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Abstract

In this Master’s thesis, we explore different many-body approximations applied to the simplest
model that can be used to describe interfaces between materials: the asymmetric Hubbard dimer.
We start with effective independent-particle schemes, namely Kohn-Sham Density functional the-
ory (KS DFT), which can be performed without approximation here, and the Hartree-Fock ap-
proximation (HF), both restricted and unrestricted. Then, the GW approximation is presented
and adapted to the model, where G is the one-body Green’s function andW the screened Coulomb
potential. We explored four different flavours of GW : two different independent-particle Green’s
functions and two screened potentials, W0 (approximate) and W (exact). Interestingly, the use of
the exact screened potential turned out to give less accurate results than W0, computed with the
Random Phase Approximation (RPA) and a non-interacting Green’s function. This work is the
first step of a benchmark study of many-body approximations applied for band offset problems in
photovoltaic materials.
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1 Introduction

The development of more efficient renewable energy sources is urgent to tackle the environ-
mental crisis. One of the first that come to mind, solar panels, are based on a technology that was
developed in the 1950’s and is still used today: hetero-junctions of semi-conductors. The idea is
very simple, a photon is absorbed by the main semi-conductor, silicon for instance, producing an
electron-hole pair that is free to move within the material until it reaches the junction. There, a
small shift in the band structure between the two materials is designed such that the electron-hole
pair breaks, creating a current. Thus, the efficiency of a photovoltaic material depends - among
other things - on the energy level alignment of the two materials at the interface, called the band
offset. But behind such a simple mechanism, that we easily interpret within the independent
electron picture, lies the incredibly difficult “Many body problem” that makes band structure and
bare particles not well-defined when correlations become strong. How then to correctly model this
problem, if we want to improve this technology?

Among the different ways used to measure band alignment between two materials, the most
common one is photoemission spectroscopy. The idea is the following: light is first shone at a given
frequency on the first material alone (typically silicon), removing electrons by photoelectric effect.
The kinetic energy of these electrons is then measured, revealing the band structure of the bulk
material. Thin layers of the interface material are then deposited on top, and the photoemission
measurements are repeated each time. Contrary to the valence bands, the core energies are not too
strongly affected during this process, and the measure of their offset allows to deduce the valence
band offset. This is called Kraut’s method, and it is explained in [1].

On the other hand, from the theoretician’s point of view, many strategies are often used to
explore beyond the single-particle picture: Kohn-Sham Density Functional Theory (KS DFT),
Dynamical Mean Field Theory (DMFT), GW approximations, quantum Monte Carlo methods...
Each of these has its own range of validity, which may not be easy to evaluate for real materials.
Specific methods have been developed to adapt these many-body frameworks to the band offset
problem (see for example [2]). A first problem arises: what methods and approximations to use in
order to calculate band offsets in good agreement with the experiments? A second major problem,
which may even be more fundamental, is the following. The very definition of band offsets relies
on the independent-particle picture, while what experimentalists measure, and theoreticians try to
compute, are addition/removal energies, which are fundamentally many-body quantities. There-
fore, is it always possible to define a band offset, and how?

The goal of this internship (followed by a PhD) is to benchmark many different ways to evaluate
band offsets in real systems, in such a way that experimentalists and theoreticians can rigorously
compare their results. We start simple in this thesis by exploring a toy model: the Hubbard dimer.
The great advantage of this model, which is the simplest hetero-junction one can think of, is that
it is exactly solvable, allowing for comparison between the approximate many-body energies to the
exact ones.

In the first section, the theoretical model is presented as well as its exact solutions. Then, an
exact KS DFT study is performed, followed by the HF approximation, constituting the two main
independent-particle schemes. After that, the GW approximation is presented and applied to the
model, using first the approximate W0 screened interaction and then the exact one. Finally, the
link with real materials is made through a discussion of band offsets for the Hubbard dimer.
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2 The Hubbard dimer model

2.1 The model

The simplest model describing the physics near the junction between two di�erent materials
is the asymmetric Hubbard dimer, in which each material is represented by a single site that can
host at most two electrons, due to the Pauli principle. A given electron will then have a kinetic
energy given by a probability amplitudet to hop from one site to the other, as well as an on-site
potential energyvi , di�erent for the two sites. Finally, we consider only local and spin-dependent
electron-electron repulsion of amplitudeU, taking into account simultaneously Coulomb force and
Pauli's exclusion principle. The resulting Hamiltonian reads:

H = � t
X

�

(ĉy
1� ĉ2� + h:c) + U

X

i

n̂i " n̂i # +
X

i

vi n̂i : (2.1)

We choose the convention 2t = 1 and v1+ v2 = 0, leaving only two free parameters, �v = v2 � v1

and U. We will work in the canonical ensemble, where the numberN of electrons is �xed. The
symmetric limit � v ! 0 as well as the asymmetric one forN = 1 have been studied in the group,
respectively in [3] and [4]. In this project, I focused on the half-�lled (N = 2) asymmetric case.
In the following, we call occupation numbers the quantitiesni = ĥni i (i = 1; 2), and occupation
di�erence � n = n1 � n2.

2.2 Exact eigenenergies

For N = 1 and N = 3, the Hilbert space is of dimension 4, andH is easy to diagonalise. For
N = 2, if we impose that the total spin Sz is zero1, we also have a four-dimensional Hamiltonian
to diagonalise, and more sophisticated solutions appear. In Tab. 1, the eigenenergies are written
for these three cases, while the eigenstates are written in appendix A.

N = 1 N = 2 N = 3

E N =1
� = � 1

2

p
4t2 + � v2 E N =2

� = 2
3 [U � r cos(� + � � )] E N =3

� = � 1
2

p
4t2 + � v2 + U

E N =1
+ = 1

2

p
4t2 + � v2 E N =2

2 = 0 E N =3
+ = 1

2

p
4t2 + � v2 + U

Table 1: Exact eigenenergies of the Hubbard dimer model forN = 1; 2; 3, wherez2 = 9� v2 � U2 �
19t2, r 2 = 3� v2 + U2 + 12t2 and cos(3� ) = z2U

r 3

2.3 Exact one-body Green's function

In principle, all the information about a given many-body system is contained in the many-
body wavefunction, or equivalently in the many-body Green's function, whose equation of motion
is equivalent to the full Schr•odinger equation. However, such a quantity contains too much in-
formation, and most observables can be computed from the retarded one-body Green's function

1We are indeed not interested in ferromagnetic systems
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Figure 1: Exact spectral functionA(! ) for U = 1 and U = 5, in the symmetric case � v = 0.

(1-GF), which is de�ned by:

Gij� (! ) = � i
Z + 1

�1
dtei!t

D
T̂

h
ĉi;� (t)ĉy

j;�

iE
; (2.2)

where the expectation value is taken at the ground state2 and T̂ is the time-ordering operator,
ensuring causality. The 1-GF has a more physical expression in the Lehmann representation (Eq.
2.3), where we clearly see that its poles are the energies needed to add or remove one electron to or
from the system. These are precisely the energies that are measured in photoemission experiments,
and we will call them energy levels in the following.

GN =2
ij� (! ) =

4X

n=1

h� = 1j ci�

�
�  N =3

n

� 

 N =3

n

�
� cy

j� j� = 1 i

! + i0+ � (E N =3
n � E1)

+
4X

n=1

h� = 1j cy
i�

�
�  N =1

n

� 

 N =1

n

�
� cj� j� = 1 i

! � i0+ � (E1 � E N =1
n )

;

(2.3)

wherej� = 1 i is the ground state forN = 2, given by Eq. A.6. Thanks to the Lehmann represen-
tation and the exact eigenstates, we can compute exactly each componentGN =2

ij� (! ) analytically.
From these we can compute the spectral function, which is an extension of the notion of density
of states in many-body physics:

A ij� (! ) = �
1
�

Im Gij� (! ) and A(! ) =
X

i;�

A ii� (! ) : (2.4)

The exact spectral function is plotted for � v = 0 and two di�erent values of U in Fig.1. The

2The same notation can be used to de�ne the 1-GF at non-zero temperature. In this thesis, we will always
considerT = 0.
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two main peaks are called quasi-particle peaks and their position correspond to the energies of
adding / removing one electron. The two lower peaks are called satellites and are excitations due
to electron-electron interactions. We can note that, as expected in the symmetric case �v = 0,
the spectral function is symmetric around �v = U

2 .
Finally, the 1-GF is solution of the equation of motion Eq. B.1, in which the second term

de�nes the self-energy �, an object that e�ectively takes into account the electronic correlations.
�, G and G0, the non-interacting 1-GF (which is the 1-GF forU = 0) are linked by Dyson's
equation (written here in an arbitrary basis):

G� 1 = G� 1
0 + � (2.5)

3 Exact Kohn-Sham study

Kohn-Sham density functional theory (KS DFT) is a very common tool which is widely used
to quickly compute the band structure of materials. It is said to be anab initio method since
it starts with the real fundamental Hamiltonian of the system instead of relying on models (such
as the Hubbard one). DFT is based on the Hohenberg{Kohn [5] theorems which state that all
observables can be expressed as a functional of the electronic ground state densityn(r ). The genius
idea by Kohn and Sham [6], that makes DFT a very useful framework, is then to substitute the
real system by a non-interacting one that provides the same density. In that sense, the KS scheme
is exact.

In our discrete model, the density is no longer a function but a set of two numbersn1 and
n2 = N � n1. Thus, we should rather work with Site-Occupation Function Theory (SOFT), in-
troduced in [7] and applied to the Hubbard dimer in [8]. The main quantities of interest are
summarised in Tab. 2, for both the real and the �ctitious systems.

Real system Fictitious KS system

Universal function(al) F (n1) = E(n1) � V(n1) F (n1) = Ts(n1) + UH (n1) + Ex (n1) + Ec(n1)

External potential � v � vs

Electronic density � n � n

Electron interactions Yes No

Table 2: Summary of the di�erences between the real and the �ctitious systems

The bridge between the two systems is given by the universal functionalF , which is de�ned
by everything in the energy that does not depend on the speci�c material (i.e the kinetic and
correlation energies of the electrons). In our case, it can be computed exactly since we know the
ground state energyE1 and the external potential energy:

V(n1) =
D

V̂
E

= v1n1 + v2n2 = �
� v
2

n1 +
� v
2

n2 = �
� n� v

2
(3.1)

5



And thus:
F (n1) = E1(n1) +

� n� v
2

with � n = 2n1 � N (3.2)

Knowing exactly F is only possible because we already solved the problem exactly, and it
enables us to compute the correlation energyEc = F � Ts � UH � Ex . In real systems,F is
unknown, andEc has to be approximated (for instance with the local density approximation).

Since the �ctitious system is non interacting, its Hamiltonian is separable into two one-particle
Hamiltonians that are the same as the real one forN = 1 (see Eq. A.1), but with e�ective on-site
potentials v1

s and v2
s . The corresponding Kohn-Sham (KS) eigenenergies are thus:

� KS
� = �

1
2

p
4t2 + � v2

s + �vs (3.3)

where, thanks to theN = 1 useful formula A.4, we �nd by inverting the KS equation that � vs is
given by3:

� vs =
2t� n

p
4 � � n2

(3.4)

and �vs = U
2 + �vc, with vi

c = v1
c + v2

c . However, KS DFT only �xes vi
c up to a constant. A way to

�x that constant is to remark that vi
c = dEc

dn i
and to use a chain rule:

�vc =
@Ec
@N

�
�
�
�
� n;N =2 �

(3.5)

The derivative of Ec with respect to N is known to be discontinuous at integer values ofN ,
and we decide here to evaluate it forN = 2 � . This poses a new problem: we need to de�ne our
functionals for fractional number of particles (i.e to work in the grand canonical ensemble). As
suggested in [8], the ground state energy and the occupation di�erence for fractionalN = 1 + !
are: �

E N
1 = !E N =2

1 + (1 � ! )E N =1
1

� nN = ! � nN =2 + (1 � ! )� nN =1 (3.6)

Numerically inverting the second equation in 3.6 allows us to �nd �vN (� n) for �xed N and
� n, which combined with the second equation in 3.6 allows us to computeEc(N ; � n) and thus
�vs.

The �nal KS energies � KS
� are plotted in Fig. 2 on top of the energy levelsE N +1

GS � E N
GS,

corresponding to the change of energy when adding or removing one electron to theN = 2 system
in the ground state (GS). These are the energies that we indeed measure experimentally, and are
the poles of the one-body Green's function, as discussed in Sec. 2.3. According to Koopmans'
theorem for KS DFT, we are supposed to �nd that the lower KS energy� KS

� (called HOMO in
the chemistry community, for Highest Occupied Molecular Orbital) is equal to the opposite of the
ionisation energyI = E N =1

� � E N =2
0 , i.e the energy cost of removing one electron. This is indeed

veri�ed for U = 1 and U = 5 in Fig. 2. The upper KS energy� KS
+ (called LUMO, for Lowest

3Actually, inverting A.4 gives two solutions, one of which is negative and the other positive. The negative one
can though be discarded since in the ground state, when �n = n1 � n2 > 0, more electrons lie on site 1, thus we
must have v1 < v 2, i.e � v > 0.
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Figure 2: Comparison between the exact energy levels and the HOMO and LUMO KS solutions,
for U = 1 and U = 5

Unoccupied Molecular Orbital) is not supposed to have a physical meaning, but it matches well
the energy for adding one electron for smallU and/or large � v. It is interesting to note that,
despite being exact, the KS scheme does not give exact energy levels (it is indeed only designed to
give the exact GS occupation numbers). Only in the low correlation limit are these eigenenergies
good approximations for the measured energy levels.

In practice, approximations have to be found for computingEc, such as the Local Density
Approximation (LDA), leading to less accurate energies.

4 A mean-�eld approach: the Hartree-Fock approxima-
tion

In the previous section, we explored the exact KS scheme, which was exact in the sense
that the KS auxiliary system gives the exact ground state occupation number. A fundamentally
di�erent approach is to start from the Hubbard Hamiltonian 2.1 and approximate it. A natural
approximation to obtain a separable Hamiltonian that takes into account some interactions in an
e�ective way is to model electronic interactions as a mean �eld. We expect this approximation to
fail in the large U limit, where a mean-�eld approach does not apply anymore.

There are several ways to derive the Hartree-Fock (HF) approximation. One natural way is to
start from the Hamiltonian and re-write the interaction term as:

ni " ni # = ni " ni # + ni #ni " � ni " ni # +
( ( ( ( ( ( ( ( ( ( (h h h h h h h h h h h
(ni " � ni " )(ni # � ni #) (4.1)

which gives rise to a single-electron Hamiltonian feeling an e�ective potentialve�
i� :

H H =
X

i;�

h
� t(cy

i� ci +1 ;� + hc) + vH
i�

i
with ve�

i� = vi + Uni � (4.2)
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(a) Exact solution (b) Restricted HF formula solved self-consistently

Figure 3: � n with respect to � v both in the exact scheme and the RHF approximation Eq. 4.7

where \H" stands for Hartree. This Hamiltonian is still hard to solve, since it now depends on
ni " and ni #. We can �rst make the approximation that the local magnetisationmi = ni " � ni #

is zero, i.e that ni " = ni # = n i
2 . This is a paramagnetic approximation (since it does not allow

ferro/anti-ferromagnetic solutions), and is called restricted Hartree-Fock (RHF).

4.1 Restricted Hartree-Fock

In this case the single-electron Hamiltonian can be written in the basis (j" ; 0i ; j#; 0i ; j0; "i ; j0; #i )
as:

hRH =

0

B
B
@

v1 + Un1
2 0 � t 0

0 v1 + Un1
2 0 � t

� t 0 v2 + Un2
2 0

0 � t 0 v2 + Un2
2

1

C
C
A (4.3)

which looks very similar to H N =1 (see Eq. A.1) with e�ective onsite potentialsve�
i = vi + Un i

2 .
Diagonalising this Hamiltonian gives two degenerate eigenvalues4:

� RH
� =

ve�
1 + ve�

2

2
�

1
2

p
4t2 + (� ve� )2 =) � RH

� =
U
2

�
1
2

p
4t2 + (� ve� )2 (4.4)

The di�culty here is that the energy still depends on the site occupation �n, which we have to
calculate for a given � v. Since the system is separable within the HF approximation, the ground
state is a Slater determinantj� i composed of twice the ground statej�i of hRH . Thus, we simply
have:

ni = h� j n̂i j� i = 2 h�j n̂i j�i (4.5)

4We call these energies� RH
� , for \Restricted Hartree", instead of RHF. Indeed, a Fock term is to be added when

calculating total energies, which we are not of our interest. However, we will continue referring to this approximation
as Hartree-Fock in the following.
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Figure 4: Comparison between the exact energy levels and the HOMO and LUMO RHF solutions,
for U = 1 and U = 5

With, as for the Hubbard dimer with N = 1, the single-electron ground state being:

j�i = cos� j" ; 0i + sin � j0; "i =)
�

n1 = 2 cos2 �
n2 = 2 sin2 �

(4.6)

Which gives:

� n = 2 cos2 � � 2 sin2 � = 2
1 � tan2 �
1 + tan 2 �

with tan � =

s

1 +
�

� ve�

2t

� 2

�
� ve�

2t
(4.7)

This last equation is self-consistent since �ve� = � v � U� n
2 . We can solve it self-consistently

and we end up with Fig. 3b, that di�ers signi�cantly from the exact solution (see Fig. 3a) at large
U and small � v, i.e in the high-correlation regime.

Finally, as for the exact KS treatment, we can look at the energy levelsE N =2
1 � E N =1

+ and
E N =3

+ � E N =2
1 , and compare them to the restricted Hartree eigenvalues found in Eq. 4.4. Indeed,

according to Koopman's theorem, the Hartree-Fock eigenvalues are addition/removal energies. The
resulting plots are shown in Fig. 4. As for exact KS,� RH

� tend to the exact energy levels at low
U and large � v, but fail otherwise. Even though the RHF solutions look very di�erent than the
KS ones (the �rst being symmetric while the second are very asymmetric), the fundamental gap
� + � � � are about the same, and independent ofU, which is remarkable.

A very useful interpretation of the HF solutions is given by Koopman's theorem, according to
which the HF eigenenergies (Eq. 4.4) can be physically interpreted as energy levels. This will be
used in Sec. 7.

4.2 Unrestricted Hartree-Fock

In order to improve the previous results, we can relax the constraintmi = 0, allowing a local
magnetization. According to [8], the ferromagnetic solution (M = m1 + m2 = 2) is always less
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favourable than the antiferromagnetic one (M = 0), and we will thus focus on the last one. We
can notice that the Hamiltonian 4.2 is block-diagonal in spin-subspace:

H H =
X

�

hH
� with hH

� =
�

ve�
1;� � 1

� t ve�
2;�

�
(4.8)

in the one-electron basis (j1; � i ; j2; � i ). This Hamiltonian is easy to diagonalise, and we �nd four
eigenenergies, that are a generalisation of Eq. 4.4:

� UH
�; � =

ve�
1;� + ve�

2;�

2
�

1
2

p
4t2 + (� ve�

� )2 (4.9)

that we can re-write in terms ofN , � n and � m = m1 � m2:

� UH
�; � =

U
4

N �
1
2

p
4t2 + (� ve�

� )2 with � ve�
� = � v �

U
2

(� n � � � m) (4.10)

In order to compute these energies, we need to know �n and � m for each value of � v and U.
Generalising Eq. A.4, and extending it also to the magnetisation, we get:

� n =
X

�

� ve�
�p

4t2 + (� ve�
� )2

� m =
X

�

�
� ve�

�p
4t2 + (� ve�

� )2
(4.11)

These equations are self-consistent, and we have to solve them numerically, simultaneously for
� n and � m. We proceed by �rst computing the exact expression of �n(� v; U), and use this value
as an initial guess of �n. For the initial value of � m, we choose 2, since we want to prioritise the
anti-ferromagnetic solution when it exists (we could have chosen� 2 as well, the energy would have
been the same). We then iterate Equations 4.11 until convergence. We get Fig. 5, which shows the
existence of two phases for eachU: an antiferromagnetic one for �v < � vc(U), for which � m 6= 0
(spontaneous breaking of symmetry), and a paramagnetic one for �v > � vc(U), and for which
we recover our previous RHF analysis. This phase transition can be seen as a discontinuity in the
derivative of � n.

Finally, as for exact KS and RHF, we plotted in Fig. 6 the HOMO and LUMO energy levels
for UHF compared to the exact energy levels. We clearly see that the corrections at �v < � vc

improve signi�cantly the results at U = 5, compared to the RHF solution.
We can interpret the relative success of the paramagnetic and anti-ferromagnetic solutions as

follows. At large � v, the two sites are far apart and the two electrons tend to localise on the
same site, despite the Coulomb repulsionU. The Pauli principle ensures that the two electrons
have opposite spins, and thusm1 = m2 = 0, i.e � m = 0: this explains the paramagnetic phase.
On the contrary, at small � v, the electrons delocalise to form a triplet of opposite spins. Then,
m1 = � m2 and thus � m = � 1, which explains the anti-ferromagnetic phase.

5 Beyond Hartree-Fock: the G0W0 approximation

Another way to think of the HF approximation is the following. The self-energy (de�ned by
Eq. B.2 or equivalently by Eq. 2.5) is written in this approximation as a Hartree term, describing
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Figure 5: � n and � m self-consistently calculated from Eq. 4.11, within the unrestricted anti-
ferromagnetic HF approximation (solid line). The RHF calculation of �n is also plotted in dashed-
dotted lines

naively the interaction of one electron with its environment, and a Fock term that corrects the self-
interaction contained in Hartree. We can show that the Fock (or exchange) term reads �x = iGvC,
wherevC is the Coulomb potential.

This point of view allows for a natural generalisation of the HF approximation, by replacing the
Coulomb potential vC in the Fock term by a dynamically screened Coulomb potentialW. Indeed,
we know that interacting electrons tend to screen themselves, hugely reducing the potential felt
by each individual electron.

5.1 The G0W0 approximation

More formally, we show in Appendix B that this dynamically screened HF approximation
amounts to take Hedin's equation (Eq. B.5, B.6, B.7, B.8 and 2.5) at �rst order inW, giving rise
to the so-called GW approximation. In particular, we only take into account the �rst term of~� in
Eq. B.6:

~�(1 ; 2; 3) = � (1; 2)� (1; 3)5 (5.1)

Thus, according to Eq. B.5, the self-energy becomes:

� GW (1; 2) = iG(1; 2)W RPA (2; 1+ ) (5.2)

where ~� = � 0 = � iGG and W are respectively the polarisability and the screened Coulomb
potential within the Random Phase Approximation (RPA). We can approximate further and take
a non-interacting Green's functionG0 everywhere instead ofG, giving rise to the so-calledG0W0

approximation, that we will explore in the following. Doing so, we avoid the self-consistency of
Eq. 5.2. G0 can either be de�ned as the 1-GF taken forU = 0, or alternatively the 1-GF of an

5As explained in Appendix B, a number denotes a set of coordinates: (1+ ) = ( r 1 ; t+
1 ; � 1).
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Figure 6: Comparison between the exact energy levels and the HOMO and LUMO UHF solutions,
for U = 1 and U = 5. The RHF calculation is also plotted in dashed-dotted lines forU = 5 (for
U = 1 RHF and UHF are indistinguishable)

auxiliary non-interacting system, such as KS or HF. We expect the second two options to be closer
to the exact G, and we will use both of them in our study. Moreover, it will be interesting to
compare the results for each choice ofG0.

5.2 G0W0 in the case of the asymmetric Hubbard dimer at half-�lling

We now want to implement this approximation in our model, where the real-space coordinates
will be replaced by sites 1 and 2. In frequency space, the self-energy, the screened Coulomb
potential and the irreducible polarisability become:

� ij� (! ) = i
Z

d! 0

2�
G0

ij� (! + ! 0)W 0
ji (! 0)ei! 00+

(5.3a)

W 0
ij (! ) = U� ij + U

X

k;�;� 0

~� ik;�� 0(! )W 0
kj (! ) (5.3b)

~� ij�� 0(! ) = � i
Z

d!
2�

G0
ij� (! + ! 0)G0

ji� 0(! 0) (5.3c)

We can thus compute analytically each component �ij� (! ) for every choice ofG0.

5.3 Practical implementation

The KS Green's function is a non-interacting one, and thus in the bonding / anti-bonding
basis, which is the one-particle eigenstate basis (see Eq. A.2), it reads:

GKS
� � (! ) = h� � j ĜKS(! ) j� � i =

1
! � � KS

� ;� � i0+
(5.4)
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which is spin-independent since the KS eigenvalues are. The Green's function in the site basis is
thus given by the change of basis:

GKS
ij;� = hi� j ĜKS(! ) jj� i =

X

�

hi� j� � i GKS
� � (! ) h� � jj� i =

X

�

� � �;i � �
� �;j

! � � KS
� ;� � i0+

(5.5)

where� � �;i = hi� j� � i is given by:

� � �; 1 = cos� KS � � �; 2 = sin � KS

� + �; 1 = sin � KS � + �; 2 = � cos� KS (5.6)

and � KS is de�ned by Eq. A.3, replacing � v by � vs. The integral expression of ~� (Eq. 5.3c) can
now be performed analytically, using the residue theorem:

~� ij =
~� 0

ij

! � (� KS
+ � � KS

� ) + i0+
�

~� 0
ij

! � (� KS
� � � KS

+ ) � i0+
(5.7)

with
~� 0

ij = 2( � 1)i � j cos2(� KS) sin2(� KS) (5.8)

The next step is to computeW0, which depends self-consistently onW0 and ~� , according to Eq.
5.3b. W0 is spin-independent, and since ~� 11 = ~� 22 = � ~� 12 = � ~� 21, it is easy to �nd that:

W 0
ij (! ) = U� ij + ( � 1)i � j tU 2

l
p

1 + D 2

�
1

! � l + i0+
�

1
! + l � i0+

�
(5.9)

where

D =
� vs

2t
and l =

s

4t2(1 + D 2) +
4tU

p
1 + D 2

(5.10)

Finally, the self-energy is given by the integral 5.3a that, once again, we can perform analytically
using the residue theorem:

� G0W0
ij (! ) = �

Uni

2
� ij +

tU 2

l
p

1 + D 2

�
(� 1)i � j j� � �;i � � �;j j

! � (� KS
� � l ) � i0+

+
j� + �;i � + �;j j

! � (� KS
+ + l) + i0+

�
(5.11)

where the �rst term is simply the Hartree term. In this simple form, we directly see that the self
energy in this approximation has two poles.

5.4 G0W0 energy corrections to exact Kohn-Sham

In order to �nd the energy levels within the G0W0 approximation, we have to solve the Dyson
equation satis�ed by the G0W0 Green's function:

(GG0W0 )� 1 = ( GKS
0 )� 1 � (� G0W0 � V KS

xc ) (5.12)
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and then to �nd the poles of the associated spectral function, given by:

A G0W0 (! ) = �
1
�

X

i

Im GG0W0
ii (! ) (5.13)

In Fig. 7, this G0W0 spectral function as well as the exact one (see Sec. 2.3) are plotted in
a short range of frequencies around the HOMO and LUMO levels, for �v = 0. Finding these
two poles numerically from Fig. 7 for many values of �v is however tedious, and a simpler
(approximate) way is to use perturbation theory.

In the end, we are interested in the energy corrections ofG0W0 with respect to the exact KS
eigenvalues (or the HF ones). Considering �� V KS

xc as a small perturbation, at �rst order in
perturbation theory we get:

� G0W0
� = � KS

� + h�j Re
�

�̂( � G0W0
� ) � V̂ KS

xc

�
j�i (5.14)

wherej�i are the KS eigenstates (we dropped the� since these states are spin-independent). This
equation is self-consistent in� G0W0

� , and we can simplify it by linearising with respect to� G0W0
� � � KS

� ,
as done in [9]:

� G0W0
� = � KS

� + Z � h�j
�

�̂( � KS
� ) � V̂ KS

xc

�
j�i with Z � =

1
1 � @�

@�

�
�
� KS

�

(5.15)

This approach leads to the corrections plotted in Fig. 8, where we see thatG0W0 gives very
good results at lowU (though not as good as the HOMO KS solution, which is exact). At higher
U and low (or intermediate) values of �v, G0W0 however strongly fails. This means that theG0W0

approximation only holds in the low correlation regime, which can be understood in the following
way. The real self-energy can be decomposed as � = �H + � x + � c (in our convention, the Hartree
part � H is included in G0), where � x is the exchange (or Fock) term and �c = � screening

c + � local
c .

The G0W0 approximation gives rise to �G0W0
xc = � x + � screening

c , while � local
c is contained in the ver-

tex corrections (higher terms inW in Hedin's equations). Thus, when the correlations are weak,
electrons delocalise and the screening part of �c is dominant, while on the contrary strong corre-
lations lead to localisation and thus �local

c is dominant, explaining the failure ofG0W0 in this regime.

We can �nally note that for � v = 0 we indeed �nd the same energy corrections on Fig. 8 as
found by looking at the peaks of the spectral function (see Fig. 7). Despite the failure ofG0W0 at
reproducing the shape of the HOMO and LUMO curves, we can note that it gives a good correction
to the fundamental gap� + � � � at low � v, which was widely underestimated by the KS solutions.

5.5 G0W0 energy corrections to the restricted Hartree-Fock approxi-
mation

Just as we tookGKS for the non-interacting G0 previously, we can as well choose the restricted
Hartree-Fock one,GRHF , for the G0W0 approximation6. Since it is also a non-interacting Green's

6Note that G0 has to be changed both in the expression �G0 W 0 = iG 0W0 and in the calculation of W0.
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Figure 7: Spectral function of the exact and theG0W0 Green's functions with G0 = GKS , for
U = 1 and U = 5 and � v = 0. Only a short range of frequency around the HOMO/LUMO peaks
is spanned here.

Figure 8: Comparison between the exact energy levels and the HOMO and LUMOG0W0 solutions
using approximation 5.15 andG0 = GKS , for U = 1 and U = 5. The Kohn-Sham solutions are
also plotted as a comparison

function, it reads just as the KS one:

GRHF
ij;� =

X

�

� � �;i � �
� �;j

! � � RHF
� ;� � i0+

(5.16)

and Equations 5.6 still hold, but using� RHF , i.e replacing � v by � ve� in A.3. Thus, Eq. 5.11 for
� ij (! ) holds if we replace� KS

� by � RHF
� , and � KS by � RHF .
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Figure 9: Comparison between the exact energy levels and the HOMO and LUMOG0W0 solutions
using approximation 5.15 andG0 = GRHF , for U = 1 and U = 5. The RHF solutions are also
plotted as a comparison

Following the same methods as before7, we obtain in Fig. 9 the energy corrections from the
RHF solutions found in Sec. 4.1. These are globally better than the KS ones, especially for
intermediate � v � U. Even though we expectGKS to be closer to the exactG, there is no reason
for � G0W0 (which is a truncation of the Hedin development of � at �rst order in W) to be better
for GKS than for GHF . Indeed, � can be written as an in�nite series of G0 and vc, whatever the
choice ofG0 (as shown in [3]), and this series may converge faster when choosing a simplerG0,
hereGHF .

6 Beyond G0W0: using the exact screened interaction W

6.1 Exact reducible polarisability

In real materials, G and W are unknown and can only be approximated. Previously, we saw
how to computeW0 within RPA; we could also have computedW RPA using the exactG. In the
case of the Hubbard dimer, the exact screened potentialW can actually be computed, leading
to the G0W approximation, which becomes semi-exact in the sense that onlyG is approximate
by taking G0

8. It is therefore interesting to compareG0W0 and G0W to understand the physics
behind these approximations. This has already been done in [3] in the symmetric case, which
showed that the exact screened interaction gives a worse result thanW0.

To do so, we compute the reducible polarisability� (instead of the irreducible one as before),
de�ned by:

� (1; 2) = � i
�G (1; 1+ )

�U (2)
(6.1)

7Here instead of subtractingV KS
xc from �, we rather want to subtract Vx , the exchange potential.

8The G0W approximation is actually, in a sense, beyondGW . Indeed, according to Hedin's equation for ~� (Eq.
B.8), the knowledge of the exactW (and thus the exact ~� ) involves the knowledge of the exact vertex~�.
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(a) G0 = GKS (b) G0 = GRHF

Figure 10: Comparison between the exact energy levels and the HOMO and LUMOG0W solutions
using approximation 5.15, the self-energy given by Eq. 6.8 andG0 = GKS or GRHF , for U = 5.
The respectiveG0W0 solutions are also plotted as a comparison

which is simply the variation of the electronic density with respect to an external �eld. Moreover,
thanks to the relation B.3, we can express� in terms of the 1-GF and the 2-GF:

� (1; 2) = iG2(1; 2; 1+ ; 2+ ) � iG(1; 1+ )G(2; 2+ ) (6.2)

where the 2-GF is the two-particle Green's function, de�ned as:

G(2) (1; 2; 3; 4) = �
D

T̂
h
 ̂ (1) ̂ (2) ̂ y(4) ̂ y(3)

iE
(6.3)

which, just as the 1-GF, has a simple form in the Lehmann representation.W is then given in
terms of � by:

W(1; 2) = vc(1; 2) +
Z

d3 d4vc(1; 3)� (3; 4)vc(4; 2) (6.4)

6.2 G0W in the case of the asymmetric Hubbard dimer at half-�lling

In the case of the Hubbard dimer, we �nd that� reads, in the site-basis and in frequency space:

� ij�� 0(! ) =
X

n=2 ;3;4

� (n)
ij�� 0

�
1

! � (En � E1) + i0+
�

1
! + ( En � E1) � i0+

�
(6.5)

where the sum runs over the excited states of theN = 2 system, the � (n)
ij�� 0 are coe�cients that we

can compute using theN = 2 eigenstates (see Appendix A):

� (n)
ij�� 0 = h1j ĉy

i� ĉi� jni hnj ĉy
j� 0ĉj� 0 j1i (6.6)
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and the exact screened potentialW reads:

Wij (! ) = U� ij + U2
X

�� 0

� ij�� 0 (6.7)

Contrary to what is found in [3], we don't �nd W11 = W22. This was expected due to the
asymmetry of the two sites. We still �nd however that W12 = W21. Finally, Eq. 5.3 enables us
to compute the self-energy within theG0W approximation, and we �nd after integration in the
complex plane:

� G0W
ij (! ) = �

Uni

2
� ij +4U2

X

n=3 ;4

� (n)
i � (n)

j

�
� + ;i � + ;j

! � (En � E1 + � + ) + i0+
+

� � ;i � � ;j

! + ( En � E1 � � � ) � i0+

�

(6.8)
where� � ;i is de�ned by Eq. 5.6,� � are the KS (or RHF) eigenenergies, and the coe�cients� i are
de�ned by:

� (n)
1 =

�
a1 � E1

t

� �
an � En

t

�

N1Nn
� (n)

2 =
1 + a1an

N1Nn
(6.9)

with an = 2t
En � � v� U and Nn the normalisation factor of theN = 2 eigenstates. Comparing Eq.

6.8 with Eq. 5.11, it is striking that � has the same structure in both the G0W0 and the G0W
approximations.

The linearised solutions at �rst order in perturbation theory (given by Eq. 5.15) are plotted
in Fig. 10a for G0 = GKS , and in Fig. 10b forG0 = GRHF . As we can see with the naked eye, the
G0W results are worse than theG0W0 ones, which is counter-intuitive. This is a generalisation
of the same observation made in [3] for �v = 0. It is thus preferable to be consistent in our
approximation (i.e choosing a non-interactingG0 everywhere) than only approximatingG0 in �
but using the exactG for computing W. This can be interpreted as follows. When fully taking
into account the vertex corrections (both in the expression of � and inW), some terms cancel
out, which is not the case when we only correctW while taking � = iG0W. In other words, a
consistent choice ofG0 everywhere leads to error cancelling and thus gives a better result.

7 Discussion of the band o�set in the Hubbard dimer

It is �nally interesting to make the link between the Hubbard dimer model and real materials.
When dealing with heterostructures, an important quantity is the band o�set, generally the va-
lence one, de�ned by the shift of the valence bands of the two materials at the junction. In our
case, instead of bands we only have two energies: the levelsE N � 1 � E N associated to the addi-
tion/removal of one electron, and it is not trivial to say that each of them is associated to one site,
since the ground states forN = 1; 2; 3 are not totally localised, except in the limit � v ! + 1 .

In other words, what we want to de�ne a band o�set are energy bands (which are local quan-
tities), while what is measured and computed here are many-body addition/removal energies (or
levels), which are global.

We can however take advantage of the analysis of the restricted Hartree-Fock approximation
(see Sec. 4.1), since according to Koopman's theorem, the RHF eigenenergies� RHF

� can be in-
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