Designing ab initio calculations

Francesco Sottile

École Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF)

22 October 2010

Validation

Connection

${\rm Engineering\ problem\ } \rightarrow {\rm atomistic\ model}$

Computation of the physical properties

Validation

Connection with measurable quantities

Validation

Connection

Outline

Engineering problem \rightarrow atomistic model

Computation of the physical properties

Validation

Connection with measurable quantities

Validation

Connection

Translation

Catalytic system

- Construction of surface adsorption site
- Water adsorbtion
- Photon absorption $\{e^- h^+\}$
- Charge separation
- Suppression of recombination
- Migration to surface reaction sites
- Construction of surface reaction site for H_2 and O_2

Validation

Connection

- Catalytic system
- Construction of surface adsorption site
- Water adsorbtion
- Photon absorption $\{e^- h^+\}$
- Charge separation
- Suppression of recombination
- Migration to surface reaction sites
- Construction of surface reaction site for H_2 and O_2

Validation

Connection

- Catalytic system
- Construction of surface adsorption site
- Water adsorbtion
- Photon absorption $\{e^- h^+\}$
- Charge separation
- Suppression of recombination
- Migration to surface reaction sites
- Construction of surface reaction site for H_2 and O_2

Enginnering

Computation

Validation

Connection

- Catalytic system
- Construction of surface adsorption site
- Water adsorbtion
- Photon absorption $\{e^- h^+\}$
- Charge separation
- Suppression of recombination
- Migration to surface reaction sites
- Construction of surface reaction site for H_2 and O_2

Validation

Connection

- Catalytic system
- Construction of surface adsorption site
- Water adsorbtion
- Photon absorption $\{e^- h^+\}$
- Charge separation
- Suppression of recombination
- Migration to surface reaction sites
- Construction of surface reaction site for H_2 and O_2

Validation

Connection

- Catalytic system
- Construction of surface adsorption site
- Water adsorbtion
- Photon absorption $\{e^- h^+\}$
- Charge separation
- Suppression of recombination
- Migration to surface reaction sites
- Construction of surface reaction site for H_2 and O_2

Validation

Connection

- Catalytic system
- Construction of surface adsorption site
- Water adsorbtion
- Photon absorption $\{e^- h^+\}$
- Charge separation
- Suppression of recombination
- Migration to surface reaction sites
- Construction of surface reaction site for H_2 and O_2

Validation

Connection

- Catalytic system
- Construction of surface adsorption site
- Water adsorbtion
- Photon absorption $\{e^{-} h^{+}\}$
- Charge separation
- Suppression of recombination
- Migration to surface reaction sites
- Construction of surface reaction site for *H*₂ and *O*₂

Validation

Connection

- Catalytic system
- Construction of surface adsorption site
- Water adsorbtion
- Photon absorption $\{e^{-} h^{+}\}$
- Charge separation
- Suppression of recombination
- Migration to surface reaction sites
- Construction of surface reaction site for *H*₂ and *O*₂

Connection

Translation

Basic Steps for Predictive Materials Simulations

- select appropriate theory for given phenomenon and material
- master approximations and their effects (error estimates)
- obtain right answer for right reason (correct physics, correct phenomenon)

Connection

Translation

Basic Steps for Predictive Materials Simulations

- select appropriate theory for given phenomenon and material
- master approximations and their effects (error estimates)
- obtain right answer for right reason (correct physics, correct phenomenon)

Connection

Translation

Basic Steps for Predictive Materials Simulations

- select appropriate theory for given phenomenon and material
- master approximations and their effects (error estimates)
- obtain right answer for right reason (correct physics, correct phenomenon)

Connection

Translation

Basic Steps for Predictive Materials Simulations

- select appropriate theory for given phenomenon and material
- master approximations and their effects (error estimates)
- obtain right answer for right reason (correct physics, correct phenomenon)

Connection

Translation

Basic Steps for Predictive Materials Simulations

- select appropriate theory for given phenomenon and material
- master approximations and their effects (error estimates)
- obtain right answer for right reason (correct physics, correct phenomenon)

Connection

Hierarchy of theories/methods

- Properties of interest
- Materials of interest
- Scale of the features

Connection

Hierarchy of theories/methods

- Properties of interest
- Materials of interest
- Scale of the features

Connection

Hierarchy of theories/methods

- Properties of interest valence excitations properties
- Materials of interest bulk, nanostructures
- Scale of the features nanoscale

Validation

Connection

Outline

Engineering problem ightarrow atomistic model

Computation of the physical properties

Validation

Connection with measurable quantities

Validation

Connection

Computation

Ab initio

The term *ab initio* indicates that the calculation is from first principles and that no empirical data is used.

$$V(\{\mathbf{r}\}) = \sum_{i \neq j} \frac{4\pi}{|\mathbf{r}_i - \mathbf{r}_j|}$$

R.G.Parr et al. Journal of Chemical Physics 18, 1561 (1950)

Schrödinger equation

$$H({\mathbf{r}}, t)\Psi({\mathbf{r}}, t) = i\frac{\partial}{\partial t}\Psi({\mathbf{r}}, t)$$

Validation

Connection

Computation

Ab initio

The term *ab initio* indicates that the calculation is from first principles and that no empirical data is used.

$$V(\{\mathbf{r}\}) = \sum_{i \neq j} \frac{4\pi}{|\mathbf{r}_i - \mathbf{r}_j|}$$

R.G.Parr *et al.* Journal of Chemical Physics **18**, 1561 (1950)

Schrödinger equation $H\Big(\{\mathbf{r}\},t\Big)\Psi\Big(\{\mathbf{r}\},t\Big) = \imath \frac{\partial}{\partial t}\Psi\Big(\{\mathbf{r}\},t\Big)$

Validation

Connection

Computation

Ab initio

The term *ab initio* indicates that the calculation is from first principles and that no empirical data is used.

$$V(\{\mathbf{r}\}) = \sum_{i \neq j} rac{4\pi}{|\mathbf{r}_i - \mathbf{r}_j|}$$

R.G.Parr et al. Journal of Chemical Physics 18, 1561 (1950)

Schrödinger equation

$$H\Big(\{\mathbf{r}\},t\Big)\Psi\Big(\{\mathbf{r}\},t\Big)=\imath\frac{\partial}{\partial t}\Psi\Big(\{\mathbf{r}\},t\Big)$$

Enginnering

Computation

Validation

Connection

Ab initio approaches

$\Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N, t) \longrightarrow G(\mathbf{r}_1, t_1, \mathbf{r}_2, t_2) \longrightarrow \rho(\mathbf{r}, t)$

CI, QMC

Validation

Connection

Ab initio approaches

$\Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N, t) \longrightarrow G(\mathbf{r}_1, t_1, \mathbf{r}_2, t_2) \longrightarrow \rho(\mathbf{r}, t)$

CI, QMC GF methods (GW, BSE)

Validation

Connection

Ab initio approaches

$\Psi(\mathbf{r}_1,\mathbf{r}_2,..,\mathbf{r}_N,t) \longrightarrow G(\mathbf{r}_1,t_1,\mathbf{r}_2,t_2) \longrightarrow \rho(\mathbf{r},t)$

CI, QMC GF methods (GW, BSE) DF

Validation

Connection

Ab initio approaches

$$\Psi(\mathbf{r}_1,\mathbf{r}_2,..,\mathbf{r}_N,t) \longrightarrow G(\mathbf{r}_1,t_1,\mathbf{r}_2,t_2) \longrightarrow \rho(\mathbf{r},t)$$

Validation

Connection

Engineering problem \rightarrow atomistic model

Computation of the physical properties

Validation

Connection with measurable quantities

Validation

Connection

Validation

references results to be compared to experiments

DISCREPANCIES

- inaccuracy of the computational approach
- between experimental and theoretical situation

but always keep in mind that ...

Validation

Connection

Validation

references results to be compared to experiments

DISCREPANCIES

• inaccuracy of the computational approach

between experimental and theoretical situation

but always keep in mind that ...

Connection

Validation

references results to be compared to experiments

DISCREPANCIES

- inaccuracy of the computational approach
- between experimental and theoretical situation

but always keep in mind that ...

Connection

Validation

references results to be compared to experiments

DISCREPANCIES

- inaccuracy of the computational approach
- between experimental and theoretical situation

but always keep in mind that ...

Connection

Validation

references results to be compared to experiments

DISCREPANCIES

- inaccuracy of the computational approach
- between experimental and theoretical situation

but always keep in mind that ...

Validation

Connection

Engineering problem ightarrow atomistic model

Computation of the physical properties

Validation

Connection with measurable quantities

Validation

Connection

Linear Response Approach

System submitted to an external perturbation

Validation

Connection

Linear Response Approach

$$egin{aligned} V_{tot} &= arepsilon^{-1} V_{ext} \ V_{tot} &= V_{ext} + V_{ind} \end{aligned}$$

$$\mathbf{E} = \varepsilon^{-1} \mathbf{D}$$

Validation

Connection

Linear Response Approach

$$V_{tot} = arepsilon^{-1} V_{ext}$$

 $V_{tot} = V_{ext} + V_{ind}$

$$\mathbf{E} = \varepsilon^{-1} \mathbf{D}$$

Validation

Connection

Linear Response Approach

$$V_{tot} = arepsilon^{-1} V_{ext}$$

 $V_{tot} = V_{ext} + V_{ind}$

Validation

Connection

Linear Response Approach

$$V_{tot} = arepsilon^{-1} V_{ext}$$

 $V_{tot} = V_{ext} + V_{ind}$

Validation

Connection

Linear Response Approach

$$V_{tot} = arepsilon^{-1} V_{ext}$$

 $V_{tot} = V_{ext} + V_{ind}$
 $\mathbf{E} = arepsilon^{-1} \mathbf{D}$

Validation

Connection

Linear Response Approach

$$V_{tot} = \varepsilon^{-1} V_{ext}$$

 $V_{tot} = V_{ext} + V_{ind}$

$$\mathbf{E} = \varepsilon^{-1} \mathbf{D}$$

Validation

Connection

Linear Response Approach

$$V_{tot} = arepsilon^{-1} V_{ext}$$

 $V_{tot} = V_{ext} + V_{ind}$
 $\mathbf{E} = arepsilon^{-1} \mathbf{D}$

Computation

Validation

Connection

Linear Response Approach

Definition of polarizability

not polarizable
$$\Rightarrow V_{tot} = V_{ext} \Rightarrow \varepsilon^{-1} = 1$$

polarizable

Computation

Validation

Connection

Linear Response Approach

Definition of polarizability

not polarizable
$$\Rightarrow V_{tot} = V_{ext} \Rightarrow \varepsilon^{-1} = 1$$

polarizable $\Rightarrow V_{tot} \neq V_{ext} \Rightarrow \varepsilon^{-1} \neq 1$

Computation

Validation

Connection

Linear Response Approach

Definition of polarizability

$$\begin{array}{rcl} \text{not polarizable} & \Rightarrow & V_{tot} = V_{ext} & \Rightarrow & \varepsilon^{-1} = 1 \\ \text{polarizable} & \Rightarrow & V_{tot} \neq V_{ext} & \Rightarrow & \varepsilon^{-1} \neq 1 \\ & & \varepsilon^{-1} = 1 + v\chi \end{array}$$

Computation

Validation

Connection

Linear Response Approach

Definition of polarizability

$$\begin{array}{rcl} \text{not polarizable} & \Rightarrow & V_{tot} = V_{ext} & \Rightarrow & \varepsilon^{-1} = 1 \\ \text{polarizable} & \Rightarrow & V_{tot} \neq V_{ext} & \Rightarrow & \varepsilon^{-1} \neq 1 \\ & & \varepsilon^{-1} = 1 + \nu \chi \end{array}$$

Validation

Connection

Absorption coefficient

General solution of Maxwell's equation

in vacuum
$$\mathbf{E}(x,t) = \mathbf{E}_0 e^{i\omega(x/c-t)}$$

in a medium $\mathbf{E}(x,t) = \mathbf{E}_0 e^{i\omega(Nx/c-t)}$

Validation

Connection

Absorption coefficient

General solution of Maxwell's equation

Validation

Connection

Absorption coefficient

General solution of Maxwell's equation

in vacuum $\mathbf{E}(x,t) = \mathbf{E}_0 e^{i\omega(x/c-t)}$ in a medium $\mathbf{E}(x,t) = \mathbf{E}_0 e^{i\omega(Nx/c-t)}$

complex (macroscopic) refractive index N

$$N = \sqrt{\varepsilon_M} = \nu + i\kappa$$
; $\mathbf{D} = \varepsilon_M \mathbf{E}$
absorption coefficient α (inverse distance $|\frac{|\mathbf{E}(x)|^2}{|\mathbf{E}_0|^2} = \frac{1}{e}$)

$$\alpha = \frac{\omega \mathrm{Im}\varepsilon_{\mathrm{M}}}{\nu c}$$

Computation

Validation

Connection

Absorption coefficient

Ellipsometry Experiment

$$arepsilon_{M}=sin^{2}\Phi+sin^{2}\Phi tan^{2}\Phi\left(rac{1-rac{E_{r}}{E_{i}}}{1+rac{E_{r}}{E_{i}}}
ight)$$

Validation

Connection

Dynamical Structure Factor

Validation

Connection

Microscopic-Macroscopic Connection

Theoretical definition

$$\mathbf{E}(\mathbf{r},\omega) = \int d\mathbf{r} \ arepsilon^{-1}(\mathbf{r},\mathbf{r}',\omega) \mathbf{D}(\mathbf{r}',\omega)$$

constitutive closure to Maxwell equations

The connection ?

$$arepsilon^{-1}({f r},{f r}',\omega) \Longrightarrow arepsilon_{{f M}}^{-1}({f q},\omega) \propto \int d{f r} d{f r} d{f r} d{f r}' e^{i{f q}({f r}-{f r}')} arepsilon^{-1}({f r},{f r}',\omega)$$

microscpic macroscopic

Validation

Connection

Microscopic-Macroscopic Connection

Theoretical definition

$$\mathbf{E}(\mathbf{r},\omega) = \int d\mathbf{r} \ arepsilon^{-1}(\mathbf{r},\mathbf{r}',\omega) \mathbf{D}(\mathbf{r}',\omega)$$

constitutive closure to Maxwell equations

The connection ?

$$arepsilon^{-1}(\mathbf{r},\mathbf{r}',\omega) \Longrightarrow arepsilon_{\mathsf{M}}^{-1}(\mathbf{q},\omega) \propto \int d\mathbf{r} d\mathbf{r}' e^{i\mathbf{q}(\mathbf{r}-\mathbf{r}')} arepsilon^{-1}(\mathbf{r},\mathbf{r}',\omega)$$

microscpic macroscopic

$$\mathsf{E}(\mathsf{q}+\mathsf{G},\omega)=arepsilon_{\mathsf{G},\mathsf{G}'}^{-1}(\mathsf{q},\omega)\mathsf{D}(\mathsf{q}+\mathsf{G}',\omega)$$

Validation

Connection

 $\mathsf{E}(\mathsf{q}+\mathsf{G},\omega) = \varepsilon_{\mathsf{G},\mathsf{G}'}^{-1}(\mathsf{q},\omega)\mathsf{D}(\mathsf{q}+\mathsf{G}',\omega)$

Validation

Connection

 $\mathsf{E}(\mathbf{q} + \mathbf{G}, \omega) = \varepsilon_{\mathbf{G}, 0}^{-1}(\mathbf{q}, \omega) \mathsf{D}(\mathbf{q} + 0, \omega)$

Validation

Connection

 $\mathsf{E}(\mathbf{q}+0,\omega) = \varepsilon_{0,0}^{-1}(\mathbf{q},\omega)\mathsf{D}(\mathbf{q}+0,\omega)$

Validation

Connection

 $\mathsf{E}(\mathbf{q}+0,\omega) = \varepsilon_{0,0}^{-1}(\mathbf{q},\omega)\mathsf{D}(\mathbf{q}+0,\omega)$

Validation

Connection

Important messages

- Choose a theory/approximations according to material/phenomena
- Valence electron spectroscopy in linear response: absorption, EELS, X-ray scattering, photo-emission, refraction index, etc.
- Micro-macro connection \Rightarrow **G** = 0

Validation

Connection

Important messages

- Choose a theory/approximations according to material/phenomena
- Valence electron spectroscopy in linear response: absorption, EELS, X-ray scattering, photo-emission, refraction index, etc.
- Micro-macro connection \Rightarrow **G** = 0

Validation

Connection

Important messages

- Choose a theory/approximations according to material/phenomena
- Valence electron spectroscopy in linear response: absorption, EELS, X-ray scattering, photo-emission, refraction index, etc.

• Micro-macro connection \Rightarrow **G** = 0

Validation

Connection

Important messages

- Choose a theory/approximations according to material/phenomena
- Valence electron spectroscopy in linear response: absorption, EELS, X-ray scattering, photo-emission, refraction index, etc.
- Micro-macro connection \Rightarrow **G** = 0