

6 MAY 2014

# DENSITY FUNCTIONAL THEORY

APRIMER

GIORGIA FUGALLO

## OUTLINE









... APPLICATIONS!

WHY? WE HAVE A PROBLEM! (A COMPLEX ONE)

#### Microscopic description of the physical and chemical properties of matter

In general, we deal with a <u>collection</u> of interacting atoms, which may also be affected by some external field.

SYSTEM



Number of Nuclei and Electrons interacting through Coulombic (electrostatic) forces

# MANY BODY PROBLEM

#### Formally....



 $-e^{2}\sum_{I=1}^{P}\sum_{i=1}^{N}\frac{Z_{I}}{|\mathbf{R}_{I}-r_{i}|}$ 

all ingredients are known so simply solve the

$$\widehat{H}\Psi_i(\mathbf{r},\mathbf{R}) = E_i\Psi_i(\mathbf{r},\mathbf{R})$$

Many Body Schroedinger Equation

PROBLEM SOLVED

LET'S GO HOME!



actually.....

- This problem is almost impossible to treat in a full quantum-mechanical framework
- Only in a few cases a complete analytic solution is available and numerical solutions are also limited to a very small number of particles.

### **APPROXIMATIONS**

(large majority of calculation presented in literature)

Adiabatic separation of nuclear and electronic degrees of freedom.

Classical Treatment of the nuclei

#### APPROXIMATIONS MANY BODY PROBLEM

ADIABATIC APPROXIMATION (BORN-OPPENHEIMER)

### MOTION TIME SCALE: NUCLEI << ELECTRONS

DECOUPLING

THE 2 DYNAMICS

Nuclei

 $\Psi(\mathbf{R}, \mathbf{r}, t) = \Theta_m(\mathbf{R}, t) \Phi_m(\mathbf{R}, \mathbf{r})$ 

Electrons

Electrons can be adequately described as following instantaneously the motion of the nuclei, staying always in the same stationary state of the electronic Hamiltonian.

## APPROXIMATIONS

MANY BODY PROBLEM

Still formidable task .... but in a large variety of cases of interest

THE QUANTUM TREATMENT FOR NUCLEI

IS \*NOT\* NECESSARY

□ CLASSICAL NUCLEI APPROXIMATION



the exact solution is known only in the cases:

i)Uniform electron gas; ii)Atoms with a small number of electrons; iii)A few small molecules.

These exact solutions are always numerical.

THOMAS FERMI (1927) HARTREE (1927) HARTREE-FOCK (1930) CONFIG. INTER. (1930) MP2-MP4(1934) DFT (1964)

## DFT!

(NOBEL LAUREATE)

Hohenberg, P. and Kohn, W. (1964) *Phys. Rev.*, **136**, B864. Kohn, W. and Sham, L.J. (1965) *Phys. Rev.*, **140**, A1133.



The Nobel Prize in Chemistry 1998

### Walter Kohn - Facts



#### Walter Kohn

Born: 9 March 1923, Vienna, Austria

Affiliation at the time of the award: University of California, Santa Barbara, CA, USA

Prize motivation: "for his development of the densityfunctional theory"

Field: theoretical chemistry

Prize share: 1/2



I. Hohenberg-Kohn (1964): ~ 4000 citations

2. Kohn-Sham (1965): ~ 9000 citations

Number of publications where the phrase "density functional theory" appears in the title or abstract (taken from the ISI Web of Science).





The total energy of a system of interacting electrons is a functional of the density.
 The energy takes its minimum at the ground state density.



# HOW?

Kohn, W. and Sham, L.J. (1965) Phys. Rev., 140, A1133.

1965: KOHN-SHAM

REPLACE THE SYSTEM OF INTERACTING ELECTRONS by A FICTITIOUS SYSTEM OF NON-INTERACTING ELECTRONS WITH THE SAME DENSITY

$$F[\rho] = T_R[\rho] + \frac{1}{2} \iint \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \,\mathrm{d}\mathbf{r} \,\mathrm{d}\mathbf{r}' + E_{XC}[\rho]$$

The explicit form of the functional  $F[\rho]$  is the major challenge of DFT.



# (TO BE PRAGMATICS: WHAT CAN BE CALCULATED?)



# (TO BE PRAGMATICS: WHAT CAN BE CALCULATED?)

- · ELECTRONIC PROPERTIES
- BAND STRUCTURE
- CHARGE DENSITY
- DENSITY OF STATES



•

and

 ELECTRON ENERGY LOSS / ABSORPTION DIELECTRIC
 FUNCTION

SPECTROSCOPY



- CORE LEVEL SPECTROSCOPIES
  RAMAN SCATTERING
- COMPTON SCATTERING
  POSITRON ANNIHILATION



## COMPUTATIONAL PHYSICS

(GENERAL OVERVIEW)





## THERMALTRANSPORT

(FUNDAMENTAL INGREDIENTS)





] PHONON LINEWIDTH AND RELAXATION TIMES



LO

W

Z–Z TA–TA TA–P<sub>H</sub>







LA

## THERMALTRANSPORT

(FUNDAMENTAL INGREDIENTS)

G.Fugallo et al. Phys. Rev. B, 88, 045430 (2013). L. Paulatto et al. Phys. Rev. B 87, 214303 (2013).



### THERMALTRANSPORT

G. Fugallo et al Phys. Rev. B, 88, 045430 (2013)

G. Fugallo et al . Thermal transport driven by collective excitations in Graphene (2014)/ Thermal transport in 2D materials (2014), in preparation

#### GRAPHITE, GRAPHENE AND RELATED 2D

![](_page_20_Figure_4.jpeg)

![](_page_20_Figure_5.jpeg)

### STRUCTURAL CHARACTERIZATION

Bottem, Fugallo, Molteni PLoS ONE 8, 7, e70556 (2013)

### GREEN TEA POYPHENOL INTERACTIONS WITH CARDIAC PROTEIN TROPONIN C

![](_page_21_Figure_3.jpeg)

![](_page_21_Figure_4.jpeg)

FIG. (top) The structures of green tea polyphenol EGCg and the (bottom) calcium sensitiser EMD 57033.

FIG. Electrostatic energy potential mapped onto an electronic isosurface for the four polyphenols

![](_page_21_Picture_7.jpeg)

FIG: The C terminal domain of troponin C in complex with EGCg and EMD 57033.

# STRUCTURAL CHARACTERIZATION

Bottem, Fugallo, Molteni PLoS ONE 8, 7, e70556 (2013)

![](_page_22_Figure_2.jpeg)

# CRYSTAL PREDICTION

(AIMD + METADYNAMICS)

Bealing, Fugallo . Martonak, Molteni, Phys. Chem. Chem. Phys., 12, 8542 - 8550 (2010)

![](_page_23_Figure_3.jpeg)

## CRYSTAL PREDICTION

(DFT-MD + METADYNAMICS)

Bealing, Fugallo . Martonak, Molteni, Phys. Chem. Chem. Phys., 12, 8542 - 8550 (2010)

![](_page_24_Figure_3.jpeg)

## BRITTLE FRACTURE

(MULTI-SCALE APPROACH)

"Learn on the fly": a hybrid classical and quantum-mechanical molecular dynamics simulation *Physical Review Letters* **93** p. 175503 (2004) (PDF [626 KB])

#### BRITTLE FRACTURE IN SILICON

![](_page_25_Picture_4.jpeg)

![](_page_25_Picture_5.jpeg)

At least 200,000 atoms are necessary to describe the long range stress and strain fields of the crack tip. The description of the cracks tips area require accurate DFT calculations

HYBRID-APPROACH MULTI-SCALE

![](_page_26_Picture_0.jpeg)