Time Dependent Density Functional Theory Applications, limitations and ... new frontiers

Francesco Sottile

Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF)

Vienna, 19 January 2007

1/55

Outline

- Time-Dependent Density Functional Theory
 - Motivation
 - The theoretical framework
 - Linear response formalism

2 Applications and results:

- Achievements of RPA and ALDA
- Problem of solids new kernels
- The DP code
- New Frontiers

3 The ETSF

Time-Dependent Density Funct	tional Theory
00	
000000000	

Applications and results: 00000000 00000000 00 00000

Outline

Time-Dependent Density Functional Theory

- Motivation
- The theoretical framework
- Linear response formalism

2 Applications and results:

- Achievements of RPA and ALDA
- Problem of solids new kernels
- The DP code
- New Frontiers

3 The ETSF

Time-Dependent	Density	Functional	Theory
••			
000000000			

Outline

Time-Dependent Density Functional Theory Motivation
• The theoretical framework
• Linear response formalism
Applications and results:Achievements of RPA and ALDAProblem of solids - new kernels
• The DP code
New Frontiers
The ETSF

The ETSF

PHYSICAE ET CHIMICAE SOLIDORUM AMICI

Low Energy Spectrometry Symposium - January 18+19, 2007 - Vienna/Austria

Motivation

Spectrometries of the low energy region are currently a hot topic. There exist many different experimental techniques (optical absorption, resonant inelastic X-ray scattering, reflection <u>BELS</u>, ellipsometry, ...) as well as theoretical approaches (TDDFT, BSE, ...) to access the <u>dielectric function</u>. However, in praxis, there is only a little if no overlap between the research in the different fields. With this symposium we intend to bring researchers of these different fields together. To ensure that many fruitful discussions will take place, the number of participants is limited to 60.

Outline

- 1 Time-Dependent Density Functional Theory
 - Motivation
 - The theoretical framework
 - Linear response formalism

2 Applications and results:

- Achievements of RPA and ALDA
- Problem of solids new kernels
- The DP code
- New Frontiers

3 The ETSF

Applications and results: 00000000 00000000 00 00000

The name of the game: TDDFT

TDDFT: density functional philosophy to the world of the systems driven out of equilibrium, by an external time-dependent perturbation.

Applications and results: 00000000 00000000 00 000000

Density Functional Concept \Rightarrow 2 (important) points

1. Hohenberg-Kohn theorem

The ground-state expectation value of any physical observable of a many-electrons system is a unique functional of the electron density $n(\mathbf{r})$

$$\left\langle \varphi^{0}\right| \widehat{O} \left| \varphi^{0} \right\rangle = O[n]$$

P.Hohenberg and W.Kohn Phys.Rev. **136**, B864 (1964)

Density Functional Concept \Rightarrow 2 (important) points

2. Kohn-Sham equations

$$\begin{bmatrix} -\frac{1}{2}\nabla_i^2 + V_{tot}(\mathbf{r}) \end{bmatrix} \phi_i(\mathbf{r}) = \epsilon_i \phi_i(\mathbf{r})$$

$$V_{tot}(\mathbf{r}) = V_{ext}(\mathbf{r}) + \int d\mathbf{r}' v(\mathbf{r}, \mathbf{r}') n(\mathbf{r}') + V_{xc} ([n], \mathbf{r})$$

$$V_{xc} ([n], \mathbf{r}) \quad \text{Unknown, stupidity term}$$

$$\blacksquare \quad \text{W.Kohn and L.J.Sham}$$

Phys. Rev. 140, A1133 (1965)

8/55

Applications and results: 00000000 00000000 00 00000

The name of the game: TDDFT

DFT

TDDFT

Hohenberg-Kohn

The ground-state expectation value of any physical observable of a many-electrons system is a unique functional of the electron density $n(\mathbf{r})$

$$\left\langle arphi^{0}
ight | \widehat{O} \left | arphi^{0}
ight
angle = O[n]$$

P.Hohenberg and W.Kohn Phys.Rev. **136**, B864 (1964)

Runge-Gross theorem

The expectation value of any physical time-dependent observable of a many-electrons system is a unique functional of the **time-dependent** electron density $n(\mathbf{r}, t)$ and of **the initial** state $\varphi^0 = \varphi(t = 0)$ $\langle \varphi(t) | \widehat{O}(t) | \varphi(t) \rangle = O[n, \varphi^0](t)$

E. Runge and E.K.U. Gross Phys.Rev.Lett. **52**, 997 (1984)

Applications and results: 00000000 00000000 00 000000

The name of the game: TDDFT

DFT

Kohn-Sham equations

$$\left[-\frac{1}{2}\nabla_{i}^{2}+V_{tot}(\mathbf{r})\right]\phi_{i}(\mathbf{r})=\epsilon_{i}\phi_{i}(\mathbf{r})$$

$$V_{tot}(\mathbf{r}) = V_{ext}(\mathbf{r}) + \int d\mathbf{r}' v(\mathbf{r}, \mathbf{r}') n(\mathbf{r}') + V_{xc} ([n], \mathbf{r})$$

 $V_{xc}([n], \mathbf{r}) =$ Unknown, stupidity term

Time-dependent KS equations

$$\left[-\frac{1}{2}\nabla^2 + V_{tot}(\mathbf{r}, t)\right]\phi_i(\mathbf{r}, t) = i\frac{\partial}{\partial t}\phi_i(\mathbf{r}, t)$$

$$V_{\text{tot}}(\mathbf{r}, t) = V_{\text{ext}}(\mathbf{r}, t) + \int v(\mathbf{r}, \mathbf{r}') n(\mathbf{r}', t) d\mathbf{r}' + V_{\text{xc}}([n]\mathbf{r}, t)$$

 V_{xc} ([n], r, t) = Unknown, (even more) stupidity term

Unknown exchange-correlation potential. V_{xc} functional of the density. Unknown exchange-correlation time-dependent potential. V_{xc} functional of the density **at all times** and of the **initial state**.

10/55

Applications and results: 00000000 00000000 00 000000

The name of the game: TDDFT

DFT

Kohn-Sham equations

$$\left[-\frac{1}{2}\nabla_{i}^{2}+V_{tot}(\mathbf{r})\right]\phi_{i}(\mathbf{r})=\epsilon_{i}\phi_{i}(\mathbf{r})$$

$$V_{tot}(\mathbf{r}) = V_{ext}(\mathbf{r}) + \int d\mathbf{r}' v(\mathbf{r}, \mathbf{r}') n(\mathbf{r}') + V_{xc} ([n], \mathbf{r})$$

 $V_{xc}([n], \mathbf{r}) =$ Unknown, stupidity term

Unknown exchange-correlation potential. V_{xc} functional of the density.

Time-dependent KS equations

$$\left[-\frac{1}{2}\nabla^2 + V_{tot}(\mathbf{r}, t)\right]\phi_i(\mathbf{r}, t) = i\frac{\partial}{\partial t}\phi_i(\mathbf{r}, t)$$

$$V_{tot}(\mathbf{r}, t) = V_{ext}(\mathbf{r}, t) + \int v(\mathbf{r}, \mathbf{r}')n(\mathbf{r}', t)d\mathbf{r}' + V_{xc}([n]\mathbf{r}, t)$$

 $V_{xc}([n], \mathbf{r}, t) =$ Unknown, (even more) stupidity term

Unknown exchange-correlation time-dependent potential. V_{xc} functional of the density **at all times** and of the **initial state**.

Applications and results: 00000000 00000000 00 000000 The ETSF

The name of the game: TDDFT

Demonstrations, further readings, etc.

R. van Leeuwen Int.J.Mod.Phys. **B15**, 1969 (2001)

🏼 🕨 Linear Response

11/55

Time-Dependent Kohn-Sham equations

$$H_{KS}(\mathbf{r},t)\phi_i(\mathbf{r},t) = \imath \frac{\partial}{\partial t}\phi_i(\mathbf{r},t)$$

Applications and results: 00000000 00000000 00 00000 The ETSF

Practical computational scheme: Real space - time evolution

Evolution of the KS wave functions $H_{KS}(t)\phi(t) = i\frac{\partial}{\partial t}\phi(t)$ $\phi(t + \Delta t) = \left\{ e^{-i}\int_{t}^{t+\Delta t} H(\tau)d\tau \right\} \phi(t)$

Approximation for the V_{xc}

Adiabatic LDA
$$V_{xc}^{ALDA}[n(\mathbf{r},t)] = \left. \frac{de_{xc}(n)}{dn} \right|_{n=n(\mathbf{r},t)}$$

13/55

Practical computational scheme: Real space - time evolution

Photo-absorption cross section σ

$$\sigma(\omega) = rac{4\pi\omega}{c} \mathrm{Im}lpha(\omega)$$
 $lpha(t) = -\int d\mathbf{r} V_{ext}(\mathbf{r},t) n(\mathbf{r},t)$

in dipole approximation ($\lambda \gg$ dimension of the system)

$$\alpha(\omega) = -\int d\mathbf{r} z n(\mathbf{r},\omega)$$

$$\sigma_{zz}(\omega) = -\frac{4\pi\omega}{c} \mathrm{Im} \int \mathrm{d}\mathbf{r} \ge \mathrm{n}(\mathbf{r},\omega)$$

Applications and results: 00000000 00000000 00 00000

Practical computational scheme: Real space - time evolution

octopus (GPL) http://www.tddft.org/programs/octopus/

13/55

Practical computational scheme: Real space - time evolution

Other observables

Multipoles

$$M_{lm}(t) = \int d\mathbf{r} r' Y_{lm}(r) n(\mathbf{r}, t)$$

Angular momentum

$$L_{z}(t) = -\sum_{i} \int d\mathbf{r} \phi_{i}(\mathbf{r}, t) \, \imath \left(\mathbf{r} \times \nabla\right)_{z} \, \phi_{i}(\mathbf{r}, t)$$

13/55

Real space - Time evolution approach

Advantages

- Direct application of KS equations
- Advantageous scaling
- Optimal scheme for finite systems
- All orders automatically included

Shortcomings

- Difficulties in approximating the V_{xc}[n](r, t) functional of the history of the density
- Real space not necessarily suitable for solids
- Does not explicitly take into account a "small" perturbation. Interesting quantities (excitation energies) are contained in the linear response function!

14/55

Time-Dependent	Density	Functional	Theory
00			
000000000			

Applications and results: 00000000 00000000 00 00000

Outline

1 Time-Dependent Density Functional Theory

- Motivation
- The theoretical framework
- Linear response formalism

2 Applications and results:

- Achievements of RPA and ALDA
- Problem of solids new kernels
- The DP code
- New Frontiers

3 The ETSF

Applications and results: 00000000 00000000 00 00000 The ETSF

Linear Response Approach

Applications and results: 00000000 00000000 00 00000 The ETSF

Linear Response Approach

System submitted to an external perturbation

$$V_{tot} = \varepsilon^{-1} V_{ext}$$

$$V_{tot} = V_{ext} + V_{ind}$$

16/55

Applications and results: 00000000 00000000 00 00000 The ETSF

Linear Response Approach

System submitted to an external perturbation

$$egin{aligned} V_{tot} &= arepsilon^{-1} V_{ext} \ /_{tot} &= V_{ext} + V_{ind} \ \mathbf{E} &= arepsilon^{-1} \mathbf{D} \end{aligned}$$

16/55

Applications and results: 00000000 00000000 00000 The ETSF

Linear Response Approach

Applications and results: 00000000 0000000 00 00000 The ETSF

Linear Response Approach

Applications and results: 00000000 00000000 00 00000 The ETSF

Linear Response Approach

Applications and results: 00000000 0000000 00 00000 The ETSF

Linear Response Approach

Applications and results: 00000000 00000000 00 00000 The ETSF

Linear Response Approach

Applications and results: 00000000 00000000 00 000000 The ETSF

Linear Response Approach

Definition of polarizability

$$\varepsilon^{-1} = 1 + v\chi$$

χ is the polarizability of the system

Applications and results: 00000000 00000000 00 00000 The ETSF

Linear Response Approach

Polarizability

interacting system $\delta n = \chi \delta V_{ext}$ non-interacting system $\delta n_{n-i} = \chi^0 \delta V_{tot}$

18/55

plications and results: 000000 000000

Time-Dependent Density Functional Theory

Linear Response Approach

Polarizability

interacting system $\delta n = \chi \delta V_{ext}$ non-interacting system $\delta n_{n-i} = \chi^0 \delta V_{tot}$ Single-particle polarizability $\sum \phi_i(\mathbf{r}) \phi_i^*(\mathbf{r}) \phi_i(\mathbf{r}')$

$$\chi^{0} = \sum_{ij} \frac{\varphi_{i}(\mathbf{r})\varphi_{j}(\mathbf{r})\varphi_{i}(\mathbf{r})\varphi_{j}(\mathbf{r})}{\omega - (\epsilon_{i} - \epsilon_{j})}$$

hartree, hartree-fock, dft, etc.

📎 G.D. Mahan *Many Particle Physics* (Plenum, New York, 1990)

18/55

Applications and results: 00000000 00000000 00 00000 The ETSF

Linear Response Approach

Polarizability

Applications and results: 00000000 00000000 00 00000 The ETSF

Linear Response Approach

Polarizability

interacting system $\delta n = \chi \delta V_{ext}$ non-interacting system $\delta n_{n-i} = \chi^0 \delta V_{tot}$ 1 **Density Functional Formalism** $\delta n = \delta n_{n-i}$ $\delta V_{tot} = \delta V_{ext} + \delta V_H + \delta V_{yc}$

Applications and results: 00000000 00000000 00 00000 The ETSF

Linear Response Approach

Polarizability

$$\chi = \chi^0 + \chi^0 \left(\mathbf{v} + f_{xc} \right) \chi$$

with $f_{xc} = \frac{\delta V_{xc}}{\delta n}$ exchange-correlation kernel with $v = \frac{\delta V_H}{\delta n}$ coulomb interaction

Applications and results: 00000000 00000000 00 00000 The ETSF

Linear Response Approach

Polarizability

$$\chi = \left[1 - \chi^0 \left(\mathbf{v} + f_{xc}\right)\right]^{-1} \chi^0$$

with $f_{xc} = \frac{\delta V_{xc}}{\delta n}$ exchange-correlation kernel with $v = \frac{\delta V_H}{\delta n}$ coulomb interaction

Applications and results: 00000000 00000000 00 00000 The ETSF

Linear Response Approach

Polarizability

$$\chi = \left[1 - \chi^0 \left(\mathbf{v} + f_{xc}\right)\right]^{-1} \chi^0$$

with $f_{xc} = \frac{\delta V_{xc}}{\delta n}$ exchange-correlation kernel with $v = \frac{\delta V_H}{\delta n}$ coulomb interaction
Applications and results: 00000000 00000000 00 00000 The ETSF

Linear Response Approach

Polarizability χ in TDDFT (DFT + Linear Response)

3 DFT ground-state calc.
$$\rightarrow \phi_i, \epsilon_i \quad [V_{xc}]$$

3 $\phi_i, \epsilon_i \quad \rightarrow \quad \chi^0 = \sum_{ij} \frac{\phi_i(\mathbf{r})\phi_j^*(\mathbf{r})\phi_i^*(\mathbf{r}')\phi_j(\mathbf{r}')}{\omega - (\epsilon_i - \epsilon_j)}$

$$\begin{array}{c} \frac{\frac{\delta V_H}{\delta n} = v}{\frac{\delta V_{xc}}{\delta n} = f_{xc}} \end{array} \text{ variation of the potentials} \\ \mathbf{a} = x^0 + x^0 \left(u + f_{xc} \right) x \end{array}$$

A comment

20/55

Linear Response Approach

Polarizability χ in TDDFT (DFT + Linear Response)

1 DFT ground-state calc.
$$\rightarrow \phi_i, \epsilon_i$$
 [V_{xc}]

•
$$\varphi_{i}, \varepsilon_{i} \rightarrow \chi$$
 $\sum_{ij} \omega_{-(\epsilon_{i}-\epsilon_{j})}$
• $\frac{\delta V_{H}}{\delta n} = v$
• $\frac{\delta V_{xc}}{\delta n} = f_{xc}$ variation of the potentia
• $\chi = \chi^{0} + \chi^{0} (v + f_{xc}) \chi$

A comment

20/55

Linear Response Approach

Polarizability χ in TDDFT (DFT + Linear Response)

• DFT ground-state calc.
$$\rightarrow \phi_i, \epsilon_i \quad [V_{xc}]$$

• $\phi_i, \epsilon_i \quad \rightarrow \quad \chi^0 = \sum_{ij} \frac{\phi_i(\mathbf{r})\phi_j^*(\mathbf{r})\phi_i^*(\mathbf{r}')\phi_j(\mathbf{r}')}{\omega - (\epsilon_i - \epsilon_j)}$

•
$$\chi = \chi^0 + \chi^0 (v + f_{xc}) \chi$$

A comment

20/55

The ETSF

Linear Response Approach

Polarizability χ in TDDFT (DFT + Linear Response)

A comment

20/55

Linear Response Approach

Polarizability χ in TDDFT (DFT + Linear Response)

A comment

20/55

Linear Response Approach

Polarizability χ in TDDFT (DFT + Linear Response)

1 DFT ground-state calc.
$$\rightarrow \phi_i, \epsilon_i \quad [V_{xc}]$$
2 $\phi_i, \epsilon_i \quad \rightarrow \quad \chi^0 = \sum_{ij} \frac{\phi_i(\mathbf{r})\phi_j^*(\mathbf{r})\phi_i^*(\mathbf{r}')\phi_j(\mathbf{r}')}{\omega - (\epsilon_i - \epsilon_j)}$
3 $\frac{\delta V_H}{\delta n} = \mathbf{v}$
 $\frac{\delta V_{xc}}{\delta n} = \mathbf{f}_{xc}$
4 variation of the potentials
3 $\chi = \chi^0 + \chi^0 (\mathbf{v} + \mathbf{f}_{xc}) \chi$

A comment

•
$$f_{xc} = \begin{cases} \frac{\delta V_{xc}}{\delta n} \\ "any" & other function \end{cases}$$

20/55

Applications and results: 00000000 00000000 00 00000 The ETSF

Linear Response Approach

Measurables

Time-Dependent Density	Functional	Theory
00		
0000000000		

The ETSF

Solids

Reciprocal Space - Frequency domain

$$f(\mathbf{r})
ightarrow f_{\mathsf{G}}(\mathbf{q}) = rac{1}{\Omega} \int d\mathbf{r} f(\mathbf{r}) e^{\imath (\mathbf{q} + \mathbf{G})\dot{\mathbf{r}}}$$

$$\label{eq:G} \begin{split} \textbf{G} = & \mathsf{reciprocal} \mbox{ lattice vector} \\ \textbf{q} \in 1BZ \mbox{ momentum transfer of the perturbation} \end{split}$$

 $\chi^{0}(\mathbf{r},\mathbf{r}',\omega)\longrightarrow\chi^{0}_{\mathbf{GG}'}(\mathbf{q},\omega)$

$$\chi^{0}_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega) = \sum_{\mathbf{v}\mathbf{c}\mathbf{k}} \frac{\left\langle \phi_{\mathbf{v}\mathbf{k}} | e^{\imath(\mathbf{q}+\mathbf{G})\mathbf{r}} | \phi^{*}_{\mathbf{c}\mathbf{k}+\mathbf{q}} \right\rangle \left\langle \phi_{\mathbf{c}\mathbf{k}+\mathbf{q}} | e^{-\imath(\mathbf{q}+\mathbf{G}')\mathbf{r}'} | \phi^{*}_{\mathbf{v}\mathbf{k}} \right\rangle}{\omega - (\epsilon_{\mathbf{c}\mathbf{k}+\mathbf{q}} - \epsilon_{\mathbf{v}\mathbf{k}}) + \imath\eta}$$

Time-Dependent	Density	Functional	Theory
00			
00000000000			

The ETSF

Solids

Reciprocal Space - Frequency domain

$$f(\mathbf{r})
ightarrow f_{\mathsf{G}}(\mathbf{q}) = rac{1}{\Omega} \int d\mathbf{r} f(\mathbf{r}) e^{\imath (\mathbf{q}+\mathbf{G})\dot{\mathbf{r}}}$$

$$\label{eq:G} \begin{split} \mathbf{G} = & \mathsf{reciprocal} \mbox{ lattice vector} \\ \mathbf{q} \in 1BZ \mbox{ momentum transfer of the perturbation} \end{split}$$

$$\chi^{0}(\mathbf{r},\mathbf{r}',\omega)\longrightarrow\chi^{0}_{\mathbf{GG}'}(\mathbf{q},\omega)$$

$$\chi^{0}_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega) = \sum_{\mathbf{v}c\mathbf{k}} \frac{\left\langle \phi_{\mathbf{v}\mathbf{k}} | e^{\imath(\mathbf{q}+\mathbf{G})\mathbf{r}} | \phi^{*}_{c\mathbf{k}+\mathbf{q}} \right\rangle \left\langle \phi_{c\mathbf{k}+\mathbf{q}} | e^{-\imath(\mathbf{q}+\mathbf{G}')\mathbf{r}'} | \phi^{*}_{\mathbf{v}\mathbf{k}} \right\rangle}{\omega - (\epsilon_{c\mathbf{k}+\mathbf{q}} - \epsilon_{\mathbf{v}\mathbf{k}}) + \imath\eta}$$

22/55

Time-Dependent Density	Functional	Theory
00		
0000000000		

The ETSF

Solids

Reciprocal Space - Frequency domain

$$\chi_{\mathsf{G}\mathsf{G}'}(\mathbf{q},\omega) = \left[1 - \chi^0 \left(\nu + f_{xc}\right)\right]^{-1} \chi^0$$

 $arepsilon_{\mathsf{G}\mathsf{G}'}^{-1}(\mathbf{q},\omega)=\delta_{\mathsf{G}\mathsf{G}'}+v_\mathsf{G}(\mathbf{q})\chi_{\mathsf{G}\mathsf{G}'}(\mathbf{q},\omega)$

 $\mathsf{ELS}(\mathbf{q},\omega) = -\mathrm{Im}\varepsilon_{00}^{-1}(\mathbf{q},\omega)$

 $\mathsf{Abs}(\omega) = \lim_{\mathbf{q} \to 0} \operatorname{Im} \frac{1}{\varepsilon_{00}^{-1}(\mathbf{q}, \omega)} \text{ ; } \mathsf{Refrac.}(\omega) = \lim_{\mathbf{q} \to 0} \operatorname{Re} \frac{1}{\varepsilon_{00}^{-1}(\mathbf{q}, \omega)}$

S.L.Adler, Phys.Rev 126, 413 (1962); N.Wiser Phys.Rev 129, 62 (1963)

Time-Dependent Density	Functional	Theory
00		
0000000000		

Solids

Reciprocal Space - Frequency domain

$$\chi_{\mathsf{GG}'}(\mathbf{q},\omega) = \left[1 - \chi^0 \left(v + f_{xc}\right)\right]^{-1} \chi^0$$

$$arepsilon_{\mathsf{G}\mathsf{G}'}^{-1}(\mathbf{q},\omega) = \delta_{\mathsf{G}\mathsf{G}'} + v_{\mathsf{G}}(\mathbf{q})\chi_{\mathsf{G}\mathsf{G}'}(\mathbf{q},\omega)$$

 $\mathsf{ELS}(\mathbf{q},\omega) = -\mathrm{Im}\varepsilon_{00}^{-1}(\mathbf{q},\omega)$

$$\mathsf{Abs}(\omega) = \lim_{\mathbf{q} \to 0} \operatorname{Im} \frac{1}{\varepsilon_{00}^{-1}(\mathbf{q}, \omega)}$$
; $\mathsf{Refrac.}(\omega) = \lim_{\mathbf{q} \to 0} \operatorname{Re} \frac{1}{\varepsilon_{00}^{-1}(\mathbf{q}, \omega)}$

▶ alt. form.

S.L.Adler, Phys.Rev **126**, 413 (1962); N.Wiser Phys.Rev **129**, 62 (1963)

23/55

Time-Dependent Density	Functional	Theory
000000000		
0000000000		

Solids

Reciprocal Space - Frequency domain

$$\chi_{\mathsf{GG}'}(\mathbf{q},\omega) = \left[1 - \chi^0 \left(v + f_{xc}\right)\right]^{-1} \chi^0$$

$$\varepsilon_{\mathsf{GG}'}^{-1}(\mathbf{q},\omega) = \delta_{\mathsf{GG}'} + v_{\mathsf{G}}(\mathbf{q})\chi_{\mathsf{GG}'}(\mathbf{q},\omega)$$

$$\mathsf{ELS}(\mathbf{q},\omega) = -\mathrm{Im}\varepsilon_{00}^{-1}(\mathbf{q},\omega)$$

$$\mathsf{Abs}(\omega) = \lim_{\mathbf{q} \to \mathbf{0}} \operatorname{Im} \frac{1}{\varepsilon_{00}^{-1}(\mathbf{q}, \omega)}$$
; $\mathsf{Refrac.}(\omega) = \lim_{\mathbf{q} \to \mathbf{0}} \operatorname{Re} \frac{1}{\varepsilon_{00}^{-1}(\mathbf{q}, \omega)}$

▶ alt. form.

S.L.Adler, Phys.Rev 126, 413 (1962); N.Wiser Phys.Rev 129, 62 (1963)

23/55

Time-Dependent D	Density	Functional	Theory
0000000000			

Solids

Reciprocal Space - Frequency domain

$$\chi_{\mathsf{GG}'}(\mathbf{q},\omega) = \left[1 - \chi^0 \left(\mathbf{v} + f_{xc}\right)\right]^{-1} \chi^0$$

$$\varepsilon_{\mathsf{GG}'}^{-1}(\mathbf{q},\omega) = \delta_{\mathsf{GG}'} + v_{\mathsf{G}}(\mathbf{q})\chi_{\mathsf{GG}'}(\mathbf{q},\omega)$$

$$\mathsf{ELS}(\mathbf{q},\omega) = -\mathrm{Im}\varepsilon_{00}^{-1}(\mathbf{q},\omega)$$

$$\mathsf{Abs}(\omega) = \lim_{\mathbf{q}\to 0} \mathrm{Im} \frac{1}{\varepsilon_{00}^{-1}(\mathbf{q},\omega)} \text{ ; } \mathsf{Refrac.}(\omega) = \lim_{\mathbf{q}\to 0} \mathrm{Re} \frac{1}{\varepsilon_{00}^{-1}(\mathbf{q},\omega)}$$

alt. form.

S.L.Adler, Phys.Rev 126, 413 (1962); N.Wiser Phys.Rev 129, 62 (1963)

23/55

Applications and results: 00000000 00000000 00 00000 The ETSF

Some measurable quantities

The macroscopic dielectric function

$$\chi_{0}, f_{xc} \Rightarrow \chi \Rightarrow \varepsilon_{M}$$

Abs, loss function, refraction index

$$\begin{aligned} \mathsf{ELS} &= -\mathrm{Im} \left\{ \frac{1}{\varepsilon_{\mathrm{M}}} \right\} \\ \mathsf{Abs} &= \mathrm{Im} \left\{ \varepsilon_{\mathrm{M}} \right\} \\ \mathsf{R}_{\mathrm{index}} &= \mathrm{Re} \left\{ \varepsilon_{\mathrm{M}} \right\} \end{aligned}$$

24/55

Applications and results:

00000000 00000000 00 00000 The ETSF

Outline

Time-Dependent Density Functional Theory

- Motivation
- The theoretical framework
- Linear response formalism

2 Applications and results:

- Achievements of RPA and ALDA
- Problem of solids new kernels
- The DP code
- New Frontiers

3 The ETSF

Applications and results: •0000000 0000000 000000 00000

Outline

Time-Dependent Density Functional Theory

- Motivation
- The theoretical framework
- Linear response formalism

2 Applications and results:

Achievements of RPA and ALDA

- Problem of solids new kernels
- The DP code
- New Frontiers

3 The ETSF

The ETSF

ALDA: Achievements and Shortcomings

Electron Energy Loss Spectrum of Graphite

$$\mathsf{EELS} = -\mathrm{Im}\left\{\frac{1}{\varepsilon_{\mathrm{M}}}\right\}$$

RPA (w and w/o LF) vs Experiment

A.Marinopoulos, T.Pichler, et al. Phys.Rev.Lett 89, 76402 (2002)

27/55

Applications and results: 0000000 000000 000000 00000

ALDA: Achievements and Shortcomings

K.Yabana and G.F.Bertsch Int.J.Mod.Phys.**75**, 55 (1999)
 E.E.Koch and A.Otto, Chem. Phys. Lett. **12**, 476 (1972)

Time Dependent Density Functional Theory

28/55

ALDA: Achievements and Shortcomings

H-C.Weissker, J.Serrano et al. Phys.Rev.Lett. 97, 237602 (2006)

29/55

Applications and results: 0000000 000000 00 00000

ALDA: Achievements and Shortcomings

60

Absorption Spectrum of Silicon

ALDA vs RPA vs Experiment

$$50$$

 40
 40
 10
 0
 3
 4
 30
 20
 10
 0
 3
 4
 4
 5
 6

 $\mathsf{Abs} = \mathrm{Im} \{ \varepsilon_{\mathrm{M}} \}$

P.Lautenschlager *et al.* Phys. Rev. B **36**, 4821 (1987)

Applications and results: 00000000 0000000 000000

ALDA: Achievements and Shortcomings

Absorption Spectrum of Argon

ALDA vs Experiment

 $\mathsf{Abs} = \operatorname{Im} \{ \varepsilon_{\mathrm{M}} \}$

V.Saile et al. Appl. Opt. 15, 2559 (1976)

31/55

Applications and results: 00000000 0000000 00 00000

ALDA: Achievements and Shortcomings

Good results

- Photo-absorption of simple molecules
- ELS of solids

Bad results

• Absorption of solids

Applications and results: 00000000 0000000 00 00000

ALDA: Achievements and Shortcomings

Good results

- Photo-absorption of simple molecules
- ELS of solids

Bad results

• Absorption of solids

Why?	
	$f_{\scriptscriptstyle XC}({f q} ightarrow 0) \sim {1 \over q^2}$

32/55

Applications and results: 00000000 0000000 00 00000

ALDA: Achievements and Shortcomings

Good results

- Photo-absorption of simple molecules
- ELS of solids

Bad results

• Absorption of solids

Why?
$$f_{xc}^{\scriptscriptstyle ext{ALDA}} ext{ is short-range}$$
 $f_{xc}(\mathbf{q}
ightarrow 0) \sim rac{1}{q^2}$

Applications and results: 0000000 000000 00 00000 The ETSF

ALDA: Achievements and Shortcomings

Absorption of Silicon $f_{xc} = \frac{\alpha}{q^2}$

3/5🖬 L.Reining *et al.* Phys.Rev.Lett. **88**, 66404 (2002)

The ETSF

Outline

D Time-Dependent Density Functional Theory

- Motivation
- The theoretical framework
- Linear response formalism

2 Applications and results:

- Achievements of RPA and ALDA
- Problem of solids new kernels
- The DP code
- New Frontiers

3 The ETSF

Beyond ALDA approximation

The problem of Abs in solids. Towards a better understanding

- Reining *et al.* Phys.Rev.Lett. **88**, 66404 (2002) Long-range kernel
- de Boeij *et al.* J.Chem.Phys. **115**, 1995 (2002) Polarization density functional. Long-range.

- Kim and Görling Phys.Rev.Lett. **89**, 96402 (2002) Exact-exchange
- Sottile *et al.* Phys.Rev.B **68**, 205112 (2003) Long-range and contact exciton.
- Botti *et al.* Phys. Rev. B **72**, 125203 (2005) Dynamic long-range component

35/55

Parameters to fit to experiments.

Beyond ALDA approximation

The problem of Abs in solids. Towards a better understanding

- Reining *et al.* Phys.Rev.Lett. **88**, 66404 (2002) Long-range kernel
- de Boeij *et al.* J.Chem.Phys. **115**, 1995 (2002) Polarization density functional. Long-range.

35/55

- Kim and Görling Phys.Rev.Lett. **89**, 96402 (2002) Exact-exchange
- Sottile *et al.* Phys.Rev.B **68**, 205112 (2003) Long-range and contact exciton.
- Botti *et al.* Phys. Rev. B **72**, 125203 (2005) Dynamic long-range component

Parameters to fit to experiments.

Beyond ALDA approximation

Abs in solids. Insights from MBPT

Parameter-free Ab initio kernels

- Sottile *et al.* Phys.Rev.Lett. **91**, 56402 (2003) Full many-body kernel. Mapping Theory.
- Marini *et al.* Phys.Rev.Lett. **91**, 256402 (2003)
 Full many-body kernel. Perturbation Theory.

$$f_{xc} = \chi_0^{-1} GGWGG\chi_0^{-1}$$

Applications and results:

The ETSF

Beyond ALDA approximation

Sottile et al. Phys.Rev.Lett. 91, 56402 (2003) ; Sottile et al. submitted.

Beyond ALDA approximation

Abs in solids. Full Many-Body Kernel

Tested also on absorption of SiO₂, DNA bases, Ge-nanowires, RAS of diamond surface, and EELS of LiF.

Marini et al. Phys.Rev.Lett. 91, 256402 (2003).

Bruno *et al.* Phys.Rev.B **72** 153310, (2005).

Palummo *et al.* Phys.Rev.Lett. **94** 087404 (2005).

Varsano et al. J.Phys.Chem.B 110 7129 (2006).

Refraction index

Low-energy Spectroscopy

TDDFT is the method of choice

- ✓ Absorption spectra of simple molecules
- 🗸 Electron energy loss spectra
- 🗸 Inelastic X-ray scattering spectroscopy
- Absorption of Solids (BSE-like scaling)
- Refraction indexes (BSE-like scaling)

Applications and results: 00000000 00000000 000000000 000000 The ETSF

Towards new applications

Biological systems 5 (arb. units) Energy (eV) Abs spectrum of Green Fluorescent Protein

M.Marques *et al.* Phys.Rev.Lett **90**, 258101 (2003)

39/55

Low-energy Spectroscopy

TDDFT is the method of choice

- \checkmark Absorption spectra of simple molecules
- 🗸 Electron energy loss spectra
- 🗸 Inelastic X-ray scattering spectroscopy
- Absorption of Solids
- / Refraction indexes

Open problems

- open-shell atoms
- charge-transfer excitations
- efficient calculations of solids

approximation for f_{xc}

40/55

Low-energy Spectroscopy

TDDFT is the method of choice

- \checkmark Absorption spectra of simple molecules
- 🗸 Electron energy loss spectra
- 🗸 Inelastic X-ray scattering spectroscopy
- Absorption of Solids
- / Refraction indexes

Open problems

- open-shell atoms
- charge-transfer excitations
- efficient calculations of solids

approximation for f_{xc}

40/55

Applications and results: 00000000 0000000● 0000000

The quest for the good(s) functional Non-adiabatic f_{xc} current DFT deformation theory Orbital Dependent f_{xc} Actual challenge Exact Exchange f_{xc} easy to calculate and accurate for any kind of Meta-GGA system OEP Insights from MBPT Mapping Theory Diagrammatic expansion 41/55

Time Dependent Density Functional Theory

Francesco Sottile
Applications and results:

00000000 00000000 00 00000 The ETSF

Outline

D Time-Dependent Density Functional Theory

- Motivation
- The theoretical framework
- Linear response formalism

2 Applications and results:

- Achievements of RPA and ALDA
- Problem of solids new kernels
- The DP code
- New Frontiers

3 The ETSF

Applications and results:

The ETSF

The DP code

An open-source project: DP

- TDDFT in linear response approach
- RPA, ALDA, $\frac{\alpha}{q^2}$, Full Many-Body kernel
- TammDancoff approximation or full coupling
- Parallel version available.
- Actual developments: spin, adiabatic-connection formula, non-linear response
- http://theory.polytechnique.fr/codes (to be updated)
- Authors: V. Olevano, L.Reining, F.Sottile
- Contributors: F.Bruneval, M.Marsili

Applications and results:

The ETSF

The DP code

An open-source project: DP

- TDDFT in linear response approach
- RPA, ALDA, $\frac{\alpha}{\alpha^2}$, Full Many-Body kernel
- TammDancoff approximation or full coupling
- Parallel version available.
- Actual developments: spin, adiabatic-connection formula, non-linear response
- http://theory.polytechnique.fr/codes (to be updated)
- Authors: V. Olevano, L.Reining, F.Sottile
- Contributors: F.Bruneval, M.Marsili

Applications and results:

The ETSF

The DP code

An open-source project: DP

- TDDFT in linear response approach
- RPA, ALDA, $\frac{\alpha}{a^2}$, Full Many-Body kernel
- TammDancoff approximation or full coupling
- Parallel version available.
- Actual developments: spin, adiabatic-connection formula, non-linear response
- http://theory.polytechnique.fr/codes (to be updated)
- Authors: V. Olevano, L.Reining, F.Sottile
- Contributors: F.Bruneval, M.Marsili

The DP code

An open-source project: DP

- TDDFT in linear response approach
- RPA, ALDA, $\frac{\alpha}{a^2}$, Full Many-Body kernel
- TammDancoff approximation or full coupling
- Parallel version available.
- Actual developments: spin, adiabatic-connection formula, non-linear response
- http://theory.polytechnique.fr/codes (to be updated)
- Authors: V. Olevano, L.Reining, F.Sottile
- Contributors: F.Bruneval, M.Marsili

The DP code

An open-source project: DP

- TDDFT in linear response approach
- RPA, ALDA, $\frac{\alpha}{a^2}$, Full Many-Body kernel
- TammDancoff approximation or full coupling
- Parallel version available.
- Actual developments: spin, adiabatic-connection formula, non-linear response
- http://theory.polytechnique.fr/codes (to be updated)
- Authors: V. Olevano, L.Reining, F.Sottile
- Contributors: F.Bruneval, M.Marsili

The DP code

An open-source project: DP

- TDDFT in linear response approach
- RPA, ALDA, $\frac{\alpha}{a^2}$, Full Many-Body kernel
- TammDancoff approximation or full coupling
- Parallel version available.
- Actual developments: spin, adiabatic-connection formula, non-linear response
- http://theory.polytechnique.fr/codes (to be updated)
- Authors: V. Olevano, L.Reining, F.Sottile
- Contributors: F.Bruneval, M.Marsili

The DP code

An open-source project: DP

- TDDFT in linear response approach
- RPA, ALDA, $\frac{\alpha}{q^2}$, Full Many-Body kernel
- TammDancoff approximation or full coupling
- Parallel version available.
- Actual developments: spin, adiabatic-connection formula, non-linear response
- http://theory.polytechnique.fr/codes (to be updated)
- Authors: V. Olevano, L.Reining, F.Sottile
- Contributors: F.Bruneval, M.Marsili

Applications and results:

00000000 00000000 00

Outline

D Time-Dependent Density Functional Theory

- Motivation
- The theoretical framework
- Linear response formalism

2 Applications and results:

- Achievements of RPA and ALDA
- Problem of solids new kernels
- The DP code
- New Frontiers

3 The ETSF

Applications and results:

The ETSF

New Frontiers

Excited-State Dynamics

TDDFT-MD, Ehrenfest dynamics, quantum effects of the ions, non-adiabaticity, etc.

Sugino and Miyamoto, Phys.Rev.B 59, 2579 (1999)

➡ Transport

45/55

Applications and results:

00000

The ETSF

New Frontiers

TDDFT concept into MBPT

$\Sigma = GW\Gamma$

i.e. a promising path to go beyond GW approx through TDDFT

F.Bruneval *et al.* Phys.Rev.Lett **94**, 186402 (2005)

Applications and results:

The ETSF

New Frontiers

Quantum Transport in TDDFT

$$I(t) = -e \int_{\mathcal{V}} d\mathbf{r} \frac{d}{dt} n(\mathbf{r}, t)$$

total current through a junction

G.Stefanucci *et al.* Europhys.Lett. **67**, 14 (2004)

47/55

Applications and results:

The ETSF

New Frontiers

Let's go back to Ground-State

Total energies calculations via TDDFT

$$E = T_{KS} + V_{ext} + E_H + E_{xc}$$
$$E_{xc} \propto \int d\mathbf{r} d\mathbf{r}' \int_0^1 d\lambda \int_0^\infty du \chi^\lambda(\mathbf{r}, \mathbf{r}', iu)$$

adiabatic connection fluctuation-dissipation theorem

Time-Dependent	Density	Functional	Theory
000000000			
0000000000			

Applications and results: 00000000 00000000 00 00000

Outline

Time-Dependent Density Functional Theory

- Motivation
- The theoretical framework
- Linear response formalism

2 Applications and results:

- Achievements of RPA and ALDA
- Problem of solids new kernels
- The DP code
- New Frontiers

3 The ETSF

Applications and results: 00000000 00000000 00 000000

European Theoretical Spectroscopy Facility

European Theoretical Spectroscopy Facility

A European Facility:

- what::nanoscience
- how::theoretical spectroscopy
- when::NOW!

Applications and results: 00000000 00000000 00 00000

European Theoretical Spectroscopy Facility

Applications and results: 00000000 00000000 00 00000

European Theoretical Spectroscopy Facility

Applications and results: 00000000 00000000 00 00000

European Theoretical Spectroscopy Facility

Groups working in the same domain: theoretical spectroscopy

A broad community of theoretical research groups working on related topics. They develop theory and code, and provide services to users just like members of the Core.

Applications and results: 00000000 00000000 00 00000

European Theoretical Spectroscopy Facility

Users of the Facility will be a large and varied group of researchers from the public or private sector wishing to benefit from developments in the field of electronic excitations through the different services of the ETSF.

Applications and results: 00000000 00000000 00 000000

European Theoretical Spectroscopy Facility

MALETSF services

- calls for proposal
- commission of customer-driven software development and applications
- project consultancy
- training events (hand-on, workshops)
- software downloads

Applications and results: 00000000 00000000 00 00000

European Theoretical Spectroscopy Facility

European Theoretical Spectroscopy Facility First call for user projects:

First trimester 2007!!

http://www.etsf.eu

T.Patman - atp500@york.ac.uk

Applications and results: 00000000 00000000 00 000000

Alternative formulation for Abs and ELS

$\mathbf{q} \rightarrow 0$ case

$$\begin{aligned} \mathsf{ELS}(\omega) &= -\lim_{\mathbf{q} \to 0} \mathrm{Im} \left\{ \varepsilon_{00}^{-1}(\mathbf{q}, \omega) \right\} \; ; \; \mathsf{Abs}(\omega) = \lim_{\mathbf{q} \to 0} \mathrm{Im} \left\{ \frac{1}{\varepsilon_{00}^{-1}(\mathbf{q}, \omega)} \right\} \\ \\ \mathsf{ELS}(\omega) &= -v_0 \; \mathrm{Im} \left\{ \chi_{00}(\omega) \right\} \; ; \; \; \mathsf{Abs}(\omega) = -v_0 \; \mathrm{Im} \left\{ \bar{\chi}_{00}(\omega) \right\} \\ &\chi = \chi^0 + \chi^0 \left(v + f_{xc} \right) \chi \\ &\bar{\chi} = \chi^0 + \chi^0 \left(\bar{v} + f_{xc} \right) \bar{\chi} \\ &\bar{\chi}_{\mathbf{G}} = \left\{ \begin{array}{c} v_{\mathbf{G}} & \forall_{\mathbf{G}} \neq 0 \\ 0 & \mathbf{g} = 0 \end{array} \right. \end{aligned}$$

back

54/55

Applications and results: 00000000 00000000 00 000000

TDDFT: Refraction index of Si within Mapping Theory

Refraction index of Silicon

