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1 Introduction

Understanding the effect of interactions between electrons in certain systems, especially
crystals, has been of great interest, not only for accurately describing existing systems,
but also for the design of new materials with desired properties for many applications
such as materials science, semiconductors, and photovoltaics [1, 2]. It is well known
that the desired properties of a given system can be described by the laws of quantum
mechanics, namely the solutions of the Schrödinger equation. However, solving this
equation exactly for systems with more than a few particles quickly becomes impossible
due to the computational complexity involved. The wave function is a function of all the
coordinates of all the particles in the system, and as the number of particles increases,
the number of variables in the wave function grows exponentially. This exponential
scaling makes calculations impractical to perform [3].

1.1 Many-Body Problem

Much effort has been put into circumventing this so-called “many-body” problem.
These methods include mean-field approximations, such as Hartree-Fock, and more ad-
vanced techniques like many-body perturbation theory (MBPT) and density functional
theory (DFT), each aiming to approximate the effects of electron-electron interactions
in different ways. Central to these methods is the charge density, which plays a crucial
role in determining the behavior and properties of interacting particle systems. Charge
density provides a spatial distribution of the electronic charge within a system, offering
valuable insights into the electronic structure and interactions in different frameworks.
It serves as a fundamental quantity because it encapsulates the effects of all electron-
electron interactions in a system [3]. Therefore, the accurate determination of charge
density is essential for predicting and understanding various physical properties. To
effectively utilize charge density, different approaches have been employed. Mean-field
approaches, such as the Hartree-Fock method, attempt to approximate the many-body
problem by treating the interactions between particles in an averaged way, simplifying
the computation of the charge density [2]. Auxiliary systems, like the Kohn-Sham sys-
tem in Density Functional Theory (DFT), maps the problem of interacting particles
onto a system of non-interacting particles that reproduces the same charge density [3].

These methods utilize functionals to express complex many-body interactions in a more
manageable form. One of the essential concepts in this context is the nearsightedness.
This means that the value of a functional at a specific point is largely determined
by the values of the function in a localized region around that point, rather than by
the function’s behavior far away. This principle reduces the complexity of functional
dependencies and makes the calculation of properties much more efficient. In terms
of physical applications, nearsightedness implies that the properties of a system at a
given point depend primarily on the local environment rather than on distant parts
of the system. This was formulated by Walter Kohn in his seminal paper in 1996 [4]
and quickly became one of the main successes of DFT. Within the context of DFT,
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nearsightedness means the local electronic properties, like the effective potential v(r),
depend significantly on the density only at nearby points. Changes of that density,
beyond a distance R have limited effects on local electronic properties, which rapidly
tend to zero as a function of R.

1.2 LDA and Nearsightedness

This idea of nearsightedness naturally led to the formulation of the Local Density
Approximation (LDA). LDA assumes that the desired quantity at a point r solely
depends on that point and all the other points have negligible effects on the quantity
at r. In the case of DFT, there is only one quantity that is unknown and needs to be
approximated: exchange-correlation (xc) energy per particle, ϵxc from which we describe
the total xc energy as,

Exc[n] =

∫
drn(r)ϵxc(r, [n])

Thus, nearsightedness implies that the unknown term ϵxc, at every point r, only depends
on the density at r. This allows us to neglect all the other points, or assume all the
other points have the same density as the point of interest. This describes a well-
known system called the homogeneous electron gas (HEG) which has constant density.
In other words: at every point r, the exchange-correlation energy is approximated by a
homogeneous electron gas that has the density n(r), i.e.

ELDA
xc [n] =

∫
drn(r)ϵhxc(n(r)) (1)

where ϵhxc(n(r)) corresponds to the xc energy of the homogeneous electron gas, already
calculated (and stored) from quantum Monte Carlo methods once and for all.

Consequently, LDA successfully leverages tabulated results from a pre-solved model sys-
tem, such as the Homogeneous Electron Gas (HEG). Considering its significant success
and range of applications, this approach serves as a valuable source of inspiration by
showcasing how insights gained from a simpler, (numerically) exactly solvable models
can be used to approximate more complex real-world systems. Inspired by the princi-
ples of LDA, our philosophy in this work is clear: to make extensive use of tabulated
results and pre-solved model systems. By employing already solved model systems, we
aim to develop efficient methods for calculating properties of real systems. Specifically,
we focus on how one can effectively exploit these model systems to calculate charge
densities, n(r). This approach not only makes use of recycling existing solutions to
reduce computational cost but also provides a robust framework for simulating real
systems in a practical and systematic manner. Our main strategy will be to expand
our system around the homogeneous electron gas (our model) to simulate the desired
quantity in the real system. In Section 2, we start our framework by demonstrating how
to expand n(r) (with respect to the effective potential) within the linear regime around
a non-interacting electron gas. This will allow us to to bypass solving the Schrödinger

3



equation while still aiming to achieve results consistent with DFT charge density cal-
culations. In Section 3, we continue this approach and investigate the exactification of
nearsighted approximations (such as LDA) by using the Connector Theory (COT) [5]
which formulates an exact connection between the real system and any model system
by using a mathematical object called the “connector”. We shall ask the following
question: Is there a general connector that can yield the exact result in the
real system? If yes, what is the systematic approach to obtaining such exact
connectors?. We will see how COT is able to simulate higher order terms in our linear
expansion without explicitly calculating them. In Section 4, we will move beyond the
non-interacting HEG model and start using the interacting electron gas model. We will
demonstrate that this method is a promising path to surpass DFT and move towards
the exact regime (since the only ingredient needed is the external potential). Finally, we
will provide insights into future work directions and conclude by discussing the broader
implications and potential applications of our approach.

1.3 The Benchmark

Throughout our analyses, we select simple cubic Helium (one atom per unit cell) as
our system for evaluating results. This choice provides an intriguing test case being
far from our model, the homogeneous electron gas. We believe successfully using a
homogeneous model to describe such a highly inhomogeneous system will demonstrate
the robustness and versatility of our approach. This analysis, therefore, is expected to
strengthen the potential of our approach in addressing complex many-body systems,
extending its applicability beyond simple models to more intricate real-world scenarios.

Figure 1: Left: Cubic Helium charge density calculated using the DFT-LDA as a
function of position in Bohr units. Right: Corresponding effective potential, vKS(r).
The plotting trajectory is as shown in the figures, in the z-direction.
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Our benchmark consists of two outputs: charge density which will be used as reference,
and the Kohn-Sham potential, vKS(r), which we will denote throughout this study as
the effective potential and drop the subscript. These two outputs (charge density, n(r)
and the effective potential, v(r) are calculated within DFT by using LDA [6]. Therefore
they include certain errors. However, for the time being, we shall assume they are exact
quantities and see if our methods can achieve consistent results.

1.4 Defining a new local approximation

As stated previously, in the charge density problem, the input is the potential, i.e.
n(r; [v]). In many cases the situation is reversed, the desired observable is the potential
and the input is the density. However, the motivation is the same: To describe the real
system, results from a known model system are used and there is a specific quantity
connecting the model system to the real one. Within the LDA framework, this cor-
responds to replacing the exchange-correlation potential at each point with that of a
homogeneous electron gas at the density equal to the local density at the point, namely

vxc(r, [n]) ≈ vhxc(n(r)) (2)

Therefore, the connecting object between the model and the real system is the local
density. Here, we use a parallel analogy to define the local potential approximation due
to the reversal of pictures. The local potential approximation (LPA) then replaces the
density at each point with that of a homogeneous electron gas with a potential equal
to the local potential at the point,

n(r, [v]) ≈ nh(v(r))

where v(r) is the potential felt by the electrons in the solid. Here, the connecting object
between the model and the real system is the local potential (however it may be defined,
as we will discuss different possibilities). The model in this case is really simple, it is
the well known relation with respect to the Fermi wave-vector, kF

nh =
k3
F

3π2
(3)

Since the Fermi energy is defined by the difference between the chemical potential µ
and the potential v, we define kF by the following

µ =
k2
F

2
+ v =⇒ kF =

√
2(µ− v) (4)

Throughout our study, we set µ = 0 for convenience, i.e. kF =
√
−2v. From here,

we have direct access to LPA, we simply replace the potential at every point as the
effective potential
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n(r, [v]) ≈ nh(v(r)) =
(−2v(r))3/2

3π2
(5)

I have tested this approximation for the case of cubic Helium. This is a very tough task
because cubic He is very different from the HEG. The result is shown in Figure 2.

Figure 2: Cubic Helium charge density calculated using the LPA (dashed line) with
comparison to the reference density, as a function of position in Bohr units.

As one can see, solely using the simplest model without interactions, we are already able
to achieve qualitative agreements with our reference. Even though LPA captures the
general behavior of the density (being localized around atoms and vanishing far from
atoms), one seeks results with much more accuracy. Moreover, the average number of
electrons in a unit cell is overestimated by LPA: it yields n̄ = 2.26 whereas it should
be 2. To try to overcome this problem, a better approach needs to be proposed, rather
than making a local approximation. In the next sections, we will see how one can use
this approximation as a starting point for expansions, or even exactify it.

2 Expanding functionals around models

In this section, we tackle the problem of expanding functionals around functions. The
problem arises when we have a quantity which depends on a function and how to
approximate it is not straightforward. Here, and throughout this work, we show how
one can use model systems to expand the real system around.

Throughout the calculations that are presented, we use linear approximation, i.e. we
Taylor expand our charge density. A general form is following,

f(x) = f(a) + (x− a)f ′(a) + . . .
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If one wants to stop in some order, say nth order the above equation is no longer exact
and one has,

f(x) ≈ f(a) + (x− a)f ′(a) + · · ·+ f (n)(a)

n!
(x− a)n ≡ Tn(x) (6)

Equation 6 is called the nth partial sum of the Taylor series which is by definition not
exact. To have an exact form, we have to introduce the so called the remainder term,
i.e.

f(x) = Tn(x) +Rn(x) (7)

If we assume that the function If f (n+1)(x) is continuous on an open interval I that
includes a and x, then there is a number c between a and x such that the remainder is
[7],

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1

This is called the Lagrange’s form of the remainder term. Similarly we also have
Cauchy’s form as follows

Rn(x) =
f (n+1)(c)

n!
(x− c)n(x− a)

To see the differences between the two methods, let us expand f up to second order in
x. The Lagrange method gives

f(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2
f ′′(ξL) ,

where a ≤ ξL ≤ x for x > a. Of course, one does not know ξL a priori, but at least we
know in which interval it lies. The choice of Cauchy is instead

f(x) = f(a) + (x− a)f ′(a) + (x− a)(x− ξC)f
′′(ξC) ,

where a ≤ ξC ≤ x. Note that both of these expressions are exact. We use linear
approximation for our calculations, i.e. we include only up to the first order terms.
Inspired by the approaches of Lagrange and Cauchy on the expansion of functions, we
are looking for a first-order term which can give the exact function, i.e. R0(x). One can
already see that, for this specific case, the Cauchy and Lagrange forms become equal.
This reads,

f(x) = f(a) + (x− a)f ′(ξ) , (8)

where ξ is not necessarily equal to a and it gives the exact result. Moreover, note that
ξ can even parametrically depend on x now.
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2.1 Linear response expansion

Since our quantity of interest is the charge density (of the real system), let us start
by the simplest idea: expanding up to the first order, inspired by Taylor expansions
(without Cauchy & Lagrange approach). Since the charge density is a functional of the
potential, either the external potential or a one-body effective potential coming from
an auxiliary system, the expansion is more complex than a simple Taylor expansion.

n(r; [v]) ≈ n(r; [v0]) +

∫
dr′χ0(r, r

′, v0)
(
v(r′)− v0

)
(9)

In equation 9, we have the expansion around a function v0 (which depends on r) up
to the first order. The functional derivative in the integral which describes the change
in the density with respect to the change in the potential, δn(r)

δv(r′)

∣∣
v0

≡ χ0(r, r
′, v0), is

referred as the “non-interacting density-density response function”. Non-interaction
comes from the fact that we take the derivative with respect to the effective potential
which is due to the KS auxiliary system of non-interacting electrons. However, we did
not gain anything by this approximation since the form of n(r; [v]) or χ0(r, r

′, v0) is still
unknown. However, if we choose to expand the density around a constant potential,
we gain a significant simplification in our expansion. This time,

n(r; [v]) ≈ nh(v0) +

∫
dr′χh

0(|r− r′|, v0)
(
v(r′)− v0

)
(10)

where v0 (we call this the expansion potential from now on) is constant. This implies
that the quantities are in the limiting case of a homogeneous potential (hence the
superscript h). Therefore, the zeroth order term reduces to the expression of the non-
interacting HEG density with respect to the potential. Moreover, the second term is
the well-known Lindhard function with the following expression [8],

χh
0(q, v0) = − kF

2π2

{
1− Q

4

(
1− 4

Q2

)
ln

∣∣∣∣Q+ 2

Q− 2

∣∣∣∣} (11)

with kF =
√
−2v0 and Q ≡ q/kF . The subscript 0 indicates the non-interacting electron

gas. This seems easily executable now, and the only problem seems to be the choice
of the expansion potential, v0. We are motivated by LPA and choose to use a different
model at every r. This implies that our v0 is now parametrically dependent on the
position, v0 → v0r even though at every r, it is still a constant so that equation 10
holds.

When we choose the expansion potential at each point as the local effective potential
at that point, i.e. v0r = v(r), we obtain the result presented in Figure 3. Compared
to the LPA (see Figure 2), we more or less have the same amount of accuracy. The
two ears which are exactly mimicking the effective potential (see Figure 1(b)) are not
present in the reference density (see Figure 1(a)). This means that the method is unable
to effectively adjust the model’s behavior to accurately translate it to match the real
system. Therefore, a better direction is necessary.
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Figure 3: Linear response approximation (LRA) using v0r = v(r) in comparison to the
reference density.

2.2 Motivation from the Cauchy & Lagrange approach

As a next step, we employ the Cauchy & Lagrange approach presented in the beginning
of Section 2. If we translate equation 8 to functional realm, we obtain the following
modification to our previous expansion,

n(r; [v]) = nh(v0) +

∫
dr′χh

0(|r− r′|, ṽ0)
(
v(r′)− v0

)
(12)

where we have the same form as equation 10. The key point is that we are now able
to choose to evaluate the derivative, χh

0 , at an optimal point ṽ0 ̸= v0. Employing
this method by getting inspiration from Cauchy & Lagrange (CL), we have to make a
choice for v0, and ṽ0. For this, we have two potential approaches, choosing the same
local expansion potential for the zeroth term as before, i.e. v0 = v(r) and investigating
an optimal ṽ0; or choosing the same local expansion potential for the evaluation of χh

0 ,
and choosing a constant potential for the zeroth order term. In this study, we opt for
the latter approach, noting that our previous investigations into the former approach
have yielded promising results (see the Appendix C). Our choice for the constant
expansion potential (for the zeroth order term) is intuitive: the average potential, v̄,
which yields the average number of electrons when plugged into the model system, i.e.
nh(v̄) = n̄ where n̄ is the average number of electrons in the real system. Following
these motivations, our expansion in equation 12 becomes

n(r; [v]) = nh(v̄) +

∫
dr′χh

0(|r− r′|, v0r)
(
v(r′)− v̄

)
(13)

with v0 = v̄ and ṽ0 = v0r = v(r).
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Figure 4: Linear response approximation (LRA) using local v0 (eqn. 10) and Cauchy
& Lagrange method (eqn. 13), in comparison to the reference density.

In Figure 4, we see the results in comparison to our previous expansion (equation 10).
By choosing a different point to evaluate the response function, we aim to simulate the
higher order terms in the expansion with respect to χh

0 , equivalent to the idea presented
in equation 7. From the results, we observe an improvement in the high density regions
with a slight overestimation around where the Helium atoms are placed. Even though
this is already a better qualitative description of our system, one needs in principle
a robust method which takes a given input and yields a function which mimics the
real system rather than the model system. The appearance of two ears in the low
density-regime therefore tells us that in order to achieve more robust results, one needs
to go beyond. One idea is to go beyond nearsightedness and use non-local expansion
potentials; or some other mathematical object which is able make an effective connection
between real and model systems. The second idea is to acknowledge the fact that we
have been using the non-interacting HEG as our model system and this is already
a point that needs to be improved by introducing interactions and expanding by an
interacting response function. In the following sections, we examine both approaches
and explore how they can be systematically combined to draw insights.

3 Connector Theory (COT)

Motivated by the need to go beyond nearsightedness and linear response expansion,
we present a novel theory developed within the group. Connector Theory (COT) is
a general approach that provides, in principle, an exact connection between a real
system and a model system through the concept of “connector” [5]. By construction,
this theory provides a powerful method to reuse tabulated results from these models
by introducing a “connector”. A connector is a mathematical object that can provide
exact values for desired observables in real systems when applied within the model
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system. In-detail formalism and some applications can be found in [5], with a short
summary in Appendix A.

For simplicity, let us focus now on the local approximations, namely the LPA for our
case. In this approximation, LPA replaces the density at each point with that of a HEG
with a potential (density) equal to the local potential at that point, i.e.

n(r; [v]) ≈ nh(v(r)) (14)

Here, one directly approximates the desired quantity from the beginning. Therefore, the
systematic improvement of this approximation towards an exact result is not apparent.
Instead, if one starts with not an approximation but an exact relation, then this change
in point of view allows us to re-write the problem in a more systematic way. Now
consider that there is a different potential, which may vary at each point, that, when
applied to the model system, produces the exact value as in the real system. Let us call
this the “exact connector” and denote it as vhcr (superscript h means that this quantity
is constant for every point, subscript c is short for “connector”).

n(r; [v]) = nh(vhcr) (15)

Of course, there is no reason for this object to be the same as the local quantity,
v(r). In fact, from here it can be seen that LPA becomes only one of the limiting
cases of COT where we choose the connector to be the local potential, vhcr = v(r)
which is a completely nearsighted approach. In reality, the real system exhibits a
much more complex behavior, and the general form of the connector shows promise
for effectively simulating this complexity [5]. Therefore, the question becomes how
to find this connector which gives us the exact results in equation 15. We apply the
same approach as Figure A.11, applying the same approximations on both sides of
equation 15. This allows us to invert the model and obtain vhcr. Without approximating
both sides, we have vhcr = (nh)−1(n(r; [v])), therefore, it is impossible to solve for the
connector since we do not know n(r; [v]). Throughout this study, we will use linear
response approximation on both sides for consistency.

3.1 Local Connector

Let us try to obtain the charge density functional, n(r; [v]) now. Our goal is to linearly
expand both sides of the exact connection (equation 15). Noting the expression within
the model system,

nh =
[−2vh]3/2

3π2
(16)

then the exact connection is made,
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n(r; [v]) = nh(v
h
cr) =

[−2vhcr]
3/2

3π2
(17)

Since there is no way to invert this without the knowledge of the real system charge
density, we will expand both sides around a homogeneous potential, v0, in the first
order and equate them. Left-hand side reads,

n(r; [v]) ≈ nh(v0) +

∫
dr′χh

0(|r− r′|, v0)
(
v(r′)− v0

)
(18)

and the right-hand side,

nh(vh) ≈ nh(v0) +
dnh(vh)

dvh

∣∣∣∣
v0

(vh − v0) (19)

And now we equate both sides to solve for the connector potential. Since we are
expanding around a homogeneous function, we get cancellations on both sides which
yields,

vhcr =

(
dnh(vh)

dvh

∣∣∣∣
v0

)−1 ∫
dr′

δn(r)

δv(r′)

∣∣∣∣
v0

v(r′)

noting the derivative of nh(vh) is easily computed from equation 16,

dnh(vh)

dvh

∣∣∣∣
v0

= −
√
−2v0
π2

Equivalently, this derivative is also the q → 0 behavior of χh
0 ,

dnh(vh)

dvh

∣∣∣∣
v0

= χh
0(q → 0, v0) =

∫
dr′χh

0 (|r− r′|, v0)

As a result, we obtain the (linear response) connector as,

vhcr = − π2

√
−2v0

∫
dr′χh

0 (|r− r′|, v0) v(r′) =

∫
dr′χh

0 (|r− r′|, v0) v(r′)∫
dr′χh

0 (|r− r′|, v0)
(20)

This is the linear response connector since our choice of approximation was in the linear
regime.
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The connector, by its nature, inherits the connection between locality and non-locality
and it presents a way to terminate the linear expansion in a clever way . If we compare
the LPA (vhcr = v(r)) to the general form of the connector in equation 20, we realize
that the connector behaves as an average around the point of interest for every position.
This average is taken by a distribution function which depends on the approximation,
χh
0 for our case. Therefore, the connector takes into account the dependence on the

environment, v(r′), at every r, and the ingredient χh
0(|r− r′|, v0) purely comes from the

model.

From equation 20, one can see that the only ingredient to compute the connector is
the expansion potential, v0. This choice is crucial in order to improve the connector
and one of the goals is to make this choice of the initial point systematic. For now,
we choose the same starting potential, i.e. the connector expands around the local
potential, v0r = v(r). In the next chapters, the validity and improvement of this choice
will be discussed. Finally, after obtaining the connector, we plug vhcr into equation 17
to obtain the density.

Figure 5: Linear response connector using local v0 in eqn. 20 in comparison to the
reference density.

If we compare Figure 5 to Figure 3, we see that the local connector does not pro-
vide a significant improvement. However, thanks to the systematic formulation of the
connector, we are free to improve how we calculate vhcr.

3.2 Bilocal Connector

As discussed at the end of Section 2.2, we propose two ways for more accurate de-
scriptions within expansion around models. In this section, we investigate the first
approach: introducing non-locality. At this point, this choice becomes a natural step
forward within the connector formalism since the connector provides a way to exploit
the non-locality. Moreover, introducing this non-locality will be equivalent to using the
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CL approach within linear response expansion in Section 2.2, since we have again a ter-
minator different than the zeroth order. To go beyond the local v0, we are inspired by
the general form of the response function, χ(r, r′). This already suggests non-locality,
thus; we abandon our choice of v0 = v(r) and instead use an expansion potential that
is non-local. For this, the simplest choice would be a bilocal expansion potential, i.e.
v0 =

v(r)+v(r′)
2

. Thus, we introduce bilocality by the following modifications,

χh
0(|r− r′|, v0) −→ χh

0

(
|r− r′|, v(r) + v(r′)

2

)
However, this modification is not so straightforward. In equation 20, we easily notice
that in the prefactor of the integral, we have the v0 outside the integral, therefore; it
is meaningless to use a non-local potential. As a solution to that and for the sake of
approximating the model and the real system in an equivalent way, we use the following
expansion potential for the model

vrrc =
v(r) + vhcr

2

These modifications lead us to the following connector,

vhcr = − π2

√
−2vrrc

∫
dr′χh

0

(
|r− r′|, vrr′

)
v(r′) (21)

where vrr′ = v(r)+v(r′)
2

. Note that now, at each point r, v0 is a function of r′ and
we consider a broader neighborhood in real space which means we are dealing with
less-nearsightedness. Figure 6(a) shows the result.

Figure 6: Left: Linear response connector using local (green) versus bilocal v0 (red
dotted) in eqn. 20 in comparison to the reference density. Right: Corresponding
connectors in comparison to the local effective potential (dashdotted black) and the
exact connector (solid black). More data points were used for demonstration purposes.
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We see that we now have a significant improvement in the charge density. In our
previous results, we had two ears around r = 1.5a0 and r = 6.5a0 that were coming from
the behavior of the effective potential. Due to averaging between two distinct points, our
bilocal connector is able to average out while additionally improving the high-density
regime. This means that the connector is now able to interpolate between locality
(LPA) and non-locality (towards the real solution). This is demonstrated in Figure
6(b). By using connector, one uses systematically the effective potential (dashdotted
black curve) and generates a new connector which is designed to get closer to the exact
connector (solid black curve, calculated by inverting the reference density from eqn.
16). Additionally we see that the bilocal connector is much more successful than the
local connector in terms of resembling the exact connector. Moreover, we observe that
by employing the connector approach with a non-interacting gas model, we are able to
achieve a remarkable qualitative description of a system that is highly far away from a
homogeneous one. The success of this method highlights the robustness and versatility
of the connector theory. Even for systems that deviate considerably from the idealized
homogeneous electron gas, the connector can effectively capture the essential physics,
providing a reliable approximation to the exact solution.

4 Going beyond: expansion around the interacting

gas

In the previous chapter, we explored the advancements achievable by extending the
concept of locality through the use of bilocal connectors. This approach demonstrated
significant improvements in the precision of approximations and predictions within the
framework of COT. However, to fully harness the potential of these mathematical tools
and address the complex nature of many-body systems, it is imperative to incorporate
the interactions between electrons within the model more explicitly. This will not only
describe our system more accurately, but also will enable us to surpass using auxiliary
systems such as Kohn-Sham electrons within the framework of LDA-DFT (which we
assume gives us the “exact” density) that already has certain amount of error. In other
words, we will expand our system with respect to the external potential, vext(r) (which
is known without approximations), and not the effective potential. Therefore, we are
no longer restricted by the limitations coming from DFT.

We begin by re-visiting our linear expansion for the charge density in the non-interacting
HEG case. We have been denoting the effective potential as v(r) and this was actually
the Kohn-Sham potential coming from DFT calculations. This is a non interacting
auxiliary system which allowed us to use the non-interacting response function. If we
want to include interactions, we therefore need to expand the density with respect to
the external potential, vext(r), rather than the KS potential. Therefore we obtain
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n(r; [vext]) ≈ nh(v0) +

∫
χh
LDA(r− r′, v0)

(
vext(r

′)− v0
)
dr′ (22)

where the response function of the interacting electron gas is defined by

δn(r)

δvext(r′)

∣∣∣∣∣
v0

≡ χh
LDA(|r− r′|, v0) (23)

The reason why we have a subscript denoting LDA is because our reference density
is actually calculated within LDA. Therefore, its response with respect to vext will be
within the LDA picture, hence χh

LDA. Before starting with calculations, we have to
address some intricate points when changing our picture towards the interacting case.
Firstly, the zero order term in equation 22 does not have the same form as in the previous
cases. In fact nh(v) now describes the interacting charge density of the gas, whose form
with respect to the potential is not as straightforward. In the non-interacting case, we
have the following relation for the chemical potential,

µ =
k2
F

2
+ v =⇒ kF =

√
2(µ− v) (24)

Which correspond to our previous calculations if one fixes µ = 0. However, when we
have interactions the situation is different,

µ =
k2
F

2
+ vext + vxc[n] =

1

2
(3π2n)2/3 + vext + vxc[n] (25)

In this case, we realize the implicit dependence of the exchange-correlation potential
of the gas on the density. Fortunately, the numerically exact solution of vxc and its
parametrization is given by [9, 10]. Therefore, we have numerical access to the solution
of equation 25, i.e. n(vext). The difference can be observed in Figure 7(a).

Secondly, the argument v0 in χh
LDA means that we are using the gas that has the same

interacting density now, therefore we need to modify kF in equation 11 accordingly.
With these modifications, we can now look at how to calculate the expansions thanks
to the numerical solution of equation 25.

Let us observe equation 23. Of course, the “interaction” that we introduce is only in
the LDA level (since our target density is the LDA charge density). Since we already
know the (exact) external potential, the only ingredient to calculate is χh

LDA(r− r′, v0)
which is the functional derivative of the LDA charge density with respect to the external
potential evaluated at a homogeneous potential. In other words, this response function
is the response of the interacting electron gas which can be obtained from a Dyson-like
equation,
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Figure 7: Left: Charge density (left) and the electron gas parameter rs = ( 3
4πn

)1/3

(right) as a function of vext for the interacting (solid) and non-interacting (dashed)
electron gas.

χh
LDA(q) = χh

0(q) + χh
0(q)(vq + fLDA

xc )χh
LDA(q) (26)

=
χh
0(q)

1− χh
0(q)(vq + fLDA

xc )
(27)

where vq = 4π/q2 is the Coulomb interaction in the reciprocal space, fLDA
xc = fxc(q → 0)

is the exchange-correlation kernel which is numerically exact thanks to quantum Monte
Carlo calculations [11].

It is easy to verify that, due to the Coulomb interaction, χh
LDA(q) quickly goes to zero

as q → 0. This is problematic, since when we use the connector approach, we divide by
this value, i.e.

vhcr =

∫
χh
LDA (q, v0)

χh
LDA (q → 0, v0)

vext(q)e
iq|r−r′|dq (28)

Moreover, we expect that our real system converges to the model in the homogeneous
limit, however within linear response (of a homogeneous system) we have

n(v) = n(v0) + χh
LDA(q → 0, v0)(v − v0) = n(v0)

17



Figure 8: Behavior of the three dimensional static density response function in RPA
(full line) and LDA (long dashed line) for a 3D electron gas. The short dashed line
reproduces the corresponding non-interacting (Lindhard) function.

which shows a disappearance of the linear term due to the q → 0 behavior (see Figure
8) which this does not appear in our real system.

4.1 Macroscopic contribution to the linear expansion

To understand why we encounter this problem, let us focus once again on the linear
expansion since it lies at the heart of our connector approximations. Consider the
possible two directions one can pursue. We have first the usual linear expansion around
LPA from section 2.1, i.e.

n(r; [vext]) ≈ nh(v0r) +

∫
χh
LDA(r− r′, v0r)

(
vext(r

′)− v0r
)
dr′ (29)

with v0r = vext(r). Additionally, as introduced in section 2.2, we have the other form
inspired by Cauchy & Lagrange, i.e.

n(r; [vext]) ≈ nh(v̄) +

∫
χh
LDA(r− r′, v0r)

(
vext(r

′)− v̄
)
dr′ (30)

where v̄ = n−1
h (n̄) with n̄ being the average number of electrons in the real system. The

problem arises when one directly calculates these two expressions within the interacting
HEG case, without taking into account χh

LDA(q → 0) = 0.
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Figure 9: Charge density calculated using equation 29

As one can see, the result presented in Figure 9 is not satisfactory. In fact, we can
intuitively infer that this phenomenon is the manifestation of what we encountered
before coming from the χh

LDA(q → 0) term in equation 29. In this section, we will show
that this behavior of the interacting response function only accounts for microscopic
density variations and there is an additional macroscopic contribution arising when we
carefully expand the charge density.

To understand why we encounter this issue (and why it was not present in our previ-
ous expansions using the non-interacting HEG) let us rewrite our problem to have a
clearer framework. Since we are modelling an inhomogeneous system by a homogeneous
model (HEG), we need to have a clear distinction when we evaluate by a homogeneous
model/variable or inhomogeneous model/variable. Now let us consider that our poten-
tial felt by electrons is combination of a homogeneous potential and variations, i.e.

vext(r) = v̄ +∆v(r)

For convenience, we will choose v̄ so that it yields the correct electron number in the
model, i.e. nh(v̄) = n̄ = 2. In other words, we consdier the following notation change,

n(r; [vext]) ≡ n(r; [v̄,∆v])

Where ∆v is a function and v̄ is a constant. This is a well known method in solid state
physics of infinite systems. Note that when we have no variations on the potential we
recover the expression in the HEG, i.e. n(v̄, 0) = nh(v̄).

Now we can treat each term (homogeneous and inhomogeneous) carefully and turn our
previous approach into two expansions: one as a function of v̄ and one as a functional
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of ∆v(r). Note that n(v̄, 0) = n̄. If we choose to expand around (v̄,∆v) = (v0, 0) the
expansion (in the most general form) can be written now as,

n(r; [v̄,∆v]) = n(v0, 0) +
∂n

∂v̄

∣∣∣
v0
(v̄ − v0) +

1

2

∂2n

∂v̄2

∣∣∣
v0
(v̄ − v0)

2 + . . .

+

∫
χ(r, r′; v0,∆v = 0)∆v(r′)dr′ + . . . (31)

With this form, the problem becomes clear. If we choose local v0 and stop in the zeroth
term in the first line, then equation 31 becomes equation 29 which is equivalent of
expansion around local v0 and leads to an overestimation from Figure 9. Since we do
not include further terms in the expansion, we therefore lack a macroscopic contribution.
Instead, if one does not stop in the zeroth order for the Taylor expansion in equation
31 and goes up to all orders, we recover equation 30. In other words, equation 29 is just
a non-converged version of equation 30 (it was not the case for non interacting HEG
since χh

LDA(q → 0) ̸= 0). This time, we now have the macroscopic correction coming
from the higher order terms in the first line of equation 31 which are clearly nonzero

∂n

∂v̄

∣∣∣
v̄=v0

̸= χh
LDA(q → 0, v0)

The result (with the addition of macroscopic contributions which corresponds to equa-
tion 30) is presented in Figure 10.

Figure 10: Charge density calculated using equation 30

But why did we not encounter this before? Let us now investigate the expansion
around the non-interacting HEG (using χh

0). In this case we have a nonzero macroscopic
contribution due to the nonzero behavior of χh

0(q → 0, v0). Thus, we did not need to

20



go further to include all orders in the expansion of the first line of equation 31 (even
though it can be easily doable) since the macroscopic contribution is already nonzero.
Therefore, we conclude by stating the importance of the macroscopic contribution when
including the interaction effects in the model.

Comparing Figure 10 with Figure 4, we see the the significance of the inclusion of
interaction effects. We notice that our method now more accurately replicates the real
system, even when the input potential may not directly correlate with its shape. The
two ears apparent in both external and Kohn-Sham potentials are taken care of when
we introduce interactions. This is a quite promising direction for applying this approach
on more realistic materials.

5 Conclusion

In this work, we studied methodologies for effectively using model systems to describe
real system properties, specifically for the charge density. Motivated by the Local Den-
sity Approximation, we showed how one can start from a local approximation (Section
1.4), move beyond by expanding around a model (Section 2), and even exactify it by
using the Connector Theory (Section 3). Throughout our studies, we used the non-
interacting homogeneous electron gas as our model. Our results showed the possibility
of obtaining qualitative satisfying results without solving the Schrödinger equation. In
Section 4, we showed how one can even go beyond and use the interacting homogeneous
electron gas as model. Our latest results confirm that our method imitates the real sys-
tem much more accurately which may have significant implications for applications.

All calculations present in this study are computationally very affordable since we do
not diagonalize the Hamiltonian. Moreover, after tabulating the model system once, χh

0

or χh
LDA for instance, one can reuse these model results for any kind of system without

having any additional computation time. The only ingredient that one needs is the
choice of the expansion potential v0 since every system needs a specific approach.

5.1 Future Work

Cubic Helium is not an easy system. The rapidly changing nature of the density around
the atoms makes our calculations difficult to capture its behavior. Nevertheless, the
results are already astonishingly good.

Our next step would be to employ the connector since with interactions, equation 20
transforms into,

vchr = v̄ +
1

∂n
∂v̄

∣∣
v0

∫
dr′χ (r, r′; v0,∆v = 0)∆v(r′) (32)

after our notation change in Section 4.1. From here, we would like to apply our methods
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for more realistic systems in order to see whether our approximation could already be
used for certain classes of materials. Our immediate goal would be to investigate charge
densities of Silicon and Sodium Chloride since the exact densities of these materials are
calculated recently [12]. To achieve this, one needs to go beyond the DFT calculations.
Fortunately, our latest results shows promise into this direction. In fact, we are now
able to use the (numerically) exact form of the response function since it is calculated
by quantum Monte-Carlo calculations.

A Connector Theory: Formalism

Generally, the desired observable in a given system is expressed as O[x;QR], where Q
is a function of x and O is a functional. In most cases, this functional is impossible
to calculate; therefore, the approximations are applied directly to O. In the case of
the LDA, for instance, the exchange-correlation potential vxc(r, [n]) is approximated by
HEG as the model system,

vxc(r, [n]) ≈ vhxc(n
h
r)

where nh
r = n(r), meaning that the xc potential at point r is taken from the same point

in the HEG. This implies that the computation of the xc potential, vhxc(n
h
r), which

belongs to the model system is only to be made once. Then, one could apply this result
to approximate any real system. But this choice of local density as a connector can be
generalized.

If one is certain that the solutions of vhxc span all the possible solutions of the real system,
this means that it is possible to find a better connector nh

r that yields more accurate
-or even exact- results for the real system. Then, once this connector is tabulated, it
can be used for the approximations of any real systems.

In the general formalism, the exact implication of the connector theory is the following
equality,

O[x;QR] = O[x;Qc
x] (33)

where QR lies in the real domain and Qc lies in the model domain (HEG for instance).
The theory assumes that there exists an exact connector, Qc

x, which can be different at
each x, that fulfills the equality above. If we choose the model domain such that it can
be described by one effective parameter, we have O[x;Qc

x] → Ox(Qc
x). In the HEG, for

instance, we can describe the system with its number density, nh. Thus, the expression
for the exact connector, Qc

x is formally solved,

Qc
x = O−1

x

(
O[x;QR]

)
(34)
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After obtaining the connector, one plugs it into eqn. (5),

O[x;QR] = Ox(Qc
x) (35)

In fact, the transition from eqn. (6) to eqn. (7) is not so simple and direct. The
argument in the RHS of eqn. (6) -the observable of the real system- is principally not
known. Thus, one needs to make approximations to both sides of eqn. (5). This implies
that we would solve for an approximate connector,

Qc,approx
x = (Oapprox

x )−1
(
Oapprox[x;QR]

)
(36)

O[x;QR] ≈ Ox(Qc,approx
x ) (37)

Figure 11: Schematic summary of the connector approach. Green and red colors rep-
resent what is known and unknown, respectively. Since Qc

x is not known, we apply
approximation to the exact connection. After obtaining the approximate connector,
Qc,approx

x , we plug it into the model system. Figure adopted from [?].

The success of COT comes from the fact that when the same approximation is applied
to both sides, there is a significant error cancellation in eqn. (8). In fact, the connec-
tor theory becomes exact in two limits: when the approximation becomes increasingly
good, and when the domain of the model system tends toward that of the real sys-
tem. Using a connector is expected to yield more accurate results than applying direct
approximations to O[x;QR] with no additional computational cost.
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B Derivation of the Lindhard Function for the 3D

Electron Gas

In this section, I present the derivation of the real-space Lindhard function χ0(r). The
Lindhard function describes the density–density response of a system in the linear
regime. In our calculations, we are interested in this response of the homogeneous
electron gas. The one-spin density and the DOS for the 3D HEG are given as,

nσ =
k3
F

6π2

ρFσ =
kF
2π2

and in the static case (ω → 0), the one-spin Lindhard function is,

χ0σ(q) =
1

L3

∑
k

nkσ − nk+qσ

ϵkσ − ϵk+qσ

(38)

Carrying out this calculation (done in [8]), we obtain,

χ0σ(q) = −ρFσ

[
1

2
+

Q2 − 4

8Q
ln

∣∣∣∣Q− 2

Q+ 2

∣∣∣∣] (39)

where Q ≡ q/kF . Since our system is isotropic, the result only depends on q, rather
than q. The real space Lindhard function is calculated as Fourier transforming χ0(q),

χ0σ(r) =

∫ ∞

−∞

dq

(2π)3
χ0σ(q)e

iqr (40)

Carrying out this calculation (done in [8]), we obtain,

χ0σ(r) = 12πnσρFσ
sin (2kF r)− 2kF r cos (2kF r)

(2kF r)4
(41)

defining,

g(x) =
x cosx− sinx

x4

and plugging in the expressions for nσ, ρFσ, we obtain

χ0σ(r) =
k4
F

π3
g(2kF r)

Finally, noting that
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χ0(r) = χ0↑(r) + χ0↓(r)

we obtain the Lindhard function in real space as,

χ0(r) =
2k4

F

π3
g(2kF r) (42)

C Optimizing v0: exact solution from the HEG

As stated in the first chapters, we want to find systematic ways to improve our ap-
proximations. For this, we focus on how to optimize the expansion potential, v0 in this
chapter. We believe that even a qualitative direction on towards where one needs to
modify the expansion potential could be a promising improvement for our results.

Recalling equation 12,

n(r; [v]) = nh(v0) +

∫
dr′χh

0(|r− r′|, ṽ0)
(
v(r′)− v0

)
(43)

Our aim is to seek for ṽ0 that gives the exact result. For this, we have to solve for this
expansion potential at every r, however, the analytical solution is impossible due to
the explicit form of the Lindhard function. Fortunately, we can benefit from our usual
inspiration and use the electron gas as our basis.

For the (noninteracting) gas,

nh(v) =
k3
F

3π2
=

(−2v)3/2

3π2
(44)

applying linear expansion around v0,

nlin(v) = nh(v0) + (v − v0)χ0(q → 0, ṽ0) (45)

here, we have a simple expression for the χ0(q → 0, ṽ0) which is given as,

χ0(q → 0, ṽ0) = − π2

√
−2ṽ0

(46)

Thus, it is possible to obtain the optimal expansion parameter for the derivative, i.e.
ṽ0. Plugging eqn. 46 into eqn. 45, we obtain

ṽ0 = −1

2

[
(−2v0)

3/2 − (−2v)3/2

3(v − v0)

]2
(47)
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Now, we can use this optimum expansion for the gas and plug it in the real system,
equation 12. Further, if we choose v0 = v(r), the previous expression becomes,

ṽ0rr′ = −1

2


(
− 2v(r)

)3/2
−
(
− 2v(r′)

)3/2
3v(r′)− 3v(r)


2

(48)

Finally, we can now use this expression for our real system, i.e. equation 12. All we
need to do is to plug in, at each point, equation 48 into the argument of χ0.

Figure 12: Charge densities using direct linear response with v0 = v(r) (blue line) and
v0 = ṽ0rr′ (red line) compared to the reference density (black).

Figure 12 shows the analysis on the direct linear approximation. The blue curve repre-
sents the usual expression where v0 = v(r) (see equation 20). Even though it somewhat
performs satisfactory in the high density regime, it fails in the low density regime with
the formation of two small peaks which are due to behavior of the local potential. These
two peaks that appear in the potential, however, should not effect the result (see the
black curve in Figure 12).

The red curve on the other hand, represents the modified direct linear approximation,
i.e. eqn. (12). Here, we modify the v0 to ṽ0 on the derivative term, i.e. inside the
expression of χ0. Our choice of ṽ0 is inspired from that of the homogeneous electron gas
given by equation (48). With this approximation, one gains a significant improvement
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in the low-density regime while losing accuracy in the high-density regime. Our main
objective was to exploit the properties of the electron gas to simulate the reference
density. And we can easily see that the modified version of the linear approximation is
able make the density qualitatively better, and it is therefore a promising route.

C.1 ṽ0 for the connector

In this section, we extend the previous motivation to the connector calculations. Taking
inspiration from the modification v0 → ṽ0, we modify the local connector as following,

vchr =

∫
dr′χ0 (|r− r′|, ṽ0rr′) v(r′)∫

dr′χ0 (|r− r′|, ṽ0rr′)
(49)

where ṽ0 is the same expression as equation (48). The result with the comparison to
the local connector, i.e. ṽ0 = v(r) is shown in the Figure 13.

Figure 13: Charge densities using local connector: expansion potential directly from
the local potential (blue line) and from v0 = ṽ0rr′ (red line).

One can easily notice that the two figures, 12 and 13 are very similar to each other (see
the red curves). The reason for this can be justified by the fact that the local connector
and the direct linear approximation yields very similar results for the charge density
of Helium (the blue curves in Figures 12 and 13). Therefore, previously mentioned
remarks for the linear approximation holds for the local connector as well. However,
knowing its success for the bilocal case, we can even modify the equation (49) to include
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the connector in the denominator to have a self-consistent scheme (previously denoted
as bilocal rrc). We propose the following modification in the denominator of equation
(49),

vchr =

∫
dr′χ0 (|r− r′|, ṽ0rr′) v(r′)∫

dr′χ0 (|r− r′|, ṽ0rrc)
(50)

where

ṽ0rrc = −1

2


(
− 2v(r)

)3/2
−
(
− 2vchr

)3/2
3vchr − 3v(r)


2

Figure 14: Charge densities using local connector: expansion potential directly from
the local potential (blue line) and from v0 = ṽ0rr′ (red line).

Inspecting Figure 14, we notice how the modification in v0 can approach to the ex-
act result significantly. For this, we are interested in systematic methods to treat v0.
Namely, we want to be able to control the expansion potential in certain parts in real
space to obtain more accurate charge densities.
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