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Which quantities do we need?  

The general solution of the Maxwell's  
equations for the electric field is 


E(

r, t) =


E
0
e
i(kx−ωt )

Defining the complex refractive index as                            , the electric  
field inside a medium is the damped wave: 
 
 
ν  and κ are the refraction index and the extinction coefficient and  
they are related to the dielectric constant (ε=ε1+iε2) as 
 
 
 
The absorption coefficient α is the inverse distance where the intensity  
of the field is reduced by 1/e 
 
(related to the optical skin depth δ). 
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Which quantities do we need?  

Reflectivity 
Normal incidence reflectivity 
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The knowledge of the optical  
constant implies the knowledge  
of the absorption and of the  
reflectivity, which can be  
compared with the experiment. 
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Incident beam 

Reflected beam 

Transmitted beam 
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Using the continuity of the tangential  
component of the electric field at the surface  



Which quantities do we need?  

Energy loss by a fast particle 
Given an external charge density ρext, one can obtained the external  
potential Vext 

The response of the system is an induced density, defined by the  
response function χ 

and the total (induced + external) potential acting on the system is 
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Which quantities do we need?  

Energy loss by a fast particle 
Charge density of a particle (e-) with velocity v : )( tvreext

!!
−= δρ

The total electric field is   
and the energy lost by the electron in unit time is  
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is called the loss function 
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Maxwell’s equations 

Maxwell’s equations can be written either in vacuum or in a medium 
 Etot(r, t), Btot(r, t),  

jtot(r, t), ρtot(r, t) with   

ρtot=ρext+ρind  , and  

jtot=jext+jind 

Eext(r, t), Bext(r, t),  

jext(r, t), ρext(r, t) 

It is often more convenient to use D=Etot+4π P instead of Etot,  
as D is very close to the external field  
 


∇.

jind (

r, t)+

∂ρ
ind

∂t
= 0

∇.D =∇.E
ext

ρind and jind are the induced charge and current density:  
they are not arbitrary, but reflect the spatial structure of  
the medium on a microscopic level and the motion of 
 the particle in it, including also the response to an external field. 



Linear response 

§ For a sufficiently small perturbation, the response of the system can be extended 

into a taylor series, with respect to the perturbation. 
§ The first order (linear) response is proportional to the perturbation. 

Perturbation theory 

j
ind
(r,ω) = −

e

mc
< ρ > A(r,ω)−

1

c
∫ d

r 'χ

jj
(r, r ',ω)A(r',ω)

+ ∫ d

r 'χ

jρ (r, r ',ω)V (r',ω)

ρ
ind
(r,ω) = −

1

c
∫ d

r 'χρ j (r, r ',ω)A(r',ω)+ ∫ d


r 'χρρ (r, r ',ω)V (r',ω)

For simplicity, we will write 
jind = −

e

mc
< ρ > −

1

c
χ jjA+ χ jρV

ρind = −
1

c
χρ jA+ χρρV



Linear response 

 The four response functions are not independent and using gauge 
 invariance, one has 

iωχ
jρ =

∂

∂r '

e

mc
< ρ̂ > δ(r - r') -

∂

∂r '
χ
jj

∂

∂r '
χρ j = −iωχρρ

Only two quantities are needed, in terms of the electric field 

j
ind
=
ie

mω
< ρ̂ > E+

i

ω
χ
jj
E ρ

ind
=
i

ω
χρ jE

Depending on the approximation, these response functions can be  
evaluated (IPA, RPA ...). 



Linear response 

Microscopic dielectric tensor  
 
 
 
In a perfect crystal 
 
 
 
and Fourier components must satisfy 
 
 
 
 
 
q lies in the first Brillouin zone and G is a reciprocal lattice vector 

D(r,ω) = ∫ d

r 'ε̂(r, r ',ω)E

tot
(r',ω)

D(q+G,ω) =
G '

∑ ε̂(q+G,q+G ',ω)E
tot
(q+G',ω)

ε̂(r + R, r '+ R,ω) = ε̂(r, r ',ω)



Microscopic spatial fluctuations 

•  Infinite crystals → microscopic inhomogeneities (atomic scale) 

•  Semi-infinite crystals → presence of the surface 

•  Desorded medium → liquid 

•  Rough surfaces  



Macroscopic average 

Macroscopic quantities  

Quantities that are slowly varying over the unit cells. 
where V is the volume per unit cell of the crystal. 

Examples  
Eext(r, t), Aext(r, t), Vext(r, t),… 
 
Typical values: 
• dimension of the unit cell for silicon acell ≈0.5nm 
• Visible radiation  400 nm < λ < 800 nm 

λ >>V 1/3

We consider spatial fluctuations whose characteristic length scale 
 is much smaller than the wavelength of light 



Macroscopic average 

Microscopic quantities  

Examples  
Etot(r, t), jind(r, t), ρind(r, t),... 

Total and induced fields are rapidly varying. They include the contribution  
from electrons in all regions of the cell. 
The contribution of electrons close to or far from the nuclei will be very different. 

⇒ Large and irregular fluctuations over the atomic scale.  



Macroscopic average 

Measurable quantities  
One  measures quantities that vary on a macroscopic scale. 

We have to average over distances : 
ü  large compared to the cell diameter 
ü  small compared to the wavelength of the external perturbation 

In the long wavelength limit,  
 the macroscopic neighbourhood contains many particles 



Macroscopic average 

Interpretation: 

 If we assume that the system is homogeneous : ε(r , r' ,ω) = ε(r - r' ,ω) 
 

One has  ε(q+G , q+G' ,ω) = δGG’ε(q+G  ,ω)  

  D(q+G,ω)= ε(q+G ,ω) E(q+G,ω) 
 

Measurable quantities : vary on a macroscopic scale  

èthe system is considered as homogeneous. 
 
One has to transform  
 
into  

D(q+G) = ε̂(q+G
G '

∑ ,q+G',ω )E
tot
(q+G,ω)

D(q) = ε̂(q,ω )E
tot
(q,ω)



Macroscopic average 

The differences between the microscopic fields and the averaged (macroscopic)  
fields are called the local fields 

• Macroscopic external field ⇒  induced fields 
• The macroscopic procedure must take into account the fact that all the  
components of the induced fields will create the response. 

Complexity of the problem: 

Procedure: 
•  model for the system expressed in terms of an hamiltonian 
•  microscopic response of the system (linear-response theory for instance) 
⇒ Definition of the microscopic dielectric tensor  
• Averaging: definition of εM which relates the average parts of D and E 


D(

r,ω) = d


r '∫ ε(

r,

r ',ω)E(


r ',ω)
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Macroscopic average 

General definition:  

P̂f = 1̂− P̂a
Fa = P̂aF

Ff = P̂f F

      commutes with the time and space differential operators 
 The average part of the field must obey 
  the macroscopic Maxwell’s equations 

P̂
a

We have to define two operators       and     which extract the average component  
and the fluctuation component of any function F 

P̂
a

P̂f

      and      have the following properties: P̂
a

P̂f

P̂
a

2
= P̂

a
P̂f
2
= P̂f P̂aP̂f = P̂f P̂a = 0and 1) ⇒ Projectors 

2) 



Macroscopic average 

Specific examples:  

•  Ensemble-average 
 

 Pc : probability of finding the system in the configuration c of the ensemble 
  Fc: value of the function in this configuration. 
 
 
•  Spatial average  

 Pa(r) : weight function  
 
•  Wave-vector truncation 

 Pa(q): cut-off for the high wave-vector components  

F
a
(λ) =

c

∑ P
c
F
c
(λ)

F
a
(r) = dr '∫ P

a
(r - r')F(r')

F
a
(q) = P

a
(q)F

a
(q)



Macroscopic average 

Notations 

Microscopic Dielectric Tensor 

The problem of finding the macroscopic dielectric tensor is to  
decouple Da and Df , by finding a relationship between Df and  
Ef to get  

Note: we suppose that we know the full dielectric tensor 

F = Fa +Ff →
Fa

Ff
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Macroscopic average 

Infinite crystals 
Functions having the crystal symmetries V(r+ R)=V(r), where R is any vector  
of the Bravais lattice, can be represented by the Fourier series 
 

It can be also written as 

where  
 
is a periodic function, with respect to the Bravais lattice. 
Varies strongly even if the original wave is a long wave and nearly 
constant within each cell  (contains all the G-harmonics of the field). 
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Macroscopic average 

Infinite crystals  
Spatial average over a cell of the periodic part 
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The macroscopic average corresponds to the G=0 component. 
⇔ Τruncation that eliminates all wave vectors outside the first Brillouin zone 

   (wave-vector truncation) 
Macroscopic quantities have all their G components equal to 0,  
except the G=0 component. 

→ Satisfies the two criteria previously defined 



Macroscopic average 

•  If the external applied field is not macroscopic, this averaging procedure 
 for the response function of the material has no meaning.  

Exemples:  X-ray spectroscopy (very short wavelength) 
  EEL Spectroscopy with atomic resolution 
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Macroscopic average 

A simple example: the longitudinal case 
All the fields can be expressed in terms of potentials (E=-∇V) 

Vext is a macroscopic quantity : 0),(),( Gextext qVGqV δωω =+
!!

This is not the case for ),( ωGqVtot
!!

+

Macroscopic average of Vext :  
),(),(),'(),(),( 00'0

'

ωωεωωεω qVqGqVqqV tottotG
G

ext
!!!

≠+=∑
The average of the product is not the product of the averages  

V
ext
(

r,ω) = d


r '∫ ε(

r,

r ',ω)V

tot
(

r ',ω)The longitudinal dielectric  

function is defined as 
Vext (

q +

G,ω) = ε(


q +

G,

q +

G ',ω)Vtot (


q +

G ',ω)

G '

∑

(Real space) 

(Reciprocal space) 



Macroscopic average 

A simple example: the longitudinal case 
We have also ),'(),(),( 1

'
'

ωωεω GqVqGqV extGG
G

tot +=+ −∑
!!!

Macroscopic average of Vtot :  

where is ε-1
GG’the inverse dielectric function : 

'
1
'''

''
'' ),(),( GGGG

G
GG qq δωεωε =−∑

!!

Vext is macroscopic ⇒	
 ),(),(),( 1
0 ωωεω qVqGqV extGtot
!!! −=+

),(),(),( 1
00 ωωεω qVqqV exttot
!! −=



Macroscopic average 

Summary 
•  We have defined microscopic and macroscopic fields  
•  Microscopic quantities have to be averaged to be compared to experiments  
• The dielectric function has  
   - a microscopic expression (related to quantum mechanics) 
   - a macroscopic expression (classical scheme - Maxwell's equations) 
• We have defined a procedure 
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Dielectric tensor for cubic symmetries 

Longitudinal fields Transverse fields 

∇×

E(

r ) = 0 0)( =× kEk

!!!
or 0)(. =∇ rE !

!!
0)(. =kEk

!!!
or 

E(k) propagates along k E(k) propagates perpendicular to k 

Examples:  
•  plasmon oscillations 
•  sceening 
•  electron energy loss 

Examples:  
•  photons 
•  optical properties of solids 

Some definitions: )()( kErE
!!!!

↔ (Fourier transform) 

crystalsforwith Gqk
!!!

+=
(q is in the first Brillouin zone and G is  
a reciprocical lattice vector) 

Useful definitions 



Dielectric tensor for cubic symmetries 

Transverse-longitudinal decomposition: 
Any vector field can be split into longitudinal and transverse components 


E =

E

L
+

E
T with


∇×

E

L
= 0 and


∇.

E
T
= 0

Macroscopic dielectric tensor 

The relation D(q,ω) = εM(q,ω) Etot(q,ω) can be written in terms  
of the longitudinal and transverse components 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
T
tot

L
tot

TT
M

TL
M

LT
M

LL
M

T

L

E
E

D
D

εε

εε


E

L
(

k ) = k̂ k̂.


E(

k )



 and k̂ =


k

k

(In real space, the relations are nonlocal) 



Dielectric tensor for cubic symmetries 

Question: 
How can we make the link between 

•  the microscopic dielectric tensor 
 
 
 
 
•  the macroscopic dielectric tensor 
 

),'(),',(),(
'

ωωεω GqEGqGqGqD tot
G

!!!!!!"!!!
+++=+ ∑

),(),(),( ωωεω qEqqD totM
!!"!!

=

Microscopic  
components  
of D and Etot 

Macroscopic  
components  
of D and Etot 



Dielectric tensor for cubic symmetries 

No symmetry Cubic symmetry with q→0 


ε
M
(

q,ω) =

ε
M

LL ε
M

LT

ε
M

TL ε
M

TT













 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= TT

M

LL
M

M q ε

ε
ωε

0
0

),(!"

This holds only for macroscopic quantities 

•  A longitudinal perturbation induces  
a longitudinal response only. 
 
•  A transverse perturbation induces  
a transverse response only. 
 
• Independent of the direction of q 

A longitudinal (transverse)  
perturbation induces longitudinal  
and transverse responses. 

The microscopic dielectric tensor has off-diagonal elements        and  ε LT εTL



Cubic symmetries with q→0  

Longitudinal dielectric function 

where χρρ(q,ω) is the density-density response function (TDDFT), 
defined as 

εM
LL (!q,ω) = lim

q→0

1

1+ 4π
q2

χρρ (
!q,ω)

),(),(),( ωωχωρ ρρ qVqq extind
!!!

=

Transverse dielectric function lim
q→0

εM
TT (!q,ω) = lim

q→0
εM
LL (!q,ω)

Dielectric tensor 

The tensor is diagonal and contains only one quantity  εM
LL (!q,ω)

depends on the direcion of  q



Cubic symmetries with q≠0  

Longitudinal dielectric function 

One can show that the relation  ε
M

LL
(

q,ω) =

1

1+
4π

q
2
χρρ (

q,ω)

Transverse dielectric function ),(),( ωεωε qq LL
M

TT
M

!!
≠

holds also when 

We have also  0),(0),( ≠≠ ωεωε qq LT
M

TL
M

!!

These quantities are much more complicated  
and need further approximation to be computed 
 (in principles they cannot be expressed in terms of TDDFT). 

depends on  

q ≠ 0 

q



Cubic symmetries 

Summary 
•  We have defined the longitudinal and transverse components  
  of the dielectric tensor.  
•  In the long wavelength limit q→0 ,only one quantity is needed (optical isotropy) 
 

• For q≠0, only εM
LL has a simple expression in terms of the response function. 

),(41

1lim)()(
2

0
ωχ

π
ωεωε

ρρ qq
q
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M
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Cubic symmetries 
Some references 
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Non-cubic symmetries 

Properties of the macroscopic quantities 
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Non-cubic symmetries 

Dielectric tensor - General case  

But one can show that the relation : 
holds also for the non-cubic symmetries. 
 


ε
M
(

q,ω) =1+ 4π


α(

q,

q,ω) 1+ 4πq̂


α(

q,

q,ω)q̂

1− 4πα LL
(

q,

q,ω)
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Quasipolarisability α :	
 ),'(),',(),(
'

ωωαω GqEGqGqGqj pert
G
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!!!!!!!"!!!
+++=+ ∑

and we have ),,(1),,( 2 ωχωα ρρ qq
q

qqLL !!!!
−= Longitudinal-longitudinal  

dielectric function 
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Non-cubic symmetries q→0 
Main general result concerning εM : 

The limit q→0 does not depend on the direction of q  
⇒ We can define εM(ω) as  

Depending on the symmetry of the system, one can define the  
3 principal axis, if they exist,  (n1, n2,n3) defining a frame  
in which εM(ω) is diagonal 


ε
M
(ω)

E
tot
(ω) = ε

i
(ω)

E
tot
(ω)

εi (ω) can be calculated as a longitudinal dielectric function ),()( ωεωε i
LL
Mi n!=

ε
M
(ω) =


q→0

lim ε
M
(

q,ω)

εM is an analytic function of q

is not analytic in the general case ε
M

LL

If        is parallel to one of these axis ni 
 


E
tot



Non-cubic symmetries q→0 

If q→ 0, the fields do not propagate 

The distinction between longitudinal and transverse is not meaningful  

The only important direction is the direction of the electric field 

Symmetries 
•  Cubic 
•  Hexagonal 
•  Orthorombic 

•  Monoclinic 
•  Triclinic 

Existence of the principal frame ? εM is symmetric but complex … 
No general answer 
Use of geometrical arguments 

The optical axis are given  
by the symmetry 

The number of symmetry is 
 too low to get 3 optical axis 



Shorter wavelength q≠0 

Alternative: 
⎥
⎦

⎤
⎢
⎣

⎡

−
++=

),,(41
),,(ˆˆ41),,(41),(
ωπα

ωα
πωαπωε

qq
qqqqqqq LLM !!
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),'(),',(),(
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ωωαω GqEGqGqGqj pert
G
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We can use  

where  

The induced current can be evaluated through the  
(Time-Dependent)-Density-Current Functional Theory (TD-DCFT) 



Which quantities do we need?  

Electron Energy Loss Spectroscopy: − Im
1

ε(

q,ω)









V
ext
(

q,ω) = ε(


q,ω)V

tot
(

q,ω)

In that case,  ε(

q,ω) = ε

M

LL
(

q,ω)

Is this correct? The perturbation is longitudinal. 
What about the transverse response? 

One can show that  

E
T
(

q,ω) =

ω 2

c
2
q
2


D

T
(

q,ω) and

ω 2

c
2
q
2
≈
v
2

c
2

In the nonrelativistic approximation, the transverse fields are negligible  
and the LL component of the dielectric tensor describes the energy  

loss of charged particles 

with 
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ü The key quantity is the dielectric tensor. 
 
ü Relation between microscopic and macroscopic fields. 
 
ü For cubic crystals, the longitudinal dielectric function εM(ω) defines entirely  
   the optical response in the long wavelength limit (q→0). 
 
ü For non-cubic crystals, the dielectric functions calculated along the principal  
   axis can be used to define entirely the optical response in the long 
   wavelength limit. 

ü For non-vanishing momentum, the situation is not so simple: εM
LL

 (q,ω) only  
   can  be defined in a simple way. 

Summary 


