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Motivation

Electronic Spectroscopy

Here only two categories:

Direct Inverse Absorption
photoemission photoemission

@ charged excitations: photoemission and inverse photoemission

@ neutral excitations: absorption and electron energy loss
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PRL 96 (2006).

adapted from M. van Schilfgaarde et al.



Motivation

MBPT vs. TDDFT: different worlds, same physics

(TD)DFT
@ based on the density
@ response function x: neutral excitations
@ moves density around
@ is efficient (simple)

4

MBPT

@ based on Green'’s functions

@ one-particle G: electron addition and removal - GW
two-particle L: electron-hole excitation - BSE

@ moves (quasi)particles around
@ is intuitive (easy)

A




Motivation

Table of characters

@ Density: local in space and time
p(ri, t)

@ Density matrix: non-local in space
Y(r1, 12, 1)

@ One-particle Green’s function: non-local in space and time:
G(ry,r2, b, b)




Motivation

Table of characters

@ Density: local in space and time
p(ri, t)

@ Density matrix: non-local in space
Y(r1, 12, 1)

One-particle Green’s function: non-local in space and time:
G(ri,r2, 1, b2)

G(172) = G(r1,r2) t17t2)
G(ry,r2, ty, ) = G(ry,r2, ty — o) = G(rq,r2,w)
p(r1, b)) = —iG(r1,t1, 1y, £)
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Photoemission

Direct Photoemission Inverse Photoemission
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Green'’s functions

One-particle Green’s function

The one-particle Green’s function G

Definition and meaning of G:

iG(r1, ty; ¥, 1) = (N|T [9(r1, 1) (ra, )] |N)




Green'’s functions

One-particle Green’s function

The one-particle Green’s function G

Definition and meaning of G:

iG(r1, ty; ¥, 1) = (N|T [9(r1, 1) (ra, )] |N)

for ty > b :>iG(r1, ly; ra, tg) = <N|'(/J(r17 t )¢T(r2a t2)|N> (1)
for t <t =iG(r, ;¥ ko) = —(N|opT(r2, ) (re, H)|N)  (2)



Green'’s functions

One-particle Green’s function

t > b Lt <b
(N|p(rq, t1)0 T (r2, &2)|N) — (N[ (r2, &)y(re, 1) |N)
( r2 b t 2 ) ( r2 1 %2 )
o O
® O
(ry,ty) (ri>ty)




Green'’s functions

One-particle Green’s function

What is G ?

Definition and meaning of G:

Qmmhﬁﬁr4<MTwmmWNm&ﬂW>
Insert a complete set of N + 1 or N — 1-particle states. This yields
G(r1, tira, tz) _ _ I-Z l;(h)fj*(rz)e_faj(h —b) %
j

X [0(t — )0(gj — ) — 0( — 1)O(u — €))];
where:

__ EIN+1,)—E(N), &> p
"TOE(IN) - E(N-1,)), g<up

fu)_<NwmﬂN+un, g >
MU= Nl m)IN), g <p




Green'’s functions

One-particle Green’s function

What is G? - Fourier transform
Fourier Transform:

G, w) = 3 — )

~w—et insgn(ej — p)”

Spectral function:

A X 0) = L 1IMGOx X ) [= 3 607 (K)o )
J




Photoemission

Direct Photoemission Inverse Photoemission
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One-particle excitations — poles of one-particle Green’s function G



Green'’s functions

One-particle Green’s function

One-particle Green'’s function

From one-particle G we can obtain:
@ one-particle excitation spectra

@ ground-state expectation value of any one-particle operator:
e.g. density p or density matrix ~:
p(r,t) = —iG(r,r, t, t1) y(r, ¥ t) = —iG(r,r, t tT)

@ ground-state total energy
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Two-particle excitations — poles of two-particle Green’s function L
Excitonic effects = electron - hole interaction
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Two-particle excitations — poles of two-particle Green’s function L
Excitonic effects = electron - hole interaction



Absorption

v

Two-particle excitations — poles of two-particle Green’s function L
Excitonic effects = electron - hole interaction



Green'’s functions

Table of characters

@ G(1,2): one-particle Green’s function (2 points)
@ [(1,2,3,4): two-particle Green'’s function (4 points) J
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The GW Approximation

GW bandstructure: photoemission
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The GW Approximation

GW bandstructure: photoemission

o » > S
C ) O® O ¢O
e o o oY &

additional charge — reaction: polarization, screening

GW approximation

@ polarization made of noninteracting electron-hole pairs (RPA)

© classical (Hartree) interaction between additional charge and
polarization charge

L. Hedin, Phys. Rev. 139 (1965)



GW and Hartree-Fock

Quasiparticle

J +

electron screening quasiparticle
cloud



GW and Hartree-Fock

Screened potential W

£
A

W = screened potential:
weaker than bare Coulomb interaction



GW and Hartree-Fock

Hartree-Fock

Y(12) = iG(12)v(172) ¥ (12) = iG(12)W(1"2)
@ v infinite range in space @ Wis short ranged
@ v is static @ W is dynamical
@ Y is nonlocal, hermitian, static @ X is nonlocal, complex,
) dynamical




The GW Approximation

GW and Hartree-Fock
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The GW Approximation
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M. van Schiligaarde et al., PRL 96 (2006).



The Bethe-Salpeter Equation
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0 The Bethe-Salpeter Equation



The Bethe-Salpeter Equation

Independent (quasi)particles: GW

Independent transitions: oo
Optical Absorption

8 2
(W)= o5 3 [(p/levie) Po(E—E—~w)
Quw
ij kL

40

unoccupied (GW corrected) states

£,(0)

20

e — & 0
=0,
— occupied states. \.\




The Bethe-Salpeter Equation

What is wrong?

What is missing?



The Bethe-Salpeter Equation
Beyond RPA
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Independent particles (RPA)



The Bethe-Salpeter Equation
Beyond RPA

\/%;/,

Interacting particles (excitonic effects)



Absorption spectra in BSE

Independent (quasi)particles

Abs(w Z| v|D|c)?5(E, w)

<

Excitonic effects: the Bethe-Salpeter equation

[Het + Hrole+Hei—hote] Ax = ExAx

Abs(w Z]ZA(VC (v|DIC)[P6(Ex — w)

@ mixing of transitions: |(v|D|c)? — |3, AV (v|D|c)?
@ modification of excitation energies: E; — E, — E,

\




The Bethe-Salpeter Equation

Absorption spectra in BSE

Bulk silicon

w(eV)

G. Onida, L. Reining, and A. Rubio, RMP 74 (2002).



The Bethe-Salpeter Equation

Bound excitons

Solid argon
TR T T
15— .
. exp

= = IP-RPA

. * GW-RPA

e 117
10 =1

11 12 13 14 15
o (eV)

F. Sottile, M. Marsili, V. Olevano, and L. Reining, PRB 76 (2007).



The Bethe-Salpeter Equation

Exciton analysis

Exciton amplitude: W (rn,fe) = > AV (rn)pe(re)
vc

Graphene nanoribbon Manganese Oxide

D. Prezzi, et al., PRB 77 (2008). C. Radl, et al., PRB 77 (2008).



The Bethe-Salpeter Equation

Electronic Spectroscopy

Here only two categories:

Direct Inverse Absorption
photoemission photoemission

@ charged excitations: photoemission and inverse photoemission = GW

@ neutral excitations: absorption and electron energy loss = BSE
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