MBPT vs (TD)DFT

a fight or a wedding?

Francesco Sottile

Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF)

Outline

- Introduction
- 2 BSE and TDDFT up to 2002
- 3 The Mapping Theory Kernel
 - Theory
 - Results
- 4 Conclusions and Perspectives

Outline

- Introduction
- - Theory
 - Results

A rough Summary

DFT - TDDFT

- $\sqrt{\text{ fast (one-particle eqs)}}$
- × lack of functionals

MBPT (GW-BSE)

- √ It works!
- (physical ingredients)
- × Cumbersome

Fast, efficient and reliable

A rough Summary

DFT - TDDFT

- $\sqrt{\text{ fast (one-particle eqs)}}$
- × lack of functionals

MBPT (GW-BSE)

- √ it works! (physical ingredients)
- × Cumbersome

Fast, efficient and reliable

A rough Summary

DFT - TDDFT

- √ fast (one-particle eqs)
- × lack of functionals

MBPT (GW-BSE)

- √ it works! (physical ingredients)
- × Cumbersome

Fast, efficient and reliable

Combine the two approaches

Dyson eq. for G

$$G = G_0 + G_0 \left(\Sigma - V_{xc} \right) G$$

$$0 = G_0 \left(\Sigma - V_{xc} \right) G$$

$$\int d(23)G_0(12) \left[\Sigma(23) - V_{xc}(2)\delta(23) \right] G(31) = 0$$

Dyson eq. for G

$$d \left[G = G_0 + G_0 \left(\Sigma - V_{xc} \right) G \right]$$

$$0 = G_0 \left(\Sigma - V_{xc} \right) G$$

$$\int d(23)G_0(12) [\Sigma(23) - V_{xc}(2)\delta(23)] G(31) = 0$$

Dyson eq. for G

$$d \left[G = G_0 + G_0 \left(\Sigma - V_{xc} \right) G \right]$$

$$0 = G_0 \left(\Sigma - V_{xc} \right) G$$

$$\int d(23)G_0(12) \left[\ \Sigma(23) - V_{xc}(2)\delta(23) \ \right] G(31) = 0$$

Dyson eq. for G

$$\int d(23)G_0(12) \left[\Sigma(23) - V_{xc}(2)\delta(23) \right] G(31) = 0$$

given a Σ (non-local and dynamic), we obtain a V_{xc} (local and static) which provides the same density

Sham-Schlüter equation

L.J.Sham and M.Schlter, Phys. Rev. Lett. 51, 1888 (1983)

Dyson eq. for G

$$\int d(23)G_0(12) \left[\Sigma(23) - V_{xc}(2)\delta(23) \right] G(31) = 0$$

given a Σ (non-local and dynamic),

we obtain a V_{xc} (local and static) which provides the same density

Sham-Schlüter equation

L.J.Sham and M.Schlter, Phys. Rev. Lett. **51**, 1888 (1983)

Dyson eq. for G

$$\int d(23)G_0(12) \left[\Sigma(23) - V_{xc}(2)\delta(23) \right] G(31) = 0$$

given a Σ (non-local and dynamic), we obtain a V_{xc} (local and static) which provides the same density

Sham-Schlüter equation

L.J.Sham and M.Schlter, Phys. Rev. Lett. 51, 1888 (1983)

Dyson eq. for G

$$\int d(23)G_0(12) \left[\Sigma(23) - V_{xc}(2)\delta(23) \right] G(31) = 0$$

given a Σ (non-local and dynamic), we obtain a V_{xc} (local and static) which provides the same density

Sham-Schlüter equation

L.J.Sham and M.Schlter, Phys. Rev. Lett. 51, 1888 (1983)

Sham-Schlüter equation

$$\int d(23)G_0(12) \left[\Sigma(23) - V_{xc}(2)\delta(23) \right] G(31) = 0$$

$$\int d(23)G_0(12) \left[\sum_{x} (23) - V_{xc}(2)\delta(23) \right] G_0(31) = 0$$

we obtain $V_{\mathrm{xc}}^{\mathrm{EXX}} = G_0 G_0 v G_0 (\chi^0)^{-1}$

Exact-Exchange Approximation

Sham-Schlüter equation

$$\int d(23)G_0(12) \left[\Sigma(23) - V_{xc}(2)\delta(23) \right] G(31) = 0$$

$$\int d(23)G_0(12) \left[\Sigma_x(23) - V_{xc}(2)\delta(23) \right] G_0(31) = 0$$

we obtain $V_{\chi c}^{\text{EXX}} = G_0 G_0 v G_0 (\chi^0)^{-1}$

Exact-Exchange Approximation

Sham-Schlüter equation

$$\int d(23)G_0(12) \left[\Sigma(23) - V_{xc}(2)\delta(23) \right] G(31) = 0$$

$$\int d(23)G_0(12) \left[\Sigma_x(23) - V_{xc}(2)\delta(23) \right] G_0(31) = 0$$

we obtain
$$V_{xc}^{ extsf{EXX}} = G_0 G_0 v G_0 (\chi^0)^{-1}$$

Exact-Exchange Approximation

Sham-Schlüter equation

$$\int d(23)G_0(12) \left[\Sigma(23) - V_{xc}(2)\delta(23) \right] G(31) = 0$$

$$\int d(23)G_0(12) \left[\Sigma_x(23) - V_{xc}(2)\delta(23) \right] G_0(31) = 0$$

we obtain $V_{xc}^{\text{EXX}} = G_0 G_0 v G_0(\chi^0)^{-1}$

Exact-Exchange Approximation

Generalized SSE

$$G = G_0 + G_0 (\Sigma - V_{xc}) G$$

M.Gatti et al, Phys. Rev. Lett. 99, 057401 (2007)

Generalized SSE

$$p \left[G = G_0 + G_0 \left(\Sigma - V_{xc} \right) G \right]$$

M.Gatti et al, Phys. Rev. Lett. 99, 057401 (2007)

Outline

- 1 Introduction
- 2 BSE and TDDFT up to 2002
- 3 The Mapping Theory Kernel
 - Theory
 - Results
- 4 Conclusions and Perspectives

Insulators: Argon

- ALDA bad for any solids!! though quick
- BSE good but cumbersome

The problem of Abs in solids. Towards a better understanding

- Reining et al. Phys.Rev.Lett. 88, 66404 (2002) Long-range kernel
- de Boeij *et al.* J.Chem.Phys. **115**, 1995 (2002) Polarization density functional. Long-range.
- Kim and Görling Phys.Rev.Lett. **89**, 96402 (2002) Exact-exchange
- Sottile *et al.* Phys.Rev.B **68**, 205112 (2003) Long-range and contact exciton.
- Botti *et al.* Phys. Rev. B **72**, 125203 (2005) Dynamic long-range component

Parameters to fit to experiments.

The problem of Abs in solids. Towards a better understanding

- Reining et al. Phys.Rev.Lett. 88, 66404 (2002) Long-range kernel
- de Boeij *et al.* J.Chem.Phys. **115**, 1995 (2002) Polarization density functional. Long-range.
- Kim and Görling Phys.Rev.Lett. **89**, 96402 (2002) Exact-exchange
- Sottile *et al.* Phys.Rev.B **68**, 205112 (2003) Long-range and contact exciton.
- Botti *et al.* Phys. Rev. B **72**, 125203 (2005) Dynamic long-range component

Parameters to fit to experiments.

Beyond ALDA approximation

Abs in solids. Insights from MBPT

Parameter-free Ab initio kernels

Marini *et al.* Phys.Rev.Lett. **91**, 256402 (2003) Full many-body kernel. Perturbation Theory.

$$f_{xc} = \chi_0^{-1} GGWGG\chi_0^{-1}$$

Outline

- Introduction
- 2 BSE and TDDFT up to 2002
- The Mapping Theory Kernel
 - Theory
 - Results
- 4 Conclusions and Perspectives

Outline

- Introduction
- BSE and TDDFT up to 2002
- 3 The Mapping Theory Kernel
 - Theory
 - Results
- 4 Conclusions and Perspectives

The idea

we get the ingredients of the BSE and we put them in TDDFT BSE works \Rightarrow $\left\{\right.$

BSE: Excitonic Hamiltonian

$$H_{(vc)(v'c')}^{\text{BSE}} = \left[(E_c - E_v) \, \delta_{vv'} \delta_{cc'} + v_{vc}^{v'c'} - W_{vc}^{v'c'} \right]$$

BSE: Excitonic Hamiltonian

$$H^{\text{BSE}} = \left[(E_c - E_v) + \ll v \gg - \ll W \gg \right]$$

BSE: Excitonic Hamiltonian

$$H^{\mathsf{BSE}} = \left[\left(\epsilon_c + \Delta_c^{\mathsf{GW}} - \epsilon_v - \Delta_v^{\mathsf{GW}} \right) + \ll v \gg - \ll W \gg \right]$$

BSE: Excitonic Hamiltonian

4-point

$$H^{\mathsf{BSE}} = \left[\left(\epsilon_c + \Delta_c^{\mathsf{GW}} - \epsilon_v - \Delta_v^{\mathsf{GW}} \right) + \ll v \gg - \ll W \gg \right]$$

TDDFT: Polarizability equation

$$\chi = \chi_0 + \chi_0 (v + f_{xc}) \chi$$

BSE: Excitonic Hamiltonian

4-point

$$H^{\mathsf{BSE}} = \left[\left(\epsilon_c + \Delta_c^{\mathsf{GW}} - \epsilon_v - \Delta_v^{\mathsf{GW}} \right) + \ll v \gg - \ll W \gg \right]$$

TDDFT: written in transition space

$$H^{\text{TDDFT}} = \left[(\epsilon_c - \epsilon_v) + \ll v \gg + \ll f_{xc} \gg \right]$$

BSE: Excitonic Hamiltonian

4-point

$$H^{\mathsf{BSE}} = \left[\left(\epsilon_c + \Delta_c^{\mathsf{GW}} - \epsilon_v - \Delta_v^{\mathsf{GW}} \right) + \ll v \gg - \ll W \gg \right]$$

TDDFT: written in transition space

4-point

$$H^{\mathsf{TDDFT}} = \left[\left(\epsilon_c - \epsilon_v \right) + \ll v \gg + \ll f_{\mathsf{xc}} \gg \right]$$

The exchange-correlation kernel f_{xc} has to take into account both GW corrections and excitonic effects !!

BSE: Excitonic Hamiltonian

4-point

$$H^{\mathsf{BSE}} = \left[\left(\mathbf{E_c} - \mathbf{E_v} \right) + \ll v \gg - \ll W \gg \right]$$

TDDFT: written in transition space

4-point

$$H^{\text{TDDFT}} = \left[\left(\mathbf{E_c} - \mathbf{E_v} \right) + \ll v \gg + \ll f_{xc} \gg \right]$$

Same starting point for both BSE and TDDFT: the GW band-structure.

BSE: Excitonic Hamiltonian

4-point

$$H^{\text{BSE}} = \left[(E_c - E_v) + \ll v \gg - \ll W \gg \right]$$

TDDFT: written in transition space

4-point

$$H^{\mathsf{TDDFT}} = \left[(E_c - E_v) + \ll v \gg + \ll f_{xc} \gg \right]$$

We concentrate, then, only on the excitonic effects.

BSE: Excitonic Hamiltonian

4-point

$$H^{\mathsf{BSE}} = \left[(E_c - E_v) + \ll v \gg - \ll W \gg \right]$$

TDDFT: written in transition space

4-point

$$H^{\text{TDDFT}} = \left[(E_c - E_v) + \ll v \gg - \ll W \gg \right]$$

We substitute the 'unknown' $\ll f_{xc} \gg$ with $\ll W \gg$.

The idea

We want to use $\ll W \gg$, but in a 2-point equation.

$$\chi(12,\omega) = \chi_0(12,\omega) + \chi_0(13,\omega) \left(v(34) + f_{xc}(34,\omega) \right) \chi(42,\omega)$$

The idea

We want to use $\ll W \gg$, but in a 2-point equation.

$$\chi(12,\omega) = \chi_0(12,\omega) + \chi_0(13,\omega) (\nu(34) + f_{xc}(34,\omega)) \chi(42,\omega)$$

$$\chi = \chi_0 + \chi_0 \left(v + f_{xc} \right) \chi$$

$$\chi = (1 - \chi_0 v - \chi_0 f_{xc})^{-1} \chi_0$$

Let's define an invertible matrix $X(12,\omega) = \sum_{vc} \phi_v(1)\phi_c(1)g_{vc}(2,\omega)$

$$\chi = XX^{-1} \left(1 - \chi_0 v - \chi_0 X^{-1} X f_{xc} \right)^{-1} \chi_0$$

$$\chi = X \left(X - \chi_0 v X - \chi_0 X^{-1} X f_{xc} X \right)^{-1} \chi_0$$

$$\chi = X \left(X - \chi_0 v X - \chi_0 X^{-1} T \right)^{-1} \chi_0$$

$$\chi = \chi_0 + \chi_0 \left(v + f_{xc} \right) \chi$$
$$\chi = \left(1 - \chi_0 v - \chi_0 f_{xc} \right)^{-1} \chi_0$$

Let's define an invertible matrix $X(12,\omega) = \sum_{vc} \phi_v(1)\phi_c(1)g_{vc}(2,\omega)$

$$\chi = XX^{-1} \left(1 - \chi_0 v - \chi_0 X^{-1} X f_{xc} \right)^{-1} \chi_0$$

$$\chi = X \left(X - \chi_0 v X - \chi_0 X^{-1} X f_{xc} X \right)^{-1} \chi_0$$

$$\chi = X \left(X - \chi_0 \nu X - \chi_0 X^{-1} T \right)^{-1} \chi_0$$

$$\chi = \chi_0 + \chi_0 \left(v + f_{xc} \right) \chi$$
$$\chi = \left(1 - \chi_0 v - \chi_0 f_{xc} \right)^{-1} \chi_0$$

Let's define an invertible matrix $X(12,\omega) = \sum_{vc} \phi_v(1)\phi_c(1)g_{vc}(2,\omega)$

$$\chi = XX^{-1} \left(1 - \chi_0 v - \chi_0 X^{-1} X f_{xc} \right)^{-1} \chi_0$$

$$\chi = X \left(X - \chi_0 v X - \chi_0 X^{-1} X f_{xc} X \right)^{-1} \chi_0$$

$$\chi = X \left(X - \chi_0 \nu X - \chi_0 X^{-1} T \right)^{-1} \chi_0$$

$$\chi = \chi_0 + \chi_0 \left(v + f_{xc} \right) \chi$$
$$\chi = \left(1 - \chi_0 v - \chi_0 f_{xc} \right)^{-1} \chi_0$$

Let's define an invertible matrix $X(12,\omega) = \sum_{vc} \phi_v(1)\phi_c(1)g_{vc}(2,\omega)$

$$\chi = XX^{-1} \left(1 - \chi_0 v - \chi_0 X^{-1} X f_{xc} \right)^{-1} \chi_0$$

$$\chi = X \left(X - \chi_0 v X - \chi_0 X^{-1} X f_{xc} X \right)^{-1} \chi_0$$

$$\chi = X \left(X - \chi_0 v X - \chi_0 X^{-1} T \right)^{-1} \chi_0$$

$$\chi = \chi_0 + \chi_0 \left(v + f_{xc} \right) \chi$$
$$\chi = \left(1 - \chi_0 v - \chi_0 f_{xc} \right)^{-1} \chi_0$$

Let's define an invertible matrix $X(12,\omega) = \sum_{vc} \phi_v(1)\phi_c(1)g_{vc}(2,\omega)$

$$\chi = XX^{-1} \left(1 - \chi_0 v - \chi_0 X^{-1} X f_{xc} \right)^{-1} \chi_0$$

$$\chi = X \left(X - \chi_0 v X - \chi_0 X^{-1} X f_{xc} X \right)^{-1} \chi_0$$

$$\chi = X (X - \chi_0 vX - \chi_0 X^{-1} T)^{-1} \chi_0$$

$$\chi = \chi_0 + \chi_0 \left(v + f_{xc} \right) \chi$$
$$\chi = \left(1 - \chi_0 v - \chi_0 f_{xc} \right)^{-1} \chi_0$$

Let's define an invertible matrix $X(12,\omega) = \sum_{vc} \phi_v(1)\phi_c(1)g_{vc}(2,\omega)$

$$\chi = XX^{-1} (1 - \chi_0 v - \chi_0 X^{-1} X f_{xc})^{-1} \chi_0$$

$$\chi = X \left(X - \chi_0 v X - \chi_0 X^{-1} X f_{xc} X \right)^{-1} \chi_0$$

$$\chi = X (X - \chi_0 \nu X - \chi_0 X^{-1} T)^{-1} \chi_0$$

$$\chi = X (X - \chi_0 vX - \chi_0 X^{-1} T)^{-1} \chi_0$$

$$T(12,\omega) = X(13,\omega)f_{xc}(34,\omega)X(42,\omega) =$$

$$\sum_{vc} \int d(34)g_{vc}(1,\omega)\phi_{v}(3)\phi_{c}(3)f_{xc}(34,\omega)\phi_{v'}(4)\phi_{c'}(4)$$

$$T(12,\omega) = \sum_{\substack{vc\\v'c'}} g_{vc}(1,\omega) \ll f_{xc} \gg g_{v'c'}(2,\omega)$$

$$T_{BSE}(12,\omega) = \sum_{\substack{vc\\v'c'}} g_{vc}(1,\omega) \ll W \gg g_{v'c'}(2,\omega)$$

$$\chi = X (X - \chi_0 vX - \chi_0 X^{-1} T)^{-1} \chi_0$$

$$T(12,\omega) = X(13,\omega)f_{xc}(34,\omega)X(42,\omega) =$$

$$\sum_{vc} \int d(34)g_{vc}(1,\omega)\phi_{v}(3)\phi_{c}(3)f_{xc}(34,\omega)\phi_{v'}(4)\phi_{c'}(4)g_{v'c'}(2,\omega)$$

$$T(12,\omega) = \sum_{\substack{vc\\v'c'}} g_{vc}(1,\omega) \ll f_{xc} \gg g_{v'c'}(2,\omega)$$

$$T_{\text{BSE}}(12,\omega) = \sum_{\substack{vc\\v'c'}} g_{vc}(1,\omega) \ll W \gg g_{v'c'}(2,\omega)$$

$$\chi = X \left(X - \chi_0 v X - \chi_0 X^{-1} T \right)^{-1} \chi_0$$

$$T(12,\omega) = X(13,\omega)f_{xc}(34,\omega)X(42,\omega) =$$

$$\sum_{vc} \int d(34)g_{vc}(1,\omega)\phi_{v}(3)\phi_{c}(3)f_{xc}(34,\omega)\phi_{v'}(4)\phi_{c'}(4)g_{v'c'}(2,\omega)$$

$$T(12,\omega) = \sum_{\substack{vc\\v'c'}} g_{vc}(1,\omega) \ll f_{xc} \gg g_{v'c'}(2,\omega)$$

$$T_{\mathsf{BSE}}(12,\omega) = \sum_{\substack{vc \ v'}} g_{vc}(1,\omega) \ll W \gg g_{v'c'}(2,\omega)$$

$$\chi = X (X - \chi_0 vX - \chi_0 X^{-1} T)^{-1} \chi_0$$

$$T(12,\omega) = X(13,\omega) f_{xc}(34,\omega) X(42,\omega) =$$

$$\sum_{vc} \int d(34) g_{vc}(1,\omega) \phi_v(3) \phi_c(3) f_{xc}(34,\omega) \phi_{v'}(4) \phi_{c'}(4) g_{v'c'}(2,\omega)$$

$$T(12,\omega) = \sum_{\substack{vc \ v'c'}} g_{vc}(1,\omega) \ll f_{xc} \gg g_{v'c'}(2,\omega)$$

$$\mathsf{BSE}(12,\omega) = \sum_{\substack{vc \ v'c'}} g_{vc}(1,\omega) \ll W \gg g_{v'c'}(2,\omega)$$

$$\chi = X \left(X - \chi_0 v X - \chi_0 X^{-1} T \right)^{-1} \chi_0$$

$$T(12,\omega) = X(13,\omega)f_{xc}(34,\omega)X(42,\omega) =$$

$$\sum_{\substack{vc\\v'c'}} \int d(34)g_{vc}(1,\omega)\phi_{v}(3)\phi_{c}(3)f_{xc}(34,\omega)\phi_{v'}(4)\phi_{c'}(4)g_{v'c'}(2,\omega)$$

$$T(12,\omega) = \sum_{\substack{vc\\v'c'}} g_{vc}(1,\omega) \ll f_{xc} \gg g_{v'c'}(2,\omega)$$

$$T_{BSE}(12,\omega) = \sum_{\substack{vc\\v'c'}} g_{vc}(1,\omega) \ll W \gg g_{v'c'}(2,\omega)$$

$$\chi = X (X - \chi_0 vX - \chi_0 X^{-1} T)^{-1} \chi_0$$

$$T(12,\omega) = X(13,\omega)f_{xc}(34,\omega)X(42,\omega) =$$

$$\sum_{\substack{vc\\v'c'}} \int d(34)g_{vc}(1,\omega)\phi_{v}(3)\phi_{c}(3)f_{xc}(34,\omega)\phi_{v'}(4)\phi_{c'}(4)g_{v'c'}(2,\omega)$$

$$T(12,\omega) = \sum_{\substack{vc\\v'c'}} g_{vc}(1,\omega) \ll f_{xc} \gg g_{v'c'}(2,\omega)$$

$$T_{\text{BSE}}(12,\omega) = \sum_{\substack{vc\\v'c'}} g_{vc}(1,\omega) \ll W \gg g_{v'c'}(2,\omega)$$

$$\chi = X (X - \chi_0 vX - \chi_0 X^{-1} T)^{-1} \chi_0$$

$$T(12,\omega) = X(13,\omega)f_{xc}(34,\omega)X(42,\omega) =$$

$$\sum_{\substack{vc\\v'c'}} \int d(34)g_{vc}(1,\omega)\phi_{v}(3)\phi_{c}(3)f_{xc}(34,\omega)\phi_{v'}(4)\phi_{c'}(4)g_{v'c'}(2,\omega)$$

$$T(12,\omega) = \sum_{\substack{vc\\v'c'}} g_{vc}(1,\omega) \ll f_{xc} \gg g_{v'c'}(2,\omega)$$

$$T_{BSE}(12,\omega) = \sum_{\substack{vc\\v'c'}} g_{vc}(1,\omega) \ll W \gg g_{v'c'}(2,\omega)$$

$$\chi = X \left(X - \chi_0 v X - \chi_0 X^{-1} T \right)^{-1} \chi_0$$

$$T(12,\omega) = X(13,\omega)f_{xc}(34,\omega)X(42,\omega) =$$

$$\sum_{\substack{vc\\v'c'}} \int d(34)g_{vc}(1,\omega)\phi_{v}(3)\phi_{c}(3)f_{xc}(34,\omega)\phi_{v'}(4)\phi_{c'}(4)g_{v'c'}(2,\omega)$$

$$T(12,\omega) = \sum_{\substack{vc\\v'c'}} g_{vc}(1,\omega) \ll f_{xc} \gg g_{v'c'}(2,\omega)$$

$$T_{\mathsf{BSE}}(12,\omega) = \sum_{\substack{vc\\v'c'}} g_{vc}(1,\omega) \ll W \gg g_{v'c'}(2,\omega)$$

TDDFT 2-point equation containing $\ll W \gg$

$$\chi = X \left(X - \chi_0 v X - \chi_0 X^{-1} T \right)^{-1} \chi_0$$

$$T_{\mathsf{BSE}}(12,\omega) = \sum_{\substack{vc \ v'c'}} g_{vc}(1,\omega) \ll W \gg g_{v'c'}(2,\omega)$$

$$X(12,\omega) = \sum_{vc} \phi_v(1)\phi_c(1)g_{vc}(2,\omega)$$

What about the application?

TDDFT 2-point equation containing $\ll W \gg$

$$\chi = X (X - \chi_0 vX - \chi_0 X^{-1} T)^{-1} \chi_0$$

$$\mathcal{T}_{ extsf{BSE}}(12,\omega) = \sum_{\substack{vc \ v'c'}} g_{vc}(1,\omega) \ll \mathit{W} \gg g_{v'c'}(2,\omega)$$

$$X(12,\omega) = \sum_{vc} \phi_v(1)\phi_c(1)g_{vc}(2,\omega)$$

What about the application ??

TDDFT 2-point equation containing $\ll W \gg$

$$\chi = X (X - \chi_0 vX - \chi_0 X^{-1} T)^{-1} \chi_0$$

$$\mathcal{T}_{ extsf{BSE}}(12,\omega) = \sum_{\substack{vc \ v'c'}} g_{vc}(1,\omega) \ll \mathcal{W} \gg g_{v'c'}(2,\omega)$$

$$X(12,\omega) = \sum_{vc} \phi_v(1)\phi_c(1)g_{vc}(2,\omega)$$

What about the application ??

Outline

- Introduction
- 2 BSE and TDDFT up to 2002
- 3 The Mapping Theory Kernel
 - Theory
 - Results
- 4 Conclusions and Perspectives

Absorption of Silicon

Absorption of Silicon

Absorption of Silicon

F.Sottile et al. Phys.Rev.Lett 91, 56402 (2003)

00000

Absorption of Argon

Absorption of Argon

F.Sottile, M.Marsili et al., PRB(R) 76, 161103 (2007)

Tested also on absorption of SiO₂, DNA bases, Ge-nanowires, RAS of diamond surface, and EELS of LiF.

00000

- Marini et al. Phys.Rev.Lett. 91, 256402 (2003).
- Bruno et al. Phys.Rev.B **72** 153310, (2005).
- Palummo et al. Phys.Rev.Lett. 94 087404 (2005).
- Varsano et al. J.Phys.Chem.B 110 7129 (2006).

Francesco Sottile MBPT vs (TD)DFT

Outline

- Introduction
- 2 BSE and TDDFT up to 2002
- 3 The Mapping Theory Kerne
 - Theory
 - Results
- 4 Conclusions and Perspectives

TDDFT is the method of choice

- √ Absorption spectra of simple molecules
- $\sqrt{\,}$ Electron energy loss spectra
- √ Inelastic X-ray scattering spectroscopy
- √ Absorption of Solids (BSE-like scaling)

DFT-MBPT

- ⇒ Mapping Theory
- ⇒ OEP (EXX, etc.)

Functionals [o

- ⇒ Meta-GGA
 - ⇒ Orbital dependency

Extensions of TDDFT

- \Rightarrow TD-CDFT
- ⇒ Deformation

Today challenges

- \Rightarrow Open shells systems
- ⇒ Charge transfer excitations
- ⇒ Efficient calculations of Solids

DFT-MBPT

- ⇒ Mapping Theory
- ⇒ OEP (EXX, etc.)

Functionals $[\rho]$

- ⇒ Meta-GGA
- ⇒ Orbital dependency

Extensions of TDDFT

- ⇒ TD-CDFT
- ⇒ Deformation Theory

Today challenges

- ⇒ Open shells systems
- ⇒ Charge transfer excitations
- ⇒ Efficient calculations of Solids

DFT-MBPT

- ⇒ Mapping Theory
- ⇒ OEP (EXX, etc.)

Functionals $[\rho]$

- ⇒ Meta-GGA
- ⇒ Orbital dependency

Extensions of TDDFT

- ⇒ TD-CDFT
- ⇒ Deformation Theory

Today challenges

- ⇒ Open shells system:
- ⇒ Charge transfer excitations
- ⇒ Efficient calculations of Solids

DFT-MBPT

- ⇒ Mapping Theory
- ⇒ OEP (EXX, etc.)

Functionals $[\rho]$

- ⇒ Meta-GGA
- ⇒ Orbital dependency

Extensions of TDDFT

- ⇒ TD-CDFT
- ⇒ Deformation Theory

Today challenges

- ⇒ Open shells systems
- ⇒ Charge transfer excitations
- ⇒ Efficient calculations of Solids