The Photoemission beamline: What can we do?

- 1. Bandstructure calculations: quasiparticles
- 2. The spectral function beyond bandstructure
- 3. Adding cross sections
- 4. More realistic transition probabilities

Photoemission Beamline

Home ETSF Groups Jobs Links Contact Us

Search

- About the ETSF
- Beamlines
 - Optics
 - Energy Loss
 Spectroscopy
 - Quantum Transport
 - Time Resolved Spectroscopy
 - Photoemission
 Spectroscopy
 - Scientific Highlights
 - The Photoelectric effect
 - X-Ray Spectroscopy
 - Vibrational

Home » Beamlines

Photoemission Spectroscopy

Photoemission Spectroscopy (also known as Photoelectron Spectroscopy, PES) probes the energy levels of electrons, or more in general, the nature of chemical bonding and electron motion in a substance. PES is based on the *Photoelectric Effect*, which means that when light impinging on a surface is absorbed it induces the emission of electrons. Together with the related Auger spectroscopy, the PES technique is commonly referred as Electron Spectroscopy for Chemical Analysis (ESCA) and was pioneered by Swedish physicist Kai Siegbahn.

http://www.etsf.eu/beamlines/photoemission_spectroscopy

Photoemission Beamline

Beamline Coordinator

Claudio Verdozzi, Lund University, Lund, Sweden Claudio.Verdozzi@teorfys.lu.se

What

- Reliable quasiparticle energies and band-gaps.
- Core and valence photoemission, angle resolved photoemission, thermal effects and electron-phonon coupling.
- Photoemission beyond the sudden approximation, lifetimes of electrons and holes, dependence of spectra on photon energy, spectral functions.
- Auger spectra.

Photoemission Beamline

Where

Metals, semiconductors, molecules, surfaces, nanosystems, including e.g. transition metals and their alloys, transition-metal oxides, graphite, etc.

How

Density functional theory.

Many-body techniques: GW, T-matrix-approximation.

Codes

Mainly:

Photoemission

Additional charge

Relaxation – Screening - Correlation

Quasiparticles

W screened Coulomb potential

 $W(r_1, r_2, \omega) = \mathcal{E}^{-1}(r_1, r_3, \omega) v(r_3, r_2)$

 $W(r_{1},r_{2},\omega) = \mathcal{E}^{-1}(r_{1},r_{3},\omega)v(r_{3},r_{2})$

Standard G₀W₀ band structure

Kohn-Sham equation (DFT):

$$H_0(r)\varphi_{\rm KS}(r) + V_{xc}(r)\varphi_{\rm KS}(r) = \epsilon_{\rm KS}\varphi_{\rm KS}(r)$$

Quasiparticle equation (MBPT):

$$H_0(r)\phi_{\rm QP}(r) + \int dr' \ \Sigma(r, r', \omega = E_{\rm QP}) \ \phi_{\rm QP}(r') = E_{\rm QP} \ \phi_{\rm QP}(r)$$

Quasiparticle energies = 1^{st} order perturbative corrections

$$E_{\rm QP} - \epsilon_{\rm KS} = \langle \varphi_{\rm KS} | \Sigma - V_{xc} | \varphi_{\rm KS} \rangle$$

See: M. Hybersten and S.G. Louie, PRB 34 (1986); R.W. Godby, M Schlüter and L.J. Sham, PRB 37 (1988)

Standard G₀W₀ band structure

From: van Schilfgaarde et al., PRL 96 (2006)

Is VO₂ strongly correlated ?

VO₂: double phase transition

Mechanism? Role of electronic correlation?

Photoemission spectra

From: Koethe *et al*. PRL 97 (2006)

From: Eguchi et al. PRB 78 (2008)

Similar result in Suga et al., New J. Phys. 11 (2009)

The insulator: standard G₀W₀

Beyond standard G₀W₀

Kohn-Sham equation (DFT):

$$H_0(r)\varphi_{\rm KS}(r) + V_{xc}(r)\varphi_{\rm KS}(r) = \epsilon_{\rm KS}\varphi_{\rm KS}(r)$$

Quasiparticle equation (MBPT):

$$H_0(r)\phi_{\rm QP}(r) + \int dr' \ \Sigma(r, r', \omega = E_{\rm QP}) \ \phi_{\rm QP}(r') = E_{\rm QP} \ \phi_{\rm QP}(r)$$

Quasiparticle energies = 1^{st} order perturbative corrections

$$E_{\rm QP} - \epsilon_{\rm KS} = \langle \varphi_{\rm KS} | \Sigma - V_{xc} | \varphi_{\rm KS} \rangle$$

See: M. Hybersten and S.G. Louie, PRB 34 (1986); R.W. Godby, M Schlüter and L.J. Sham, PRB 37 (1988)

Beyond standard G₀W₀

- DFT with EXX,... (e.g. Rinke et al. 2005)
- hybrid functionals (e.g. Fuchs et al. 2006)
- LDA+U (e.g. Jiang *et al.* 2009)
- effective quasiparticle Hamiltonians:
 - COHSEX approximation (Hedin 1965, Bruneval 2005)
 - GWscQP scheme (Faleev *et al.* 2004)
 - Löwdin procedure (Sakuma et al. 2009)

For VO₂ see: M. Gatti, F. Bruneval, V. Olevano, L. Reining, PRL 99 (2007); R. Sakuma, T. Miyake, F. Aryasetiawan, PRB 78 (2008)

From: van Schilfgaarde et al., PRL 96 (2006)

GW Quasiparticle DOS

M. Gatti, F. Bruneval, V. Olevano, L. Reining, PRL 99 (2007)

GW Quasiparticle DOS

M. Gatti, F. Bruneval, V. Olevano, L. Reining, PRL 99 (2007)

Photoemission

Satellites in GW:

structures in $W(\omega) = \varepsilon^{-1}(\omega)v$

Quasiparticles and satellites

Additional charge

Relaxation – Screening - Correlation

VO₂: electron energy loss

Exp.: Abe et al. Jpn. J. Appl. Phys (1997)

VO₂: electron energy loss

Exp.: Abe et al. Jpn. J. Appl. Phys (1997)

The metal: spectral function

Beyond GW: cumulant expansion

Silicon

Kheifets, Sashin, Vos, Weigold, Aryasetiawan, PRB 68 (2003)

Beyond GW: cumulant expansion

Exp. F. Sirotti (Soleil) - Theo. M. Guzzo (Ecole Polytechnique) - 2010

Beyond GW: T matrix

6 eV satellite in Ni: 2-hole bound state

Springer, Aryasetiawan, Karlsson, PRL 80, 2389 (1998)

Photoemission spectra

From: Koethe *et al*. PRL 97 (2006)

From: Eguchi et al. PRB 78 (2008)

Similar result in Suga et al., New J. Phys. 11 (2009)

Photoemission spectra

From: Koethe *et al*. PRL 97 (2006)

From: Eguchi et al. PRB 78 (2008)

Similar result in Suga et al., New J. Phys. 11 (2009)

Identification of the peak: QP DOS

GW QP DOS weighted with cross sections from Scofield and Yeh-Lindau

Identification of the peak: QP DOS

See also: E. Papalazarou, M. Gatti, et al., PRB 80 (2009).

Beyond QP: GW spectral function

Beyond QP: GW spectral function

VO₂: electron energy loss

see also Exp.: Abe et al. Jpn. J. Appl. Phys (1997)

Beyond QP: GW spectral function

More on cross sections

-6

-4

-2

-6

-2

-2 0

0

-2

0

0

-4

More on cross sections

$$J_E(\omega) = \sum_{if} |M_{if}|^2 \delta(\epsilon_f - \epsilon_i - E) \,\delta(\epsilon_f - \omega).$$

E = photon energy; ω = photoelectron energy; ε_{i} , ε_{f} = initial, final states

E. Papalazarou et al, PRB 80 (2009)

The Photoemission beamline: What can we do?

- 1. Bandstructure calculations: quasiparticles
- 2. The spectral function beyond bandstructure
- 3. Adding cross sections
- 4. More realistic transition probabilities
- See: http://www.etsf.eu/beamlines/photoemission_spectroscopy

