Soleil Theory Day

6/5/2014

Core-level Spectroscopies with FEFF9 and OCEAN

J. J. Rehr^{1,4} K. Gilmore,^{2,4} J. Kas,¹ J. Vinson,³ E. Shirley³

¹ University of Washington, Seattle, WA
² ESRF, Grenoble, France
³NIST, Gaithersburg, MD, USA
⁴ European Theoretical Spectroscopy Facility

Supported by DOE BES

Core-level Spectroscopies with FEFF9 and OCEAN

- GOAL: ab initio theory
- Accuracy ~ experiment
- TALK:
 - I. Introduction
 - II. FEFF9 Real-space Green's Function JJR
- III. BSE k space KG

ETSF X-ray Spectroscopy Beamline

XAS XES XMCD NRIXS RIXS

European Theoretical Spectroscopy Facility

About the ETSF

Beamlines

- Energy Loss Spectroscopy
- Optics
- Photo-emission Spectroscopy
- Quantum Transport
- Time-resolved Spectroscopy
- Vibrational Spectroscopy
- X-Rays Spectroscopy
- Services
- Resources
- Funding
- Press
- Impressum

Home

Beamlines

The ETSF is divided into 7 beamlines, each of which is concerned with a specific scientific topic. A beamline coordinator is responsible for the contact with the users of each line. He/She also serves as the contact person for users who want to submit a proposal to the ETSF.

Further details are available on the beamlines' description.

Beamlines and Coordinators

Optics

Dr. Olivia Pulci

University of Rome Tor Vergata, Rome, Italy Olivia.Pulci@roma2.infn.it

Energy Loss Spectroscopy

Dr. Francesco Sottile

Ecole Polytechnique, Palaiseau, France francesco.sottile@polytechnique.edu

Quantum Transport

Dr. Peter Bokes

Slovak University of Technology, Bratislava, Slovakia peter.bokes@stuba.sk

Time-resolved Spectroscopy

Dr. Alberto Castro

Instituto de Biocomputación y Física de Sistemas Complejos acastro@bifi.es

Photo-emission Spectroscopy

Dr. Claudio Verdozzi

Lund University, Lund, Sweden Claudio.Verdozzi@teorfys.lu.se

Vibrational Spectroscopy

Prof. Gian-Marco Rignanese

Université Catholique de Louvain, Louvain-la-Neuve, Belgium gian-marco.rignanese@uclouvain.be

X-Rays Spectroscopy

Prof. John Rehr University of Washington, Seattle, USA jjr@phys.washington.edu

The team: Rehr-Group + collaborators

Thanks to DOE BES, DOE CMCSN, NSF OCI, and the ETSF

Theoretical ingredients beyond DFT "Excited State Electronic Structure"

- A. Self-energies & mean free paths
- B. Screened Core-hole
- C. Nuclear motion: Debye Waller factors

Need for corrections to DFT in XAS

FEFF9 reference

Ab initio RSGF Theory

JJR et al., Comptes Rendus Physique **10**, 548 (2009)

in Theoretical Spectroscopy L. Reining (*Ed*) (2009)

Quasi-particle Theory of XAS

Fermi Golden Rule for XAS $\mu(\omega)$

$$\mu(\omega) \sim \Sigma_f |\langle \psi_f | d | \psi_i \rangle|^2 \delta(E_f - E_i - \hbar \omega)$$

Quasi-particle final states ψ_f

$$\left[\frac{p^2}{2m} + V'_{coul} + \Sigma(E)\right]\psi_f = E_f\psi_f$$

Final state rule

 $V'_{coul} = V_{coul} + V_{core-hole}$ **Non-hermitian** self-energy $\Sigma(E)$ (replaces Vxc)

Real-space Green's Function Approach

Golden rule via Wave Functions

 $\mu(E) \sim \Sigma_f |\langle i | \hat{\epsilon} \cdot \mathbf{r} | f \rangle|^2 \delta(E - E_f)$

Paradigm shift:

Golden rule via Green's Functions $G = 1/(E - h - \Sigma)$

$$\mu(E) \sim -\frac{1}{\pi} \operatorname{Im} \langle \mathbf{i} | \hat{\epsilon} \cdot \mathbf{r}' \operatorname{G}(\mathbf{r}', \mathbf{r}, \mathbf{E}) \hat{\epsilon} \cdot \mathbf{r} | \mathbf{i} \rangle$$

No sums over final states !

Implementation: Real-space FEFF code

PHYSICAL REVIEW B

VOLUME 58, NUMBER 12

15 SEPTEMBER 1998-II

Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure

A. L. Ankudinov

MST-11, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

B. Ravel Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899

J. J. Rehr Department of Physics, University of Washington, Seattle, Washington 98195-1560 Core-hole SCF potentials

S. D. Conradson MST-11, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Essential!

Applicable to XAS, EELS, XES, XMCD, DAFS, ...

 Dirac relativistic FEFF8 code reproduces all spectral features including absence of white line at L₂-edge

Green's Functions & Parallel Calculations

PHYSICAL REVIEW B, VOLUME 65, 104107

Parallel calculation of electron multiple scattering using Lanczos algorithms

A. L. Ankudinov,¹ C. E. Bouldin,² J. J. Rehr,¹ J. Sims,² and H. Hung²

¹Department of Physics, University of Washington, Seattle, Washington 98195

²National Institute of Standards and Technology, Gaithersburg, Maryland 20899

Application: RIXS

PHYSICAL REVIEW B 83, 235114 (2011)

Real-space Green's function approach to resonant inelastic x-ray scattering

J. J. Kas,¹ J. J. Rehr,^{1,*} J. A. Soininen,² and P. Glatzel³

¹Department of Physics, Box 351560, University of Washington, Seattle, Washington 98195-1560, USA ²Department of Physics, P.O. Box 64, University of Helsinki, FI-00014 Helsinki, Finland ³European Synchrotron Radiation Facility, B.P. 220, F-38043 Grenoble, France (Received 21 January 2011; revised manuscript received 7 April 2011; published 8 June 2011)

J. Kas et al. Phys. Rev. B 83, 235114 (2011)

$$\frac{d^{2}\sigma}{d\Omega d\omega} = \frac{\omega}{\Omega} \sum_{F} \left| \frac{\sum_{M} \langle F | \Delta_{2}^{\dagger} | M \rangle \langle M | \Delta_{1} | \Psi_{0} \rangle}{E_{M} - \Omega - E_{0} + i \Gamma_{M}} \right|^{2} \times \delta(\Omega - \omega + E_{0} - E_{F}).$$

$$\propto \frac{\omega}{\Omega} \int d\omega_1 \; \frac{\mu_e(\omega_1)\mu(\Omega-\omega-\omega_1+E_b)}{|\omega-\omega_1-i\Gamma_b|^2}$$

~ XES *XAS

Application LDA+ U / GW in FEFF9*

O K-edge MnO

PHYSICAL REVIEW B 85, 165123 (2012)

Hubbard model corrections in real-space x-ray spectroscopy theory

Towfiq Ahmed, J. J. Kas, and J. J. Rehr Department of Physics, University of Washington, Seattle, Washington 98195, USA (Received 10 July 2011; revised manuscript received 24 February 2012; published 16 April 2012)

The Hubbard model is implemented in real-space multiple scattering (RSMS) Green's function calculations of x-ray spectra based on a rotationally invariant local density approximation (LDA) + U formalism. Values

Add *U* as correction to GW self energy:

 $V^{U}(\mathbf{r}, E) = V^{SCF}(\mathbf{r}) + \Sigma^{GW}(E) + \Sigma^{U}_{lm\sigma}(E)$

*Phys Rev B 85, 165123 (2012)

Inelastic losses in XAS & XPS $G^{++}(\omega) = e^{-a} \left[g'(\omega) + \sum_{n} \left(\frac{V_{bb}^{n}}{\omega_{n}} \right)^{2} g'(\omega - \omega_{n}) - 2\sum_{n} \frac{V_{bb}^{n}}{\omega_{n}} g'(\omega - \omega_{n}) V^{n} g'(\omega) \right]$ $A(\omega) = -(1/\pi) \operatorname{Im} g^{++}(\omega)$ Extrinsic + Intrinsic - 2 × Interference

 Many-body XAS ≈ Convolution of QP XAS with effective spectral function A(ω)

*L. Campbell, L. Hedin, J. J. Rehr, and W. Bardyszewski, Phys. Rev. B 65, 064107 (2002)

Beyond GW: Cumulant Methods

Europhys J. J. B 85, 324 (2012) ' see also M. Guzzo et al., PRL 107, 166401 (2011)

Plasmon Satellites in Valence-band Photoemission Spectroscopy

Ab Initio study of the photon-energy dependence in semiconductors

Extension XPS

Matteo Guzzo^{1,2}, Joshua J. Kas³, Francesco Sottile^{1,2}, Mathieu G. Silly⁴, Fausto Sirotti⁴, John J. Rehr³, and Lucia Reining^{1,2}

Generalized particle/hole cumulant approximation for the electron Green's function

arXiv:1402.0022 J. J. Kas,^{1,*} J. J. Rehr,^{1,2,†} and L. Reining^{3,2,‡} ¹Department of Physics, University of Washington Seattle, WA 98195 ²European Theoretical Spectroscopy Facility (ETSF) ³Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA-DSM, F-91128 Palaiseau, France

$$G_{k}^{R}(t) = -i\theta(t)e^{-i\epsilon_{k}^{HF}t}e^{\tilde{C}_{k}^{R}(t)}, \qquad \qquad \mathsf{GW \ Kernel}$$
$$\tilde{C}_{k}^{R}(t) = \int d\omega \frac{\beta_{k}(\omega)}{\omega^{2}}(e^{-i\omega t} + i\omega t - 1) \qquad \qquad \beta_{k}(\omega) = \frac{1}{\pi} \left| \operatorname{Im} \Sigma_{k}^{R}(\omega + \epsilon_{k}) \right|$$

$$\gamma_{ik}(\omega) = \sum_{\mathbf{q}} |g_{\mathbf{q}}|^2 \delta(\omega - \omega_q) = \gamma_i^{int} + \gamma_k^{ext} + \gamma_{ik}^{inf}$$

Application: Charge Transfer Satellites

PHYSICAL REVIEW B 89, 085123 (2014)

Charge transfer satellites in x-ray spectra of transition metal oxides

E. Klevak, J. J. Kas, and J. J. Rehr

Department of Physics, University of Washington, Seattle, Washington 98195, USA

Part II GW-BSE OCEAN

Core-Level X-ray Spectroscopy part II Bethe-Salpeter equation

Keith Gilmore¹, J J Rehr², J Kas², J Vinson³, E Shirley³

¹ ESRF, Grenoble, France
² University of Washington, Seattle, WA, USA
³ NIST, Gaithersburg, MD, USA

Computational Objective

- Predictive
 - First-principles
 - Minimal free parameters
- Accurate
- Versatile
 - Multiple x-ray techniques
 - Variety of physical / chemical systems
- Efficient
 - 100-1000s atoms
 - Modest run-times / resources
- Usable
 - Simple / intuitive interface & inputs
 - Expertise in DFT not required

Atomic Multiplets

$$H_{mult} = H_h + H_e + H_{eh}$$
$$H_h = -\varepsilon_{\alpha} + \zeta L \cdot S$$
$$H_e = T + U + V$$
$$H_{eh} = V_{\alpha}(r) + g_{ij}$$

<u>Ti L-edge</u>

Bethe-Salpeter Equation

conduction band

$$\mu(\omega) = -\frac{1}{\pi} Im \langle 0 | \hat{d}^{+} | e, h \rangle \left\langle e, h | \frac{1}{\omega - H_{BSE} + i\eta} | e', h' \right\rangle \langle e', h' | \hat{d} | 0 \rangle$$

$$H_{BSE} = H_e - H_h + H_{eh}$$

 $H_e = -\frac{\nabla^2}{2} + \int dr' \frac{\rho(r')}{|r-r'|} + V_{xc}[\rho(r)] + \Sigma \quad \text{from DFT or DFT+GW}$

 $H_{h} = E_{h} + \chi_{j} - i\Gamma_{j} \text{ from atomic DFT or HF} \qquad \text{core level}$ $\int \int \text{lifetime} \\ \text{Spin-orbit interaction} \qquad V_{X} = \int dr dr' \psi_{1}^{*}(r) \psi_{2}(r) \frac{1}{|r - r'|} \psi_{1}(r') \psi_{2}^{*}(r')$ $V_{D}(\omega) = \int dr dr' \psi_{1}^{*}(r) \psi_{2}(r') \frac{\epsilon^{-1}(r, r'; \omega)}{|r - r'|} \psi_{1}(r) \psi_{2}^{*}(r')$

OCEAN: Obtaining Core-Excitations from Ab-initio electronic structure and the NIST BSE solver

Primary Developers

Eric Shirley NIST

John Vinson NIST

Group of John Rehr U. Washington

- Systematically improvable many-body approach to calculating spectra
- Based on DFT ground-state electronic structure
- Spectra obtained from 2-particle solutions of the Bethe-Salpeter eq.
- Several efficiencies make calculations practical
- XAS, XES, RIXS, NRIXS, Auger, optical absorption

Input card

- single file + pseudopotentials
- useful defaults
- atomic positions
- DFT parameters
- spectrum type (XAS, XES, XRS)
- edge information (atom, K/L, etc)

- Freely available
- Well documented, easy to use
- High functionality, actively developed
- Plane-wave basis

Full periodic table of pseudopotenials available

NC : yes US : testing PAW : coming soon

Self energy corrections

➤ GW: often accurate, but slow

Many-pole self energy (MPSE)

- Fast post-processing; extension of plasmonpole model
- Calculate loss function (FEFF, optical code)
- Approximate loss function with a series of poles
- Use simple electron gas Green's function

$$-Im[\varepsilon(q,\omega)^{-1}] = \pi \sum_{i} g_{i}\omega_{i}^{2}\delta[\omega^{2} - \omega_{i}(q)^{2}]$$
$$\Sigma(k,E) \approx i \int \frac{d^{3}q}{(2\pi)^{3}} \frac{d\omega}{2\pi} \frac{V(q)}{\varepsilon(q,\omega)} G_{heg}(E,\omega,k)$$

JJ Kas et al, Phys Rev B **76**, 195116 (2007)

Transition matrix elements

Partition space for efficient calculation of screening response

 $W_0(r) = \Delta V_c(r) + W_c^{sr}(r) + W_c^{lr}(r)$

Short-range: detailed RPA screening

$$\chi^{0}(r,r',\omega) = \int d\omega' G^{0}(r,r',\omega') G^{0}(r',r,\omega+\omega')$$

Random phase approximate

Long-range: model dielectric response

$$\chi_M(r,r') = \nabla \cdot \nabla' \left(\frac{n(r) + n(r')}{2n_0} \right) \left(\int \frac{d^3q}{(2\pi)^3} e^{iq \cdot (r-r')} \frac{\varepsilon_{LL}^{-1}(q,n_0;\varepsilon_{\infty}) - 1}{4\pi} \right)$$

Levine-Louie model dielectric function

EL Shirley, Ultramicroscopy 106, 986 (2006)

XAS: K-edges

LiF; F K-edge

J Vinson et al, Phys Rev B **83**, 115106 (2011)

XAS: simple L-edges

XAS: transition metal L-edges

L_3 / L_2 branching ratios

- (a) 🙀	Ocean -	Atom	Z	Ехр	OCEAN
(stin. drb)	Exp	Са	20	0.8	0.8
	-	V	23	1.0	1.1
	-	Fe	26	2.0	1.8
Co		Со	27	2.3	2.0
Ni		Ni	28	2.4	2.0
-10 0 10 20 Relative Energy (eV)	30 40	Cu	29	0.9	0.8

J Vinson and JJ Rehr, Phys Rev B 86, 195135 (2012)

XAS: molecules / liquids

Photon Energy (eV)

Experimental reference spectrum from Adam Hitchcock, McMaster University, Ontario, CA unicorn.mcmaster.ca/corex/name-list.html

XES: liquid water (with excited-state dynamics)

Water O XES

unpublished

Tokushima et al., Chem Phys Lett (2008)

High pressure silicon

Phase change at high pressure

Diffraction performed on ESRF ID09

Redistribution of electron density from s-p hybridized bonding orbitals to d-character orbitals with strong interstitial weight

JS Tse et al, J Phys Chem C (2014)

NRIXS: L-edges

Pressure

Silicon NRIXS

Increasing pressure

- Phase changes
- Decreasing excitonic peak
- Increasing metallicity

XRS measured on ESRF ID16

JS Tse et al, J Phys Chem C (2014)

Optical absorption

LX Benedict et al, Phys Rev Lett 80, 4514 (1998)

OCEAN: Obtaining Core-Excitations from Ab-initio electronic structure and the NIST BSE solver

- Predictive
 - First-principles, minimal free parameters
- Accurate
- Versatile
 - XAS, XES, (N)RIXS, optical spectra
 - Periodic crystals, liquids, molecules
- Efficient
 - 100s atoms (want 1000s)
 - Needs cluster, but not supercomputer
- Development of release version in progress
 - 'locally' available at the ESRF/Grenoble
 - keith.gilmore@esrf.fr

See poster for additional results

keith.gilmore@esrf.fr

Vibrational effects

CP Schwartz et al, J Chem Phys 130, 184109 (2009)

Water

AIQ3

Explicit inclusion of vibronic coupling: SrTiO₃

$$\left[\mathbf{H}_{\text{mult}}^{(0)} + \mathbf{H}_{\text{vib}} + \mathbf{W}\right] \chi_{K} = E \,\chi_{K}$$

$$\chi_K \ \mathbf{E} \ |m_{\ell}^{(2p)}, m_s^{(2p)}; m_{\ell}^{(3d)}, m_s^{(3d)}; n_{\theta}, n_{\epsilon} \rangle$$

(N,N)

$$H' = H_{mult} + \hbar ω(n_{\theta} + n_{\epsilon}) \mathbf{1}_{mult}$$

N=200 vibrational levels required for convergence

K Gilmore and EL Shirley, J Phys: Condens Matter 22, 315901 (2010)