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WHY?
WE HAVE A PROBLEM!
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Microscopic description of the physical and chemical  properties of matter 
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be affected by some external field. 

Number of Nuclei and 
Electrons

 interacting through
Coulombic (electrostatic) 

forces

SYSTEM 



PROBLEM SOLVED LET’S GO HOME! 

WHY?
MANY BODY PROBLEM

Chapter 26
Density Functional Theory: Basics, New Trends and
Applications

J. Kohanoff1 and N.I. Gidopoulos2

1 Queen’s University Belfast, Belfast, Northern Ireland
2 Rutherford Appleton Laboratory, Oxfordshire, UK

1 The Problem of the Structure of Matter 1
2 The Electronic Problem 3
3 Density Functional Theory 4
4 Exchange and Correlation 10
5 Exact Exchange: The Optimized Potential

Method 19
6 Towards an Accurate Correlation Functional 23
7 Comparison and Salient Features of the

Different Approximations 27
Notes 35
References 35

1 THE PROBLEM OF THE STRUCTURE
OF MATTER

The microscopic description of the physical and chemical
properties of matter is a complex problem. In general, we
deal with a collection of interacting atoms, which may also
be affected by some external field. This ensemble of par-
ticles may be in the gas phase (molecules and clusters) or
in a condensed phase (solids, surfaces, wires), they could
be solids, liquids or amorphous, homogeneous or hetero-
geneous (molecules in solution, interfaces, adsorbates on
surfaces). However, in all cases we can unambiguously

Handbook of Molecular Physics and Quantum Chemistry,
Edited by Stephen Wilson. Volume 2: Molecular Electronic Struc-
ture. © 2003 John Wiley & Sons, Ltd. ISBN: 0-471-62374-1.

describe the system by a number of nuclei and electrons
interacting through coulombic (electrostatic) forces. For-
mally, we can write the Hamiltonian of such a system in
the following general form:
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where R = {RI }, I = 1, . . . , P , is a set of P nuclear
coordinates and r = {ri}, i = 1, . . . , N , is a set of N elec-
tronic coordinates. ZI and MI are the P nuclear charges
and masses, respectively. Electrons are fermions, so that
the total electronic wave function must be antisymmetric
with respect to exchange of two electrons. Nuclei can be
fermions, bosons or distinguishable particles, according to
the particular problem under examination. All the ingredi-
ents are perfectly known and, in principle, all the properties
can be derived by solving the many-body Schrödinger
equation:

Ĥ!i(r, R) = Ei!i(r, R) (2)

In practice, this problem is almost impossible to treat in a
full quantum-mechanical framework. Only in a few cases a
complete analytic solution is available, and numerical solu-
tions are also limited to a very small number of particles.
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the total electronic wave function must be antisymmetric
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In practice, this problem is almost impossible to treat in a
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complete analytic solution is available, and numerical solu-
tions are also limited to a very small number of particles.

Formally.... all ingredients are known
so simply solve the

Many Body 

 Schroedinger Equation 
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Adiabatic separation of nuclear and 
electronic degrees of freedom. 

Classical Treatment of the nuclei

WHY?
MANY BODY PROBLEM

APPROXIMATIONS
(large majority of calculation presented in literature) 

This problem is almost impossible to treat in a full quantum-mechanical framework

Only in a few cases a complete analytic solution is available and numerical 
solutions are also limited to a very small number of particles.

actually..... 



ADIABATIC APPROXIMATION (BORN-OPPENHEIMER)

APPROXIMATIONS
MANY BODY PROBLEM

MOTION TIME SCALE:  
NUCLEI  << ELECTRONS

Electrons can be adequately described 
as following instantaneously the motion 
of the nuclei, staying always in the same 
stationary state of the electronic Hamiltonian.

DECOUPLING 
THE 2 DYNAMICS

2 Electronic structure of large molecules

There are several features that contribute to this difficulty.
First, this is a multicomponent many-body system, where
each component (each nuclear species and the electrons)
obeys a particular statistics. Second, the complete wave
function cannot be easily factorized because of coulombic
correlations. In other words, the full Schrödinger equation
cannot be easily decoupled into a set of independent equa-
tions so that, in general, we have to deal with (3P + 3N)

coupled degrees of freedom. The dynamics is an even more
difficult problem, and very few and limited numerical tech-
niques have been devised to solve it. The usual choice is to
resort to some sensible approximations. The large majority
of the calculations presented in the literature are based on
(i) the adiabatic separation of nuclear and electronic degrees
of freedom (adiabatic approximation) and (ii) the classical
treatment of the nuclei.

1.1 Adiabatic approximation
(Born–Oppenheimer)

The first observation is that the timescale associated to
the motion of the nuclei is usually much slower than
that associated to electrons. In fact, the small mass of
the electrons as compared to that of the protons (the
most unfavourable case) is about 1 in 1836, meaning
that their velocity is much larger. In this spirit, it was
proposed in the early times of quantum mechanics that
the electrons can be adequately described as following
instantaneously the motion of the nuclei, staying always in
the same stationary state of the electronic Hamiltonian.(1)

This stationary state will vary in time because of the
coulombic coupling of the two sets of degrees of freedom
but if the electrons were, for example, in the ground state,
they will remain there forever. This means that as the
nuclei follow their dynamics, the electrons instantaneously
adjust their wave function according to the nuclear wave
function.

This approximation ignores the possibility of having
non-radiative transitions between different electronic eigen-
states. Transitions can only arise through coupling with an
external electromagnetic field and involve the solution of
the time-dependent Schrödinger equation. This has been
achieved, especially in the linear response regime, but also
in a non-perturbative framework in the case of molecules
in strong laser fields. However, this is not the scope of this
section, and electronic transitions will not be addressed in
the following.

Under the above conditions, the full wave function fac-
torizes in the following way:

!(R, r, t) = "m(R, t)#m(R, r) (3)

where the electronic wave function #m(R, r) [#m(R, r) is
normalized for every R] is the mth stationary state of the
electronic Hamiltonian

ĥe = T̂e + Ûee + V̂ne = Ĥ − T̂n − Ûnn (4)

T̂n and Ûnn are the kinetic and potential nuclear oper-
ators, T̂e and Ûee the same for electrons, and V̂ne the
electron–nuclear interaction. The corresponding eigenvalue
is noted εm(R). In the electronic (stationary) Schrödinger
equation, the nuclear coordinates R enter as parameters,
while the nuclear wave function "m(R, t) obeys the time-
dependent Schrödinger equation

ih̄
∂"m(R, t)

∂t
= [

T̂n + Ûnn + εm(R)
]
"m(R, t) (5)

or the stationary version

[
T̂n + Ûnn + εm(R)

]
"m(R) = Em"m(R) (6)

In principle, m can be any electronic eigenstate. In practice,
however, most of the applications in the literature are
focused on the ground state (m = 0).

1.2 Classical nuclei approximation

Solving any of the two last equations (5) or (6) is a
formidable task for two reasons: First, it is a many-body
equation in the 3P nuclear coordinates, the interaction
potential being given in an implicit form. Second, the deter-
mination of the potential energy surface εn(R) for every
possible nuclear configuration R involves solving M3P

times the electronic equation, where M is, for example, a
typical number of grid points. The largest size achieved up
to date using non-stochastic methods is six nuclear degrees
of freedom.

In a large variety of cases of interest, however, the solu-
tion of the quantum nuclear equation is not necessary. This
is based on two observations: (i) The thermal wavelength
for a particle of mass M is λ̄T = h̄/

√
MkBT , so that regions

of space separated by more than λT do not exhibit quan-
tum phase coherence. The least favourable case is that of
hydrogen, and even so, at room temperature λ̄T ≈ 0.4 Å,
while inter-atomic distances are normally of the order of
1 Å. (ii) Potential energy surfaces in typical bonding envi-
ronments are normally stiff enough to localize the nuclear
wave functions to a large extent. For instance, a proton in
a hydroxyl group has a width of about 0.25 Å.

This does not mean that quantum nuclear effects can be
neglected altogether. In fact, there is a variety of questions
in condensed matter and molecular physics that require a
quantum-mechanical treatment of the nuclei. Well-known

Electrons Nuclei



CLASSICAL NUCLEI APPROXIMATION

APPROXIMATIONS
MANY BODY PROBLEM

Still formidable task .... but in a large variety of cases of interest

THE QUANTUM TREATMENT FOR NUCLEI  

IS *NOT* NECESSARY  



WHY?
MANY BODY PROBLEM

(AND THE ELECTRONS???)

i)Uniform electron gas;
ii)Atoms with a small number of electrons; 
iii)A few small molecules. 

the exact solution is known only in the cases:

 
At the analytic level           APPROXIMAT IONS

THOMAS FERMI (1927)
HARTREE (1927)

HARTREE-FOCK (1930)
CONFIG. INTER.  (1930)

MP2-MP4(1934)

DFT (1964)

These exact solutions are
 always numerical. 



DFT!
(NOBEL LAUREATE)

0.- Motivation II.

The Density Functional Theory was introduced in two seminal papers in the 60’s:

1. Hohenberg-Kohn (1964): ∼ 4000 citations

2. Kohn-Sham (1965): ∼ 9000 citations

The following figure shows the number of publications where the phrase“density functional
theory”appears in the title or abstract (taken from the ISI Web of Science).
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be observed in Figure 7, reproduced from the work
of Städele et al.(93,94)

10. KLI approximation: The KLI approximation to
EXX proved very good for atomic systems and was
assumed to be also good for solids, but without
proof.(115) Städele et al.(93,94) have actually shown
that total energies are a few tenth of an eV/atom
higher than EXX ones, while energy gaps are under-
estimated by about 0.5 eV. These conclusions do not
depend much on the pseudopotentials used (KLI or
EXX), but mainly on the description of exchange for
the valence electrons. Probably the reason lies on the
averaging of the denominator in the Green’s function
in the KLI approximation, which could be too crude
in solids because of the k-vector dependence of the
eigenvalues.

NOTES

[1] The mentor of modern density functional theory, Prof.
Walter Kohn, has been awarded the 1998 Nobel prize
for chemistry together with Prof. John Pople, who
popularized quantum chemical calculations by means
of the computational package GAUSSIAN.

[2] J. Kohanoff (unpublished).
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be observed in Figure 7, reproduced from the work
of Städele et al.(93,94)

10. KLI approximation: The KLI approximation to
EXX proved very good for atomic systems and was
assumed to be also good for solids, but without
proof.(115) Städele et al.(93,94) have actually shown
that total energies are a few tenth of an eV/atom
higher than EXX ones, while energy gaps are under-
estimated by about 0.5 eV. These conclusions do not
depend much on the pseudopotentials used (KLI or
EXX), but mainly on the description of exchange for
the valence electrons. Probably the reason lies on the
averaging of the denominator in the Green’s function
in the KLI approximation, which could be too crude
in solids because of the k-vector dependence of the
eigenvalues.

NOTES

[1] The mentor of modern density functional theory, Prof.
Walter Kohn, has been awarded the 1998 Nobel prize
for chemistry together with Prof. John Pople, who
popularized quantum chemical calculations by means
of the computational package GAUSSIAN.

[2] J. Kohanoff (unpublished).
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ground state and ground state energy of Ĥ ′ = T̂ + Û + V̂ ′.
Owing to the variational principle, we have

E0 < ⟨! ′|Ĥ |! ′⟩ = ⟨! ′|Ĥ ′|! ′⟩ + ⟨! ′|Ĥ − Ĥ ′|! ′⟩

= E′
0 +

∫
ρ(r)(v(r) − v′(r)) dr

where we have also used the fact that different Hamiltoni-
ans have necessarily different ground states ! ̸= ! ′. This is
straightforward to show since the potential is a multiplica-
tive operator. Now we can simply reverse the situation of
! and ! ′ (H and H ′) and readily obtain

E′
0 < ⟨!|Ĥ ′|!⟩ = ⟨!|Ĥ |!⟩ + ⟨!|Ĥ ′ − Ĥ |!⟩

= E0 −
∫

ρ(r)[v(r) − v′(r)] dr

Adding these two inequalities, it turns out that E0 + E′
0 <

E′
0 + E0, which is absurd. Therefore, there are no v(r)

̸= v′(r) that correspond to the same electronic density for
the ground state.

COROLLARY: Since ρ(r) univocally determines
v(r), it also determines the ground state wave function !.

THEOREM: Let ρ̃(r) be a non-negative density
normalized to N . Then E0 < Ev[ρ̃], for

Ev[ρ̃] = F [ρ̃] +
∫

ρ̃(r)v(r) dr (34)

with

F [ρ̃] = ⟨![ρ̃]|T̂ + Û |![ρ̃]⟩ (35)

where ![ρ̃] is the ground state of a potential that has ρ̃ as
its ground state density.

PROOF: We have

⟨![ρ̃]|Ĥ |![ρ̃]⟩ = F [ρ̃] +
∫

ρ̃(r)v(r) dr

= Ev[ρ̃] ≥ Ev[ρ] = E0 = ⟨!|Ĥ |!⟩

The inequality follows from Rayleigh–Ritz’s variational
principle for the wave function, but applied to the electronic
density. Therefore, the variational principle says

δ

{
Ev[ρ] − µ

(∫
ρ(r) dr − N

)}
= 0

and a generalized TF equation is obtained:

µ = δEv[ρ]
δρ

= v(r) + δF [ρ]
δρ

The knowledge of F [ρ] implies that one has solved the full
many-body Schrödinger equation. It has to be remarked
that F [ρ] is a universal functional that does not depend
explicitly on the external potential. It depends only on the
electronic density. In the Hohenberg–Kohn formulation,
F [ρ] = ⟨!|T̂ + Û |!⟩, where ! is the ground state wave
function. These two theorems form the basis of DFT.

In Hohenberg–Kohn theorem the electronic density de-
termines the external potential, but it is also needed that
the density corresponds to some ground state antisymmetric
wave function, and this is not always the case. However,
DFT can be reformulated in such a way that this is
not necessary, by appealing to the constrained search
method.(21) By defining

F [ρ] = min
!→ρ

{⟨!|T̂ + Û |!⟩}

for non-negative densities such that
∫

ρ(r) dr = N and∫ |∇ρ1/2(r)|2 dr < ∞, which arise from an antisymmetric
wave function, the search is constrained to the subspace
of all the antisymmetric ! that give rise to the same
density ρ.

Using DFT, one can determine the electronic ground state
density and energy exactly, provided that F [ρ] is known.
A common misleading statement is that DFT is a ground
state theory and that the question of excited states can-
not be addressed within it. This is actually an incorrect
statement because the density determines univocally the
potential, and this in turn determines univocally the many-
body wave functions, ground and excited states, provided
that the full many-body Schrödinger equation is solved.
For the ground state, such a scheme was devised by Kohn
and Sham and will be discussed in the next subsection. For
excited states there are a few extensions and generalizations
of Kohn–Sham (KS) theory, but only very recently these
are beginning to be used with some degree of success. One
such scheme, the ensemble DFT, proposed by Theophilou
in 1979 and further developed by other authors,(22–25) is
based on a generalization of Rayleigh–Ritz’s variational
principle applied to an ensemble of low-lying orthogo-
nal states. Another approach relies on an extension of
DFT to the time-dependent domain (time-dependent DFT,
or (TDDFT)).(26–28) Finally, a KS-like theory based on
the adiabatic connection between the eigenstates (not the
ground state, but any eigenstate) of a non-interacting sys-
tem with the same density as the fully interacting one was
recently proposed by Görling.(29,30)

3.3 Kohn–Sham equations

We have already briefly discussed the electron–electron
interaction potential U and we have seen that a reasonably

electron-electron interaction potentialkinetic energy

BIG Problem expressing T [ρ]
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be observed in Figure 7, reproduced from the work
of Städele et al.(93,94)

10. KLI approximation: The KLI approximation to
EXX proved very good for atomic systems and was
assumed to be also good for solids, but without
proof.(115) Städele et al.(93,94) have actually shown
that total energies are a few tenth of an eV/atom
higher than EXX ones, while energy gaps are under-
estimated by about 0.5 eV. These conclusions do not
depend much on the pseudopotentials used (KLI or
EXX), but mainly on the description of exchange for
the valence electrons. Probably the reason lies on the
averaging of the denominator in the Green’s function
in the KLI approximation, which could be too crude
in solids because of the k-vector dependence of the
eigenvalues.

NOTES

[1] The mentor of modern density functional theory, Prof.
Walter Kohn, has been awarded the 1998 Nobel prize
for chemistry together with Prof. John Pople, who
popularized quantum chemical calculations by means
of the computational package GAUSSIAN.

[2] J. Kohanoff (unpublished).
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be observed in Figure 7, reproduced from the work
of Städele et al.(93,94)

10. KLI approximation: The KLI approximation to
EXX proved very good for atomic systems and was
assumed to be also good for solids, but without
proof.(115) Städele et al.(93,94) have actually shown
that total energies are a few tenth of an eV/atom
higher than EXX ones, while energy gaps are under-
estimated by about 0.5 eV. These conclusions do not
depend much on the pseudopotentials used (KLI or
EXX), but mainly on the description of exchange for
the valence electrons. Probably the reason lies on the
averaging of the denominator in the Green’s function
in the KLI approximation, which could be too crude
in solids because of the k-vector dependence of the
eigenvalues.

NOTES

[1] The mentor of modern density functional theory, Prof.
Walter Kohn, has been awarded the 1998 Nobel prize
for chemistry together with Prof. John Pople, who
popularized quantum chemical calculations by means
of the computational package GAUSSIAN.

[2] J. Kohanoff (unpublished).
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REPLACE THE SYSTEM OF INTERACTING ELECTRONS 

by A FICTITIOUS SYSTEM OF NON­INTERACTING 

ELECTRONS WITH THE SAME DENSITY

8 Electronic structure of large molecules

good description can be obtained by separating the electro-
static (classical Coulomb energy), exchange and correlation
contributions. The biggest difficulty is to deal with corre-
lation. This is, in fact, an active field of research that has
produced significant improvements in the past decade. We
shall discuss this later on but for the moment let us men-
tion that this issue is quite under control for most systems
of interest. On the contrary, there is a problem with the
expression of the kinetic energy ⟨!|T̂ |!⟩ in terms of the
electronic density. The only expression we have mentioned
up to now was the one proposed by Thomas and Fermi,
which is local in the density. This is a severe shortcoming
because this model does not hold bound states, and also the
electronic shell structure is absent. The main problem with
it is that the kinetic operator is inherently non-local, though
short-ranged.

In 1965, Kohn and Sham(31) proposed the idea of
replacing the kinetic energy of the interacting electrons with
that of an equivalent non-interacting system, because this
latter can be easily calculated. The density matrix ρ(r, r′)
that derives from the (interacting) ground state is the sum
of the spin-up and spin-down density matrices, ρ(r, r′) =∑

s ρs(r, r′)(s = 1, 2). The latter can be written as

ρs(r, r′) =
∞∑

i=1

ni,sϕi,s(r)ϕ
∗
i,s (r

′) (36)

where {ϕi,s(r)} are the natural spin orbitals and {ni,s} are
the occupation numbers of these orbitals. The kinetic energy
can be written exactly as

T =
2∑

s=1

∞∑

i=1

ni,s⟨ϕi,s | − ∇2

2
|ϕi,s⟩ (37)

In the following we shall assume that the equivalent non-
interacting system, that is, a system of non-interacting
fermions whose ground state density coincides with that
of the interacting system, does exist. We shall call this the
non-interacting reference system of density ρ(r), which is
described by the Hamiltonian

ĤR =
N∑

i=1

(

−∇2
i

2
+ vR(ri)

)

(38)

where the potential vR(r) is such that the ground state den-
sity of ĤR equals ρ(r) and the ground state energy equals
the energy of the interacting system. This Hamiltonian has
no electron–electron interactions and, thus, its eigenstates
can be expressed in the form of Slater determinants

!s(r) = 1√
N !

SD[ϕ1,s (r1)ϕ2,s (r2) · · · ϕNs,s
(rNs

)]

where we have chosen the occupation numbers to be 1 for
i ≤ Ns(s = 1, 2) and 0 for i > Ns . This means that the
density is written as

ρ(r) =
2∑

s=1

Ns∑

i=1

|ϕi,s(r)|2 (39)

while the kinetic term is

TR[ρ] =
2∑

s=1

Ns∑

i=1

⟨ϕi,s | − ∇2

2
|ϕi,s⟩ (40)

The single-particle orbitals {ϕi,s(r)} are the Ns lowest
eigenfunctions of ĥR = −(∇2/2) + vR(r), that is,

{
−∇2

2
+ vR(r)

}
ϕi,s(r) = εi,sϕi,s(r) (41)

Using TR[ρ], the universal density functional can be rewrit-
ten in the following form:

F [ρ] = TR[ρ] + 1
2

∫∫
ρ(r)ρ(r′)
|r − r′| dr dr′ + EXC[ρ] (42)

where this equation defines the exchange and correlation
energy as a functional of the density.

The fact that TR[ρ] is the kinetic energy of the non-
interacting reference system implies that the correlation
piece of the true kinetic energy has been ignored and has
to be taken into account somewhere else. In practice, this
is done by redefining the correlation energy functional in
such a way as to include kinetic correlations.

Upon substitution of this expression for F in the total
energy functional Ev[ρ] = F [ρ] + ∫

ρ(r)v(r) dr, the latter
is usually renamed the KS functional:

EKS[ρ] = TR[ρ] +
∫

ρ(r)v(r) dr

+ 1
2

∫∫
ρ(r)ρ(r′)
|r − r′| dr dr′ + EXC[ρ] (43)

In this way we have expressed the density functional in
terms of the N = N↑ + N↓ orbitals (KS orbitals), which
minimize the kinetic energy under the fixed density con-
straint. In principle, these orbitals are a mathematical object
constructed in order to render the problem more tractable
and do not have a sense by themselves, but only in terms
of the density. In practice, however, it is customary to
consider them as single-particle physical eigenstates. It is
usual to hear that the KS orbitals are meaningless and can-
not be identified as single-particle eigenstates, especially in
the context of electronic excitations. A rigorous treatment,

 The explicit form of the functional F[ρ] is the major challenge of DFT.
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the mixed structures and on the electronic modifications
induced in the perfect bulk systems due to doping.

II. DETAILS OF THE CALCULATIONS

A. Computational method

We performed structural optimizations and electronic
structure calculations within the framework of the den-
sity function theory in the local density approximation
(DFT-LDA) as implemented in the AIMPRO code.23,24

Molybdenum, niobium and sulphur pseudopotentials
are generated using the Hartwingster-Goedecker-Hutter
scheme.25 The basis sets employed consisted of s, p, and
d gaussian orbital functions centered at the atomic sites.
For Nb and Mo atoms we have used a set of 40 gaussians
multiplied by spherical harmonics up to a maximum an-
gular momentum lmax = 2, for S atoms a set of 20 gaus-
sians with a maximum angular momentum lmax = 1.

Calculations for bulk MoS2 and NbS2 have been con-
ducted using a 10x10x10 Monkhorst-Pack k-points set to
sample the Brillouin zone. Defective structures have been
described using a 4x4x1 supercell. 2x2x4 Monkhorst-
Pack k-points set have been proved to be sufficient for
accurate Brillouin zone integration in this large supercell.
The atomic positions for all structures were optimized si-
multaneously with the cell parameters.

B. Structural models

MoS2 crystallizes in several polymorphs, among which
the most stable is the hexagonal 2H-MoS2, belonging to
the P63/mmc symmetry point group. The lattice struc-
ture consists of hexagonal planes of Mo atoms lying be-
tween two hexagonal planes of S atoms, forming a S-Mo-
S layer. Each Mo atom is covalently bonded with its six
first neighbor sulphur atoms, each S is bonded to three
molybdenum atoms. The unit cell contains two alternat-
ing S-Mo-S layers with an ABA BAB stacking along the
c axis, see Fig. 1. In bulk 2H-NbS2 the local structure
of the layers is similar to that of 2H-MoS2, with the Nb
atoms 6 fold coordinated. The only difference between
the structures is that the NbS2 layers are shifted and
Nb atoms lie above each other, thus the stacking order
within the bulk structure is ACA BCB, see Fig 1.

The experimental lattice parameters for 2H-MoS2 and
2H-NbS2 metal disulphides are a = 3.16 Å, c = 12.29 Å,
and a = 3.31 Å, c = 11.89 Å, respectively1,4. Molybde-
num and niobium oxidation states in the corresponding
sulfate bulk systems are identical and the covalent radii of
Mo (130 pm) and Nb (132 pm) are similar, implying that
bilateral substitution might be feasible. Furthermore, the
interlayer spacing for both metal dichalcogenides is wide
enough to place the interstitial atom in between the lay-
ers. Hence, in the present work we will analyze both,

MoS2 2NbS

c
ba

Figure 1: (Color online) Top and side views of the 2H-MoS2

and 2H-NbS2 crystal structures. Different models of doping
presented on the bottom pictures: interstitial atoms in tetra-
hedral (a) and octahedral (b) position; substitutional atom
(c).

substitutional and interstitial doping modes for accom-
modating the metal atoms within the layered disulphide
crystals.

For the interstitial doping we have to distinguish two
cases: the dopant atom occupies the tetrahedral site situ-
ated between one sulphur triangle and one sulphur atom
in the adjacent plane (position a, Fig. 1) or the octahe-
dral site between two S-triangles (position b, Fig. 1). In
the first case only four metal-sulphur bonds are formed,
whereas in the second case six. In the substitutional con-
figuration one metal atom is removed from the metal
disulphide (MS2) layer and the vacant site is occupied
by a dopant atom, which thus forms six metal-sulphur
bonds (position c, Fig. 1).

III. RESULTS AND DISCUSSION

A. Bulk systems

The optimized bulk cell parameters are in excellent
agreement with the experimental values: a = 3.15 Å, c
= 12.29 Å for MoS2 and a = 3.32 Å, c = 11.92 Å for
NbS2. The Mo-S and Nb-S bond lengths in the pure
bulk systems are found to be 2.42 Å and 2.50 Å, which
is close to the reported experimental values respectively
of 2.41 Å and 2.47 Å.4

The electronic structure of bulk metal dichalcogenides
have been extensively studied both experimentally and
theoretically.4,17,26 In Fig.2 we present the electronic

3. Constant Pressure MolecularDynamics for Finite Systems 92

Figure 3.9: Sections of the Cd432Se432 nanorod at 2.5 GPa. The atoms are
colored according to the magnitude of the force due to the PV-term. The
nanorod is shown perpendicular to the c-direction (a), where the colours indi-
cate the magnitude of the PV-forces in the a-b plane; it is also shown parallel
to the c-direction (b), where the colours indicated the magnitude of the PV-
force for each atom in the c-direction. Atoms experiencing the strongest
PV-forces (⇠0.12 eV Å�1) are colored a deep red; atoms experiencing the
weakest are colored a deep blue [9].

layers mechanism. This agrees with what found for similar asymmet-

ric nanorods simulated under pressure using as pressure transmitting

medium a binary Lennard-Jones fluid [120], and an ideal gas barostat

[128, 141]. With the ideal gas barostat however the transformation took

place at a higher pressure (⇠ 5.5 GPa) [128, 141], while the study using

the Lennard-Jones fluid saw the transformations at pressures that var-

ied between 2.5 - 4.0 GPa, depending on the aspect ratio of the nanorod

[120]. The transformation pressure of 3 GPa observed in our study agrees

well with the transformation pressure in nanorods of similar aspect ratio

to ours (⇠ 1.5:1).

Since the cross-section of this nanorod is asymmetric, it is interesting

to see that the cylindrical approximation works reasonably well also in

this case, giving results which are qualitatively similar to those obtained

with di↵erent methods for similar systems.

3.2.3 Carbon Nanotube

To test the volume definition for the cylindric shell of equation (3.25),

we studied a (10,10) armchair carbon nanotube under pressure. Periodic
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This work is based on the idea that this could
eventually be achieved by inserting a self-assembled

monolayer, i.e, a structure that is self-fabricated upon
deposition, and could also modify the metal electro-
de's work-function and the charge carrier injection
barrier, e.g., in an organic field effect transistor.17

Recently, charge transfer complexes have been used
in this context,18,19 showing interesting effects on
hole- injection barriers. More generally, self-assembly
can lead to the formation of a wide range of two-
dimensional structures with different mechanical and
electrostatic properties20!22 and appears to be a very
promising route for the nanofabrication of interlayers.
Our starting point is the recently observed self-
assembled monolayer containing Cs alkali metals and
electronegativeorganic7,7,8,8-tetracyanoquinodimethane
(TCNQ) molecules,23 which has been shown to assem-
ble in large, compact, and stable chiral domains on
Ag(100) substrates.
In this work we investigate the possibility of extend-

ing the use of Cs to other alkali metals (Li, Na, K) to
tune the electrostatic properties of MO interfaces
incorporating thesemonolayers, with the ultimate goal
of extending both the range and the tunability of the
interfacial dipoles and electrode work-function. We
also suggest the possibility to achieve further control
of these properties by evaporating on the substrate
mixtures of alkali metals and molecular derivatives
with increased electronic affinities. In this respect, we
analyze the effects of replacing some TCNQ hydrogen
atoms with fluorine atoms and find that this simple
substitution produces sizable effects on the electrostatic
properties, without affecting the assembly stability.

RESULTS AND DISCUSSION

Observed Chiral Superstructure: The Cs-TCNQ4 Network. A
self-assembled organic salt formed by Cs alkali atoms
coadsorbed with TCNQ molecules has been recently
observed to form very stable and extended domains
on the Ag(100) substrate, even at room temperature.
Cs and TCNQ form intermediate windmill Cs-TCNQ4

complexes (Figure 1a), which aggregate in strictly chiral
domains, forming a commensurate (6,3,!3,6) square
superstructure (Figure 1b,c). The domain size can be
very large;typically more than 300 " 300 nm2

;and
much larger than the one obtained by a similar network
realizedwithMn transitionmetal. This is the result of an
assembly where the adlayer/substrate and the inter-
complex interactions in combinationwith local features
of the Cs!TCNQ bond are suitable to make the adlayer
particularly stable.

Specific properties influence the physics and the
stability of the system: the large electron affinity of
TCNQ (A= 4.23 eV)24makes it acquire charge both from
the surface and fromCs, which fully donates its valence
electron and establishes ionic, nondirectional Cs!N
bonds, with an associated high rotational freedom of
the molecules around the metal. This large flexibility
makes the complexes particularly adaptable to differ-
ent steric constraints and allows maximizing the num-
ber of N!Ag bonds (three permolecule, Figure 1c) that
drive the surface!adlayer interaction energetics, while
preserving the hydrogen bonds mediating the inter-
complex attractive interaction. The charge acquired by
TCNQ makes its central ring aromatic, further enhan-
cing the molecular flexibility25 and the ability of the
complexes to adapt within the network. Importantly,
the nitrogen atoms move toward the substrate upon
adsorption/assembly, while the Csþ cations are lifted-
up with respect to the four N ligand plane, resulting
in a highly nonplanar umbrella structure (Figure 2).
The Csþ-topped structure is associated with a positive
local electric dipole, which screens the surrounding
negative dipoles associated with the molecules and
achieves further structural stability through electro-
static screening. Clearly, varying the alkali ion height
changes the interfacial dipole. We thus propose that
this mechanism could be exploited to tune the elec-
trostatic properties of the interface, based on the
hypothesis that different alkali ions will relax at differ-
ent heights, while preserving the stability of the super-
structure described above.

Figure 1. (a) Cs-TCNQ4 windmill complex structure; (b) STM image showing the chiral self-assembly observed on the Ag(100)
substrate (courtesy of N. Abdurakhmanova); (c) DFT relaxed (6,3,!3,6) square network, with one complex per unit cell. Cs
atoms are in light blue (Cs!Cs distance is 19.4 Å). In (c), the black circles highlight the three N!Ag bonds/TCNQ, while the red
circle highlights the two hydrogen-bonds/TCNQ. N!Ag and the hydrogen bonds are the key features driving the monolayer
self-assembly.

A
RTIC

LE

BAND STRUCTURE TUNABILITY IN MoS2 UNDER . . . PHYSICAL REVIEW B 87, 245114 (2013)

In the G0W0 sums 300 bands were included. An energy
cutoff of 7.0 and 30 hartrees were used to generate the
polarizability and the exchange part of !, respectively. This
choice of parameters achieves a convergence in the QP
eigenvalues of 0.01 eV. Furthermore, the QP energies were
computed for the same k mesh used in the ground-state
calculations. The MBPT band structures presented here were
interpolated using MLWFs, as explained elsewhere.42

III. RESULTS AND DISCUSSION

First, we present our results for the structural optimization
and electronic structure calculations from vdW-corrected DFT
and DFT-GGA methods respectively, as applied for the MoS2
monolayer and 2H1 bulk polytype. Then, the G0W0 method
is applied for the study of the S-SM transition predicted from
DFT.

A. Structural characterization from DFT + vdW − WF

MoS2 is a layered material composed of weakly bonded
sheets of trigonal prismatic symmetry. Figure 1 shows the
unit cell with six atoms and the Wannier centers used to
evaluate the vdW correction to the energy. In Table I, the
structural parameters obtained for the monolayer and bulk for
several values of c lattice parameters are displayed. Calculated
in-plane lattice parameters for the isolated monolayer are
found to be in good agreement with the corresponding
experimental bulk values, with a difference of only 0.53%.
With small variations, this result is also obtained with several
XC functionals and from all-electron calculations11 as well.
Therefore, it is customary that in previous studies on the
electronic structure of MoS2 monolayers, bulk, and or few-
layer systems, the internal geometry of the layers was set equal
to either the reported experimental bulk values14 or to relaxed
monolayer parameters.15 However, as has been reported, the
electronic structure is highly sensitive to both the internal
structural parameters of the layers and the interlayer distance,
which may undergo large changes in the case of applied
strain19–21 or applied electric fields.23 In the case of uniaxial
strain studied in this work, such large changes in geometry are
also important and determine the S-SM transition, as explained
below. In general, as long as the length of the c parameter
is reduced, an increment of the cell parameters a and b is

FIG. 1. (Color online) (a) 2H1 MoS2 unit cell. S atoms (yellow)
in one layer are right on top of Mo atoms (gray) of the second layer.
The Wannier centers are represented as small black spheres. z is the
vertical distance between S atoms (considered as the layer width).
(b) Top view of the MoS2 crystal.

TABLE I. Calculated MoS2 monolayer and bulk structural pa-
rameters and experimental values from Ref. 13. Evolution of in-plane
effective mass for holes and electrons is given in the two last columns.

a (Å) c (Å) z (Å) m∗
h/me m∗

e/me

1L 3.178 3.138 −1.490 1.280
Bulk 3.253 10.7 2.999 −0.469 1.024

3.248 10.8 3.011 −0.507 1.042
3.241 10.9 3.023 −0.677 1.071
3.236 11.0 3.034 −0.716 1.141
3.199 12.5 3.115 −1.744 1.601

Exp. 3.160 12.294 3.172

observed. On the other hand, the layer width z depends linearly
with c, except for c > 11.2 Å, the starting point of saturation
towards the isolated monolayer value z = 3.138 Å.

The energetics of interlayer bonding has two main ingredi-
ents, namely, the attractive vdW interactions and the exchange
repulsion between layers. Figure 2 displays the interaction
energy per layer and per unit surface area from both PBE and
the vdW-corrected functional. Each curve has been calculated
twice, either fixing the layer geometry to that of the isolated
monolayer or allowing the layers to relax for each c value.
The reference energy was defined as the total energy of the
unit cell for c = 30 Å upon in-plane relaxation. In both cases
the PBE curve has no minimum, indicating that from this
level of theory the system would be unstable. On the other
hand, once we add the correlation energy calculated from the
vdW-WF method (red triangles in Fig. 2), the obtained curves
show a minimum at c ∼ 12.5 Å. Theoretical results43 from
random phase approximation, vdW-DF, and PBE-D methods
are displayed for comparison. DFT + vdW-WF provides both
interlayer distance and interplanar binding energy which are
in close agreement to other approaches for vdW interactions in
DFT. From the results, it is clear that the energy cost of layer
relaxation, the so-called stabilization energy, is an important
component of the total energy which must be considered. In
Fig. 2 the stabilization energy is the energy difference between
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FIG. 2. (Color online) Interaction energy per layer and primitive
surface unit. Comparison with results from several DFT methods.
Present calculations: PBE (no relaxation), PBE (relaxed), vdW
correction energy and vdW-WF (also fit to the latter values). Other
results from Ref. 43.
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is applied for the study of the S-SM transition predicted from
DFT.

A. Structural characterization from DFT + vdW − WF

MoS2 is a layered material composed of weakly bonded
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unit cell with six atoms and the Wannier centers used to
evaluate the vdW correction to the energy. In Table I, the
structural parameters obtained for the monolayer and bulk for
several values of c lattice parameters are displayed. Calculated
in-plane lattice parameters for the isolated monolayer are
found to be in good agreement with the corresponding
experimental bulk values, with a difference of only 0.53%.
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electronic structure of MoS2 monolayers, bulk, and or few-
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which may undergo large changes in the case of applied
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h/me m∗

e/me

1L 3.178 3.138 −1.490 1.280
Bulk 3.253 10.7 2.999 −0.469 1.024

3.248 10.8 3.011 −0.507 1.042
3.241 10.9 3.023 −0.677 1.071
3.236 11.0 3.034 −0.716 1.141
3.199 12.5 3.115 −1.744 1.601

Exp. 3.160 12.294 3.172

observed. On the other hand, the layer width z depends linearly
with c, except for c > 11.2 Å, the starting point of saturation
towards the isolated monolayer value z = 3.138 Å.

The energetics of interlayer bonding has two main ingredi-
ents, namely, the attractive vdW interactions and the exchange
repulsion between layers. Figure 2 displays the interaction
energy per layer and per unit surface area from both PBE and
the vdW-corrected functional. Each curve has been calculated
twice, either fixing the layer geometry to that of the isolated
monolayer or allowing the layers to relax for each c value.
The reference energy was defined as the total energy of the
unit cell for c = 30 Å upon in-plane relaxation. In both cases
the PBE curve has no minimum, indicating that from this
level of theory the system would be unstable. On the other
hand, once we add the correlation energy calculated from the
vdW-WF method (red triangles in Fig. 2), the obtained curves
show a minimum at c ∼ 12.5 Å. Theoretical results43 from
random phase approximation, vdW-DF, and PBE-D methods
are displayed for comparison. DFT + vdW-WF provides both
interlayer distance and interplanar binding energy which are
in close agreement to other approaches for vdW interactions in
DFT. From the results, it is clear that the energy cost of layer
relaxation, the so-called stabilization energy, is an important
component of the total energy which must be considered. In
Fig. 2 the stabilization energy is the energy difference between
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dispersions of Si were calculated as well by Savrasov
(1996) as a test of the LMTO implementation of DFPT.
Dispersions for InP appear in a paper devoted to the
(110) surface phonons of InP (Fritsch, Pavone, and
Schröder, 1995); dispersions for both GaP and InP were
published in a study of phonons in GaInP2 alloys (Ozo-
liņš and Zunger, 1998). For all these materials, phonon
spectra and effective charges are in very good agree-
ment with experiments, where available. For AlAs—for
which experimental data are very scarce—these calcula-
tions provide the only reliable prediction of the entire
phonon dispersion curve. For Si, the calculated phonon
displacement patterns compare favorably to those ex-
tracted from inelastic neutron-scattering experiments
(Kulda et al., 1994).

In all these materials the interatomic force constants
turn out to be quite long ranged along the (110) direc-
tion. This feature had already been observed in early
calculations (Herman, 1959; Kane, 1985; Fleszar and
Resta, 1986) and is related to the peculiar topology of
diamond and zinc-blende lattices, with bond chains
propagating along the (110) directions.

The force constants of GaAs and of AlAs are espe-
cially interesting in view of their use in complex GaAlAs
systems such as superlattices, disordered superlattices,
and alloys. While the phonon dispersions in GaAs are
experimentally well characterized, bulk samples of AlAs
of good quality are not available, and little experimental
information on its vibrational modes has been collected.
For several years it has been assumed that the force
constants of GaAs and those of AlAs are very similar
and that one can obtain the dynamical properties of
AlAs using the force constants of GaAs and the masses
of AlAs (the mass approximation; Meskini and Kunc,
1978). The DFPT calculations provided convincing evi-
dence that the mass approximation holds to a very good
extent between GaAs and AlAs (Giannozzi et al., 1991).
This transferability of force constants makes it possible
to calculate rather easily and accurately the vibrational
spectra of complex GaAlAs systems (Baroni, Giannozzi,
and Molinari, 1990; Molinari et al., 1992; Baroni, de Gi-
roncoli, and Giannozzi, 1990; Rossi et al., 1993). Some-
what surprisingly, the mass approximation does not
seem to be valid when the interatomic force constants
for a well-known and widely used model, the bond-
charge model (BCM), are employed. A six-parameter
bond-charge model for GaAs that gives dispersions
comparing favorably with experiments and ab initio cal-
culations, yields, when used in the mass approximation,
AlAs dispersions quite different from first-principles re-
sults. This clearly shows that information on the vibra-
tional frequencies alone is not sufficient to fully deter-
mine the force constants, even when complete phonon
dispersions are experimentally available. In order to ob-
tain more realistic dispersions for AlAs in the mass ap-
proximation, one has to fit the bond-charge model for
GaAs to both frequencies and at least a few selected
eigenvectors (Colombo and Giannozzi, 1995).

b. II-VI semiconductors
The II-VI zinc-blende semiconductors ZnSe, ZnTe,

CdSe, and CdTe present some additional difficulties in a
plane-wave-pseudopotential (PP-PW) framework with
respect to their III-V or group-IV counterparts. The cat-
ion d states are close in energy to the s valence states so
that the d electrons should be included among the va-
lence electrons. Phonon calculations performed several
years ago, when the inclusion of localized d states in the
pseudopotential was difficult, showed that the effects of
cation d electrons could also be accounted for by includ-
ing the d states in the core and by using the nonlinear
core-correction approximation. The results showed an
accuracy comparable to that previously achieved for el-
emental and III-V semiconductors (Dal Corso, Baroni
et al., 1993). Similar calculations have been more re-
cently performed for hexagonal (wurtzite structure) CdS
(Debernardi et al., 1997; Zhang et al., 1996) and CdSe
(Widulle, Kramp et al., 1999) and compared with the re-
sults of inelastic neutron scattering experiments.

FIG. 1. Calculated phonon dispersions and densities of states
for binary semiconductors GaAs, AlAs, GaSb, and AlSb: !,
experimental data. From Giannozzi et al., 1991.
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Sham, 1965). This approximation has turned out to be
much more successful than originally expected (see, for
instance, Jones and Gunnarsson, 1989), in spite of its
extreme simplicity. For weakly correlated materials,
such as semiconductors and simple metals, the LDA ac-
curately describes structural and vibrational properties:
the correct structure is usually found to have the lowest
energy, while bond lengths, bulk moduli, and phonon
frequencies are accurate to within a few percent.

The LDA also has some well-known drawbacks. A
large overestimate (!20%) of the crystal cohesive and
molecular binding energies is possibly the worst failure
of this approximation, together with its inability to prop-
erly describe strongly correlated systems, such as
transition-metal oxides. Much effort has been put into
the search for better functionals than the LDA (see, for
instance, Perdew et al., 1999). The use of gradient cor-
rections (Becke, 1988; Perdew et al., 1996) to the LDA
has become widespread in recent years. Gradient cor-
rections are generally found to improve the account of
electron correlations in finite or semi-infinite systems,
such as molecules or surfaces; they are less helpful in
infinite solids.

In general, DFT is a ground-state theory and Kohn-
Sham eigenvalues and eigenvectors do not have a well-
defined physical meaning. Nevertheless, for lack of bet-
ter and equally general methods, Kohn-Sham
eigenvalues are often used to estimate excitation ener-
gies. The features of the low-lying energy bands in solids
obtained in this way are generally considered to be at
least qualitatively correct, in spite of the fact that the
LDA is known to substantially underestimate the optical
gaps in insulators.

C. Linear response

In Sec. II.A, Eq. (10), we have seen that the electron-
density linear response of a system determines the ma-
trix of its interatomic force constants. Let us see now
how this response can be obtained within density-
functional theory. The procedure described in the fol-
lowing is usually referred to as density-functional pertur-
bation theory (DFPT; Zein, 1984; Baroni et al., 1987a;
Gonze, 1995b).

In order to simplify the notation and make the argu-
ment more general, we assume that the external poten-
tial acting on the electrons is a differentiable function of
a set of parameters, "#$" i% (" i#RI in the case of lattice
dynamics). According to the Hellmann-Feynman theo-
rem, the first and second derivatives of the ground-state
energy read

&E
&" i

!! &V"'r(

&" i
n"'r(dr, (21)

&2E
&" i&" j

!! &2V"'r(

&" i&" j
n"'r(dr"! &n"'r(

&" i

&V"'r(

&" j
dr.

(22)

The electron-density response, &n"(r)/&" i , appearing in
Eq. (22) can be evaluated by linearizing Eqs. (16), (15),

and (13) with respect to wave function, density, and po-
tential variations. Linearization of Eq. (16) leads to

)n'r(!4 Re *
n!1

N/2

+n*'r()+n'r(, (23)

where the finite-difference operator )" is defined as

)"F!*
i

&F"

&" i
)" i . (24)

The superscript " has been omitted in Eq. (23), as well
as in any subsequent formulas where such an omission
does not give rise to ambiguities. Since the external po-
tential (both unperturbed and perturbed) is real, each
Kohn-Sham eigenfunction and its complex conjugate are
degenerate. As a consequence, the imaginary part of the
sum appearing in Eq. (23) vanishes, so that the prescrip-
tion to keep only the real part can be dropped.

The variation of the Kohn-Sham orbitals, )+n(r), is
obtained by standard first-order perturbation theory
(Messiah, 1962):

'HSCF#,n(")+n-!#')VSCF#),n("+n-, (25)

where

HSCF!#
.2

2m
&2

&r2 "VSCF'r( (26)

is the unperturbed Kohn-Sham Hamiltonian,

)VSCF'r(!)V'r("e2! )n'r!(

"r#r!"
dr!

"
dvxc'n (

dn #
n!n(r)

)n'r( (27)

is the first-order correction to the self-consistent poten-
tial, and ),n!/+n")VSCF"+n- is the first-order variation
of the Kohn-Sham eigenvalue ,n .

In the atomic physics literature, an equation analo-
gous to Eq. (25) is known as the Sternheimer equation,
after the work in which it was first used to calculate
atomic polarizabilities (Sternheimer, 1954). A self-
consistent version of the Sternheimer equation was in-
troduced by Mahan (1980) to calculate atomic polariz-
abilities within density-functional theory in the LDA.
Similar methods are known in the quantum chemistry
literature under the generic name of analytic evaluation
of second-order energy derivatives (Gerratt and Mills,
1968; Amos, 1987). In the specific context of the
Hartree-Fock approximation, the resulting algorithm is
called the coupled Hartree-Fock method (Gerratt and
Mills, 1968).

Equations (23)–(27) form a set of self-consistent
equations for the perturbed system completely analo-
gous to the Kohn-Sham equations in the unperturbed
case—Eqs. (13), (15), and (16)—with the Kohn-Sham
eigenvalue equation, Eq. (15), being replaced by the so-
lution of a linear system, Eq. (25). In the present case,
the self-consistency requirement manifests itself in the
dependence of the right-hand side upon the solution of
the linear system. As )VSCF(r) is a linear functional of
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of the precise form of the electron-electron interaction.
In particular, when the strength of the electron-electron
interaction vanishes, F!n" defines the ground-state ki-
netic energy of a system of noninteracting electrons as a
functional of its ground-state charge-density distribution
T0!n" . This fact was used by Kohn and Sham (1965) to
map the problem of a system of interacting electrons
onto an equivalent noninteracting problem. To this end,
the unknown functional F!n" is cast in the form

F!n"!T0!n""
e2

2 ! n#r$n#r!$

"r#r!"
drdr!"Exc!n" , (12)

where the second term is the classical electrostatic self-
interaction of the electron charge-density distribution,
and the so-called exchange-correlation energy Exc is de-
fined by Eq. (12).2 Variation of the energy functional
with respect to n(r) with the constraint that the number
of electrons be kept fixed leads formally to the same
equation as would hold for a system of noninteracting
electrons subject to an effective potential, also called the
self-consistent field, (SCF), potential, whose form is

VSCF#r$!V#r$"e2! n#r!$

"r#r!"
dr!"vxc#r$, (13)

where

vxc#r$%
&Exc

&n#r$
(14)

is the functional derivative of the exchange-correlation
energy, also called the exchange-correlation potential.

The power of this trick is that, if one knew the effec-
tive potential VSCF(r), the problem for noninteracting
electrons could be trivially solved without knowing the
form of the noninteracting kinetic-energy functional T0 .
To this end, one should simply solve the one-electron
Schrödinger equation:

# #
'2

2m
(2

(r2 "VSCF#r$ $)n#r$!*n)n#r$. (15)

The ground-state charge-density distribution and nonin-
teracting kinetic-energy functional would then be given
in terms of the auxiliary Kohn-Sham orbitals, )n(r):

n#r$!2 +
n!1

N/2

")n#r$"2 (16)

T0!n"!#2
'2

2m +
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where N is the number of electrons, and the system is
supposed to be nonmagnetic, so that each of the N/2
lowest-lying orbital states accommodates two electrons
of opposite spin. In periodic systems the index n running
over occupied states can be thought of as a double label,
n%,v ,k-, where v indicates the set of valence bands,
and k is a wave vector belonging to the first Brillouin
zone.

The ground-state energy given by Eqs. (11) and (12)
can be equivalently expressed in terms of the Kohn-
Sham eigenvalues:

E!n"!2 +
n!1

N/2

*n#
e2

2 ! n#r$n#r!$

"r#r!"
drdr!"Exc!n"

#! n#r$vxc#r$dr. (18)

Equation (15) has the form of a nonlinear Schrö-
dinger equation whose potential depends on its own
eigenfunctions through the electron charge-density dis-
tribution. Once an explicit form for the exchange-
correlation energy is available, this equation can be
solved in a self-consistent way using a variety of
methods.

2. Local-density approximation and beyond

The Kohn-Sham scheme constitutes a practical way to
implement density-functional theory, provided an accu-
rate and reasonably easy-to-use approximation is avail-
able for the exchange-correlation energy Exc!n" . In
their original paper, Kohn and Sham (1965) proposed
the assumption that each small volume of the system (so
small that the charge density can be thought to be con-
stant therein) contributes the same exchange-correlation
energy as an equal volume of a homogeneous electron
gas at the same density. With this assumption, the
exchange-correlation energy functional and potential
read

Exc!n"!! *xc#n $"n!n#r$n#r$dr, (19)

vxc!n"#r$!# *xc#n $"n
d*xc#n $

dn $
n!n(r)

, (20)

where *xc(n) is the exchange-correlation energy per
particle in a homogeneous electron gas at density n .
This approximation is known as the local-density ap-
proximation (LDA). Approximate forms for *xc(n)
have been known for a long time. Numerical results
from nearly exact Monte Carlo calculations for the ho-
mogeneous electron gas by Ceperley and Alder (1980)
have been parametrized by Perdew and Zunger (1981)
with a simple analytical form. More accurate parametri-
zations have been recently proposed by Ortiz and Bal-
lone (1994). All these different forms are very similar in
the range of electron densities relevant to condensed-
matter applications and yield very similar results.

The LDA is exact in the limit of high density or of a
slowly varying charge-density distribution (Kohn and

2The exchange-correlation energy is the name we give to the
part of the energy functional that we do not know how to
calculate otherwise. For this reason, it has been named the
stupidity energy by Feynmann (1972). Whether or not this is a
useful concept depends on the magnitude of the energy with
respect to the total functional and on the quality of the ap-
proximations one can find for it.
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sions over the entire Brillouin zone allows the calcula-
tion of the electron-phonon (Eliashberg) spectral
function !2F(") and of the mass enhancement param-
eter # that enters the MacMillan equation for the tran-
sition temperature Tc to superconductivity. Other im-
portant quantities that can be calculated are the
transport spectral function ! tr

2 F(") and the # tr coeffi-
cients, which determine the electrical and thermal resis-
tivity in the normal state. In simple metals, calculations
of # and !2F(") have been performed for Al, Pb, and
Li (Liu and Quong, 1996); for Al, Cu, Mo, Nb, Pb, Pd,
Ta, and V (Savrasov and Savrasov, 1996); and for Al,
Au, Na, and Nb (Bauer et al., 1998). Transport spectral
functions and coefficients (Savrasov and Savrasov, 1996;
Bauer et al., 1998) and phonon linewidths due to
electron-phonon coupling (Bauer et al., 1998) have also
been calculated. Figure 5 shows the results of Savrasov
and Savrasov, 1996 for !2F(").

The calculation of electron-phonon coefficients found
a remarkable application, beyond simple metals, in the
study of the behavior of molecular solids S, Se, and Te
under pressure. With increasing pressure, these trans-
form first to a base-centered orthorhombic supercon-
ducting structure, followed by a rhombohedral $-Po
phase, and finally for Se and Te by a bcc phase.

At the phase transition between the $-Po and the bcc
phase, a jump is observed in Tc in Te. The origin of this

jump was clarified (Mauri et al., 1996) through the study
of phonon dispersions and of the electron-phonon inter-
actions. The phonon contribution to the free energy was
shown to be responsible for the difference in the struc-
tural transition pressure observed in low- and room-
temperature experiments.

In S, the $-Po phase is predicted to be followed by a
simple cubic phase that is stable over a wide range of
pressures (280 to 540 GPa), in contrast to what is ob-
served in Se and Te. The calculated phonon spectrum
and electron-phonon coupling strength (Rudin and Liu,
1999) for the lower-pressure $-Po phase is consistent
with the measured superconducting transition tempera-
ture of 17 K at 160 GPa. The transition temperature is
calculated to drop below 10 K upon transformation to
the predicted simple cubic phase.

3. Oxides

Oxides present a special interest and a special chal-
lenge for anyone interested in phonon physics. On the
one hand, many very interesting materials, such as fer-
roelectrics and high-Tc superconductors, are oxides. On
the other hand, good-quality calculations on oxides are
usually nontrivial, both for technical and for more fun-
damental reasons. In a straightforward PW-PP frame-
work, the hard pseudopotential of oxygen makes calcu-
lations expensive: the use of ultrasoft pseudopotentials
is generally advantageous. The LDA is known to be in-
sufficiently accurate in many cases (and sometimes the

FIG. 3. Calculated phonon dispersions for fcc simple metal Al
and Pb and for the bcc transition metal Nb: solid lines, 0.3 eV
smearing width; dashed line 0.7 eV, smearing width; !, experi-
mental data. From de Gironcoli, 1995.

FIG. 4. Calculated phonon dispersions in magnetic transition
metals. Upper panel, bcc Fe. Solid lines, calculated GGA pho-
non dispersions; ", inelastic neutron scattering data; dotted
lines, dispersions calculated within local spin- density approxi-
mation (LSDA). Lower panel, Ni. Solid lines, calculated GGA
phonon dispersions; ", inelastic neutron scattering data; dot-
ted lines, calculated LSDA dispersions. From Dal Corso and
de Gironcoli, 2000.
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transport spectral function ! tr
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functions and coefficients (Savrasov and Savrasov, 1996;
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electron-phonon coupling (Bauer et al., 1998) have also
been calculated. Figure 5 shows the results of Savrasov
and Savrasov, 1996 for !2F(").

The calculation of electron-phonon coefficients found
a remarkable application, beyond simple metals, in the
study of the behavior of molecular solids S, Se, and Te
under pressure. With increasing pressure, these trans-
form first to a base-centered orthorhombic supercon-
ducting structure, followed by a rhombohedral $-Po
phase, and finally for Se and Te by a bcc phase.

At the phase transition between the $-Po and the bcc
phase, a jump is observed in Tc in Te. The origin of this

jump was clarified (Mauri et al., 1996) through the study
of phonon dispersions and of the electron-phonon inter-
actions. The phonon contribution to the free energy was
shown to be responsible for the difference in the struc-
tural transition pressure observed in low- and room-
temperature experiments.

In S, the $-Po phase is predicted to be followed by a
simple cubic phase that is stable over a wide range of
pressures (280 to 540 GPa), in contrast to what is ob-
served in Se and Te. The calculated phonon spectrum
and electron-phonon coupling strength (Rudin and Liu,
1999) for the lower-pressure $-Po phase is consistent
with the measured superconducting transition tempera-
ture of 17 K at 160 GPa. The transition temperature is
calculated to drop below 10 K upon transformation to
the predicted simple cubic phase.

3. Oxides

Oxides present a special interest and a special chal-
lenge for anyone interested in phonon physics. On the
one hand, many very interesting materials, such as fer-
roelectrics and high-Tc superconductors, are oxides. On
the other hand, good-quality calculations on oxides are
usually nontrivial, both for technical and for more fun-
damental reasons. In a straightforward PW-PP frame-
work, the hard pseudopotential of oxygen makes calcu-
lations expensive: the use of ultrasoft pseudopotentials
is generally advantageous. The LDA is known to be in-
sufficiently accurate in many cases (and sometimes the

FIG. 3. Calculated phonon dispersions for fcc simple metal Al
and Pb and for the bcc transition metal Nb: solid lines, 0.3 eV
smearing width; dashed line 0.7 eV, smearing width; !, experi-
mental data. From de Gironcoli, 1995.

FIG. 4. Calculated phonon dispersions in magnetic transition
metals. Upper panel, bcc Fe. Solid lines, calculated GGA pho-
non dispersions; ", inelastic neutron scattering data; dotted
lines, dispersions calculated within local spin- density approxi-
mation (LSDA). Lower panel, Ni. Solid lines, calculated GGA
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ted lines, calculated LSDA dispersions. From Dal Corso and
de Gironcoli, 2000.
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3. Si/Ge superlattices and alloys

Si/Ge superlattices and alloys are not only more diffi-
cult to grow, but also more problematic as a subject of
theoretical study than GaAs/AlAs systems. The mass
approximation in Si/Ge systems is quite poor, yielding
errors of as much as 20 cm!1 for optic phonons. More-
over in Si/Ge systems the lattice parameters of the two
components differ by as much as 4%, thus giving rise to
sizable strain and atomic relaxations which must be
taken into account. GaAs/AlAs systems, in contrast, are
almost perfectly matched (their lattice mismatch is a
modest 0.2%).

In order to achieve the same level of accuracy for
Si/Ge systems as for GaAs/AlAs systems, one has to
supplement the mass approximation with a correction
that takes into account the effects of strain and atomic
relaxation. This goal is achieved by introducing higher-
order interatomic force constants that are fitted to first-
principles results for a few selected configurations (de
Gironcoli, 1992). More complex systems can then be
simulated by suitable supercells as for GaAs/AlAs. In
this way the vibrational properties of SixGe1!x have
been studied (de Gironcoli, 1992). In particular this ap-
proach was to reproduce the Raman spectra for
Si0.5Ge0.5 , including details due to the local arrangement
of atoms, while the mean-field approach (coherent po-
tential approximation, or CPA) badly failed in repro-
ducing the three-mode character of the spectra (de Gi-
roncoli and Baroni, 1992). Higher-order interatomic
force constants were also used to study the vibrational
properties of ideal and realistically intermixed Si/Ge su-
perlattices (de Gironcoli et al., 1993; Schorer et al., 1994;
de Gironcoli and Molinari, 1994).

4. AlGaN alloys

The zone-center vibrational properties of wurtzite
AlxGa1!xN alloys, over the entire range of composition
from pure GaN to pure AlN, were studied by Bungaro
and de Gironcoli (2000) using mass approximation and
the arithmetic average of the interatomic force constants
of the two pure materials, as previously calculated by
Bungaro et al. (2000). While some of the alloy modes
displayed two-mode-like behavior, they did not preserve
well-defined symmetry and had large broadening. The
LO modes, in contrast, displayed one-mode behavior

and had well-defined symmetry, small broadening, and a
pronounced dependence of the frequency upon alloy
composition. Therefore these modes were proposed as
the best candidates for the compositional characteriza-
tion of the alloy (Bungaro and de Gironcoli, 2000).

5. GaP/InP alloys

A different approach to the study of phonons in semi-
conductor alloys uses suitably chosen small supercells,
or special quasi random structures (Zunger et al., 1990)
to simulate a disordered system. The evolution of the
vibrational properties in GaP/InP systems with long-
range order was studied using this approach (with a 16-
atom cell) to calculate the phonon spectra of random
Ga0.5In0.5P (Ozoliņš and Zunger, 1998). The phonon
spectra of pure GaP, InP, and of CuPt-type ordered
GaInP2 were calculated for comparison. It was found
that ordered GaInP2 and Ga0.5In0.5P had qualitatively
different phonon spectra: ordered GaInP2 exhibited
two-mode behavior, with two GaP-like and two InP-like
phonon modes, while disordered Ga0.5In0.5P exhibited
pseudo-one-mode behavior: two LO modes, one of GaP
and another of mixed GaP/InP character, appeared,
while the TO modes of GaP and InP merged into a
single alloy mode. This is in remarkable agreement with
experiments (Ozoliņš and Zunger, 1998).

6. Localized vibrations at defects

Localized vibrational modes of impurities contain a
wealth of information on the local structure of the de-
fect. Their analysis requires an accurate knowledge of
the phonon spectra of the host crystal. The isotopic fine
structure of substitutional impurities in III-V semicon-
ductors was studied using DFPT for the bulk crystal and
a Green’s-function technique, with results far superior
to those obtained using model calculations (Robbie
et al., 1995). With these techniques, the host isotope fine
structure of 12C:As and 11B:As local modes in GaAs
(Robbie et al., 1995), of the As:P gap mode (Grosche
et al., 1995), and of B:Ga gap and local modes in GaP
(Robbie et al., 1996) were successfully analyzed.

FIG. 8. Spectral densities of
states of Ga0.5Al0.5As along the
!-X direction: solid lines, posi-
tions of the peaks in the "-q
plane. From Baroni, Gironcoli
et al., 1990.
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8.3 Lattice vibrations of one-dimensional monatomic crystals 177
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Fig. 8.1 Linear chain model. J is the har-
monic force constant (the interactions are
represented by springs), and the atomic dis-
placements are represented by u.

The force constant is identical for each pair of atoms in the chain. In forming
the differential we note that the distance between two atoms n and n + 1 is
r = a + (un −un+1). Thus the derivatives of E with respect to u are equivalent
to the derivatives with respect to r . Since a is the equilibrium unit cell length,
the first derivative of E at r = a is zero.

8.3.2 Sound waves – vibrations with long wavelengths
Vibrations with long wavelengths, and hence small wave vectors, will corre-
spond to sound waves. There is a simple relationship between the speed of
sound, v, and the isotropic elastic stiffness c:

v2 = c/ρ (8.5)

whereρ is the density, which in our one-dimensional model is equal toρ = m/a.
The one-dimensional stiffness in the model is easy to compute: a strain ϵ gives a
displacement un = ϵna to atom n, so the strain energy per unit length is given as

Estrain = 1
2

J (un − un+1)
2

a

= 1
2
J ϵ2a ≡ 1

2
cϵ2 (8.6)

The last part of this equation defines the stiffness c:

c = Ja (8.7)

We therefore have

v2 = Ja2/m (8.8)

The velocity of the sound wave is related to the angular frequency and wave
vector through

ω = vk (8.9)

Thus we have an equation for the dependence of angular frequency on wave
vector:

ω =
(
a
√

J/m
)
k (8.10)

We have therefore related the vibration frequency to the second derivative of the
interatomic potential, and obtained the dependence of the frequency on wave
vector in the limit of small k.



WHAT?
(TO BE PRAGMATICS: WHAT CAN BE CALCULATED?)

BAND STRUCTURE

CHARGE DENSITY

DENSITY OF STATES 

PHOTOEMISSION

ELECTRON ENERGY LOSS /
ABSORPTION DIELECTRIC 
FUNCTION

CORE LEVEL SPECTROSCOPIES 
RAMAN SCATTERING

COMPTON SCATTERING 
POSITRON ANNIHILATION

• ELECTRONIC PROPERT IES     and    •   SPECTROSCOPY

6

further Nb substitution in MoS2 will decrease the total
electron concentration of the system and cause a pro-
gressive downward shift of the Fermi level. However, the
substitutional doping with Mo of NbS2, will increase the
total electron concentration and lead to gradual filling of
the dz2 Nb band.

Hence, over the whole range of considered concentra-
tion, the electronic behavior of the stable mixed systems
will be metallic. We note that our conclusions agree well
with the experimental data. According to electrical re-
sistivity measurements, MoS2 with 5 % of substitutional
Nb atoms has an electrical resistivity level similar to that
of graphite.5 Likewise, the mixed NbxMo1−xS2 nanopar-
ticles are reported to be metallic.21

IV. CONCLUSIONS

We have presented a systematic ab initio study on the
stability, structural and electronic properties of mixed
molybdenum niobium disulphides. Bilateral doping ef-
fects have been investigated up to a dopant concentration
of 25 %.

Focusing on the specific arrangement of dopant atoms,
we observe that over the whole range of considered con-
centrations, substitutional doping with Nb of MoS2 will
predominate. In addition, our calculations for Mo dop-
ing of NbS2 show that depending on the specific syn-
thesis conditions, both interstitial and substitutional Mo
arrangements can co-exist. The incorporation of dopant
atoms causes structural perturbations and changes in the
crystallographic parameters of the host crystal, which de-
pendents on the stoichiometries of the mixed systems.

The difference in the number of valence electrons be-
tween Mo and Nb atoms means that Nb substitutional
doping of MoS2 introduces electron holes into the sys-
tem. Mo substitutional doping of NbS2 adds electrons to
the system, leading to an upward shift of the Fermi level.
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Figure 4: (Color online) Electron density distribution of the
half-occupied electronic state associated with the introduction
of one Nb substitutional atom in the MoS2 lattice. The Nb
atom is blue, Mo atoms are red and S atoms are yellow.
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Figure 5: In-plane cell parameter for the mixed Mo1−xNbxS2

systems as a function of Nb concentration inside the cell. Solid
diamonds correspond to reported experimental data.19

-10

 0

 10

 20

 30

 40

 50

 60

 0  10  20  30

Fo
rm

at
io

n 
en

er
gy

 (e
V)

/

/

Nb concentration (%)

Nb(inter)@MoS2Nb(subs)@MoS2

 70  80  90  100/

/ Mo(inter)@NbS2Mo(subs)@NbS2

Figure 6: (Color online) Formation energies for the mixed
Mo1−xNbxS2 systems as a function of the dopant chemical
potential and dopant concentration within the cell. Open
symbols denote the dopant chemical potential derived from
pure metal disulphide, solid symbols stand for potential ob-
tained from metal bulk phases.

According to our results, these mixed disulphides have a
metallic behavior throughout the range of stoichiometry
considered. This result is in agreement with experimen-
tal data available for low-level Nb doping of MoS2.

We should note that the semiconductor to metal transi-
tion due to Nb doping might not induce any degradation
in the mechanical properties of the MoS2. Indeed, the
dopant atoms are located within the planes and no inter
plane bonding bridges are formed. Thus, mixed NbS2-
MoS2 might present interesting capabilities for new tri-
bological applications.

The conclusions of the present work can be generalized
to other mixed d metal chalcogenides presenting similar
structural and electronic properties.
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FIG. 8. (Color online) G0W0 band structures for several values
of the c lattice parameter. For each c value the obtained geometries at
the DFT level upon in-plane relaxation were used. Energies referred
to the Fermi level.

consequence that both the S-SM transition as well as the
SM-M transition occur for shorter interlayer spacing, as can
be seen in Fig. 4. Comparison with DFT results shows that the
conical structures remain only at the K point of the Brillouin
zone. However, a set of linear bands and a discontinuity in
the second derivative of the dispersion relation appears in the
same symmetry point just after the semimetal transition, while
for the DFT case, these characteristics arise once the system
reaches the metallic state. From MBPT calculation, the cone
is placed at 0.5 eV below Fermi energy, while from DFT it
is placed at K , 1.65 eV below the Fermi energy. Apart from
being located below the Fermi level, the main difference with
graphene Dirac cones is that linear bands do not have the same
extension in reciprocal space around the K point for electrons
and holes, as can be seen in Figs. 8 and 10 for c = 8.84 Å.
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FIG. 9. (Color online) Fermi surfaces for (a) bulk in equilibrium,
c = 12.5 Å; (b) semimetal state, c = 10.6 Å; (c) metallic transition
c = 9.7 Å; and (d) appearance of conical bands, c = 9.4 Å.

Finally, in Fig. 9, we present the evolution of the Fermi
surface, calculated at the DFT level for relaxed layers. The
Fermi surface increases its complexity when going from the
normal semiconductor state up to the metallic transition. For
semimetallic and metallic states, Fermi surface share a similar
structure with TlBiTe, which is also a semimetal with one
Dirac cone [in that case located on ! (Ref. 46)]. For energies
around the Dirac point, there are closed Fermi surfaces with C6
symmetry, as observed in Fig. 9(d). Another reported material
exhibiting a single Dirac cone on ! is the topological insulator
Bi2Se3 (Ref. 47), which is a material composed of quintuple
layers weakly bonded by vdW interactions. Clearly, from our
calculations, MoS2 exhibits a behavior resembling topological
insulators, induced by great proximity between layers. Band
structures showed so far represent the dispersion relation along
BZ special lines; hence, a 3D representation of E(kx,ky) is
desirable. A close-up view of the Dirac pointlike in MoS2 for
c = 8.84 Å is displayed in Fig. 10.

From Fig. 10 it is evident that linear bands, forming
conical shapes resembling Dirac cones of graphene, are
not only occurring along the special lines passing by K .
For the case displayed and for the whole set of performed
calculations on relaxed layers, conical bands appear below
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FIG. 10. (Color online) Illustration of the Dirac cone obtained
from G0W0 calculations for c = 8.84 Å around K . Contour plot of the
upper (a) and lower (b) parts of the cone: The isocurves are separated
by 0.005 eV. The tip of the cone (in black) is at kx = 0.334 and
ky = 0.347 with E ∼ 9.515 eV. The color scheme for the contours of
is reported in panel (c). In the upper part of the cone (a), the lowest
energies are in red (black); when increasing they turn to yellow (very
light gray), green (light gray), cyan (gray), and finally blue (black)
for the highest values. In the lower part of the cone (b), it is just the
reverse. Cuts through the cone are also reported in panels (c) and
(d), following, respectively, the directions k(c) and k(d) as indicated in
panel (a). The cuts which show an intersection are obtained by taking
the axes which pass through the tip. In panel (c), the other curves
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of 0.005. The cuts provide the energy (in eV) as a function of the
distance "k with respect to the tip along k(c). In panel (c), it is just the
reverse. The warping effect is clearly demonstrated by the difference
in the slopes of the cones in panels (c) and (d).
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Figure 2: DFT-LDA electronic band structure for pure MoS2

and NbS2. The origin of the energies is the Fermi level.

band structures for MoS2 and NbS2 bulk species. The
deepest band in the plot corresponds to the S 3s states
and is separated by a wide gap from a broad valence
band. The bottom of the valence band corresponds to
the hybrid 3p-S and 4d-Mo(Nb) states, and the upper
part to the 4dz2 Mo(Nb) states. As one can notice, the
overall structure and dispersion of the bands for the MoS2

and NbS2 bulks are rather similar. The main difference
between the two systems comes from the different num-
ber of valence electrons between the Mo and Nb atoms.
The number of valence electrons in MoS2 is enough to fill
completely the valence band and thus MoS2 is a semicon-
ductor with an LDA indirect gap of 1.17 eV (experimen-
tally measured27 as 1.23 eV) and a direct gap at the Γ
point of 2.02 eV (experimentally27 1.74 eV). However,
NbS2 has one electron less per metal atom so that the
top of its valence band is half-filled. Consequently, NbS2

has a metallic behavior. Our results for bulk systems
agree well with the previously reported calculations and
available experimental data.28,29,30,31,32

B. Low concentration doping: single dopant atoms

In order to access the most energetically favorable way
for bilateral doping within the MoS2 -NbS2 system, we
have calculated the formation energies of the “mixed”
structures. For both types of doping, the formation en-
ergy can be estimated from the general equation

Eform = Emixed − [M · µMoS2
+ N · µNbS2

+ X · µD] (1)

where

{

M, N ̸= 0 and X = 0 for substitutional doping;
M or N = 0 and X ̸= 0 for interstitial doping.

In Eq.1 Emixed is the total energy of the mixed system;
M and N are the numbers of MoS2 and NbS2 units in

the mixed systems; µMoS2
and µNbS2

are respectively the
chemical potentials for MoS2 and NbS2 using as refer-
ence the corresponding bulk systems; X is the number
of dopant atoms inside the cell and µD is the chemical
potential of the dopant atom.

As a general rule, in the synthesis process the chemical
potential for an element as a dopant should be lower than
that in its bulk form, otherwise this element would form
the energetically more stable bulk phase rather than the
mixed system. Consequently, in our study we imposed
as boundaries the chemical potentials of dopants derived
from the corresponding pure bulk metals µD = µbulk or
metal disulphides µD = µMS2

−2·µS, where µS is sulphur
chemical potential as derived from its bulk phase. Thus,
we obtain the range of formation energies calculated us-
ing both values of the dopant’s chemical potentials for
each dopant configuration.

Formation energies for low level doping (one dopant
per unit cell, which corresponds to ∼ 3% of doping)
and metal-sulphur bond lengths are presented in Table I.
The inclusion of Nb dopant in interstitial sites within the
MoS2 structure is highly energetically unfavorable since
the formation energy for the Nb in octahedral sites is
of the order of several eV. The Nb position in tetrahe-
dral sites (position a, see Fig.1) is not stable and after
relaxation the Nb atom moves to a neighboring octahe-
dral site (position b). In contrast, negative formation
energies correspond to the substitutional model (posi-
tion c, see Fig.1), indicating that the substitution process
is exothermic. In this configuration the Nb-S distances
decrease by 0.05 Å compared to the NbS2 bulk, adapt-
ing to the initial parameters of the “host” MoS2 lattice.
The Mo-S bond lengths at neighboring sites remain unaf-
fected. In the mirror situation, when NbS2 is doped with
Mo, both the intercalation and substitution processes are
energetically favorable.33 Moreover, the range of forma-
tion energies reported in Table I suggests that low level
substitutional and interstitial doping will be in competi-
tion. The Mo-S bond distances for the substitutional Mo
dopant increase by about 0.05 Å compared to the MoS2

bulk. However, Mo insertion between the NbS2 planes is
characterized by a decrease of 0.02 Å in the Mo-S bond

Table I: Formation energies (eV) and average metal-sulphur
bond distances (Å) in single atom doped MoS2 and NbS2.
Formation energies are calculated using the dopant chemical
potentials derived from metal disulphide (Eform1

) or pure
metal bulk (Eform2

) phases.

System Eform1
Eform2

Mo-S Nb-S

MoS2 2.42

NbS2 2.50

NbMo32S64 (inter) 8.08 3.80 2.42 2.43

NbMo31S64 (subst) -0.21 -0.86 2.42 2.45

MoNb32S64 (inter) -3.24 -6.87 2.40 2.49

MoNb31S64 (subst) -5.11 -4.46 2.46 2.49
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from reaching the exact solution in the range where N
phonon scattering processes dominate and the other scat-
tering processes are weak. Nevertheless until now the
Omini Sparavigna (OS) iterative procedure has repre-
sented the only numerically exact method used to solve
the BTE and evaluate the thermal conductivity with17–20

and without21,22 IFCs from ab initio approaches. The
method scales as the square of the number of grid points
and it requires very dense grids to converge the thermal
conductivity. As a consequence, the time required to
solve the BTE could dominate over the time required to
compute the IFCs even when these are evaluated by first
principles.

In this paper we present a new approach for solving
exactly the linearized BTE. This method joins together
the variational principle and the resolution on a discrete
grid. More specifically by using the variational principle
and the conjugate gradient method, we present a stable
algorithm, faster than the one previously proposed and
able to always converge to the exact solution.
In particular the mathematical stability assures the pos-
sibility to use the present method for evaluating the ther-
mal conductivity in all the possible ranges of temper-
atures, without the problems16 found by the previous
method. These properties assure the flexibility of the
present approach in treating any structure without any
a-priori knowledge.
Moreover, even in the case where both of the methods are
stable, the present scheme assures to reach the conver-
gence one order of magnitude more rapidly than the OS,
opening the possibility to treat more complex systems.

As a first application we use this algorithm for studying
the lattice thermal conductivity in naturally occurring
and isotopically enriched diamond. Diamond thermal
conductivity is the highest known among bulk materials.
At room temperature its value is more than an order of
magnitude higher than in other semiconductor materials,
exceeding 3000 W/m-K23–25. Diamond, and in general
carbon systems, have strong covalent bonding and light
atomic masses, which lead to high phonon frequencies,
high acoustic velocities, and a very small phase space
for Umklapp scattering when compared with other com-
mon semiconductors. As a consequence, large amounts
of heat are transferred by acoustic phonons with high ve-
locities, giving these systems their high values of thermal
conductivity18,26–28. Weak Umklapp phonon scattering
makes the system very sensitive to small changes in the
isotopic content at low temperatures. Di↵erent data are
available for a large temperature range and for a wide
range of C13 isotope concentrations23–26,29–32. In our case
this has the double advantage of enabling us to : i) test
the stability of the present algorithm with respect to the
OS method, even in cases where N scattering processes
are dominant with respect to the other scattering events
such as in isotopically enriched diamond; and, physically
more interesting: ii) give a theoretical limit based on the
exact solution of the BTE of the maximum lattice ther-
mal conductivity reachable in isotopically pure diamond

samples.

II. BOLTZMANN TRASPORT EQUATION

When a gradient of temperature rT is established in
a system, a subsequent heat flux will start propagating
in the medium. Without loss of generality we assume
the gradient of temperature to be along the direction x.
The flux of heat, collinear to the temperature gradient,
can be written in terms of phonon energies h̄!qj , phonon
group velocities cqj in the x direction, and the perturbed
phonon population nqj :
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On the l.h.s !qj is the angular frequency of the phonon
mode with vector q and branch index j, ⌦ is the volume
of the unit cell and the sum runs over a uniform mesh of
N

0

q points. On the r.h.s. k is the diagonal component of
the thermal conductivity in the temperature-gradient di-
rection. Knowledge of the perturbed phonon population
allows heat flux and subsequently thermal conductivity
to be evaluated.
Unlike phonon scattering by defects, impurities and
boundaries, anharmonic scattering represents an intrin-
sic resistive process and in high quality samples, at room
temperature, it dominates the behaviour of lattice ther-
mal conductivity balancing the perturbation due to the
gradient of temperature. The balance equation, namely
the Boltzmann Transport Equation (BTE), formulated
in 1929 by Peierls33 is:
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with the first term indicating the phonon di↵usion due
to the temperature gradient and the second term the
scattering rate due to all the scattering processes. This
equation has to be solved self consistently. In the gen-
eral approach11, for small perturbation from the equilib-
rium, the temperature gradient of the perturbed phonon
population is replaced with the temperature gradient of
the equilibrium phonon population @nqj/@T = @n̄qj/@T

where n̄qj = (eh̄!qj/kBT � 1)�1; while for the scattering
term it can be expanded about its equilibrium value in
terms of a first order perturbation f

EX:

nqj ' n̄qj + n̄qj(n̄qj + 1)
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equation has to be solved self consistently. In the gen-
eral approach11, for small perturbation from the equilib-
rium, the temperature gradient of the perturbed phonon
population is replaced with the temperature gradient of
the equilibrium phonon population @nqj/@T = @n̄qj/@T

where n̄qj = (eh̄!qj/kBT � 1)�1; while for the scattering
term it can be expanded about its equilibrium value in
terms of a first order perturbation f
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from reaching the exact solution in the range where N
phonon scattering processes dominate and the other scat-
tering processes are weak. Nevertheless until now the
Omini Sparavigna (OS) iterative procedure has repre-
sented the only numerically exact method used to solve
the BTE and evaluate the thermal conductivity with17–20

and without21,22 IFCs from ab initio approaches. The
method scales as the square of the number of grid points
and it requires very dense grids to converge the thermal
conductivity. As a consequence, the time required to
solve the BTE could dominate over the time required to
compute the IFCs even when these are evaluated by first
principles.

In this paper we present a new approach for solving
exactly the linearized BTE. This method joins together
the variational principle and the resolution on a discrete
grid. More specifically by using the variational principle
and the conjugate gradient method, we present a stable
algorithm, faster than the one previously proposed and
able to always converge to the exact solution.
In particular the mathematical stability assures the pos-
sibility to use the present method for evaluating the ther-
mal conductivity in all the possible ranges of temper-
atures, without the problems16 found by the previous
method. These properties assure the flexibility of the
present approach in treating any structure without any
a-priori knowledge.
Moreover, even in the case where both of the methods are
stable, the present scheme assures to reach the conver-
gence one order of magnitude more rapidly than the OS,
opening the possibility to treat more complex systems.

As a first application we use this algorithm for studying
the lattice thermal conductivity in naturally occurring
and isotopically enriched diamond. Diamond thermal
conductivity is the highest known among bulk materials.
At room temperature its value is more than an order of
magnitude higher than in other semiconductor materials,
exceeding 3000 W/m-K23–25. Diamond, and in general
carbon systems, have strong covalent bonding and light
atomic masses, which lead to high phonon frequencies,
high acoustic velocities, and a very small phase space
for Umklapp scattering when compared with other com-
mon semiconductors. As a consequence, large amounts
of heat are transferred by acoustic phonons with high ve-
locities, giving these systems their high values of thermal
conductivity18,26–28. Weak Umklapp phonon scattering
makes the system very sensitive to small changes in the
isotopic content at low temperatures. Di↵erent data are
available for a large temperature range and for a wide
range of C13 isotope concentrations23–26,29–32. In our case
this has the double advantage of enabling us to : i) test
the stability of the present algorithm with respect to the
OS method, even in cases where N scattering processes
are dominant with respect to the other scattering events
such as in isotopically enriched diamond; and, physically
more interesting: ii) give a theoretical limit based on the
exact solution of the BTE of the maximum lattice ther-
mal conductivity reachable in isotopically pure diamond

samples.

II. BOLTZMANN TRASPORT EQUATION

When a gradient of temperature rT is established in
a system, a subsequent heat flux will start propagating
in the medium. Without loss of generality we assume
the gradient of temperature to be along the direction x.
The flux of heat, collinear to the temperature gradient,
can be written in terms of phonon energies h̄!qj , phonon
group velocities cqj in the x direction, and the perturbed
phonon population nqj :
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On the l.h.s !qj is the angular frequency of the phonon
mode with vector q and branch index j, ⌦ is the volume
of the unit cell and the sum runs over a uniform mesh of
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q points. On the r.h.s. k is the diagonal component of
the thermal conductivity in the temperature-gradient di-
rection. Knowledge of the perturbed phonon population
allows heat flux and subsequently thermal conductivity
to be evaluated.
Unlike phonon scattering by defects, impurities and
boundaries, anharmonic scattering represents an intrin-
sic resistive process and in high quality samples, at room
temperature, it dominates the behaviour of lattice ther-
mal conductivity balancing the perturbation due to the
gradient of temperature. The balance equation, namely
the Boltzmann Transport Equation (BTE), formulated
in 1929 by Peierls33 is:
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with the first term indicating the phonon di↵usion due
to the temperature gradient and the second term the
scattering rate due to all the scattering processes. This
equation has to be solved self consistently. In the gen-
eral approach11, for small perturbation from the equilib-
rium, the temperature gradient of the perturbed phonon
population is replaced with the temperature gradient of
the equilibrium phonon population @nqj/@T = @n̄qj/@T

where n̄qj = (eh̄!qj/kBT � 1)�1; while for the scattering
term it can be expanded about its equilibrium value in
terms of a first order perturbation f
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the variational principle and the resolution on a discrete
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able to always converge to the exact solution.
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gence one order of magnitude more rapidly than the OS,
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conductivity is the highest known among bulk materials.
At room temperature its value is more than an order of
magnitude higher than in other semiconductor materials,
exceeding 3000 W/m-K23–25. Diamond, and in general
carbon systems, have strong covalent bonding and light
atomic masses, which lead to high phonon frequencies,
high acoustic velocities, and a very small phase space
for Umklapp scattering when compared with other com-
mon semiconductors. As a consequence, large amounts
of heat are transferred by acoustic phonons with high ve-
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conductivity18,26–28. Weak Umklapp phonon scattering
makes the system very sensitive to small changes in the
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this has the double advantage of enabling us to : i) test
the stability of the present algorithm with respect to the
OS method, even in cases where N scattering processes
are dominant with respect to the other scattering events
such as in isotopically enriched diamond; and, physically
more interesting: ii) give a theoretical limit based on the
exact solution of the BTE of the maximum lattice ther-
mal conductivity reachable in isotopically pure diamond

samples.

II. BOLTZMANN TRASPORT EQUATION

When a gradient of temperature rT is established in
a system, a subsequent heat flux will start propagating
in the medium. Without loss of generality we assume
the gradient of temperature to be along the direction x.
The flux of heat, collinear to the temperature gradient,
can be written in terms of phonon energies h̄!qj , phonon
group velocities cqj in the x direction, and the perturbed
phonon population nqj :
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q points. On the r.h.s. k is the diagonal component of
the thermal conductivity in the temperature-gradient di-
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allows heat flux and subsequently thermal conductivity
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Unlike phonon scattering by defects, impurities and
boundaries, anharmonic scattering represents an intrin-
sic resistive process and in high quality samples, at room
temperature, it dominates the behaviour of lattice ther-
mal conductivity balancing the perturbation due to the
gradient of temperature. The balance equation, namely
the Boltzmann Transport Equation (BTE), formulated
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with the first term indicating the phonon di↵usion due
to the temperature gradient and the second term the
scattering rate due to all the scattering processes. This
equation has to be solved self consistently. In the gen-
eral approach11, for small perturbation from the equilib-
rium, the temperature gradient of the perturbed phonon
population is replaced with the temperature gradient of
the equilibrium phonon population @nqj/@T = @n̄qj/@T
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term it can be expanded about its equilibrium value in
terms of a first order perturbation f
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FIG. 3. (Color online) Graphene phonon FWHM for acoustic bands in the Brillouin zone and at 300 K.
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FIG. 4. Phonon mean free path for the 3 acoustical branch
in graphene at a temperature of 300 K.

mean free path (MFP):

�
s

(q) = ⌧
s

(q) |v
s

(q)| . (8)

Where v
s

= rq!(q) is the phonon group velocity and
⌧
s

is the phonon lifetime, from equation 7. In figure 4
we have plotted the MFP at 300 K for the 3 acoustical
bands. The MFP for the TO and LO bands is of order
100 nm or smaller. We have verified that it does not get
substantially higher at lower temperatures, except in the
vicinity of � where it diverges at 0 K. On the other hand,
we can see how, at room temperature, the MFP of the
ZA bands is one order of magnitude larger, i.e. of order
1 µm, in the center region of the Brillouin zone. It also
increases linearly when temperature decreases, although
border27 and strain26 e↵ects should be included at low
temperature.

We remark how the MFP of acoustical phonons is only
one order of magnitude smaller than typical high-quality
graphene samples, and definitely larger than the trans-
verse dimension of graphene nano-ribbons. This result
suggests that the possibility of ballistic phonon-driven
conductance should be included when modeling this kind
of systems.

2. Temperature dependence

The intrinsic anharmonic broadening of a specific
phonon (qj) has, in general, a typical dependence of the
temperature T : It is almost constant below a certain

characteristic temperature ✓s, then it rapidly becomes
linear in T . Such a behavior is reproduced by Eq. 6. A
quadratic dependence on T can be observed only at rela-
tively high T and it is due to terms of order higher than
those included in Eq. 6 28.
From Eq. 6, one can check that
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The overall dependence on T of the broadening � can
thus be approximated by

�qj(T ) ' �̃qj(T ) = ↵qj✓
S
qj coth

 
✓Sqj
T

!
, (11)

where coth is the hyperbolic cotangent, ✓Sqj =
�qj(0)/↵qj , and �qj(0) is the T = 0 broadening from
Eq. 6. Indeed, �̃ from Eq. 11 is almost constant for T ⌧
✓S and tends to �(0). Moreover, �̃(T ) = ↵T + O(1/T )
for T � ✓S.
To check the validity of Eq. 11, we systematically com-

puted the graphene broadening for di↵erent phonons in
the temperature range between 0 and 1500 K, using
Eq. 6. These results are reasonably well reproduced by
Eq. 11 with an error less than 5%. As a consequence, for
a given phonon mode, the knowledge of the two corre-
sponding parameters ✓S and ↵ is enough to determine the
overall temperature behavior of the broadening, through
Eq. 11. Fig. 5 reports ↵ and ✓S for the acoustic branches
(which are the most relevant in thermal transport) along
high symmetry lines.
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FIG. 1. Left: Graphene phonon dispersion bands widened proportionally to their respective linewidth at 300 K with a scale
factor of 100. Band labels are assigned according to Ref. 21. Right: Total vibrational density of states and its decomposition
over groups of disentangled bands: Z (ZA+ZO), TA and H (LA+TO+LO).
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FIG. 2. Graphene linewidths for each band and their final
state decomposition

The quadratically vanishing ZA has a linewidth which
is itself quadratic in q around �. All the optical bands
have a non-zero linewidth in the entire Brillouin zone.
The many sharp peaks in the higher part of the spec-
trum can be associated with peaks in the VDOS: When
one or both of the final states, i.e. of the states that
meet energy and momentum conservation requirements,
produce a peak in the VDOS, there the linewidth will
typically exhibit a peak. For example, the largest scat-
tering probability, predicted for the M point on the LO
band (1373 cm�1), correspond to a decay toward a ZO
phonon close to � (904 cm�1) and a ZA phonon close to
M (477 cm�1); as the Z bands VDOS (fig. 1, right panel)
has maximum in both region this transition is particu-
larly favored. In a similar way, the small peak on the
LA branch can be associated with the activation of umk-

lapp scattering toward the ZA band in two phonons, one
around the M point, the other around �.

To have a more comprehensive view of the phonon
widening we have plotted in figure 3 the FWHM in the
entire bi-dimensional FBZ of graphene for the 3 acousti-
cal bands. The � point is in the center of the hexagon,
while the equivalent K points are situated on every ver-
tex and the M points at the midpoint of each side. We
observe how the ZO linewidth (left panel) is relatively
feature-less and isotropic; it is quadratic in q in the cen-
ter of the FBZ then it saturates and become relatively
constants. On the other hand the TO and LO bands ex-
hibits a feature-rich linewidth in a wide hexagonal region
about halfway in the FBZ; this region corresponds to the
activation of umklapp processes in the ZO decay channel.

1. Phonon mean free path

An alternative way to represent the e↵ect of the
phonon linewidth broadening is to plot the single-phonon
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Figure 1. (Top panel) In-plane lattice thermal conductivity in bulk graphite, single- and bi-layer

graphene of crystalline-domain sizes (see text) L = 1 mm and (Bottom panel) out-of-plane thermal

conductivity of graphite with L = 0.6 µm. Measurements (EXP) of graphite are reported [21]. Solid

lines are used for the exact (FULL) solutions while dashed lines for the single-mode approximation

(SMA) solutions. (Inset) Zoomed SMA results for the range T = 200 ÷600 K, in which in-plane

thermal conductivity is qualitatively wrong: graphite conductivity is found to be higher than single-

and bi-layer graphene.

necessary to describe the collective excitations, that arise in the full self-consistent BTE. The

phonon representation used in the SMA is related to the eigenvalues of the dynamical matrix.

This representation is optimal as long as we consider the weakly-interacting quasiparticles at

equilibrium. In the out-of-equilibrium condition induced by the gradient of temperature, it is

not possible to neglect the coupling between phonons. A suitable representation of the heat

carriers is instead given by the eigenvalues of the scattering matrix [22], which we here refer

to as the collective excitations. A large increase of conductivity with respect to graphite is

found for single-layer graphene (top panel of Fig. 1), as the experimental evidence suggests,



STRUCTURAL CHARACTERIZATIONbic core when bound to Ca2z, the regulatory domain is not
thought to undergo major conformational changes upon binding

Ca2z. [17–21] The Ca2z binding sites on the C terminal of TnC
(cCTnC) are of high affinity and thought to remain bound
throughout the cardiac cycle; without these ions bound the
domain remains unstructured. [22].
cCTnC has been investigated as a possible target for drugs

which modulate the calcium sensitivity of the protein (related to its

propensity to bind Ca2z and pass this signal onto the rest of the
protein complex). This is believed to be affected by mutations
associated to dilated and hypertrophic cardiomyopathy. [12,23,24]
Drugs in current use as treatment for heart diseases tend to alter
the cytosolic calcium homeostasis and may provoke arythmia and
even death. Hence there is a pressing need to find alternative
therapies, such as calcium sensitisers and desensitisers. The
structure of the calcium sensitiser EMD 57033, which we will
also study for comparison, is shown in Fig. 1.
The C terminal domain of human cardiac troponin C in

complex with EGCg has been studied by solution NMR. [13] A
possible binding site was identified at the surface of cCTnC
hydrophobic cleft. A three-dimensional structure for the

cCTnC:2Ca2z:EGCg complex has been proposed and is shown
in Fig. 2; residues with significant nuclear Overhauser enhance-
ment (NOE) contacts include Met120, Leu121, Leu136, Met157
and Val160 and are highlighted, together with Gly159 whose
mutation to Asp is important for dilated cardiomyopathy.
Mutations in the N terminal domain have been found to affect
calcium sensitivity. [20] The binding site for EGCg in cCTnC is
similar to that of the calcium sensitiser EMD 57033, which was
also resolved by solution NMR spectroscopy [25] and is shown in
Fig. 2. When the anchoring region of troponin I (cTnI(34–71)) was
present (occupying the hydrophobic cleft), EGCg formed a ternary
compound with cCTnC and cTnI [13]; no structure at atomic

resolution of this ternary compound has been proposed based on
spectroscopy experiments.
It is the aim of this study to provide an atomistic picture of the

interactions of EGCg with the C terminal domain of cardiac
muscle troponin C, which complements and most importantly
expands the available experimental information. To achieve this
goal, we used a series of computational techniques including
ligand-protein docking, molecular dynamics (MD) and metady-
namics [26,27], a method for accelerating rare events and
sampling free energy landscapes, to elucidate the mechanisms of
binding of EGCg to cCTnC, both in the absence and presence of
the anchoring domain of cTnI. Moreover, we analysed the EGCg

influence on the Ca2z ions and assessed the effects of the mutation
of Gly159Asp, which is related to dilated cardiomyopathy. We also
compared the behaviour of EGCg with that of the calcium
sensitiser EMD 57033 in complex with cCTnC. This extensive
computational investigation provides a wealth of insights into the
mechanisms of interaction and the dynamics of binding of EGCg
with the C terminal domain of cardiac troponin C that may be
useful for the development of new, complementary or preventative
therapies for cardiovascular diseases.

Methods

EGCg partial charges were evaluated so to reproduce the
electrostatic potential (ESP) [28] in a density functional theory
(DFT) calculation with the BLYP gradient corrected exchange and
correlation functional [29,30] and a 6–31++G** basis set, using
the Gaussian03 package. [31].
Docking simulations were carried out with AUTODOCK [32]

for EGCg docked into respectively cCTnC:2Ca2z and

cCTnC:2Ca2z plus the anchoring domain of cTnI

( cCTnC: 2Ca2z: cTnI(34–71)); both these systems have been
investigated experimentally in complex with EGCg. [13] The

Figure 1. The structures of EGCg and EMD 57033. Top: the green tea polyphenol EGCg with labels for carbon bonded hydrogen atoms (left),
and rings and dihedral angles (right). Bottom: the calcium sensitiser EMD 57033.
doi:10.1371/journal.pone.0070556.g001
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6. Metadynamics to sample the conformations of Green Tea polyphenols164

ECg

EGCg

EGCmg

 EGC

Figure 6.2: Electrostatic energy potential mapped onto an electronic iso-
surface for the four catechins.

relevant torsional angles which determine the orientation of the rings and

therefore the interaction with the environment. The characterization has

been done both in vacuo and water solution.

6.1 Force Field Parametrization

This study has been carried out by using methods with di↵erent levels

of accuracy (MP2, DFT and empirical potentials) and three di↵erent

simulation packages : Gaussian [206] , CPMD [207] and AMBER10 [208]

Partial Charges

The partial charges of ECg, EGC, EGCg and EGCmg catechins were

evaluated within DFT. Specifically ESP atomic charges [209] calculated

structure of cCTnC:2Ca2z used for the docking was the lowest
energy structure from the solution NMR experiment (PDB ID:
2KDH). [13] Preliminary blind docking studies including the
entire protein were carried out, showing a clear preference for
docking at the hydrophobic core. EGCg was then docked within a

94|106|96 Å3 box, using a grid spacing set at 0.182 Å, which
contained the hydrophobic cleft. The residues Met120, Leu121,
Leu136, Met157 and Val160, which were found experimentally
to have significant NOE contacts with EGCg [13], as well as
EGCg, were modelled as flexible. 200 Lamarckian genetic
algorithm runs were carried out with a population size of 150
and set to carry out 25 million energy evaluations. The
conformations were then clustered according to structural
similarity using a 2 Å root mean square deviation criterion, and
ranked according to binding energy. The lowest energy pose from
the lowest energy and most populated cluster plus two other
alternative poses were chosen as initial structures for MD
simulations, as detailed in the following section, in addition to

the experimental structure. [13] The cCTnC: 2Ca2z:cTnI(34–71)
model was extracted from an X-ray crystal structure at 2.61 Å
resolution of the core domain of human cardiac troponin in the

Ca2z saturated form (PDB ID:1J1D), where cTnI(34–71) has an
a-helical structure. [18,33] As the binding site of EGCg to

cCTnC:2Ca2z:TnI(34{71) has not been experimentally re-
solved, a blind docking was undertaken covered the entire cCTnC
portion of the protein complex with the same spacing as in the
previous case; the lowest energy structure was selected as initial
structure for MD.
For all molecular dynamics simulations the AMBER10 package

[34,35] was used with the AMBER ff03 force field. [36] The force-
field parameters for EGCg were selected so to reproduce the
torsional barriers about the dihedral angles c, h and w indicated in
Fig. 1, as calculated with density functional theory. Standard
amino acid protonation at neutral pH was considered; cCTnC
contains many charged residues, in particular, besides two Arg and

six Lys, eleven Glu and twelve Asp which provide a favourable

environment for Ca2z binding. Structures were neutralized with

Naz counterions (11 for cCTnC:2Ca2z and 5 for

cCTnC:2Ca2z:cTnI (34–71)), and explicitly solvated with a
12 Å buffer of TIP3P water molecules [37] in periodically
repeated truncated octahedral cells. The SHAKE algorithm [38]
was used to constrain the bonds including hydrogen atoms,
allowing a time-step of 2 fs. A cutoff of 10 Å was used for the non-
bonded interactions and electrostatic interactions were evaluated
within a particle mesh Ewald scheme. Temperature was main-
tained at 300 K with a Langevin thermostat with a collision

frequency of 1.0 ps{1 and pressure at 1 atm with a Berendsen
barostat with a time constant of 2 ps. [39].
Structures were first minimized, then heated to room temper-

ature. 50 ns NPT MD simulations were carried out at 300 K and
1 atm for all selected structures, of which the final 45 ns were used
to calculate statistical averages. These include the average number
of hydrogen bonds (defined as having a donor-acceptor distance
smaller than 3.5 Å, or 4.0 Å when involving sulphur in

Methionine, and a donor-H-acceptor angle larger than 120
0
)

and p{p interactions (defined when aromatic rings are within a
centre-to-centre distance of less than 5 Å of each other with the
angle between the vectors normal to those rings smaller than 45u).
Proton-proton distances were averaged over 1=r6 and equivalent
atoms (with an upper cut off at 6 Å) in order to compare them with
those derived from experimental NOE intensities.
For comparison, using a similar protocol, 50 ns MD simulations

of cCTnC:2Ca2z with no ligand and in complex with EMD
57033 [40] were also carried out. In the latter case the initial
structure was the lowest energy structure from solution NMR
spectroscopy (PDB ID: 1IH0). [25].
The free energies of binding were evaluated within the MM/

PBSA method, using the MMPBSA:py program within AMBER
[41], which combines molecular mechanics energies with contin-
uum solvation model approaches within the Poisson-Boltzmann

Figure 2. The C terminal domain of troponin C in complex with EGCg and EMD 57033. Left: cCTnC in complex with EGCg. Calcium ions are
shown in mauve. The residues Met120, Leu121, Leu136, Met157 and Val160 are in orange, Gly159 in yellow. The solution NMR binding pose for EGCg
(model Mexp) is in violet, [13] while the docked poses corresponding to models M1 , M2 and M3 are respectively in grey, red and cyan. Right: cCTnC in
complex with EMD 57033 [25] (model MEMD).
doi:10.1371/journal.pone.0070556.g002
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GREEN TEA POYPHENOL 
INTERACTIONS WITH CARDIAC 

PROTEIN TROPONIN C 

FIG. (top) The structures of green tea polyphenol EGCg and the 
(bottom) calcium sensitiser EMD 57033. 

FIG: The C terminal domain of troponin C in complex with EGCg and EMD 57033.

FIG. Electrostatic energy potential mapped onto an electronic
        isosurface for the four polyphenols
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Figure 6.4: Torsional barriers for the � torsional angle calculated with the
old AMBER2003 force field (maroon squares) the modified AMBER2003
force field with DFT-ESP charges (black squares), DFT-PBE functional
(green squares), DFT-PBE0 functional (red diamonds ), DFT-B3LYP func-
tional ( blue down-pointing triangles) and MP2 (light blue right-pointing
triangles ). The zero of the energy scale is set to the absolute minimum.

In Fig. 6.4 the energy profiles obtained with the ab initio methods

and with the modified GAFF parametrization are shown. The agreement

is good: in fact not only the minima and saddle points are reproduced

correctly but the di↵erence in the energy barriers are of the order of

1 kcal/mol. This new empirical parametrization allows us to confidently

calculate the free energy surfaces (FES) in explicit solvent, a task that

would be too expensive with ab initio methods.

6.1.1 Molecular Dynamics

With a classical force field whose reliability has been assessed at the ab

initio level it is now possible to study the conformational evolution of all

the four catechins during molecular dynamics simulations. Classical sim-

ulations have been performed in vacuo and in solution. We surrounded

each molecule with about 800 TIP3P water molecules[212] in a periodi-

cally repeated truncated octahedral simulation cell.

6. Metadynamics to sample the conformations of Green Tea polyphenols181

Figure 6.10: Free energy maps at room temperature for EGCg in vacuo
(first row) and water (second row) as a function of the dihedral angles ✓
and � (left column), � and � (central column) and � and ✓ (right column).
Corresponding free energy profiles (bottom row) in vacuo (continuous line)
and in water (dashed line) integrated respectively from left to right over �,
� and ✓. The zero of the energy scale is set at the absolute minimum, and
the spacing between lines is 0.2 kcal/ mol.

STRUCTURAL CHARACTERIZATION
(DFT VS CLASSIC )

QUANTUM VS CLASSICAL

FIG. Free energy maps of the EGCg binding site in cCTnC

FIG. Free energy maps of the EGCg torsional angle in water
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CRYSTAL PREDICTION
(AIMD + METADYNAMICS )

Wurtzite to Rock Salt transition in CdSe under pressure 

seen when the boat- and chair-like structures in the c-direction
collapse before the hexagonal six-membered rings in the a–
b planes are converted into the four-membered rings of RS. Here
the HS structure is very short-lived in the sample, and the trans-
formation in the sample from four- to six-coordination takes less

than 2 ps. Fig. 2 shows the evolution of the enthalpy at 300 K during
the MD and of that obtained by quenching the room temperature
structures to 0 K at the hydrostatic external pressure of 10.5 GPa. If
the entropic contributions can be neglected, the enthalpy behaves
similarly to the Gibbs free energy. The enthalpy increased during
the transition to the HS structure and then decreased after the
transition to RS. The HS structure is unstable at 10.5 GPa (in fact it
was found by DFT that it is stable in CdSe at pressures less than
4 GPa [9]). Hence the quenched optimized structures correspond
either to WZ (before the transitions) or RS (after the transition). At
10.5 GPa, which is substantially larger than the transition pressure,
the enthalpy of RS is lower than that of WZ.

The conversion of the hexagonal six-membered rings to four-
membered rings in the a–b planes takes place with a general
compression parallel to the ½1010"WZ direction along with an
expansion parallel to the orthogonal [0100]WZ direction, as shown
in Fig. 3: hexagons deform to create two four-membered rings each
in a ‘‘parallel’’ fashion. This ‘‘compression’’ mechanism has been
described previously [8] and corresponds to mechanism I in
reference [9], where MD simulations gave rise to a transformation
by the same mechanism, although it is not clear at what pressure
the transitionwas seen in thoseMD simulations. There are however
some differences with respect to TP1 in reference [11], where also
all of the six-membered rings are closed in a parallel fashion. In TP1
successive ð1100ÞWZ CdSe layers slide by half a unit cell with
respect to the last layer. In fact this mechanism leads to an RS
structure which is orientationally different to the one seen here in
the MD simulation: while we see here a final [100]RS direction that
is parallel to the initial ½1010"WZ direction, in Stokes’ TP1 the two
directions make an angle of 15%.

10.5 GPa represents a significant overpressurization with
respect to the WZ/ RS transition pressure seen in experiments.
Since we are interested to know whether a different mechanism
governs the transition at the pressures used in the experiments, we
ran a metadynamics simulation on the same 576-atom sample at
a pressure of 2.5 GPa, which had been equilibrated previously
at this pressure and room temperature. We used a Gaussian width
of ds¼ 73 (kbar Å3)1/2 and height W¼ 5400 kbar Å3. Fig. 4 shows
the evolution of the fraction of atoms with coordination numbers
four, five and six during the metadynamics. Similarly to the MD
simulation, the WZ structure transformed first into five-coordi-
nated HS; the conversion to RS is complete by metastep w295.
However at this pressure the HS structure is metastable; this is
illustrated in Fig. 5, which shows the evolution of the enthalpy
about the transition at 300 K in the metadynamics and of the
enthalpy of the structures obtained by quenching the room
temperature structures at each metastep to 0 K at the hydrostatic
external pressure of 2.5 GPa, so to remove the thermal noise and
the strain induced by metadynamics. The enthalpy increased
during the transition to the HS structure and then decreased after
the transition to RS, but at variance from Fig. 2, the quenched
optimized structures correspond to the initial WZ, to the inter-
mediate HS and to the final RS. HS has a larger enthalpy than WZ
and RS, that at 2.5 GPa have very similar enthalpy; this is consistent
with what found for bulk CdSe in reference [31]. We also ran
a 500 ps simulation on a test CdSe sample with P¼ 2.5 GPa at each
of T¼ 100 K, 200 K and 300 K, using an optimized HS snapshot as
initial configuration, and found that the HS structure was main-
tained, confirming that HS is metastable in CdSe at P¼ 2.5 GPa [12].
Fig. 6 shows themotion in the a–b plane that takes the sample from
the HS structure to RS. Contrary to the transition seen in the MD,
during the metadynamics the HS phase is converted to RS by the
sliding of alternate ð1100ÞHS layers in the '[0010]HS directions,
relative to the adjacent layers which remain stationary. First, a pair
of alternate layers slide in opposite directions, converting most of

Fig. 7. Schematics illustrating four possible transition routes from WZ-type to RS-type
CdSe. (a) M I: ð1100ÞWZ layers (shaded blue) slide in the ½0010"WZ direction, with each
layer sliding by a/2 relative to the layer below. (b) M II: Alternating ð1100ÞWZ layers
(shaded green) slide in the [0010]WZ direction by a/2, relative to the stationary layers
in-between (red). (c) M III: Alternate ð1100ÞWZ layers remain stationary relative to one
another (shaded red), while the layers in-between slide alternately in the ½0010"WZ
(blue) and [0010]WZ (green) directions by a/2. (d) Compression mechanism: the
hexagonal six-membered rings are compressed along the ½1010"WZ direction, and
expanded along the orthogonal [0100]WZ direction. The RS structure shown in (d)
makes an angle of 15% with those shown in (a)–(c).
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Figure 4.2: High-resolution transmission electron micrograph of a CdSe
nanocrystal in the four-coordinated phase before and after pressure cycling.
Wurtzite (solid lines) and Zinc-blende (dashed lines) stacking is indicated.
Figure from reference [11]

Fig. 4.2 a high resolution electron micrograph of a large CdSe nanocrys-

tal before and after pressure cycling illustrates the presence of both WZ

and ZB phase in the re-transformed nano-object. The grain boundaries

present at the stacking faults do not interrupt the connectivity of the

atoms in the nanocrystal. Simulations of the di↵raction pattern suggest

a re-transformed structure with a mixed-phase and more elongated shape

than the starting one [109].

4.1.2 Mechanisms of Transformations

We will now describe the mechanism of the WZ-RS transformation of

spherical and faceted CdSe nanocrystals. Bulk CdSe transforms from

the four-coordinated Wurtzite to the six-coordinated Rock-salt struc-

ture at a pressure of about 2.5 GPa. A precise description of a reliable

mechanism of transformation is missing even if – as we will see in the

following part– several studies have been performed in this direction and

several mechanism have been suggested [106, 107, 108, 109, 112, 129,

130, 144, 145, 146, 173, 174, 175]. Alivisatos and Tolbert proposed as

possible mechanism of transition a flattening of the hexagons in the a� b

plane with a subsequent formation of 2 ⇥ 3 rectangles and a compres-

sion of the boats and chair rings in the orthogonal c�direction [112]. To

well above the experimental transition pressure, where it becomes
mechanically unstable, in order to observe the transition within
accessible simulation times. Such overpressurization is likely to
significantly alter the shape of the Gibbs free energy surface, and
may result in a different TP to that which would be seen closer to
the transition pressure; in particular metastable intermediate
structures along the TP are likely to be missed by the over-
pressurized simulation. Here we analyze the differences in the TP
between WZ-type and RS-type CdSe in a severely overpressurized
case and close to the experimental transition pressure. For this we
compared results from a conventional MD simulation and a meta-
dynamics simulation, where low energy paths for the transition
can be observed close to the experimental transition pressure
[17,19–22,24,25].

The rest of this article is organized as follows: Section 2 provides
details of the simulations we carried out including a brief
description of themetadynamicsmethod as applied to bulk crystals
under pressure; Section 3 presents the results of our MD and
metadynamics simulations for CdSe; Section 4 contains discussion
and conclusions.

2. Simulation details

For the WZ sample, we used a periodically repeated supercell
containing 6! 6! 4 hexagonal unit cells of CdSe (576 atoms). To
characterize the inter-atomic interactions we used the Rabani
potential [26], which has been shown to describe well the prop-
erties of the four- and six-coordinated phases of CdSe as well as the
transition pressure between the phases. The potential is a combi-
nation of a Coulomb part and a Lennard Jones-like part:

Vij ¼
qiqj
rij

þ 4eij

( 
sij
rij

!12

$

 
sij
rij

!6)

(1)

where qi is the charge on atom i and rij is the distance between
atoms i and j. The use of a classical potential allows us to use
simulation cells which are too large to be practically treated by ab
initiomethods, and which may be necessary in order to see some of
the phenomena associated with reconstructive phase transitions,

e.g. nucleation and growth, the sliding of multiple crystal layers,
etc.

We used the dl_poly code [27] to carry out the MD simulation.
During the MD, the pressure was increased by 1 GPa every 50 ps up
to 11 GPa, when the transition occurred, and maintained constant
in each pressure interval by the Berendsen barostat [28], with
a time constant of 0.2 ps. Both the size and shape of the simulation
cell were allowed to change. Temperature was kept constant at
T¼ 300 K using the Berendsen thermostat [28] with a time
constant of 0.2 ps. The time step used was 0.5 fs.

Metadynamics [17,18] is based on a dimensional reduction to
a set of coarse-grained collective variables (CVs), which are chosen
to give a good description of the process of interest. The system
under investigation is discouraged from visiting places in the CV
space where it has already been by a history-dependent potential
built as a sum of Gaussians, which forces the system out of the local
minimum.

A brief description of the metadynamics method [17] as it is
applied to crystal structure prediction is given here; additional
details can be found elsewhere [19–25]. For the case of bulk
crystals at constant pressure it is natural, after the Parrinello–
Rahman method for MD simulations [29], to take the simulation
cell egdes h¼ (a b c) as CVs; this has been shown to be very
effective in the study of solid–solid transitions under pressure
[20–25]. In fact the dimensionality of the system is further
reduced by freezing the simulation box rotationally in space
[30], so that all of the lower diagonal elements of h can be
set to zero, leaving us with the six-dimensional CV
~h ¼ ð~h1; ~h2; ~h3; ~h4; ~h5; ~h6ÞT ¼ ðh11;h22;h33;h12;h13;h23ÞT . In the
discrete version of the metadynamics algorithm that we employ,
a metadynamics consists of a series of short constant-box MD
simulations (meta-steps), from which the average stress tensor p
is determined and used to find the derivative of the Gibbs free
energy in the CVs:

$ vG
vhij

¼ V
h
h$1ðp$ P1Þ

i

ji
; (2)

where V ¼ detðhÞ ¼ ~h1~h2~h3 is the volume of the simulation cell,
and P is the external pressure.

After the prescription of reference [24], we rescale the elements
of the CV to s, so that the initial well in the Gibbs free energy is
spherical as a function of s, where

Fig. 1. Evolution of the coordination of the 576-atom CdSe sample during the MD. The
fractions of four- (black line), five- (red line), and sixfold (blue line) coordinated atoms
are shown. The pressure is increased to P¼ 10.5 GPa at time t¼ 500 ps. At t¼w508 ps
five-coordination briefly takes over, when the boat- and chair-like structures in the c-
direction collapse, forming a new Cd–Se bond. The five-coordination is short-lived
however, and the transformation to six-coordinated RS is complete before t¼ 509 ps.

Fig. 2. Evolution of the enthalpy at 300 K during the MD and for the structures
obtained by quenching the room temperature structures to 0 K at the hydrostatic
external pressure of 10.5 GPa.
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CRYSTAL PREDICTION
(DFT-MD + METADYNAMICS )

Wurtzite to rock salt transition in CdSe under pressure 

seen when the boat- and chair-like structures in the c-direction
collapse before the hexagonal six-membered rings in the a–
b planes are converted into the four-membered rings of RS. Here
the HS structure is very short-lived in the sample, and the trans-
formation in the sample from four- to six-coordination takes less

than 2 ps. Fig. 2 shows the evolution of the enthalpy at 300 K during
the MD and of that obtained by quenching the room temperature
structures to 0 K at the hydrostatic external pressure of 10.5 GPa. If
the entropic contributions can be neglected, the enthalpy behaves
similarly to the Gibbs free energy. The enthalpy increased during
the transition to the HS structure and then decreased after the
transition to RS. The HS structure is unstable at 10.5 GPa (in fact it
was found by DFT that it is stable in CdSe at pressures less than
4 GPa [9]). Hence the quenched optimized structures correspond
either to WZ (before the transitions) or RS (after the transition). At
10.5 GPa, which is substantially larger than the transition pressure,
the enthalpy of RS is lower than that of WZ.

The conversion of the hexagonal six-membered rings to four-
membered rings in the a–b planes takes place with a general
compression parallel to the ½1010"WZ direction along with an
expansion parallel to the orthogonal [0100]WZ direction, as shown
in Fig. 3: hexagons deform to create two four-membered rings each
in a ‘‘parallel’’ fashion. This ‘‘compression’’ mechanism has been
described previously [8] and corresponds to mechanism I in
reference [9], where MD simulations gave rise to a transformation
by the same mechanism, although it is not clear at what pressure
the transitionwas seen in thoseMD simulations. There are however
some differences with respect to TP1 in reference [11], where also
all of the six-membered rings are closed in a parallel fashion. In TP1
successive ð1100ÞWZ CdSe layers slide by half a unit cell with
respect to the last layer. In fact this mechanism leads to an RS
structure which is orientationally different to the one seen here in
the MD simulation: while we see here a final [100]RS direction that
is parallel to the initial ½1010"WZ direction, in Stokes’ TP1 the two
directions make an angle of 15%.

10.5 GPa represents a significant overpressurization with
respect to the WZ/ RS transition pressure seen in experiments.
Since we are interested to know whether a different mechanism
governs the transition at the pressures used in the experiments, we
ran a metadynamics simulation on the same 576-atom sample at
a pressure of 2.5 GPa, which had been equilibrated previously
at this pressure and room temperature. We used a Gaussian width
of ds¼ 73 (kbar Å3)1/2 and height W¼ 5400 kbar Å3. Fig. 4 shows
the evolution of the fraction of atoms with coordination numbers
four, five and six during the metadynamics. Similarly to the MD
simulation, the WZ structure transformed first into five-coordi-
nated HS; the conversion to RS is complete by metastep w295.
However at this pressure the HS structure is metastable; this is
illustrated in Fig. 5, which shows the evolution of the enthalpy
about the transition at 300 K in the metadynamics and of the
enthalpy of the structures obtained by quenching the room
temperature structures at each metastep to 0 K at the hydrostatic
external pressure of 2.5 GPa, so to remove the thermal noise and
the strain induced by metadynamics. The enthalpy increased
during the transition to the HS structure and then decreased after
the transition to RS, but at variance from Fig. 2, the quenched
optimized structures correspond to the initial WZ, to the inter-
mediate HS and to the final RS. HS has a larger enthalpy than WZ
and RS, that at 2.5 GPa have very similar enthalpy; this is consistent
with what found for bulk CdSe in reference [31]. We also ran
a 500 ps simulation on a test CdSe sample with P¼ 2.5 GPa at each
of T¼ 100 K, 200 K and 300 K, using an optimized HS snapshot as
initial configuration, and found that the HS structure was main-
tained, confirming that HS is metastable in CdSe at P¼ 2.5 GPa [12].
Fig. 6 shows themotion in the a–b plane that takes the sample from
the HS structure to RS. Contrary to the transition seen in the MD,
during the metadynamics the HS phase is converted to RS by the
sliding of alternate ð1100ÞHS layers in the '[0010]HS directions,
relative to the adjacent layers which remain stationary. First, a pair
of alternate layers slide in opposite directions, converting most of

Fig. 7. Schematics illustrating four possible transition routes from WZ-type to RS-type
CdSe. (a) M I: ð1100ÞWZ layers (shaded blue) slide in the ½0010"WZ direction, with each
layer sliding by a/2 relative to the layer below. (b) M II: Alternating ð1100ÞWZ layers
(shaded green) slide in the [0010]WZ direction by a/2, relative to the stationary layers
in-between (red). (c) M III: Alternate ð1100ÞWZ layers remain stationary relative to one
another (shaded red), while the layers in-between slide alternately in the ½0010"WZ
(blue) and [0010]WZ (green) directions by a/2. (d) Compression mechanism: the
hexagonal six-membered rings are compressed along the ½1010"WZ direction, and
expanded along the orthogonal [0100]WZ direction. The RS structure shown in (d)
makes an angle of 15% with those shown in (a)–(c).
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3. Results

In the MD simulation at room temperature, upon increase of the
pressure to P¼ 11 GPa the sample was seen to transform to RS-type
CdSe almost immediately. In order to observe the transition at
a pressure where the WZ structure is not so unstable we re-ran the
last part of the simulation with P¼ 10.5 GPa. Fig. 1 shows the

evolution of the fractions of atoms with coordination numbers four,
five and six about the transition time in theMD, demonstrating that
the four-coordinated WZ sample makes first a transition to a five-
coordinated structure which subsequently undergoes a transition
to the six-coordinated RS. The coordination number of a particular
atom is defined as the number of atoms within a distance of 3.5 Å
from it. The five-coordinated structure resembles the HS structure,

Fig. 4. Coordination of the sample during the metadynamics. The fractions of four-
(black line), five- (red line), and sixfold (blue line) coordinated atoms are shown. A
change in coordination from fourfold to fivefold occurs at metastepw274, and the five-
coordinated HS structure persists until metastep w290 at which point the sample
transforms to the six-coordinated RS structure.

Fig. 5. Evolution of the enthalpy at 300 K during the metadynamics and for the
structures obtained by quenching the room temperature structures to 0 K at the
hydrostatic external pressure of 2.5 GPa.

Fig. 6. Conversion of the HS structure to the RS structure during the metadynamics. (a) The sample during metastep 285. The transition to HS has already taken place. (b) The
sample during metastep 288. An alternate pair of the ð1100ÞHS layers remain stationary while the adjacent layers have begun to slide in the $[0010]HS directions, converting most of
the sample to RS. (c) During metastep 290. A ð1100ÞHS layer is now sliding in the [0010]HS direction relative to the adjacent layers, which completes the transformation. (d) Later
during metastep 290. The [110]RS direction lies parallel to the original [0010]WZ direction.
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based on two di↵erent assumptions: (i) the atoms are always displaced

coherently in the crystal, (ii) it is always possible to define the crys-

tal with a specific space-group symmetry and all the intermediate states

during the transition have to belong to a common subgroup of both WZ

and RS. Among these five possible TPs three of them can be directly

connected to mechanisms II, III and IV described above. In particular

indicating with the symbols + and - the sliding of (11̄00) layers in the

[001̄0] and [0010] directions respectively, the first three mechanism can be

represented by the schemes + for mechanism II , (+�) III, and (++�)

IV, respectively, while the IV and VI with (++��) and (+++�) re-

spectively. These last two mechanisms have similarities with mechanism

III. Specifically they can be seen as the sum of mechanism III with an

extra sliding layer, with the direction of sliding opposite in mechanisms

IV and V.

It is easy to imagine that di↵erent sliding combinations can lead to other

possible transition path variants. Moreover it is has been found that

as a precursor to all mechanisms, the puckered (0001) Wurtzite layers

are flattened out in the c direction and the hexagonal five-coordinated

h-MgO structure is formed as a metastable intermediate (see passage

from (a) to (b) in Fig.4.4). In the second step, the Rock-salt structure

is reached by a sliding motion of the a-b plane (see transition from (b)

to (c) in Fig.4.4). Depending on the nucleation and on the direction

in which particular planes slide di↵erent morphologies of the final Rock-

salt structure are obtained. In the case of CdSe nanocrystals we have to

Figure 4.4: Transition mechanism from WZ to RS with an intermediate h-
MgO phase. The first transition from WZ to h-MgO derives from a flattening
in the c-direction that brings an extra bond with an atom of the adjacent
layers. The h-MgO to RS transition originates from a sliding in the (0001)
plane.
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BRITTLE FRACTURE IN SILICON

At least 200,000 atoms are necessary to 
describe the long range stress and strain 

fields of the crack tip. 

The description of the cracks tips area 
require 

accurate DFT calculations
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