Introduction to Green's functions

Matteo Gatti

ETSF Users' Meeting and Training Day Ecole Polytechnique - 22 October 2010

Outline

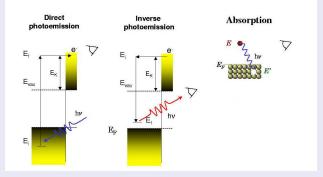
- The GW Approximation
- 4 The Bethe-Salpeter Equation

Outline

- 2 Green's functions
- 3 The GW Approximation
- 4 The Bethe-Salpeter Equation

Electronic Spectroscopy

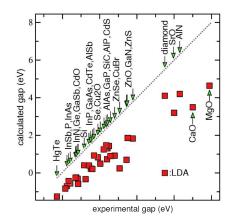
Here only two categories:



Charged excitations: photoemission and inverse photoemission

eutral excitations: absorption and electron energy loss

Why do we have to study more than DFT?



adapted from M. van Schilfgaarde et al., PRL 96 (2006).

Motivation

MBPT vs. TDDFT: different worlds, same physics

(TD)DFT

- based on the density
- response function χ : neutral excitations
- moves density around
- is efficient (simple)

MBPT

- based on Green's functions
- one-particle G: electron addition and removal GW two-particle L: electron-hole excitation - BSE
- moves (quasi)particles around
- is intuitive (easy)

Table of characters

- Density: local in space and time
 - $\rho(\mathbf{r}_1, t_1)$
- Density matrix: non-local in space

 $\gamma(\mathbf{r}_1,\mathbf{r}_2,t)$

One-particle Green's function: non-local in space and time:
 G(**r**₁, **r**₂, *t*₁, *t*₂)

• $G(1,2) \equiv G(\mathbf{r}_1,\mathbf{r}_2,t_1,t_2)$

- $G(\mathbf{r}_1,\mathbf{r}_2,t_1,t_2) = G(\mathbf{r}_1,\mathbf{r}_2,t_1-t_2) \Rightarrow G(\mathbf{r}_1,\mathbf{r}_2,\omega)$
- $\rho(\mathbf{r}_1, t_1) = -iG(\mathbf{r}_1, \mathbf{r}_1, t_1, t_1^+)$

Table of characters

- Density: local in space and time
 - $\rho(\mathbf{r}_1, t_1)$
- Density matrix: non-local in space

 $\gamma(\mathbf{r}_1,\mathbf{r}_2,t)$

One-particle Green's function: non-local in space and time:
 G(**r**₁, **r**₂, *t*₁, *t*₂)

•
$$G(1,2) \equiv G(\mathbf{r}_1,\mathbf{r}_2,t_1,t_2)$$

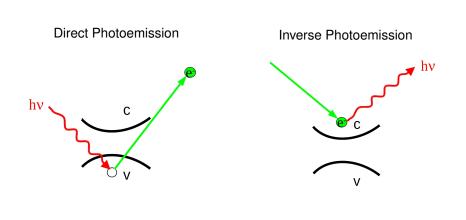
•
$$G(\mathbf{r}_1,\mathbf{r}_2,t_1,t_2) = G(\mathbf{r}_1,\mathbf{r}_2,t_1-t_2) \Rightarrow G(\mathbf{r}_1,\mathbf{r}_2,\omega)$$

• $\rho(\mathbf{r}_1, t_1) = -iG(\mathbf{r}_1, \mathbf{r}_1, t_1, t_1^+)$

Outline

- 2 Green's functions
- 3 The GW Approximation
- 4 The Bethe-Salpeter Equation

Photoemission



Motivation

Green's functions

The GW Approximation

One-particle Green's function

The one-particle Green's function G

Definition and meaning of G:

$$iG(\mathbf{r_1}, t_1; \mathbf{r_2}, t_2) = \langle N | T \left[\psi(\mathbf{r_1}, t_1) \psi^{\dagger}(\mathbf{r_2}, t_2) \right] | N \rangle$$

for $t_1 > t_2 \Rightarrow iG(\mathbf{r}_1, t_1; \mathbf{r}_2, t_2) = \langle N | \psi(\mathbf{r}_1, t_1) \psi^{\dagger}(\mathbf{r}_2, t_2) | N \rangle$ (1) for $t_1 < t_2 \Rightarrow iG(\mathbf{r}_1, t_1; \mathbf{r}_2, t_2) = -\langle N | \psi^{\dagger}(\mathbf{r}_2, t_2) \psi(\mathbf{r}_1, t_1) | N \rangle$ (2) Motivation

Green's functions

The GW Approximation

One-particle Green's function

The one-particle Green's function G

Definition and meaning of G:

$$iG(\mathbf{r_1}, t_1; \mathbf{r_2}, t_2) = \langle N | T \left[\psi(\mathbf{r_1}, t_1) \psi^{\dagger}(\mathbf{r_2}, t_2) \right] | N \rangle$$

for
$$t_1 > t_2 \Rightarrow i G(\mathbf{r}_1, t_1; \mathbf{r}_2, t_2) = \langle N | \psi(\mathbf{r}_1, t_1) \psi^{\dagger}(\mathbf{r}_2, t_2) | N \rangle$$
 (1)

for
$$t_1 < t_2 \Rightarrow iG(\mathbf{r}_1, t_1; \mathbf{r}_2, t_2) = -\langle N | \psi^{\dagger}(\mathbf{r}_2, t_2) \psi(\mathbf{r}_1, t_1) | N \rangle$$
 (2)

One-particle Green's function

$$t_{1} > t_{2}$$

$$\langle N|\psi(\mathbf{r}_{1}, t_{1})\psi^{\dagger}(\mathbf{r}_{2}, t_{2})|N\rangle$$

$$(\mathbf{r}_{2}, \mathbf{t}_{2})$$

$$(\mathbf{r}_{1}, \mathbf{t}_{2})$$

$$(\mathbf{r}_{1}, \mathbf{t}_{1})$$

$$\begin{array}{c} t_{1} < t_{2} \\ -\langle N | \psi^{\dagger}(\mathbf{r}_{2}, t_{2}) \psi(\mathbf{r}_{1}, t_{1}) | N \rangle \\ \end{array} \\ \hline \left(\begin{array}{c} (\mathbf{r}_{2}, \mathbf{t}_{2}) \\ 0 \\ (\mathbf{r}_{1}, \mathbf{t}_{1}) \end{array} \right) \\ \end{array}$$

One-particle Green's function

What is G?

Definition and meaning of G:

$$G(\mathbf{r_1}, t_1; \mathbf{r_2}, t_2) = -i < N |T \left[\psi(\mathbf{r_1}, t_1) \psi^{\dagger}(\mathbf{r_2}, t_2) \right] |N >$$

Insert a complete set of N + 1 or N - 1-particle states. This yields

$$\begin{aligned} G(\mathbf{r_1}, t_1; \mathbf{r_2}, t_2) &= -i \sum_j f_j(\mathbf{r_1}) f_j^*(\mathbf{r_2}) e^{-i\varepsilon_j(t_1 - t_2)} \times \\ &\times \left[\theta(t_1 - t_2) \theta(\varepsilon_j - \mu) - \theta(t_2 - t_1) \Theta(\mu - \varepsilon_j) \right]; \end{aligned}$$

where:

$$\varepsilon_j = \begin{array}{c} E(N+1,j) - E(N), \quad \varepsilon_j > \mu \\ E(N) - E(N-1,j), \quad \varepsilon_j < \mu \end{array}$$

$$f_{j}(\mathbf{r}_{1}) = \begin{array}{c} \langle N | \psi(\mathbf{r}_{1}) | N+1, j \rangle, & \varepsilon_{j} > \mu \\ \langle N-1, j | \psi(\mathbf{r}_{1}) | N \rangle, & \varepsilon_{j} < \mu \end{array}$$

Motivation

One-particle Green's function

What is G? - Fourier transform

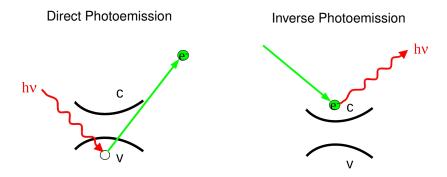
Fourier Transform:

$$G(\mathbf{x}, \mathbf{x}', \omega) = \sum_{j} \frac{f_{j}(\mathbf{x}) f_{j}^{*}(\mathbf{x}')}{\omega - \varepsilon_{j} + i\eta sgn(\varepsilon_{j} - \mu)}.$$

Spectral function:

$$A(\mathbf{x},\mathbf{x}';\omega) = \frac{1}{\pi} \mid \text{Im} G(\mathbf{x},\mathbf{x}';\omega) \mid = \sum_{j} f_{j}(\mathbf{x}) f_{j}^{*}(\mathbf{x}') \delta(\omega - \varepsilon_{j}).$$

Photoemission



One-particle excitations \rightarrow poles of one-particle Green's function G

One-particle Green's function

One-particle Green's function

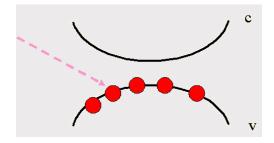
From one-particle G we can obtain:

- one-particle excitation spectra
- ground-state expectation value of any one-particle operator: e.g. density ρ or density matrix γ :

$$\rho(\mathbf{r},t) = -iG(\mathbf{r},\mathbf{r},t,t^{+}) \qquad \gamma(\mathbf{r},\mathbf{r}',t) = -iG(\mathbf{r},\mathbf{r}',t,t^{+})$$

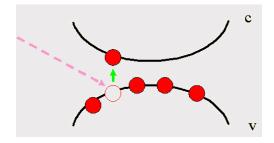
ground-state total energy

Absorption



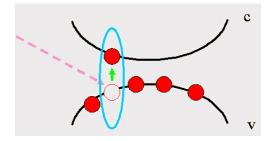
Two-particle excitations \rightarrow poles of two-particle Green's function *L* Excitonic effects = electron - hole interaction

Absorption



Two-particle excitations \rightarrow poles of two-particle Green's function *L* Excitonic effects = electron - hole interaction

Absorption



Two-particle excitations \rightarrow poles of two-particle Green's function *L* Excitonic effects = electron - hole interaction Motivation

Green's functions

The GW Approximatic

Table of characters

G(1,2): one-particle Green's function (2 points)
L(1,2,3,4): two-particle Green's function (4 points)

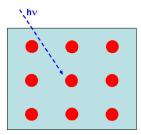
Outline

- 2 Green's functions
- The GW Approximation
- 4 The Bethe-Salpeter Equation

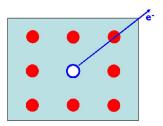
Motivation

The GW Approximation

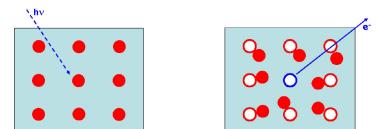
GW bandstructure: photoemission



additional charge \rightarrow



GW bandstructure: photoemission



additional charge \rightarrow reaction: polarization, screening

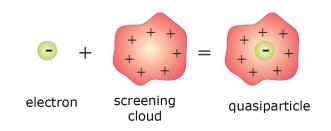
GW approximation

- polarization made of noninteracting electron-hole pairs (RPA)
- classical (Hartree) interaction between additional charge and polarization charge

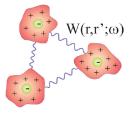
Motivation

GW and Hartree-Fock

Quasiparticle



Screened potential W



W = screened potential: weaker than bare Coulomb interaction

$$W(r,r',\omega) = \int dr'' \frac{\varepsilon^{-1}(r,r'',\omega)}{|r''-r'|}$$

Hartree-Fock

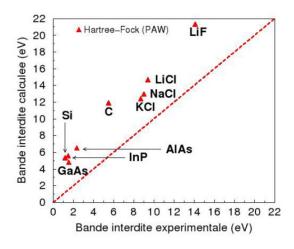
 $\Sigma(12) = iG(12)v(1^+2)$

- v infinite range in space
- v is static
- Σ is nonlocal, hermitian, static

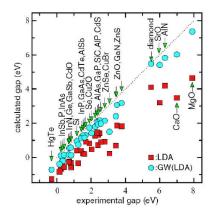
GW

$\Sigma(12) = iG(12)W(1^+2)$

- W is short ranged
- W is dynamical
- Σ is nonlocal, complex, dynamical



from Brice Arnaud

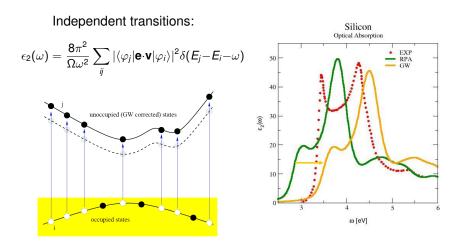


M. van Schilfgaarde et al., PRL 96 (2006).

Outline

- 2 Green's functions
- 3 The GW Approximation
- 4 The Bethe-Salpeter Equation

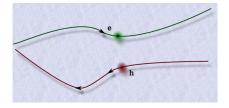
Independent (quasi)particles: GW



What is wrong?

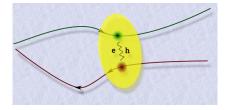
What is missing?

Beyond RPA



Independent particles (RPA)

Beyond RPA



Interacting particles (excitonic effects)

Absorption spectra in BSE

Independent (quasi)particles

$$egin{aligned} \mathcal{Abs}(\omega) \propto \sum_{m{vc}} |\langle m{v}| m{D} |m{c}
angle|^2 \delta(m{E_c} - m{E_v} - \omega) \end{aligned}$$

Excitonic effects: the Bethe-Salpeter equation

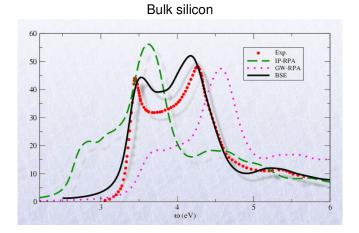
$$[H_{el} + H_{hole} + H_{el-hole}]A_{\lambda} = E_{\lambda}A_{\lambda}$$

$$egin{aligned} egin{aligned} egi$$

• mixing of transitions: $|\langle v|D|c\rangle|^2 \rightarrow |\sum_{vc} A_{\lambda}^{(vc)} \langle v|D|c\rangle|^2$

• modification of excitation energies: $E_c - E_v \rightarrow E_\lambda$

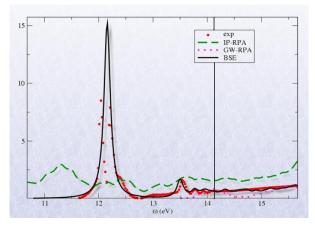
Absorption spectra in BSE



G. Onida, L. Reining, and A. Rubio, RMP 74 (2002).

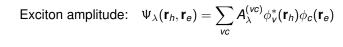
Bound excitons

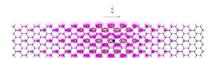
Solid argon



F. Sottile, M. Marsili, V. Olevano, and L. Reining, PRB 76 (2007).

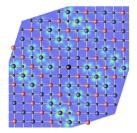
Exciton analysis





Graphene nanoribbon

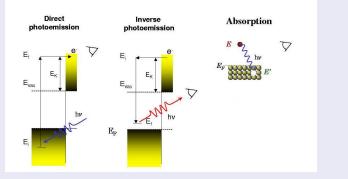
D. Prezzi, et al., PRB 77 (2008).



Manganese Oxide

C. Rödl, et al., PRB 77 (2008).

Electronic Spectroscopy



Charged excitations: photoemission and inverse photoemission = GW

eutral excitations: absorption and electron energy loss = BSE