, 4)

)
χ(4, 3++)vc(3, 1

+)

)
(7.17)

=
1

2

∫
dx1d2 Ḡ(1, 2) ¯̃W (2, 1+)Ḡ(2, 1++) =

1

2

∫
dx1d2 Ḡ(1, 2++)W̃ (2+, 1)Ḡ(2, 1) , (7.18)

where we have defined the generalized TCTE screened Coulomb interaction3

¯̃W (2, 1) = vc(2, 1) +

∫
d(34)

(
vc(2, 4) + f̄xc(1, 4)

)
χ(4, 3++)vc(3, 1) . (7.19)

In this way, the exact exchange-correlation energy takes a form analogous to the last term in the

Galitskii-Migdal expression Eq.(7.1):

Exc = − i
2

∫
dx1d2 Σ̄xc(1, 2)Ḡ(2, 1) , (7.20)

with the exchange-correlation self-energy

Σ̄xc(1, 2) ≡ iḠ(1, 2++) ¯̃W (2+, 1) . (7.21)

This is the same form as Eq.(5.84). The important point to stress here is the fact that the exact

Exc is obtained with an approximate self-energy Eq.(7.21). This approximation is often called GW̃ .

2Note that here we have given the equations in terms of time-ordered quantities, whereas TDDFT is usually causal.
One has to pay attention to be consistent when combining the GFFT and TDDFT frameworks in practice.

3The double infinitesimals in χ(4, 3++) do not change the spectrum of ¯̃W , but we keep them here explicitly since
they give a straightforward prescription for the contour integral in frequency space yielding Exc.
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It is usually derived [59] by replacing Σxc(4, 2) in the functional derivative in Eq.(5.85) with a local

δ(4, 2)v̄xc(4). Most often, v̄xc ≡ vxc, the KS xc potential of TDDFT, is chosen and the resulting fxc is

approximated, for example, in the adiabatic local density approximation. In our derivation, f̄xc does

not have to be a functional derivative, since it is defined by Eq.(7.15), which generalizes the definition

of ¯̃W . This gives a rigorous foundation to attempts to use f̄xc other than approximate TDDFT ones

in order to approximate vertex corrections to the self-energy, in particular, the so-called nanoquanta

kernel and approximations to it:[60, 139–142, 148–152] the only requirement is that χ0 corresponds

to the correct density. It should, however, be noted that a f̄xc fulfilling Eq.(7.15) does not necessarily

exist for every χ0. We will give an illustration below in the Hubbard dimer.

The important message of this section is that the exact exchange-correlation energy can be obtained

with an approximate self-energy Σ̄xc and with an approximate Green’s function Ḡ which is not the

solution of the Dyson equation using Σ̄xc, but which has been chosen from the beginning. The two

important requirements are consistency of the ingredients used in Eq.(7.20), and the fact that they

stem from the real or from an auxiliary system yielding the exact density. In the following, we will

call this a consistent scheme, as opposed to a non-consistent scheme where different 1-GFs are used in

Exc, Σ̄xc,
¯̃W . Here, we have shown that there is more than one possible consistent choice, which may

help to design efficient approximations.

7.2.3 The kinetic energy

Virial theorem

The TCTE screened self-energy Σ̄xc does in general not correspond to the exact self-energy, and

therefore one does not have access to the exact 1-GF nor to the exact density matrix. As a consequence,

the kinetic energy Ek cannot be computed exactly. However, with the exact Coulomb interaction

energy Einter at hand, this problem can in principle be overcome by using the virial theorem for the

electron system [153, 154],

2Ek + Einter =

∫
d3r n(r)r · ∇vext(r) ≡ SV T . (7.22)

Using the virial theorem requires in principle to know the exact density. This is not an additional

requirement here, since it was already assumed throughout the above derivations. Moreover, research

in the framework of DFT shows that errors induced by approximate functionals are often predomi-

nantly due to the form of the functional, whereas in many cases errors due to an approximate density

are small [155]. Therefore, the use of the virial theorem is a promising route to take when, as it is the

case here, one can expect to access the interaction energy with good accuracy.

Linearized Dyson Equation

The key ingredient for the calculation of the kinetic energy is the density matrix. Its diagonal is the

density. In our quest to add corrections in order to improve treatment of the kinetic energy, we try

to enhance the density-matrix calculations. Recognizing that the one-shot G0W method violates the
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electron number conservation [123], a linearized form of the Dyson equation to rectify this violation

has been introduced in Ref. [51]:

GLDE(1, 2) ≈ G0(1, 2) +

∫
d(34)G0(1, 3)

(
vH(3, 4)δ(3, 4) + Σxc(3, 4)− vxc(3, 4)

)
G0(4, 2) , (7.23)

where the same G0, which may already contain some xc effects through the potential vxc, must be used

in the Dyson equation and in Σxc = iG0W . With this consistent choice for G0, the resulting GLDE has

the correct number of electrons, while the non-linearized Dyson equation using the same self-energy

may violate particle number conservation. This is an alternative to adjusting the electron number

by shifting the chemical potential [156]. It is interesting to examine whether restoring the particle

number by linearizing the Dyson equation not only improves the diagonal of the density matrix but

also its off-diagonal parts, such leading to an improved kinetic energy. This can be analyzed as follows:

the exact density matrix can be written as

n(x, x′) =
∑
s

fsφs(x)φ∗s(x
′) , (7.24)

where fs are occupation numbers and φs natural orbitals. As an approximation, we suppose that the

natural orbitals equal the independent particle ones, and we replace the fs by an average occupation

number fv for the states below the fermi energy and by another average fc for states above, which is

valid in the limit of weak correlation where fv = 1 and fc = 0. Then

n(x, x′) = fv

occ∑
s

φs(x)φ∗s(x
′) + fc

empty∑
s

φs(x)φ∗s(x
′) (7.25)

= (fv − fc)
occ∑
s

φs(x)φ∗s(x
′) + fcδ(x, x

′) . (7.26)

The second term does not contribute to the kinetic energy. The first term equals the independent

particle density matrix, scaled by the difference of average occupation numbers. Therefore the kinetic

energy is dominated by this difference, rather than by the particle number, which is dominated by the

sum. For this reason, constraining the result by imposing particle number conservation may not be

beneficial for the kinetic energy, and the use of the virial theorem remains more promising. However,

this analysis also shows that it may be interesting to examine the occupation number difference, which

is shown in Subsec. 7.3.3

7.2.4 Comparison to the adiabatic connection

Finally, it is interesting to compare our equations to the adiabatic connection (AC) approach [136,

137, 157]. In principle, this approach yields the exact full correlation energy, which encompasses

correlations arising from both kinetic and Coulomb interaction energies, as well as the difference

between the exchange energy calculated with the true and the KS density matrix, respectively. Also

in this approach, the correlation energy is expressed in terms of χ and χ0, but with an integration

over a coupling constant λ that scales the Coulomb interaction and modifies vext such that the density

remains constant,

Efull
c =

i

2

∫ 1

0
dλ

∫
dx1dx2 vc(x1, x2)

(
χλ(x1, t1;x2, t

++
1 )− χKS

0 (x1, t1;x2, t
++
1 )

)
. (7.27)
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Since the structure of the expression is the same as that of Eq.(7.12) (apart from the exchange-energy),

one can express also the AC result in terms of an effective self-energy,

Efull
c = − i

2

∫
dx1d3 Σeff

c (1, 3)GKS(3, 1++) , (7.28)

where

Σeff
c (1, 3) = iGKS(1, 3)

∫ 1

0
dλ W̃ λ

pol(3, 1
+) , (7.29)

with W̃ λ
pol the polarization contribution to the λ-dependent KS TCTE screened interaction. Σeff

c is

an effective correlation self-energy that contains kinetic and interaction contributions. Here, we have

worked with the KS scheme, since the AC expression is often (though not always, see, e.g., [80]) used

in the framework of KS-DFT. Analogous expressions are obtained for other allowed choices of χ0, e.g.,

stemming from a generalized KS scheme. Of course, this self-energy yields the exact full correlation

energy, while it is not meant to be used in a Dyson equation to yield the 1-GF.

It is interesting to compare the errors to be expected in practice from the AC approach on one

side, with the errors of the approach discussed in this chapter, i.e., the combination of the calculation

of Einter plus the use of the virial theorem. For this estimate, we suppose the virial term SVT in

Eq.(7.22) to be known with an error that is negligible with respect to the error ∆Einter stemming

from approximations to χ. This is consistent with the fact that we suppose the density to be known

with good accuracy. Using the virial theorem 2Ek + Einter = SVT, the error in the kinetic energy

will be ∆Ek = −∆Einter

2 , leading to a total error of ∆E = +∆Einter

2 . In the case of the adiabatic

connection, the error is determined entirely by the integral over response functions Eq.(7.27). Since

the non-interacting χ0 is subtracted, it is reasonable to suppose that the dominant contribution is

linear in λ. Evidence that this is true can be found for small systems in Ref. [158]. Assuming linearity

in λ, one obtains the same error ∆E = +∆Einter

2 as in our alternative scheme. Whether higher orders

in λ will rather reduce or increase this result depends on whether χλ is convex or concave. In any

case, this discussion suggests that similar errors are to be expected, while the λ-integration is avoided

in the approach using the virial theorem.

7.2.5 Shortcomings of the TCTE self-energy

While different flavors of the TCTE screened GW̃ self-energies yield the exact xc energy, they will

in general not yield the correct spectral function calculated from the solution of the Dyson equation.

One may expect some improvement with respect to the GW approximation for the quasiparticle (QP)

energies, since the use of f̄xc, which is negative, reduces the polarization contribution and therefore

approximates one important effect of the full vertex corrections, which is to reduce self-polarization

[54]. However, one may expect that it will not be sufficient to bring significant correction to the

satellites, which are in general poorly described by the GW approximation. The reason is the following:

as can be seen in Eq.(4.10), the poles of the exact Green’s function are the total energy differences

±(EN±1,s−EN ), where N is the particle number and s labels a ground (s = 0) or excited state s. This

can be written as ±(EN±1,s−EN±1,0)±(EN±1,0−EN ), i.e., the excitation energy of the N±1-electron
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system plus the chemical potential for electrons or holes. This means that satellites of the QP, which

lies at the respective chemical potential, must be found at a distance equal to the excitation energies

of the N ± 1-electron system, and not, as it would be the case in the GW approximation for small

systems with a discrete spectrum, at a distance close to the excitation energies of the N -electron

system (plus differences in input and output QP energies when G is not calculated self-consistently).

This shortcoming cannot be overcome by a fxc(ω) that depends on a single frequency and multiplies

χ(ω) in frequency space: such a structure cannot shift the poles of χ(ω). This could only be achieved

by a frequency integration, as it is the case when the true three-times vertex correction is used. One

should therefore at best expect corrections of the intensities of the satellites when moving from GW

to GW̃ .

7.3 Illustrations

In order to illustrate our main findings and suggestions, we will use the symmetric Hubbard dimer,

which is detailed in Chap. 6. Using this simple model allows us to explore the full range of correlation,

which can be quantified by the ratio U/t, and to have an unambiguous benchmark. We will use it

at half filling, i.e., with two electrons as just mentioned, which yields non-trivial electron removal

and addition features, and we will set U = 4 eV throughout the illustrations. One limitation of the

model is the fact that the density is trivial and always exact in all methods that conserve symmetry

and particle number. Since in the present work we suppose to know the exact KS ingredients, this is

not a main drawback. Moreover, asymmetry in the potential removes degeneracy and therefore has a

tendency to decrease correlation effects. The symmetric dimer is therefore the most critical test case.

Exploring density-driven errors would be interesting, but beyond the scope of this work.

The exact analytical expressions for the time-ordered Green’s function and self-energy are given in

Sec. 7.5. For the approximate Green’s functions we have solved the Dyson equation numerically. Our

code uses retarded quantities [159, 160], which avoids interference between the regions of positive and

negative energies that otherwise can cause problems when t→ 0. Computational details are given in

Sec. 7.5.

As worked out in Subsec. 7.2.1, different choices for χ0 are possible. The simplest choice is to

build χ0 with KS Green’s functions. In this case, the corresponding xc kernel fKS
xc is the one defined in

TDDFT. In the symmetric Hubbard dimer the KS xc potential is a number that we set by constraining

the highest occupied level (HOMO) energy of the KS system to yield the exact ionization potential. In

this way we obtain the KS Green’s function and χKS
0 , and subsequently fKS

xc by inversion of Eq.(7.15).

This inversion is not unique in the symmetric Hubbard dimer, because both the exact χ and χKS
0 have

only one non-zero element, which is the antibonding/antiboding one. Therefore, as already pointed

out in [57], only the antibonding/antibonding matrix element of the resulting fxc is defined. The other

elements are arbitrary, but their choice has no impact on the results, since fxc appears only in the

combination χ0fxcχ.

Another natural choice would be to use the exact Green’s function G to build χ0, since it also

yields the exact density, as required. However, interestingly there is no solution to the inversion of
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Figure 7.1: Symmetric Hubbard dimer at half filling and U = 4 eV: error of the exchange-correlation
energy as a function of the hopping t. Exc is obtained from Exc = − i

2

∫
GoutΣxc[G

in] for different
Gin, Gout, which are, respectively, the input 1-GF used to build the self-energy, and the 1-GF that
is usually the output of the Dyson equation, but for which we have more options here. Σxc is a GW̃
self-energy, built with Gin and using the consistently chosen xc kernel. For a compact notation, we
denote this by Gout|Gin|f̄xc(ω). The black and sky blue solid lines with dot markers result from a self-
energy built with KS ingredients and integrated, respectively, consistently with Gout = Gin = GKS or,
inconsistently, with the Gout = GD resulting from the Dyson equation. The red and green dashed lines
with triangle markers result from a self-energy built with QP ingredients and integrated, respectively,
consistently with the Gout = Gin = GQP or, inconsistently, with the Gout = GD resulting from the
Dyson equation. Left panel: results using the exact consistent f̄xc(ω). Middle panel: results using the
adiabatic approximation ω = 0 for f̄xc. Right panel: results obtained by neglecting f̄xc completely,
which corresponds to a GW0 approximation, where W0 is calculated in the RPA and G = Gin.

Eq.(7.15) in this case. The reason is that also the bonding/bonding element of this χ0 = −iGG is

non-vanishing. Further analysis shows that this stems from the satellite contributions to G, which

are not canceled by proper vertex corrections. This is a nice illustration for one of the problems

of this ill-behaved polarizability which also, for example, does not fulfill the f -sum rule [161]. We

will instead use χQP
0 ≡ −iGQPGQP. It is built with the QP approximation GQP to the exact G,

where satellites are neglected and the remaining intensities normalized to 1. This can be seen as a

realization of a generalized KS Green’s function, stemming from a potential that is non-local in space

but instantaneous in time. Such a potential can lead to accurate QP energies, but not to satellites.

In a real material, the widely used hybrid functionals [162] fall into this class. It should again be

stressed that both kernels, whether the one of the KS or the one of the QP scheme, can be called

“exact”, as long as they are used consistently in conjunction with χ0 built with the corresponding

Green’s functions.

7.3.1 Results using exact xc kernels

In the following we will focus on the results obtained with the two kernels fKS
xc and fQP

xc , without

approximating them further. This will allow us to illustrate the effect of using an fxc to simulate the

full three-argument vertex of many-body perturbation theory, without further approximations.

Exchange-correlation energy

First, let us examine the xc contribution to the total energy, given by Eq.(7.20) Exc = − i
2

∫
ḠΣ̄xc.

As pointed out above, here Ḡ should not be the exact Green’s function nor the one resulting from
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the Dyson equation with Σ̄xc, which we will call GD in the following, but Ḡ, which is the one used to

build the GW̃ self-energy Σ̄xc. This point is important since in practical applications, using GD would

often seem to be a natural choice, being the best available Green’s function, i.e. the one closest to the

exact G. We will therefore compare these choices in the following, by evaluating Exc =
∫
GoutΣ̄xc[G

in].

Here, Gin is the input 1-GF used to build the G ¯̃W self-energy Σ̄xc, and the Gout is either the output

of the corresponding Dyson equation GD, or equal to Gin. In all cases, Σ̄xc is built with the xc kernel

f̄xc that is consistent with Gin.

For a compact notation, we use Gout|Gin|f̄xc(ω). For example, GD|GKS|fKS
xc (ω) stands for Exc =

− i
2

∫
GDΣxc[G

KS], where the G ¯̃W self-energy is built using the KS Green’s function and KS xc kernel.

The Dyson equation is then solved using this self-energy, and the resulting Green’s function GD is

used in the integral. Note that while GD is not the same in the KS and QP frameworks, we do not

highlight this difference in the notation, since it is clear from the context. Comparison of the various

flavors allows us to illustrate the importance of the consistency requirement advocated in Sec. 7.2.2.

For subsequent investigation, we also indicate by |f̄xc(ω) whether the exact consistent f̄xc(ω) is used

or further approximations are made, e.g., |f̄xc(ω = 0). Fig. 7.1 shows the difference to the exact xc

energy Exc. The results in the left panel were obtained using the exact consistent f̄xc(ω). As predicted

by Eq.(7.20), the two consistent calculations GKS|GKS|fKS
xc (ω) and GQP|GQP|fQP

xc (ω) both yield the

exact result. Instead, when solution of the Dyson equation is used for Gout we obtain GD|GKS|fKS
xc (ω)

and GD|GQP|fQP
xc (ω), which are both inconsistent and therefore not exact. The error of the former is

larger than that of the latter. This can be understood, since the difference between GD and the input

Green’s function is larger in the case of KS than in the case of the QP input. In all cases, errors are

vanishing for large t, whereas they increase in the inconsistent calculations with decreasing t. Even

closer to the atomic limit, all errors tend to zero. Nevertheless, the importance of consistency is nicely

illustrated by this result.

Kinetic energy

While an approximate self-energy used in the consistent scheme yields exact results for Exc, no such

scheme exists for the kinetic energy. Instead, by definition the result of the Dyson equation GD is

used to determine the density matrix and hence, the kinetic energy. We will therefore examine the

error introduced by various flavors of the self-energy, starting with those that can yield the exact Exc.

The left panel of Fig. 7.2 shows the results for GD|GKS|fKS
xc (ω) and GD|GQP|fQP

xc (ω). Both exhibit

errors that only vanish at large t and for t → 0. The KS flavor converges more quickly to the exact

result with increasing t than the QP version. This favors the use of the GW̃ self-energy built with

KS, rather than QP, ingredients. Still, the error is significant. However, as noted in Subsec. 7.2.3,

with an exact interaction energy one can, in principle, also obtain the exact kinetic energy by using

the virial theorem. This allows one to overcome the problem of not knowing the exact density matrix.

Spectra

The situation is different for spectral properties: here, the shortcomings of an approximate Green’s

function cannot be overcome easily. As for the kinetic energy, the result of the Dyson equation is
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Figure 7.2: Kinetic energy errors as a function of the hopping parameter t. Left panel: Ek is calculated
with the Green’s function GD resulting from the Dyson equation with a GW̃ self-energy (red with
triangles and sky blue with dots) or with a GWTCTC self-energy, where WTCTC is the exact TCTC
screened Coulomb interaction (violet with dots). The self-energy is built with KS ingredients (sky
blue and violet) or QP ingredients (red). Right panel: fxc is approximated adiabatically (orange with
dots for KS ingredients, black with triangles for QP ingredients) or completely neglected (green with
dots for KS ingredients, dark blue with triangles for QP ingredients).

used to calculate the spectra. We will explore which of the flavors of the self-energy that gives an

in principle exact total energy will yield the best spectral properties, and what are the remaining

problems.

Figure 7.3: Error of the QP energies as a function of the hopping t. The LUMO and HOMO energy
errors are shown in the upper and lower panels, respectively. Left column: The result of the Dyson
equation with a GW̃ self-energy with KS ingredients (blue with dots) or QP ingredients (red with
triangles), or with a GW self-energy using the exact TCTC screened Coulomb interaction (violet with
dots) is shown. Right column: The result of the Dyson equation with a GW̃ self-energy with KS
ingredients using a static fxc(ω = 0) (orange with dots) or neglecting fxc (green with dots), or with
QP ingredients using a static fxc(ω = 0) (black with triangles) or neglecting fxc (blue with triangles)
is shown.

Let us first look at the QP peaks of the spectral function Fig. 7.3 shows the error of the position
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of the HOMO and of the lowest unoccupied state (LUMO) as a function of t. The two panels in the

left column contain the HOMO (lower panel) and LUMO (upper panel) energy errors obtained with

the exact KS or QP ingredients to build the GW̃ self-energy. While the KS and QP flavor perform

very similarly for the HOMO, with small errors at larger t and a significant deviation from the exact

result for small t that goes up to U/2 for t → 0, the LUMO is relatively well described for all t, and

the error vanishes for t → 0. Results for the LUMO are particularly satisfying when KS ingredients

are used, in which case the error does not exceed 0.1 eV for any t. For larger t, above 2.5 eV, the

errors become small for both HOMO and LUMO, especially in the KS flavor, where they remain well

below 0.1 eV and quickly move into the meV range (see insets).

Beyond the QP features, Fig. 7.4 shows the entire spectral functions for t = 0.5 eV. We will

concentrate on the satellites. They are due to the peaks in the imaginary part of the self-energy,

which are in turn determined by the peaks of W̃ : the poles of Im Σ̄xc are situated at energies ε̄i ± ωj ,
where ε̄i is a removal/addition pole of the Gin = Ḡ used to build the self-energy, and ωj is a pole

of χ. Not all poles are visible in all matrix elements: in the symmetric Hubbard dimer, the bonding

(antibonding) matrix element of the self-energy is dominated by the addition (removal) part of Gin.

The bonding (antibonding) matrix element satellites are therefore found at energies higher (lower)

than the LUMO (HOMO). In many real materials, all parts of the Green’s function contribute to all

matrix elements of the self-energy, and for a given matrix element satellites are found on both sides

of a QP. In this sense, the Hubbard dimer is an extreme case, where a given matrix element selects

just one particular excitation, that may moreover not be the intuitively expected one. This does not

influence our conclusions, but it is interesting to note.

The most obvious feature in Fig. 7.4 is that satellites are not well described in general when the

exact f̄xc(ω) is used. Their position at ε̄i±ωj combines two errors: the fact that the excitation energy

ωj of the N electron system is used (see Subsec. 7.2.5), and the fact that ε̄i can be different from

the true QP energy. Since in our case the antibonding matrix element is dominated by the HOMO

ε̄, the exact QP energy is used in all cases and the error is entirely due to the difference between the

(too high) excitation energy of the N electron system with respect to the N − 1 electron one. For the

bonding matrix element, instead, the LUMO ε̄ is used, which is exact when QP ingredients are used,

but which is too low in the KS case. This adds to the error of the (too high) excitation energy of the

N electron system with respect to the N + 1 electron one. Since the two errors are of opposite sign,

the KS ingredients yield the best result for the bonding matrix element. The difference between the N

and N ± 1 excitation energies should be of particular importance in finite systems, but an analogous

error might also impact results in infinite systems with localized electrons.[163] Note, however, that

the problem discussed here is different from another issue in extended systems, where the satellite

position can be spoiled by the appearance of a plasmaron, a spurious solution of the QP condition

that is found at some distance from the peak in the imaginary part of the self-energy [164–166]. In a

discrete system such as the Hubbard dimer, instead, for large enough t ,the satellites are always found

close to the position of peaks of the imaginary part of the self-energy, and the point here is that this

position is calculated with the wrong number of electrons.

The biggest effect of fxc is to decrease screening, which remedies the self-screening problem for the
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Figure 7.4: Bonding-bonding (left panel) and antibonding-antibonding (right panel) matrix elements
of the spectral function for U = 4 eV and t = 0.5 eV. The continuous black curves are the exact
result. The result of the Dyson equation using a GW̃ self-energy with KS ingredients and the exact
fKS

xc is in sky blue or the vanishing fKS
xc (ω) = 0 is in green. The result of the Dyson equation using QP

ingredients and the exact fQP
xc is in dashed red or the vanishing fQP

xc (ω) = 0 is in dashed blue. The
red arrow indicates the position of the very weak satellite obtained when QP ingredients are used.
Moreover, the result of the Dyson equation using a GW self-energy with the exact TCTC screening is
shown in violet. The exact HOMO is situated at 0. Note that the corresponding satellites are found
at higher energies, whereas the QP of the LUMO is situated at 3.5 eV, with satellites in the electron
removal energy range.

QPs[54, 167, 168], but which also decreases the satellite intensity because, as can be seen in Fig. 7.5, fxc

is always negative. Indeed, the GW̃ satellites in Fig. 7.4 are of much too weak intensity. KS ingredients

do a bit better than QP ones in this respect, since in this case a weaker f̄xc is used (see Fig. 7.5),

which leads to a smaller decrease of the satellite intensities, but the result is still unsatisfactory. This

dilemma cannot be solved with such a simple vertex correction that is multipicative in frequency.

In other words and as expected, GW̃ , even with exact KS or QP ingredients, cannot yield reliable

satellites.

7.3.2 Impact of approximating fxc

Understanding the impact of replacing the full vertex corrected self-energy with a GW̃ one is of

fundamental interest. For practical applications, one also has to face the problem that the exact

fxc(ω) is in general not known. Therefore, we also briefly examine the impact of two widely used

approximations: either a complete neglect of fxc, which brings us back to the GW approximation

with an RPA W = W0, or at least an adiabatic approximation where only fxc(ω = 0) is used, since

the frequency dependence of fxc(ω) is notoriously difficult to approximate. As we will see, these

approximations do not have the same impact according to the flavor (KS or QP) that is chosen, and

according to the combination of ingredients.
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Exchange-correlation energy: impact of approximations

Let us first look at the quantity that is obtained exactly when GW̃ is used consistently, namely, the

xc contribution Exc to the total energy. The middle panel of Fig. 7.1 compares results using the

adiabatic approximation f̄xc(ω = 0) and combining the ingredients in a consistent or inconsistent

way, respectively. Similarly, results in the right panel were obtained by completely neglecting fxc. In

all cases, the consistent results now show an error, but it is smaller than that of the corresponding

inconsistent results, with a larger good impact for the KS flavor, which demonstrates that a consistent

choice of ingredients remains essential to obtain good total energies. The best results are obtained

using the consistent KS flavor. When the adiabatic approximation is used, the good performance of

KS can be explained by the fact that the quadratic frequency dependence of the kernel, which is a

universal feature of fxc [169], is milder in the KS than in the QP case, as shown in Fig. 7.5. Although

approximate, the benefit of using fxc remains very important, as can be seen by comparing the middle

panel and the right panel, where results on the GW level with an RPA W0 are given. The GW0 results

tend to the exact result very slowly with increasing t, and a part from the consistent KS flavor, they

deviate significantly from the exact result in the atomic limit towards. The GD|GKS|fxc(ω) = 0 flavor

tends to U/2,while both consistent and non-consistent QP cases tend to U/4.

Figure 7.5: Antibonding matrix element of fxc(ω) as a function of frequency for U = 4 eV and t = 3
eV. The light blue curve shows the xc kernel corresponding to the KS system, whereas the dashed
orange result is the xc kernel that is consistent with QP ingredients.

Kinetic energy: impact of approximations

The kinetic energy is never exact in GW̃ unless the virial theorem is used, as explained above and

as illustrated in Fig. 7.2. The right panel of Fig. 7.2 also shows the impact on the kinetic energy of

approximations to fxc. The adiabatic approximation fxc(ω = 0) has a very moderate effect, with a

tendency that is rather towards improving the results. The reason for this is the fact that the kinetic

energy suffers from the underestimate of the satellite intensity discussed above, which is improved

when fxc is weaker. Neglecting the quadratic frequency-dependence of the kernel shown in Fig. 7.5 is

therefore rather beneficial for the kinetic energy. A complete neglect of fxc, instead, spoils results in the

moderate to large t-range, while further slightly improving the small-t regime, where the satellites are

important. Overall, KS flavors perform slightly better than QP ones. Finally, we also show in the left
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panel the result of a GWTCTC calculation, where the self-energy is of GW form using KS ingredients

and the exact χ and therefore the exact W is used, but where the vertex Γ = 1 in the self-energy, i.e.,

the functional derivative in Eq.(5.85) is set to 1. This means that the so-called test-charge test-charge

(TCTC) screening is used instead of the TCTE one that is used in the GW̃ approximation. Indeed,

it would be tempting to think that a very good W used in GW could improve results. However, with

respect to a standard GW0 calculation using an RPA W = W0, where fxc = 0 also in χ, the results are

worsened, especially in the moderate to large-t regime. It has been pointed out that vertex corrections

in the polarizability and in the self-energy tend to cancel partially[63, 170]: the present result is a

good illustration.

Use of the adiabatic connection versus virial theorem

Finally, we can examine the quality of the result that can be obtained by using the virial theorem,

instead of approximating the kinetic energy directly, and compare to the results obtained using the

adiabatic connection (AC) fluctuation-dissipation theorem discussed in Sec. 7.2.4. Both approaches

are in principle exact, but might react differently to approximations.

Fig. 7.6 gives the errors of the full correlation energy including interaction and kinetic contributions,

obtained using an adiabatic kernel, fxc(ω = 0) and KS ingredients. In order to use the virial theorem,

one has to determine the term SVT in Eq.(7.22). We bypass the difficulty to adapt this equation to

the Hubbard dimer by using the fact that here we work with the exact density in all cases, which

allows us to use the exact SVT, which we obtain from the exact solution as SVT ≡ 2Ek + Einter for all

values of the hopping t. The resulting SVT is then used in place of the right hand side of Eq.(7.22) in

order to obtain Ek = (SVT − Einter)/2 for a given approximation to Einter. This procedure gives the

light blue curve (VT) in Fig. 7.6. As predicted in Sec. 7.2.4, the error is similar to the one of the AC

approach using the same approximation fxc(ω = 0). This is indeed due to the fact that the integrand

of the full correlation energy depends approximately linearly on the coupling constant λ, as one can

see in the inset of Fig. 7.64. The difference of the correlation energy Efull
c is very small around t = 3

eV where the behaviour is almost exactly linear, while the deviation is larger at the smaller t = 0.5

eV, where a quadratic λ-dependence is clearly visible. In this small-t regime, where the function is

convex, the approach using the virial theorem performs better, while also avoiding the need for the

λ-integration.

Spectra

The fact that GW̃ does not yield the correct spectral properties cannot be overcome, but it is still

interesting to examine the effect of approximations made in practice. This is done in the right panels

of Fig. 7.3 for the QP energies, and in Fig. 7.4 for the satellites. For the LUMO position, both

the adiabatic approximation and neglecting fxc completely lead to significant worsening of the result

in the small-t regime, the worst results being obtained with KS and QP GW0, i.e, fxc = 0, which

also slightly deteriorates results at larger t. It is interesting to note that keeping the exact fxc(ω)

in W alone, i.e., using the exact WTCTC instead of the RPA W = W0, does not fix any of these

4The two insets show Eλc , where Efull
c =

∫ 1

0
dλEλc
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Figure 7.6: Error of the full correlation energy (kinetic and interaction contributions) as a function
of the hopping t, when the adiabatic approximation fxc(ω = 0) is made and KS ingredients are used:
comparison of the adiabatic connection result (AC, in magenta) with the result obtained using the
virial theorem (VT, in cyan). Insets: λ-resolved full correlation energy, based on the exact fxc within
the KS scheme, as a function of λ, for t = 0.5 eV (upper inset) and t = 3 eV (lower inset).

problems, as one can see in the left panel of Fig. 7.3 for the LUMO. The same is true also in the

case of the HOMO. These findings are in line with observations on real systems [171]. Concerning

the other approximations for the HOMO, shown in the lower right panel of Fig. 7.3, the observation

concerning the GW approximation is similar to the LUMO for moderate to large t, whereas the

adiabatic approximation is rather beneficial, especially for smaller t. Also a complete neglect of fxc,

i.e., the GW solution with RPA W = W0, decreases the error for small t, and when KS ingredients are

used, the GW0 results even reaches the correct t→ 0 limit. However, in this case the improvement is

limited to a very small range of t close to the atomic limit. The observed trends highlight the fact that

the effect of including fxc is beneficial for the LUMO at all t and for the HOMO at large t, but too

strong for the HOMO at small t. Further analysis will be needed to eventually turn this observation

into asystematic correction, which is beyond the scope of the present work.

Finally, Fig. 7.4 illustrates that including fxc in W alone, i.e., performing a GWTCTC calculation,

rather worsens the satellites as compared to a GW result obtained with RPA W , which illustrates again

the error canceling. Therefore, the best satellite results are obtained using the GW approximation

with KS ingredients and a complete neglect of f̄xc, for both HOMO and LUMO.

7.3.3 Occupation numbers: the linearized vs full Dyson equations

As highlighted in Ref. [51] and as illustrated in Subsec. 7.2.3, the linearized Dyson equation (LDE)

corrects the electron number, which is equal to the sum of occupation numbers, which is violated by

the resulting 1-GF from the full Dyson equation (FDE) within the G0W and G0W̃ frameworks. This

is illustrated in Fig. 7.7. In this comparison, we employ the KS flavors, i.e G0 → GKS, for which

G0W clearly violates particle number conservation. Especially when neglecting the fxc, the GKSWKS
0

(represented by the solid green line with dot markers) particle number is very low for small t, whereas
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it remains exact using the LDE, as predicted in [172]. Instead, the right panel of Fig. 7.7 shows

the occupation number difference, which is proportional to the kinetic energy. This behavior is only

reproduced by the full Dyson equation using fxc = 0, which is the GKSWKS
0 . This is due to the fact

that GKSWKS
0 yields zero electron number when t→ 0.

On another note, the occupation numbers difference (f1−f2) almost remains unchanged for both GW

(except when t → 0) and GW̃ , noting that the GW within the FDE yields the exact difference due

to a problem of a vanishing electrons number. Therefore, this lack of improvement is not particularly

advantageous for the kinetic energy, which is directly proportional to this difference.

Figure 7.7: Errors of the occupation numbers f1 and f2 as a function of the hopping t Errors of the
sum (left figure) and of the difference (right figure), where f1 and f2 are the occupation numbers of the
bonding and anti-bonding state, respectively. In this figure, we compare the full with the linearized
Dyson equation for a given approximation.

7.3.4 Spectral function features

As discussed above in this chapter, the fxc kernel notably improves the LUMO, which is true for both

the KS and QP flavors. In order to understand why, we look at the spectral function expression,

written in terms of the self-energy in the bonding/antibonding basis as follows,

A(ω) =
1

π

∑
b,ab

ImΣb/ab(ω)(
ω − εb/ab − ReΣb/ab(ω)

)2

+

(
ImΣb/ab(ω)

)2 . (7.30)

The LUMO peak is determined by the ab matrix-element of the spectral function, which, in turn,

is determined by the ab element of the self-energy. This particular element encompasses the “removal”

part of its correlation contribution (as illustrated in Fig. 7.8). Given that the fxc kernel is primarily

designed to enhance this aspect of the self-energy, it becomes evident why the LUMO is accurately

calculated.

7.4 Conclusions

In conclusion, the exact exchange-correlation contribution to the total interaction energy can be

calculated using an approximate self-energy of the form GW̃ . Here, W̃ is a test-charge test-electron

screened Coulomb interaction, which replaces the RPA or the TCTC screened interaction that are
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Figure 7.8: The figure shows ingredients of Eq.(7.30) for U = 4 eV and t = 2 eV. ab and b matrix-
elements are shown in the left and right panels, respetively. The GW and GW̃ self-energies are chosen
here within the KS flavors.

commonly used in the GW approximation. Different choices for W̃ are possible, one of them being

the traditionally used KS scheme, which adds an xc kernel fxc(ω) from linear response TDDFT to the

bare Coulomb interaction in the dielectric function. For all choices the condition is that the 1-GF and

xc kernel used to build the self-energy are consistent and yield the correct density. On top of the KS

choice, we have examined the case where the 1-GF is built with the exact QP energies. For all possible

choices, it holds that the exact xc energy is obtained by integrating the approximate self-energy with

the very same 1-GF that was used to build it. Instead, when the approximate self-energy is used in a

Dyson equation and integrated with the resulting 1-GF, the results carry an error. The importance of

consistency between the 1-GF used to build the self-energy and the 1-GF used for the integration may

explain the success of self-consistent GW total energy calculations, which indeed fulfill the requirement

that the self-energy is integrated with the 1-GF that is used to build it. Here, we show that one can

obtain good quality results by being consistent without carrying out self-consistent calculations.

The exact correlation contribution to the kinetic energy cannot be accessed in the same way. In-

stead, we propose to use the virial theorem. We have studied the impact of widely used approximations

to this approach, and compared with the use of the adiabatic connection fluctuation dissipation theo-

rem. Our general derivation predicts that the final errors are similar, without the need of a coupling

constant integration in the present approach.

Using the approximate self-energies in the Dyson equation leads to approximate 1-GFs and there-

fore, to approximate spectral functions. Still, GW̃ yields overall better QPs than GW , and since the

computational difficulty is similar, it should be preferred. The satellite problem, instead, cannot be

fixed in this way.

90



All statements have been illustrated for the symmetric half-filled Hubbard dimer, confirming our

conjectures and highlighting the fact that results obtained using KS ingredients are overall superior

and less impacted by additional approximations with respect to results obtained using QP ingredients.

While the Hubbard dimer is a simple model, our findings rely on derivations that are valid for the

general case, and they should open the way for interesting applications to more realistic systems.

7.5 Supporting informations: analytical results and numerical

calculations

In this section, we provide the solutions for the model within the GW and GW̃ approximations using

the KS and QP flavors. The exact solutions of the model, obtained by diagonalizing the hamiltonian,

are given in Chap. 6.

7.5.1 GW solutions

The two needed ingredients to calculate Σxc at the GW level, are the 1-GF and the screened Coulomb

interaction.

1. We examine two possibilities for the 1-GF the exact Kohn-Sham 1-GF and the exact Quasi-

Particle (QP) 1-GF which, in the dimer sites basis read, respectively

GKS
ijσ(ω) =

1

2

(
1

ω − (ε0 + t− (c− U)/2)− iη
+

(−1)i−j

ω − (ε0 + 3t− (c− U)/2) + iη

)
, (7.31)

GQP
ijσ(ω) =

1

2

(
1

ω − (ε0 + t− (c− U)/2)− iη
+

(−1)i−j

ω − (ε0 − t+ (c+ U)/2) + iη

)
, (7.32)

where c =
√

16t2 + U2. The KS 1-GF (GKS) is obtained by introducing an energy shift to the

poles of the non-interacting 1-GF shift obtained such that HOMO energy becomes exact [173].

The QP 1-GF (GQP) is built as the exact 1-GF, but it excludes the satellite contributions and

sets the quasiparticle intensities to 1.

2. The screened Coulomb interaction W : in our study, we use both the exact W and approximations

called WKS
0 or WQP

0 , depending on the choice of the 1-GF used to compute the polarizability.

The WKS
0 and WQP

0 are calculated within the Random Phase Approximation (RPA), using the

following irreducible polarizabilities,

PKS
RPA(1, 2) = −iGKS(1, 2+)GKS(2, 1+), (7.33)

and,

PQP
RPA(1, 2) = −iGQP(1, 2+)GQP(2, 1+), (7.34)

respectively for the KS and QP cases. They have the following analytical expressions,

PKS
RPA,ijσ(ω) =

(−1)i−j

4

(
1

ω − 2t+ iη
− 1

ω + 2t− iη

)
, (7.35)
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PQP
RPA,ijσ(ω) =

(−1)i−j

4

(
1

ω + (2t− c) + iη
− 1

ω − (2t− c)− iη

)
. (7.36)

For the exact W , we use the exact reducible polarizability χ, which is related to the 2-particle

Green’s Function (G2),

χ(1, 2) = −iG(1, 1+)G(2, 2+) + iG2(1, 2, 1+, 2+), (7.37)

where G2 is the 2-GF. So, in the Hubbard dimer basis we have,

χijσ1σ2(ω) =
∑
s 6=0

[
〈N0|ĉ†iσ1

ĉiσ1 |Ns〉 〈Ns| ĉ†jσ2
ĉjσ2 |N0〉

1

ω + (EN0 − ENs ) + iη

− 〈N0|ĉ†jσ2
ĉjσ2 |Ns〉 〈Ns| ĉ†iσ1

ĉiσ1 |N0〉
1

ω − (EN0 − ENs )− iη

]
, (7.38)

which leads to the following solutions,

χij↑↑(ω) =
(−1)i−j

2a2

(
1

ω − (c+ U)/2 + iη
− 1

ω + (c+ U)/2− iη

)
+ (−1)i−j

16t2

2a2(c− U)2

(
1

ω − (c− U)/2 + iη
− 1

ω + (c− U)/2− iη

)
, (7.39)

χij↑↓(ω) =
(−1)i−j

2a2

(
1

ω − (c+ U)/2 + iη
− 1

ω + (c+ U)/2− iη

)
− (−1)i−j

16t2

2a2(c− U)2

(
1

ω − (c− U)/2 + iη
− 1

ω + (c− U)/2− iη

)
, (7.40)

where a2 = 2

(
16t2

(c−U)2 + 1

)
and χij↑↑ = χij↓↓, χij↑↓ = χij↓↑.

The spin-independent χ matrix in the site basis (ij basis) is a sum over spins, i.e. χij(ω) =

χij↑↑ + χij↑↓ + χij↓↑ + χij↓↓. In the bonding and antibonding basis χ is written as below,(
0 0

0 2χii(ω)

)
, (7.41)

where χii(ω) = χ11(ω) +χ22(ω) and the following non-interacting eigenvectors are used to make

the basis transformation, 1√
2

(
1

1

)
, 1√

2

(
1

−1

)
.

We can now write the screened Coulomb interaction W in the different flavors. We start with

the exact χ,

W (1, 2) = vc(1, 2) +

∫
d(34)vc(1, 3)P (3, 4)W (4, 2),

= vc(1, 2) +

∫
d(34)vc(1, 3)χ(3, 4)vc(4, 2) ,
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or, in the site basis,

Wij(ω) = Uδij + U
∑
kσ

Pikσ(ω)Wkj(ω),

= Uδij + U2
∑

σσ′=↑,↓
χijσσ′(ω) ,

which leads to

Wij(ω) = Uδij + (−1)i−j
2U2

a2

(
1

ω − (c+ U)/2 + iη
− 1

ω + (c+ U)/2− iη

)
.

By using Eq.s(7.35)(7.36), we find

WKS
0,ij(ω) = Uδij + (−1)i−j

U2t

h

(
1

ω − h+ iη
− 1

ω + h− iη

)
, (7.42)

where h =
√

4t2 + 4Ut, and

WQP
0,ij (ω) = Uδij + (−1)i−j

U2(c/2− t)
h′

(
1

ω − h′ + iη
− 1

ω + h′ − iη

)
, (7.43)

where h′ =
√

(2t− c)2 + 4U(c/2− t). Now, by using GKS, GQP, WKS
0 , WQP

0 and W we calculate

the different flavors of Σxc by solving the following integration in the frequency space,

Σxc,ijσ(ω) =
i

2π

∫
dω′G0,ijσ(ω′ + ω)W0,ji(ω

′)e3iω′η , (7.44)

where G0 can be GKS or GQP, and W0 can be WKS
0 , WQP

0 or W .

The solutions of the different GW flavors are

Σ
GKSWKS

0
xc,ijσ (ω) = −U

2
δij +

U2t

2h

(
1

ω − (ε0 + 3t− (c− U)/2 + h) + iη

+
(−1)i−je−3iωη

ω − (ε0 + t− (c− U)/2− h)− iη

)
, (7.45)

ΣGKSW
xc,ijσ (ω) = −U

2
δij +

U2

a2

(
1

ω − (ε0 + 3t+ U) + iη
+

(−1)i−je−3iωη

ω − (ε0 + t− c)− iη

)
, (7.46)

Σ
GQPWQP

0
xc,ijσ = −U

2
δij +

U2( c2 − t)
2h′

(
1

ω − (ε0 − t+ (c+ U)/2 + h′) + iη
+

(−1)i−je−3iωη

ω − (ε0 + t− (c− U)/2− h′)− iη

)
, (7.47)

and

ΣGQPW
xc,ijσ = −U

2
δij +

U2

a2

(
1

ω − (ε0 − t+ c+ U) + iη
+

(−1)i−je−3iωη

ω − (ε0 + t− c)− iη

)
. (7.48)
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It is worth noting that the non-interacting χ0(1, 2) = −iG(1, 2)G(2, 1+) expression does not have

the same structure as the exact χ for the Hubbard dimer, when G is the full exact 1-GF . In fact,

χGG0,ij(ω) = (−1)i−j
(
1 + 4t

c−U
)4

2a4
×
(

1

ω + 2t− c+ 2iη
− 1

ω − 2t+ c− 2iη

)
+(

1 + 4t
c−U

)2(
1− 4t

c−U
)2

a4
×
(

1

ω − c+ 2iη
− 1

ω + c− 2iη

)
+ (−1)i−j

(
1− 4t

c−U
)4

2a4
×
(

1

ω − 2t− c+ 2iη
− 1

ω + 2t+ c− 2iη

)
, (7.49)

or, in the bonding and anti-bonding basis as,

χGG0 (ω) =

(
2C2 0

0 2C1 + 2C3

)
, (7.50)

where C1, C2 and C3 correspond to the first, second and last term in Eq.(7.49), respectively. The

fact that the bonding-bonding matrix element does not vanish, contratry to the exact interacting χ,

explains why no fxc can be found that would link χGG0 and χ in a Dyson equation.

7.5.2 GW̃ solutions

In our analysis, we analytically solve the GW̃ self-energy by considering both the exact and approx-

imate fxc kernels within the frameworks of TDDFT and MBPT (i.e. using KS or QP ingredients).

This allows us to obtain explicit expressions for the self-energy and investigate the effects of different

choices of the fxc kernel on the system’s electronic properties. The test-charge test-electron screened

interaction is defined as,

W̃ (1, 2) = vc(1, 2) +

∫
d(34)

(
vc(1, 3) + fxc(1, 3)

)
χ(4, 2)vc(4, 2) . (7.51)

The two fxc kernels that we used in this article are given by the matrix equations below,

fKS
xc (ω) =

[
χKS

0 (ω)
]−1 − [χ(ω)]−1 − vc , (7.52)

fQP
xc (ω) =

[
χQP

0 (ω)
]−1
− [χ(ω)]−1 − vc , (7.53)

where these equations are solved in the bonding-antibonding basis leading to the following equation,(
fb-b

xc (ω) 0

0 fab-ab
xc (ω)

)
=

(
0 0

0 2χ0,11(ω)

)−1

−

(
0 0

0 2χ11(ω)

)−1

−

(
U 0

0 U

)
, (7.54)

where χKS
0,11(ω) = χKS

0,11↑(ω) + χKS
0,11↓(ω) and χ11(ω) = χ11↑↑(ω) + χ11↑↓(ω) + χ11↓↑(ω) + χ11↓↓(ω). fb-b

xc

and fab-ab
xc are the bonding-bonding and antibonding-antibonding elements of the fxc matrix. This

leads to

fKS,ab-ab
xc (ω) = ω2

(
1

4t
− a2

4(c+ U)

)
− t+

a2(c+ U)

16
− U , (7.55)
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and

fQP,ab-ab
xc (ω) = ω2

(
1

2c− 4t
− a2

4(c+ U)

)
+ 2t− c+

a2(c+ U)

16
− U , (7.56)

respectively, for the KS and QP cases. In the Hubbard dimer, the fxc does not have poles. Its frequency

dependence is quadratic. Comparison of Eq.(7.55) with Eq.(7.56) shows that, since 1
2c−4t −

a2

4(c+U) >
1
4t −

a2

4(c+U) , fQP
xc varies more than fKS

xc with ω, as it is also shown in Fig. 7.5.

To calculate the self-energies based on these kernels, we solve the following integration written in

the Hubbard basis,

Σxc,ijσ(ω) = i

∫
dω1

2π
Gijσ(ω1 + ω)Wji(ω1)e3iω1η

+ iU
∑
m=1,2

∫
dω1

2π
Gijσ(ω1 + ω)fxcjm(ω1)χmi(ω1)e3iω1η (7.57)

whose solutions are

Σ
GKSW̃KS

exact
xc,ijσ = −U

2
δij + (−1)i−j

(
U

4
− U(c+ U)

4ta2

)
e−3iωη+

U

4a2
× (c+ U)2/4− 4t2

t

(
1

ω − (ε0 + 3t+ U) + iη
+

(−1)i−je−3iωη

ω − (ε0 + t− c)− iη

)
, (7.58)

Σ
GQPW̃QP

exact
xc,ijσ (ω) = −U

2
δij + (−1)i−j

(
U

4
− U(c+ U)

a2(2c− 4t)

)
e−3iωη

+
U

a2
× (c+ U)2/4− (2t− c)2

(2c− 4t)

(
1

ω + (ε0 − t+ c+ U) + iη
+

(−1)i−je−3iωη

ω − (ε0 + t− c)− iη

)
, (7.59)

in which W̃exact is the TCTE screened interaction based on the exact fxc kernel and χ. From this, we

can conclude the TCTE expressions

W̃KS
exact,ij = Uδij − (−1)i−j

(
U

2
− U(c+ U)

2ta2

)
+

(−1)i−j
U

2a2
× (c+ U)2/4− 4t2

t

(
1

ω − (c+ U)/2 + iη
− 1

ω + (c+ U)/2− iη

)
, (7.60)

and

W̃QP
exact,ij = Uδij − (−1)i−j

(
U

2
− 2U(c+ U)

a2(2c− 4t)

)
+ (−1)i−j

2U

a2
× (c+ U)2/4− (2t− c)2

(2c− 4t)

(
1

ω − (c+ U)/2 + iη
− 1

ω + (c+ U)/2− iη

)
. (7.61)

When we use the the adiabatic approximation for the fxc kernel to evaluate χ and Σxc, the Dyson

equation becomes

χadiab(ω) =

(
χ−1

0 (ω)− fxc(ω = 0)− vc

)−1

. (7.62)
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We calculate two different χadiab depending on the choice of χ0 and fxc(ω = 0). So, we have χKS
adiab

and χQP
adiab when χKS

0 , fKS
xc (ω = 0) and χQP

0 , fQP
xc (ω = 0) are used, respectively in the equation above.

This yields

Σ
GKSW̃KS

adiab
xc,ijσ (ω = 0) = −U

2
δij+

Ut

2ω1

(
1

ω − (ε0 + 3t− (c− U)/2 + ω1) + iη
+

(−1)i−je−3iωη

ω − (ε0 + t− (c− U/2)− ω1)− iη

)
, (7.63)

where ω1 =
√

4t2 + 2tfKS
Hxc(ω = 0), with fKS

Hxc(ω = 0) = fKS
xc,11(ω)− fKS

xc,12(ω = 0) + 2U = −2t+ a2(c+U)
8

is the difference between the diagonal and off-diagonal elements of the fxc matrix defined in Eq.(7.52)

but without −vc. For the QP ingredients, we have, similarly

Σ
GQPW̃QP

adiab
xc,ijσ (ω = 0) = −U

2
δij +

U(2c− 4t)

8ω2

×
(

1

ω − (ε0 − t+ (c+ U)/2 + ω2) + iη
+

(−1)i−je−3iωη

ω − (ε0 + t− (c− U/2)− ω2)− iη

)
, (7.64)

where ω2 =
√

(2t− c)2 + (2c− 4t)fQP
Hxc(ω = 0), with fQP

Hxc(ω = 0) = 2t−c
2 + a2(c+U)

16 . Note that W̃adiab

is the TCTE screened interaction that includes fxc(ω = 0) and χadiab(ω) within the two different

schemes.

7.5.3 Total energy contributions for the Hubbard dimer

The xc and kinetic energy contributions to the total energy, given in the Galitskii-Migdal formula in

Eq.(7.1) are written in the site basis and frequency space of the Hubbard dimer respectively as follows,

Exc = − i
2

∑
ijσ

∫ +∞

−∞

dω

2π
Σxc,ijσ(ω)Gijσ(ω)e2iηω , (7.65)

Ek = it
∑

ij,i6=j,σ

∫ +∞

−∞

dω

2π
Gijσ(ω)eiωη . (7.66)

7.5.4 Computational details

The entire computational framework for this work has been developed from scratch in the present

thesis, using the Julia programming language [174]. The numerical developments were done in a

perspective of futur application to real systems.

For the purpose of performing the energy integrals, we use ‘quadgk’ library, that relies on Gauss-

Kronod quadratures.[175] Additionally, to visualize our findings effectively, we rely on the ‘Plots.jl’

library,[176] coupled with the GR backend. As mentioned earlier, even though we provide the analytic

solutions and equations within the time-ordered Green’s function framework, the numerical calcula-

tions have been performed within the retarded Green’s function framework to avoid any issues with

poles interference in the small t-range. This only requires replacing −iη with +iη in the poles of the

functions [159, 160]. The total energy contributions defined in Eq.(7.65) and Eq.(7.68) become
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Exc = − 1

2π

∑
ijσ

∫ µ

−∞
dω Im(ΣR

xc,ijσ(ω)GRijσ(ω)) , (7.67)

Ek =
t

π

∑
ij,i6=j,σ

∫ µ

−∞
dω ImGRijσ(ω) , (7.68)

where µ is the chemical potential.

The code of this project, called Symmetric Hubbard dimer, is available at the following address:

https://gitlab.com/tsg1860938/symmetric-hubbard-dimer
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Chapter 8

Exact self-energy via an effective

interaction

In Chap. 7, we observed the immense utility of a linear self-energy expression in terms of a test-charge

test-electron interaction (W̃ ). This W̃ , when consistently employed, provides the exact exchange-

correlation energy contribution Exc to the total energy. However, the self-energy itself remains ap-

proximated, causing the fact that the kinetic energy and spectra are not of equal accuracy as Exc.

In this chapter, we explore the fact that in principle, it is possible to define a two-point effective

interaction W̄eff capable of producing the exact self-energy when appropriately multiplied by a certain

Green’s function Ḡ. We introduce general theoretical developments for an exact equation that directly

provides the exact W̄eff for various choices of Ḡ. We also suggest approximations that might be used

in practice. As in the previous chapter, the Hubbard dimer is used for illustrations.

8.1 Theory

8.1.1 Exact self-energy from an effective interaction

Let us introduce a general effective potential veff that has a one-to-one linear relation with vext. Then,

the xc self-energy can be rewritten in terms of any effective interaction as,

Σxc(1, 2) = −i
∫
d(345)G(1, 4)vc(3, 1

+)
δG−1(4, 2)

δveff(5+, 5)

δveff(5+, 5)

δvext(3+, 3)
(8.1)

= −i
∫
d(45)G(1, 4)Weff(5, 1+)

δG−1(4, 2)

δveff(5, 5+)
, (8.2)

where

G−1 = G−1
0 − veff −

(
Σxc + vext + vH − veff

)
. (8.3)

For instance, if veff = vcl = vext + vH, we obtain Σxc in terms of the test-charge test-charge screened

interaction (TCTC) W

Σxc(1, 2) = −i
∫
d(45)G(1, 4)W (5, 1+)

δG−1(4, 2)

δvcl(5+, 5)
, (8.4)
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or if veff = vKS = vcl + vxc, we obtain Σxc in terms of the test-charge test-electron (TCTE) screened

interaction W̃

Σxc(1, 2) = −i
∫
d(45)G(1, 4)W̃ (5, 1+)

δG−1(4, 2)

δvKS(5+, 5)
. (8.5)

However, we do not know a local veff that is capable to generate a two-point Weff , which yields the exact

self-energy. On the other hand, there must be a two-point Weff that can yield the exact self-energy

Σxc(1, 2) = iG(1, 2)Weff(2, 1+) , (8.6)

since by definition Weff = Σxc/G. Even more interestingly, there must be a modified two-point W̄eff,

that can yield the exact self-energy at the first order when multiplied by the corresponding Ḡ, whether

Ḡ is exact or not i.e

Σxc(1, 2) = iḠ(1, 2)W̄eff(2, 1+) , (8.7)

as long as Ḡ 6= 0 when Σxc 6= 0. This exact formula is first-order in Weff .

8.1.2 Approximations for the effective interaction

To give usefulness to the existence of a W̄eff capable of yielding the exact self-energy in a first order

expression, our goal is to derive an in-principle exact Dyson equation that leads to the exact W̄eff.

While finding the kernel and solving such equations is typically challenging in reality, as it is the case

with many Dyson equations, we will propose approximations to make the solution feasible in practice.

The process unfolds as follows:

Σxc(1, 2) = −i
∫
d(34)G(1, 4)W (3, 1+)

δG−1(4, 2)

δvcl(3+, 3)
(8.8)

= iG(1, 2)W (2, 1+) + i

∫
d(34)G(1, 4)W (3, 1+)

δΣxc(4, 2)

δvcl(3+, 3)
(8.9)

= iG(1, 2)W (2, 1+) + i

∫
d(3456)G(1, 4)W (3, 1+)

δΣxc(4, 2)

δḠ(5, 6)

δḠ(5, 6)

δvcl(3+, 3)
. (8.10)

By using the ansatz self-energy in Eq.(8.7), we obtain the following,

iḠ(1, 2)W̄eff(2, 1+) = iG(1, 2)W (2, 1+) + i

∫
d(3456)G(1, 4)W (3, 1+)

δ
(
iḠ(4, 2)W̄eff(2, 4+)

)
δḠ(5, 6)

δḠ(5, 6)

δvcl(3+, 3)

(8.11)

Ḡ(1, 2)W̄eff(2, 1+) = G(1, 2)W (2, 1+) + i

∫
d(3456)G(1, 4)W (3, 1+)

(
δḠ(4, 2)

δḠ(5, 6)
W̄eff(2, 4+)

+ Ḡ(4, 2)
δW̄eff(2, 4+)

δḠ(5, 6)

)
δḠ(5, 6)

δvcl(3+, 3)
,

(8.12)

so,

W̄eff(2, 1+) =
G(1, 2)

Ḡ(1, 2)
W (2, 1+) + i

∫
d(3456)

G(1, 4)

Ḡ(1, 2)
W (3, 1+)

(
δ(4, 5)δ(2, 6)W̄eff(2, 4+)

+ Ḡ(4, 2)
δW̄eff(2, 4+)

δḠ(5, 6)

)
δḠ(5, 6)

δvcl(3+, 3)
,

(8.13)
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which is in principle an exact equation that yields W̄eff. It is convenient to write it in the form of a

Dyson equation,

W̄eff(2, 1+) =
G(1, 2)

Ḡ(1, 2)
W (2, 1+) + i

∫
d(345678)

G(1, 4)

Ḡ(1, 2)
W (3, 1+)

(
δ(4, 5)δ(2, 6)W̄eff(2, 4+)

− Ḡ(7, 2)W̄eff(8, 7+)
δW̄−1

eff (4, 8)

δḠ(5, 6)
W̄eff(2, 4)

)
δḠ(5, 6)

δvcl(3+, 3)
,

(8.14)

where we have renamed the integration variables. The existence of Weff in the second part of the kernel

of Eq.(8.14) makes the problem difficult to solve. Hence, approximations are required. In practice one

could, for example, use

−
∫
d(48)

δW̄−1
eff (4, 8)

δḠ(5, 6)
W̄eff(8, 7+)W̄eff(2, 4) =

∫
d(48)

δP̄eff(4, 8)

δḠ(5, 6)
W̄eff(8, 7+)W̄eff(2, 4) (8.15)

≈
∫
d(48)

δP̄0eff(4, 8)

δḠ(5, 6)
W̄eff(8, 7+)W̄eff(2, 4) , (8.16)

where W̄−1
eff = v−1

c − P̄eff with P̄eff the effective irreducible polarizability and where P̄0eff = −iḠḠ is

P̄eff within the Random Phase Approximation (RPA). In principle, this approximation could be tried,

but δW
δG is usually neglected in the Bethe-Salpeter equation (BSE) [34–39], where this approximation

has shown a significant efficiency [40–50]. Here, we also neglect this term, so we obtain

W̄eff(2, 1+) ≈ G(1, 2)

Ḡ(1, 2)
W (2, 1+) + i

∫
d(34)

G(1, 4)

Ḡ(1, 2)
W (3, 1+)

δḠ(4, 2)

δvcl(3+, 3)
W̄eff(2, 4+) . (8.17)

This is a Dyson-like equation with a two-point kernel. The complication with respect to the usual

Dyson equation is the fact that this kernel also depends on argument 2, i.e, the equation has a structure

Weff(2, 1) = W (2, 1) +

∫
d4F (2; 14)Weff(2, 4) . (8.18)

This means that the matrix F (1, 4) has to be inverted for every value of the argument 2. Still, this

should be less costly than the inversion of a 4-point matrix in the BSE.

Now, we approximate δḠ(4,2)
δvcl(3+,3)

≈ Ḡ(4, 3+)Ḡ(3, 2) in Eq.(8.17). To assess the physics of this ap-

proximation, let us evaluate the latter term in three different situations (three different choices of Ḡ).

By using the chain rule, δḠ
δvcl

can be written as

δḠ(4, 2)

δvcl(3+, 3)
=

∫
d(5)

δḠ(4, 2)

δu(5+, 5)

δu(5+, 5)

δvcl(3+, 3)
, (8.19)

where we distinguish the following three different cases:
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1. For u = vext, Ḡ = G0 with G0 the non-interacting 1-GF, we have

δḠ(4, 2)

δvcl(3+, 3)
=

∫
d5

δG0(4, 2)

δvext(5+, 5)

δvext(5
+, 5)

δvcl(3+, 3)
(8.20)

=

∫
d(56)

δG0(4, 6)

δvext(5+, 5)
δ(6, 2)εTCTC(5, 3) (8.21)

=

∫
d(567)

δG0(4, 6)

δvext(5+, 5)
G−1

0 (6, 7)G0(7, 2)εTCTC(5, 3) (8.22)

= −
∫
d(567)G0(4, 6)

δG−1
0 (6, 7)

δvext(5+, 5)
G0(7, 2)εTCTC(5, 3) (8.23)

=

∫
d(567)G0(4, 6)δ(6, 5+)δ(7, 5)G0(7, 2)εTCTC(5, 3) (8.24)

=

∫
d5G0(4, 5+)G0(5, 2)εTCTC(5, 3) , (8.25)

where G−1
0 =

(
i ∂∂t + ∇

2

2

)
− vext and εTCTC is the TCTC dielectric function, which will unscreen

W in Eq.(8.17). So, by considering δḠ(4,2)
δvcl(3+,3)

= Ḡ(4, 3+)Ḡ(3, 2) if Ḡ = G0, the approximation is

to neglect εTCTC(5, 3) in Eq.(8.25).

2. Ḡ = GH and u = vcl. In this case, we have

δḠ(4, 2)

δvcl(3+, 3)
=

∫
d5

δGH(4, 2)

δvcl(5+, 5)

δvcl(5
+, 5)

δvcl(3+, 3)
(8.26)

=

∫
d(56)

δGH(4, 6)

δvcl(5+, 5)
δ(6, 2)δ(5, 3) (8.27)

=

∫
d(567)

δGH(4, 6)

δvcl(5+, 5)
G−1

H (6, 7)GH(7, 2)δ(5, 3) (8.28)

= −
∫
d(567)GH(4, 6)

δG−1
H (6, 7)

δvcl(5+, 5)
GH(7, 2)δ(5, 3) (8.29)

=

∫
d(567)GH(4, 6)δ(6, 5+)δ(7, 5)GH(7, 2)δ(5, 3) (8.30)

= GH(4, 3+)GH(3, 2) , (8.31)

where G−1
H =

(
i ∂∂t + ∇2

2

)
− vext − vH, with vH the Hartree potential. So, when Ḡ = GH

δḠ
vcl

is

not an approximation at all.
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3. Ḡ = GKS and u = vKS. Thus,

δḠ(4, 2)

δvcl(3+, 3)
=

∫
d5

δGKS(4, 2)

δvKS(5+, 5)

δvKS(5+, 5)

δvcl(3+, 3)
(8.32)

=

∫
d(56)

δGKS(4, 6)

δvKS(5+, 5)
δ(6, 2)

δvKS(5+, 5)

δvcl(3+, 3)
(8.33)

=

∫
d(567)

δGKS(4, 6)

δvKS(5+, 5)
G−1

KS(6, 7)GKS(7, 2)
δvKS(5+, 5)

δvcl(3+, 3)
(8.34)

= −
∫
d(567)GKS(4, 6)

δG−1
KS(6, 7)

δvKS(5+, 5)
GKS(7, 2)

δvKS(5+, 5)

δvcl(3+, 3)
(8.35)

=

∫
d(567)GKS(4, 6)δ(6, 5+)δ(7, 5)GKS(7, 2)

δvKS(5+, 5)

δvcl(3+, 3)
(8.36)

=

∫
d5GKS(4, 5+)GKS(5, 2)

δvKS(5+, 5)

δvcl(3+, 3)
(8.37)

=

∫
d(56)GKS(4, 5+)GKS(5, 2)

δvKS(5+, 5)

δvext(6+, 6)

vext(6
+, 6)

δvcl(3+, 3)
, (8.38)

=

∫
d(56)GKS(4, 5+)GKS(5, 2)ε−1,TCTE(5, 6)εTCTC(6, 3) , (8.39)

where G−1
H =

(
∂
∂t + ∇2

2

)
− vext− vH− vKS and vKS is the Kohn-Sham potential. ε−1,TCTE is the

TCTE inverse dielectric function that will screen in Eq.(8.17) W , which has been unscreened

before by εTCTC that comes from Eq.(8.39). So, to summarize, δḠ(4,2)
δvcl(3+,3)

≈ Ḡ(4, 3+)Ḡ(3, 2) is

an approximation, except for Ḡ = GH.

Thus, our approximation to Eq.(8.17) reads

W̄eff(2, 1+) ≈ G(1, 2)

Ḡ(1, 2)
W (2, 1+) + i

∫
d(34)

G(1, 4)

Ḡ(1, 2)
W (3, 1+)Ḡ(4, 3+)Ḡ(3, 2)W̄eff(2, 4+) . (8.40)

Let us now consider two extra approximations, given the fact that in real situations the exact G

and W are not known. At first we consider G ≈ Ḡ in Eq.(8.40). We, therefore, obtain

W̄eff(2, 1+) ≈W (2, 1+) + i

∫
d(34)

Ḡ(1, 4)

Ḡ(1, 2)
W (3, 1+)Ḡ(4, 3+)Ḡ(3, 2)W̄eff(2, 4+) . (8.41)

And now we approximate the exact TCTC screened interaction W in Eq.(8.41) by the RPA W0.

This yields the roughest approximation, i.e

W̄eff(2, 1+) ≈W0(2, 1+) + i

∫
d(34)

Ḡ(1, 4)

Ḡ(1, 2)
W0(3, 1+)Ḡ(4, 3+)Ḡ(3, 2)W̄eff(2, 4+) . (8.42)

In practice, one could do better, e.g, calculate G self-consistently and calculate the TCTC W using

time-dependent density functional theory (TDDFT) that goes beyond the RPA with the available

kernels. It will be important to explore and investigate the different flavors of ingredients. Therefore,

comparing the outcomes from Eq.(8.40), Eq.(8.41) and Eq.(8.42) will be extremely fruitful.
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Figure 8.1: Symmetric Hubbard dimer at half-filling: resonant and anti-resonant poles (left and right
upper panel, respectively) and amplitude (left-lower panel) of the screened Coulomb interaction as a
function of t, where U = 4 eV. The solid black lines with dot markers represent Weff(G), the effective
screened Coulomb interaction that yields the exact self-energy when multiplied by the exact 1-GF.
The TCTE screened Coulomb interaction based on the TDDFT-derived fxc kernel results are given
in the magenta solid lines with triangle markers. The TCTC interaction based on the exact χ and
the one within the RPA are represented by dot green lines with triangle markers and solid red lines
with star markers, respectively. The dotted sky blue lines with star markers represent the screened
interaction of the N − 1 and N + 1 electrons filling cases.

8.2 Illustration and analysis

In this section, we will explore our simplest approximations and show results and analysis for the two-

point effective interaction Weff . We will start by analyzing the Weff that yields the exact self-energy,

which is possible thanks to the use of our symmetric Hubbard dimer model. Next we will test the

approximations proposed in Eqs.(8.41) (8.42).

8.2.1 Exact effective interaction: the case of Ḡ = G

The exact Σxc of the Hubbard dimer can be obtained by inverting the Dyson equation, since the

exact 1-GF is known (see the analytical formula in 8.4). Then, by using Eq.(8.7), we extract the W̄eff.

For Ḡ, we consider the following choices: G0, GH, GKS and G. W̄eff gives by construction the exact

self-energy when multiplied by the corresponding 1-GF Ḡ. Let us start our analysis of the Weff , by

considering the case in which Ḡ = G, the exact Green’s function. In Fig. 8.1, we show the resonant

(top-left) and anti-resonant (top-right) poles of Weff(G), which is the exact effective interaction that
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yields the exact xc self-energy when multiplied by G, as well as its amplitude, as a function of t and

compare the results with well-known W , like TCTC, TCTE, RPA and TCTC(N-1) & (N+1). The

latter, as explained in the caption of Fig. 8.1, is the exact TCTC screened interaction for the N + 1

and N − 1 electron systems, which is the same for both systems.

Let us initially analyze the characteristics of this Weff . Regarding the resonant (left upper panel)

and anti-resonant (right upper panel) poles, they exhibit symmetry in absolute value. Notably, the

pole of Weff demonstrates a well-behaved and nearly linear behavior with slight curvature within the

small range of t. It crosses zero around t = 0.5 eV and reaches −U/2 (U/2 for the anti-resonant

pole) as depicted in the inset in the upper left panel. This transition to a negative pole would be

unphysical in the screened Coulomb interaction, implying a change in the ground-state leading to a

phase transition. However, there is no such interpretation in the other W .

Examining its amplitude, presented in the left lower panel, it remains constant at 4 eV for moderate

to large values of t. As t decreases, the amplitude starts increasing until it reaches 8 eV when t→ 0. In

summary, it is evident that Weff exhibits a straightforward behavior that allows for easy extrapolation.

This simplicity indicates a promising and uncomplicated behavior, at least in the context of the Hubbard

dimer. Otherwise, if such an effective screened interaction displayed a complex behavior, extrapolation

and approximation might be considerably challenging.

After elucidating the behavior of Weff(G), it is crucial to compare it with well-known screened

interactions. In the moderate to large range of t (approximately from t = 4 eV up to t = 10 eV),

the pole of the screened interaction of the N − 1 or N + 1 system exhibits similar behavior to the

pole of Weff(G). This is consistent with expectations, which is based on the anticipation that the

effective interaction should depend on the neutral excitations of N − 1/N + 1 when an electron is

removed/added (see Chap. 7). The pole of Weff(G) precisely mirrors this behavior. In contrast,

the poles of TCTE, TCTC, and RPA do not follow the same pattern. They represent the neutral

excitations of N electrons, whether an electron is removed or added. Importantly, their poles are

overestimated compared to Weff(G), with a slightly better agreement for TCTE and TCTC. This

difference arises because TCTE and TCTC incorporate the exact neutral excitations of the N electron

system, which are reduced by vertex corrections compared to RPA.

It is noteworthy that the fxc kernel in TCTE does not have a pole in the Hubbard dimer to modify

the neutral excitations, leading TCTE and TCTC to share the same pole (see Chap. 7). As t decreases,

approaching t→ 0, the pole of the exact TCTC for N − 1 and N + 1 goes linearly to zero, in contrast

to Weff which becomes negative, as discussed previously. TCTE and TCTC tend to U (−U for the

anti-resonant pole), while RPA goes to zero. Importantly, except for a part of Weff(G), none of the

poles become negative, as they all hold physical significance.

Concerning the amplitude, as shown in the left-lower panel of Fig. 8.1, in the moderate to weak cor-

relation regime, interestingly, the TCTE W exhibits a behavior similar to Weff(G) with an amplitude

of 4 eV, emphasizing the importance of the TDDFT-derived vertex corrections in the self-energy when

the correlations are not strong. The TCTC and RPA amplitudes are overestimated by approximately

2 eV, with a slightly better performance for the RPA. The TCTC for N − 1 and N + 1 have a fixed
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amplitude of 8 eV. On the other hand, in the strong correlation range, the TCTE amplitude separates

from the Weff(G) one and it goes to the opposite direction, towards zero for t → 0. Similarly, the

TCTC and RPA amplitude tend to zero.

Figure 8.2: Spectral features related to the exact self-energy Σ as a function of frequency for different
t values and U = 4 eV. The spectral function is given in solid black lines. The imaginary part of
the self-energy is shown in dashed red lines. In dashed green and blue lines, the energies difference
ω − ε0b-b − ReΣb-b(ω) and ω − ε0ab-ab − ReΣab-ab(ω) are shown, where ε0b-b and ε0ab-ab are the poles of
the bonding/antibonding elements of the non-interacting 1-GF.

8.2.2 Spectral features of the exact self-energy

In Fig. 8.2, we illustrate the spectral function and the different components of the self-energy that

contribute in the generation of the spectral function. These observations are explained in Sec. 5.2.7.

Our focus here is on the relation between these features and the zero crossing of the Weff pole, as

discussed and depicted in Fig. 8.1. The lower panels of Fig. 8.2 display the spectral features before

(t = 0.7 eV) and after (t = 0.5 eV) the zero crossing of the Weff pole. It is noticeable that during this

transition, the ImΣ peaks go to the other side of the QP ones, which forces the pole of Weff to become

negative. This is not in contradiction with principles of physics, since the satellites are always on the

correct side of the QP.
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Figure 8.3: Resonant and anti-resonant poles (left and right-upper panel, respectively) and amplitude
(left-lower panel) of the screened Coulomb interaction as a function of t, where U = 4 eV. Four different
effective screened interactions that yield the exact self-energy when multiplied by the corresponding
1-GF ( namely, G, GKS, GH and G0 Green’s functions) are shown, respectively, in solid black, green,
blue and orange lines with dot markers. The TCTE W is shown in solid magenta line with triangle
markers. Note that Weff(G) and Weff(GKS) are equal in the right-hand upper panel.

8.2.3 Different flavors of the effective interaction

So far, we have seen the results of Weff associated to the exact 1-GF Weff(G). It is interesting to

investigate the various options of Weff that produce the exact self-energy when the corresponding

1-GF is used. In Fig. 8.3, we present a comparison among four different Weff , based on the use of

Ḡ = G,GKS, GH and G0. The use of different 1-GF introduces a shift in the Weff(G) pole as shown

in the left and right-hand panels. In contrast to Weff(G) and the other physical screened Coulomb

interactions, the three effective interactions corresponding to GKS, GH and G0 do not have the same

resonant and anti-resonant pole in absolute value. Weff(GKS) is very similar to Weff(G) for the resonant

pole, where a large difference appears only in the small range of t. Weff(GKS) does not cross zero, but

it goes to U/2. For the anti-resonant pole, Weff(GKS) is equivalent to Weff(G), since GKS has the exact

highest occupied molecular orbital (HOMO) energy. The HOMO appears in the anti-resonant pole of

Weff(GKS). For Weff(GH), in blue line, the pole is shifted down compared to Weff(G). Its resonant part

crosses zero, whereas the anti-resonant does not, showing a significative matching with the TCTE.

Weff(G0) shows the opposite tendency compared to Weff(GH). The pole is shifted up compared to

Weff(G), with crossing and non-crossing zero for the anti-resonant and resonant poles, respectively.
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Concerning the amplitudes, Weff(GKS), Weff(GH) and Weff(G0) take a constant value of 4 eV. In

conclusion, all of the studied Weff exhibit a simple behavior in terms of poles and amplitude. Moreover,

certain flavors are similar to known screened interactions over a wide range of t. This suggests

that finding approximations for such an effective screened Coulomb interaction by making appropriate

choices among the diversity of 1-GF might be not overly challenging, at least by extrapolating the

findings from the Hubbard dimer model.

8.2.4 Effective interaction from an approximate Dyson equation

Figure 8.4: Resonant pole (left panel) and amplitude (right panel) of the effective screened Coulomb
interaction as a function of t, where U = 4 eV. In addition to the exact Weff results with different
Ḡ that are already explained in Fig. 8.3, we add the approximate Weff(Ḡ) results obtained from the
Dyson equation. ≈Weff(GH,W ) and ≈Weff(G0,W ), refer to the solutions of Eq.(8.41), where Ḡ = GH

and Ḡ = G0, respectively. In both cases, the exact TCTC screened interactions W is used in Eq.(8.41).
≈ Weff(GH,W0) and ≈ Weff(G0,W0), refer to the solutions of Eq.(8.42), where Ḡ = GH and Ḡ = G0,
respectively. In both cases, the RPA TCTC interaction W0 is used in Eq.(8.42).

After having gained insight into the characteristics of various effective screened Coulomb interac-

tions, calculated exactly when the exact self-energy is known, it becomes crucial to compute W̄eff

by solving its Dyson equation within the approximate framework proposed in Eq.(8.41) and Eq.(8.42).

This step is highly valuable as it enables the exploration of whether these approximate equations, whose

solutions should be feasible in practice, yield promising results or not.

To solve Eq.(8.41) and Eq.(8.42), we follow a procedure that is extensively explained in Sec.8.4. How-

ever, we summarize the main idea here: we multiply Eq.(8.41) (same for Eq.(8.42)) by iḠ(1, 2), result-

ing in a ḠW̄eff self-energy on the left-hand side. The right-hand side involves ḠW and ḠWḠW̄effḠ

contributions to the self-energy. These self-energies are then transformed to the Hubbard ij basis

and expressed in frequency space, as detailed in Section 8.4. Subsequently, the integrals in frequency

space, considering a given Ḡ, are solved analytically. It is crucial to note that for W̄eff, we introduce an

ansatz assuming it has a single pole. This assumption is made despite the fact that W̄eff can theoreti-

cally have multiple poles, as indicated by the structure of Eq.(8.41), where the right-hand side involves

multiple poles. However, as an additional approximation, we assume a single-pole structure with a

specific amplitude, and we solve the equation based on this assumption. The pole and amplitude of the

approximate W̄eff are varied until the left and right-hand sides of Eq.(8.41) are equal. The detailed

numerical and graphical strategies to solve Eq.(8.41) are given in Section 8.4.
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In Fig. 8.4, we extend the previous results to extend the pole and amplitude of the approximate

Weff obtained from Eq.(8.41) and Eq.(8.42). Let us break down the analysis into two parts to facilitate

comparisons. First, let us delve into the solutions of Eq.(8.41) and Eq.(8.42) with Ḡ = GH, depicted by

the red and green lines with square markers, respectively. This exploration is crucial for understanding

the implications of different screening choices while keeping Ḡ constant. As explained in 8.1, opting for

GH among all possible Ḡ in Eq.(8.41) and Eq.(8.42) minimizes the level of approximations. Naturally,

one would expect that using the exact W , the interaction that should ideally be employed in Eq.(8.41),

would yield better results. These expectations seem to hold for the pole, where the approximate

Weff(GH,W ) represented by the red line with square markers is closer to the exact Weff(GH) than

Weff(GH,W0), which is represented by the green line with square markers. However, this is not the

case for the amplitude. Now, let us compare Eqs.(8.41) and 8.42 with Ḡ = G0, represented by the

cyan and sky blue dotted lines with diamond markers. It is noteworthy that using the RPA W0 proves

to be a better choice than using W for both the pole and amplitude. This is a compelling indication

of error cancellation.

Investigating the impact of different choices for Ḡ while maintaining fixed screening conditions is

of equal importance. Therefore, we compare the same equation with different selections of Ḡ. Specif-

ically, for Eq.(8.41) with Ḡ set to GH and G0, this entails comparing Weff(GH,W ) with Weff(G0,W ).

In terms of the pole, using GH appears slightly more advantageous, especially in the larger range

of t where the agreement between the approximate Weff(GH,W ) and the exact Weff(GH) is better

than the agreement between the approximate Weff(G0,W ) and the exact Weff(G0)). It is crucial to

note that we are comparing the approximate Weff with the exact one based on the same choice of Ḡ.

Therefore, we are comparing the approximate Weff using GH to Weff(GH) and the approximate Weff

using G0 to Weff(G0). This holds also true when W0 is used. Hence, we compare the approximate

Weff(GH,W0) and the approximate Weff(G0,W0) refering to the exact Weff(GH) and Weff(G0), respec-

tively. It is evident that for Eq.(8.42), using G0 would be a better choice, as the agreement between

the approximate Weff(G0,W0) and the exact Weff(G0) is better than the agreement between the ap-

proximate Weff(GH,W0) and the exact Weff(GH). Altogether, the outcomes are highly promising,

as the approximate Weff demonstrates significant agreement with the exact result, especially when

solving Eq.(8.42) with the couple Ḡ = G0 and W0, which is represented by the sky blue dotted lines

with diamond markers. The quality of the result in terms of pole and amplitude is comparable to the

results of the TCTE screened Coulomb interaction that have been shown in Fig. 8.1. It is important

to note that for small values of t, there is some instability, particularly noticeable in the amplitude

in the right panel where it approaches zero. Additionally, we underline that the assumption of a sin-

gle pole for Weff(Ḡ) was made for simplicity, recognizing that, in principle, it could have multiple poles.

After analyzing the different approximate Weff , we will use them to investigate the spectral func-

tion and total energy. In Fig. 8.5, we present the imaginary parts of the self-energy and the spectral

function. The Weff(G0) yields by definition the exact self-energy when multiplied by G0, as shown

in the orange dashed line. As approximation, we show the ≈ Weff(G0,W0) mutiplied with G0, which

shows an improvement with respect to G0W0. It also shows better agreement with the exact result
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Figure 8.5: Bonding and antibonding components of the imaginary part of Σxc in the upper panels and
of the spectral function in the lower panels for t = 4 eV and U = 4 eV. Insets in the lower-panels show
satellites that appear at higher frequency. In solid black, we represent the exact results. In dashed
orange, the G0Weff(G0) results are shown, where Weff(G0) is the exact effective screened Coulomb
interaction. The G0W̃ is the self-energy that involves the exact fxc kernel and exact χ in W̃ and its
results are shown in solid magenta lines. The G0W0, where W0 is the RPA screening, is shown in solid
red. In dashed sky blue lines, we show the G0

(
≈Weff(G0,W0)

)
self-energy.

than the G0W̃ for the anti-bonding components.

The total energy using the approximate Weff is shown in Fig. 8.6. The Σxc multiplying G0 and

≈Weff(G0,W0) exhibits the best agreement, and the result is better than G0W̃ and G0W0 for a wide

range of correlation. However, when t decreases, it yields the Hartree-Fock total energy U/2 because,

the amplitude of Weff(G0,W0) for t → 0 goes to zero (see Fig. 8.4). Therefore, there is no screening

anymore and the self-energy has simply the exchange contribution.

8.3 Conclusions

In conclusion of this chapter, the ansatz Σxc = iḠW̄eff seems to be a promising way to go. We have

derived a set of simple approximate Dyson equations that could be used in practice. Future work will

include more tests on simple models, as well as ab-initio implementation.
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Figure 8.6: Total energy errors as a function of t, where U = 4: test of the approximate Weff .

8.4 Supporting informations, analytical and numerical solutions

In the present section, we provide the necessary information about the analytical and numerical

calculations of the effective interaction Weff .

8.4.1 The exact self-energy and effective interactions

Having the exact and the non-interacting 1-GF, we calculate the self-energy Σ = vH +Σxc by inverting

the Dyson equation

Σexact
b-b (ω) =

(
G−1

0,b-b(ω)−G−1
b-b(ω)

)−1

. (8.43)

In the bonding and anti-bonding basis, this leads to

Σexact
b-b (ω) = −X1 −X1 ×

X4 −X2/X1 − iη(X5 +X3/X1)

ω −X4 + iX5η
, (8.44)

Σexact
ab-ab(ω) = −X ′1 −X ′1 ×

X ′4 −X ′2/X ′1 − iη(X ′5 +X ′3/X
′
1)

ω −X ′4 − iX ′5η
, (8.45)

where X1 = Aω2+Bω1+(ε0−t)(A+B)−ω1−ω2+2iηB, X2 = (ε0−t)(Aω2+Bω1)−ω1ω2−(A−B)(iη)2,

X3 = Aω2 + Bω1 − (A − B)(ε0 − t) − ω2 + ω1, X4 = Aω2 + Bω1 and X5 = A − B with A =
1
a2

(
1 + 4t/(c− U)

)2
, B = 1

a2

(
1− 4t/(c− U)

)2
, ω1 = ε0 + t− (c− U)/2 and ω2 = ε0 + t+ (c+ U)/2.

X ′1 = Aω4 +Bω3 + (ε0 + t)(A+B)−ω3−ω4 + 2iηB, X ′2 = (ε0 + t)(Aω4 +Bω3)−ω3ω4− (A−B)(iη)2,

X3 = Aω4+Bω3−(A−B)(ε0+t)−ω4+ω3, X ′4 = Aω4+Bω3 and X ′5 = A−B with ω3 = ε0−t+(c+U)/2

and ω4 = ε0 − t− (c− U)/2.

From this, we calculate the effective screened interaction, which when multiplied by the exact 1-GF,

yields the exact self-energy given above from

Σexact
xc,b-b/ab-ab(ω) = i

∫
dω′

2π
Gab-ab/b-b(ω′ + ω)W

R/A
eff (ω′)eiω

′η . (8.46)

We obtain
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WR
eff(ω) =

X1 + U

B
+
X1

A
× X4 −X2/X1 − iη(X5 +X3/X1)

ω +X4 − ω3 − iη
, (8.47)

and

WA
eff(ω) =

X ′1 + U

A
− X ′1

A
× X ′4 −X ′2/X ′1 − iη(X ′5 +X ′3/X

′
1)

ω +X ′4 − ω1 + iη
, (8.48)

with WR
eff and WA

eff the resonant and anti-resonant parts, respectively.

8.4.2 Different flavors of effective interactions

By changing the 1-GF used in Eq.(8.46), we obtain different Weff . We use GKS, GH and G0, which

differ by a shift ∆ in the 1-GF poles. So, we give the solutions as a function of ∆,

WG∆,R
eff (ω) = −(X1 + U/2)e−2iηω +

(
X1

(
X4 −X2/X1 − iη(X5 +X3/X1)

))
(ω +X4 − (ε0 + t+ ∆)− iη)

, (8.49)

WG∆,A
eff (ω) = (X ′1 + U/2)−

(
X ′1
(
X ′4 −X ′2/X ′1 − iη(X ′5 +X ′3/X

′
1)
))

(ω +X ′4 − (ε0 − t+ ∆) + iη)
, (8.50)

where for ∆ = 0, U and 2t− (c− U)/2 for G∆ = G0, G∆ = GH and G∆ = GKS, respectively.

8.4.3 Analytical solutions of the self-energies in the Dyson equation of Weff

As previously explained, solving Eq.(8.41) involves multiplying it by iḠ(1, 2), resulting in a ḠW̄eff

self-energy on the left-hand side. The right-hand side contains ḠW and ḠWḠWeffḠ terms, where W

should ideally be the exact TCTC screened interaction. However, we also aim to include the screened

Coulomb interaction within the RPA (W0), since the exact W might be not known in practice. The

calculation of these self-energies involves solving integrals in frequency space, expressed in the Hubbard

basis as follows

Σxc,ijσ =
i

2π

∫
dω′ Ḡijσ(ω′ + ω)W̄ji(ω

′)eiωη , (8.51)

where W̄ is W̄eff for the left-hand side of Eq.(8.41) and is W (or W0) for the first term of the right-hand

side of the equation. For the second term on the right hand-side, we have

ΣḠWḠW̄effḠ
ijσ (ω) = −

∑
kl=1,2

∫
dω1dω2

(2π)2
G0ilσ(ω − ω1)W̄ik(ω1)G0lkσ(ω − ω1 − ω2)

W̄eff,lj(ω2)G0kjσ(ω − ω2)e−iηω1e−iηω2 . (8.52)

In this section, we provide the analytical solutions of these integrals. For Ḡ, we use the non-interacting

1-GFs G0, GH and GKS.

ΣḠW̄eff
xc,ijσ(ω) = −U

2
δij +

M

2

(
(−1)i−j

ω − (ε0 + ∆− t− x)− iη
+

1

ω − (ε0 + ∆ + t+ x) + iη

)
, (8.53)
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where the ansatz that we made for W̄eff is

W̄eff,ij(ω) = Uδij +
M

2

(
1

ω − x+ iη
− 1

ω + x− iη

)
, (8.54)

with M and x the unknown amplitude and pole, respectively. For the right-hand side, when we use

the exact W , we have

ΣḠW
xc,ijσ(ω) = −U

2
δij +

U2

a2

(
(−1)i−j

ω − (ε0 + ∆− t− (c+ U)/2)− iη
+

1

ω − (ε0 + ∆ + t+ (c+ U)/2) + iη

)
,

(8.55)

and

ΣḠWḠW̄effḠ
c,ijσ (ω) = −

(
(−1)i−j

ω − (ε0 + ∆− 3t)− iη
+

1

ω − (ε0 + ∆ + 3t) + iη

)(
U2

8
+

2U3

4a2(2t− (c+ U)/2)

+
2U2M

2a2(2t− x)(2t− (c+ U)/2)
+

UM

4(2t− x)
− 2U3

4a2(2t+ (c+ U)/2)

+
2U2M

2a2(x+ (c+ U)/2)(2t+ (c+ U)/2)
− 2U2M

2a2(x+ (c+ U)/2)(2t− x)
+

2U2M

2a2(2t+ x)(2t+ (c+ U)/2)

− UM

4(2t+ x)
+

2U2M

2a2(2t+ x)(x+ (c+ U)/2)
− 2U2M

2a2(x+ (c+ U)/2)(2t− (c+ U)/2)

)
+

(
(−1)i−j

ω − (ε0 + ∆− t− (c+ U)/2)− iη
+

1

ω − (ε0 + ∆ + t+ (c+ U)/2) + iη

)(
2U3

4a2(2t− (c+ U)/2)

+
2U3

4a2(2t+ (c+ U)/2)
+

2U2M

2a2(2t− x)(2t− (c+ U)/2)
+

2U2M

2a2(2t+ x)(x+ (c+ U)/2)

− 2U2M

2a2(x+ (c+ U)/2)(2t− (c+ U)/2)
+

2U2M

2a2(2t− x)((c+ U)/2− x)

)
+

(
(−1)i−j

ω − (ε0 + ∆− t− x)− iη
+

1

ω − (ε0 + ∆ + t+ x) + iη

)(
UM

4(2t+ x)

+
UM

4(2t− x)
+

2U2M

2a2(2t+ (c+ U)/2)(x+ (c+ U)/2)
− 2U2M

2a2(x+ (c+ U)/2)(2t− x)

− 2U2M

2a2(2t− x)((c+ U)/2− x)

)
+

(
(−1)i−j

ω − (ε0 + ∆− t+ (c+ U)/2) + iη
× 1

ω − (ε0 + ∆− t+ x) + iη

+
1

ω − (ε0 + ∆ + t− (c+ U)/2)− iη
× 1

ω − (ε0 + ∆ + t− x)− iη

)
(

2U2M

2a2(2t+ (c+ U)/2)
+

2U2M

2a2(2t+ x)
− 2U2M

a2(2t+ x)

)
+

(
(−1)i−j

ω − (ε0 + ∆ + t+ (c+ U)/2 + x) + iη
+

1

ω − (ε0 + ∆− t− (c+ U)/2− x)− iη

)
2U2M

2a2(2t+ x)2
.

(8.56)

In terms of W0, we have the following solutions

ΣḠW0
xc,ijσ(ω) = −U

2
δij +

U2t

2h

(
(−1)i−j

ω − (ε0 + ∆− t− h)− iη
+

1

ω − (ε0 + ∆ + t+ h) + iη

)
, (8.57)
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and

ΣḠW0ḠW̄effḠ
c,ijσ (ω) = −

(
(−1)i−j

ω − (ε0 + ∆− 3t)− iη
+

1

ω − (ε0 + ∆ + 3t) + iη

)(
U2

8
+

U3t

4h(2t− h)

+
U2tM

2h(2t− x)(2t− h)
+

UM

4(2t− x)
− U3t

4h(2t+ h)
+

U2tM

2h(x+ h)(2t+ h)
− U2tM

2h(x+ h)(2t− x)
+

U2tM

2h(2t+ x)(2t+ h)

− UM

4(2t+ x)
+

U2tM

2h(2t+ x)(x+ h)
− U2tM

2h(x+ h)(2t− h)

)
+

(
(−1)i−j

ω − (ε0 + ∆− t− h)− iη
+

1

ω − (ε0 + ∆ + t+ h) + iη

)(
U3t

4h(2t− h)
+

U3t

4h(2t+ h)

+
U2tM

2h(2t− x)(2t− h)
+

U2tM

2h(2t+ x)(x+ h)
− U2tM

2h(x+ h)(2t− h)
+

U2tM

2h(2t− x)(h− x)

)
+

(
(−1)i−j

ω − (ε0 + ∆− t− x)− iη
+

1

ω − (ε0 + ∆ + t+ x) + iη

)(
UM

4(2t+ x)
+

UM

4(2t− x)
+

U2tM

2h(2t+ h)(x+ h)

− U2tM

2h(x+ h)(2t− x)
− U2tM

2h(2t− x)(h− x)

)
+

(
(−1)i−j

ω − (ε0 + ∆− t+ h) + iη
× 1

ω − (ε0 + ∆− t+ x) + iη
+

1

ω − (ε0 + ∆ + t− h)− iη

× 1

ω − (ε0 + ∆ + t− x)− iη

)
(

U2tM

2h(2t+ h)
+

U2tM

2h(2t+ x)
− U2tM

h(2t+ x)

)
+

(
(−1)i−j

ω − (ε0 + ∆ + t+ h+ x) + iη

+
1

ω − (ε0 + ∆− t− h− x)− iη

)
U2tM

2h(2t+ x)2
. (8.58)

8.4.4 Solutions of the effective interaction from the approximate Dyson equation

After obtaining the analytical self-energies, from Eq.(8.41), we can write

ΣḠW̄eff
xc,ijσ(ω) = ΣḠW̄

xc,ijσ(ω) + ΣḠW̄ ḠW̄effḠ
c,ijσ (ω) , (8.59)

where the two unknowns are M and x, introduced in Sec. 8.4.3. For each frequency, we have an equa-

tion for M and x. This forms a set of many equations with only two unknowns. Given the assumption

that the pole is the same for both resonant and anti-resonant, which is another approximation, since

we have seen that the resonant and anti-resonant poles are not necessarly equivalent, we can simplify

the equation to the bonding-bonding or antibonding-antibonding parts of the self-energy, as both will

yield the same result. The bonding-bonding elements can be expressed as follows,

ΣḠW̄eff
xc,bb (ω) = ΣḠW

xc,bb(ω) + ΣḠW̄ ḠW̄effḠ
c,bb (ω) . (8.60)

It is crucial, before delving into solving this equation, to comprehend and discuss its structure. Initially,

choosing random values for the unknowns helps to understand the structure of both sides in Eq.(8.60).

This provides insights into the tendencies of the solutions. For instance, we use the coordinates of the

exact Weff(G0) (amplitude and resonant pole) in Eq.(8.60) in the case where the RPA W0 is utilized.

In Fig. 8.7, we display the imaginary part of both the left-hand and right-hand sides of Eq.(8.60). As
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anticipated, numerous peaks are observed in the right-hand side of the equation, with two of them

having dominant weights, while the others are small (at least for this value of t). In order to have an

equivalent imaginary part for both sides, the weight of the black peak in the red box should vanish, as

well as the other small peaks. On the other hand, the weights of both peaks in the green box should

be equivalent. This yields two simpler equations, which could be used to determine the unknowns.

This is an approximation because there are more peaks whose weights should vanish, but since their

weights are small, they can be neglected. If we solve these two equations we obtain approximately

the same result as from the solution of the full Eq.(8.60), which will be explained below. Therefore,

we directly proceeded to solve the full equations written in Eq.(8.60). Our strategy relies on choosing

Figure 8.7: Imaginary part of the self-energy as a function of frequency for t = 4 and U = 4 eV.
The left-hand and right-hand sides of Eq.(8.60) are shown in dashed sky blue and dotted black lines,
respectively.

two different frequencies. For example we choose ω = 0 and ω = ω
Weff(G)
p , where ω

Weff(G)
p is the pole

of the exact Weff calculated with Ḡ = G. It is important to note that, if the ansatz is in principle

exact, using any couple of frequencies, we should obtain the same result. This yields the following two

equations

ΣḠW̄eff
xc,bb (ω = 0) = ΣḠW̄

xc,bb(ω = 0) + ΣḠW̄ ḠW̄effḠ
c,bb (ω = 0) , (8.61)

ΣḠW̄eff
xc,bb (ω = ωWeff(G)

p ) = ΣḠW̄
xc,bb(ω = ωWeff(G)

p ) + ΣḠW̄ ḠW̄effḠ
c,bb (ω = ωWeff(G)

p ) , (8.62)

which can be solved numerically in different ways. In practice, we solve Eq.(8.61) and Eq.(8.62) by

considering the real part, knowing that in principle if the real part of the correlation part of Σxc is zero,

the imaginary part should be also zero. However, this can be false in this case, since the right-hand

side of Eq.(8.60) could violate the Kramers-Kronig relations, since it is approximated. Despite that,

we make this assumption and will see a posterio whether the results justify the assumption.

In Fig. 8.8, we present graphical solutions of Eq.(8.61) and Eq.(8.62) (which are called Eq 1 and

Eq 2, respectively), using the exact TCTC W and W0 in the left and right panels, respectively. The

intersection of the two curves corresponds to the solutions of the two equations that we are looking

for. In both cases (exact and RPA screening), the solutions of the equations are well-behaved and

similar, at least for this value of t. When t is small enough, starting from t = 0.5 eV, the behavior of

the two equations becomes complicated, resulting in many solutions. In that case, one has to select
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Eq 1

Eq 2

Solution

RPA

Solution

Eq 1

Eq 2

Exact

Figure 8.8: Solutions of Eq 1 and Eq 2, respectively given in Eq.(8.61) and Eq.(8.62), representing
couples of the pole x and amplitude M . Results using W and W0 are shown in the left and right
panels respectively. In this example, we use U = 4 eV and t = 4 eV. These results are obtained using
the numerical tools: ImplicitEquations in Julia.

the physical solutions, which is not always obvious. It is important to note that choosing a different

frequency couple in Eqs.(8.61) (8.62) leads to a very similar solution, which justifies our procedure.
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Chapter 9

Beyond GW : second-order expansion in

terms of W

In Chaps. 7 and 8 we have explored first order expressions for the self-energy, with a TCTE

approximation for the effective interaction in Chap. 7, and an in principle exact effective interaction in

Chap. 8. In the present chapter we take the more standard route of many-body perturbation theory

(MBPT), where the first-order self-energy is corrected by a second-order term. Such an approach

suffers in practice from the fact that it is not clear which ingredients to use, and therefore, a lot of

flavors exist. We first remind the fact that by using the technique of functional derivatives, various

different expansions are possible. Moreover, we show that other possibilities exist, in particular and in

the spirit of Ref. [177], we propose a well-defined perturbation series in terms of the screened interaction

within the random phase approximation (RPA). In Ref. [177], by using a simple one-point model,

evidence was found for the fact that the RPA screened interaction shows a promising route for offering

a better expansion for the self-energy. In the present work, by using a more realistic model, namely

the Hubbard dimer model at half-filling, we test various flavors of screened Coulomb interactions and

confirm to some extent the predictions made on the basis of the simple one-point model. In addition

to identifying suitable ingredients for the expansion, our investigation concerns determining whether

properties like the spectral function and ground-state total energy exhibit improvements at the second

order across various correlation regimes.

9.1 Freedom in the functional derivative approach

In principle, MBPT can be expressed in terms of different effective interactions, since the xc self-energy

can be written in terms of an effective interaction starting from the standard definition of Σxc as
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Σxc(1, 2) = −i
∫
d(34)G(1, 4)vc(3, 1

+)
δG−1(4, 2)

δvext(3)
(9.1)

= −i
∫
d(345)G(1, 4)vc(3, 1

+)
δG−1(4, 2)

δv̄(5)

δv̄(5)

δvext(3)
(9.2)

= −i
∫
d(45)G(1, 4)W̄ (5, 1+)

δG−1(4, 2)

δv̄(5)
, (9.3)

where W̄ (5, 1+) =
∫
d3 vc(3, 1

+) δv̄(5)
δvext(3) , with v̄ an effective potential. For instance, if v̄ = vcl =

vext + vH, we obtain Σxc in terms of the test-charge test-charge screened interaction W ,

Σxc(1, 2) = −i
∫
d(45)G(1, 4)W (5, 1+)

δG−1(4, 2)

δvcl(5)
, (9.4)

or if v̄ = vKS = vcl + vxc, we obtain Σxc in terms of the test-charge test-electron screened interaction

W̃

Σxc(1, 2) = −i
∫
d(45)G(1, 4)W̃ (5, 1+)

δG−1(4, 2)

δvKS(5)
. (9.5)

In all cases, using

G−1 = G−1
0 − v̄ −

(
Σxc + vext + vH − v̄

)
, (9.6)

these equations can be iterated, leading to a perturbative expansion in terms of the respective Weff .

9.2 Further freedom in the choice of W

MBPT can be in principle expressed in terms of the bare Coulomb interaction. So, Σxc is written in

terms of vc as

Σxc(1, 2) = iG0(1, 2)vc(2, 1
+) +

∫
d(34)G0(1, 2)vc(3, 1

+)vc(2, 4)G0(4, 3+)G0(3, 4+)

+i2
∫
d(34)G0(1, 4)vc(3, 1

+)vc(2, 4
+)G0(4, 3)G0(3, 2+)+i2

∫
d(34)G0(1, 3)G0(4, 4+)vc(3, 4)G0(4, 2)vc(2, 1

+)

+ i2
∫
d(34)G0(1, 3)G0(3, 4)vc(3, 4

+)G0(4, 2)vc(2, 1
+) + ...... , (9.7)

where G0 is the non-interacting (with vc = 0) 1-GF. Eq.(9.7) is illustrated diagrammatically up to the

second-order in Fig. 9.1.

Figure 9.1: Diagrammatic illustration of the exchange-correlation self-energy in terms of the bare
Coulomb interaction up to the second-order. The dotted lines and the wiggly lines represent the
non-interacting 1-GF and the bare Coulomb interaction, respectively.

G0 is related to any effective 1-GF, called Ḡ, via the Dyson equation,

Ḡ(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)Σ̄(3, 4)Ḡ(4, 2) , (9.8)
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where Σ̄ is the self-energy that depends on the choice of Ḡ. For instance, if Ḡ = GH with GH the

Hartree 1-GF, Σ̄ = ΣH. Eq.(9.8) can be inverted to

G0(1, 2) = Ḡ(1, 2)−
∫
d(34) Ḡ(1, 3)Σ̄(3, 4)G0(4, 2) . (9.9)

Similarly, the bare and screened interactions are related via the following Dyson-like equation,

W̄ (1, 2) = vc(1, 2) +

∫
d(34) vc(1, 3)P̄ (3, 4)W̄ (4, 2) , (9.10)

where P̄ is the effective polarizability that depends on the choice of W̄ . For example, if W̄ is the exact

screened interaction, P̄ must be the exact irreducible polarizability. Eq.(9.10) can be inverted to

vc(1, 2) = W̄ (1, 2)−
∫
d(34) W̄ (1, 3)P̄ (3, 4)vc(4, 2) (9.11)

= W̄ (1, 2)−
∫
d(34) W̄ (1, 3)P̄ (3, 4)W̄ (4, 2) +

∫
d(3456) W̄ (1, 3)P̄ (3, 4)W̄ (4, 5)P̄ (5, 6)W̄ (6, 2)

+ ...... .

(9.12)

Eq.(9.12) offers an alternative perspective, illustrating the flexibility in the selection of the screened

Coulomb interaction within MBPT. Remarkably, Eq.(9.12) highlights a larger range of choices com-

pared to the functional derivative approach. It establishes that, since there is only one vc that can

be derived from any W̄ , as long as W̄ and P̄ in Eq.(9.12) are mutually consistent, MBPT can be

expressed in terms of many different W̄ . This expands the options for W̄ discussed in the preceding

section, which introduces the possibility of utilizing the RPA screened interaction. Consequently, in

principle, Σxc can be expressed in terms of the RPA interaction.

Using Eqs.(9.9) and (9.12) in Eq.(9.7), with the RPA choice, i.e, P̄ = P̄RPA = −iḠḠ, we obtain

an exact expansion for Σxc in terms of the RPA interaction W̄RPA

Σxc(1, 2) = iḠ(1, 2)W̄RPA(2, 1+)−

(((((((((((((((((((((((((((∫
d(34) Ḡ(1, 2)W̄RPA(1, 3)Ḡ(4, 3+)Ḡ(3, 4+)W̄RPA(4, 2)

+

(((((((((((((((((((((((((((∫
d(34) Ḡ(1, 2)W̄RPA(1, 3)Ḡ(4, 3+)Ḡ(3, 4+)W̄RPA(4, 2)

+i2
∫
d(34) Ḡ(1, 4)W̄RPA(3, 1+)W̄RPA(2, 4+)Ḡ(4, 3)Ḡ(3, 2+)−i2

∫
d(34) Ḡ(13)Σ̄(3, 4)Ḡ(4, 2)vc(2, 1

+)

+i2
∫
d(34) Ḡ(1, 3)Ḡ(4, 4+)vc(3, 4)Ḡ(4, 2)vc(2, 1

+)+i2
∫
d(34) Ḡ(1, 3)Ḡ(3, 4)W̄RPA(3, 4+)Ḡ(4, 2)W̄RPA(2, 1+)

+ ........ , (9.13)

where the cancellation of the second diagram in Fig. 9.1 occurs due to the emergence of an equivalent

diagram with opposite sign, which is a result of the transformation of vc → W̄RPA, expressed by

Eq.(9.12). Moreover, the choice of Ḡ in Eq.(9.13) can lead to the cancellation of other diagrams. For
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example, if Ḡ = GH in Eq.(9.9), resulting in Σ̄ = vH, then the fourth diagram in Fig. 9.1 is eliminated

when substituting Σ̄ into Eq.(9.13). This illustrates the fact that as corrections are introduced to Ḡ,

more diagrams tend to cancel out since they are implicitly accounted for in Ḡ.

Figure 9.2: Second-order expansion of Σxc in terms of W̄ : the wiggly lines correspond to the effective
screened Coulomb interaction W̄ . Two differents W̄ are used, which are the exact TCTC screened
interaction W , and W0, the RPA screened interaction built with P̄ = −iḠḠ. The solid, dashed and
dotted lines correspond to the interacting, Hartree and non-interacting (vc = 0) 1-GFs, respectively.
When G is employed, there are only two second-order diagrams. When an approximate 1-GF is
employed such as GH and G0, diagrams at the second-order that include corrections must be added.
This is represented by the third diagram and third and fourth diagrams in (b) and (c), respectively.
They are called self-consistency diagrams (SCD).

9.3 Optimal choice

After having shown that the self-energy can be obtained exactly by making different expansions in

terms of an effective interaction in Sec. 9.1 and in terms of an effective interaction within the RPA

in Sec. 9.2, it becomes crucial to address the following question: with such diversity of W̄ , what can

be the optimal choice? Therefore, it is interesting to compare expansions in terms of different W̄ . A

direct, and promising as suggested in Ref. [177], choice for W̄ would be the WRPA. Another choice

would be the exact TCTC screened interaction W̄ , that carries vertex corrections in the response

function. For comparison, we expand Σxc to second-order in W̄ and Ḡ. It would be also interesting

to compare higher orders, but these are complicated to calculate for real materials and we therefore

focus on the optimization of the second-order result. In Fig. 9.2, we present the different expansions

that will be solved and illustrated using the Hubbard dimer model. For each choice of Ḡ, we make

expansions in terms of the RPA and in terms of the exact screened Coulomb interactions, named as

W0 and W , respectively. We recall that the choice of W0 is always consistent with the choice of Ḡ,

i.e, W0 is obtained using P̄ = −iḠḠ. As already discussed, less diagrams will emerge when more

corrections are added to the choice of Ḡ. That is why the choice Ḡ = G in Fig. 9.2 involves the

smallest number of diagrams, where G is the interacting 1-GF. The additional diagrams that appear

when a non-interacting 1-GF is used, such as GH and G0 are called self-consistency diagrams. It is

worth noting that expansions in terms of W0 and W does not involve the same diagrams when one

goes beyond the second-order.
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9.4 Recent results in literature

Numerous recent studies have delved into the vertex-corrected self-energy, particularly employing a

second-order expansion with respect to the screened Coulomb interaction. While these investigations

may not directly align with the specific question about the flavors optimization addressed in this work,

they contribute significantly to the understanding of the topic, especially in comparing the first with

the second-order performance.

For instance, Shirley in Ref. [73] was adding the second-order diagram in terms of the screened

Coulomb interaction (W ) on top of the first-order GW one. He concluded that the inclusion of next-

order term in W , which is GWGWG, restores reduced bandwidths for metals, which agrees well with

experiments. He made full and nearly fully self-consistent calculations for the first and second-order

self-energies in terms of W , respectively. Moreover, he also discussed the spectral function, highlighting

the fact that satellites at the second-order themselves give rise to further satellites.

Grüneis et al. in Ref. [75] emphasized the importance of including vertex corrections in the self-

energy based on a second-order expansion in terms of W . The authors highlighted the fact that

in GW , not all second-order diagrams in terms of vc are encompassed. Their study, applied to 21

semiconductors from group IV, III-V and II-VI, demonstrated that incorporating such corrections

yields improved agreement with experimental results. Notably, in this study the dynamical screened

interaction is substituted with the static one in the first-order (in W ) vertex corrections.

Kutepov in Ref. [77] revealed the importance of the frequency dependence of W . He concluded

that the inclusion of vertex corrections in the self-energy and the polarizability is important. He

highlighted the fact that first-order (in W ) corrections are sufficient. Instead, the vertex corrections

to the polarizability have to be obtained from the Bethe-Salpeter equation (BSE) [34–39], whereas

first-order corrections (in W ) to the polarizability yield unphysical results. This conclusion has been

obtained by comparing different schemes for different materials (Na, K, Si, and LiF).

In Ref. [78] Kutepov also applied two distinct schemes, the same as in Ref. [77], to calculate the

band gap for various semiconductors/insulators. The first scheme involves applying first-order vertex

corrections (in terms of W ) for both self-energy and polarizability. In the second scheme, vertex

corrections derived from BSE are used in the polarizability, while the self-energy still relies on first-

order vertex corrections in terms of W . Both schemes outperformed the self-consistent GW (scGW )

and quasiparticle GW (QSGW )[31], and a negligeable difference between both schemes have been

found.

Similarly, Wang et al. in Ref. [178] conducted an assessment of first-order vertex corrections in

terms of the screened Coulomb interaction, introducing an additional second-order diagram termed

the full second-order self-energy (FSOS-W) contribution. Their study presented the one-shot GW+

FSOS-W, denoted as G0W0(Γ0)(1), as benchmarks for the GW100 test set and a set of 24 acceptor

molecules. The findings indicated that G0W0(Γ0)(1) may significantly outperform G0W0, depending

on the starting point.

In a subsequent work by Wang and Ren in Ref. [81], the G0W0(Γ0)(1) approach was applied to a

set of first-row transition-metal monoxide anions, yielding similar promising results. However, in a
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comparative study by Wen et al. Ref. [179], where the G0W0(Γ0)(1) results of Wang et al. [178] were

utilized, the accuracy of scGW was observed to be either better or comparable for the GW100 set.

By using the Hubbard dimer model at half-filling in Ref. [180], the authors scrutinize the structure

of the functional derivative of the self-energy with respect to the 1-Green’s function, dissecting it into

distinct contributions. One notable contribution corresponds to the first-order vertex corrections in

terms of W . Their study involves various insightful comparisons, and their conclusions, particularly

relevant to this chapter, indicate that QP energies are barely impacted by the second-order self-energy

with respect to the first-order one. However, the overestimation of satellite energies observed in the

first-order is mitigated in the second order, resulting in an improved description. It is important

to note that their results are based on self-consistent calculations, which differs from our proposed

investigations.

In Ref. [115] the authors discuss the importance of vertex corrections in W within the quasiparticle

self-consistent GW calculations (QSGW ). While the usual QSGW , which does not involve vertex

corrections in W , has a tendency to overestimate insulating band gaps, to blueshift plasmon peaks in

the imaginary part of the dielectric function, and to underestimate the dielectric constant, the vertex-

corrected QSGŴ exhibits improvement. Here, Ŵ is the screened Coulomb interaction that contains

vertex corrections derived from BSE.

Overall, most studies are focused on QP energies, and calculations are often done self-consistently.

Our present work is meant to contribute to completing our knowledge of the subject.

9.5 Illustration and analysis

We explore our questions using the symmetric Hubbard dimer model at half-filling. The different

results that will be shown are based on the different expansions that we propose in Fig. 9.2.

9.5.1 Tendency of the second-order diagram

Before delving into the comparisons between the different flavors of W̄ and Ḡ, it is essential to examine

the self-energy, spectral function and total energy at the second-order. To achieve this, we analytically

calculate the second-order Σxc, employing for example Ḡ = G0 and W̄ = W0, (see analytical solutions

in 9.7), without taking into account the SCD diagrams for the moment. In Fig. 9.3, we present the

imaginary part of the self-energy in the upper panel, the quasi-particle (QP) equation in the middle

panel and the spectral function in the lower panel. We choose the bonding-bonding (b-b) element as

an example (the same analysis can be obtained for the antibonding-antibonding element) as well as

a single value of U/t = 4, where U = 4 eV and t = 1 eV. Comparisons between first and second-

order will be discussed next sections for different correlation strenghts, but now let us understand

the second-order self-energy tendency. In Fig. 9.3 G0W0Γ
(1)
0 , which represents Σxc that includes the

second-order diagram, exhibits an intriguing behavior attempting to rectify the first-order error. It

introduces a peak at the same energy as the first-order peak but with an opposite sign as shown in the
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upper panel. From the analytical solutions, this observation occurs due to a double peak introduced

by the second-order at the same energy as the first-order (see Eq.(9.23)). This suggests that the

second-order diagram aims to counterbalance the first-order discrepancy by introducing a peak in

the opposite direction. Additionally, instead of the partially removed peak, the second-order creates

another peak farther away with lower intensity. From Eq.(9.23), it is evident that the added peak

corresponds to a double excitation energy, reflecting the double occurrence of the screened Coulomb

interaction in the second-order diagram. This peak is absent in the exact result.

This additional peak is responsible for a b-b satellite of G0W0Γ
(1)
0 (indicated by the sky blue arrow

in the lower panel). It appears in the negative frequency, unlike the exact and the first-order b-b

satellites, because the self-energy changes its structure at the second-order. However, this should

not be the satellite that has to be compared with the exact and first-order ones. For convenient

comparisons of satellites, one has to add the ab-ab spectral function elements. These comparisons

will be adressed in Fig. 9.4, while here we mainly discuss the tendency of the imaginary and real

parts of the G0W0Γ
(1)
0 self-energy. The QP equation “ω − (ε0 − t) − ReΣ”, whose zero gives rise to

the QP components of the spectral function, contains the real part of the self-energy. We show this

QP equation, and not the real part of the self-energy to highlight the fact that the real part of the

G0W0Γ
(1)
0 self-energy is completely different from the exact and the first-order ones, as shown in the

zoom in the right panel. However, this difference occurs only around the pole, while elsewhere the QP

equation of G0W0Γ
(1)
0 exbibits a promising behavior that yields an accurate QP peak in the spectral

function. Moreover, as discussed in detail in Subsec. 5.2.7, in the Hubbard dimer the satellites are

created due to the real part of the self-energy and not directly from the imaginary one. This can

also be observed in Fig. 9.3, where the satellite of the spectral function is situated where the QP

equation crosses zero for the second time. This can be more clearly understood in Subsec. 5.2.7. The

second-order result does not exhibit the satellite above 5 eV that is found in the exact result, because

the zero-crossing of the double-pole QP equation occurs at the energy of the peak in the imaginary

part of Σxc, which supresses the satellite.

To understand the second-order self-energy behavior, let us introduce the following function that

has a double pole at x,

f(ω) =
1(

ω − x− iη)2
(9.14)

=
1

(ω − x)2 − η2 − 2iη(ω − x)
(9.15)

=
(ω − x)2 − η2 + 2iη(ω − x)(

(ω − x)2 − η2
)2

+ 4η2(ω − x)2
. (9.16)

The imaginary part is

Imf(ω) =
2η(ω − x)(

(ω − x)2 − η2
)2

+ 4η2(ω − x)2
, (9.17)

indicating that Imf has two poles around x at a distance 2η, whose signs are decided by ω − x. This
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Figure 9.3: Symmetric Hubbard dimer at half-filling, where U = 4 eV and t = 1 eV. The imaginary
part of the bonding-bonding (b-b) element of the self-energy (vH + Σxc) is shown in the upper panel.
The QP equation “ω − (ε0 − t)− ReΣb-b(ω)” and the b-b element of the spectral function are shown
in the middle and lower panels, respectively. All quantities are shown as a function of frequency. The
exact result is represented by the solid black line. The G0W0, where G0 is the non-interacting 1-GF
with U = 0 and W0 is the screened Coulomb interaction within the RPA, is shown in dashed red line.

The second-order expansion in terms of G0 and W0 is shown in the solid sky blue line. G0W0Γ
(1)
0

corresponds to the (c) diagrams in Fig. 9.2, where the third and fourth diagrams that represent the

SCD are neglected for the moment. Γ
(1)
0 refers to the first-order correction in W0 beyond G0W0.

justifies the observation of Fig. 9.3. The real part of f is

Ref(ω) =
(ω − x)2 − η2(

(ω − x)2 − η2
)2

+ 4η2(ω − x)2
(9.18)

=
(ω − x)2 − η2(
(ω − x)2 + η2

)2 . (9.19)
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This expression shows two zero-crossings, at ω − x = ±η. To the left and right of these crossings,

the function diverges as 1
η2 . Importantly, the function is positive for |ω − x > η|, i.e, on both sides

of the pole, which does not allow for an additional zero-crossing. This is different than the real part

behavior of a single pole: for a given f ′(ω) function that has a single pole at x, the real part is

Ref ′(ω) =
ω − x

(ω − x)2 + η2
, (9.20)

with a single zero-crossing next to the 1
η2 divergencies, and opposite sign on the left and right side of

the pole.

Figure 9.4: Diagonal component of the spectral function in site basis for a given spin σ Aiiσ (Aii↑ = Aii↓)
as a function of frequency. t = 1 eV and t = 4 eV in the upper and lower panel, respectively, where
U = 4 eV. The arrows in the insets indicate the presence of satellite.

After having gained insights into the behavior of the second-order self-energy, let us explore the

spectral function, as depicted in Fig. 9.4. From this figure, we observe that G0W0Γ
(1)
0 shows signif-

icant agreement with the exact result, particularly evident in the highest occupied molecular orbital

(HOMO) QP. For the lowest unoccupied molecular orbital (LUMO), G0W0 and G0W0Γ
(1)
0 exhibit

similar outcomes, at least, for these choices of t. The creation of an additional small peak in ImΣxc

farther away from the QP, as discussed in Fig. 9.3, explains the observed little satellites in the insets of

Fig. 9.4. We conclude that the second-order self-energy tends to improve the QP energies, particularly

the occupied energies, whereas it worsens the satellites.

Finally, we examine the second-order tendencies from the perspective of the ground-state total

energy (E0), which is the primary focus of this thesis. In Fig. 9.5, we present a comparison of total

energies between the first and second-order self-energies. From the previous analyses of the self-

energy and spectral function for the second-order self-energy, one can anticipate that the total energy

at the second-order will be improved in the moderate to large range of correlations. The reason

is that the second-order corrections have the tendency to improve the quasi-particle energies and

not the satellites (here we refer to the removal peaks only). Consequently, the total energy will be
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Figure 9.5: Total energy errors as a function of t with U = 4 eV.

improved in the moderate to weak range of correlations (U/t is not large), where satellites are not

dominant. In contrast, when correlations become strong, satellites gain importance with significant

weights contributing to the total energy. Since the second-order expansion worsens the description of

satellites, it becomes evident that in this range of correlations, the second-order expansion is not the

method of choice. This is well demonstrated in Fig. 9.5, where G0W0Γ
(1)
0 performs better than G0W0

in the moderate to weak range of correlations, while it is not the case when correlations are strong.

For t→ 0, G0W0Γ
(1)
0 exhibits an error around −0.6 eV.

9.5.2 Optimal choice for W̄

After gaining insights into the tendency of the second-order diagram on the top of the first-order one,

it is interesting, as mentioned earlier, to compare expansions in terms of different screened Coulomb

interactions. Therefore, in this section, while maintaining a fixed choice for Ḡ, we attempt to study

expansions using different choices for W̄ . Two obvious choices are the exact TCTC W and the TCTC

within the RPA screened Coulomb interaction W0. For Ḡ, we use three different Green’s function as

illustrated in Fig. 9.2, where for the interacting 1-GF, G, we use the GQP, which is the exact 1-GF

within the QP approximation (satellites are neglected and QP intensities set to 1). In the following,

we provide comparisons between expansions at the first and second-orders in terms of W and W0 from

the perspective of QP energies and ground-state total energy.

In Fig. 9.6, we maintain Ḡ = G0 while comparing different expansions in terms of W0 and W at

the first and second orders looking at QP energies. Analyzing the left-hand panels at the first-order

level, it is evident that the RPA screening outperforms the exact one for both HOMO and LUMO

energies. Moving to the middle panels, where we add a second-order diagram on top of the first-order

one (analogous to (c) in Fig. 9.2, without SCD), we observe that RPA screening remains superior for

HOMO across the entire range of correlation, but it is less clear for LUMO. In the right-hand panels,

we present the second-order expansions considering the self-consistency diagrams (SCD), equivalent

to (c) in Fig. 9.2. Notably, SCD introduces a variable shift on top of G0W̄ Γ̄(1), making HOMO worse

and better with W0 and W , respectively. In contrast, LUMO becomes slightly better with W0 and

worse with W . It is essential to note that in a small range of t, the second-order self-energy becomes
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Figure 9.6: HOMO (lower panels) and LUMO (upper panels) energy errors as a function of t, where
U = 4 eV. First, second, and second order plus self-consistency diagrams (SCD) expansions in W0

and W are presented in the left, middle and right-hand panels, respectively. In dashed red and purple
lines with dot markers, the first order in W0 and W are shown, respectively. In solid sky blue and
orange lines with dot and pentagon markers, the second-order (without taking into account the SCD)
in W0 and W are shown, respectively. In dotted blue and green lines with xcross and cross markers,
the second-order expansion (where SCD are taken into account) in W0 and W are shown, respectively.
In all cases Ḡ = G0, and W̄ = W0 is the RPA screened interaction built with P̄ = P0 = −iG0G0.

highly unstable due to multiple peaks, explaining the instability of HOMO and LUMO when t is small.

Comparing first and second-order results for a given W̄ , we find that HOMO and LUMO are

improved by adding second-order corrections, confirming the conclusion in Fig. 9.4. Particularly,

G0W0Γ
(1)
0 shows high precision for HOMO energies in the moderate to large correlation range.

Overall, the RPA screening demonstrates more efficient outcomes with less instability, obviously

observed in the middle panel of Fig. 9.6. By adding SCD, both expansions show instable behavior in

the small range of t. The LUMO error of the first-order for both W and W0 goes to the Hartree-Fock

(HF) error, which is −U/2. The same holds true for the HOMO when W is employed, whereas with

W0 the HOMO is exact due to a problem of electron number, which was discussed in Subsec. 6.3.3.

Figure 9.7: Ground-state total energy errors as a function of t with U = 4 eV. Labels are explained
in Fig. 9.6.

In continuation of the comparisons from the perspective of ground-state total energy E0, similar

conclusions arise. Overall, the RPA screening slightly outperforms the exact one at different orders

of expansions. As previously deduced from Fig. 9.5, the second-order expansion, whether using W0
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or W , tends to improve the total energy in the moderate to large range of correlations. It is worth

mentioning that E0 for G0W goes to the HF result when t→ 0. G0WΓ(1) exhibits an instable behavior

with oscillations in the small range of t ending up with a zero error at t→ 0. More severe instability

occurs in this range of t when SCD are added, which also impacts the expansion in terms of W0. This

instability occurs due to a problem in the spectral function that is discussed later, where as the QP

components are already shown in Fig. 9.6.

Figure 9.8: HOMO (lower panels) and LUMO (upper panels) energies errors as a function of t, where
U = 4 eV. In this case, Ḡ = GH and W̄ = WH

0 or W , with GH the Hartree 1-GF and where WH
0 is

the RPA screened interaction built with P̄ = −iGHGH. Since the energies in G0 and GH differ by a
constant shift, WH

0 is equal to W0.

Changing the choice of Ḡ to Ḡ = GH, the same comparisons are repeated. At the first-order,

for HOMO, LUMO energies, and E0, W0 outperforms W , as shown in the left panels of Fig. 9.8

and Fig. 9.9, where for both flavors the results go to the HF ones when t → 0. Introducing a single

second-order diagram beyond the first-order one (this is equivalent to (b) in Fig. 9.2, where the SCD

diagram is neglected), represented by the middle panels of Fig. 9.8 and Fig. 9.9, again improves the

results, especially in the weak to moderate range of correlations. While for HOMO energies, it is not

clear which choice of W̄ is better, for LUMO energies and E0, the W0 choice shows clearly better

performance than W . This remains true, especially for HOMO and E0 when adding SCD, which is

equivalent to the diagrammatic expansion in (b) in Fig. 9.2. Interestingly, the W0 choice shows high

precision for E0, as shown in the right panel of Fig. 9.9. Concerning the small range of t, the HOMO

and LUMO show fluctuating errors in the case of G0WΓ(1). Adding the SCD makes things more

messy, especially for E0.

Figure 9.9: Ground-state total energy errors as a function of t with U = 4 eV, using Ḡ = GH and
W̄ = WH

0 or W .
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Next we utilize Ḡ = GQP. Here, the SCD should only stem from dynamical corrections to Σxc,

which we neglect here. Results are shown for the QP energies in Fig. 9.10 and for E0 in Fig. 9.11.

Similar to previous scenarios, the conclusions remain consistent. The RPA screening WQP
0 , calculated

using GQP through PRPA(1, 2) = −iGQP(1, 2+)GQP(2, 1+), demonstrates superior results compared

to the use of the exact W . This holds true for both the first and second orders concerning QP energies

and total energy, as depicted in Fig. 9.10 and Fig. 9.11. It is worth noting that when SCD to all orders

are almost implicitly included in the 1-GF, no erratic behavior is observed when W0 is used, whereas

problems in E0 are observed when W is used as illustrated by Fig. 9.11.

Figure 9.10: HOMO (lower panels) and LUMO (upper panels) energies errors as a function of t,
where U = 4 eV. Ḡ = GQP and W̄ = WQP

0 and W , with WQP
0 the RPA screening built with

PRPA = −iGQPGQP.

Figure 9.11: Ground-state total energy errors as a function of t with U = 4 eV, where Ḡ = GQP and
W̄ = W0 or W .

Finally, by maintaining the choice of W̄ constant and comparing the different flavors of Ḡ used

above, it is noticeable that using GH and the RPA screening is promising for the ground-state total

energy calculations as shown in the right-panel of Fig. 9.9. This is the best result among the three

flavors of Ḡ for E0 calculations. Therefore, it is interesting to examine the spectral function and

the self-energy. In Fig. 9.12, we present the spectral features of the GHWHΓ
(1)
H +SCD approximation.

Comparing the right panel of Fig. 9.8, for example, to the middle one of Fig. 9.6, we can notice that

despite the fact that the HOMO energies are more accurate within G0W0Γ
(1)
0 than GHWHΓ

(1)
H + SCD,

the latter performs better for E0 as shown in the right-panel of Fig. 9.9. Thus, there should be other
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Figure 9.12: Spectral features of the GHWHΓ
(1)
H + SCD approximation. Bonding-bonding and

antibonding-antibonding elements are shown in the left and upper panels, respectively. The imag-
inary part of the xc self-energy is shown in solid red lines. The QP equation and the spectral function
are shown in dotted green and blue lines, respectively.

reasons that improve the total energy by employing GHWHΓ
(1)
H + SCD. This can be explained by

Fig. 9.12, where emergence of additional two satellites is observed. We have discussed the fact that,

for example, G0W0Γ
(1)
0 has a bad description for satellites since it removes the G0W0 ones and adds

new ones with higher energies (in absolute value) and very weak intensity. This suggested that the E0

becomes worse at the second-order when correlations are important. In the case of GHWHΓ
(1)
H + SCD

as represented in Fig. 9.12, there are two additional peaks, which are indicated by the arrows, knowing

that the spectral function should have only four peaks. The additional peaks, depsite their unfavorable

presence, compensate the weak description of the satellites by the second-order self-energies, leading

to a better total energy.

9.5.3 Negative spectral function

As mentioned earlier, the behaviors at the second-order were unstable in the small range of t, both for

QP energies and total energy, particularly when the exact screening is used. This instability is a result

of disturbances in the spectral function, as shown in Fig. 9.13, where negative peaks emerge, notably

in the case where W is employed, even at t = 1 eV. Furthermore, W induces a more severe instability,

causing an erratic behavior in the spectral function as shown for t = 0.2 eV in the right-hand panels

of Fig. 9.13, where both G0WΓ(1) and G0WΓ(1) + SCD exhibit anomalous spectral features. Negative

peaks in the spectral functions for MBPT beyond GW is a general feature, extensively discussed in

Ref. [181]. It speaks against a straightforward expansion and calls for a careful choice of ingredients

and/or combination with ideas such as these presented in Chaps. 7 and 8.

9.6 Conclusions

In summary, this chapter extended beyond the GW approximation by introducing a second-order

expansion in terms of different screened Coulomb interactions, which are the exact TCTC and RPA

129



Figure 9.13: Diagonal element for a given spin σ =↑, ↓ of the spectral function matrix as a function of
frequency. t = 1 eV and t = 0.2 eV are shown in the left and right panels, respectively, where U = 4
eV. Second-order, with and without SCD, in terms of W0 and W are shown, where Ḡ = G0.

interactions. While MBPT can theoretically be formulated with many different screened interactions,

one might think that choosing the most realistic screening is crucial for the expansion. In contrast,

and for various choice of Ḡ, we demonstrated that the RPA screening outperforms the exact one, at

least up to the second-order expansion. The addition of second-order diagrams atop the first-order

ones improved QP energies (in agreement with several studies summarized in Sec. 9.4) in the spectral

function, but at the expense of degrading satellites. This explains why the ground-state total energy

only improves in the weak to moderate correlation range, where satellites have less impact on the total

energy due to their weaker intensities. In contrast, as correlations become prominent, satellites play

a more significant role, leading to the deterioration of the second-order’s performance. Apart from

the limitations in capturing satellites and accurately describing E0 in strong correlations, the second-
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order method encounters challenges such as the emergence of negative peaks and spectral function

instability, especially notable in the strong correlation regime. Through the different anaylsis made

in this chapter, it has been noticeable that this instability was less pronounced when utilizing RPA

screening, whereas the exact screened interaction shows an erratic behavior in agreement with the

finding (see, e.g, Fig. 6) of Ref. [177]. In conclusion, the RPA screened Coulomb interaction seems to

be a preferable choice for a perturbative expansion, confirming the findings of Ref. [177].

Besides these findings of the present chapter and Ref. [177] using different models that confirm the

advantage of the RPA screening, a theoretical understanding about this superiority is required. In

other words, how is it possible to theoretically understand that the RPA screening is a better parameter

than the exact one? As demonstrated in this chapter, the RPA screening stands as a valid option for

the exact representation of MBPT. This holds true using the exact TCTC screened interaction. On

the other hand, as pointed out in Ref. [177], the optimality of the RPA screening can be understood

within the context of a one-electron system. In this case, the exact inverse dielectric function that

screens the bare Coulomb interaction is given by ε−1 = 1+vcχ0, where χ0 denotes the non-interacting

polarizability. Notably, since χ0 is negative, the screened Coulomb interaction tends to be smaller

than vc. This poses problem for MBPT when χ0 is significantly negative compared to 1/vc, leading

to a negative screened interaction that can be very large in absolute value. However, this issue is

overcome when employing RPA screening, where the dielectric function, εRPA = 1−vcχ0, always avoids

negativity and ε−1,RPA will be always small. Examining the symmetric Hubbard dimer at quarter-

filling provides a practical illustration. Fig. 9.14 demonstrates that the exact TCTC interaction

diverges to −∞ under strong correlations (as t → 0). In contrast, the RPA interaction remains

consistently non-negative. This observation further supports the notion that RPA screened interaction

may be more favorable than using the exact one. Similar suggestions have been made in Ref. [177],

where for example, in Fig. 5 the authors show the RPA inverse dielectric function compared to the

exact one. Starting from a certain value of correlation, the exact ε−1 becomes too large making it

difficult to suggest the exact screened interaction as a useful parameter in MBPT. However, only

looking at the one-point model and at the one-electron case is too simplistic: as one can see from the

screened interactions discussed in Chap. 8, in the half-filling case, the exact screened interaction does

not diverge, contrary to the case one-electron.

9.7 Supporting informations

In this section, we provide analytical expressions. We note that in the following, we provide analytical

quantities within the time-ordered framework of Green’s function, whereas we implement numerically

the retarded quantities which are more reliable in the small range of t.

The second-order self-energy has been obtained by solving analytically, within the time-ordered

1-GF scheme, the following integrals written in frequency space and in the Hubbard basis:
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Figure 9.14: Symmetric Hubbard dimer at quarter-filling: diagonal element of the screened Coulomb
interaction at ω = 0 as a function of t, where U = 4 eV. The RPA is shown in red line. The TCTC
interaction that has the exact polarizability is shown in purple.

Σxc,ijσ(ω) =
i

2π

∫
dω′ Ḡijσ(ω + ω′)W̄ji(ω

′)eiηω
′

−
∑
kl=1,2

∫
dω1dω2

(2π)2
Ḡilσ(ω − ω1)W̄ik(ω1)Ḡlkσ(ω − ω1 − ω2)W̄lj(ω2)Ḡkjσ(ω − ω2)e−iηω1e−iηω2 . (9.21)

For any Ḡ and W̄ , the analytical solution of the first and second orders term are given below.

ΣḠW̄
xc,ijσ(ω) = −U

2
+
AU2

2

(
1

ω − (ε2 + ωp) + iη
+

(−1)i−j

ω − (ε1 − ωp)− iη

)
, (9.22)

where A and ωp are the amplitude and pole of W̄ , respectively. ε1 and ε2 are the HOMO and LUMO

of Ḡ, respectively. Note that, in the case of the half-filling, spin-up and down elements are equivalent.

ΣḠW̄ ḠW̄ Ḡ
c,ijσ (ω) = −

[(
U2

8
+

U3A

2((ε2 − ε1)− ωp)
+

U4A2

2((ε2 − ε1)− ωp)2
− U3A

2((ε2 − ε1) + ωp)

− U4A2

((ε2 − ε1)− ωp)((ε2 − ε1) + ωp)
+

U4A2

2((ε2 − ε1) + ωp)2

)
×
(

(−1)i−j

ω − (ε1 − (ε2 − ε1))− iη

+
1

ω − (ε2 + (ε2 − ε1)) + iη

)
−
(

(−1)i−j

ω − (ε1 − ωp)− iη
+

1

ω − (ε2 + ωp) + iη

)
×
(

U3A

2((ε2 − ε1) + ωp)

+
U3A

2((ε2 − ε1)− ωp)
+

U4A2

2((ε2 − ε1)− ωp)2
+

U4A2

((ε2 − ε1) + ωp)(2ωp)
− U4A2

((ε2 − ε1)− ωp)(2ωp)

)
+

U4A2

2((ε2 − ε1)− ωp)

(
(−1)i−j

(ω − (ε1 − ωp)− iη)2
− 1

(ω − (ε2 + ωp) + iη)2

)
− U4A2

2((ε2 − ε1) + ωp)2

(
1

ω − (ε1 − 2ωp)− iη
+

(−1)i−j

ω − (ε2 + 2ωp) + iη

)]
. (9.23)

The SCD diagrams are originating from the fact that the non-interacting 1-GF is used instead of
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the interacting one. So, they are obtained for Ḡ = G0 as,

iG(1, 2)W̄ (2, 1+) = i

(
G0(1, 2) +

∫
d(34)G0(1, 3)Σ(3, 4)G(4, 2)

)
W̄ (2, 1+) (9.24)

≈ i
(
G0(1, 2) +

∫
d(34)G0(1, 3)

(
ΣH(3, 4) + Σxc(3, 4)

)
G0(4, 2)

)
W̄ (2, 1+) (9.25)

≈ i
(
G0(1, 2) +

∫
d(34)G0(1, 3)

(
ΣH(3, 4) + iG0(3, 4)W̄ (4, 3+)

)
G0(4, 2)

)
W̄ (2, 1+)

(9.26)

= iG0(1, 2)W̄ (2, 1+) + i

∫
d(34)G0(1, 3)ΣH(3, 4)G0(4, 2)W̄ (2, 1+)

+ (i)2

∫
d(34)G0(1, 3)G0(3, 4)W̄ (4, 3+)G0(4, 2)W̄ (2, 1+) ,

(9.27)

where the last two terms in Eq.(9.27) are the SCD. For Ḡ = GH, the second term in Eq.(9.27) does

not exist.

In the Hubbard basis and frequency space, the SCD are given as

U
∑

l=1,2,σ′=↑,↓

∫
dω1dω2

(2π)2
G0ilσ(ω + ω1)G0llσ′(ω2)G0ljσ(ω + ω1)W̄ji(ω1)eiω1ηeiω2η

−
∑
ln

∫
dω1dω2

(2π)2
G0ilσ(ω + ω2)G0lnσ(ω + ω1 + ω2)W̄nl(ω1)G0njσ(ω + ω2)W̄ji(ω2)eiω1ηeiω2η . (9.28)

So, for Ḡ = G0, we have

ΣSCD
ijσ (ω) =

(
U3A

4
− U4A2

2

)(
(−1)i−j(

ω − (ε0 − t− ωp)− iη
)2 +

1(
ω − (ε0 + t+ ωp) + iη

)2)
− U4A2

2
× 1

(2t+ ωp)2

(
(−1)i−j

ω − (ε0 − t− ωp)− iη
+

1

ω − (ε0 + t+ ωp) + iη

)
+
U4A2

2
× 1

(2t+ ωp)2
×
(

(−1)i−j

ω − (ε0 + t+ 2ωp) + iη
+

1

ω − (ε0 − t− 2ωp)− iη

)
, (9.29)

and for Ḡ = GH, we have

ΣSCD
ijσ (ω) =

(
− U3A

4
− U4A2

2

)(
(−1)i−j(

ω − (ε0 − t+ U − ωp)− iη
)2 +

1(
ω − (ε0 + t+ U + ωp) + iη

)2)
− U4A2

2
× 1

(2t+ ωp)2

(
(−1)i−j

ω − (ε0 − t+ U − ωp)− iη
+

1

ω − (ε0 + t+ U + ωp) + iη

)
+
U4A2

2
× 1

(2t+ ωp)2
×
(

(−1)i−j

ω − (ε0 + t+ U + 2ωp) + iη
+

1

ω − (ε0 − t+ U − 2ωp)− iη

)
. (9.30)
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Conclusions

In this thesis, three distinct approaches have been proposed to go beyond the GW approximation

(GWA) for the xc self-energy (Σxc), with a primary focus on improving ground-state total energy cal-

culations. At the same time, we were interested in optimizing spectral properties, for a large range of

systems and the whole range of correlation strength. The aim was to investigate and develop methods

that are both powerful and relatively cheap, so that their practical applications are feasible.

We have used the exactly solvable Hubbard dimer model, throughout the thesis, to test and bench-

mark all our results. At the heart of our developments lies the important concept of screened Coulomb

interaction W . Screening is often approximated in practice. For example, in GW calculations usually

the random phase approximation (RPA) is made, and only static (ω = 0) screening is used in the

Bethe-Salpeter equation. Numerous questions regarding the screening remain to be adressed: i) What

is the most suitable approximation to be used in simplified expressions for the self-energy? ii) Can

we extend the concept of a screened interaction to that of an effective interaction that encompasses

additional physical meaning beyond the screening effect? This thesis aimed to address these ques-

tions, leading to findings that are not always straightforward, yet suggesting for new lines of research

and promising potential for advancements of material science within the framework of the Green’s

functions formalism of many-body perturbation theory (MBPT).

In Chap. 7, we delved into the GW̃ approximation for Σxc, which uses ingredients from time-

dependent density functional theory (TDDFT) to simulate vertex corrections, specifically the exchange-

correlation kernel fxc. It was demonstrated that with the resulting approximate Σxc, one can derive

the exact xc energy contribution to the total energy, provided there is consistency in the combination

of ingredients. While in practice the exact fxc is not known and approximations are needed, main-

taining consistency in the combination of ingredients permits us to devise powerful approximations

for the total energy.

Despite the impressive performance of GW̃ , where Σxc is linear in terms of W̃ , while it can still pro-

duce the exact xc energy, the fact that Σxc = iGW̃ is an approximation has important consequences.

In particular, the accuracy of the kinetic energy and of spectra falls short of that achieved for the

xc energy. In Chap. 8, we take a step further by introducing an effective interaction W̄eff that, when

multiplied by the appropriate 1-GF Ḡ, yields the exact Σxc. This establishes the existence of an exact

Σxc that is linear in terms of W̄eff, i.e., Σxc = iḠW̄eff. We have developed an equation in Chap. 8 that,

in principle, provides the exact W̄eff. After gaining insights into the characteristics of these exact W̄eff,
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we proposed different approximate equations to determine W̄eff, the solutions of which are feasible in

practice. In comparison with the exact and other approximate results, the different approximate W̄eff

demonstrated promising performance, rendering them highly motivating for real-world implementa-

tions.

In Chap. 9, with a focus on the test-charge test-charge (TCTC) screened Coulomb interaction

calculated at various levels of approximation, we conducted a second-order expansion of Σxc in the

framework of MBPT. We addressed several questions: firstly, what is the optimal choice for W̄? This

question arises because MBPT can, in principle, be expressed in terms of different flavors of the TCTC

interaction W̄ , especially the exact and the RPA ones. Secondly, how does the second-order correction

to Σxc influence properties such as the ground-state total energy and spectral functions compared to

the first-order GW approximation? We have shown that the RPA screened interaction is an advanta-

geous choice for MBPT expansion. We also found that and explained why, ground-state total energy

calculations show improvement at the second-order compared to the first-order in the moderate to

weak range of correlation. The quasiparticle components of the spectral function are also improved at

the second-order, while the description of satellites is relatively less accurate.

This thesis lays the groundwork for several potential avenues of research and practical applications

in real systems. The results obtained offer a simpler and alternative approach to complex calculations

while providing understanding of interacting electronic systems from new perspectives. In particular,

it seems promising to continue research to benchmark and extend approximations for the effective

interaction Weff . On one side, the exact equations that we have derived will allow us to introduce a

systematic hierarchy of approximations. These approximations should be tested on exactly solvable

models such as the Hubbard dimer. On the other side, implementation in an ab initio code seems to

be within reach.

At the same time, our results obtained for GW̃ and for the second-order expansion suggest choices

for total energy and spectra calculations that require to be validated systematically on real systems.

A major open question concerns self-consistency. In this thesis we were heading for relatively cheap

approaches that avoid the need for self-consistency, such as the GW̃ approximation. Nevertheless, a

combination with self-consistency might be needed, in particular for a good description of the density

and density matrix. Future research is planned to make progress for at least some of these challenges.
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Appendix A

Green’s functions in Mathematics

In mathematics, Green’s functions are defined as the solutions of linear differential equations with a

delta function source, serving as the impulse response of an inhomogeneous linear differential operator

defined on a domain with specified boundary conditions. For instance, consider the following simple

equation,

Lxf(x) = u(x) , (A.1)

where L is a linear operator, f(x) is the solution and u(x) is a second term. Green’s function is defined

as

LxG(x− y) = δ(x− y) , (A.2)

where G(x− y) is the Green’s function and δ is the Dirac delta function. By integrating Eq.(A.2), we

obtain ∫
LxG(x− y)u(y) dy =

∫
dy δ(x− y)u(y) (A.3)

Lx

∫
G(x− y)u(y) dy = u(x) . (A.4)

So, by comparing Eq.(A.4) with Eq.(A.1), the solution of Eq.(A.1) would be dependent on G as

f(x) =

∫
G(x− y)u(y) dy . (A.5)

Many problems in physics can be formulated in terms of inhomogeneous differential equations as

Eq.A.1. Let us now consider a physical problem involving Poisson’s equation, which is expressed by

the following equation,

∇2
r V (r) = −n(r) , (A.6)

where V (r) is the electrostatic potential of the electrostatic charges and n(r) is the charge density.

By using G, we have

∇2
rG(r − r′) = δ(r − r′) , (A.7)

and by multiplying Eq.(A.7) by
∫
dr′f(r′), we obtain

∇2
r

∫
dr′G(r − r′)f(r′) = f(r) , (A.8)
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where by considering f(r) = −n(r), the solution of Eq.(A.6) is

V (r) = −
∫
dr′G(r − r′)n(r′) . (A.9)

Thus, obtaining V (r) relies on G(r − r′), which can be obtained by transforming Eq.(A.7) to Fourier

space as ∫
d3r∇2

rG(r)e−i
~k·~r =

∫
d3r e−i

~k·~rδ(r) (A.10)

−k2G̃ = 1 , (A.11)

where G̃ is the Green’s function in Fourier space. So,

G̃ = − 1

k2
. (A.12)

Then, to find G in real space, we will make the inverse Fourier transform as follows,

G(r) = −
∫
d3k

ei
~k·~r

(2π)3k2
(A.13)

= −
∫ 2π

0
dφ

∫ π

0
dθ

∫ ∞
0

dk k2 sin θeik r cos θ 1

k2
(A.14)

= − 1

2π2r

∫ ∞
0

dk r
sin k r

k r
(A.15)

= − 1

4π|r − r′|
. (A.16)

Finally, the electrostatic potential is

V (r) =

∫
dr′G(r − r′)f(r′) =

∫
dr′

n(r′)

|r − r′|
. (A.17)

This demonstrates how useful Green’s functions are in solving linear differential equations.
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Appendix B

Basis transformations

In order to ensure clarity when making basis transformations, it is necessary to establish specific

definitions.

B.1 From real space to discrete orbital basis

First and foremost, we define the single-particle “spin orbital” as follows,

φiσ(x) = ϕiσ(r)χσ(s) , (B.1)

where ϕ is the space orbital part and χ is the spin part, where i denotes the quantum number

(for examle, in the case of atom i = n, l,ml) and σ is the quantum number of the spin projection,

σ = ±1
2 for its z-component. The orbital part may depend on σ in spin-polarized systems (Magnetic

systems where there is a net magnetization). Each part of the single-particle spin orbital form, an

orthonormalized and complete set,∫
dxφ∗iσ(x)φjσ′(x) =

∫
drϕ∗iσ(r)ϕjσ′(r)

∑
s

χ∗σ(s)χσ′(s) = δijδσσ′ . (B.2)

Taking advantage of the orthonormal basis of single-particle spin orbitals, we can define the following

transformations. For a one-body function,

f(x) =
∑
iσ

φiσ(x)fiσ , (B.3)

which is when multiplied by φ∗jσ′(x) and integrated, it becomes∫
dxφ∗jσ′(x)f(x) =

∑
iσ

∫
dxφ∗jσ′(x)φiσ(x)fiσ , (B.4)

thus, we obtain in the discrete basis,

fjσ′ =

∫
dxφ∗jσ′(x)f(x) . (B.5)

The basis transformation for a two body-function proceeds as follows,

f(x, x′) =
∑
ijσσ′

φiσ(x)fijσσ′φ
∗
jσ′(x

′) , (B.6)
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where, by integrating Eq.(B.6) we obtain

x
dxdx′ φ∗kσ1

(x)f(x, x′)φlσ2(x′) = fklσ1σ2 . (B.7)

The four-point function would, therefore, be in the discrete space written as,

f(x1, x2, x3, x4) =
∑
ijkl

∑
σ1σ2σ3σ4

φjσ2(x2)φiσ1(x1)fijklσ1σ2σ3σ4φ
∗
kσ4

(x3)φ∗lσ4
(x4) . (B.8)

For instance, by applying the transformation of Eq.(B.7) to the 1-GF, we obtain the 1-GF expression

in the discrete basis as,

G(x, t, x′, t′) = −i 〈N0|T̂
[
Ψ̂(x, t)Ψ̂†(x′, t′)

]
|N0〉 , (B.9)

= −i 〈N0|T̂
[∑
iσ

φiσ(x)ĉiσ(t)
∑
jσ′

φ∗jσ′(x
′)ĉ†jσ′(t

′)
]
|N0〉 , (B.10)

= −i 〈N0|T̂
[∑
iσ

ϕiσ(r)χσ(s)ĉiσ(t)
∑
jσ′

ϕ∗jσ′(r
′)χ∗σ′(s

′)ĉ†jσ′(t
′)
]
|N0〉 , (B.11)

=
∑
ijσσ′

φiσ(x)

(
− i 〈N0|T̂

[
ĉiσ(t)ĉ†jσ′(t

′)
]
|N0〉

)
φ∗jσ′(x

′) . (B.12)

Thus, we obtain the 1-GF definition in the discrete basis,

Gklσ1σ2(t, t′) = −i 〈N0|T̂
[
ĉkσ1(t)ĉ†lσ2

(t′)
]
|N0〉 . (B.13)

B.2 Fourier transform

To move from real time space to the frequency one and vice versa, we use the Fourier and inverse Fourier

transforms. For a given time-dependent function f(t), we define the following Fourier transform,

f(ω) =

∫
dt f(t)eiωt , (B.14)

and the inverse Fourier transform,

f(t) =

∫
dω

2π
f(ω)e−iωt . (B.15)
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Appendix C

Ground-state total energy in terms of

the Green’s function

C.1 The Galitskii-Migdal formula

Many observables can be written explicitly in terms of the 1-GF such as the one-body density, one-body

density-matrix, spectral function and total energy. We derive in the following the Galitskii-Migdal

[94] formula that provides the total energy expression in terms of the 1-GF. Any one-body operator

as can be written in terms of the field operators as,

Ô =

∫
dx Ψ̂†(x)O(x)Ψ̂(x) , (C.1)

whose expectation value is

〈Ô〉 = lim
x′→x

∫
dxO(x) 〈Ψ̂†(x)Ψ̂(x)〉 . (C.2)

The time-ordered 1-GF is already defined in Eq.(4.9). By considering x = x′ and t′ = t+, we obtain

G(x, t;x, t+) = i 〈N |Ψ̂†(x)Ψ̂(x)|N〉 , (C.3)

so,

〈Ψ̂†(x′)Ψ̂(x)〉 = −iG(x, t;x′, t+) . (C.4)

Therefore, the expectation value of a one-body operator can be written in terms of the 1-GF as,

〈Ô〉 = −i
∫
dxO(x) lim

t′→t+,x′→x
G(x, t;x′, t′) . (C.5)

With this, we can write the one-body part of the the electronic hamiltonian, defined in Eq.(4.14), in

terms of the 1-GF,

〈Ĥ0〉 = −i
∫
dx lim

t′−→t+,x′−→x
h(x)G(x, t, x′, t′) = −i

∫
dx lim

t′→t+,x′→x

[(
− ∇

2
r

2
+ vext(x, x

′)

)
G(x, x′; t, t′)

]
.

(C.6)
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For the two-body part of the hamiltonian Eq.(4.14), which requires four field operators, we need the

2-GF that is defined in Eq.(4.31). Using the 2-GF, we can express the field operators of the two-body

operator as,

〈Ψ̂†(x)Ψ̂†(x′)Ψ̂(x′)Ψ̂(x)〉 = −G2(x, t, x′, t+;x, t+++, x′, t++) . (C.7)

Then, the Coulomb interaction expectation value becomes

〈v̂c〉 = −1

2

∫
dx

∫
dx′ vc(x, x

′)G2(x, t, x′, t+;x, t+++, x′, t++) . (C.8)

To express 〈v̂c〉 in terms of G instead of G2, we use the equation of motion for the 1-GF, given in

Eq.(4.32). Hence, we obtain

〈v̂c〉 =
1

2

∫
dx lim

t′→t+,x′→x

[
∂

∂t
+ ih(x)

]
G(x, t;x′, t′) . (C.9)

So, finally the ground-state total energy in terms of the 1-GF, represented by the Galitskii-Migdal

formula, is

E0 =
1

2

∫
dx lim

t′→t+,x′→x

[
∂

∂t
− ih(x)

]
G(x, t;x′, t′) . (C.10)

C.2 Total energy in terms of the Green’s function and the

self-energy

In order to explicitly make the self-energy appear in the ground-state total energy formula Eq.(C.10),

one can use the equation of motion for the 1-GF, where the self-energy appears. So, by using Eq.(4.32)

in Eq.(C.10), we obtain

E0 = −i lim
t2→t+1

∫
dx1

[
−
∇2
r1

2
+ vext(x1)

]
G(x1, x1; t1 − t2)− i

2
lim
t2→t+1

∫
dx1 vH(x1)G(x1, x1; t1 − t2)

− i

2
lim
t2→t+1

∫
dx1dx3dt3 Σxc(x1, x3; t1 − t3)G(x3, x1; t3 − t2) . (C.11)

The two Eqs.(C.10) and (C.11) are important and have been used in this thesis.

C.3 The Galitskii-Migdal formulas for the Hubbard model

In the discrete Hubbard basis and frequency spaces, the two different expressions of the GM formula

are

E0 = − i

4π

∑
iσ

∫ +∞

−∞
dω ωGiiσ(ω)eiωη+

it

4π

∑
<i=1,j=1>,i 6=j,σ

∫ +∞

−∞
dωGijσ(ω)eiωη− iε0

4π

∑
iσ

∫ +∞

−∞
dωGiiσ(ω)eiωη ,

(C.12)
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and

E0 = it
∑

<i,j>=1,2,σ

∫
dω

2π
Gijσ(ω)eiηω−i

∑
i=1,2,σ

vext,iiσ

∫
dω

2π
Giiσ(ω)eiηω−i

∑
i=1,2,σ

vH,iiσ

2

∫
dω

2π
Giiσ(ω)eiηω

− i

2

∑
ij=1,2,σ

∫
dω

2π
Σxc,jiσ(ω)Gijσ(ω)eiωη . (C.13)
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Appendix D

The retarded Green’s function

Let us recall the time-ordered Green’s function definition,

G(x1, t1;x2, t2) = −i 〈N0|T̂
[
ψ̂(x1, t1)ψ̂†(x2, t2)

]
|N0〉 (D.1)

= −i 〈N0|ψ̂(x1, t1)ψ̂†(x2, t2)|N0〉 θ(t1 − t2) + i 〈N0|ψ̂†(x2, t2)ψ̂(x1, t1)|N0〉 θ(t2 − t1) .

(D.2)

First, we introduce the greater and lesser 1-GFs,

G>(x1, t1;x2, t2) = −i 〈N0|ψ̂(x1, t1)ψ̂†(x2, t2)|N0〉 , (D.3)

and

G<(x1, t1;x2, t2) = +i 〈N0|ψ̂†(x2, t2)ψ̂(x1, t1)|N0〉 . (D.4)

We also define

G̃(x1, t1;x2, t2) = G>(x1, t1;x2, t2)−G<(x1, t1;x2, t2) (D.5)

= −i 〈N0|[ψ̂(x1, t1), ψ̂†(x2, t2)]|N0〉 . (D.6)

Finally, we introduce the retarded and advanced 1-GFs,

GR(x1, t1;x2, t2) = −i 〈N0|[ψ̂(x1, t1), ψ̂†(x2, t2)]|N0〉 θ(t1 − t2) , (D.7)

GA(x1, t1;x2, t2) = +i 〈N0|[ψ̂(x1, t1), ψ̂†(x2, t2)]|N0〉 θ(t2 − t1) . (D.8)

D.1 Retarded GW self-energy

The retarded Σxc is defined as follows [159, 160],

ΣR
xc(x1, t1;x2, t2) = i

[
G<(x1, t1;x2, t2)WA(x2, t2;x1, t1) +GR(x1, t1;x2, t2)W<(x2, t2;x1, t

+
1 )

]
, (D.9)
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where WA and W< are the advanced and less TCTC screened Coulomb interactions. In frequency

space, we have

ΣR
xc(x1, x2;ω) = i

[ ∫
dω1

2π
G<(x1, x2;ω1 + ω)WA(x2, x1;ω1)eiω1η

+

∫
dω1

2π
GR(x1, x2;ω1 + ω)W<(x2, x1;ω1)eiω1η

]
. (D.10)

G<, G>, GR and GA are written in frequency space, respectively as

G<(x1, x2;ω) =

∫
dtG(x1, x2; t1 − t2)eiωt (D.11)

= i
∑
s

〈N0|ψ̂†(x2)|N − 1〉s 〈N − 1|sψ̂(x1)|N0〉
∫
dt eit(E

N−1
s −EN0 )eiωt (D.12)

= 2πi
∑
s

〈N0|ψ̂†(x2)|N − 1〉s 〈N − 1|sψ̂(x1)|N0〉 δ
(
ω − (EN0 − EN−1

s )
)
, (D.13)

G>(x1, x2;ω) = −2πi
∑
s

〈N0|ψ̂(x1)|N + 1〉s 〈N + 1|sψ̂†(x2)|N0〉 δ
(
ω − (EN+1

s − EN0 )
)
, (D.14)

GR(x1, x2;ω) =
∑
s

[
〈N0|ψ̂†(x2) |N − 1〉s 〈N − 1|s ψ̂(x1)|N0〉

ω − (EN0 − EN−1
s ) + iη

+
〈N0|ψ̂(x1) |N + 1〉s 〈N + 1|sψ̂†(x2)|N0|〉

ω − (EN+1
s − EN0 ) + iη

]
(D.15)

and

GR(x1, x2;ω) =
∑
s

[
〈N0|ψ̂†(x2) |N − 1〉s 〈N − 1|s ψ̂(x1)|N0〉

ω − (EN0 − EN−1
s )− iη

+
〈N0|ψ̂(x1) |N + 1〉s 〈N + 1|sψ̂†(x2)|N0|〉

ω − (EN+1
s − EN0 )− iη

]
.

(D.16)

Then, in order to calculate Σxc from Eq.(D.10), we need to find WR and W> in frequency space.

This relies on the polarizability, which has the following components,

P>0 (x1, t1;x2, t2) = −iG>(x1, t1;x2, t2)G<(x2, t2;x1, t
+
1 ) , (D.17)

P<0 (x1, t1;x2, t2) = −iG<(x1, t1;x2, t2)G>(x2, t2;x1, t
+
1 ) , (D.18)

PR0 (x1, t1;x2, t2) = −iG<(x1, t1;x2, t2)GA(x2, t2;x1, t
+
1 )− iGR(x1, t1;x2, t2)G<(x2, t2;x1, t

+
1 ) , (D.19)

and

PA0 (x1, t1;x2, t2) = −iG<(x1, t1;x2, t2)GR(x2, t2;x1, t
+
1 )− iGA(x1, t1;x2, t2)G<(x2, t2;x1, t

+
1 ) . (D.20)
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In frequency space, these components become

P>0 (x1, x2;ω) = −i
∫
dω1

2π
G>(x1, x2;ω + ω1)G<(x2, x1;ω1)eiω1η , (D.21)

P<0 (x1, x2;ω) = −i
∫
dω1

2π
G<(x1, x2;ω + ω1)G>(x2, x1;ω1)eiω1η , (D.22)

PR0 (x1, x2;ω) = −i
∫
dω1

2π
G<(x1, x2;ω + ω1)GA(x2, x1;ω1)eiω1η

− i
∫
dω1

2π
GR(x1, x2;ω + ω1)G<(x2, x1;ω1)eiω1η , (D.23)

and

PA0 (x1, x2;ω) = −i
∫
dω1

2π
G<(x1, x2;ω + ω1)GR(x2, x1;ω1)eiω1η

− i
∫
dω1

2π
GA(x1, x2;ω + ω1)G<(x2, x1;ω1)eiω1η . (D.24)

D.2 The Hubbard dimer model

Using Eq.(D.10), we aim to calculate the retarded GW Σxc for the Hubbard dimer, e.g at half-filling.

To do so, we provide the neccessary ingredients in the ij basis of the Hubbard model.

P>0ijσ(ω) = −i
∫
dω1

2π
G>0ijσ(ω1 + ω)G<0jiσ(ω1)eiω1η , (D.25)

with

G<0ijσ(ω1) = 2πi× 1

2
× δ(ω1 − (ε0 − t)) , (D.26)

and

G>0ijσ(ω1 + ω) = −2πi× (−1)i−j

2
× δ(ω1 + ω − (ε0 + t)) . (D.27)

So,

P>0ijσ(ω) = −i(2π)2 (−1)i−j

4

∫
dω

2π
δ(ω1 + ω − (ε0 + t))δ(ω1 − (ε0 − t))eiω1η (D.28)

= −2πi
(−1)i−j

4
δ(ω − 2t) . (D.29)

The lesser component is obtained as

P<0ijσ(ω) = −i
∫
dω1

2π
G<0ijσ(ω1 + ω)G>0jiσ(ω1)eiω1η (D.30)

= −2πi
(−1)i−j

4

∫
dω

2π
δ(ω1 + ω − (ε0 − t))δ(ω1 − (ε0 + t))eiω1η (D.31)

= −2πi
(−1)i−j

4
δ(ω + 2t) . (D.32)
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Then, the advanced component of P in the ij basis is

PA0ijσ(ω) = −i
∫
dω1

2π
G<0ijσ(ω + ω1)GR0jiσ(ω1)eiω1η − i

∫
dω1

2π
GA0ijσ(ω + ω1)G<0jiσ(ω1)eiω1η , (D.33)

where

GR0ijσ(ω1) =
1

2

(
1

ω − (ε0 − t) + iη
+

(−1)i−j

ω − (ε0 + t) + iη

)
, (D.34)

GA0ijσ(ω1) =
1

2

(
1

ω − (ε0 − t)− iη
+

(−1)i−j

ω − (ε0 + t)− iη

)
. (D.35)

Thus, we obtain

PA0ijσ(ω) =
(−1)i−j

4
×
(

1

ω − 2t− iη
− 1

ω + 2t− iη

)
, (D.36)

PR0ijσ(ω) =
(−1)i−j

4
×
(

1

ω − 2t+ iη
− 1

ω + 2t+ iη

)
. (D.37)

The random phase approximation (RPA) screened interaction components can be then obtained using

the Dyson equation

W
R/A
0ij (ω) = Uδij + U

∑
k=1,2σ=↑,↓

P
R/A
0ikσ (ω)W

R/A
0kj (ω) . (D.38)

So, we obtain

WR
ij (ω) = Uδij + (−1)i−j

U2t

h′
×
(

1

ω − h′ + iη
− 1

ω + h′ + iη

)
, (D.39)

and

WA
ij (ω) = Uδij + (−1)i−j

U2t

h′
×
(

1

ω − h′ − iη
− 1

ω + h′ − iη

)
. (D.40)

W< and W> are defined, respectively, as follows,

W<(ω) = ifBE(ω − µ)Im(WR(ω)) , (D.41)

and

W>(ω) = i
(
fBE(ω − µ)− 1)Im(WA(ω)) , (D.42)

where fBE(ω − µ) is the Bose-Einstein distribution. So, we have

W<
ij (ω) = −i(−1)i−j

U2t

h′
δ(ω + h′) , (D.43)

and

W>
ij (ω) = i(−1)i−j

U2t

h′
δ(ω − h′) . (D.44)

Finally, using the previous ingredients, we calculate the retarded Σxc

ΣR
xcijσ(ω) = i

∫
dω

2π
G<ijσ(ω1 + ω)WA

ji (ω) + i

∫
dω

2π
GRijσ(ω1 + ω)W<

ji (ω) . (D.45)
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The first integration in Eq.(D.45) yields

− U

2
δij +

(−1)i−jU2t

2h′

(
1

ω − (ε0 − t− h′) + iη
− 1

ω − (ε0 − t+ h′) + iη

)
, (D.46)

and the second one yields

U2t

2h′

(
(−1)i−j

ω − (ε0 − t+ h′) + iη
+

1

ω − (ε0 + t+ h′) + iη

)
. (D.47)

So, we obtain

ΣR
xc,ijσ(ω) = −U

2
δij +

U2t

2h′

(
1

ω − (ε0 + t+ h′) + iη
+

(−1)i−j

ω − (ε0 − t− h′) + iη

)
, (D.48)

which only differs from the retarded quantity by a sign in the broadening of the removal part.
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Appendix E

Functionals in terms of the Green’s

function with time non-local potentials

In the following, based on Ref. [101], we show more general derivation of Green’s functions functionals

using a time non-local external potential, and therefore, a generalized 4-times Coulomb interaction.

We start with the self-energy definition in terms of four-point Coulomb interaction,

Σ(1, 5) = − i
2

∫
d(1′234)V (1, 2, 3, 4)G2(4, 3, 1′, 2)G−1(1′, 5) , (E.1)

where

V (1, 2, 3, 4) = vc(1, 2
+)

(
δ(2, 3+)δ(1, 4+++)− δ(1, 3++)δ(2, 4++)

)
. (E.2)

For the definition of G2, we keep using our notations, which is slightly different from the one used in

Ref. [101]. So, G2 is

G2(4, 3, 1′, 2) = G(4, 1′)G(3, 2)− L(4, 3, 1′, 2) . (E.3)

E.1 Hartree potential and exchange self-energy expressions

By approximating G2 as follows,

G2(4, 3, 1′, 2) ≈ G(4, 1′)G(3, 2)− L0(4, 3, 1′, 2) (E.4)

= G(4, 1′)G(3, 2)−G(4, 2)G(3, 1′) , (E.5)

we can get the Hartree potential and the exchange self-energy expressions.

ΣHx(1, 5) = − i
2

∫
d(1′234)V (1, 2, 3, 4)

(
G(4, 1′)G(3, 2)−G(4, 2)G(3, 1′)

)
G−1(1′, 5) (E.6)

= − i
2

∫
d(234)V (1, 2, 3, 4)

(
G(3, 2)δ(4, 5)−G(4, 2)δ(3, 5)

)
(E.7)

= − i
2

∫
d(23)V (1, 2, 3, 5)G(3, 2) +

i

2

∫
d(23)V (1, 2, 5, 3)G(3, 2) , (E.8)
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so, in terms of the 4-point Coulomb interaction, we have

ΣHx(1, 4) = − i
2

∫
d(23)V (1, 2, 3, 4)G(3, 2) +

i

2

∫
d(23)V (1, 2, 4, 3)G(3, 2) , (E.9)

where by writing V in terms of vc, we obtain vH and Σx written separately and respectively as

vH(1, 4) = − i
2

∫
d2vc(1, 2

+)

(
δ(1, 4+++)G(2−, 2) + δ(1, 4++)G(2−−, 2)

)
, (E.10)

and

Σx(1, 4) =
i

2

∫
d2 vc(1, 2

+)

(
δ(1, 4++)G(1−−, 2) + δ(2, 4+)G(1−−−, 2)

)
, (E.11)

where vH, besides the fact that it is non-local as we already discussed in the main text, it is also taken

as a mean value of two terms, which is also the case for Σx.

E.2 The Bethe-Salpeter Equation for the polarizability

We go beyond the Hartree-Fock approximation, by writing the Bethe-Salpeter equation for L at the

random phase approximation (RPA),

L(1, 2, 3, 4) = −
∫
d(56)G(1, 5)

δG−1(5, 6)

δvext(4, 2)
G(6, 3) , (E.12)

where G−1(5, 6) = G−1
0 (5, 6)− vext(5, 6)− vH(5, 6)− Σxc(5, 6). So

LRPA(1, 2, 3, 4) = L0(1, 2, 3, 4) +

∫
d(56)G(1, 5)

δvH(5, 6)

δvext(4, 2)
G(6, 3) (E.13)

= L0(1, 2, 3, 4)− i

2

∫
d(567)G(1, 5)vc(5, 7

+)
δ

δvext(4, 2)

(
δ(5, 6+++)G(7−, 7)

+ δ(5, 6++)G(7−−, 7)

)
G(6, 3)

(E.14)

= L0(1, 2, 3, 4)− i

2

∫
d(57)L0(1, 5−−−, 3, 5)vc(5, 7

+)LRPA(7−, 2, 7, 4)

− i

2

∫
d(57)L0(1, 5−−, 3, 5)vc(5, 7

+)LRPA(7−−, 2, 7, 4) .

(E.15)

From L, we can get the two-point polarizability χ,

χRPA(1, 2) = −iL(1, 2, 1+, 2+) = χ0(1, 2) +
1

2

∫
d(57) vc(5, 7

+)

(
χ0(1, 5−−)χ(7, 2)

+ χ0(1, 5−)vc(5, 7
+)χRPA(7−, 2)

)
, (E.16)

which in frequency space can be written as

χRPA(x1, x2;ω) = χ0(x1, x2;ω) +

∫
dx5dx7 χ0(x1, x5;ω)vc(x5, x7)χRPA(x7, x2;ω)

(
eiωη + e−iωη

)
(E.17)

= χ0(x1, x2;ω) +

∫
dx5dx7 χ0(x1, x5;ω)vc(x5, x7)χRPA(x7, x2;ω) . (E.18)

151



E.3 GW self-energy

Using the LRPA in the self-energy E.1, a part of vH and Σx, we obtain the GW correlation contribution

ΣGW
c (1, 5) = − 1

4

∫
d(1′234)V (1, 2, 3, 4)

(∫
d(57)G(4, 5)G(5−−−, 1′)vc(5, 7

+)LRPA(7−, 3, 7, 2)

+

∫
d(57)G(4, 5)G(5−−, 1′)vc(5, 7

+)LRPA(7−−, 3, 7, 2)

)
G−1(1′, 5)

(E.19)

= − 1

4

∫
d(2347)V (1, 2, 3, 4)

(
G(4, 5−−−)vc(5

−−−, 7+)LRPA(7−, 3, 7, 2)

+G(4, 5−−)vc(5
−−, 7+)LRPA(7−−, 3, 7, 2)

) (E.20)

= − 1

4

∫
d(2347) vc(1, 2

+)

(
δ(2, 3+)δ(1, 4+++)− δ(1, 3++)δ(2, 4++)

)
(
G(4, 5−−−)vc(5

−−−, 7+)LRPA(7−, 3, 7, 2) +G(4, 5−−)vc(5
−−, 7+)LRPA(7−−, 3, 7, 2)

)
(E.21)

= − 1

4

∫
d(2347) vc(1, 2

+)δ(2, 3+)δ(1, 4+++)G(4, 5−−−)vc(5
−−−, 7+)LRPA(7−, 3, 7, 2)

+
1

4

∫
d(2347) vc(1, 2

+)δ(1, 3++)δ(2, 4++)G(4, 5−−−)vc(5
−−−, 7+)LRPA(7−, 3, 7, 2)

− 1

4

∫
d(2347) vc(1, 2

+)δ(2, 3+)δ(1, 4+++)G(4, 5−−)vc(5
−−, 7+)LRPA(7−−, 3, 7, 2)

+
1

4

∫
d(2347) vc(1, 2

+)δ(1, 3++)δ(2, 4++)G(4, 5−−)vc(5
−−, 7+)LRPA(7−−, 3, 7, 2)

(E.22)

= − 1

4

∫
d(27) vc(1, 2

+)G(1−−−, 5−−−)vc(5
−−−, 7+)LRPA(7−, 2−, 7, 2)

+
1

4

∫
d(27) vc(1, 2

+)G(2−−, 5−−−)vc(5
−−−, 7+)LRPA(7−, 1−−, 7, 2)

− 1

4

∫
d(27) vc(1, 2

+)G(1−−−, 5−−)vc(5
−−, 7+)LRPA(7−−, 2−, 7, 2)

+
1

4

∫
d(27)G(2−−, 5−−)vc(5

−−, 7+)LRPA(7−−, 1−, 7, 2) .

(E.23)

(E.24)
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Résumé

Dans cette thèse, trois approches distinctes ont été proposées pour aller au-delà de l’approximation

GW (GWA) pour l’auto-énergie xc (Σxc), en mettant principalement l’accent sur l’amélioration

des calculs d’énergie totale à l’état fondamental. En même temps, nous nous sommes intéressés à

l’optimisation des propriétés spectrales, pour une large gamme de systèmes et sur l’ensemble de la

plage de force de corrélation. L’objectif était d’investiguer et de développer des méthodes à la fois

puissantes et relativement peu coûteuses, de sorte que leurs applications pratiques soient réalisables.

Nous avons utilisé le modèle de dimère de Hubbard exactement soluble, tout au long de la thèse,

pour tester et évaluer tous nos résultats. Au cœur de nos développements se trouve le concept im-

portant d’interaction de Coulomb écrantée W . L’écrantage est souvent approximé en pratique. Par

exemple, dans les calculs GW , généralement l’approximation de phase aléatoire (RPA) est utilisée, et

seul l’écrantage statique (ω = 0) est utilisé dans l’équation de Bethe-Salpeter. De nombreuses ques-

tions concernant l’écrantage restent à adresser : i) Quelle est l’approximation la plus adaptée à utiliser

dans des expressions simplifiées pour l’auto-énergie ? ii) Pouvons-nous étendre le concept d’interaction

écrantée à celui d’interaction effective qui englobe un sens physique supplémentaire au-delà de l’effet

d’écrantage ? Cette thèse visait à répondre à ces questions, conduisant à des conclusions qui ne sont

pas toujours simples, mais suggérant de nouvelles pistes de recherche et un potentiel prometteur pour

les avancées de la science des matériaux dans le cadre du formalisme des fonctions de Green de la

théorie de la perturbation à plusieurs corps (MBPT).

Dans le chapitre 7, nous avons exploré l’approximation GW̃ pour Σxc, qui utilise des éléments de la

théorie de la fonctionnelle de la densité dépendant du temps (TDDFT) pour simuler des corrections de

sommet, en particulier le noyau d’échange-corrélation fxc. Il a été démontré qu’avec l’approximation

résultante de Σxc, on peut dériver la contribution exacte d’énergie xc à l’énergie totale, à condition

qu’il y ait une cohérence dans la combinaison des éléments. Bien que, en pratique, le fxc exact ne soit

pas connu et que des approximations soient nécessaires, maintenir une cohérence dans la combinaison

des éléments nous permet de concevoir des approximations puissantes pour l’énergie totale.

Malgré les performances impressionnantes de GW̃ , où Σxc est linéaire en termes de W̃ , tout en

pouvant toujours produire l’énergie xc exacte, le fait que Σxc = iGW̃ soit une approximation a

des conséquences importantes. En particulier, la précision de l’énergie cinétique et des spectres est

inférieure à celle atteinte pour l’énergie xc. Dans le chapitre 8, nous allons plus loin en introduisant

une interaction efficace W̄eff qui, lorsqu’elle est multipliée par le 1-GF approprié Ḡ, donne le Σxc exact.

Cela établit l’existence d’un Σxc exact qui est linéaire en termes de W̄eff, c’est-à-dire Σxc = iḠW̄eff.

Nous avons développé une équation dans le chapitre 8 qui, en principe, fournit le W̄eff exact. Après

avoir obtenu des informations sur les caractéristiques de ces W̄eff exacts, nous avons proposé différentes

équations approximatives pour déterminer W̄eff, dont les solutions sont réalisables en pratique. En

comparaison avec les résultats exacts et autres approximations, les différentes W̄eff approximatives

ont démontré des performances prometteuses, les rendant très motivantes pour des implémentations

réelles.

Dans le chapitre 9, en mettant l’accent sur l’interaction de Coulomb écrantée de test-charge à test-
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charge (TCTC) calculée à différents niveaux d’approximation, nous avons réalisé une expansion du

second ordre de Σxc dans le cadre de la MBPT. Nous avons abordé plusieurs questions : premièrement,

quel est le choix optimal pour W̄ ? Cette question se pose car la MBPT peut, en principe, être

exprimée en termes de différentes variantes de l’interaction TCTC W̄ , en particulier les exactes et

celles de la RPA. Deuxièmement, comment la correction du second ordre à Σxc influence-t-elle des

propriétés telles que l’énergie totale à l’état fondamental et les fonctions spectrales par rapport à

l’approximation GW du premier ordre ? Nous avons montré que l’interaction écrantée de la RPA est un

choix avantageux pour l’expansion de la MBPT. Nous avons également constaté et expliqué pourquoi,

les calculs d’énergie totale à l’état fondamental montrent une amélioration au second ordre par rapport

au premier ordre dans la plage de corrélation modérée à faible. Les composantes quasiparticulaires de

la fonction spectrale sont également améliorées au second ordre, tandis que la description des satellites

est relativement moins précise.

Cette thèse pose les bases pour plusieurs avenues potentielles de recherche et d’applications pra-

tiques dans des systèmes réels. Les résultats obtenus offrent une approche plus simple et alternative

aux calculs complexes tout en fournissant une compréhension des systèmes électroniques en interaction

sous de nouveaux angles. En particulier, il semble prometteur de poursuivre la recherche pour évaluer

et étendre les approximations pour l’interaction efficace Weff . D’un côté, les équations exactes que

nous avons dérivées nous permettront d’introduire une hiérarchie systématique d’approximations. Ces

approximations devraient être testées sur des modèles exactement solubles
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75Y. Hinuma, A. Grüneis, G. Kresse, and F. Oba, “Band alignment of semiconductors from density-

functional theory and many-body perturbation theory”, Phys. Rev. B 90, 155405 (2014) 10.1103/

PhysRevB.90.155405 (cit. on pp. 7, 72, 120).

76X. Ren, N. Marom, F. Caruso, M. Scheffler, and P. Rinke, “Beyond the GW approximation: a

second-order screened exchange correction”, Phys. Rev. B 92, 081104 (2015) 10.1103/PhysRevB.

92.081104 (cit. on pp. 7, 72).

77A. L. Kutepov, “Electronic structure of na, k, si, and lif from self-consistent solution of hedin’s

equations including vertex corrections”, Phys. Rev. B 94, 155101 (2016) 10.1103/PhysRevB.94.

155101 (cit. on pp. 7, 72, 120).

160

https://doi.org/10.1103/PhysRevB.56.12832
https://doi.org/10.1103/PhysRevB.56.12832
https://doi.org/10.1103/PhysRevB.56.12832
https://doi.org/10.1103/PhysRevB.96.205206
https://doi.org/10.1103/PhysRevB.96.205206
https://doi.org/10.1103/PhysRevB.96.205206
https://doi.org/10.1103/PhysRevB.94.085125
https://doi.org/10.1103/PhysRevB.94.085125
https://doi.org/10.1038/s41524-019-0242-8
https://doi.org/10.1038/s41524-019-0242-8
https://doi.org/10.1038/s41524-019-0242-8
https://doi.org/10.1103/PhysRevB.92.041115
https://doi.org/10.1103/PhysRevB.92.041115
https://doi.org/10.1103/PhysRevB.103.L161104
https://doi.org/10.1103/PhysRevB.103.L161104
https://doi.org/10.1103/PhysRevB.103.L161104
http://stacks.iop.org/0022-3719/8/i=10/a=010
https://doi.org/10.1103/PhysRevB.49.10326
https://doi.org/10.1103/PhysRevB.49.10326
https://doi.org/10.1103/PhysRevB.54.7758
https://doi.org/10.1103/PhysRevB.54.7758
https://doi.org/10.1103/PhysRevB.54.7758
https://doi.org/10.1103/PhysRevLett.112.096401
https://doi.org/10.1103/PhysRevLett.112.096401
https://doi.org/10.1103/PhysRevB.90.155405
https://doi.org/10.1103/PhysRevB.90.155405
https://doi.org/10.1103/PhysRevB.90.155405
https://doi.org/10.1103/PhysRevB.92.081104
https://doi.org/10.1103/PhysRevB.92.081104
https://doi.org/10.1103/PhysRevB.92.081104
https://doi.org/10.1103/PhysRevB.94.155101
https://doi.org/10.1103/PhysRevB.94.155101
https://doi.org/10.1103/PhysRevB.94.155101


78A. L. Kutepov, “Self-consistent solution of hedin’s equations: semiconductors and insulators”, Phys.

Rev. B 95, 195120 (2017) 10.1103/PhysRevB.95.195120 (cit. on pp. 7, 72, 120).

79Y. Pavlyukh, A.-M. Uimonen, G. Stefanucci, and R. van Leeuwen, “Vertex corrections for positive-

definite spectral functions of simple metals”, Phys. Rev. Lett. 117, 206402 (2016) 10 . 1103 /

PhysRevLett.117.206402 (cit. on pp. 7, 72).

80E. Maggio and G. Kresse, “Gw vertex corrected calculations for molecular systems”, Journal of

Chemical Theory and Computation 13, PMID: 28873298, 4765–4778 (2017) 10.1021/acs.jctc.

7b00586 (cit. on pp. 7, 72, 79).

81Y. Wang and X. Ren, “Vertex effects in describing the ionization energies of the first-row transition-

metal monoxide molecules”, The Journal of Chemical Physics 157, 214115 (2022) 10.1063/5.

0122425 (cit. on pp. 7, 72, 120).

82D. R. Hartree, “The wave mechanics of an atom with a non-coulomb central field. part i. theory and

methods”, Mathematical Proceedings of the Cambridge Philosophical Society 24, 89–110 (1928)

10.1017/S0305004100011919 (cit. on p. 9).

83D. R. H. F. R. S, “The calculation of atomic structures”, Reports on Progress in Physics 11, 113

(1947) 10.1088/0034-4885/11/1/305 (cit. on p. 9).
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Titre : Des spectres à l’énergie totale: au-delà de l’approximation GW pour concevoir des interactions effec-
tives.

Mots clés : Énergie totale, théorie de perturbation à plusieurs corps, fonction de Green.

Résumé : L’énergie totale et les spectres d’ajout et
de retrait d’électrons peuvent en principe être calculés
exactement à partir de la fonction de Green à un corps
(GF). En pratique, la GF est le plus souvent obtenue à
partir d’une self-énergie approximée. Pour la structure
de bandes des solides et pour les niveaux d’énergie
des molécules, l’approximation GW est devenue l’ap-
proche la plus courante. Cette approximation est une
expression au premier ordre de la self-énergie en
termes de l’interaction de Coulomb écrantée. Ce-
pendant, le choix du meilleur cadre pour accéder à
l’énergie totale de l’état fondamental demeure flou.
En effet, la plupart des calculs d’énergie totale sont
aujourd’hui effectués à l’aide de la théorie de la fonc-
tionnelle de la densité (DFT), et non en utilisant des
fonctions de Green. Ceci est dû au fait que les calculs
GF ont généralement un coût de calcul plus élevé que
les calculs DFT, mais aussi au fait qu’il n’y a pas au-
jourd’hui d’approximation bien établie pour l’énergie
totale de l’état fondamental dans le cadre des fonc-
tions de Green. Néanmoins, il y a de bonnes raisons
d’étudier comment utiliser les fonctions de Green pour
calculer l’énergie totale. Premièrement, des expres-
sions exactes pour l’énergie totale en tant que fonc-

tionnelle de la fonction de Green et/ou de la self-
énergie sont connues en principe. Deuxièmement,
le cadre des fonctions de Green suggère des ap-
proximations efficaces et systématiques. L’approxi-
mation GW , bien qu’adaptée aux spectres, n’est en
pratique pas satisfaisante pour l’énergie totale, pour
laquelle une grande précision est généralement re-
quise. En outre, la validité de l’approximation GW
est limitée aux systèmes faiblement ou modérément
corrélés. Dans cette thèse, nous entreprenons une
exploration pour surmonter les limitations de l’ap-
proximation GW . Nous procédons d’abord à une
étude approfondie pour comprendre ses échecs
et ses contraintes. Ensuite, nous présentons des
développements théoriques généraux et suggérons
de nouvelles approximations basées sur l’utilisation
d’interactions effectives afin d’améliorer les calculs
d’énergie totale fondés sur les fonctions de Green.
Les développements théoriques et la qualité des ap-
proximations sont illustrés par des applications à un
modèle exactement soluble, le dimère de Hubbard.
Les résultats confirment nos conjectures et motivent
les applications futures à des matériaux réels.
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Abstract : The total energy and electron addition
and removal spectra can in principle be calculated
exactly from the one-body Green’s function (GF). In
practice, the GF is most often obtained from an ap-
proximate self-energy. For the band structure of solids
and energy levels of molecules, the GW approxima-
tion has become the state-of-the-art approach. This
approximation is a first-order expression of the self-
energy in terms of the screened Coulomb interac-
tion. By the way of contrast, it is not clear what is
the best framework to access the ground state total
energy. Indeed, most total energy calculations are to-
day performed using density-functional theory (DFT),
not Green’s functions. This is due both to the fact that
GF calculations have usually a higher computational
cost than DFT calculations, and to the fact that there
is today no well established approximation for the to-
tal energy in the GF framework. Still, there are good
reasons to investigate ways to use Green’s functions
to calculate the total energy. First, exact expressions

for the total energy as functional of GF and/or the
self-energy are known in principle. Second, the GF
framework suggests powerful and systematic approxi-
mations. However, the GW approximation, while sui-
table for spectra, is in practice not satisfactory for the
total energy, where usually a high precision is requi-
red. Moreover, the validity of the GW approximation
is limited to weakly to moderately correlated systems.
In this thesis, we embark on a journey to overcome
the limitations of GW . We first make a comprehensive
exploration to understand the failures and constraints
of GW . Subsequently, we present general theoretical
developments and suggest new approximations ba-
sed on the use of effective interactions in order to
improve total energy calculations based on Green’s
functions. The theoretical developments and the qua-
lity of the approximations are illustrated through ap-
plications to an exactly solvable model, the Hubbard
dimer. The results confirm our conjectures and moti-
vate future applications to real materials.

Institut Polytechnique de Paris
91120 Palaiseau, France


	Preface
	Notation
	Introduction
	Theoretical Background
	Mean field theories 
	Hartree approximation
	Hartree-Fock approximation

	 Density Functional Theory 
	The Hohenberg-Kohn theorems
	Difficulty to find a density functional
	The Kohn-Sham auxiliary system
	Approximate exchange-correlation functional
	Is the band gap energy a functional of the density?

	Time Dependent Density Functional Theory 
	The Runge-Gross theorem
	The time-dependent KS scheme
	Time-dependent density functional theory in linear response
	fxc kernel in practice

	Many-Body Green's function methods 
	Why are Green's functions important? 
	The equation of motion for the Green's function 

	Many-Body Perturbation Theory and GW approximation
	Derivation of many-body perturbation theory in terms of a local external potential
	The exchange-correlation self-energy
	The Dyson equation

	Derivation of many-body perturbation theory in terms of a non-local external potential 
	The non-locality in the Hartree potential
	The Dyson equation of the Green's function
	The exchange-correlation self-energy
	Hedin's equations
	The GW approximation for the self-energy and the random phase approximation for the polarizability
	What are the satellites? 
	How does the self-energy contribute to the generation of the spectral function? 


	GW successes and failures: insights from the Hubbard dimer model 
	Hubbard hamiltonian
	Illustrations within the quarter-filled case (one-electron system) 
	Spectral function: the GW self-screening problem
	Strong correlation limitations of GW
	Violation of exact constraints
	Total energy
	G0W results

	Illustrations within the half-filled case (two-electron system)
	Spectral function
	Ground-state total energy
	Electrons number 

	Conclusions
	Supporting informations: analytical solutions  
	Exact solutions
	GW solutions



	Theoretical Development
	Total energy beyond GW using density-functional ingredients  
	Brief theoretical background  
	Total energy and spectral function in terms of the Green's function
	Interaction energy in terms of the polarizability

	 Diving into the topic  
	A freedom of choice  
	Exact exchange-correlation energy from approximate self-energies 
	The kinetic energy  
	Comparison to the adiabatic connection 
	Shortcomings of the TCTE self-energy

	Illustrations
	 Results using exact xc kernels
	Impact of approximating fxc
	Occupation numbers: the linearized vs full Dyson equations 
	Spectral function features

	Conclusions
	Supporting informations: analytical results and numerical calculations 
	GW solutions 
	G solutions 
	Total energy contributions for the Hubbard dimer
	Computational details


	Exact self-energy via an effective interaction 
	Theory 
	Exact self-energy from an effective interaction
	Approximations for the effective interaction

	Illustration and analysis
	Exact effective interaction: the case of = G
	Spectral features of the exact self-energy
	Different flavors of the effective interaction
	Effective interaction from an approximate Dyson equation

	Conclusions
	Supporting informations, analytical and numerical solutions 
	The exact self-energy and effective interactions
	Different flavors of effective interactions
	Analytical solutions of the self-energies in the Dyson equation of Weff 
	Solutions of the effective interaction from the approximate Dyson equation


	Beyond GW: second-order expansion in terms of W 
	Freedom in the functional derivative approach 
	Further freedom in the choice of W 
	Optimal choice
	Recent results in literature 
	Illustration and analysis
	Tendency of the second-order diagram
	Optimal choice for 
	Negative spectral function

	Conclusions
	Supporting informations 

	Conclusions
	List of publications
	Green's functions in Mathematics
	Basis transformations
	From real space to discrete orbital basis 
	Fourier transform 

	Ground-state total energy in terms of the Green's function 
	The Galitskii-Migdal formula
	Total energy in terms of the Green's function and the self-energy
	The Galitskii-Migdal formulas for the Hubbard model

	The retarded Green's function
	Retarded GW self-energy
	The Hubbard dimer model

	Functionals in terms of the Green's function with time non-local potentials
	Hartree potential and exchange self-energy expressions
	The Bethe-Salpeter Equation for the polarizability
	GW self-energy

	Bibliography


