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Hierarchy of theories/methods

• Properties of interest valence excitations properties

• Materials of interest bulk, nanostructures

• Scale of the features nanoscale
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Computation

Ab initio

The term ab initio indicates that the calculation is from first
principles and that no empirical data is used.

V ({r}) =
∑
i 6=j

4π

|ri − rj |

R.G.Parr et al. Journal of Chemical Physics 18, 1561 (1950)

Schrödinger equation
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• between experimental and theoretical situation

but always keep in mind that ...

computational model (also) provides
information that is not accessible (or accessible
with great difficulty) by laboratory experiments



Enginnering Computation Validation Connection

Validation

references results to be compared to experiments

DISCREPANCIES

• inaccuracy of the computational approach

• between experimental and theoretical situation

but always keep in mind that ...

computational model (also) provides
information that is not accessible (or accessible
with great difficulty) by laboratory experiments



Enginnering Computation Validation Connection

Validation

references results to be compared to experiments

DISCREPANCIES

• inaccuracy of the computational approach

• between experimental and theoretical situation

but always keep in mind that ...

computational model (also) provides
information that is not accessible (or accessible
with great difficulty) by laboratory experiments



Enginnering Computation Validation Connection

Validation

references results to be compared to experiments

DISCREPANCIES

• inaccuracy of the computational approach

• between experimental and theoretical situation

but always keep in mind that ...

computational model (also) provides
information that is not accessible (or accessible
with great difficulty) by laboratory experiments



Enginnering Computation Validation Connection

Validation

references results to be compared to experiments

DISCREPANCIES

• inaccuracy of the computational approach

• between experimental and theoretical situation

but always keep in mind that ...

computational model (also) provides
information that is not accessible (or accessible
with great difficulty) by laboratory experiments



Enginnering Computation Validation Connection

Outline

Engineering problem → atomistic model

Computation of the physical properties

Validation

Connection with measurable quantities



Enginnering Computation Validation Connection

Linear Response Approach

System submitted to an external perturbation

Vtot = ε−1Vext

Vtot = Vext + Vind

E = ε−1D

Dielectric function ε
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ε
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Absorption coefficient

General solution of Maxwell’s equation

in vacuum E(x , t) = E0e
iω(x/c−t)

in a medium E(x , t) = E0e
iω(Nx/c−t)

complex (macroscopic) refractive index N

N =
√
εM = ν + iκ ; D = εME

absorption coefficient α (inverse distance
∣∣ |E(x)|2
|E0|2 = 1

e )

α =
ωImεM
νc
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Absorption coefficient

Ellipsometry Experiment

εM = sin2Φ + sin2Φtan2Φ

(
1− Er

Ei

1 + Er
Ei

)
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Dynamical Structure Factor

S(q, ω) ∝ 1

εM(q, ω)
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Microscopic-Macroscopic Connection

Theoretical definition

E(r, ω) =

∫
dr ε−1(r, r′, ω)D(r′, ω)

constitutive closure to Maxwell equations

The connection ?

ε−1(r, r′, ω) =⇒ ε−1
M (q, ω) ∝

∫
drdr′e iq(r−r′)ε−1(r, r′, ω)

microscpic macroscopic
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