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Preface

Understanding properties of materials by theory and calculations involves two aspects
that both require theoretical efforts: the general description of a given property on one
side, and the materials-specific considerations on the other side. Of course, depending
on the property and the material one wants to look at, different descriptions for the
same object are pertinent. In the present thesis we are interested in describing a class of
materials which is atomically thin. This suggests that the most pertinent description is at
the atomic level. Here we focus on borophene: this refers to a family of experimental and
theoretical two-dimensional (2D) materials constituted of a single atomic species: boron.
Thus, among the multiple polymorphs that have been predicted and synthesized, the only
difference is the atomic arrangement of atoms. Still, different polymorphs show different
properties.

The most obvious question is then: how does the atomic structure affect the prop-
erties of borophene? This is the fundamental question of our work. We address it by
distinguishing between what are the properties which are common for the material and
what properties are specific for the polymorphs. We perform this study in two steps:
First, to determine how the atomic structure affects the electronic structure, and then to
determine how the electronic structure affects the properties. In particular, we focus on
the dielectric properties: these have a clear connection with the electronic system, and
can also be related to experimental measurements.

In this work we deal mostly with two concepts: the electronic structure of differ-
ent borophene polymorphs, and the electronic polarizability. The latter is constructed
from the electronic structure. With the electronic structure we explore and answer dif-
ferent questions: 1) what is common in the electronic structure of different borophene
polymorphs?, 2) what is different?, and 3) how can the electronic structure of certain
polymorphs be tuned?

Moreover, with the polarizability (and the electronic structure) we characterize pri-
marily optical absorption. In our discussion a central topic is borophene as transparent
conductor. Thus, the main questions in this regard are two: 1) how does borophene be-
comes transparent?, and 2) how can we tune transparency in this material? We discuss
simple theoretical rules which can be useful for engineering borophene as a transparent
conductor.

Finally, we deal with a last point concerning the static response. We discuss it in the
context of nesting of the Fermi surface, which is, for example, of interest for supercon-
ductivity applications, and also to understand structural instabilities. Here we highlight
to the possibility of using the electronic polarizability for the discussion of structural in-
stabilities, which go beyond a mere search for nesting. The static response, despite being
largely used in different contexts, for example as ingredient in many-body perturbation
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theory, is a computationally challenging quantity. In this work we develop a method
that allows us to approximate the static response in an efficient manner: as an explicit
functional of the single-particle one-body reduced density matrix.
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Chapter 1

Borophene

1.1 A large family of structures

Two-dimensional materials are of interest for innumerable applications: plasmonics, trans-
parent conductors, superconductivity and energy storage, among others [1–7]. Conse-
quently, different families of materials have emerged: these go from perovskites [8], tran-
sition metal dichalcogenides (TMDs) [9], and graphene and related materials [10–12], to
a much less studied family: the ones constituted by boron-only 2D structures, called
“borophene”, in analogy to graphene [13]. However, contrary to graphene which refers
only to the well known carbon-made hexagonal structure (with sp2 bonds and a pz or-
bital), borophene refers to many theoretical and/or experimentally found polymorphs [14],
which appear as a consequence of one electron difference in the boron atom with respect
to carbon1, frustrating the perfect sp2 + pz configuration of the graphene structure [15].

Several theoretical studies of borophene can be found in the literature, and we can
classify them in two groups: 1) those which focus on finding stable polymorphs, mainly
based on formation energies and phonon spectra calculations [14, 16–18]; 2) works which
focus on the fundamental studies of specific properties of certain polymorphs and their
possible applications: see for example Refs. [19–23] for borophene in superconductiviy,
supercapacitance [24], hydrogen storage [25,26], plamonics [27–29], and transparent con-
ductors [30, 31]. However, despite the interest in this material only few highly studied
polymorphs have been synthesized: the first realization of a borophene monolayer was
achieved by Mannix et. al., in 2015, obtaining the triangular buckled structure known as
δ6 on top of a silver substrate [32] (Fig. 1.1). After this, other polymorphs were synthe-
sized by different research groups on top of metallic substrates: β12 and χ3 (synthesized
in 2015) [33], δ3 (2018) [34], and the more recent α′-Bilayer (2022) [35] (Fig. 1.1). Only
two structures, β12 and χ3 (and intermediate phases), have been reported experimentally
in their free-standing form (2019) [36].

We put special emphasis on the structures from Refs. [32–36], as they contain only few
atoms per unit cell and therefore can be used (and have been used) to perform numerical
studies of the properties borophene exhibits, but it is worth mentioning that more (and
more complex) structures have been synthesized in the last years: superstructures with
line defects [37], concentric superlattices [38], large bilayers [39], and even hydrogenated
structures [40]. The latter (hydrogenation of borophenes) gives birth to a subfamily of
materials known as “borophanes”, which shows polymorphism similar to borophene [40],
and which has recently been predicted to show semimetallicity and superconductivity
[41]. This subfamily is its own world and it will not be further addressed in this work.

1The boron atom has 5 electrons: 2 are considered as core electrons (thus not expected to interact in
the chemistry of borophene), and 3 as valence.
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1.2. A common parent structure 3

Figure 1.1: Atomic structure and scanning tunneling microscopy (STM) images of borophene δ6, δ3, β12
and α′-Bilayer (in that order). The STM topography images have been adapted from Refs. [32–35], and
the shaded regions in the atomic structures correspond to the unit cells in-plane of the polymorphs.

Figure 1.2: Model borophene structures, each vertex in the figures correspond to an atomic position.
BT and δ3 (top row) can be used as parent structures of other allotropes upon the creation of holes
(empty hexagons in white) and the addition of atoms (filled hexagons in green). Both mechanisms can
be used conceptually to construct the children structures (lower row) from BT or δ3. Moreover, in an
sp2 bonding configuration in-plane (like graphene), δ3 is electron-deficient, while the BT lattice has an
excess of electrons, thus the children structures can be seen as a competition of the two lattices, where
the balance is achieved for the α structure [45].

Some relevant references concerning atomic structures, synthesis, mechanic and electronic
properties can be found in Refs. [40–44].

1.2 A common parent structure

In Fig. 1.1 we show the atomic structure of borophene δ6, δ3, β12 and α′-Bilayer together
with the scanning tunneling microscopy images adapted from Refs. [32–35]. Already with
these polymorphs we can see that some similarities exist between flat monolayers: for
instance, δ3 and β12 can be described from a common model structure: a periodic array
of hexagonal building units in which every vertex describes an atomic position in-plane
(see δ3 in Fig. 1.2). This model structure is equivalent to δ3, and we can see a similar
hexagonal pattern in β12 with the difference that some of the hexagons are filled with a
boron atom in the center (Fig. 1.2). This visual comparison between δ3 and β12 allows
us to think of δ3 as a “template” for β12, thus we will refer to this conceptual δ3 model
structure as “parent structure” of β12.



1.2. A common parent structure 4

We can recreate different polymorphs from this parent structure (δ3), for example the
α monolayer (Fig. 1.2). However, the empty hexagonal building units are not always
compatible with the periodicity of more complex structures (see for example δ5 and α1 in
Fig. 1.2). Hence, it is more convenient to construct a different parent structure, one in
which all hexagons are filled by a boron atom in the center: we will refer to this model
system as “BT” (see in Fig. 1.2). Thus, using BT , we can define a second conceptual
mechanism to build other polymorphs: that is, removing atoms from the full hexagonal
mesh. The latter is a more convenient choice than the honeycomb structure: we can easily
relate it to different polymorphs simply by removing atoms without facing a problem with
the commensurability of the different unit cells. Thus, we can say that BT is a parent
structure for the other polymorphs.

Using BT as parent structure for other polymorphs is of course a simplification,
nonetheless it helps us to make the conceptual association between different allotropes
to a common parent structure (BT ). Two assumption come with this model: 1) BT is
perfectly regular (all bond distances are equal), and planar, and 2) the creation of vacan-
cies from BT does not affect the bond lengths of the ‘BT + hole’ structure. Under these
assumptions, BT acts a parent structure for other polymorphs, and thus, it is convenient
to define its atomic density (number of boron atoms, NBT

, per unit area, A) as:

ρNBT
=
BT

A
(1.1)

Creating holes in the model system to construct other polymorphs results in a different

atomic density,
NBP

A
, in the children structures, thus it is convenient to write a quantity

that characterizes this difference. For instance, an extended practice [14–17, 45–49] is to
define this change with respect to BT as (Eq. 1.2):

ηP =
ρBT
− ρBP

ρBT

=
NBT

−NBP

NBT

(1.2)

where ηP describes the number of holes per unit area that exist in a given polymorph
P , with respect to the triangular mesh . Taking as an example δ3, from Fig. 1.1, in its
primitive unit cell one has Nδ3 = 2, while for the same unit cell NBT

= 3, and therefore
ηδ3 = 1/3. Moreover, we can use this parameter ηP to express the density of valence
electrons in a given polymorph as (Eq. 1.3):

ρPel = 3ρNBT
(1− ηP ) (1.3)

Using ηP as a basic descriptor of the different polymorphs is a common practice, and
some general observations in borophene have been linked to this parameter: perhaps
the most notorious examples are the prediction of polymorphism, with the lowest-energy
configurations occurring at η = 1/9, 1/8 and 2/15 [14], and the discussion of the electronic
stability of borophene, deriving in a concept known as “self-doping” [45,46].

1.2.1 The self-doping picture

The search of stable borophene polymorphs is an area of intense research, and the problem
is tackled from different perspectives: phonon spectra [16,18,50,50,51], formation energies
[14, 17, 48, 52], temperature-dependent dynamics [18, 48, 49] and electronic stability [45,
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Figure 1.3: Projected density of states (PDOS) over atomic orbitals, averaged over the atoms in the
unit cell (computational detail in Section 3): the three plots are in the same XY scale, and the shaded
regions correspond to the bonding states in-plane according to Ref. [45]. From the bondind/antibonding
definition of the states it follows that: 1) in δ3 not all bonding states are filled hence it is electron-
deficient, 2) BT has an excess of electrons thus overfilling the in-plane states, and 3) the “optimal” filling
of bonding states occurs at η = 1/9: all in-plane bonding states are full, and the antibonding ones are
empty). Moreover, we highlight the resemblance between the PDOS of BT and δ3 supporting the self-
doping picture [46], but also the difference with respect to α′ showing the limitations of using a rigid
electronic structure.

47]. Among the latter, we highlight the works of Tang and Ismail-Beigi, describing the
lowest-energy electronic configurations of the polymorphs in terms of the bonding and
antibonding character of the bonds [45, 46]: in these studies ηP plays a key-role as an
indicator of stability.

From Ref. [45], bonding and antibonding in-plane states of different polymorphs are
distinguished from each other by a gap in the computed density of states (see Fig. 1.3).
And from this distinction, it follows that: 1) polymorphs which bonding states are not
fully occupied are electron deficient (not all bonding states are full), hence electronically
unstable (δ3 in Fig. 1.3). 2) the more electronically stable configuration is that in which
the bonding states in-plane are fully occupied, while the in-plane antibonding ones are
empty (η = 1/9 in Fig. 1.3). 3) Polymorphs with η < 1/9 have an excess of electrons with
respect to the optimal ηα configuration (BT in Fig. 1.3).

In these observations η served as an indicator of the number of electrons for the
optimal filling of the states (and its divergence from it). Moreover, it suggested that upon
the addition or removal of atoms, the bonding and antibonding states in the electronic
structure are not changed, but just filled differently according to the number of electrons
in the system. This behavior of the electronic structure was later described also by Tang
and Ismail-Beigi, in a concept known as “self-doping”2 [46]: in this, it is proposed to look
at borophene in terms of a rigid electronic structure, in which the change of the atomic
structure can be simply linked to the change of the atomic density ρBP

, and therefore

2The self-doping picture was discussed based on two factors: 1) the occupation of the states, and 2)
the wave functions of specific states resembling each other even among different structures.
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the vacancy ratio, ηP , which in turn can be directly linked to the number of electrons
(Eq. 1.3) and hence the filling of the states. In other words, the electronic structure of
different polymorphs can be estimated by using a fixed borophene electronic structure
(for example of the parent structure BT ), and the vacancy ratio η.

The doping mechanism is discussed on the basis of two sublattices in competition (δ3

and BT ): one being electron-deficient (δ3), and the other one acting as electron donor
(BT ) [45]. Therefore with the use of a fixed electronic structure, and the combination of
the two sublattices, self-doping provides a simple rule to relate the atomic structure with
the electronic structure. Along the same line, Zhang et al. observed that the occupation
of bonding and antibonding π orbitals (out-of-plane) can also play a role in the stability
of the polymorphs [52], and more recently Qiu and co-workers [47] noted that the self-
doping mechanism might occur from π-to-σ orbitals upon the creation of vacancies in the
BT structure.

It is worth pointing out that, from multiple and extensive first-principles calcula-
tions [14,17,48,49,52], η has been shown to be good indicator of the theoretical stability
of borophene polymorphs (finding the lowest-energy configurations), and thus it has been
largely adopted in the literature. However, the electronic occupation of the states of a
freestanding isolated layer is not enough to describe the stability of a system in all circum-
stances. For instance, in Ref. [45] it is suggested that the electron deficient polymorph δ3

might stabilize upon the obtention of electrons from a different source. This was later in-
vestigated by Zhu et. al. [51], by doping the δ3 monolayer with 1 electron per boron atom
(reaching η = 1/9). Still, imaginary frequencies in its phonon spectrum were found3 [51].

In this work we will use η and the self-doping mechanism as a starting point for
studying the electronic structure of different polymorphs. Look, for example, at the
atomic orbital projected density of states (PDOS) of borophene δ3 and BT in Fig. 1.3:
despite being different polymorphs, the PDOS look very similar, hence suggesting the
similarity of their electronic structures (in line with the self-doping picture). Regarding
α′ in Fig. 1.3, there are some obvious differences with respect to δ3 and BT : overall one
finds, a more complicated shape of the PDOS, and in particular a gap opening between
the in-plane bonding states. We will address in Section 5 the differences of the electronic
structure of the different polymorphs. For now, let us highlight that even in this more
complicated situation there is a rigid shift of the electronic structure with respect to the
Fermi energy: we can see this from the in-plane bonding states and also from the filling
of the out-of-plane states. Hereafter we describe the set of polymorphs selected for this
work.

1.3 Selected polymorphs

The selection of polymorphs for this study was based on their structural differences and
relevance for the theoretical and experimental results found in literature. We included
five flat monolayers: BT , δ3, β12, α1 and δ5, two buckled monolayers: α′ and δ6, and
the AA-stacked α′-bilayer, from Refs. [16, 18, 27, 32, 35, 53] (atomic structures in Figure
1.4). Below, we describe the unit cells of the selected polymorphs as-used in this work:

3The stabilization of δ3 on a metallic substrate is not due to the electron transfer, but to the hy-
bridization with the substrate [51].
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Figure 1.4: Atomic structure of borophene polymorphs. We selected a set of borophene polymorphs for
our study, including flat, buckled and bilayer structures from Refs. [16,18,27,32,35,53]. As all polymorphs
are two-dimensional we present their projection in the xy-plane, accompanied by a projection of the
structure in the yz-plane. In our calculations we have used the unit cells highlighted in brown, unless
otherwise specified.

symmetry, atomic positions (Wyckoff sites), lattice parameters, number of atoms per unit
cell and vacancy ratio.

BT: This structure is a model system, flat and regular, and we use it only for comparison
with other structures. However, since this polymorph buckles upon the full optimization of
the atomic positions (leading to the δ6 structure), there are no optimal lattice parameters
nor atomic positions, although some constrained calculations can be found in the literature
[45,50]. We built this structure by imposing equal bond lengths choosing between the two
bond distances from δ6. We found found no significant difference among the two choices
(see Appendix IV). Thus, for comparison, we simply selected the structure with bond
distances 1.68 Å.

δ3: The graphene-like structure belongs to the group of the synthesized borophene poly-
morphs [34]. It contains two-atoms per unit cell in a hexagonal system with symmetry
P6/mmm at the positions 2c. The atomic positions and lattice parameters were obtained
from Ref. [53]. In the latter reference the in-plane parameters are a = b = 2.91 Å,
calculated with DFT-GGA using the Perdew-Wang exchange-correlation functional [54].

β12: This is a popular polymorph which has been successfully synthesized and used
as toy model due to its high stability and promising properties regarding transparent
conductors, superconductivity and plasmonics, among others [19, 27, 31, 33, 36, 55]. It
contains five atoms per unit cell in a structure with symmetry Pmmm, with positions 2m,
2o and 1e, the latter being in the center of the hexagonal building unit. The in-plane
dimensions for this structure were obtained from the calculations of Ref. [27]: a = 2.92
and b = 5.06 Å. These parameters are in good agreement with the theoretical (GGA-PBE)
and experimental parameters of β12 on Ag(111) from Refs. [33,55].
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α1: The theoretical research concerning the structural features of borophene, mainly
based on formation energies and phonons, lead to a structure known as α1. This structure
has not gained much attention within the community. Nonetheless, recently it has been
predicted to appear under low boron concentration and low temperatures [49]. This
polymorph contains 14 atoms per unit cell in a structure with Cmmm symmetry, localized
at the positions 4i, 8p and 2b. The lattice parameters (a = 5.84, b = 6.74 AA) and atomic
positions were obtained from Ref. [16] via DFT calculations using the exchange-correlation
functionals PBE and PBE0 [56].

δ5: Different structures have emerged as a result of the search for stable polymorphs
with specific properties, among which we highlight the case of δ5, the only polymorph
here presented without any six-coordinated atom, and which has been mentioned in the
literature for showing a Dirac cone at K as in graphene, although above the Fermi energy
[17, 18]. The unit cell has symmetry P6/m with lattice parameters a = b = 4.47 Å, with
six atoms at the sites 6j, as obtained from Ref. [18] via DFT-GGA calculations using the
PBE exchange-correlation functional.

α′: In terms of formation energy and electronic stability one of the most investigated
structures is the planar α polymorph [14, 15, 45, 57]. This was, however, found to be
unstable and it was predicted to show a slight distortion out-of-plane. The resulting
polymorph was called α′ [16]. The unit cell of this polymorph has symmetry P-3m1,
with 8 atoms at the positions 6g and 2d. For this case, the atomic positions and lattice
parameters were optimized in the present work using DFT-GGA (PBE) [58], and the
lattice parameters were found to be a = b = 5.058 Å, with an off-plane displacement of
the two atoms by ±0.085 Å. The optimized structure can be compared with Refs. [16,59].
In Ref. [16], a = 5.046 and b = 5.044 Å (DFT-PBE) with buckling distance of ±0.17 Å
(atomic positions optimized with PBE0 on top of the PBE-optimized lattice parameter
structure), while in Ref. [59] a = b = 5.10 Å with the off-plane displacement of ±0.14
Å (DFT-PBE). Despite the differences in the atomic structure the electronic structure is
almost unaffected (see Appendix IV).

δ6: Starting from the hypothetical flat triangular structure BT , the flat configuration
has been shown to be thermodynamically unstable, and it has been predicted to buckle,
leading to the so-called δ6 polymorph [50, 60]. This system has symmetry Pmmn and
contains two atoms per unit cell at positions 2a. The lattice parameters, in-plane, are
a = 1.62 and b = 2.87 Å, with a buckling height of 0.80 Å. These were obtained from
Ref. [32] (DFT-PBE) and are in good agreement with the experimental results on Ag(111)
in the same reference.

α′-Bilayer: We selected this polymorph for easy comparison with the α′-monolayer.
The unit cell has symmetry P6/mmm, and the atoms are at the positions 12n and 4h.
For this polymorph we optimized the lattice parameters and atomic positions (for more
computational details see Section 3), and we obtained a = b = 5.70 Å, with distances
among the bottom layer and top layer of 1.80 and 3.10 Å, for the inner and outer atoms of
the bilayer, in excellent agreement with the reference structure from Ref. [35] calculated
with DFT-PBE, and their experimental measurements on Ag(111).
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η Symmetry

Lattice
parameters

(Å)
Wyckoff sites

(atomic positions)
a b

BT — P6/mmm 1.68 1.68 1a (0.00, 0.00, 0.00)
δ3

1/3 P6/mmm 2.91 2.91 2c (0.33, 0.66, 0.00)

β12
1/6 Pmmm 2.92 5.06

2m (0.00, 0.83, 0.00)
2o (0.50, 0.33, 0.00)
1e (0.00, 0.50, 0.00)

α1
1/8 Cmmm 5.84 6.67

4i (0.00, 0.75, 0.00)
8p (0.75, 0.12, 0.00)
2b (0.50, 0.00, 0.00)

δ5
1/7 P6/m 4.47 4.47 6j (0.57, 0.72, 0.00)

α′ 1/9 P-3m1 5.06 5.06
6g (0.33, 0.00, 0.00)

2d (0.33, 0.66,−0.00)∗

δ6 — Pmmn 1.62 2.87 2a (0.25, 0.25,−0.02)

α′-Bil. — P6/mmm 5.70 5.70
12n (0.33, 0.00,−0.07)
4h (0.33, 0.66,−0.04)

Table 1.1: Structural parameters of selected borophene polymorphs. Here we have summarized the
structural features of the different borophene polymorphs as used in this work. The atomic positions are
reported in reduced coordinates (rounded to two decimals), with c = 19.05 Å (c = 21.17 Å exceptionally
for the α′-Bilayer). ∗α′ has a slight out-of-plane distortion of −0.0045c.

We summarize the atomic structure of the different polymorphs as used in this work in
Table 1.1: vacancy ratio with respect to BT , symmetry, lattice parameters, and Wyckoff
sites (atomic positions).

It is worth remarking that the literature in the search of stable polymorphs is extensive
and goes far beyond the structures here presented: for instance, we can find other bilayer
structures [39,61], borophene with large holes [48,49], intermixed superstructures [37,38],
polymorphs with Dirac cones [18, 62] and Kagome lattices [63], among others. What is
interesting to notice is that in this large family of polymorphs there is only a single atomic
species: boron. Thus, all the different properties that the multiple polymorphs exhibit
can be related just to the different atomic structure. Therefore, borophene constitutes an
excellent playground to study how the atomic structure determines the properties of the
system.

In this work we focus in this fundamental question: the relation between the atomic
structure with the electronic structure (Section 5), and hence with the properties of dif-
ferent borophene polymorphs. In particular, we focus on the dielectric properties, and
more specifically optical absorption and loss function (Section 6), and the static response
(Section 7).



Chapter 2

Theoretical methods

2.1 Density functional theory

2.1.1 The many-body problem

The description of matter and its interactions require (in principle) from a full description
of the problem: all internal and external forces. However, depending on the scale at which
a given phenomena of our interest occurs we could address the problem differently, for
instance, if we delimit the problem only to field popularly-known as “condensed matter”,
i. e., only the interaction between nuclei and electrons, then we would be talking of the
so-called “many-body problem”. This is the case of our interest, and we relate the solution
of the many-body problem to the determination of the eigenstates and eigenfunctions of
the Schrödinger equation ĤMBΨ({r,R}) = EΨ({r,R}), with

ĤMB = −
∑
I

~2

2MI

∇2
RI
−
∑
i

~2

2me

∇2
ri

+
1

2

∑
IJ(J 6=I)

ZIZJe
2

|RJ −RJ |
+

1

2

∑
ij(j 6=i)

e2

|ri − rj|

−
∑
iI

ZIe
2

|RI − ri|

(2.1)

where me (MI) and ri (Ri) are the mass and position of the electron i (ion I), respectively,
and ZI the atomic number of ion I.

The solution of Eq. 2.1 is, however, impossible for complex systems (both analytically
and numerically) and we are forced to approximate the Hamiltonian in some way or
another. A simple, but very powerful approximation is the Born-Oppenheimer (BO)
approximation [64], which takes into account the fact that electronic transitions occur at
much larger energy scales than the vibrational ones, such that for a given solution of the
many-body problem, in presence of nuclear motion, the electronic states are unaffected1.
This implies that upon nuclear motion the electron-nucleus term in Eq. 2.1 must remain
unchanged, and thus it is common to think about the this approximation as the electrons
instantaneously adjusting to the nuclear positions. An equally valid interpretation is that,
for a given electronic structure, the nuclei remains immobile (“frozen”), and therefore we
can neglect the contribution of the kinetic energy of the nuclei (first term in the right side
of Eq. 2.1) [65].

1This is not true for metals as there can be electronic transition at almost zero energy. However in
metals the electron-hole pairs carry low oscillator strength and thus they they have a very small effect
on the lattice (Migdal’s theorem) [65,66].

10
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The Born-Oppenheimer approximation allows us to write the many-body wave func-
tion in the form (Eq. 2.2):

Ψ({r,R}) = ψ({r; R})Θ(R) (2.2)

composed of a nuclear Θ(R), and an electronic wave function ψ({r; R}) that depends
parametrically on the atomic positions.

Another important approximation that help us simplify the many-body problem is
to treat the atomic nuclei as classical particles, which is justified from the mass of the
nuclei being large and thus their wave function highly localized [65, 67]. This latter
approximation results in a very convenient description of the nuclei as point charges, such
that the nucleus-nucleus term in Eq. 2.1 can then be treated by simple electrostatics,
and its contribution to the energy computed apart; this known as the Madelung energy
[68]. Making use of both the Born-Oppenheimer approximation and considering the
atomic nuclei as classical particles we can simplify the complete many-body problem to
the electronic many-body problem Ĥel

MBψ({r; R}) = Eelψ({r; R}) with

Ĥel
MB = −1

2

∑
i

∇2
ri

+
1

2

∑
ij(j 6=i)

1

|ri − rj|
−
∑
iI

ZI
|RI − ri|

(2.3)

Unfortunately these two approximations are not enough to tackle the many-body
problem in condensed matter (as in Eq. 2.3), and this is simply because in an usual
situation there are more electrons than nuclei concerned in the problem. Thus, even with
the approximations described above we still need to account for all interactions between
electrons. Naturally, a different description of the problem is necessary. For the following
section (for historical reasons) we will rename the terms in Eq. 2.3, respectively, as Ĥel

MB =
T̂+ Ûee + V̂, where T̂ and Ûee are the kinetic and potential energy operators describing
the electron-electron interactions, and V̂ is the potential energy operator describing the
interaction between the classical nuclei and the electrons (commonly referred to as the
external potential).

2.1.2 The electron density as a variable

In 1964 W. Kohn and P. Hohenberg proposed a different perspective into this problem for
the ground state of a system: instead of solving the many-body Shrödinger equation which
necessarily requires from the explicit knowledge of the many-body wave-function, they
proposed to look at the electron density [69]. Thus, they developed a different formulation
of the many-body problem based solely in this single three-dimensional quantity. They
proved what is famously known today as “the Hohenberg and Kohn theorems”:

• The external potential V (to within a constant) is a unique functional of the ground
state electron density n0, and hence, the ground state many-body wave function Ψ0

is also a unique functional of n0.

Ψ0 = Ψ0[n0] (2.4)

• Since the ground state many-body wave function is a unique functional of the ground
state electron density, also the kinetic term (T ) and the electron-electron potential
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(Uee) of Eq. 2.3, and thus F [n0] (Eq. 2.5) is a universal functional of the ground
state electron density,

F [n0] = T [n0] + Uee[n0] (2.5)

These theorems have an important implication: that, upon the selection of the correct
(ground state) electron density, we can obtain the ground state total energy for a given
external potential. Thus, we can search for the ground state simply via minimization of
the energy by varying the electron density in Eq. 2.6,

E[n] = F [n] +

∫
V (r)n(r)dr (2.6)

The latter equation (Eq. 2.6) works as an analogy to the electronic many-body Schödinger
equation, but instead of needing from the many-body wave function it requires from the
(much simpler) electronic density. In principle this is a huge simplification of the problem,
but in practice the challenge of the density functional formalism resides on the fact that
we do not know the many-body electron density, and even if we knew it, we do not know
the universal functional F [n] [65, 69], so the computability of the ground state and its
observables remains unsolved. The complication relies on the many-body nature of the
problem, in particular in a property known as correlation.

Correlation and exchange

In the density functional theory, as with the many-body Schrödinger equation, we have
exponentially increasing number of electron-electron interactions with respect to the num-
ber of electrons in the system (given by Ûee) [70]. For simplicity we can think about this
problem in classical terms in which all electrons are point charges: we observe from Eq.
2.3 that the dynamics of one of these single particles depends on each of all the others to a
lower or higher extent, depending on the distance to each of them by simple electrostatics.
This is in fact a first approximation to the problem, and it is known in the literature as
the Hartree potential (Eq. 2.7) [65,67,70,71]:

V̂H =
1

2

∑
ij(j 6=i)

n(ri)n(rj)

|ri − rj|
(2.7)

This approximation assumes that the electric field of each of the charges remains static
regardless of the multiple interactions, however in a more realistic situation the electric
field “adjusts” to the medium, or in other words, it is screened by the medium [65, 69].
This screening effect modifies not only the potential energy, but it also has an effect on
the kinetic term. We refer to this phenomenon inherent of the many-body problem as
correlation2.

In the density functional theory a term that appears together with correlation is ex-
change, but contrary to correlation, exchange cannot be understood classically. Exchange
is an effect of Pauli’s exclusion principle that states that that two fermions cannot be in

2Correlation in the electronic many-body problem is field of intense research for which multiple
approximations exist, from the simpler ones neglecting correlation (Hartree or Hartree-Fock), to the
more refined ones such as GW [71–73].
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the same state. Thus, two electrons cannot share the same position unless they have dif-
ferent spin; this translates as their many-body wave function being antisymmetric [72,74],
and as it occurred with correlation, as a correction of the energy which can also be related
to a screening effect [65,75].

2.1.3 The Kohn-Sham equations

Addressing the complexity of the many-body problem in the density functional formalism,
in 1965 W. Kohn and L. Sham proposed to rewrite the universal functional F [n] into
a more practical form, mapping the real system of interacting electrons onto a set of
fictitious non-interacting particles giving the same ground state density as its interacting
counterpart (ρ = n0) [76]. Using this fictitious system of non-interacting particles φi(r),
we can write the density of the non-interacting system ρ =

∑
i |φ(r)i|2, and with it a new

set of equations known as the Kohn-Sham (KS) equations (Eq. 2.8) [65,67]:[
−1

2
∇2

ri
+ VKS([ρ], r)

]
φi(r) = εiφi(r) (2.8)

with

VKS([ρ], r) = V (r) + VH([ρ], r) + Vxc([ρ], r) (2.9)

These equations are very similar to the original electronic many-body problem (Eq. 2.3),
but there are some subtleties to highlight: 1) the Hartree potential (unscreened by def-
inition, Eq. 2.7) plays the main role as the potential energy, 2) the kinetic energy of a
non-interacting particle does not depend on all the intricate interactions with other parti-
cles and it is therefore simply Ti = 1

2
〈φi| ∇2 |φi〉 and 3) as these two latter quantities are

not enough to recover the full information of the many-body system, a new extra term
appears accounting for the missing terms: exchange and correlation, Vxc. We can write
the universal functional in terms of the non-interacting system as (Eq. 2.10):

F [ρ] = T [ρ] + UH [ρ] + Exc[ρ] (2.10)

Comparing Equations 2.5 and 2.10 we can notice the simplification of the problem from
the interacting case to the non-interacting one, but we can also point out the complexity of
the exchange-correlation functional as it is becomes “all what we cannot easily define from
the electronic many-body problem”. We know however that upon the correct choice of
the density we can find the ground state variationally [69], thus we can use the variational
principle to write the exchange-correlation potential as Vxc([ρ], r) = δExc[ρ]/δn(r)

3.

The search for the ground state

Using Eqs. 2.8 and 2.9 (and under the supposition that we know an approximation for Vxc)
we still face a challenge: we need to find the ground state density of the non-interacting
system such that it is equal (or approximate) to the real many-body density (ρ = n0). In
practice this is solved self-consistently in a cycle known as the self-consistent field (SCF):

3This of course goes back to the main challenge: knowing the true many-body density, however
different approximation for Vxc have proven to reproduce properties of the real systems such as the local
density approximation [76,77], or the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional [58]
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• From a given external potential V (r), we take an initial guess to construct a test
non-interacting density, ρin.

• We use this density to build the KS potential (Eq. 2.9) and solve the KS equations
(Eq. 2.8). This step gives us a set of non-interacting orbitals φi(r), from which we
construct a new density ρout.

• Then we compare ρin with ρout, and if they are equal (or approximate within a given
threshold) the cycle is stopped as convergence has been reached, and thus we have
obtained the ground state related to the given external potential.

• If the ground state was not reached then ρout is modified and re-fed into the SCF
cycle.

• The cycle stops when the ground state is reached.

The SCF cycle takes advantage of the Hohenberg and Kohn theorems and the Kohn-
Sham equations to through an iterative process find the ground state non-interacting
density that resembles the most the many-body electron density. This cycle is the basis
of any density functional theory calculation, and there is a lot of work in the literature
on, for example, how to make efficient modifications of the output density before being
reintroduced into the KS potential [78–80]. These details however lie out of the scope of
this work, and in particular out of the scope of this section in which we aimed to intro-
duce the basic concepts of the density functional theory. Some relevant approximations
concerning the computational details related to our DFT calculations are discussed in
Section 3.

2.2 Time-dependent density functional theory

Density functional theory (DFT) is a time-independent theory that describes the ground
state of a system, but sometimes we are interested on the evolution of the system due to a
time-dependent perturbation, for example to describe electronic excitations, for which we
need to reformulate the problem. Naively, we could think of solving the time-dependent

Schrödinger equation Ĥ({r}, t)Ψ({r}, t) = i~
∂

∂t
Ψ({r}, t), but we would immediately en-

counter the same problem as before due to electronic correlation. Naturally, we would
have to recast the problem in a similar form as within the DFT. The time-dependent
extension of the DFT was formulated by Runge and Gross in 1984, and it is known today
as the Time-dependent density functional theory (TDDFT). Similarly to the DFT, the
TDDFT relies on two theorems:

• Two densities n(r, t) and n′(r, t) evolving from the same initial state Ψ({r}, t = 0),
due to two different time-dependent external potentials V (r, t) and V ′(r, t) (Taylor
expandable) eventually differ if the potentials differ from more of a time-dependent-
only constant c(t). As in the first HK theorem, this implies a one-to-one correspon-
dence between the potentials and the electronic densities. Therefore, in the TDDFT
as in the DFT, the potentials are unique functionals of the density, and so the wave
functions are also unique functionals of the density.
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Ψ(t) = Ψ([n], t) (2.11)

• For a time-dependent external potential the total energy is not conserved as it is also
a time-dependent quantity, thus the use of the variational principle to find the wave
functions as in the DFT is excluded. However, in analogy to the energy, we can use
the quantum-mechanical action functional (Eq. 2.12), which derivative to respect to
a many-body wave function vanishes at the true many-body wave function. Thus,
we can solve the time-dependent problem by finding stationary solutions of the
action.

A[n] =

∫ t1

0

dt 〈Ψ[n]| i ∂
∂t
− Ĥ(t) |Ψ[n]〉 (2.12)

2.2.1 Time-dependent Kohn-Sham equations

Similarly as for DFT from the Hohenberg-Kohn theorems, TDDFT from Runge-Gross
requires to be approximated, as we do not know nor the initial many-body electron density
nor the functionals. Thus, it is convenient to recast the many-body problem onto a set of
non-interacting particles yielding the density ρ(t) =

∑
i |φi(r, t)|2, and consequently the

time-dependent version of the Kohn-Sham equations, analogously to Eqs. 2.8 and 2.9:[
−1

2
∇2

ri
+ VKS([ρ], r, t)

]
φi(r, t) = i

∂

∂t
φi(r, t) (2.13)

with

VKS([ρ], r, t) = V (r, t) + VH([ρ], r, t) + Vxc([ρ], r, t) (2.14)

The time-dependent Kohn-Sham potential (Eq. 2.14) contains similar ingredients as
the time-independent case: the time-evolution of the Hartree, exchange-correlation and
external potentials. It is worth pointing out that the external potential, in the static case,
we had associated it only with the electron-ion interaction (Eq. 2.3), but now besides the
electron-ion interaction, it must also contain the external time-dependent perturbation
for which the TDDFT formalism was built. Moreover, this external perturbation we
would like to link it to a certain physical phenomena, and in that regard it results more
convenient to resort to linear response theory.

2.2.2 Linear response theory

We now assume that the external time-dependent perturbation is small, such that we
can approximate the time-evolution of the density perturbatively: to first order n(r, t) ≈
n(r)+ δn(r, t), where the first term in the right describes the static density (ground state,
n0), and the second one the “induced density” by means of a time-dependent perturbation
δV (r′, t′). Moreover, in linear response we can write the induced density using a response
function χ describing the response of the electronic system to the external time-dependent
perturbation. The linear-response induced density reads (Eq. 2.15):



2.2. Time-dependent density functional theory 16

δn(r, t) =

∫
dt′
∫

dr′χ(r, r′, t− t′)δV (r′, t′) (2.15)

and characterizes the change of the electronic density at point r and at time t, by a
perturbation at point r′ and time t′. This function aims to describe how the complete
density “reacts” to an external perturbation, and because the reaction cannot occur prior
to the perturbation, then t > t′ (this condition is known as causality: χ = 0 for t < t′).

Notice that in Eq. 2.15 we are still using the notation of the many-body electron
density that we have used in the DFT and TDDFT (n). This is because, besides the
linear approximation, we have not defined χ(r, r′, t − t′), meaning that, in principle, we
can make any approximation for this quantity (or use the many-body response function
if we knew it) and use it in Eq. 2.15 to compute the linear density response. χ is
known as the polarizability, and particularly in the TDDFT framework as the density-
density response function. Although we are free to choose any approximation, it results
convenient to use the Kohn-Sham scheme of non-interacting particles, in which the KS
density-density response function in real-space and frequency domain4 reads:

χKS(r, r′, ω) =
∑
nn′

(fn′ − fn)φ∗n′(r)φn(r)φ∗n(r′)φn′(r′)

ω − (εn − εn′) + iη
(2.16)

where n and n′ are electronic states, and fn the electronic occupation number of state n.
η is just an infinitesimal number such that the χKS does not diverges when ω = (εn−εn′),
i. e., for an electronic excitation between states n and n′. We refer to the Kohn-Sham
density-density response function in Eq. 2.16 as χKS, but it is also common to find it
referred to as χ0, and as the “independent-particles” approximation (IPA).

The Dyson equation

Ideally, we would like to go beyond the IPA, for example, to describe collective electronic
phenomena such as plasmons. For this, we can look back to Eq. 2.16: the linear response
induced density should be the same regardless of the level of approximation we use, thus
we can write δnMB(r, t) = δnKS(r, t), with both induced densities taking the form of Eq.
2.16, one many-body and the other one Kohn-Sham. Taking the integrands of Eq. 2.16
many-body and Kohn-Sham, we can write an expression for χMB:

χMB = χKS
δV

δV
= χKS

δV + δVH + δVxc
δV

= χKS

(
1 +

δVH
δV

+
δVxc
δV

) (2.17)

and, because VH and Vxc are functionals of the density, we can use the chain rule δVH
δV

=
δVH
δn

δn
δV

, from where we can recognize δn
δV

= χMB, so:

χMB = χKS +

(
δVH
δn

+
δVxc
δn

)
χMB (2.18)

4We prefer frequency domain over time domain because it gives us an straightforward representation
of the polarizability in a pole structure (see Eq. 2.16) that we can relate to electronic excitations.
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moreover, the functional derivative of the Hartree potential with respect to the density
is simply the coulomb potential. Thus, we can write a final expression that allow us to
obtain χMB in terms of the Kohn-Sham response function, the Coulomb potential and
the functional derivative of the exchange-correlation potential with respect to the density
(we replace this term by fxc), all in the form of a Dyson equation (Eq. 2.19):

χMB = χKS + (Vc + fxc)χMB (2.19)

Equation 2.19 is the protagonist of the linear response theory, and simply by looking at
its ingredients we can realize that it is analogous to the Kohn-Sham equations in the DFT
and TDDFT: in Eq. 2.19, as in the Kohn-Sham equations, we have separated the terms
that we know how to calculate from the one term that we do not know: the one containing
the information on exchange and correlation. In the linear response theory this term is
referred to as the “exchange-correlation kernel”. As for Vxc, different approximations
exist in the literature for fxc, and the selection of either one or another relies on the
spectroscopic quantities that one wants to describe. In the following section we introduce
two relevant quantities used this work: absorption and electron energy loss.

2.3 The polarizability as a main ingredient

The advantage of computing the response with Eq. 2.19 lies in the starting point: the
Kohn-Sham polarizability, which is straightforwardly defined from the one-particle or-
bitals φi(r) and their eigenvalues εi (Eq. 2.16). Thus, in principle, we can track the
response of a system all the way down to the wave functions, or to the mixing of the
orbitals with the Coulomb potential and the exchange correlation kernel. Therefore, we
can understand and approximate the different macroscopic quantities that can be mea-
sured experimentally, for example, absorbance, reflectance and loss function. Below, we
define the main quantities used in this work, for simplicity for extended systems, in the
reciprocal space. We start by rewriting Eq. 2.16:

χ0
GG′(q, ω) =

∑
nn′

(fn′ − fn)
ρ̃n′n(q + G)ρ̃∗n′n(q + G′)

ω − (εn − εn′) + iη
(2.20)

with ρ̃n′n(q + G) ≡ 〈n′,k′| ei(q+G)·r |n,k〉. As we said earlier, Eq. 2.20 quantifies the
response of a system to a time-dependent perturbation: Eq. 2.20 is the one-particle
(Kohn-Sham) case, but the fully interacting polarizability can be obtained by solving
the Dyson equation with the Coulomb potential and the exchange-correlation kernel (Eq.
2.19).

Upon the response of the system the latter induces a change in the potential which
can be measured in linear response (similarly to Eq. 2.15) with the inverse microscopic
dielectric function, ε−1. This change in the total potential is also referred to as “screening”
[81], and it relates to the fully interacting polarizability as:

ε−1
GG′(q, ω) = δGG′ + vcχGG′(q, ω) (2.21)

with vc the Coulomb potential, vc = 4π
|q+G|2 . Eq. 2.21 is tightly linked to experimental

quantities via the macroscopic dielectric function εM [82, 83]:
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εM(ω) = lim
q→0

1[
ε−1
GG′(q, ω)

]
G=G′=0

(2.22)

from where optical absorption and the loss function can be obtained as:

Absorption = Im (εM)

Loss function = −Im

(
1

εM

)
(2.23)

Moreover, it is convenient to relate these quantities to an auxiliary polarizability, χ̄ [70,
84,85]:

εM(q, ω) = 1− vcχ̄G=G′=0(q, ω) (2.24)

which satisfies the Dyson equation χ̄ = χ0 +χ0v̄χ̄, where the auxiliary Coulomb potential
v̄ = vc for G 6= 0, and v̄ = 0 for G = 0. In this sense, we can obtain an expression for εM
with and without the mixing of the off-diagonal elements of the polarizability, i. e., with
and without crystal local field effects. For instance, for G = 0, then v̄ = 0 and χ̄ = χ0,
consequently:

εNLFM (q, ω) = 1− vcχ0
00(q, ω) (2.25)

We use Eq. 2.25 to compute properties without crystal local fields: this equation has
a clear connection the Kohn-Sham polarizability, and its imaginary part with optical
absorption (Eq. 2.23): we refer to this as the independent particles approximation (IPA).

On the other hand the local field effects are evaluated implicitly through the solu-
tion of the Dyson equation (Eq. 2.19), for example in the context of the random phase
approximation (RPA) with fxc = 0:

χ = χ0 + χ0vcχ (2.26)

and with the definition of the macroscopic dielectric function via Eq. 2.22 and 2.23. This
different choice with respect to Eq. 2.24 is preferred because it inherently contains the
long range term of the Coulomb potential (G = 0), which is of importance for extended
systems [85,86].

In the context of absorption along this work we refer to “without local field effects”
to the IPA, hence Eq. 2.25, and “with local field effects” to the RPA with off-diagonal
elements (Eq. 2.21). Note however that on solving the Dyson equation for χ (Eq. 2.19)
we can also neglect the off-diagonal terms and include only the long range component:
this is interesting for testing purposes, to identify whether a given effect comes from an
specific element or another, in that case we refer to χNLF .

Experimental quantities in 2D systems

The equations presented above are formulated for periodic systems in the three spacial
directions, but in 2D systems we are interested only on periodic systems “in-plane” that
do not repeat out of plane as in a layered material. Nonetheless in practice it is common
to threat 2D materials in 3D periodic codes by simply increasing the distance between
layers far enough that they do not interact with each other (usually called the “supercell
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approach”). This is an standard practice and in general yields good results upon the
expense of large unit cells.

In terms of the optical properties however, in particular because of the long-range
component of the Coulomb potential, the “replicas” of the 2D system can give spurious
effects [87], and so different approaches have been developed that allow to threat sepa-
rately the in-plane and out-of-plane components [87,88]. Nonetheless, different treatments
yield differences in the out-of-plane response due to the ambiguity on the definition of
the out-of-plane dimension: this is referred to as the “Lmat problem” in Ref. [88]; how-
ever, this is simply a consequence of the model, and thus the difference should not be
reflected in experimental quantities. In that regard, in the supercell approach, absorbance
is usually reported as: Absorbance = ω

c
LmatImε‖ with ω the energy of the photon, c the

speed of light, Lmat the out-of-plane dimension of the simulation supercell, and ε‖ the
in-plane component of the macroscopic dielectric function of an isotropic 2D system (see
for example Ref. [31,89]).

This ambiguity has been formally addressed in Refs. [88, 90], yielding the following
expressions for the reflectance and transmittance coefficients of 2D isotropic systems (from
Ref. [88]):

rpp =
i sin (κp)

[
1− 1/ε⊥ sin2(θ)− ε‖ cos2(θ)

]
2
√
ε‖

√
1−

[
1/ε⊥ sin2(θ)

]
cos (κp) cos(θ)− i sin (κp)

[
1− 1/ε⊥ sin2(θ) + ε‖ cos2(θ)

]
(2.27)

tpp =
2
√
ε‖

√
1−

[
1/ε⊥ sin2(θ)

]
cos(θ)

2
√
ε‖

√
1−

[
1/ε⊥ sin2(θ)

]
cos (κp) cos(θ)− i sin (κp)

[[
1− 1/ε⊥ sin2(θ)

]
+ ε‖ cos2(θ)

]
(2.28)

with

κp =
ω

c
Lmat

√
ε‖

√
1−

[
1/ε⊥ sin2(θ)

]
(2.29)

and where θ is the angle of the incident light beam with respect to the out-of-plane compo-
nent, and ε⊥ and ε⊥ the in-plane and out-of-plane component of the macroscopic dielectric
function (complex). Both, rpp and tpp are complex quantities, thus Reflectance = |rpp|2
and Transmittance = |tpp|2, moreover Absorbance is calculated indirectly as:

Absorbance = 1− |rpp|2 − |tpp|2 (2.30)

In this work we make the link between the absorption calculated by first principles
and the experimental quantities using Eqs. 2.25, 2.28, 2.29, 2.30 with θ = 0.



Chapter 3

Computational parameters

The exchange-correlation term The use of the electronic density as a variable does
not imply any approximation thus, DFT by itself is not an approximated method. How-
ever, there is no universal solution for the exchange and correlation term, and therefore
an approximation is required. The two mainly used are the Local Density Approxima-
tion (LDA) and the Generalized Gradient Approximation (GGA): in LDA the electron-
electron interaction is locally treated as in an homogeneous gas for each point of the
non-homogeneous electronic density of the system [91], while in GGA the variations of
the electronic density in the vicinity of the point are considered through the inclusion of
a gradient term [91].

Computational implementation Strictly speaking, DFT requires the integration of
its parameters over all the space. However, this is not an approach that can be done
computationally. Hence, due to the computational limitations, other approximations
need to be implemented. The main examples for crystalline solids are the use of atomic
pseudopotentials, the plane-wave cutoff energy and the sampling points of the Brillouin
zone.

Atomic pseudopotentials Conventionally, as only the electrons in the outer shells
participate actively in the bonding, the contribution of the electrons in inner shells can
be neglected (this is not true for all cases). Thus, it is possible to approximate the actual
atomic potentials by the so-called pseudopotentials, by just taking into account the outer
electrons and adding them to a global potential created by the nucleus and the “frozen
core” electrons.

There are different ways to approximate an atomic potential, being the use of norm-
conserving pseudopotentials one of the most popular methods. In this, despite the mod-
ification of the potential at the core, the valence states of the pseudopotential are equal
to the valence states of the atom, and the norm for each of these states is set to be equal
to those of the real case [91].

Sampling of the Brillouin Zone In a system where the atoms are periodically
arranged it is possible to take advantage of this concept to solve the many body-problem.
To do so, the electronic wave function, ψnk(r), can be related to a periodic wave function
unk(r) that takes into account the periodicity of the system, R, such that the condition
unk(r) = unk(r +R) is satisfied. This is achieved by adopting ψnk(r) in the Block-form
(Eq. 3.1),

20
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ψnk(r) =
1√
NΩ0

unk(r)eik·r (3.1)

where N stands for number of units cells in the crystal (within the simulation cell), and
Ω0 for their volume. Even under this definition, the calculation of the electronic density,
for example, requires an infinite set of calculations over the complete BZ (Eq. 3.2, where
s stands for the occupation of the states and the factor 2π is only due to the convention
of the reciprocal space):

n(r) =
1

(2π)3

∫
BZ

s
∑
n

u?nk(r)unk(r)dk (3.2)

However this integration is not computationally feasible, thus different approximations
have been proposed considering only a limited number of k-points in the BZ. For example,
the method proposed by Monkhorst and Pack, to efficiently capture the information in a
l × l × l k-points mesh [91].

Cutoff Energy From Eq. 3.1 it is clear that, for a periodic solid, only the description
within the BZ is necessary, and outer points are recovered due to the phase-factor eik·r.
This definition is specially convenient for the use of plane waves as the basis set, as this
behavior naturally arises from the Bloch theorem. In this context, it is possible to rewrite
Eq. 3.1 as a expansion of plane waves (Eq. 3.3):

ψnk(r) =
1√
NΩ0

∑
G

unk(G)ei(k+G)·r (3.3)

where G defines the periodicity of the system in the reciprocal space. In practical terms,
the cutoff energy approximation consists in cutting of Eq. 3.3 to a limited number of plane
waves according to a given parameter Ecut, such that 1

2
|k+G| ≤ Ecut. This parameter is

the so-called cutoff energy.

3.1 Computational details

We have used the atomic structures for polymorphs δ6, δ3, β12, α1 and δ5 as obtained
from Refs. [16, 18, 27, 32, 35, 53] without any further optimization. Instead, as we aimed
to compare α′-Monolayer with α′-Bilayer, these polymorphs were obtained through full
relaxation of the atomic positions (within a threshold on the maximal force of 0.01 eV/Å),
starting out from the bilayer structure in Ref. [35]. The relaxation of the structures was
performed using the optimized norm-conserving Vandervilt pseudopotentials (ONCVPSP
3.2.3.1), evaluating the exchange-correlation potential within the generalized gradient
approximation (GGA) using the Perdew-Burke-Ernherhof (PBE) functional [58,92]. The
model system BT has been manually created taking a bond distance of 1.68 Å, based
on the shortest bond in δ6. The symmetry of the polymorphs was determined using
FINDSYM [93,94].
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No. Bands No. Plane waves No. G’s No. k-points
δ6 50 997 59 361
δ3 50 2981 99 6144
β12 60 1995 99 4096
δ5 70 1497 69 1296
α1 80 2995 97 480
α′ 60 1477 60 3456

Bil. 70 1995 99 3456

Table 3.1: Converged parameters for absorption spectra of borophene polymorphs, as implemented in
DP. The number of G’s refers to the calculation of local fields under the RPA approximation.

Other calculations (ground state and band structure) were performed employing the
Hartwigsen-Goedecker-Hutter (HGH) pseudopotential within the local density approxi-
mation (LDA) [76,95], finding minimal differences with respect to those of the GGA-PBE
(here only LDA results are included). In the framework of the DFT we have used the
Abinit package [69,91], and we have converged the ground state with respect to the total
energy within a threshold of 0.5 meV/atom. We have converged the interlayer vacuum
distance to 19.05 Å (21.17 Å exceptionally for α′-bilayer). For all polymorphs we have
used a cutoff energy of 75 Hartree (∼ 2041 eV) and the k-meshes for the self-consistent
calculation of the KS density for δ6, δ3, β12, α1, δ5, α′ and α′-bilayer are, respectively:
38×38×1, 40×40×1, 32×32×1, 28×28×1, 30×30×1, 34×34×1 and 40×40×1 [96].
All polymorphs here presented are metallic and we have used 0.01 Hartree to simulate
the electronic temperature.

The absorption spectra and static response were calculated by means of the TDDFT
with the DP code [97,98], within the independent-particles (IPA) and the random phase
approximations (RPA) [70]. We have converged the absorption spectra of each polymorph
up to 30 eV with respect to number of bands, plane waves to describe the wave functions,
sampling of the BZ, and reciprocal lattice vectors G to account for the crystal local fields.
Here we only show the results up to 15 eV, where the continuum-like behavior is already
more predominant. The converged parameters are summarized in Table 3.1. Similar
parameters were used for the calculation of the static response. Other computational
parameters used in this work for specific cases are mentioned in the text.
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Chapter 4

The confined 3D HEG

4.1 The self-doping picture and the HEG

We described in Section 1 the self-doping mechanism proposed in Ref. [46] to understand
the electronic structure of different borophene polymorphs from a rigid electronic struc-
ture. We illustrated this concept pointing out to the similarities between the projected
density of states (PDOS) of borophene δ3, α′ and BT in Fig. 1.3: in particular, the shift-
ing of the in-plane bonding states and the out-of-plane states with respect to the Fermi
Energy (see Fig. 1.3). However, it is evident that the electronic structures are not simply
shifted but that other changes occur, for example the opening of the gap between the
bonding states of α′. The latter is a limitation of self-doping and we will discuss it in
detail in Section 5.

For now, we want to profit from the self-doping idea, as it captures the information
of the position of the Fermi level with respect to the in-plane and out of plane states
(Fig. 1.3). However, from the differences of the electronic structures, we are left to an
ambiguous choice of the starting point: should we use the electronic structure of BT , δ3,
α′ or of other polymorph as the starting point?. In order to get rid of this ambiguity we
selected a universal model: the homogeneous electron gas (HEG)1.

Of course fundamental differences exist between the HEG and borophene. One of
them is the dimensionality: in borophene, in spite of being a so-called “two-dimensional”
material, the electron density (mostly localized in-plane) extends along the out-of-plane
direction exponentially decaying with the distance from the atomic plane, while for the
HEG the electron density is homogeneously distributed over the unit cell, formally de-
limited within one, two or three dimensions. Thus, there is no fundamental reason why
we should use either the 2D or 3D HEG for its comparison with with borophene. We
computed the band structure of the model system BT in its primitive unit cell, and
compare it with both, the 2D and the 3D HEG with the same number of electrons
nel

BT = nel
3DHEG = nel

2DHEG = 3 (Fig. 4.1): for the 2D case we used the unit cell
defined by the in-plane lattice parameters of BT (a = b = 1.68 Å), while for the 3D case
we used the same unit cell as for the BT calculation (a = b = 1.68, c = 19 Å).

For comparison with the BT band structure (calculated only in-plane along K →
Γ → M → K), we included in Fig. 4.1 only k’s in-plane. However, notice that the 3D
HEG is also dispersive out-of-plane: this explains the significantly lower position of the
Fermi energy with respect to the 2D HEG, as the states out-of-plane are also occupied.
Moreover, for the 3D HEG band structures in Fig. 4.1 we did not include G-vectors
out-of-plane: this point is relevant as the G’s out-of-plane fold back within the BZ and

1It should be noted that BT was compared to the HEG in a previous work [60], however this com-
parison was not further developed.
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Figure 4.1: (Left) Electronic structure of model system BT calculated with DFT. (Right) Homogeneous
electron gas band folded within the same BZ as for the BT calculation. For the HEG three Fermi energies
are shown: for the 2D case (same unit cell as the in-plane dimension of BT ), and for the 3D case (same
unit cell as the DFT calculation, c = 19 Å), and changing the out-of-plane dimension to c = 1.7 Å to fit
the Fermi energy of the 2D case.

thus different “replicas” of the band structure should appear in Fig. 4.1 for the 3D HEG.
In fact, in the selected energy window these replicas are only present for the 3D HEG
with c = 19 AA. For the case of the 3D HEG with c = 1.7 AA the replicas appear much
higher in energy.

Despite the fundamental differences, we highlight the qualitative resemblance between
the band structure of the borophene polymorph and the 2D HEG, in particular, the
relative position of the bands with respect to the Fermi energy (ε2DHEG

F ). The 3D HEG
fails to describe the relative position of the Fermi level, because of localization of the
density in-plane in the 2D monolayer, in contrast with the homogeneous electron density
distribution of the HEG. However, if we confine the 3D HEG in the out-of-plane direction,
in order to describe an isolated slab (as borophene within the supercell), it is possible to
displace the Fermi energy of the 3D HEG to a higher position: for instance, with c = 1.7 Å,
ε3DHEG
F = ε2DHEG

F .

4.2 A confined 3D model

We can take inspiration from the 3D HEG with c = 1.7 Å and its resemblance with the
2D HEG. Now we want to define a three-dimensional model that maintains the 2D HEG-
like behavior of the system in-plane, but also that includes the extension of the density
out-of-plane. We propose to split the Hamiltonian and wave functions of the problem,
and therefore the eigenvalues, into in-plane (‖) and out-of-plane (⊥) components as in
Eq. 4.1:

(Ĥ‖ + Ĥ⊥)φ‖(r‖)φ⊥(r⊥) = (ε‖ + ε⊥)φ‖(r‖)φ⊥(r⊥) (4.1)

Notice that from this separation of terms (Eq. 4.1) the problem in-plane is two-dimensional,
while the problem out-of-plane is one-dimensional. For the description of the problem
in-plane we select the 2D HEG. For the out-of-plane component we must make the ob-
servation from Fig. 4.1 that the dispersion of the second lowest band in BT (j = 2) is
parallel to the lowest band (j = 1) simply shifted upwards in energy. This in agreement
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with the sum of eigenvalues in Eq. 4.1, and so we can use a simple model from quantum
mechanics text books: a 1D “particle in a box” with eigenvalues:

ε⊥ =
π2j2

2c2
(4.2)

where j is the index of the state, and c the depth of the box.
In this way we can write the eigenvalues of Eq. 4.1, and hence the band structure of

the confined model (Box), in a similar form as:

εBox =
1

2

[
|k‖ −G‖|2 +

(
πj

c

)2
]

(4.3)

The Box model is not dispersive out-of-plane. It only contains k-vectors in plane, and
the out-of-plane components are simple “replicas” of the former. Moreover, notice that
in the Box model, the “particle in a box” part of the problem (Eq. 4.2) j = 0 yields the
unphysical result ε⊥ = 0 (and φ⊥(r⊥) = 0). Therefore j must take only integer numbers
j > 0. In the DFT-calculated band structure for BT (Fig. 4.1, left) we can recognize
two parabolic bands crossing crossing at Γ below the Fermi energy. Making the analogy
to the Box model of Eq. 4.3, these states correspond to j = 1 and j = 2. Thus, it is
appropriate to evaluate the Box model of Eq. 4.3 as two 2D HEG (for j = 1 and j = 2,
respectively) such that the total number of electrons in the box, nel, is nel = nj=1

el + nj=2
el .

In this form,

nel =
A

π

[
2εF −

5π2

2c2

]
(4.4)

where A is the area of the unit cell in-plane and c the depth of the box. Moreover, from
Eq. 4.4, the depth of the box in the Box model can be obtained as:

c =
π
√

5A√
4AεF − 2πnel

(4.5)

Eq. 4.5 yields the depth of the box for constructing the band structure using the Box
model of Eq. 4.3 as a function of the Fermi energy. However, it is also convenient to
construct the model based on the energy difference among the two states j = 1 and j = 2.
Then, using Eq. 4.2 we can define this energy difference as: εG̃⊥

= εj=2
⊥ − εj=1

⊥ = 3π2

2c2
so

that:

c = π

√
3

2εG̃⊥

(4.6)

We plotted in Fig. 4.2 the band structure of BT and the Box model fixing the energy
difference εG̃⊥

from the DFT calculation, and fixing the Fermi energy with the DFT-
calculated band width. Qualitatively, the band structures of Fig. 4.1 are comparable.
Hence, the Box model gives us a simple approximation of the electronic band structure
of BT provided that we know its band width or the difference in energy between j = 1
and j = 2.

We must emphasize the qualitative aspect of the Box model: while it gives a general
idea of the band structure, it fails to describe some details of the band structure. For
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Figure 4.2: BT electronic structure: DFT-calculated (left), Box model with fixed energy difference
between j = 1 and j = 2,εG̃⊥ (center), and Box model with fixed εF (right).

example, from Fig. 4.2, it is clear that it lacks the splitting of the bands at M (in Fig.
4.2 the lowest band along M→ K is doubly degenerated): this is a direct consequence of
using the 2D HEG to describe the in-plane part of the problem. Moreover, the Box model
also overestimates the dispersion of the bands, and consequently, the bands crossing at K
are not occupied while in BT they appear below the Fermi level.

4.2.1 The wave function and the density distribution

We have focused the discussion of the Box model only on the band structure (Eq. 4.3),
but it is interesting to look as well at the wave functions in Eq. 4.1: in-plane, the system
behaves as a 2D HEG, thus φ‖(r‖) = C‖e

i(k‖+G‖)·r‖ . Out of plane, the system adopts the
solutions of the particle in a box (C‖ and C⊥ are just normalization coefficients):

φ⊥(r⊥) = C⊥sin

(
πj|r⊥|
c

)
(4.7)

where the cases of j = 1 and j = 2 are of our particular interest, as they are the ones
playing a role in the density of BT (Fig. 4.2).

In the Box model the wave functions out-of-plane vanish outside the box walls. In
quantum mechanics text books the walls are described using an infinite potential; in
our model we can think about this confinement as an effect of the Coulomb potential
produced by the atomic plane2. Moreover, to preserve the symmetry of the potential
well, the atomic plane must be situated at mid-distance of the box depth, i. e., at c/2
(schematic representation in Fig. 4.3).

Positioning the atomic plane within the box gives another interesting interpretation,
this time regarding the wave functions (Eq. 4.7) and the density: |φj=1

⊥ |2 has its maximum
at c/2, that is, at the position of the atomic plane (in-plane). While φj=2

⊥ has a node at
c/2, and so |φj=2

⊥ |2 in-plane is zero, and the maxima of |φj=2
⊥ |2 occur out-of-plane at c/4 and

3c/4 (this is schematically represented in Fig. 4.3). Interestingly, φj=1
⊥ describes a state

mostly localized in-plane, while for φj=2
⊥ the density extends out-of-plane but vanishes

in-plane (like an atomic pz orbital). This interpretation of the states is in agreement with
the orbital-resolved electronic structure of BT shown in Fig. 4.3. Thus the Box model
not only gives an approximation to the electronic band structure of BT , but also to the
density distribution of the states.

2The Coulomb potential, vc, acts as a potential well with infinite effective walls near the atomic plane:
the bands described by Eq. 4.3 are bound states of vc.
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Figure 4.3: (Left) BT band structure projected onto atomic orbitals: the total charge is normalized so
that all bands have equal linewidth. (Right) Schematic representation of the position of the monolayer
within the box of depth c, and density distribution of the “particle in a box” eigenstates with j = 1 and
j = 2. In the model, as in the DFT calculation, we can identify the lowest state (j = 1) as in-plane and
the “replica” (j = 2) as out-of-plane.

4.2.2 Borophene polymorphs and the confined model

Let us look now to other polymorphs similarly to Fig. 4.2. For instance, the opposite
case of BT : δ3 (η = 1/3), and the intermediate non-hexagonal situation: β12 (η = 1/6).
Compared to the primitive unit cell of BT these structures are larger, and the folding
of the bands make it difficult to find j = 1 (in-plane) and j = 2 (out-of-plane) visually
in the same way as before. Nonetheless we can take advantage of the orbital-resolved
electronic structures to define εG̃⊥

as the energy difference between the lowest in-plane
state and the lowest pz state3. We plotted in Fig. 4.4 the DFT-calculated and the Box
model electronic structures of borophene δ3 and β12.

From Fig. 4.4 we can observe that the band structure of the Box model qualitatively
resemble the DFT-calculated band structure of borophene δ3 and β12 (particularly by
fixing εG̃⊥

). Thus, despite the “holes” in the atomic structure of these polymorphs (with
respect to BT ) we can still relate the band dispersion of the children structures to those
of the Box model.

Note that in borophene δ3 the choice of calculating c from εG̃⊥
(Eq. 4.6) or from the

band width (Eq. 4.5) has a strong impact on the relative position of the bands. This
occurs because this structure is the furthest from the 2D HEG + “particle in a box”
model. This is not surprising considering that δ3 is the structure with the most holes,
and hence the 2D HEG overestimates the density in-plane. Regardless of this difference,
fixing εG̃⊥

gives a good approximation to the position of the in-plane and out-of-plane
states within the electronic structure, as well as for the Fermi energy.

4.2.3 Limitations of the Box model

Using our confined 3D HEG model is a very computationally inexpensive idea that can
be used for understanding the electronic band structure of the different borophene poly-
morphs. However, it needs to be taken with caution, as despite the qualitative similarities
that exist with the DFT-calculated band structures, other characteristics might signifi-

3The lowest points of both bands are at Γ, so εG̃⊥ is the energy difference between the two bands at
this k-point.
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Figure 4.4: Normalized orbital-resolved electronic structure of borophene δ3 and β12, and band structures
calculated with the Box model at fixed εG̃⊥ (center), and band width (right). The states in gray in the
right column correspond to j > 2.

cantly differ. For example, let us look to the wave function of the lowest state j = 1 and
j = 2. In the DFT case the wave functions are written as a sum of plane waves:

φjk(r) =
∑
G

Cj
k(G)ei(k+G)·r (4.8)

while in the Box model for the description of the problem in-plane a single plane wave is
necessary (Gs):

φBox
k (r) =

∑
G

δ(G−Gs)e
i(k+G)r = ei(k+Gs)r (4.9)

Thus, the wave functions are not necessarily equivalent. However, if in the DFT-calculated
wave function (Eq. 4.8) exist a G-vector, Gs, such that |Cj

k(Gs)| >> |Cj
k(G)| for all the

other G’s, then we could approximate the plane waves wave function of that state as:

φjk(r) ≈ Cj
k(Gs)e

i(k+Gs)·r (4.10)

therefore, proportionally to Eq. 4.9.
In order to determine whether this behavior occurs in borophene at the level of the

wave function, we selected a simple case: BT along Γ→ M4, for which we obtained the KS
wave functions as a sum of plane waves (Eq. 4.8), and we computed |Cj

k(G)| for different
k’s, and G’s (Fig. 4.5): for both cases (j = 1 and j = 2), the G components out-of-plane

4We selected the path Γ → M here only for representation, but K → Γ follows the same trend: the
further from Γ, the less 2D HEG-like. In agreement with the same trend, along M→ K the 2D HEG-like
behavior of the wave function is completely lost, and different |Cjk(G)|’s share similar contributions as
the highest one.
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Figure 4.5: Plane waves wave function coefficients of borophene δ3 computed at different k-points: com-
ponents in-plane (left), and out-of-plane (right). Only for the components in-plane, near Γ and for j = 1
the wave function is HEG-like, that is, a coefficient |Cjk(G)| exists that is much larger than the other
coefficients.

(G⊥), require from more than one plane wave: this is simply due to the localization of
the electronic density near the atomic plane.

Only for the in-plane part (G‖), there is a major contribution of |Cj
k(G)| coming from

G = (0, 0, 0), but only for the lowest state (j = 1) and close to Γ. As we move away
from the zone-center this approximation breaks. Thus, despite the HEG-like dispersion
of the electronic bands of borophene, the Box model is not enough to capture the full
information of the system.

4.3 Conclusions

In this Section we showed that the electronic band structure of borophene BT resembles
the band structure of the 2D HEG within the same in-plane unit cell configuration. We
took advantage of this resemblance and developed a model based on the 2D HEG and the
1D “particle in a box” to better approximate the band structure of different borophene
polymorphs. Then, we showed that our model qualitatively describes the band structure of
borophene BT , δ3, and β12, and it distinguishes between in-plane and out-of-plane states.
Of course, the Box model is limited to a qualitative description of the band structure:
as we showed, it fails to describe more complex quantities like the DFT-calculated wave
functions.

The Box model gives an straightforward strategy to approximate the band structure
of borophene polymorphs without any expensive calculation. This can be useful, for
example, as a guide for understanding the electronic structures of large unit cells: the
Box model is independent of the atomic structure, thus provided that one knows the
vacancy ration η of a polymorph, and the energy difference εG̃⊥

(or the band width) it
is possible to approximate the folding of the bands of the polymorph in any unit cell
configuration.



Chapter 5

Electronic structures

In this chapter we aim to understand what is the role of the atomic structure on the
electronic structure of the different borophene polymorphs. These polymorphs have re-
peatedly been reported as metallic due to the multiple electronic bands crossing the
Fermi energy [16–18, 32–35, 45, 55]. As in the literature, we have obtained such behavior
in our calculations (Fig. 5.1), and overall we have found good agreement between our
results using the LDA and results reported in the literature and using different function-
als [16,18,21,27,32,33,35,51,99,100]. Only for α1, we have found a rigid shift of the band
structure (upwards) by 1 eV with respect to Ref. [16]. The origin of this discrepancy is
unclear as our calculations are consistent with the number of electrons and the electronic
temperature. We proceed with the discussion of the results only making use of our own
calculations.

In order to understand the changes of the electronic structure from polymorph to
polymorph we separated them into three different groups, each of them relative to a
conceptual “engineering mechanism” with respect to a parent structure: 1) via creation

of defects; either creating vacancies from BT (
◦→), or adding interstitial atoms into the

hexagonal sites of δ3 (
•→), 2) out-of-plane distortion (buckling,

∧→) as in α′ and δ6, and
3) the addition of a second layer on top of a monolayer (comparison between α′ and
α′-Bilayer).

5.1 Flat monolayers

5.1.1 Electronic structures in commensurable unit cells

We can relate all flat monolayers among themselves simply via addition or removal of
atoms from a common “parent” structure (see for example, Refs. [14,17,18,45,46,48,49]).
However, employing this engineering mechanism requires the adjustment of the unit cell,
leading to different primitive unit cells for different polymorphs. This change of the unit
cell upon the creation of defects causes the “periodic defects” not to have an intuitive
effect on the electronic structure of borophene. So, despite of the similar atomic building
units, the polymorphs are studied independently of each other. Regardless of the difficulty
comparing different polymorphs, some attempts have been made to understand them as a
group: for example with respect to symmetry [18], bond nature [47], and occupation of the
states [46]. The undeniable similarities among different results of different polymorphs
take us to investigate in-depth how some features of the polymorphs change with the
defects, and how others stay similar. We start from the electronic band structure.

We selected two representative cases: the creation of β12 upon the addition of atoms
into δ3, which we denote as (δ3

•−→ β12), and the creation of δ5 from the removal of atoms

31
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Figure 5.1: Brillouin zones (BZs) and electronic band structure of the borophene polymorphs selected
in this work. All the polymorphs here presented are metallic and our calculated band structure are in
good agreement with previously reported results [16, 18, 21, 27, 32, 33, 35, 51, 99, 100]. Referring to α1, of
symmetry Cmmm, the band structure is not computed along the high symmetry paths of the BZ, but
along a non-conventional path including the k-points used in Ref. [16] to facilitate comparison. We have
highlighted the two lowest states in the α′ structure to illustrate their similarity with the two sets of
bonding- and antibonding-like states of the α′-Bilayer.

from BT (BT
◦−→ δ5). In order to compare each pair in a clear manner, we propose to

build a supercell commensurable to both structures of the pair. With this choice it is
easy to observe the changes of the electronic structure from polymorph to polymorph.
However, depending on the parent and child structures, this comparison can easily grow
in complexity and hide features of the electronic structure due to the folding of the bands
into the Brillouin zone. For this reason we stick for the moment to the simple cases
(δ3

•−→ β12) and (BT
◦−→ δ5). Later on we will comment on more complex situations.

How to build commensurable unit cells?

There are different ways (not necessarily equivalent) in which we can construct the com-

mensurable unit cells. For instance, for our selected cases (δ3
•−→ β12) and (BT

◦−→ δ5),
we could create the two children structures (β12 and δ5) simply by removing atoms from
the model systems BT , or by adding atoms into δ6, but we could also start from the atomic
positions of β12 and δ5, and removing and adding atoms, respectively, to construct the
parent structures δ3 and BT . Both BT and δ3, as used in this work, are perfectly regular
with all their interatomic distances the same. However, in δ5 and β12 some distances are
longer than others, making the children and parent structures inequivalent among the two
different choices of commensurable cells.

To show that the selection of the commensurable unit cell does not have any important
effect on the overall picture of the electronic structure we selected the case (BT

◦−→ δ5).
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Figure 5.2: Electronic band structure of model systems BT and B′T (BT constructed from the atomic
positions of δ5). Overall the band structure between the two configuration is maintained. Some differences
appear due to the varying bonding distances in B′T : in particular, the breaking of degeneracies at Γ and
K, and an additional crossing of the Fermi energy.

We know from the construction of BT that the band width of the electronic structure
changes with the interatomic distance (Appendix IV), but we also know that despite this
difference, the electronic bands maintain their overall structure, and that no degeneracies
are broken. This allows us to compare other (also regular) polymorphs directly with BT .
However, in the case of δ5 not all interatomic distances are equal, and we could expect
this to have an effect in the electronic structure. To verify whether this affects our choice
of the parent and children structures we computed the band structure of BT (perfectly
regular), and of another BT -like structure based on the atomic positions of δ5

1, which we
refer momentaneously as B′T (Figure 5.2).

Besides an expected change of band width, we observe a weak breaking of some degen-
eracies in the band structure of B′T with respect to BT . Nonetheless, despite these minor
differences, the overall characteristics of the folding of the bands remain similar in both
structures. Thus, we continue our comparison among the parent and children structures
using B′T and δ′3, the latter constructed from the β12 structure. From the similarities, we
could have used BT and B′T interchangeably. For simplicity, from now on we refer to B′T
and δ′3 simply as BT and δ3, respectively.

Different atomic structures, similar electronic structures

We computed the electronic bands of the commensurable structures (BT
◦−→ δ5) and

(δ3
•−→ β12), and we show them in Fig. 5.3. We start by pointing out the obvious: the

electronic structures are not the same, and therefore either adding or removing atoms
from a parent structure leads to a change of the electronic states. Qualitatively speaking,
however, we can point to some similarities between the parent and the children structures:
for example, the similar-looking dispersion of the lowest state (j = 1), and the overall
resemblance of the BT and δ5 band structures, and of the δ3 and β12, respectively.

Within this qualitative description of the band structure, we can guide the attention
near the Fermi energy (εF ): for the two cases, (BT

◦−→ δ5) and (δ3
•−→ β12), the disper-

1To construct a BT -like structure from δ5 we simply took the atomic position of the latter and added
the missing atom to complete the triangular mesh. The interstitial atom was introduced in the center of
mass defined by the surrounding atoms.
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Figure 5.3: Commensurable unit cells of (BT and δ5) and (δ3 and β12), and electronic structures calculated
in these unit cells configurations. We remark the qualitative resemblance of the band structure within
each pair.

sion of the bands is, roughly speaking, maintained between the parent and the children
structures, and the bands seem to only be shifted along the energy axis. This “rigid shift”
view of the band structure is in agreement with the number of available electrons in each
unit cell (nel

BT = 21, nel
δ5 = 18, nel

δ3 = 12, nel
β12 = 15). So, in view of the similarities

between the parent and children structures, it is pertinent to ask if it is possible to relate
different borophene polymorphs to a fixed “reference” electronic structure (for example
BT or δ3), as within the self-doping idea [46].

5.1.2 Self-doping and beyond

We have seen that the Box model gives a general idea of the electronic band structure for
different borophene polymorphs, but it fails to describe the wave functions of the same
polymorphs. Now, we aim at investigating the self-doping picture only among borophene
structures. In this regard, all what we have described so far is the overall resemblance
of the electronic bands between two parent and children structures, but now we compare
the wave functions of different states, φjk(r), via the so-called partial partial density,
i. e., |φjk(r)|2 (we refer to the partial density of a given polymorph, B, as Bj

k, where
B = BT , δ6, δ3, α1, α

′, δ5, β12, α
′-Bil). .

For this comparison, beyond the overall resemblance of the electronic structures among
the polymorphs (Fig. 5.3), we need to look closely to the changes: for instance, via

creation of vacancies (BT
◦−→ δ5), we recognize that some degeneracies are broken with

respect to the electronic structure of BT . As a consequence, low-dispersive states appear2

(see the highlighted δj=3
5 state in Fig. 5.3). Note that low-dispersive states within the

electronic structure indicate the localization of the partial charge, a feature not originally
present in the parent BT structure. So, to investigate the wave function of these states
we plotted their partial density in commensurable unit cells at k = (0.10, 0.00, 0.00) (Fig.
5.4, left panel). Two situations can be recognized: 1) similar-looking states between the

2We need to be careful about the origin of these states: of course, by removing atoms from the parent
structure (therefore electrons from the system) no extra states can be added to the electronic structure.
Thus, the low-dispersive states must emerge from the previously existing states. For example, interference
of the wave function has been evoked to explain this phenomenon (Ref. [101].
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Figure 5.4: Partial densities of (BT
◦−→ δ5) and (δ3

•−→ β12) at k = (0.10, 0.00, 0.00) and
(0.12, 0.00, 0.00), respectively, comparing similar-looking and defect states. Upon the projection of the
partial density in-plane, after the introduction or removal of atoms two situations appear: there are
states which maintain a similar partial density distribution (Bn=4

T
◦−→ δn=4

5 ), (δn=7
3

•−→ βn=7
12 ), and

others which completely change in space (Bn=3
T

◦−→ δn=3
5 ), (δn=2

3
•−→ βn=2

12 ). We refer to the latter case
as defect-like states. They show up in the electronic band structure as the low-dispersive bands.

parent and child structures (Bj=4
T ↔ δj=4

5 ), and polymorph-specific states (δj=3
5 ). We

refer to the latter as “defect-like” states. Both cases are clearer in the next example, but
already at this point we can draw attention to the observation that even at the level of
the wave function, upon the creation of defects, some states in the child structure stay
similar to those of the parent one, while others are specific of the polymorphs.

Via addition of atoms into the interstitial sites of δ3, the picture is similar. We now
compare (δ3

•−→ β12 highlighted in Fig. 5.3), from where we can also recognize the
appearance of a low-dispersive state at low energies (βj=2

12 ), and once again, the similar
states between the parent and the child structures. We plotted in Figure 5.4 (right panel)
the partial density of relatable states (δj=7

3 ↔ βj=7
12 ), as well as the partial density of

a β12 defect-like state. In this example (δ3
•−→ β12), the differences and similarities

between the partial charge of the electronic states are even clearer than in the previous
case (BT

◦−→ δ5) and the conclusions are the same: some electronic states from the parent
polymorph can be recognized from the electronic structure of the child one, but others
are unique features of the specific atomic structure (i.e., of the defects introduced into
the parent structure).

Our results for the partial density show that taking the next step beyond the self-
doping idea is necessary, as the self-doping picture is only adequate for some states,
while others are significantly different from those of the parent structure. We can find
polymorph-specific (or defect-like states) in other structures like α1 and α′: an example
for each of these structures is shown in Fig. 5.5 (notice that these defect-like states are
also accompanied by a low-dispersive band in the electronic structure).
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Figure 5.5: Electronic band structure of α′ and α1 highlighting the low-dispersive defect-like states
α′,j=3, and αj=6

1 and αj=7
1 . For each case we have added the partial density in-plane (insets), showing

the localization of the partial charge.

Defect-like states in larger structures

Above, we have used small examples to show the appearance of defect-like states in
borophene, but multiple other structures can be found in the literature. So now, we want
to investigate whether such defect-like states appear also in more complex situations. For
this, we briefly focus on a structure in particular: α1 with a big hole, inspired by the work
of Park et. al. [49]. In this reference, the authors observed (via DFT + kinetic Monte
Carlo simulations) that liquid borophene (with vacancy ratio η > 1/8), under cooling,
crystallizes as α1, creating large holes within the structure. These holes seem to have
a maximal size and are protected by a double boron chain [49]. For our example we
created a smaller structure following this configuration: an α1 supercell with a large hole
protected by a double boron chain with η = 21/144, which we refer to as αH

1 . We computed
its ground state using a 12 × 10 × 1 k-mesh and 75 Hartree for the cutoff energy. The
calculated lowest bands of αH

1 and α1-commensurable with αH
1 are shown in Figure 5.6.

We highlight three aspects of the electronic structure of αH
1 : 1) compared to α1, the

electronic band width is larger (-15.76 eV instead of -15.10 eV), 2) all the computed
bands are low dispersive, in particular the lowest four from which αH,j=4

1 stands out
for this characteristic, and 3) starting from αH,j=5

1 (15.04 eV at Γ) the states of α1 lie
within a similar energy range and show a similar shape as those of αH

1 . So, to exemplify
the appearance of low-dispersive defect-like states due to the large hole, we plotted the
partial density of αH

1 with j = 3, 4, 5, together with αj=1
1 at k = (0.0, 0.0, 0.0) in Figure

5.6.
Broadly speaking, αH,j=5

1 resembles αj=1
1 , which reminds us the existence of common

electronic states between the parent and child structures. On the other hand, the flat
band αH,j=4

1 localizes the partial density in the atomically denser zones next to the defect,
and also the lowest states αH,j=1

1 , αH,j=2
1 and αH,j=3

1 are found in different sites around the
large hole (αH,j=1

1 and αH,j=3
1 overlap in the same zone). Thus, with this simple example we

have shown that the appearance of flat bands is not restricted to the simpler monolayers,
and that even in the large holes situation, we can associate the low-dispersive states to
the creation of defects from a parent structure.
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Figure 5.6: (Left) Lowest energy region of the calculated band structures of α1 and αH
1 . Upon the creation

of a large hole in the atomic structure, low-dispersive (flat bands) appear in the band spectra, among

which αH,j=4
1 stands out for this characteristic. (Right) Partial density plots (in-plane) of the low states

αj=1
1 , αH,j=3

1 , αH,j=3
1 and αH,j=4

1 at Γ: the partial density of αH,j=5
1 resembles that of αj=1

1 . However,

upon the creation of the large hole, localized states appear around this hole (αH,j
1 with j = 1, 2, 3 and

4); we only show j = 3 and j = 4, but j = 1 and j = 2 also localize around the hole in the labeled zones.

5.2 Buckled monolayers

5.2.1 Electronic structure

In the previous section we commented on the effect of adding interstitial atoms, and the
creation of vacancies in borophene (i. e., the creation of defect-like states). Another
interesting situation, frequently found in the ground state of theoretical structures, is the
buckling of the monolayers [16–18]. We denote the effect of buckling with respect to a

parent structure with (
∧−→), with ∧ being the buckling height measured from the lowest

(in-plane) to the highest atomic position along the out-of-plane direction (~z in Figure 1.4).

Specifically, we will investigate the effect of the transitions (α
∧−→ α′) and (BT

∧−→ δ6)
which, from the literature, both buckle along the direction of an imaginary phonon mode
of the parent structure [16, 50, 60]. For our comparison we induced the minimal required
deformation in the parent structures to obtain the children ones: in other words, for

(α
∧−→ α′) we simply moved the atoms in the 2d sites3 along the out-of-plane direction,

while for (BT
∧−→ δ6) we performed two steps: 1) applying the in-plane deformation of

the BT lattice to break the hexagonal symmetry, and 2) the out-of-plane displacement of
the atoms to finally obtain the buckled structure.

We show in Fig. 5.7 that the breaking of the hexagonal symmetry has almost no effect
on the electronic structure of this system. Thus, it is more interesting to look at the
changes due to the buckling height. Now we focus only on the off-plane displacement of

the atoms. For both pairs (α
∧−→ α′) and (BT

∧−→ δ6), we constructed different structures
with different heights and computed their band structures. In general, we observed that
even a minimal off-plane deformations can lead to an abrupt change of the electronic

bands: in (α
∧−→ α′) this is seen around the Fermi energy at Γ (see bands U and V in

3Wyckoff positions.
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Figure 5.7: Electronic structure of model system BT (perfectly regular and planar) with hexagonal
symmetry, and unbuckled δ6 (with tetragonal symmetry). Despite the in-plane distortion, the electronic
structures are nearly identical.

Figure 5.8: Electronic band structure of α′ at different buckling heights. The loss of the perfectly planar
geometry changes the shape of the bands at Γ right above the Fermi energy, and the increasing buckling
distance promotes the evolution of the lower bands (V) towards the Fermi energy. U and V are labels
for the bands.

Fig. 5.8). In (BT
∧−→ δ6), as an avoided crossing along Γ → X (see bands A and B in

Fig. 5.9).
In both monolayers, buckling results in a different shape of the electronic band struc-

ture (energy shifts and breaking of degeneracies), but contrary to the creation of defects
in the flat monolayers, these changes do not reflect as the appearance of low-dispersive
bands. These small changes can also be identified from the partial density, in particular

we remark from (α
∧−→ α′) the redistribution of charge that follows the out-of-plane dis-

tortion (Fig. 5.10): see for example (αj=14 ↔ α′,j=13) corresponding to the α-U band4:

4We change the indices from αj=14 to α′,j=13 due to the occurring band inversion upon buckling.
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Figure 5.9: Band structure of borophene δ6 at different buckling heights. Upon buckling, the bands A
and B break their degeneracy around 3/4 of Γ → X, which results in the P band. This “new” band
moves smoothly above εF with increasing buckling distance, while R (already present in the unbuckled
structure) moves downwards crossing the Fermi energy. A, B, P, and R are labels for the bands.

the charge initially in-plane (green) is dragged out-of-plane upwards and downwards (blue
and red, respectively) where it redistributes. However, even upon buckling some states
resemble those of the unbuckled parent structure, for example (αj=13 ↔ α′,j=15), corre-

sponding to the α-V band. Similar situations can be found for (BT
∧−→ δ6): out-of-plane

dragging of the partial density (Bj=3
T ↔ δj=2

6 ) and similar-looking states between the flat
and buckled configurations (Bj=4

T ↔ δj=5
6 )5.

5.2.2 Exotic properties upon buckling

Borophene α′ as a semimetal Varying the buckling distance in δ6 and α′ leads to
a smooth evolution of the electronic structure. In α′ the major change comes from the
bands crossing at Γ slightly above the Fermi energy: these bands go down in energy
with increasing buckling height, and at ∧ ≈ 0.2 Å the monolayer adopts a nearly perfect
semimetal behavior (Fig. 5.11). This unusual situation in the electronic structure is re-
ferred to in the literature as “new fermion” [102], and similar situations occur in bulk CoSi
and RhSi [103]. Contrary to the latter examples where the fermion is triple-degenerate,
in our calculations only the lower bands (j = 11 and j = 12) are degenerate. In fact, we
can track these bands back to the states moving downwards upon the increasing buck-
ling height (Fig. 5.8), which we had previously associated with the U-band of the flat α
configuration. We show in Figure 5.11 the partial density of α′,j=11+12 (degenerate) and
α′,j=13 at the Γ point.

Complementary to this section it is worth pointing out that the search of exotic prop-
erties in borophene, in particular the search for Dirac cones, has lead to some interesting
structures, but to our knowledge only few of them are able to isolate the semimetal behav-

5There is a difference of meaning of “in-plane” for BT and δ6: while BT is flat and then in-plane
means “in the atomic plane”, in δ6 there is not a single atomic plane but two (from the buckling), so for
this structure we refer to “in-plane” as the mid-plane perpendicular to ~z defined by the atomic positions.
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Figure 5.10: Change of the partial density upon buckling: (BT
∧−→ δ6) at k = (0.05, 0, 0) and (α

∧−→ α′)
at k = (0.05, 0.03, 0). We color-coded three different planes parallel to the xy-plane: in the mid-position
of the atoms (green), over the upper atoms (blue), and below the lower atoms (red); for the two latter
cases we distanced the plane ±0.4 Å, approximately where the local maxima reside (for the flat structures
we only show the upper plane as the lower is symmetric with respect to the atomic positions). As it
happens with the flat monolayers, for the buckled structures some states maintain the characteristics of
those of the parent polymorphs, while others follow the out-of-plane deformation.

Figure 5.11: (Left) Electronic structure of α′ with ∧ = 0.2 Å, inset: Fermi surface. (Right) Partial
density at Γ of α′,j=11+12 (degenerate) and α′,j=13. As for Fig. 5.10, the different cuts of the partial
density are in-plane (green), and above and below the atomic plane by 0.4 Å.

ior in their ground state: for instance borophene-P6/mmm [104], Pmmn [62], χ-h1 [18],
and α′ as reported by Wu et. al. (a = 5.046, b = 5.044, ∧ = 0.17 Å) [16]. Despite the
different ground state for α′ in Ref. [16] with respect to our calculation, we have shown
that it is possible to reach the semimetal state via buckling of the structure. Finally, we
also want to highlight the shape of the Fermi surface of the specific configuration with
∧ = 0.2Å (Fig. 5.11, inset), as upon buckling α′,j=12 leads to parallel regions perpen-
dicular to Γ → K, leading to nesting of the Fermi surface that could be an indicator of
superconductivity (this is explored in Ref. [22]).

Borophene δ6 as a superconductor Regarding the δ6 polymorph, the smooth evo-
lution of the band structure has two effects: 1) a small decrease of the band width with
increasing buckling height, and 2) the change of the bands crossing the Fermi energy (Fig.
5.9). From the latter point we remark the change along the Γ → X direction (and near
Γ along Γ → Y and Γ → S): one band (labeled as P in Fig. 5.9) moves upwards to
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Figure 5.12: (Left) upon buckling, the continuous evolution of bands P and R change completely the
shape of the Fermi surface (same labels as in Fig. 5.9). This gives rise to, for example, small “pockets”
at ∧ = 0.50 Å (given by P). At ∧ ≈ 0.58 Å, R starts crossing the Fermi energy and moves away from Γ
at increasing buckling height giving the quasi-parallel parts of the Fermi surface observed in δ6 (∧ = 0.80
Å). (Right) Hole(electron)-doping in the rigid-shift model has a similar effect on the electronic band
structure of this polymorph as decreasing (increasing) its buckling height.

the conduction states with increasing buckling height avoiding the crossing of the Fermi
energy at ∧ ≈ 0.50 Å, while another (R) moves downwards and crosses the Fermi energy
at ∧ ≈ 0.58 Å. As the buckling height increases, the R band moves deeper down in the
band structure, crossing at a larger k-vector.

At first glance the changes described above for (BT
∧−→ δ6) might not seem very

astonishing. However, from the perspective of the Fermi surface (see Figure 5.12), the
band A crossing the Fermi energy near Γ in BT behaves very differently from R in δ6:
in the former, the band crossing along Γ → X leads to a quasi-parabolic shape of the
Fermi surface, while in the latter the corresponding parts of the Fermi surface extends
quasi-parallel to the Γ → Y direction. This quasi-parallel region has been identified as
the cause of a Kohn anomaly in δ6 due to nesting of the Fermi surface, and therefore
as the probable origin of high electron-phonon coupling at the corresponding q [19, 23].
From the nesting contribution to the electron-phonon coupling constant [19, 105], these
differences between A and R could lead to significantly different behaviors between BT

and δ6 despite the overall similitude among their electronic band structure.
Varying the buckling distance in δ6 has a strong impact in the shape of the Fermi

surface (Fig. 5.12, left). For instance, we remark two effects: 1) the tuning of the
nesting vector (distance between the R points), which increases as the buckling distance
is increased, and 2) the change of curvature of the quasi-parallel regions, straightening as
the buckling height is increased. We also noticed that adding or removing electrons from
δ6 (using a rigid-band model) has similar effect as changing the buckling height concerning
to both the tuning of the nesting vector and the curvature of the bands (Fig. 5.12, right).
Both situations are only related to changing the relative position of the δ6-R band with
respect to the Fermi energy.

The change of the Fermi surface with respect to buckling and carrier doping might
serve as an indicator for potential superconductivity. However, only a full electron-phonon
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Figure 5.13: Partial density of the lowest state (j = 1) for each of the selected polymorphs. The plots
here presented have been computed at k, in reduced coordinates, (0.10, 0.00, 0.00), (0.10, 0.00, 0.00),
(0.12, 0.00, 0.00), (0.12, 0.00, 0.00), (0.05, 0.00, 0.00), (0.05, 0.03, 0.00), (0.05, 0.03, 0.00), (0.09, 0.00, 0.00),
and (0.05, 0.00, 0.00) for δ5, BT commensurable with δ5, β12, δ3 commensurable with β12, δ6, α′, α′-Bil.,
and α1, respectively.

coupling calculation can allow one to draw final conclusions. For instance, Xiao et. al,
studied the effect of strain and carrier-doping in this polymorph, and found hole-doping to
be beneficial towards superconductivity, while electron-doping had the opposite effect [23].

5.3 α′-bilayer

Lastly, we discuss the α′-bilayer (AA-stacked α′-bilayer) as compared to the α′ monolayer.
The monolayer, in turn, is slightly distorted in the out-of-plane direction, alternating the
displacement off-plane of the 6-coordinated atoms (Fig. 1.4). In the bilayer this distortion
has a preferential direction: towards the second monolayer, covalently bonding with its
6-coordinated atoms [35].

In the discussion of the flat monolayers we did not mention the out-of-plane states,
because they were not directly relevant to the effect of the defects on the electronic
structure. For instance, in the flat monolayers the lowest out-of-plane states simply mirror
the partial density of the lowest in-plane state (j = 1 for all polymorphs in Fig. 5.13)
but below and above the monolayer (as for the out-of-plane pz atomic orbital), with local
maximums on top and below each atom. In the flat monolayers this is the expected
behavior, as the out-of-plane states do not interact with anything else. In the bilayer
however, the interaction exists and it is responsible for dragging the 6-coordinated atoms
towards the central plane of the structure [35].

Compared to the monolayer, the bilayer states show states of bonding and antibonding
character built from the states of the two stacked monolayers: Fig. 5.14 shows the
bonding and antibonding states of the bilayer, highlighted in Figure 5.15 (only α′-Bilj

with j = 1 and j = 2), similar to α′,j=1 at k = (0.05, 0.03, 0.00) (Fig. 5.13). Overall,
besides the doubling of the states, the shape of the bands is maintained and even the
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Figure 5.14: Partial density of the two lowest states of the α′-Bilayer, highlighted in green and red in Fig.
5.15. These states are similar in shape to the lowest state of the monolayer (highlighted in blue in Fig.
5.15) but showing bonding and antibonding nature. For representation, the blue partial density plots
correspond to the mid-plane of the upper layer, the red plot to the lower layer, and the green plots to the
mid out-of-plane position of the complete structures. One can see the similar partial densities between
states of the α′-Monolayer and the upper and lower layers in the α′-Bilayer. The main difference occurs
in the mid (green) plane, through the localization of the density in the bond between the two layers,
showing the “bonding” (α′-Bil.j=1) and “antibonding” (α′-Bil.j=2) character of the states.

Figure 5.15: Electronic structure of the α′-Monolayer and the α′-Bilayer. Similar states appear in the
bilayer and the monolayer (blue, green, red), from which the doubling of states in the bilayer can be
understood as bonding and antibonding states of the monolayer (see Fig. 5.14). In orange we highlight
the interlayer state α′-Bil.j=16, localizing the partial density in the interlayer bond.

partial charge follows a similar distribution for the states in-plane (with the “bonding”
and “antibonding” behavior).

Out-of-plane the picture is different. For example, the first out-of-plane state that in
the monolayer was slightly localizing the density on top of each atom, is strongly attracted
towards the interlayer bonding atom in the bilayer, supporting the covalent picture of the
bond [35]. In terms of the electronic structure, these interlayer states appear as distinct
states in the band structure. However, contrary to the defect-like states of the monolayers,
in the bilayer these states are not low-dispersive.
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5.4 Conclusions

In this chapter we performed a detailed analysis of the electronic structure of selected
polymorphs. First, we emphasized the resemblance between the electronic structure of
flat monolayers in commensurable unit cells. This supports the idea of general features of
the electronic structure within the borophene class of materials. For instance, it explains
why the Box model and self-doping can be used as an approximation to the electronic
structure of different polymorphs independently of the specific electronic structure of the
polymorphs.

Moreover, our analysis of the electronic structure of polymorphs in commensurable
unit cells, and the study of the partial charges, proved the appearance of low-dispersive
polymorph-specific states. These show the limitations of the self-doping model. It is
worth pointing out that low-dispersive (localized) states are not just a mere curiosity of the
electronic structure. In fact, similar flat bands have been the object of research in different
fields including quantum Hall physics, superconductivity and photonics [106–108].

Also, we investigated the changes of the electronic structure with respect to buckling of
the polymorphs α′ and δ6. As for the creation of defects of the flat monolayers we observed
that some states in the buckled structures resemble states from the flat parent structures,
but also that upon buckling some degeneracies are broken and some electronic bands shift
in energy. Contrary to the creation of vacancies (or addition of interstitial atoms) the
polymorph-specific states in the buckled structures do not appear as low-dispersive states
in the band structure. Moreover, the changes of the electronic structure upon buckling
lead to two situations of particular interest: 1) the case of α′ as a semimetal, and 2) the
tuning of the Fermi surface of δ6, relevant for its superconducting properties.



Chapter 6

Dielectric properties

In the previous chapter we performed an extensive study of the electronic structure of
different polymorphs, and in particular we highlighted their resemblance and the presence
of specific signatures like low-dispersive defect-like states that appear due to the creation
of point defects in a parent structure. Moreover, we highlighted the fact that buckling of
the structures δ6 and α′ can be a parameter to tune the electronic structure which leads
to a semimetallic band structure for borophene α′. We also mentioned possible interest
of Fermi surfaces for superconductivity. Thus, at this point the importance of the study
of the electronic structure as a guideline for different applications is clear.

Many different examples exist in the literature investigating theoretically how and in
which situations borophene could be used to tackle a specific problem: we can find it
for example in the context of superconductivity [19–23], supercapacitance [24], hydrogen
storage [25,26], plasmonics [27–29], and transparent conductors [30,31]. Among these, we
remark the optical properties, in particular absorption, for their relatively straightforward
connection with the electronic structure. Within this context we highlight the work of
Adamska et. al. on the polymorphs δ6 and β12, in their possible application towards
transparent conductors [31]. Hereafter we investigate the role of the electronic structure
in the optical absorption of the polymorphs presented in Section 1.3.

6.1 Optical absorption

Using the independent-particles approach within KS, we can approximate the optical ab-
sorption as the imaginary part of the KS density-density response function (Eq. 2.20).
Using this level of approximation, we computed the optical spectra of the polymorphs of
Section 1.3, and we present them in Fig. 6.1. The different curves correspond to different
components of the dielectric tensor εM . Our results for δ6, β12 and δ3 are in good agreement
with available results in the literature with the same approximations [30, 31, 99]. Below,
we explain the main features of the absorption spectra, and in particular the origin of
“transitionless windows” (energy windows in which absorption spectra vanishes): essen-
tially, these windows are the reason why the polymorphs δ6 and β12 have been proposed
as transparent conductors 1.

1To describe the polymorphs as “good” transparent conductors two conditions must be fulfilled: 1)
they must be transparent in the optical regime, and 2) they must be good charge carrier conductors.
Here we only focus on the first point, but works on the latter can be found in Ref. [31] for polymorphs
δ6, β12.

45
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Figure 6.1: Optical absorption of selected borophene polymorphs within the independent particles ap-
proximation (IPA): xx, yy and zz describe the change of the induced field due to the electronic transitions
paralel to x, y and z, respectively. Av. is the average among the three directions. Moreover, notice that
δ3, δ5, α′ and the α′ bilayer have equal diagonal componentsm (xx) = (yy), thus we show only one
direction: (xx).

Intraband and interband transitions

Borophene in its multiple polymorphs is a metallic system, as can be seen from the
electronic band structures in Fig. 5.1. In optical absorption (Eq. 2.23), where the
transitions at vanishing momentum transfer (q→ 0) shape the spectra, transitions around
the Fermi level play an important role at vanishing photon energy (ω → 0), as in principle,
they should reflect in the absorption spectra in the form of a very sharp peak at ω → 0.
This is known as the Drude peak [109]. We are not interested in this zone of the spectra
which determines the conductivity, but which is notoriously difficult to converge. Thus,
we focus only on interband transitions, i. e., the shape of the spectrum for ω > 0.

In fact, Adamska et al., showed that intraband transitions in δ6 only affect the spectra
at low energies (ω < 1 eV) [31]. Analogously, we want to show for our simulations two
things: 1) that intraband transitions do not change the absorption spectra besides at
ω → 0: as an example we selected the case of borophene δ3, and 2) that the sharp peak
at ω → 0 in the β12 structure is due to interband transitions. We can understand the
latter straightforwardly from the band structure (Fig. 6.2, right): at Γ multiple bands
cross the Fermi energy with a ∆ω ∼ 0.01; considering only vertical transitions these could
make an absorption peak at ω ∼ 0.01, nonetheless, the denominator of the density-density
response function (Eq. 2.21) contains a quantity η which acts as a “broadening” of the
δ-like transitions in the absorption spectra, thus giving its final shape. Physically such a
broadening describes the life time of an electronic transition, but in our picture we use
it as an artificial broadening. The effect of broadening can be seen in Fig. 6.2 (left), by
comparing the blue and gray curves, with η = 0.01 and η = 0.001 eV, respectively.

The intraband transitions can give contributions also at low energies. To show this
we performed an explicit computation of Eq. 2.21 with vanishing q using a “double-grid”
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Figure 6.2: Left: low-energy region of the optical spectrum of borophene δ3 computed with and without
explicit evaluation of the transitions at vanishing momentum transfer. The broadening of the spectra is
0.1 eV, except of (*) which broadening is 0.01 eV: the account of interband transitions only affect the
optical spectra at ω < 0.5 eV. Right: absorption spectra of borophene β12. The large peak at ω → 0 eV is
due to interband transition at Γ, although it appears in Fig. 6.1 as interband-like due to the broadening
of the curve.

method [?]2 for δ3. Our calculations, plotted in Fig. 6.2, show that the inclusion of
transitions at small q does not affect the optical spectra beyond the addition of the peak
at vanishing momentum transfer. Since addition of intraband transitions do not affect
the discussion of our results, we proceed with the optical spectra as presented in Fig. 6.1.

A family of electronic transitions

In order to establish some general trends for the different polymorphs, let us focus for
a moment on a simple structure: borophene δ3. In this polymorph we can associate
the peaks in its optical absorption spectrum to a minimal set of bands in the electronic
structure. For instance, we can recognize five absorption peaks in the range from 0 to 12
eV (Fig. 6.3): 1) at 0.7 eV merely in-plane (xx), 2) 7.4 eV out-of-plane (zz), 3) 8.1 eV out-
of-plane, 4) 8.6 eV out-of-plane, and 5) 9.8 eV in-plane and out-of-plane at the beginning
of the continuum. Schematically, we can associate these peaks to vertical transitions in
the electronic structure of Fig. 6.33, and taking into account the hybridization of the
states in-plane (s, px and py), and the negligible hybridization of the out-of-plane states
(pz), we can define six different types of transitions:

• In-plane px + py to in-plane s: t(p‖ → s).

• Out-of-plane pz to out-of-plane pz: t(pz → pz).

• In-plane s+ px + py to in-plane s+ px + py: t(sp‖ → sp‖).

• In-plane s-state to out-of-plane pz: t(s→ pz).

• In-plane px + py to out-of-plane pz: t(p‖ → pz).

2With this method we can compute the χ(q, ω) for an arbitrary small q giving rise to the contribution
at ω → 0 without the need of a large number of k-points in the wave function.

3The optical absorption is computed with contributions from the full Brillouin zone (according to the
selected k-mesh). The high symmetry path in Fig. 6.3 is representative of these transitions.
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Figure 6.3: Electronic structure of borophene δ3 projected onto atomic orbital (left), and computed orbital
spectra within the IPA (right). The absorption peaks are well-defined, and so are easily associated to
vertical transition in the electronic structure (arrows): in-plane absorption peaks appear from in-plane
states, while out-of-plane absorption peaks involve transitions from in-plane states to out-of-plane.

• In-plane s+ px + py to out-of-plane pz: t(sp‖ → pz).

Moreover, by verifying the energies at which these transitions occur, we can describe the
absorption peaks in Fig. 6.3 as a combination of the above transitions as follows:

1) 0.7 eV: t(sp‖ → sp‖) + t(p‖ → pz)

2) 7.4 eV: t(s→ pz) + t(sp‖ → pz)

3) 8.1 eV: t(s→ pz) + t(pz → pz)

4) 8.6 eV: t(s→ pz)

5) 9.8 eV: t(sp‖ → pz) + t(p‖ → s)

We can use these transitions to explain the in-plane and out-of-plane components
of the absorption spectra: for example, the absorption peak at 7.4 eV is visibly only
in the (zz) component of the εM tensor. This is consistent with the analysis in terms of
transitions t(s→ pz)+t(sp‖ → pz). Sometimes, looking only at the band structure can be
misleading. For example, the peak at 0.7 eV is given by the (xx) component of εM , while
energetically, the band structure also suggest that transitions t(p‖ → pz) contribute. We
discuss the importance of the wave functions of the initial and final states of the electronic
transitions in the following section.

6.1.1 Borophene as a transparent 2D material: δ3

Borophene δ3 shows a feature of technological importance: its absorption spectrum dis-
plays an energy window between 1.5 and 7 eV (visible light and near UV) of nearly zero
absorption (Fig. 6.4). We refer to it as a transitionless window. This window is much
larger than the ones in δ6 (2.6 eV)4 and β12 (04 eV)5 [31]. Moreover, δ3 is among the
already synthesized structures [34], and the simplicity of its band structure can help us
to understand at the microscopic level how borophene becomes transparent.

There are different reasons for which this polymorph can be transparent within a given
energy window: 1) trivially, because there are no conduction and valence states within

4Neglecting intraband transitions.
5Idem.
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Figure 6.4: Vertical transitions within 2 to 6 eV in borophene δ3 (left), and optical spectra within the
IPA (right). The energy window from 1.5 to 7 eV does not show any absorption peak and thus we refer
to it as a transitionless window: it does not appear because of a lack of transitions (seen in the JDOS).
In fact, it is a feature of the matrix elements, although not due to lack of overlap between the wave
functions (overlap calculated with Eq. 6.1).

that energy range that allow for vertical transition (like in a semiconductor within the
optical gap), or 2) that the numerator of the polarizability (Eq. 2.20) becomes zero for
the transitions within the energy window. To differentiate between these two cases we
analyze the joint density of states, JDOS = −Im

∑
nn′(fn′ − fn)[ω − (εn − εn′) + iη]−1,

defined as the imaginary part of Eq. 2.20 setting the numerator to 1 (i. e., neglecting
the contribution of the wave functions and the dipole operator). We plotted the JDOS
together with the absorption spectra in Fig. 6.4, which shows that energy differences
(between occupied and empty states) are possible at all frequencies.

Thus, the gap in the absorption spectrum is due to the numerator in Eq. 2.20: the
matrix elements within the sum over transitions. Moreover, there are two forms in which
this numerator can vanish: 1) because of symmetry: due to the operator

[
eiq+G)·r],

or 2) simply because the initial and final wave functions do not overlap. In order to
determine the reason we propose a function with the same structure as the polarizability
but accounting only for overlap of the wave functions:

Overlap(q, ω) = −Im

[∑
nn′

(fn′ − fn)

∫
dr |φn′

k−q(r)|2|φnk(r)|2
ω − (εn − εn′) + iη

]
(6.1)

in the optical regime with q → 0, Eq. 6.1 has to be compared with the JDOS in order
to see the effect of overlap: Eq. 6.1 serves like a weighted JDOS (per transition), and
therefore it makes sense only in comparison with another function: the JDOS or the
imaginary part of the polarizability. We plotted in Fig. 6.4 the overlap function for δ3.
It reproduces the main peaks of the absorption spectrum, but there is no evidence of
the transitionless window. Thus, we can conclude from this analysis that the gap in the
absorption spectrum of borophene δ3 between 1.5 and 7 eV is due to the symmetry of the
wave functions in the matrix elements in Eq. 2.20.

The transitionless window is not numerically zero. If we zoom in in this region (see Fig.
6.5, right) we see that the absorption monotonically increases. This increase corresponds
to following the in-plane band (s + px + py) along Γ → K in the band structure (see
Fig. 6.5, left panel) for which the s-component becomes larger. Still in the absorption
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Figure 6.5: Low and high-energy transitions in borophene δ3: at 9.8 eV the transitions out-of-plane are
due to transitions t(sp‖ → pz), while at low energies (from 0 to 2 eV) the transitions out-of-plane are
t(sp‖ → pz) + t(p‖ → pz). The latter do not show un in absorption spectrum, thus suggesting that the
transitions t(p‖ → pz) are killed by symmetry. Notice that absorption increases with the hybridization
of p states in-plane with s orbitals.

spectrum these contributions are negligible. We now move to analyze the absorption peak
at 9.8 eV: both, in-plane and out-of-plane, absorption contributes for this peak. Again
by comparing with Fig. 6.3 (left), we associate this peak to transitions t(p‖ → s) near M
(Fig. 6.4) and t(sp‖ → pz) along Γ → M → K. In the region from 0 to 2 eV, possible
transitions are t(sp‖ → sp‖) + t(sp‖ → p‖) + t(p‖ → pz), that lead to the absorption peak
in-plane at 0.7 eV but no absorption peak out-of-plane, therefore suggesting a similar
situation as for the transitionless window: the transitions t(p‖ → pz) are either killed by
symmetry or overlap.

Electronic transitions in flat monolayers

In a similar approach as for the electronic properties where we analyzed the similarities
among the polymorphs, we now turn to to similarities and differences of the optical
properties. We can look again at Fig. 6.1: the flat monolayers β12, δ5, α1 and even the
buckled structure α′, show a similar absorption spectra as that of borophene δ3, namely
an in-plane absorption peak below 5 eV and an out-of-plane peak around 10 eV. However,
they lose the transitionless window between 1.5 and 7 eV. On the other hand, as it has
been pointed out by Adamska et. al., at least β12 has its own transitionless window below
0.4 eV [31]. It is evident from Fig. 6.1 that also δ5 displays a similar behavior (below
1.2 eV), and also α1, although less pronounced (below 0.5 eV). In order to clarify these
common features we perform, as we did for δ3, a thorough analysis of borophene δ5 and
β12.

Let us start with the peaks out-of-plane: in δ3 there are two well-defined absorption
peaks at 7.4 and 8.1 eV, one weaker and wider at 8.6 eV, and a last one in-plane and
out-of-plane at 9.8 eV. In δ5 we can only recognize a sharp peak at 9.20 eV, and two
weaker and wider at 10.8 and 12.28 eV, and in β12, only a well-defined peak at 9.20 eV
surrounded by wider and less intense absorption peaks. We can link this difference in the
out-of-plane projection of the absorption spectra among polymorphs to the differences in
their electronic structure, in particular to the breaking of degeneracies and the appearance
of defect-like states; if a rigid model of the electronic structure (self-doping) were valid, the
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Figure 6.6: Band structure of borophene β12 and δ5: the arrows show the vertical transitions at 9.2 eV,
namely t(s → pz). These transitions seem to be general for the flat monolayers, and can be understood
from the 2D + “particle in a box” model with j = 2 and j = 3. The Box model, however, overestimates
the energy difference |εj=3

⊥ − εj=2
⊥ |.

same out-of-plane peaks should appear at the same photon energy for these high-energy
peaks. For simplicity, we focus only on the well-defined peak at around 10 eV, which also
seems to be common for α1 and α′.

We show in Fig. 6.6 the band structure projected onto atomic orbitals for borophene
δ5 and β12: we included the vertical transitions corresponding to 9.20 eV. Despite the
difference in shape, this peak is related to the transition t(pz → s) and t(pz → sp‖):
they go from the lowest out-of-plane band to the first unoccupied in-plane band. In the
physical interpretation of the 2D HEG + “particle in a Box” model of Section 4.2 this
state corresponds to a second replica (j = 3).

Next, we investigate the in-plane absorption peak. This appears in δ5 and β12, but
also in α1 and α′. Energetically in δ3 this peak at 0.7 eV could be due to transitions
t(sp‖ → sp‖) + t(p‖ → pz), but we later noticed that transitions t(p‖ → pz) are killed
by symmetry, therefore the peak at 0.7 eV must be only due to t(sp‖ → sp‖). These
transitions nonetheless seem to be unique of this polymorph, as while electrons are intro-
duced into the system6, the in-plane bonding states are occupied [45], therefore shifting
down with respect to the Fermi energy. The latter has a strong impact on electronic
transitions at low energies: we show in Fig. 6.7 that the large absorption peak in-plane
in β12 (1.5 eV)7, δ5 (1.7 eV), α′ (0.75 eV)8, α1 (0.86 eV) is due to t(pz → pz), but parallel
to the plane9; this in-plane absorption peak due to out-of-plane transitions is also seen in
graphite and graphene due to π → π∗ transitions [110].

Fig. 6.7, shows that for the flat polymorphs β12, δ5, and α1 there is null hybridiza-
tion of the pz states, while in α′ (buckled), the hybridization is noticeable only near Γ.

6Following the self-doping idea: 1) other polymorphs can be obtained by adding atoms to δ3. And
2) the more atoms the more electrons, and thus the Fermi level moves upwads with respect to the rigid
electronic structure.

7β12 has two different absorption peaks in-plane due to its anisotropy and none of them is a sharp
peak. To investigate the transitions of the lowest peak we selected the range from 1 to 2 eV which
comprises most of the xx-peak and only the beginning of the yy-peak.

8We selected the highest peak in-plane, from 0.64 to 1.19 eV.
9This means that we investigate the (xx) component of εM (so with momentum transfer oriented

in-plane) but we involve transitions t(pz → pz) from states that are localized above (and below) the
boron plane.
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Figure 6.7: Low-energy vertical transition of polymorphs β12, δ5, α′ and α1: these transitions give raise
to the low-energy absorption peaks in Fig. 6.1. Notice that the absorption peaks are “in-plane”, but the
transitions are t(pz → pz), i. e., parallel to the plane, in contrast with δ3 which low-energy peak is due
to transitions in-plane t(sp‖ → sp‖).

Nonetheless, the charge is predominantly pz-like and the absorption spectra (Fig. 6.7)
only capture the in-plane component. This lack of hybridization plays the main role when
it comes to optical absorption, and as we showed earlier, it is responsible for the trans-
parency in borophene δ3. In fact, other polymorphs show transitionless windows of the
same nature as δ3: β12 a small window from 0.3 to 0.6 eV due to t(p‖ → pz) at Γ, δ5 from
0 to 1.2 eV due to t(p‖ → pz) along M → K and in the vicinity of K along K → Γ, and
α1 from 0 to 0.4 from t(p‖ → pz) at Γ (Fig. 6.7).

Other 2D structures

Among our selection of polymorphs there are two cases we have not discussed so far, and
that have absorption spectra (Fig. 6.1) different from those of the flat monolayers: the
buckled δ6 structure, and the α′-Bilayer. The former has been proposed as a transparent
conductor because of the large transitionless window from 0 to 2.3 eV [31]. It is interesting
to notice that in this polymorph the transitionless window appears mainly because of the
lack of vertical transitions within such energy range: we can see this from the joint density
of states, and schematically from the band structure in Fig. 6.8: the lowest vertical
transition is at 2.5 eV along Γ → X, in agreement with the JDOS and the absorption
spectra.

Borophene δ6 is highly anisotropic: it buckles along the y-direction (Fig. 1.4), and this
anisotropy is translated into the absorption spectrum being significantly different along
xx and yy (Fig. 6.8). Moreover, we can recognize from the projection of the bands onto
atomic orbitals that the out-of-plane state now hybridizes with the in-plane states: for
example with px along Γ → M, S → Y and Γ → S, and with py around Γ above the
Fermi energy (Fig. 6.8). This leads to different types of transitions, and in particular
absorption peaks which are both in-plane and out-of-plane. Nonetheless we can still find
some similarities between the buckled δ6 structure and the flat monolayers: for example,
the mostly out-of-plane peak at 9.9 eV involves transitions at Γ from a majorly out-of-
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Figure 6.8: Orbital-resolved electronic structure of borophene δ6 and its absorption spectrum: the ar-
rows in the band structure correspond to the absorption peaks. Notice that this polymorph is strongly
anisotropic, and this feature is reflected in the band structure and the absorption spectra: the y direction
is the direction along which the structure buckles. Moreover, this polymorph shows a transitionless win-
dow from 0 to 2.3 eV, although insted of being due to transitions t(p‖ → pz) as for the flat monolayers,
it is due to the anisotropy of the system. Another difference between δ6 and the flat polymorphs is the
hybridization of the states out-of-plane: noticeable with s along Γ→ X below the Fermi energy, with px
along S→ Y and Γ→ S at the Fermi level, and with py at Γ above the Fermi energy.

plane state to an in-plane state (of mostly s character) semi-parallel to the valence state.
Moreover, the highest peak in-plane (5.7 eV) is due to (mostly) out-of-plane to (mostly)
out-of-plane states.

Regarding the occupied bands in δ6, the hybridization occurs mostly along the x-
direction (the non-buckled one): we can see this from the channel-like states out-of-plane
seen in the density plots in Section 5.2 (Fig. 5.10). Moreover, notice that the absence of
hybridization between py and pz states could, in principle, yield transitionless windows as
the ones for the flat polymorphs. We investigate this possibility in Section 7, applied to
nesting of the Fermi surface.

We now turn to the α′-Bilayer: we described this polymorph in Section 5.3 essentially
as two α′ monolayers in bonding and antibonding-like configuration with extra states
(defect-like) due to the interlayer bonding atom. Although this picture is adequate for
the states investigated in Section 5.3, it is a crude generalization based on the density
distribution, and we have already pointed out that the shape of the wave functions has a
strong impact on the final shape of the absorption spectra. Thus, it is necessary to look at
the orbital-resolved band structure in Figure 6.9 to understand the different contributions:
notice the hybridization of the states in-plane and out-of-plane pz + s and pz + p‖ just
below the Fermi level along Γ → K, as well as pz + s at K, and pz + p‖ at Γ above the
Fermi energy (Figure 6.9). As it occurs for the buckled δ6 structure, hybridization yields
a mixed in-plane and out-of-plane response.

We can still distinguish at least two well-defined absorption peaks in the bilayer:
an in-plane peak at 0.3 eV, and an out-of plane peak at 2.2 eV. The former is due to
transitions (mostly) out-of-plane to (mostly) out-of-plane in the vicinity of Γ and K near
the Fermi level, while the peak at 2.2 eV (out-of-plane) is mainly due to transitions
(mostly) out-of-plane to (mostly) s at K (Fig. 6.9). Thus, besides the hybridization of
the states, the absorption peaks in-plane and out-of-plane are of similar nature as those
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Figure 6.9: Band structure, absorption spectrum and transitions of the α′-Bilayer. Two features stand
out for this polymorph with respect to the others: the hybridization of the out-of-plane states with s and
px + py noticeable along Γ → K just below the Fermi level, and the out-of-plane peak shifted towards
lower energies with respect to the monolayer: from ≈ 10 eV in α′ (Fig. 6.1), to 2.2 eV due to transitions
around K.

of the monolayers10.

6.1.2 Engineering transparent conductors

Among the different polymorphs, δ3 is in a privileged position: the Fermi level and the
electronic structure are such that the transitions occurring from 1.5 to 7 eV are mainly of a
single type: t(p‖ → pz). These transitions are killed by symmetry, yielding a transitionless
window. As we have seen, these transitions are not unique of this polymorph (δ3), in fact
similar windows exist for β12, δ5 and α1. Moreover, we have seen in Section 5.1, that the
electronic structure of different polymorphs share similar features: for instance, δ3 and
β12 have a recognizable common band structure (Fig. 5.3), plus the shift of the Fermi
energy, the addition of defect-like states, and the breaking of degeneracies. Thus, it is
interesting to investigate which of the differences between δ3 and β12 make such different
absorption spectra, in particular with respect to the transitionless window.

Self-doping and optical absorption

An obvious point is the position of the Fermi energy: in δ3 the Fermi level is positioned at
a point such that even the low-energy absorption peak is due to transitions t(sp‖ → sp‖),
while for the rest of the polymorphs it is due to t(pz → pz). The self-doping picture helps
understanding this: the in-plane states get occupied upon the addition of electrons, and
thus the transitions t(sp‖ → sp‖) from the bonding states do not appear anymore. From
the same shift of the Fermi energy the states out-of-plane get situated around the Fermi
level prioritizing transitions t(pz → pz).

10The shift in energy could be related to the dimensionality: in the 2D HEG + “particle in a box”
model of Section 4.2, the discrete jumps in energy out-of-plane are inversely proportional to the box
width. In a simplified view, switching from the monolayer to the bilayer would translate as an increment
of the box width, and consequently as reduction of the energy differences between j = 1, 2, 3, etc., as
compared to the monolayer.
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Figure 6.10: Up: Electronic structure of borophene δ3 electron-doped to η = 1/6 and η = 1/9 to simulate
the polymorphs β12 and α within the self-doping picture. Down: absorption spectra of δ3 neutral and
electron-doped: upon the addition of electrons (shifting upwards the Fermi energy) an absorption peak
in-plane appears due to t(pz → pz) transitions as for the actual β12 and α (α1 and α′) polymorphs
(Fig. 6.7). Moreover, because of the occupation of the states the transitions t(sp‖ → sp‖) vanish. The
out-of-plane component of the absorption spectra remains mostly unchanged.

In Figure 6.10 we show the band structure of δ3 rigidly shifted to match the Fermi
energy of the polymorphs β12 (η = 1/6) and α (η = 1/9)11. The simple repositioning
of the Fermi energy changes the absorption spectra: it slowly removes the transitions
t(sp‖ → sp‖) near Γ, and introduces a wide peak at 3.2 eV for δ3(η = 1/6), and at 2.8
eV (and a shorter one at 1.8 eV) for δ3(η = 1/9) mainly due to transitions t(pz → pz)
at M. Other differences worth pointing out are: a transitionless window from 0 to 1.8
eV in δ3(η = 1/9) simply due to lack of transitions in that energy range as for δ6, and
a slight modifications of the absorption peaks in-plane and out-of-plane at high energies
due to the filling of the states, in particular the occupation of the band out-of-plane along
M→ K (Fig. 6.10).

Of course, with respect to the real β12 and α (or α′), more differences exist due to the
defect-like states and, in general, the breaking of degeneracies (see Fig. 6.11). Nonetheless
this simple example shows how the position of the Fermi level affects the optical properties:
for instance, one could trigger absorption within the transitionless window of borophene
δ3 via electron-doping. This is a very powerful conclusion coming from the simple idea
of self-doping. Moreover, this make us wonder about the opposite situation: can we
hole-dope borophene polymorphs in order to obtain transparency?

11Keeping the rigid electronic structure of δ3 we recomputed the Fermi energy with extra electrons
according to Eq. 1.3.
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Figure 6.11: Left: absorption spectra of neutral borophene β12 and δ3-electron doped to the same number
of electrons per unit unit cell as β12 (η = 1

6 ). Right: δ3-electron doped to the same number of electrons
per unit unit cell as α′ (η = 1

9 ). The spectra for α′(η = 1
9 ) is scaled by 0.25.

Figure 6.12: Left: electronic structure of borophene β12 hole-doped to η = 1/3 to simulate the polymorph
δ3 within the self-dopin picture. Right: absorption spectra of neutral and hole-doped β12 with absorption
peaks identified within the band structure. A small transitionless window (from 1.8 to 2.2 eV) is opened,
nonetheless the characteristic that stands out is the increased absorption upon hole-doping. Moreover,
notice that the peak at 2.6 eV is due to transitions t(pz → pz), a feature not present in δ3.

For this, we selected β12, a polymorph that has already been proposed for transparent
conductors [31], and that has been synthesized on a metal substrate [33], and in its free-
standing form [36]. Analogously to our study on electron-doping δ3, we fixed the electronic
structure of β12 and recomputed to Fermi energy according to the number of electrons
in δ3 (η = 1/3). The obtained absorption spectrum and the shifted orbital-resolved band
structure are shown in Figure 6.12. Notice that this polymorph is highly anisotropic (Fig.
1.4), thus we have included separately the projection in-plane as px and py, and displayed
absorption along (xx) and (yy).

We must say that a little transitionless window opened from 1.8 to 2.2 eV: this is
accompanied by a decrease of the joint density of states and transitions from states in-
plane (mostly of p character) to out-of-plane. However, the most noticeable change is the
sudden increase of absorption at 0.5, 1.3 and 2.6 eV (peaks in Fig. 6.12): the peak at
1.3 eV remind us the absorption peak at 0.7 eV in δ3 due to transitions t(sp‖ → sp‖)
(Fig. 6.12), however the peak at 2.6 eV has no equivalent in δ3: it is due to transitions
t(pz → pz), where the pz state in the conduction band is a defect-like state of the system
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Figure 6.13: Left: orbital-resolved electronic structure of borophene β12 computed self-consistently with
only 12 electrons (3 valence electrons per boron atom, and removing 3). Right: absorption spectrum
within the IPA. Notice that the absorption peaks are of similar origin as in Fig. 6.12 (β12 rigidly shifted),
nonetheless as the out-of-plane states get closer to the Fermi level as well as the in-plane states, a similar
situation to the pristine case of δ3 occurs: a wide transitionless window due to transitions t(p‖ → pz).

(see band structure in Fig. 5.3). The appearance of the low energy peak at 0.5 eV
is unclear from Fig. 6.12, that suggest transitions from states in-plane (of mostly p-
character) to states out-of-plane that, in principle, should be killed by symmetry. It is
possible that the origin of this peak is due to the s-character of the band, or that the
transitions lie in other k-points within the Brillouin zone.

There are different variables determining the absorption spectra of the different poly-
morphs, and although it is clear that the position of the Fermi energy is one them (Fig.
6.10), it is also clear from Fig. 6.12, that in borophene the polymorph specific states
deeply influence the optical response: for instance, it is not straightforward to “infer”
optical properties simply guided by the self-doping mechanism. Therefore, the question
on whether a given polymorph can become transparent upon hole-doping remains open.

β12 as a transparent conductor

As a final test, we want to show how the electronic structure of β12 reacts to the equivalent
of removing three electrons from the system (simulating the situation β12

◦−→ δ3), this in
the spirit of hole-doping the polymorph using an external source; for example an applied
electric field as suggested in Ref. [52] for device applications. Contrary to the previous case
(self-doping) in which we computed the electronic structure of β12 first (charge neutral)
and then we repositioned the Fermi energy according to the number of electrons using
η = 1/3, this time we removed the three electrons from the total charge in the unit cell
and computed the electronic structure self-consistently. We calculated the optical spectra
within the independent particles approximation, as we did in the previous cases (Fig.
6.13). Similarly to the rigidly shifted case of Fig. 6.12 the optical absorption spectrum is
mainly composed of three peaks in-plane which can be explained by the repositioning of
the Fermi level with respect to the in-plane and out-of-plane states.

The most important change with respect to the rigidly shifted case of Fig. 6.12 is
the widening of the transitionless window (1.4 to 3.0 eV in Fig. 6.13): this situation
is very similar to δ3 (Fig. 6.4), in which the large window appears due to transitions
t(p‖ → pz) “killed by symmetry” mostly at Γ. Moreover, it is interesting to point out
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that recalculating self-consistently the electronic structure makes the electrons distribute
more δ3-like: shifting upwards the out-of-plane states, hence preferring the population of
the in-plane states; this behavior is in agreement with self-doping occurring from π-to-σ
upon hole-doping [47]. Lastly, we must remark that the polymorph-specific features of
the electronic structure of the different polymorphs completely determine the absorption
spectra: for instance, in the hole-doped case of β12 (Fig. 6.13) the peak at 3.2 eV does
not have an analogous in δ3, as it is due to transitions t(pz → pz) which appear because
of the presence of a defect-like state out-of-plane.

6.1.3 Conclusions

In this section we performed a detailed analysis of the optical absorption of selected
borophene polymorphs within the IPA. In a first part we identified from the electronic
structure the origin of the absorption peaks along the in-plane and out of plane directions
of the macroscopic dielectric tensor εM . We showed that a low-energy absorption peak
appears in δ3 due to transitions t(sp‖ → sp‖), while for the other polymorphs the low-
energy peak is due to transitions t(pz → pz). Moreover, we identified the reason of
appearance of transitionless windows in the different polymorphs: 1) in δ6 because of
the shape of the electronic structure, and 2) in δ3, β12, α1 and δ5, because transitions
t(p‖ → pz) are killed by symmetry.

Moreover, we discussed the possibility of triggering optical absorption in the transi-
tionless window of δ3 via electron-doping within the self-doping picture. Oppositely, we
discussed the option of inducing transparency in β12 via hole-doping. For the latter we
presented a self-consistent calculation of the electronic structure, and we showed that this
situation enhances the opening of the transitionless window with respect to the case of
self-doping. We want to highlight that the appearance of the transitionless window and
its tuning is directly related to the electronic structure and the fact that the in-plane
states do not hybridize with the out-of-plane states. Thus, the transitionless window is
not unique for the polymorphs here presented.
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Figure 6.14: Optical absorption of selected borophene polymorphs within the random phase approxima-
tion (RPA): to be compared with Fig. 6.1. The inclusion of crystal local fields supress the absorption
out-of-plane due to the anysotropy in this direction. In-plane, however, the system absorption is unaf-
fected regardless of the different arrangement of the vacancies.

6.2 Measurable quantities

The independent-particle approximation gives a very instructive picture that directly links
the electronic structure with the optical absorption. However, other ingredients can have
an effect on the actual measured quantities, in particular, from Eq. 2.19, the Coulomb
potential and the exchange-correlation kernel to obtain the full response function χ. In 2D
(or layered materials [110]) the Coulomb term can have an important effect out-of-plane
simply due to the inhomogeneity in this direction (vanishing density), thus suppressing
the imaginary part of εM due to crystal local fields effects (LFE). We computed the
macroscopic dielectric function including LFE within the random phase approximation
(Eq. 2.19 with fxc = 0) in the different polymorphs obtaining the aforementioned behavior
(Fig. 6.14). Another aspect to highlight is that regardless of the different arrangement
of the “holes” in the structures, the crystal local fields have negligible effect in-plane
(compare Figs. 6.14 and 6.1).

6.2.1 Absorbance and transmittance

In order to make a link with measurable quantities we computed the reflectance, transmit-
tance, and absorbance as in Eq. 2.27, 2.28 for isotropic 2D systems (see Ref. [88]). Notice,
however, that among the selected polymorphs only δ3, δ5, α′ and α′-Bilayer are isotropic.
Thus for δ6, β12, and α1 we assumed two isotropic sub-systems, one with the in-plane
xx-component, and the second one with the yy-component. Assuming an incident light
beam perpendicular to the plane12 , we show in Fig. 6.15 the results for absorbance and

12Under this condition (incident light beam perpendicular to the plane) the absorbance calculated
from Eq. 2.30 is numerically equivalent to Absorbance = ω

c ε2L, used for example in Ref. [31]: with ω
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transmittance (we have do not show reflectance as it is two orders of magnitude smaller).
The computed absorbance for δ6 and β12 are in agreement with the available results by
Adamska et at.. [31]. We would like to remark once more the case of borophene δ3 as a
transparent metal, with almost zero absorbance within the energy window from 1.3 to 9
eV.

6.2.2 Loss function

Another feature of interest that can be measured experimentally with electron energy loss
spectroscopy (EELS), is the loss function (Eq. 2.23). It is proportional to the imaginary
part of the inverse macroscopic dielectric function, hence it is illustrative to write it as:

Loss function =
Im εM

[Re εM ]2 + [Im εM ]2
(6.2)

Eq. 6.2 shows the influence of Re εM on this property (in contrast to optical absorption):
peaks in Im εM are screened. Moreover, the equation shows that peaks in the loss function
spectra occur when the denominator [Re εM ]2 + [Im εM ]2 → 0. To exemplify the latter
we show in Fig. 6.16 (left upper panel) the calculation of the loss function (Eq. 6.2)
for borophene δ3 with q = (0.125, 0, 0) without crystal local field effects (NLF). For this
polymorph, Fig. 6.16 clearly illustrates the plasmon peak in the loss spectrum, which
shows a single peak when Re εM → 0. This prototypical behavior is due to the simplicity
of the electronic structure: it shows a single peak in Im εM due to transitions t(sp‖ → sp‖)
near the Fermi energy, similarly to the optical spectrum of Fig. 6.5 calculated at q→ 0.

The simple structure of the loss function spectrum does not occur for every polymorph,
for instance, we show in Fig. 6.16 (right upper panel) the case of δ5 with q = (0.166, 0, 0)
(NLF): what immediately stands out is the more complex structure of both real and
imaginary part of εM , and consequently the wide peaks in the loss function. Moreover,
notice that around 12 eV there is a second peak in the loss function: in this case both
Re εM and Im εM are sufficiently small to create a peak in the spectra and thus such peak
is also of plasmonic origin, although less striking that in the crossings where Re εM = 0.
It is worth mentioning that the low-loss plasmons are quantities of interest for plasmonic
applications. In particular because the interband transitions and the plasmons occur in
a slightly different energy range. In this regard, δ3 appears as a good candidate for 2D
plasmonics.

Incorporating the crystal local fields has a strong impact on the dielectric function.
While for δ3 this translates in a small shift of the plasmon frequency towards higher
energies, the effect on δ5 is such that Re εM does not become vanishingly small (or zero),
therefore the structure in the loss function spectra is dominated by the term Im εM .
Hence, closer to absorption. A similar situation occurs for long q’s, where Re εM → 1, so
that limq→∞ Loss function = limq→∞

Im εM
[Re εM ]2+[Im εM ]2

≈ Im εM .
In general the loss function yields information about the dielectric response of the

system, and it allows for easy comparison with EELS13 and IXS14 experiments [70, 86,

the energy of the light beam, c the speed of light, ε2 the imaginary part of the macroscopic dielectric
function, and L the out-of-plane length of the simulation box.

13Electron energy loss.
14Inelastic X-Ray scattering
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Figure 6.15: Absorbance and transmittance of selected polymorphs computed with Eq. 2.27 and 2.28
at incident light beam perpendicular to the in-plane directions (x, y). In all cases, the Absorbance and
[100% − Transmittance] overlap almost perfectly; in fact the reflectance (Eq. 2.27) is two orders of
magnitude smaller, i. e., < 0.05%.
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Figure 6.16: Loss function without crystal local fields (upper panels) and with LF (lower panels) of
borophene δ3 (left panels) and δ5 (right panels). The appearance of the plasmon peak when [Re εM ]2 +
[Im εM ]2 → 0 is clearly identifiable due to the simple electronic structure of δ3. For δ5, on the contrary,
the plasmon peaks are less defined, nonetheless the structure of the loss function can still be related to
the denominator of Eq. 6.2 becoming vanishingly small. Moreover, including local fields has a strong
impact of the dielectric response in-plane for finite q’s.

111, 112]. Thus, we report in Fig. 6.17 the Loss function(q, ω) (plasmon dispersion) for
selected polymorphs including LF. We stress again the fact that not all the structure in
the curves is due to plasmons in the sense of [Re εM ]2 + [Im εM ]2 → 0. In fact, among the
selected polymorphs (and selected q’s) this condition15 is not satisfied for δ5, for α′ and
α′-Bilayer only at q = 0, and for α1 loosely at q = (0.083, 0, 0) and q = (0, 0.1, 0). Only
for δ3 and β12 the plasmon seems well-defined for the shorter q’s: we have identified the
peaks for which Re εM = 0 and Im εM → 0 with black arrows in Fig. 6.16.

Complementary to Fig. 6.17, we show in Fig. 6.18 the plasmon dispersion of β12 along
Γ → X and Γ → Y as a heat map: these images are constructed from the same data
as in Fig. 6.17. There are only 8 q-vectors along each direction, which explains the low
resolution. Nonetheless, the dispersion of the plasmons is clear. It is in agreement with
the calculations of Ref. [29]. The small differences with respect to the work by Haldar
et. al. [29], are due to the different scaling, for example the low-energy (< 1 eV) branch

15For simplification identifying the dispersion of the plasmons we take as reference the “crossing up
the zero line” of Re εM , as pictured for δ3 in Fig. 6.16.
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Figure 6.17: Plasmon disperion of selected polymorphs at finite q’s with LF. δ5, α′, α′-Bilayer and δ3
share the same hexagonal symmetry and we show the dispersion along Γ → M. For β12 and α1 with
tetragonal symmetry we show two directions: Γ → X and Γ → Y. Moreover, the arrows indicate the
peaks were Re εM crosses up the zero line and Im εM becomes small.
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Figure 6.18: Plasmon disperion of β12 with local fields: same data as Fig. 6.17 interpolated along Γ→ X
and Γ→ Y in linear (upper panels) and logarithmic scale (lower panels) in agreement with Ref. [29]. The
low-energy branch (< 1 eV) along Γ→ Y reported in Ref. [29] only appears in the logarithmic scale.

along Γ → Y only appears in the logarithmic scale (Fig. 6.18, lower panels). Moreover,
it is probable that this branch is enhanced due to the denser k-mesh used in Ref. [29] for
the calculation of the loss function: 120 × 140 × 1 for a 2 × 1 × 1 supercell of β12 with
respect to the unit cell in Fig. 1.4, while for our calculations 64× 64× 1.

6.2.3 Conclusions

In this section we showed optical absorption within the random phase approximation.
With the addition of crystal local fields the peak in Im εM out-of-plane vanishes due to
the inhomogeneity of the system in this direction. In contrast, the absorption in-plane
stays almost unchanged. This is true, regardless of the different arrangements of the
vacancies in the atomic structures.

In rder to discuss measurable experimental quantities, we presented absorbance, trans-
mittance and plasmon dispersion of the selected polymorphs. Our results show the po-
tential of the optical properties of borophene δ3 as a transparent conductor, displaying a
large gap in absorbance between 1.3 to 9 eV. Complementary to this, δ5, α′ and α1 show
regions of negligible absorbance although at lower energies (these regions can be tracked
to the calculation of Im εM previously described).
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We showed the appearance of well-defined plasmon peaks in α′, δ3 and β12 (and loosely
in the α′-Bilayer), as well as the plasmon dispersion. These results sum up to the char-
acterization of the dielectric function of these systems, and also, for reference for possible
experimental measurements.



Chapter 7

Nesting of the Fermi surface

In this chapter we investigate the static response of borophene δ6. As we mentioned
in Section 5, this polymorph has been suggested in different works as a possible super-
conductor1 [19, 23]. However, there is no clear understanding about this behavior. For
instance, the critical temperature of borophene δ6 as a superconductor is evaluated in
Refs. [19, 23] in the framework of the McMillan equation, hence on the basis of high
electron phonon-coupling constants:

λq,ν ∝
1

ω2
q,ν

∫
BZ

dk
∑
nn′

δ(εnk − εF )δ(εn′k+q − εF )|gq,ν(k, n, n′)|2 (7.1)

where ωq,ν is the frequency of the phonon, gq,ν the electron-phonon coupling matrix
elements, and the term δ(εik − εF )δ(εjk+q − εF ) describes the topology of the Fermi
surface (FS). Thus, as Xiao et al., pointed out [23], the high EPC constants can come
from two different sources for a given phonon mode: either from the EPC matrix elements
or from the term related to the topology of the FS. In this section we focus on the latter
and we refer to it as “nesting of the Fermi surface”.

Nesting of the FS is a concept that is usually discussed in the context of charge
density waves (CDW) and Kohn anomalies2 [115–118] [119]. In fact, in borophene δ6 the
discussion about nesting of the FS appears because two Kohn anomalies are observed in
its phonon spectrum at momentum transfer3 q̃1 = (0.25, 0, 0), and q̃2 = (0.453, 0, 0) [19].
Fig. 7.1 shows that indeed, they can be linked to the topology of the FS. The appearance
of the Kohn anomalies due to nesting of the FS was suggested by Penev et al. [19], and
later on investigated in terms of the JDOS (equivalent to the nesting term in Eq. 7.1) by
Xiao et al., in Ref. [23].

Here we revisit the problem about the origin of the two Kohn anomalies. Firstly,
because in the original work by Walter Kohn about the later-called Kohn anomalies
these were described on the basis of screening due to virtual transition at the Fermi
surface [119]. Hence, they were linked to the static response of the electronic system, for
which the JDOS is only a part of the story. And secondly, because in the possible origin
of the Kohn anomalies, if nesting exists, the one at q̃1 would occur due to transitions
t(pz → pz), while the second one at q̃2 should be due to transitions t(pz → p‖) (see Fig.
7.2). However, as we have seen earlier the transitions involved in the second case are killed
by symmetry in the transitionless window in the optical spectra of the flat monolayers

1From the evaluation calculation of electron-phonon coupling (EPC) constants, the Eliashberg spec-
tral function and the McMillan equation [66,113,114].

2“Images of the Fermi surface” in the phonon spectra of metals that appear as sharp dips in the
phonon branches.

3The tilde in the q̃ is to refer to the work in Ref. [19]

66
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Figure 7.1: Left: phonon spectra of borophene δ6 calculated by Penev et al., (adapted from Ref. [19]).
The gray and red circles come from the original source: they represent the intensity of the electron-
phonon coupling constants, but we do not address this information. Right: Fermi surface of borophene
δ6 (calculated in this work). The labels Γ′ and Y′ refer to the high-symmetry points in a contiguous
BZ. The solid arrows point out to the Kohn anomalies reported in Ref. [19] (at q̃1 = (0.25, 0, 0) and
q̃2 = (0.453, 0, 0)) as well as to the corresponding nesting vector in the FS according to our calculation
(q̄1 = (0.223, 0, 0) and q̄2 = (0.438, 0, 0)). The dashed arrow describes nesting for q > q̄2.

Figure 7.2: Orbital-resolved band structure of borophene δ6 and Fermi surface. The labels point out to
the same points in the band structure and in the Fermi surface. For instance (a) is mainly pz, (b) py,
and (e) pz + px + py.

(Section 6), and it is therefore not clear whether nesting alone will be sufficient to explain
the Kohn anomaly.

7.1 The static response

In this work, the nesting vectors measured from the Fermi surface along Γ→ X (see Fig.
7.1) are4: q̄1 = (0.223, 0, 0) and q̄2 = (0.438, 0, 0). The closest q-points5 in our 128×64×1
mesh are q1 = (0.21875, 0, 0) and q2 = (0.4375, 0, 0). We computed the static response

4The bar on top of the q (q̄) corresponds to the nesting vector measured from our Fermi surface
calculation of Fig. 7.1.

5The bare q we use it to refer to the q points in our calculations closer to those of the nesting vector
q̄.
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Figure 7.3: Left: Full static response calculation of borophene δ6 including 50 bands. Right: Static
response, JDOS and Overlap calculated only including transitions with energe lower than 0.5 eV. The
latter to simulate only the effect at the Fermi surface. The JDOS and overlap function show two peaks
near the nesting vectors q̄1 and q̄2: at q1 = (0.21875, 0, 0) and q2 = (0.4375, 0, 0). However, the second
peak does not appear in the calculation of the static response. Thus, we conclude that it is killed by the
symmetry of the matrix elements.

for this polymorph in the IPA: [−Re χ0(q, ω = 0)] for q’s inside the IBZ. The result is
shown in Fig. 7.3 (left). Essentially, the spectrum is composed by a large peak with
maximum at q1 and an offset (the lowest point is situated at [−Re χ0(q, 0) = 0.018]).
It seems obvious that the large peak is associated to the nesting vector q̄1, hence to the
quasi-parallel bands in the Fermi surface (Fig. 7.1). Interestingly, there is no trace of
the second nesting vector, q̄2. The question is then whether this is due to the JDOS (as
pointed out in Ref. [23]) or from the matrix elements of the electronic transitions.

First, let us mention that the offset of the spectrum comes from the fact that the real
part of the polarizability is a sum over all pair of states6 (nn′) in Eq. 7.2 (from Eq. 2.20
with ω = η = 0):

− Re χ0
GG′(q, 0) =

∑
nn′

(fn′ − fn)
ρ̃n′n(q + G)ρ̃∗n′n(q + G′)

(εn − εn′)
(7.2)

But now, we are interested in the contribution only of the Fermi surface, so we performed
a second calculation of the static response only including transition near the Fermi energy:
thus, transitions that fulfill the condition |εn−εn′| < 0.5 eV. The result is shown in Figure
7.3. Notice that accounting only for low-energy transitions still recovers the intense peak
at q1. The sharp peak at smaller q’s is due to the fact that the result in the small
q-region is mainly from the low-energy transitions (we elaborate on this in Section 8).
Thus, essentially, neglecting higher energy transitions only eliminates the offset due to
the multiple (nn′) pairs in Eq. 7.2.

With this configuration (only including transitions with |εn − εn′| < 0.5 eV), we
computed the JDOS and the overlap function (Eq. 6.1). The JDOS confirmed nesting of
the FS at q2 = (0.4375, 0, 0) (also with the larger q’s, see dashed arrow in Fig. 7.1). This
is in contrast with Ref. [23] where no peak at q2 was found in the JDOS. The discrepancy

6This is a computational reason why the static response is less studied than, for example, optical
spectra: it requires to include a large number of empty states to converge the sum in Eq. 7.2. On the
other hand, for the computation of nesting of the FS, it is only necessary to know the topology of the FS.
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might arise from the fact that the precise q-point needed to observe this behavior: as
mentioned in Ref. [19], the second anomaly at q̃2 appears in the phonon spectrum at a
single point in the q-mesh.

The overlap function confirmed that the transition at q2 (and larger) are not killed by
overlap but from the symmetry of the matrix elements. Thus, these transitions, even at
large q, display a similar behavior as the ones in the transitionless windows in the optical
spectra of the flat monolayers (Section 6).

Now, making the connection between our calculations and the phonon spectrum cal-
culated in Ref. [19] (Fig. 7.1). Only the first dip at q̃1 is a Kohn anomaly in the sense
of Ref. [119]. The second one at q̃2, must arise from the effect of the electron-phonon
coupling matrix elements, as pointed out in Ref. [23]. This situation in which there is a
different behavior between the JDOS and the static response is also found in other mate-
rials. For instance, in the prototypical example for charge density waves NbSe2 [116], as
well as in TaSe2, and CeTe3 [117].

7.1.1 Tuning the static response

We showed in Section 5, that it is possible to tune the Fermi surface of borophene δ6 based
on the buckling height (∧) and charge doping (rigid shift of the electronic structure). Here
we have shown the link between the Fermi surface and the static response. Thus, it is
interesting to observe how buckling and charge doping influence the static response, for
example for tuning charge density waves in this polymorph. We show in Fig. 7.4 the
static response and Fermi surface as a function of buckling and charge doping (rigid
shift): notice the displacement of the peak in the static response in agreement with the
evolution of the Fermi surface.

The evolution of the intensity of the peaks, however, requires further investigation.
There are different factors playing a role: in particular, the curvature of the semi-parallel
regions in the FS evolve differently by buckling than by charge-doping. This is more
evident in Fig. 5.12: with small buckling the semi-parallel regions in the FS are more
rounded than with electron-doping. With high buckling, the semi-parallel regions are
flatter than with with hole-doping. This explains the different evolution of the static
response between buckling and charge doping. The same evolution also explains why
with increasing buckling the peak increases in intensity: the semi-parallel regions flatten
and enlarge, and so nesting of the Fermi surface (hence the static response) is enhanced.

For charge doping, however, (Fig. 7.4, right) the evolution of the FS is not obvious
(neither from Fig. 5.12). It is probable that that intensity of the peaks is strongly related
to the proximity of the R-band (see Fig. 5.9 for label) to the Fermi level. In the case of
electron-doping (−0.5 eV), the R-band is situated (at Γ) only 0.17 eV below the Fermi
level. For comparison, in δ6(∧ = 0.7 Å), the same band (at Γ) is situated 0.38 eV below
the Fermi energy.

7.2 Connection with phonon spectra

Phonon spectra (as the one in Fig. 7.1) are usually calculated in the framework of density
functional perturbation theory (DFPT) [120]. An important ingredient is the variation of
the external potential with respect to atomic displacements. Another formulation of the
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Figure 7.4: Fermi surface and static response evolution as a function of buckling (left) and charge doping
(right). The evolution of the electronic structure with these two parameters changes the shape of the
Fermi surface (Section 5), which in turn, changes static response.

problem was shown by Pick, Cohen and Martin in 1970 [121]. The authors showed that
the phonon modes can be calculated as a function of the static dielectric function:

C̃αβ
ss′ (q) = ZsZs′

4πe2

Ω

∑
GG′

(q + G)α(q + G′)β

|q + G′|2 ε−1
GG′(q, 0)ei(G·Rs−G′·Rs′ ) (7.3)

where C̃αβ
ss′ (q) describes the interatomic force constants: s (s′) are labels for different atoms

inside the unit cell, Zs the charge of atom s, α and β labels for the Cartesian coordinates,
and Rs the position position of the atom s inside the unit cell. The exponential term in
Eq. 7.3 ensures the periodicity of the equation in reciprocal space.

Eq. 7.3 is a complicated expression. However, the important point for our discussion
is the fact that phonon frequencies can be calculated as a function of the inverse static
dielectric function (hence as a function the static response). This means that even the
information of the Kohn-like anomaly at q̃2 = (0.453, 0, 0) in Fig. 7.1 should be stored
in the full matrix of the static response. In the IPA this is directly determined by:
[−Re χ0

GG′(q, 0)]. So, to highlight this link, we scanned the static response in search
of a signature of an anomaly7 at q2 = (0.4375, 0, 0). To simplify the search we only
looked through the diagonal terms of the static response: G = G′. We show in Fig. 7.5

[−Re χ0
GG(q, 0)] for G = [0, 0, 14] (length: 4.61 Å

−1
), and G = [0, 1, 9] (length: 3.69

Å
−1

).
Fig. 7.5 shows two cusps at the positions of the nesting vectors q1 = (0.21875, 0, 0) and

q2 = (0.4375, 0, 0). As we have seen before (Fig. 7.3), these do not appear in the static

7A sharp feature in the curve at q2 = (0.4375, 0, 0).
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Figure 7.5: Static response of borophene δ6 with G = G′. for two different elements of the matrix.
These elements of the static response show that the static response contains information about the Kohn
anomalies near q1 and q2. Thus, even though the anomaly at q2 does not appear for G = G′ = 0, it
might appear from the sum of multiple other elements in Eq. 7.3.

response calculation for G = G′ = 0. From Eq. 7.3, these components (together with all
other elements GG′) sum up and may yield the two anomalies in the phonon spectra of
Fig. 7.1. Moreover, notice that even for G = [0, 1, 9] (Fig. 7.5, right), where the peak at
q2 = (0.4375, 0, 0) appears more clearly, it is sharp and represented by essentially only one
point in the calculation using our q-point grid. Thus, it is not surprising that different
references show different phonon frequencies for this Kohn-like anomaly (see for example
Refs. [19,20,23,31]). Moreover, as we show in Fig. 7.4 the position of the nesting vectors
can significantly shift upon small variations of the electronic structure. Thus, also the
small structural variations can complicate the finding of this dip in the phonon spectrum.

7.3 The static response in the long q+G range

The static response gives information about the electronic system that can be used, for
example, for the computation of phonons frequencies via Eq. 7.3. Moreover, it is essential
for the discussion of the charge density waves, and Kohn anomalies. Thus, together with
δ6 we selected other cases of interest: β12 (also suggested as a superconductor) [19], and
the simple structures δ3 and BT . The Fermi surfaces and the atomic structures used for
these calculations are shown in Fig. 7.6. The static response for the different polymorphs
parallel to Γ→ X and Γ→ Y is shown in Fig. 7.7: notice the units in the horizontal axis

(Å
−1

) used in order to have comparable shapes of the spectra along the two directions,
(Γ → X) and (Γ → Y), of the same polymorph. Moreover, we add a vertical line at
G = [0.5, 0, 0] and [0, 0.5, 0] for guiding with the dimension of the BZ.

First, let us point out the overall structure: for all polymorphs (both directions)
the static response starts with an offset value. Then, there is a region which contains the

information of the Fermi surface: for example in δ6 this region extends up to q+G = 3 Å
−1

along Γ → X. After that point there is a second region in which the spectrum starts
decaying. This shape is prototypical for the static response. Indeed, for the 2D HEG,
there is a flat region followed by a monotonous decay starting at |2kF | (see Lindhard
function in Refs. [115, 122, 123]). Of course, because the Fermi surface is polymorph-
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Figure 7.6: Atomic structure and Fermi surface of borophene δ6, BT (commensurable with δ6), β12 and
δ3 (commensurable with β12)

specific (see Fig. 7.6), the first region is different for each polymorph. Nonetheless, the
rest of the structure is the similar8.

Another aspect worth remarking from Fig. 7.7 is the complexity of the region related
to the Fermi surface. While only δ6 displays an intense well-defined peak within the IBZ,
the whole region related to the FS in the other polymorphs is full of ups and downs. As
we have seen for δ6 these peaks might differ from the simpler calculations of the JDOS.
Thus, in combination which such calculations, the information of Fig. 7.7 can be used,
for example, for the investigation of charge density waves in these systems.

7.4 Conclusions

In this chapter we investigated the appearance of two Kohn anomalies in borophene
δ6. Firstly, we concluded that nesting of the FS occurs for the same vectors as the
Kohn anomalies reported in the literature. Then, we concluded that only one of the
Kohn anomalies reported in the literature (in our case situated at q1 = (0.21875, 0, 0))
corresponds to a peak in the diagonal in-plane static response. The second one (in our
case at q2 = (0.4375, 0, 0)) is killed by the symmetry of the matrix elements as in the
case of the transitionless windows in Section 6: due to transitions t(pz → p‖). However,
adding out-of-plane elements of the static response [−Re χ0

GG′(q, 0)] with [Gz = G′z 6= 0],
the two anomalies at q1 and q2 can be detected. Indeed, according to the formulation of
the dynamical matrix by Pick, Cohen and Martin [121], these components may also lead
to imaginary phonon frequencies.

Moreover we showed the effect of buckling and charge doping in the static response
of this polymorph (δ6): essentially changing the intensity and position of the peak at q1.
Lastly, we provided the static response of borophene δ6, β12, BT and δ3: these show a
similar background structure. Only a region is modulated by the information of the FS.
These results can be used in combination with JDOS calculations to investigate charge
density waves in these polymorphs, as well as Kohn anomalies.

8δ3 requires further inspection: the shape resembles two HEG with different offsets.
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Figure 7.7: Static response calculculation of borophene δ6, β12, BT and δ3. Left panels: along (Γ→ X),
Right panels: along (Γ → Y). The blue vertical line corresponds to G = [0.5, 0, 0] and G = [0, 0.5, 0],
in the left and right panels, respectively. Overall the spectra of the different polymorphs have a similar
structure. Only the small q + G region is polymoprh specific as it contains the information of the Fermi

surface: for example, δ6 along Γ→ X for q + G < 3 Å
−1

. Note: in order to converge the static response
in the long q + G range we used 300 bands.



Chapter 8

Efficient calculation of the static
response

Computing the static response, i. e., the real part of the polarizability at ω = 0, is far
from a simple task: even though it is evaluated at a single energy, it still requires to
perform the whole sum over transitions nn′ (Eq. 2.20). To exemplify the complexity of
the problem it is more convenient to think about the computation of the polarizability
in terms of electronic transitions: these are directly related to the imaginary part of the
polarizability in the IPA. The real part is related to the imaginary part via the Kramers-
Kronig relations (KK) [124,125]:

Reχ(ω) = − 1

π
P

∫ ∞
−∞

dω′
Imχ(ω′)

ω − ω′

Imχ(ω) =
1

π
P

∫ ∞
−∞

dω′
Reχ(ω′)

ω − ω′
(8.1)

Thus, in order to obtain the real part, we must integrate Eq. 8.1 over the whole range
of energies [−∞,+∞]. In practice we do not necessarily perform KK to obtain one from
the other. Nonetheless, Eq. 8.1 shows that to know a single value Reχ(ω0) we must
know Imχ(ω) over the whole range of frequencies. This translates into converging the
calculation with respect to the number of conduction states (empty bands).

From Section 7, it is clear that there are general features among the static response
of different polymorphs: for example, the q-dependence of the static response has a
resemblance with that of of the 2D HEG, namely a semi-flat region for q from 0 to
a given value (which for the HEG is well-defined at 2|kF |), followed by a monotonous
decay. The semi-flat region contains information of the Fermi surface (for example the
large peak in borophene δ6), but seems to be embedded in some general shape common
to all polymorphs and which resemble the shape of the Lindhard function for the 2D
HEG [122]. This common feature of the static response motivated us to develop an
approximated method that does not require the full computation of the response via Eq.
2.20.

In particular, the numerical difficulty resides in computing explicitly Eq. 2.20 with
many conduction states. In order to illustrate the problem, let us focus only on the
numerator of Eq. 2.20 (the resonant part with n ≡ c ≡ conduction and n′ ≡ v ≡ valence),
which has the structure NUM ∝∑vc 〈v| Ô |c〉 〈c| Ô† |v〉, where the sum over all valence and
conduction states form a complete basis. Thus we could use the closure (or completeness)
relation:

74
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∑
n

|n〉 〈n| =
∑
v

|v〉 〈v|+
∑
c

|c〉 〈c| = 1∑
c

|c〉 〈c| = 1−
∑
v

|v〉 〈v|
(8.2)

and simplify the numerator to a sum only over valence states: NUM ∝∑v 〈v| ÔÔ∗ |v〉 −∑
vv′ 〈v| Ô |v′〉 〈v′| Ô∗ |v〉. This is a relevant point for situations in which Nv << Nc (with

Nv the number of valence states), hence in the computation of the static response. Eq.
2.20 however, contains also the denominator, which is made of energy differences (εc−εv),
so we cannot straightforwardly use the closure relation of Eq. 8.2. In order to use this
concept it is necessary to either directly approximate (εc− εv) to a function that does not
depend on the valence and conduction states, or to find an equivalent expression for Eq.
2.20 in which we can evaluate the energy difference (εc − εv) differently. For instance, we
can use the fact that εc and εc are eigenvalues of the Hamiltonian Ĥ, and c and v the
corresponding eigenfunctions (see Ref. [126]). Thus, the aim of this Section is to find an
expression for (χ0) 1 at ω = 0 that allows us to relate:

χ0 ∝
∑
vc

〈v| Ô |c〉 〈c| Ô∗ |v〉
(εc − εv) (8.3)

to terms like ∑
vc

〈v| Ô |c〉 〈c| Ô∗ |v〉 (εc − εv)m (8.4)

In this way, for example for m = 1, the expression can be written in terms of the commu-
tator (Ref. [126]):

χ0 ∝
∑
vc

〈v| Ô |c〉 〈c| Ô∗ |v〉 (εc − εv) ∝
∑
vc

〈v|
[
Ô, Ĥ

]
|c〉 〈c| Ô∗ |v〉 (8.5)

so that we can apply the closure relation:

χ0 ∝
∑
v

〈v|
[
Ô, Ĥ

]
Ô∗ |v〉 −

∑
vv′

〈v|
[
Ô, Ĥ

]
|v′〉 〈v′| Ô∗ |v〉 (8.6)

In this regard we highlight the work of Berger, et. al., on the so-called “effective energy
technique” (EET) [127–129]. In this, the authors developed a method that allows one to
write the polarizability as an explicit functional of the one-body reduced density matrix,
that can be used in a GW calculation for band gaps where χ0 is evaluated in the imaginary
frequency axis (see Ref. [129]). The present work is inspired by Ref. [129] with the aim
to investigate the q-dependence of the static response, [−Re χ0

GG′(q, ω = 0)]. Both, the
work of Ref. [129] and the present one are based on Taylor expansions; they are equal at
first order, but differ at higher orders.

It is worth pointing out that our interest in the “effective energy technique” for the
computation of the static response derived from the expensive calculations performed in

1We consider only the “resonant” term for simplicity, the antiresonant part has a similar structure
and thus it can be easily generalized.



Efficient calculation of the static response 76

Section 7. However, computing the static polarizability (hence the static dielectric func-
tion) is of general interest [130,131]. For example, the static response yields the interaction
kernel of the Bethe-Salpeter equation [132,133], and it is an important ingredient for GW
approximations + plasmon pole models [70, 131].

The starting point

For the sake of simplicity we present hereafter the notation that we use all along this
Section. We start from the Kohn-Sham polarizability in reciprocal space (Eq. 2.20) that
reads:

χ0
GG′(q, ω) =

2

Ωk

∑
nn′,k

(fn′,k−q − fn,k)
〈n′,k− q| ei(q+G)·r |n,k〉 〈n,k| e−i(q+G′)·r′ |n′,k− q〉

ω − (εn,k − εn′,k−q) + iη

(8.7)
where Ωk = Vcell · Nk, with Vcell the volume of the unit cell and Nk the number of k-
points. For simplicity we express the numerator in terms of transition matrix elements
ρ̃n′n(q + G) ≡ 〈n′,k− q| ei(q+G)·r |n,k〉 an we include the normalizing factor 2

Ωk
in the

numerator. Thus, Eq. 8.7 in simplified notation becomes (this is the same equation as
Eq. 2.20):

χ0
GG′(q, ω) =

∑
nn′

(fn′ − fn)
ρ̃n′n(q + G)ρ̃∗n′n(q + G′)

ω − (εn − εn′) + iη
(8.8)

Moreover, because of the presence of the occupation numbers, fn, we can divide Eq.
8.8 in two pieces: transitions from occupied to empty states for which (fn′ − fn) > 0, and
which we refer to as “resonant”, R:

χ0,R
GG′(q, ω) =

∑
vc

(fv − fc)
ρ̃vc(q + G)ρ̃∗vc(q + G′)

ω − (εc − εv) + iη
(8.9)

and transitions for which (fn′ − fn) < 0, and which we denote as “antiresonant”, AR:

χ0,AR
GG′ (q, ω) =

∑
vc

(fc − fv)
ρ̃cv(q + G)ρ̃∗cv(q + G′)

ω + (εc − εv) + iη
(8.10)

hence,

χ0
GG′(q, ω) = χ0,R

GG′(q, ω) + χ0,AR
GG′ (q, ω) (8.11)

Notice that ρ̃vc(q + G) 6= ρ̃cv(q + G). Indeed,

ρ̃vc(q + G) ≡ 〈v,k− q| ei(q+G)·r |c,k〉 (8.12)

ρ̃cv(q + G) ≡ 〈c,k− q| ei(q+G)·r |v,k〉 (8.13)

In general, the resonant and antiresonant terms of the polarizability do not describe the
same transitions, as shown in Fig. 8.1. In order to calculate the response (regardless of
the energy) both resonant and antiresonant terms need to be explicitly taken into account.
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Figure 8.1: Schematic diagram of a resonant and an antiresonant transition in a semiconductor: both
transitions share the same q-vector, nonetheless they describe different transitions in the electronic struc-
ture.

Nonetheless, both equations have the same structure and, for the sake of simplicity, here
we focus on the resonant part only (Eq. 8.9).

In order to deal with metals we have to make another separation of terms in Eq. 8.9:
distinguishing between (resonant) transitions from fully occupied to empty states, and
transition involving states with fractional occupation numbers2:

χ0,R
GG′(q, ω) =

full∑
v

empty∑
c

ρ̃vc(q + G)ρ̃∗vc(q + G′)

ω − (εc − εv) + iη
+

frac∑
vc

ρ̃vc(q + G)ρ̃∗vc(q + G′)

ω − (εc − εv) + iη
(8.14)

the first term in the right side of Eq. 8.14 completely describes resonant transitions
in semiconductors, while for metals both terms must be taken into account. We will
discuss later the case of metallic systems, for the moment we focus on the simpler case of
semiconductors (analogously to Refs. [127–129]): we selected silicon as the prototypical
example.

8.1 Taylor expansion

As we mentioned earlier, the aim of this section is to find an expression that allows us to
write Eq. 8.14 in a more convenient manner to use the closure relation (Eq. 8.2), so that
we can simplify the problem to the sum over only occupied states. For ω = 0 we have:

χ0,R
GG′(q, 0) =

full∑
v

empty∑
c

ρ̃vc(q + G)ρ̃∗vc(q + G′)

−(εc − εv)
(8.15)

Notice that we also set iη = 0 as this quantity is vanishingly small and in the static
limit (ω = 0) of a semiconductor the polarizability is a purely real quantity. Now, as the
simplest scenario we propose to add and subtract a constant number δ in the denominator

2To be precise in the case of metallic systems the transition is continuous. The separation of terms
proposed in Eq. 8.14 is simply illustrative to separate semiconducting from metallic cases. We discuss
later, in Eq. 8.40, the case of a metallic system.



8.1. Taylor expansion 78

of Eq. 8.15, with the single condition that | δ−(εc−εv)
δ
| � 1. Of course, here there is only

one δ and many transition energies (εc− εv). Let us assume for the moment that a δ can

be found such that | δ−(εc−εv)
δ
| is small enough for every combination of v and c. Defining

θcv = δ − (εc − εv), Eq. 8.15 becomes:

χ0,R
GG′(q, 0) =

∑
vc

ρ̃vc(q + G)ρ̃∗vc(q + G′)

θcv − δ
(8.16)

If θcv
δ

is small enough, we can Taylor-expand Eq. 8.16 around θcv = 0 , thus obtaining:

χ0,R
GG′(q, 0) =

∞∑
m=0

∑
vc

ρ̃vc(q + G)ρ̃∗vc(q + G′)

[
(−1)m

(θcv)
m

(−δ)m+1

]
(8.17)

where m is the order of the expansion. Notice from Eq. 8.17 that the denominator does
not depend neither on the valence nor on the conduction states, and so we can rewrite
Eq. 8.18 in the form:

χ0,R
GG′(q, 0) =

∞∑
m=0

(−1)m

(−δ)m+1

∑
vc

ρ̃vc(q + G)ρ̃∗vc(q + G′) [δ − (εc − εv)]m (8.18)

The latter expression is very illustrative of what our goal was: obtaining an expression
that does not depend on εc or εv in the denominator as in Eq. 8.9. Nonetheless, to obtain
χ0,R
GG′(q, 0) we must expand to infinite orders, and moreover, define a constant value δ

that fulfills the condition 1
δ
|δ − (εc − εv)| < 1 for every combination3 of (εc − εv).

Delimiting the problem

In Eq. 8.16 we introduced δ simply as a mathematical trick to Taylor expand the func-
tion in terms of θcv

δ
, nonetheless this is a very rough approximation: it assumes that all

transitions between valence and conduction states have a similar transition energy ≈ δ,
which, in general, is not the case. For example, we show in Fig. 8.2 the band structure
of silicon with 46 conduction bands: the lowest conduction band is situated (in average)
at 2.1 eV above the Fermi level, while the highest band at almost 54 eV. In the right
panel of Fig. 8.2 we show the static response (resonant) computed brute-force with Eq.
8.15 using different numbers of conduction states, Nc. One can see that many bands are
needed to describe −Reχ0,R

GG(q), specially for longer wave vectors. Up to |q + G| ≈ 1.5,
Nc = 46 yields a good description as compared to a calculation using Nc = 496, which in
fact is reliable up to |q + G| ≈ 3

Regarding the selection of δ, we propose to define it as an arithmetic average between
the smallest and the largest transition energies for q’s within the irreducible Brillouin
zone:

δ =
1

2Nq

∑
q∈IBZ

[(εc − εv)max + (εc − εv)min] (8.19)

3Regarding the antiresonant part it is easy to see that we can perform an analogous expansion with
the only difference that we must define δAR = −δ, thus χ0,AR

GG′ (q, 0) takes the same form of Eq. 8.18 with
the antiresonant matrix elements.
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Figure 8.2: Silicon band structure and static response computed from Eq. 8.15: the colors in the two
figures correspond to the same number of bands. Notice that at Nc = 46 the maximum of the static
response is reproduced. For large q + G’s a larger number of conduction bands is needed. Moreover, in
the band structure we have indicated the value of δ = 37 eV: it corresponds to minus the mid value of
the valence states plus the mid value of the first 46 conduction states.

Thus, for Si with 50 bands, δ = 37 eV (see Fig. 8.2). In this way, | δ−(εc−εv)
δ
| < 1 for all c,

v.

Convergence of the series

First of all we have to study whether the Taylor expansion is at all a viable strategy in
practice. In theory we know that Eq. 8.18 is not a converging series for 1

δ
|δ−(εc−εv)| > 1,

but here for a given choice of δ some {v, c} pairs will make the series to converge very
quickly while others will make the convergence difficult. As high orders are straightforward
to compute, we tested the convergence numerically: we show in Fig. 8.3 (left panel)
−Reχ0,R

GG′ as computed from Eq. 8.18 for m = 1, 2, . . ., 10, 12, 14, 16, 18, 20, 60, 80,
100, 200. Notice that the response calculated from Eq. 8.18 converges slowly towards the
benchmark. We show in Fig. 8.3 the difference between the calculations using the Taylor
expansion with m = 60, 80, 100, 200 and the benchmark with 46 conduction bands: at
m = 200 we reach the numerical precision of our calculation. Indeed, the result improves
significantly in the first 5 orders, but high orders are needed if a precision of less than 1%
is required.

The need to account from transition with [δ 6= εc − εv] is particularly evident for the
lower conduction bands: in these, the energy difference |εc − εv| is smaller, and since the
real part of Eq. 8.9 evolves as

∑
vc |εc − εv|−1, these transitions (each) have a higher

impact on the shape of the spectra: we can see in Fig. 8.2 (right) how much the spectra
improves by adding few conduction states. The fast convergence of the series at long q’s
might be due to the choice of δ being well suited for those bands.

Taylor-expanding Eq. 8.15 seems to be a promising direction to approximate the static
response of a semiconductor, however it converges very slowly and high-order derivatives
are necessary. This problem arises because we are expanding the function around a single
effective transition energy δ. There are different manners in which this difficulty could be
tackled: for example separating the conduction states into different regions as proposed
in Ref. [134], or adding degrees of freedom to δ. In the following section we propose to
substitute (εc − εv) in Eq. 8.15 by an unknown function ∆(q,G,G′), in the spirit of the
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Figure 8.3: Left: static response of silicon computed with Eq. 8.18 (Taylor expansion) at different orders
(m): from m = 0 (lowest) to m = 200 (converged to the full calculation with Eq. 8.15 and Nc = 46).
Right: difference between the full calculation and the higher-order calculations: at increasing orders the
series converges slowly in height and peak position.

EET of Ref. [129].

8.2 Inverting the problem: the ∆ function

Now we go back to Eq. 8.15, the original function we want to approximate. We already
know that we can expand it as a Taylor series (Eq. 8.18). The resulting function converges
for an appropriate selection of the average transition energy, δ and the result depends on
the order of the expansion. In order to tackle this problem, as in Ref. [129] we introduce
a function ∆R ≡ ∆R(q,G,G′, ω = 0) that does not depend on the conduction nor on the
valence states but that reproduces Eq. 8.15:

χ̃0,R
GG′(q, 0) =

1

−∆R

full∑
v

empty∑
c

ρ̃vc(q + G)ρ̃∗vc(q + G′) (8.20)

Since the function ∆R, by definition, does not depend on the conduction or valence states
we have written it outside the sum. Moreover, notice that Eq. 8.20 yields the exact
χ̃0,R
GG′ = χ0,R

GG′ for:

∆R,(exact) = −
∑

vc ρ̃vc(q + G)ρ̃∗vc(q + G′)

χ0,R
GG′(q, 0)

(8.21)

Of course, the difficulty resides in finding the function ∆R. To find a reasonable approxi-
mation, we Taylor-expand also χ̃0,R

GG′ in Eq. 8.20, which yields:

χ̃0,R
GG′(q, 0) =

∞∑
m=0

(−1)m(δ −∆R)m

(−δ)m+1

∑
vc

ρ̃vc(q + G)ρ̃∗vc(q + G′) (8.22)

We now suppose that a ∆ that well-reproduces some mth-order approximation will also
well-reproduce the whole series. This is us a prescription for ∆R at m-th order: ∆R,(m).
Let us look at the first-order approximation, ∆R,(1). In order to simplify the notation
we call MR

vc ≡ ρ̃vc(q + G)ρ̃∗vc(q + G′) and εcv ≡ (εc − εv). By Taylor-expanding χ̃0,R
GG′
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and χ0,R
GG′ around [δ − εcv] = 0 and [∆R,(1) − εcv] = 0, respectively, imposing equality and

solving for ∆R,(1):

∑
vc

MR
vc

−δ −
∑
vc

MR
vc [δ − εcv]
(−δ)2

=
∑
vc

MR
vc

−δ −
∑
vc

MR
vc

[
δ −∆R,(1)

]
(−δ)2

1

(−δ)2

∑
vc

MR
vc [δ − εcv] =

[
δ −∆R,(1)

]
(−δ)2

∑
vc

MR
vc

δ
∑
vc

MR
vc −

∑
vc

MR
vcεcv = δ

∑
vc

MR
vc −∆R,(1)

∑
vc

MR
vc∑

vc

MR
vcεcv = ∆R,(1)

∑
vc

MR
vc

(8.23)

This yields an expression for ∆R to first order which depends on the matrix elements and
the energy difference (εc − εv), the latter in the numerator:

∆R,(1) =

∑
vc MR

vcεcv∑
vc MR

vc

(8.24)

We can do the same to second order, ∆R,(2):

∑
vc

[
MR
vc

−δ −
MR
vc [δ − εcv]
(−δ)2

+
MR
vc [δ − εcv]2

(−δ)3

]
=
∑
vc

[
MR
vc

−δ −
MR
vc

[
δ −∆R,(2)

]
(−δ)2

+
MR
vc

[
δ −∆R,(2)

]2
(−δ)3

]
∑
vc

[
MR
vc [δ − εcv]
(−δ)2

− MR
vc [δ − εcv]2

(−δ)3

]
=
∑
vc

[
MR
vc

[
δ −∆R,(2)

]
(−δ)2

− MR
vc

[
δ −∆R,(2)

]2
(−δ)3

]
∑
vc

MR
vc

[
δ − εcv −

[δ − εcv]2
−δ

]
=

[
δ −∆R,(2) −

[
δ −∆R,(2)

]2
−δ

]∑
vc

MR
vc

∑
vc

MR
vc

[
εcv +

[δ − εcv]2
−δ

]
=

[
∆R,(2) +

[
δ −∆R,(2)

]2
−δ

]∑
vc

MR
vc

1

−δ
∑
vc

MR
vc

[
εcv(−3δ) + δ2 + ε2

cv

]
=

1

−δ
[
∆R,(2)(−3δ) + δ2 +

(
∆R,(2)

)2
]∑

vc

MR
vc∑

vc

MR
vc

[
εcv(−3δ) + ε2

cv

]
=
[
∆R,(2)(−3δ) +

(
∆R,(2)

)2
]∑

vc

MR
vc

(8.25)
At each order the problem gets more complicated; for the second order approximation we
have to to solve a second order equation:

(
∆R,(2)

)2
+ (−3δ)∆R,(2) − (−3δ)

∑
vc MR

vcεcv +
∑

cv MR
vcε

2
cv∑

vc MR
vc

= 0 (8.26)

Solving for ∆R,(2) we obtain:

∆R,(2) = ±1

2

√
4
∑

vc MR
vc [ε2

cv − 3δεcv]∑
vc MR

vc

+ (3δ)2 +
3δ

2
(8.27)



8.2. Inverting the problem: the ∆ function 82

In general, finding an expression for ∆R,(m) is reduced to finding the roots of a poly-
nomial of order m. This is not trivial and adds another layer in the problem: the in-
terpretation of the different solutions. For instance ∆R,(2) in Eq. 8.27 has two different
solutions; in order to understand which of them fulfills the initial conditions | δ−εcv

δ
| < 1

and | δ−∆R

δ
| < 1 let us simplify Eq. 8.27 to a single-transition scenario. In this case we

should find ∆ = εcv if δ = εcv is chosen. The quadratic equation yields:

∆
R,(2)
single,± = ±1

2

√
4MR

vc [ε2
cv − 3δεcv]

MR
vc

+ (3δ)2 +
3δ

2

= ±1

2

√
4 [ε2

cv − 3δεcv] + (3δ)2 +
3δ

2

= ±1

2

√
[2εcv − 3δ]2 +

3δ

2

= ±1

2
|2εcv − 3δ|+ 3δ

2

(8.28)

For δ = εcv, ∆
R,(2)
single,+ = 2εcv, while ∆

R,(2)
single,− = εcv. Thus, the better and also more

physical solution corresponds to the negative root of Eq. 8.27:

∆R,(2) = −1

2

√
4
∑

vc MR
vc [ε2

cv − 3δεcv]∑
vc MR

vc

+ (3δ)2 +
3δ

2
(8.29)

Different series

In order to avoid solving high order equations we can rewrite Eq. 8.15 in a different
manner. In particular, using the equality 1

1−x = 1 + x
(

1
1−x

)
we can obtain an exact

expression for Eq. 8.15 expanded as a polynomial:

χ0,R
GG′(q, 0) =

∑
cv

MR
vc

(−δ)− (εcv − δ)
=
∑
cv

MR
vc

(−δ)
1

1− ( εcv−δ−δ )

=
∑
cv

MR
vc

(−δ) +
∑
cv

MR
vc

(−δ)

(
εcv − δ
−δ

)(
1

1− ( εcv−δ−δ )

)

=
∑
cv

MR
vc

(−δ) +
∑
cv

MR
vc

(−δ)

(
εcv − δ
−δ

)
+
∑
cv

MR
vc

(−δ)

(
εcv − δ
−δ

)2
(

1

1− ( εcv−δ−δ )

) (8.30)

This series can be continued, neglecting εcv−δ
−δ in the last term bring us back to the Taylor

expansion. Instead, here the idea is to directly approximate the lastcontribution. The

hope is that a low-order expansion will be sufficient, since a factor
(
εcv−δ
−δ

)2
is already

present. Taylor-expanding to first order only the very last term of Eq. 8.30 we obtain:

∑
cv

MR
vc

(−δ)

(
εcv − δ
−δ

)2
(

1

1− ( εcv−δ−δ )

)
≈
∑
cv

MR
vc

(−δ)

(
εcv − δ
−δ

)2(
1 +

εcv − δ
−δ

)
(8.31)
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Notice that this is first-order expansion of a second-order term in the polynomial of
Eq. 8.30 and thus it acts as third-order correction for the full polynomial. In order to
differentiate it from a straightforward 3rd-order expansion analogous to Eq. 8.29, which
would yield a 3rd-order equation, we denote it as ∆̃R,(3). The derivation is:

∑
cv

MR
vc

(−δ)

(
εcv − δ
−δ

)2(
1 +

εcv − δ
−δ

)
=
∑
cv

MR
vc

(−δ)

(
εcv − δ
−δ

)2
(

1 +
∆̃R,(3) − δ
−δ

)
∑
cv

MR
vc (εcv − δ)2 [(−δ) + (εcv − δ)] =

∑
cv

MR
vc (εcv − δ)2

[
(−δ) + (∆̃R,(3) − δ)

]
∑
cv

MR
vc (εcv − δ)3 =

∑
cv

MR
vc (εcv − δ)2 (∆̃R,(3) − δ)

(8.32)

Therefore4:

∆̃R,(3) = δ +

∑
cv MR

vc (εcv − δ)3∑
cv MR

vc (εcv − δ)2 (8.33)

It is convenient to remark that ∆̃R,(3) enters only in the very last term of Eq. 8.30, so we
can simplify Eq. 8.30 for χ̃0,R

GG′(q, 0) with ∆̃R,(3) as:

χ̃0,R
GG′(q, 0) = −1

δ

∑
cv

MR
vc

[
1− εcv − δ

δ
+

(εcv − δ)2

δ ∆̃R,(3)

]
=

1

δ2

∑
cv

MR
vc

[
εcv −

(εcv − δ)2

∆̃R,(3)

] (8.34)

Taylor series vs the ∆ function

Summarizing the previous section we obtained three equations: Eq. 8.24 and Eq. 8.29 for
∆R,(m) for m = 1 and 2, respectively, and Eq. 8.33 for ∆̃R,(3). Now we will test numerically
these approximations and compare them with the simple Taylor expansion of the static
response (Eq. 8.18). Thus, we calculated ∆R,(1) and ∆R,(1)(δ = 37 eV), and ∆̃R,(3)(δ =
37 eV) and plugged them in Equations 8.20 and 8.34 to obtain the approximated static
response, χ̃0,R

GG′(q, 0): the results are shown in Fig. 8.4.
Let us start by pointing out the convergence of the curves with respect to the full

calculation using Eq. 8.15 with Nc = 46. At short q’s (q < (0.5, 0, 0)) using the ∆
function (any order) gives a better approximation to the full calculation than only the
Taylor expansion at similar order: this is particularly evident at the shortest q = (0.1, 0, 0)
where the curves calculated with ∆ almost overlap with the full calculation. The relative
errors at q = (0.1, 0, 0) with respect to the exact result is ∼ 14% by using ∆R,(1), ∼ 11%
with ∆R,(2) and ∼ 7% with ∆̃R,(3), while for the Taylor series the relative error is as high
as ∼ 60% with m = 3. We will come back later to this good approximation of the static
response at the shorter q’s. For the moment let us emphasize that using the ∆R function
seems a promising way to approximate the static response of a semiconductor.

4Analogously, following Equations 8.30, 8.31, 8.32 we can obtain ∆̃R to different orders: we can see

from Eq. 8.32 that we can generalize it for the m-th order as ∆̃R,(m) = δ +
∑

cv MR
vc(εcv−δ)

m∑
cv MR

vc(εcv−δ)m−1 .
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Figure 8.4: Static response of Si approximated with the ∆-method: ∆R,(1) (Eq. 8.24), ∆R,(2) (Eq. 8.29)
and ∆̃R,(3) (Eq. 8.33), and with the Taylor expansion (Eq. 8.18) at similar orders. Using ∆ yields a
closer result to the exact one than Taylor expansion: even at the lowest order (1), the response at the
small q = (0.1, 0, 0) is converged, and in general the performance of using ∆ is better order-by-order, for
the same computational cost.

Another point worth remarking is regarding ∆R,(1): it gives a good approximation for
short and long q’s without the need of a parameter as the “average transition energy”,
δ. This is not a minor point, taking δ to be the arithmetic average of transition energies
may not be the optimal choice. The final goal is to use the closure relation to account
for all conduction states, thus having a converging function that does not depend on
defining a converging transition energy is crucial for the implementation. In the search
of improved parameter-free approximations, we could think of using ∆R,(1) in the place of
δ: both behave as an average transition energy, but while δ is just an arithmetic average
(constant), ∆R,(1) has the same degrees of freedom as χ̃0,R

GG′ . Hence, by construction, it
is an average with information of the system, in particular with the information of the
matrix elements. We will explore this in Section 8.3, but first, let us get more insight
concerning ∆.

8.2.1 How does ∆ look like?

The exact ∆R is an effective energy which is a function of q, G and G′ with one-to-one
correspondence with χ0,R

GG′ . Now we want to investigate how this function behaves. For

reference, from the equality χ0,R
GG′ = χ̃0,R

GG′ with χ̃0,R
GG′ obtained from Eq. 8.20 we can write

an expression for the exact ∆R (see Eq. 8.21), and similarly for ∆̃R,(3) from Eq. 8.34:

∆̃
R,(3)
exact = −

[∑
vc

MR
vc (εcv − δ)2

][
δ2χ0,R

GG′(q, 0)−
∑
vc

MR
vcεcv

]−1

(8.35)

Notice that in contrast with ∆R,(exact) (Eq. 8.21), ∆̃
R,(3)
exact depends on the on the choice of

δ (Eq. 8.35). We have plotted in Fig. 8.5 the different approximations with the exact ∆R
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Figure 8.5: Left: ∆R as a function of q+G: exact (Eq. 8.21) and first and second-order approximations

(Eq. 8.24 and 8.29, respectively). Right: ∆̃
R,(3)
exact (Eq. 8.35) and approximated (Eq. 8.33) with δ = 37 eV.

Despite the complexity of the curves, the different approximations for ∆R manage to follow the exact
results. Moreover, there is a clear improvement between the first and second order approximations in the
left panel.

functions for Si with Nc = 46 and using δ = 37 eV.
Regardless of the complexity of the curves there is a clear resemblance between the

approximated functions and the exact ones. Moreover, there is a noticeable improvement
between the first and second order of ∆R (Fig. 8.5, left panel), which is more evident at
the longer q’s (between q = (3, 0, 0) and (6,0,0)). Still, major differences can be observed
between q = (0.1, 0, 0) and (2, 0, 0). These were already expected from the differences in
the static response (Fig. 8.4). On the other side ∆̃R,(3) shows the major difference with
respect to the exact function (Fig. 8.5, right panel): this does not result astonishing at
the level of the ∆R function given that ∆̃R,(3) is obtained from a first-order approximation
(Eq. 8.32). Nonetheless, the closer values to the full calculation of the static response
(Fig. 8.4) are due to the fact that ∆̃R,(3) is used to approximate a smaller part of the
function (only the very last term of Eq. 8.34).

At this stage, what results surprising is the complexity of the curves at long q’s,
especially given the simple evolution of the static response in this region. See for example
Fig. 8.4 with Nc = 46, after q = (1, 0, 0) the curve starts decaying and the details
observed in ∆R,(exact) do not seem to appear. In this region the static response is not
converged anymore with respect to the number of bands (Fig. 8.2, right panel). Thus,
the ∆R function seems very sensible to the information in the matrix elements MR

vc. In
order to verify the latter, we computed ∆R,(exact) with Nc = 496 (500 bands): we show

the comparison with ∆
R,(exact)
50 bands in Fig. 8.6.

For the shorter q’s (q < (1, 0, 0)) ∆
R,(exact)
50 bands is numerically equivalent to ∆

R,(exact)
500 bands

(expected from the convergence of the static response in Fig. 8.2), however at longer q’s
there is an enormous discrepancy between the two functions. In the static response of Fig.
8.2 this difference gets masked, because for long q’s the static response decays to zero.
Moreover, it is interesting to notice that at q’s approximately between q = (2, 0, 0) and
(4,0,0) ∆R,(exact) evolves similar to the energy of a plane wave, ∝ 1

2
|q + G|2, in agreement

with the 0th term in the original development of the effective energy technique by Berger
et al [127–129]. In fact, from Fig. 8.6 (left panel) we can differentiate among two different
regions for ∆R,(exact): essentially linear for q < (2, 0, 0) and quadratic for longer q’s.
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Figure 8.6: ∆R,(exact) for 50 and 500 bands (Nc = 46 and 496, respectively) calculated with Eq. 8.21.
The right panel is a zoom on the left panel. Only for short q’s the curves coincide, after q = (1, 0, 0)

there is a huge discrepancy among the two functions. This difference is associate to ∆
R,(exact)
50 bands not being

converged for long q. This behavior is already present in the static response calculations of Fig. 8.2.

8.3 The challenge of many conduction states

Ideally we want to find a unique approximation to compute the static response as a
function of q and we have already seen that using the ∆R function promises a good path
for development. However we have seen that the exact ∆R function strongly depends on
the number of bands, and so to obtain a clearer perspective of the function we now turn
to the calculation of the static response (full and approximated) with 500 bands. In the
approach with the average transition energy δ, this imposes a major complication, as now
δ must account for transitions up to ∼ 300 eV. Using 500 bands in total (Nc = 496) the
arithmetic average for the effective transition energy yields δ = 158 eV. Nevertheless,
given the long range of energies it is interesting to show how ∆R,(2) and ∆̃R,(3) change
with respect to this parameter. We show in Fig. 8.7 both functions for selected values of
δ.

As in the case of 50 bands (Figs. 8.4 and 8.5), we notice an improvement in the
static response calculated using ∆R,(2) and ∆̃R,(3) with δ = 150 eV, with respect to ∆R,(1)

(parameter-free). However in this case it is much less pronounced. In fact, using ∆R,(2)

there is no much benefit with respect to ∆R,(1): overall it describes the same curve and,
as ∆R,(1), it fails to describe the region between (0.5, 0, 0) and (3, 0, 0) (Fig. 8.7, upper
right panel). Moreover, when δ becomes too small5 (see δ = 37) the function suddenly
diverges. We can understand this behavior from Eq. 8.29 as the competition between the
negative term (the square root) and the positive term 3

2
δ: when ε2

cv = 3δεcv, ∆R,(2) = 0
hence Eq. 8.20 diverges. The latter gives us an exact constraint for the selection of δ:

δ >
1

3
εcv (8.36)

In Fig. 8.7 the constraint of Eq. 8.36 is evidently violated at around q ≈ (2.5, 0, 0)
for δ = 37 eV. Nonetheless, it is interesting to notice that previous to the divergence
χ̃R,0
GG′ with ∆R,(2) gets closer to full calculation (χR,0

500 bands in Fig. 8.7). This is clear at

q ≈ (1, 0, 0), as the value of χ̃R,0
GG′ calculated with ∆R,(2)(δ = 37 eV) lies in the middle

between the approximations with the other values of δ and the exact curve, although δ =

5For instance with respect to the average transition energy δ = 158 eV.
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Figure 8.7: Upper panels: ∆R,(2) (left) and static response (right) calculated with Eqs. 8.29 and 8.20,
respectively with different δ values. Lower panels: ∆̃R,(3) (left) and static response (right) with different
δ values, caculated with Eq. 8.33 and Eq. 8.34, respectively. We included the static response calculated
with ∆R,(1) (Eq. 8.24) for comparison as well as the exact result. Both, ∆R,(2) and ∆̃R,(3) strongly vary
with the average transition energy δ. In the case of ∆R,(2) this dependence provokes the divergence of
the static response when ε2cv = 3δεcv.

37 eV is small with respect to the average transition energy of 158 eV. This observation
suggests the need of including the q-dependence of the static response in different regions;
for example using a small δ to approximate the shorter q’s and a larger one for the larger
q’s. Notice that this is analogous to our comment about splitting ∆R,(exact) for the two
different regions (linear and quadratic) observed in the exact curve in Fig. 8.6.

∆̃R,(3) also shows significant changes with different δ values (Fig. 8.7, lower panels),
for instance in the range between (1, 0, 0) and (4, 0, 0). However these differences are
not as large as for ∆R,(2) and they are even less pronounced in the static response (Fig.
8.7, lower right panel). Again, this is because ∆̃R,(3) only approximates a small part in
the polynomial of Eq. 8.30. From now on we focus only on ∆R,(2) as it gives a clearer
connection between the ∆R function and the static response via Eq. 8.20.

8.3.1 ∆R,(2) parameter-free

We commented previously about the possibility of using ∆R,(2) splitting the study of the
static response in two different regions. However we still need to develop a method to do
it consistently. To this aim we first propose to use δ = ∆R,(1) in ∆R,(2). Based on the
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Figure 8.8: ∆R function (left) and static response (right), calulated with different approximations. Here
we emphasize the result of using ∆R,(1) as the effective transition energy in ∆R,(2) (see Eq. 8.37). This
approximation yields the closest result to the exact one for the longer q’s. In the shorter q region,
where ∆R,exact behaves linearly (from q = (0.1, 0, 0) to ∼ (1.5, 0, 0)), ∆R,(1) fails to describe the effective
transition energy as it becomes too small. The latter is evident in the initial point (q = (0.1, 0, 0)), where
∆R,(2)(∆R,(1)) becomes negative and so, the static response as well.

idea that ∆R,(1) is also an effective average transition but with information of the matrix
elements (Eq. 8.24). Substituting δ = ∆R,(1) in Eq. 8.29 we obtain:

∆R,(2)
(
∆R,(1)

)
= −1

2

√
4
∑

vc MR
vc [ε2

cv − 3∆R,(1)εcv]∑
vc MR

vc

+ (3∆R,(1))2 +
3∆R,(1)

2
(8.37)

We computed ∆R,(2)
(
∆R,(1)

)
and the static response by plugging Eq. 8.37 in Eq. 8.20:

we show both curves in Fig. 8.8. First, notice that compared to ∆R,(1) and ∆R,(2)(δ =
158 eV), ∆R,(2)

(
∆R,(1)

)
overall yields a better approximation to ∆R,(exact). This is an

outstanding result: Eq. 8.37 is parameter-free as ∆R,(1) is also parameter-free, and it
yields the best approximation for the static response here discussed. In particular, notice
from Fig. 8.8 that the best approximation to the exact curve using Eq. 8.37 corresponds
to the region in which ∆R,(exact) behaves quadratically: q > (2, 0, 0).

It is in the linear regime, for q < 1.5, where ∆R,(2)
(
∆R,(1)

)
fails to describe the exact

curve. For instance, at q = (0.1, 0, 0) (the shortest one in Fig. 8.8) ∆R,(2)
(
∆R,(1)

)
becomes

negative. This occurs because for the shorter q’s ∆R,(1) becomes too small such that the
condition of Eq. 8.36 is violated.

Eq. 8.37 gives a promising method to approximate the parabolic region of the static
response. As we have seen however, for the linear region ∆R,(1) becomes too small to
be used in ∆R,(2). For this, we propose to use Eq. 8.29 with a constant value for δ.
The motivation is the fact that for small q the energy region in which the electronic
transitions are more important to shape the static response is quite limited. Look back
to Fig. 8.2 (right panel): with only the first 10 conduction bands (14 bands in total) the
converged result is reproduced up to q = (0.5, 0, 0), and only 36 more bands are enough
to reproduce the maximum of the curve of the static response. Thus, it is evident that
the lower energy transitions are more important for the short q’s, and therefore, for the
linear regime in ∆R,(exact). We show in Fig. 8.9 ∆R,(2)(δ) evaluated with different small
values of δ, as well as the static response. Clearly using a small δ value helps to accelerate
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Figure 8.9: Left: ∆R,(2) with different small δ values. Right: static reponse calculated with ∆R,(2)(δ).
For the latter only the points before the divergence are shown. The exact ∆R shows two different regimes:
linear in the shorter q’s and quadratric for the longer values. Here we propose to approximate the linear
regime with a constant effective transition energy, find a good approximation for the shorter q’s. Of
course as the selected δ value is too small compared to the transitions in the whole spectrum, ∆R,(2)

becomes negative and q diverges at a given (long) q. Ideally, the second region of the static response can
be treated differently, for instance with Eq. 8.37.

the convergence of ∆R,(2) for the shorter q’s. Eventually, for longer q’s ∆R,(2) = 0, so the
static response diverges (Fig. 8.9). As we propose, the two regions of ∆R,(exact) need to be
treated separately: for the linear region δ needs to be optimized, while for the parabolic
region the choice of ∆R,(2)

(
∆R,(1)

)
gives a good approximation to the exact result.

8.4 Adding explicitly few conduction states

A point of numerical interest is to separate Eq. 8.15 into two different groups of transi-
tions: for example, if we were interested in only Nc conduction bands (with Nc = c1 + c2),
we could separate them into two different groups: a first one accounting for the lower con-
duction bands (up to c1), and the second one for the remaining states (from c1 + 1 to c2).
Thus, we could compute the first set of low energy transition explicitly and approximate
only the second part of the sum (this is referred to in Ref. [129] as the “simplified EET”):

χ0,R
GG′(q, 0) =

all∑
v

c1∑
c=1

ρ̃vc(q + G)ρ̃∗vc(q + G′)

−(εc − εv)
+

all∑
v

c2∑
c=c1+1

ρ̃vc(q + G)ρ̃∗vc(q + G′)

−∆R
(8.38)

We show in Fig. 8.10 the evolution of the static response taking low-energy transitions
into account explicitly according to Eq. 8.38: c1 = 0 is the usual case that we presented
in Fig. 8.4, approximating all transitions. It is interesting to notice that taking explicitly
into account 10 conduction bands (and treating the rest with ∆R,(1)) the spectrum almost
matches the full calculation with Nc = 46 (which at short q’s is already converged, see
Fig. 8.2). Moreover, this separation of terms does not interfere with the closure relation
of Eq. 8.2: we only need to redefine it using

∑
c |c〉 〈c| =

∑
c1
|c1〉 〈c1|+

∑
c2
|c2〉 〈c2|, thus

analogously to Eq. 8.2, the closure relation in the simplified EET becomes:∑
c2

|c2〉 〈c2| = 1−
∑
c1

|c1〉 〈c1| −
∑
v

|v〉 〈v| (8.39)
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Figure 8.10: Static response calculated with ∆R,(1) within the “simplified EET” picture of Eq. 8.38.
c1 = 0 corresponds to the case in which the contibution of all bands is approximated within ∆R,(1), and
c1 = 1 to calculating explicitly the transitions between the valence states and lowest unnocupied state.
Notice that considering a very small number of empty states clearly yields a better of the static response.
For instance, taking into account 10 conduction states almost reproduce the full calculation with Nc = 46.

8.4.1 Metallic systems: borophene δ6

The main material of interest in this thesis is borophene, which is metallic. We therefore
have to extend our approach to metallic systems. The structure of the polarizability is
a simple sum over transitions, and we have separated it three times so far: resonant +
antiresonant transitions (Eq. 8.10), states with fractional + integer occupation numbers
(Eq. 8.16), and low and high energy transitions (Eq. 8.38). Among these, we can realize
that the latter two are very similar, thus, we could apply a procedure analogous to Eq.
8.38 to treat metallic systems adding few conduction states.

We must remark that there must be a modification: in metals the transition between
“occupied” and “empty” states is continuous and so, it is difficult to define what is
occupied and empty in the same sense as for a semiconductor; in this regard the most
natural choice seems to be defining the separation of the sum based on an energy threshold,
E:

χ̃0,R
GG′(q, 0) =

∑
vc ∀ |εc−εv |≤E

(fv − fc)ρ̃vc(q + G)ρ̃∗vc(q + G′)

−(εc − εv)

+
∑

vc ∀ |εc−εv |>E

(fv − fc)ρ̃vc(q + G)ρ̃∗vc(q + G′)

−∆R

(8.40)

For example, with ∆R to first order as in Eq. 8.24:

∆R,(1) =

∑
vc ∀ |εc−εv |>E (fv − fc)ρ̃vc(q + G)ρ̃∗vc(q + G′)(εc − εv)∑

vc ∀ |εc−εv |>E (fv − fc)ρ̃vc(q + G)ρ̃∗vc(q + G′)
(8.41)
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Figure 8.11: Static response of borophene δ6. Left: full calculation including only low energy transitions
(Eq. 8.9). Right: mixed calculation with Eq. 8.40 adding the “background” structure with ∆R,(1) up to
50 bands: the largest energy transition considering explicitly the 50 bands (blue curve) has a maximum
transition energy of 58 eV. Notice that, for metallic systems (as borophene δ6) the “image” of the Fermi
surface needs to be explicitly taken into account, this leads to a necessary convergence of the energy
window in which the transitions need to be taken explicitly: for instance with 5 eV the mixed approach
leads to a similar curve as the full calculation with 50 bands.

We show in Fig. 8.11 the static response of borophene δ6 computed with this method
(Eq. 8.40) at the level of ∆R,(1) with Eq. 8.41. Let us first look at the left panel.
When only transitions around the Fermi level are taken into account χR,0 shows the peak
characteristic for nesting above q = (0.2, 0, 0) but the background on which this peak
lies is completely absent. It emerges gradually when more bands are taken into account.
Instead, the right panel of Fig. 8.11 shows that this background can be to an extent
reproduced by ∆R,(1).

Similarly to the case of semiconductors (Si for instance), the approximation for static
response of the metallic case can be improved at selected with ∆R at higher orders. We
plotted in Fig. 8.12 (left) the static response of borophene δ6 evaluated at E = 0, at the
level of ∆R,(1) (Eq. 8.41) and ∆R,(2) and ∆R,(2)

(
∆R,(1)

)
, the latter two analogous to Eqs.

8.29 and 8.37 for metallic systems6. Of course, the approximation for metals suffers from
the same caveats as for the semiconductors: in particular notice the divergence of the
static response at around q = (0.1, 0, 0) using ∆R,(2)

(
∆R,(1)

)
. It is evident from Fig. 8.12

(right) that ∆R,(1) becomes very small, and therefore ∆R,(2)
(
∆R,(1)

)
becomes negative.

For an efficient calculation one can now combine the use of an energy window as in Fig.
8.11 with the use of ∆R,(2) as in Fig. 8.12 (or higher order), this reproduces with good
precision both the background and the nesting peak.

8.5 Conclusions

Let us summarize and highlight the conclusions developed in this chapter. We investi-
gated different approximations for the evolution of the static response with the momen-
tum transfer. First, we showed that it is possible to approximate it via Taylor expansion
although it requires higher orders to yield results with high precision. Then, we devel-

6The only difference with respect to Eqs. 8.29 and 8.37 is the occupation numbers and definition of
the energy window E.
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Figure 8.12: Left: static response of borophene δ6 calculated with the full sum over transitions (“Exact”:
Eq. 8.14) and with different ∆R’s: ∆R,(1) as in Eq. 8.41, ∆R,(2) as in Eq. 8.29 (for metallic systems, i. e.,
including the fractional occupation numbers as in Eq. 8.41) and ∆R,(2)

(
∆R,(1)

)
as Eq. 8.37 (for metallic

systems). In all cases E = 0, and δ = 29 eV (calculated from Eq. 8.19 for 50 bands) only relevant for
∆R,(2). Right: ∆R’s functions.

oped different approximations to the static response in the spirit of the effective energy
technique [129], by obtaining different functions (∆R and ∆̃R,(3)). These approximations
perform much better than the simple Taylor expansion, in particular at the very small
and large q’s even at the lowest order ∆R,(1).

We showed that ∆R,(1), by construction parameter-free, already gives a good approxi-
mation for the static response even simulating a very large number of conduction bands.
The higher-order approximations ∆R,(2) and ∆̃R,(3), do not necessarily perform better, as
both depend on an effective transition energy. Nonetheless we showed that we can improve
the approximation given by ∆R,(2) by setting the average transition energy δ to ∆R,(1). In
the latter case ∆R,(2) becomes parameter-free and displays the best performance towards
the static response among the approximations studied in this work (for the quadratic
regime of ∆R,(exact) q’s). We also showed that it is possible to extend these approxima-
tions to metallic systems and, as a proof of concept, we presented the approximated static
response for borophene δ6.

We showed that in numerical calculations, the approximated static response calcula-
tions for semiconductors can be significantly improved by taking few conduction states
explicitly into account, in the spirit of the simplified EET [129]. In a similar idea for metal-
lic systems, the explicit inclusion of low-energy transitions not only helps the convergence
but it also allows one to add explicit information of the Fermi surface: as we showed in
Section 7 this information is crucial for the discussion of Kohn anomalies, charge density
waves and phonons in metals.

8.6 Outlook

The closure relation

As the final goal, we are interested in applying the closure relation to avoid the sum over
many conduction bands for the calculation of the static response. Only by doing so, the
approximation will lead to numerically efficient calculations. Moreover, as we will see,
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interesting expressions are obtained. The approximate expression for the function ∆R

(and ∆̃R), Eqs. 8.24, 8.29 and 8.33, together with the one for χ̃R
GG′ (Eq. 8.20), contain

the matrix elements MR
vc in either the numerator or denominator but in a form in which,

in principle, we can apply the closure relation of Eq. 8.2: in general, the matrix elements
appear in Equations 8.24, 8.29, 8.33 and 8.20 as:∑

vc

ρ̃vc(q + G)ρ̃∗vc(q + G′)(εc − εv)w (8.42)

We deal later with the term (εc− εv)ω, for now we want to show the numerical implemen-
tation of the closure relation as it will make this concept clear. For instance, in explicit
form Eq. 8.42 with w = 0 reads:∑

vc

〈v,k− q| ei(q+G)·r |c,k〉 〈c,k| e−i(q+G′)·r′ |v,k− q〉 (8.43)

and upon the application of the closure relation (Eq. 8.2) it becomes (with v′ being a
valence state at k− q): ∑

v

〈v,k− q| ei(G−G′)·r |v,k− q〉

−
∑
vv′

〈v,k− q| ei(q+G)·r |v′,k〉 〈v′,k| e−i(q+G′)·r′ |v,k− q〉
(8.44)

This rewriting represents a huge reduction of computational time. For instance, in
order to compute the matrix elements as in Eq. 8.9 we have to perform a large sum over
valence and conduction states, and for example, in the static response calculation of Fig.
8.2 it is clear that using Nc = 46 (or even 196) is not enough to converge the spectrum at
long q’s. On the contrary, using Eq. 8.44 to compute the matrix elements requires only
from the occupied states, but accounts also for all empty states. In order to illustrate this
we have plotted the matrix elements as computed using Eq. 8.43 with different number of
conduction bands (up to Nc = 496) and using the closure relation according to Eq. 8.44
with only valence states: the results are shown in Fig. 8.13.

The results at small q’s up to q ≈ (3, 0, 0) evaluated with Eq. 8.43 are converged with
Nc = 496 bands and equal to that using the closure relation (Eq. 8.44). At larger q’s
the matrix elements computed with the closure relation stay almost constant while Eq.
8.43 shows a decay, simply because more bands are required to be complete. Nonetheless
it is also evident from the evolution of the curves from Nc = 46 to 496 that the curves
tend towards the same constant value, thus confirming numerically the possibility of, and
the need for, using the closure relation (Eq. 8.44) to compute the matrix elements of the
polarizability.

The missing pieces

Let us go back to Eq. 8.42, as it is the main ingredient in the polarizability χ̃R
GG′(q, 0)

(Eq. 8.20) and in the different expressions for ∆. In the latter in particular we remark
the appearance of the term (εc − εv)

w which does not let us use the closure relation
straightforwardly. Thus, we propose to rewrite Eq. 8.42 with w = 1 using the electronic
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Figure 8.13: Matrix elements (MR
vc) computed with different conduction states (Eq. 8.43), and using the

closure relation (Eq. 8.44). The closure relation correctly reproduces the calculation with a large number
of conduction states at a much lower computational price: for instance the full calcualtion with Nc = 496
diverges from the constant value of the matrix elements at large q’s, while using the closure relation with
only 4 bands shows this evolution.

Hamiltonian Ĥ, such that Ĥ|n〉 = εn |n〉, and hence rewrite (εc − εv) as a commutator,
as shown in Eqs. 8.5 and 8.6, and used for example in Ref. [126].

To simplify the notation we refer to Eq. 8.42 with w = 1 as ΩR, and to avoid confusion
we remind the reader that the matrix elements contain the information of the k (and
k − q) vectors; the closure relation is only applied to the valence and conduction states
(Eq. 8.44). We start by using Ĥ|c〉 = εc |c〉, and 〈v| Ĥ= εv 〈c| to obtain the commutator:

ΩR =
∑
vc

〈v| ei(q+G)·r |c〉 〈c| e−i(q+G′)·r′ |v〉 (εc − εv)

=
∑
vc

〈v| ei(q+G)·r |c〉 〈c| e−i(q+G′)·r′ |v〉 εc −
∑
vc

〈v| ei(q+G)·r |c〉 〈c| e−i(q+G′)·r′ |v〉 εv

=
∑
vc

〈v| ei(q+G)·rĤ|c〉 〈c| e−i(q+G′)·r′ |v〉 −
∑
vc

〈v| Ĥei(q+G)·r |c〉 〈c| e−i(q+G′)·r′ |v〉

=
∑
vc

〈v| ei(q+G)·rĤ− Ĥei(q+G)·r |c〉 〈c| e−i(q+G′)·r′ |v〉

=
∑
vc

〈v|
[
ei(q+G)·r, Ĥ

]
|c〉 〈c| e−i(q+G′)·r′ |v〉

(8.45)

Note that we made an arbitrary choice: we introduced the Hamiltonian in the integral
centered in r, but we could have selected to add the Hamiltonian in the integral in r′, and
obtain:

ΩR =
∑
vc

〈v| ei(q+G)·r |c〉 〈c|
[
Ĥ, e−i(q+G′)·r′

]
|v〉 (8.46)
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Using the fact that |v〉 and |c〉 are eigenfunctions of Ĥ, Eqs. 8.45 and 8.46 must be
equivalent7 (the parallel development shown in this Section for the commutator in Eq.
8.46 can be found in Appendix IV).

Evaluation of the Hamiltonian

Now, we evaluate the electronic Hamiltonian Ĥ= −∇2

2
+ V̂, thus, Eq. 8.45 becomes:

ΩR =
∑
vc

〈v|
[
ei(q+G)·r, Ĥ

]
|c〉 〈c| e−i(q+G′)·r′ |v〉

=
∑
vc

〈v|
[
ei(q+G)·r,−∇

2

2

]
|c〉 ρ̃∗vc +

∑
vc

〈v|
[
ei(q+G)·r, V̂

]
|c〉 ρ̃∗vc

(8.47)

The second line shows two terms, one with the kinetic part, and another one with the
static potential. To simplify the development we separate these two pieces:

ΩR ≡ ΩR
∇ + ΩR

V̂
(8.48)

and we focus initially on the kinetic part ΩR
∇. Hereafter we show the evaluation of the

second-order derivative ∇2:

ΩR
∇ = −1

2

∑
vc

〈v|
[
ei(q+G)·r,∇2

]
|c〉 ρ̃∗vc

= −1

2

∑
vc

[
〈v| ei(q+G)·r∇2 |c〉 − 〈v| ∇2ei(q+G)·r |c〉

]
ρ̃∗vc

= −1

2

∑
vc

[
〈v| ei(q+G)·r∇2 |c〉 − 〈v| ∇ei(q+G)·r∇ |c〉 − i(q + G) 〈v| ∇ei(q+G)·r |c〉

]
ρ̃∗vc

= −1

2

∑
vc

[
〈v| ei(q+G)·r∇2 |c〉 − 〈v| ei(q+G)·r∇2 |c〉 − i(q + G) 〈v| ei(q+G)·r∇ |c〉

]
ρ̃∗vc

+
1

2

∑
vc

[
i(q + G) 〈v| ei(q+G)·r∇ |c〉 − (q + G)2 〈v| ei(q+G)·r |c〉

]
ρ̃∗vc

= −(q + G)2

2

∑
vc

〈v| ei(q+G)·r |c〉 ρ̃∗vc + i(q + G)
∑
vc

〈v| ei(q+G)·r∇ |c〉 ρ̃∗vc
(8.49)

Grouping terms we arrive to:

ΩR
∇ = −(q + G)2

2

∑
vc

〈v| ei(q+G)·r |c〉 ρ̃∗vc + i(q + G)
∑
vc

〈v| ei(q+G)·r∇ |c〉 ρ̃∗vc (8.50)

Explicitly, Eq. 8.50 reads:

7The same situation was found in Ref. [129], where the asymmetry in G, G′ is addressed by defining
Ω′,R = 1

2

[
ΩR + h. c.

]
with h. c. being the Hermitian conjugate of ΩR.
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ΩR
∇ = −(q + G)2

2

∑
vc

〈v| ei(q+G)·r |c〉 〈c| e−i(q+G′)·r′ |v〉

+i(q + G)
∑
vc

〈v| ei(q+G)·r∇ |c〉 〈c| e−i(q+G′)·r′ |v〉
(8.51)

Eq. 8.51 shows that the original goal of this chapter is reached: an equation that does
not depend on (εc − εv), and to which we can apply the closure relation (Eq. 8.2) on the
sum over conduction states8:

ΩR
∇ = −(q + G)2

2

[∑
v

〈v| ei(G−G′)·r |v〉 −
∑
vv′

〈v| ei(q+G)·r |v′〉 〈v′| e−i(q+G′)·r′ |v〉
]

+i(q + G)

[∑
v

〈v| ei(q+G)·r∇e−i(q+G′)·r |v〉 −
∑
vv′

〈v| ei(q+G)·r∇ |v′〉 〈v′| e−i(q+G′)·r′ |v〉
]

(8.52)
evaluating the derivative in the second term of Eq. 8.52:

ΩR
∇ = −(q + G)2

2

[∑
v

〈v| ei(G−G′)·r |v〉 −
∑
vv′

〈v| ei(q+G)·r |v′〉 〈v′| e−i(q+G′)·r′ |v〉
]

+i(q + G)
∑
v

〈v| ei(G−G′)·r∇ |v〉+ (q + G)(q + G′)
∑
v

〈v| ei(G−G′)·r |v〉

−i(q + G)
∑
vv′

〈v| ei(q+G)·r∇ |v′〉 〈v′| e−i(q+G′)·r′ |v〉

(8.53)

Eq. 8.53 contains different elements: First, ρ̃vv′(q + G) and ρ̃∗vv′(q + G′). Their structure
resemble the matrix elements of χ0,R

GG′ (Eq. 8.9). Second, a new density-like term ρ̃vv(G−
G′), and third, two more quantities which involve the derivative of the wave functions
|v,k− q〉 and |v′,k〉. Due to a similar use of the commutator, these terms can also be
found in Eq. 13, 14 and 16 of Ref. [129] in terms of the independent-particle one-body
reduced density matrix. Indeed, we can write Eq. 8.53 as:

ΩR
∇ = −(q + G)2

2

[∫
dr ei(G−G′)·rρ(r)−

∫
drdr′ ei(q+G)·re−i(q+G′)·r′|ρ(r, r′)|2

]
+i (q + G)

∫
dr ei (G−G′) r (∇r′ ρ (r′, r))r′→r

−i (q + G)

∫ ∫
dr dr′ ei (q+G) r ei (q+G′) r′ρ (r′, r) ∇r ρ (r′, r)

+(q + G)(q + G′)

∫
dr ei(G−G′)·rρ(r)

(8.54)

Regarding the static potential V̂l, we can assume a potential of the form V̂= V̂l + V̂nl
(local and non-local):

8The “1” in the closure relation is translates as δ(r− r′) within the integral.
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ΩR
V̂

=
∑
vc

〈v|
[
ei(q+G)·r, V̂

]
|c〉 ρ̃∗vc

=
∑
vc

〈v|
[
ei(q+G)·r, V̂l

]
|c〉 ρ̃∗vc +

∑
vc

〈v|
[
ei(q+G)·r, V̂nl

]
|c〉 ρ̃∗vc

(8.55)

The operator
[
ei(q+G)·r] is a local potential, i. e., it is a diagonal matrix. Therefore

commutes with V̂l:
[
ei(q+G)·r, V̂l

]
= 0. Thus, for local potentials, ∆R,(1) is obtained by

simply dividing Eq. 8.54 by Eq. 8.44. In terms of the one-body reduced density matrix
we obtain:

∆
R,(1)
l = −(q + G)2

2

+i(q + G)

∫
dr ei (G−G′) r (∇r′ ρ (r′, r))r′→r −

∫ ∫
dr dr′ ei (q+G) r ei (q+G′) r′ρ (r′, r) ∇r ρ (r′, r)[∫

dr ei(G−G′)·rρ(r)−
∫

drdr′ ei(q+G)·re−i(q+G′)·r′ |ρ(r, r′)|2
]

+(q + G)(q + G′)

∫
dr ei(G−G′)·rρ(r)[∫

dr ei(G−G′)·rρ(r)−
∫

drdr′ ei(q+G)·re−i(q+G′)·r′ |ρ(r, r′)|2
]
(8.56)

This equation (Eq. 8.56) is similar to the one obtained by Berger et al, in Ref. [129]
(Eq. 21). The main difference comes from the evaluation of the commutator in r′ in
Ref. [129] (and the symmetrization). Moreover, as explained in Ref. [128], Eq. 8.56 can
be generalized for non-local potentials by evaluating explicitly the commutator with the
non-local part (the last term in Eq. 8.55), such that ∆R,(1) = ∆

R,(1)
l + ∆

R,(1)
nl (an explicit

expression for ∆R,(1) can be found in Appendix IV).
Finally, let us point out the structure of Eq. 8.56, in particular the prefactors in the

first and last term: [−1
2
(q+G)] and [+(q+G)(q+G′)]. In the case of a diagonal matrix,

G = G′ these terms together evolve ∝ [1
2
(q + G)] (weighted by the one-body reduced

density matrix elements in the last term of Eq. 8.56). This is interesting because we can
relate it to the energy of a plane wave in the long q range as we pointed out in Fig. 8.6.
Clearly from Fig. 8.6 the term [1

2
(q+G)] is dominant between q = (2, 0, 0) and (3.5, 0, 0)

for the calculation with 500 bands. We can also see that the matrix elements play an
important role in shaping ∆R,(exact), or in the case of Eq. 8.56: the linear term in [q + G]
and all the one-body reduced density matrix ingredients.

Summary

In this last part, a proof of concept, we applied the closure relation to the matrix elements
of silicon, and we showed that with only the valence states (4 in Si) we can account for the
contribution of up to 500 bands (496 empty states). This shows that writing the static
response as a function of the one-body reduced density matrix is a promising and efficient
way to calculate the evolution of the static response for semiconductors as a function of
wavevector. Thus we developed ∆R,(1) as a function of the independent-particle one-body
reduced density matrix.

It is worth mentioning that there are different research directions that can be continued
from our development of the approximation of the static response: For instance, 1) the
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expression and calculation of the static response of a semiconductor (Si for example),
completely as a function of the one-body reduced density matrix. 2) The development of
a precise method for ∆R,(2)

(
∆R,(1)

)
, parameter-free, in particular for the shorter q’s when

∆R,(1) becomes small and thus ∆R,(2)
(
∆R,(1)

)
diverges. And 3) the in-depth investigation

of ∆̃R,(3), for example, parameter-free with δ = ∆R,(1).

Code availability

All the calculations in this section (except the Si band structure of Fig. 8.2) were ob-
tained with the DP code [135]. All the approximations, from the simple Taylor ex-
pansion to ∆R,(1), ∆R,(2) and ∆̃R,(3), χ̃0,R

GG′ and the closure relation for the matrix ele-
ments were implemented in the DP code [135] in the framework of this thesis within
creation chi0 accel Delta.F90 .



Chapter 9

Overview of the density response

From the beginning of this project the aim was to investigate how the atomic structure
affects the response of the material to a given perturbation. For instance, section 6
was centered around the idea of investigating the dielectric properties of the different
polymorphs, showing a clear connection between the electronic structure and, for example,
optical absorption. In this section we show, as a proof of concept, the computation of the
induced density (Eq. 2.15) in real space and time calculated from the SRden code.

9.1 The SRden code

Upon a time-dependent external perturbation of a medium, a borophene polymorph for
example, the latter “reacts” in some way according to the perturbation: for instance,
when light is sent to the sample it interacts with the medium and promotes electrons
from the valence to the occupied states, leading to a difference between the incoming and
outgoing beams, and yielding, for example, the absorbance spectra as shown in Section.
6.2. This process gives information of the sample which can be linked directly to its
electronic structure, nonetheless it still remains very complicated to determine what is
the actual response of the system to the external perturbation. In linear response (Section
2.2) this takes the name of the induced density, δn(r, t) (Eq. 2.15), which in reciprocal
space reads:

δn(r, t) =

∫
dq

∫
dω
∑
G,G′

ei((q+G)·r−ωt)χGG′(q, ω)V ext
G′ (q, ω) (9.1)

Eq. 9.1 is very simple, and only two ingredients are needed: 1) the polarizability
which contains the information of the electronic system, and 2) the external perturbation.
These two pieces are independent of each other, thus for a system of interest one could
calculate the polarizability only once, store it, and use it for different external potentials.
Moreover in Eq. 9.1 V ext

G′ (q, ω) dictates which parts of the polarizability are “activated”:
for example, in the simple case of a plane wave-like perturbation with q = q0, and
ω = ω0, Eq. 9.1 is reduced to only the sum over GG′, thus δn(r, t) can be completely
determined with χGG′(q0, ω0). Inverting this idea, the effect of an external potential can
be simulated by selected values of χGG′(q, ω). This simple equation is used in the SRden
code to compute the density response from Eq. 9.1 (details on this tool can be found in
Ref. [136] and Appendix IV).

99
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The external potential

We are interesting in visualizing what is the effect of the atomic structure in the induced
density. For this, it is convenient to consider a δ-like perturbation in real space and
time, such that after the initial1 “kick” the induced density can evolve freely without any
significant effect due to the external potential. In this case V ext(r, t) is modeled as:

V ext(r, t) =
1

(2π)4

∑
G

∫
dω

∫
dq ei(q+G)·r+iωt (9.2)

which translates in having to know χGG′(q, ω) for an a priori, infinite set of G’s, q’s and
ω’s to localize the external perturbation. This is of course not a viable process and the
number of ingredients to compute Eq. 9.1 needs to be delimited within a finite range,
hence compromising the localization. For illustration, we show in Fig. 9.1 V ext(r, t) for a
minimal set of ω, ∆ω, G’s and q’s calculated for borophene δ3

2.
The first challenge in these calculations is to determine the “convergence” of the

localization. One can define it based on a given phenomenon that wants to observe: for
example, solving Eq. 9.1 with a given potential yields the evolution of the density, and
as we mentioned earlier, we want the external potential to be sufficiently localized in
space and time such that after the initial “kick” it does not contribute anymore to the
induced density. Another relevant parameter to determine localization in-space can be
with respect to the dimension of the unit cell: in this regard notice from Fig. 9.1 that
using 250 G-vectors localizes the maximum within 2 Å, while the lattice parameters of δ3

are a = b = 2.91 Å. It is clear that, with respect to the unit cell, the localization of the
potential with G vectors is “unconverged”. Again, this depends on the phenomenon to
be observed: while the perturbation of Fig. 9.1 does not allow to the details within the
unit cell it can show the overall evolution of the density after the perturbation.

The challenges to localize this perturbation using this methodology are not minor. To-
date, χGG′(q, ω) is computed as in Eq. 2.20, and the induced density with Eq. 9.1. Thus,
obtaining a sufficiently well localized perturbation (in space and time) requires a huge
amount of calculations. For instance, from the best parameters of Fig. 9.1: ∆ω = 0.05 eV,
ωmax = 30 eV, a 8 × 8 × 1 q-mesh (24 q-points after reducing by symmetry), and 250
G-vectors: 24 independent calculations of Eq. 2.20, with at 600 frequencies for the χGG′

matrices with dimensions 250 × 250, and which depend implicitly on the sum over k-
points3. Without much gain between 100 and 200 G-vectors, and limited in computational
memory to larger matrix dimensions, we explored the induced density of this polymorph
with only 100 G’s.

1δn(r, t) calculated from Eq. 9.1 yields a periodic perturbation. The “replicas” need to be sufficiently
separated such that nor the external potential nor the induced density from each of them overlaps with the
neighboring ones. Within this condition we refer to the “initial kick” to any of the periodic perturbations
in space and time.

2The external potential does not depend on the system but it is constructed from the information in
χGG′(q, ω) of the system.

3For the induced-density calculations we used the same k-mesh as for the optical absorption and loss
function of Section 6.2: 32× 32× 1 k.
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Figure 9.1: Localization of the external potential in space and time (Eq. 9.2) with different parameters:
∆ω the frequency step for the sum over frequencies (upper left), ωmax the upper limit in frequencies
(upper right), number of G-vectors for the localization in space (lower left) and q-mesh (lower right).
From this, we can get the “best” parameters as ∆ω = 0.05 eV, ω = 30 eV, 8 × 8 × 1 q-mesh and 250
G-vectors. The localization in space with the G-vectors clearly is not as sharp as with the frequencies:
this is the major problem in the calculations of the induced density, as increasing the G-vectors leads to
very memory-intensive calculations.

The induced density

The second challenge on the induced density calculations is the interpretation of the
results: Eq. 9.1 describes the overlap between the transitions and the perturbation, such
that the higher the overlap the higher the presence of such transitions in the induced
density. The evolution in time is given by the transitions “reacting” out-of-phase with
respect to each other (see phase factor in Eq. 9.1) and summing up. How this occurs
however, is not trivial, nor how the atomic structure affects the overall evolution of the
induced density. To illustrate the complexity of the problem we show in Fig. 9.2 the
snapshots of the density evolution in borophene δ3 to the external potential determined
with Eq. 9.1 using ∆ω = 0.5 eV, ω = 30 eV, 100 G-vectors and a 8 × 8 × 1 q-mesh
calculated within the independent particles approximation. The animation of the induced
density corresponding to Fig. 9.2 can be found in Ref. [137], and similar calculations for
β12 and α1 using SRden in Refs. [138,139].

Overall the induced density in Fig. 9.2 and Refs. [137–139] has the expected behavior:
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Figure 9.2: Snapshots of the external potential and the induced density in borophene δ3 t the perturbation
time (2 fs), and 0.3 and 0.6 fs later (atomic positions shown in green): upon the initial kick the induced
density evolves moving further from the perturbation center following the structure of the polymorph.
The corresponding animation can be found in Ref. [137].

it follows the initial perturbation with its maximum of intensity at the same point in
space, and it occurs at a slightly later time. After that, the density seems to evolve
independently of the external potential moving away from the perturbation center. It is
worth highlighting that the induced density does not evolve trivially as concentric waves,
in fact it seems to evolve along the bonds of the structure. Thus, it is interesting to
investigate how the atomic structure influences this evolution: a natural step forward
would be to use the gained knowledge about the similarities of the electronic structure
and the defect-like states in the multiple polymorphs. A second step, the computation of
the induced density with other approximations for χ in Eq. 9.1: for example χRPA with
and without local fields to study the evolution of the plasmon along the structure.

9.2 Outlook

The visualization of the induced density as from Eq. 9.1, is a simple and qualitative way
that can be used to study charge propagation: it requires from two simple ingredients, and
moreover the main one, χGG′(q, ω), that contains the information of the electronic system,
can be stored and reused for any perturbation. However, as we presented above the
methodology to-date presents some limitations, in particular the expensive calculations
that need to be done in order localize the perturbation in space and time.

Therefore, it is almost compulsory to develop efficient methods for either the calcula-
tion of χGG′(q, ω), such as the method in Section 8 for the static response, but also for
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Figure 9.3: 8 × 8 × 1 q-mesh represented within the BZ (left), external potential at the moment of the
perturbation (center), and induced density 0.6 fs after the perturbation (right). Each red point in the
q-mesh (24 in total) represents a calculation of χ0

GG′ needed to build V ext(r, t) localized in space (and
time). By symmetry, the 24 calculations unfold into 192 (black points), yielding the “circular” localization
of the external potential.

the induced density. For example, solving Eq. 9.1 in real space for localized perturba-
tion could alleviate the problem of localizing the potential based on the large sum over
the reciprocal lattice vectors, although at the expense of possibly large supercell calcula-
tions. Moreover, as we highlighted previously, there is also the need for understanding the
physics behind the evolution of δn(r, t): the apparently simple behavior of the induced
density shown in Fig. 9.2 and Ref. [137] seeming to evolve along the bonds is the result
of all available transitions with energies between 0 and 30 eV, and 24 q-vectors all mixing
in time with different phase factors (see Fig. 9.3).
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Conclusions

The goal of this project was to study borophene as a prototypical class of 2D materials. In
particular, the aim was to distinguish the properties which are general for all borophene
structures from those which are polymorph-specific. To this aim we employed simple mod-
els that describe the general features of the electronic structure: the 2D HEG + “particle
in a box”, and the self-doping of parent structures. Moreover, upon further inspection of
the electronic structure, we described polymorph-specific states: these defect-like states
appear in a parent borophene electronic structure, are low-dispersive, and show the break
down of simple approximations such as self-doping. We applied our understanding of the
general and polymorph-specific features of the electronic structure of borophene to the
characterization of the dielectric properties of this class of materials: optical absorption,
loss function and the static response. Moreover, using our results from the static response,
we linked the description of the electronic problem to structural instabilities.

The phonon dynamical matrix can be formulated explicitly in terms of the inverse
dielectric function. This historical expression is usually not used in ab-initio calculations
since it is computationally expensive. However, it is interesting for analysis. This was one
of our motivations to complement our study by developing a new method that allows to
approximate the static response in an efficient manner, only as a function of the one-body
reduced density matrix. Below we summarize the outcomes of this project:

In order to describe the relation between atomic structure and the electronic response,
we first studied the relation between the atomic structure and the electronic structure.
Thus, for a set of selected polymorphs including flat monolayers (BT , δ3, α1, δ5, β12),
buckled monolayers (δ6, α′) and a bilayer (α′-Bilayer), we performed a detailed study of
their electronic structure. Our study pointed out to similar electronic band structures
among different polymorphs. Moreover, we observed that the electronic band structures
of these polymorphs had a resemblance with the 2D homogeneous electron gas. Thus,
we developed a simple model based on the 2D HEG and the “particle in a box” problem
from quantum mechanics, to describe borophene polymorphs as a confined gas of electrons.
This “Box” model gives a qualitative description of the electronic structure provided that
one knows simple parameters from ab-initio calculations.

We identified the appearance of polymorph-specific states that break the self-doping
picture. We refer to these states, related to the rigid electronic structure, as defect-like
states. Indeed, the defect-like states are low-dispersive, and our analysis of the partial
density showed that the partial charge is localized around polymorph-specific features of
the atomic structure. Moreover, we showed that the atomic displacements out-of-plane
have an important effect in tuning the electronic structure breaking degeneracies and
inducing important changes in the occupation of specific bands. Thus, we proved that
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buckling can be used as a tuning parameter to change and induce exotic properties into
the polymorphs, such as semimetallicity in α′ and nesting of the Fermi surface in δ6.

Then, we performed a detailed study of the optical properties of the selected poly-
morphs. We identified general features: low-energy in-plane absorption peaks (∼ 1 eV),
and high-energy (∼ 10 eV) out-of-plane absorption peaks. Nonetheless the study of the
optical properties put in evidence the importance of the defect-like states: besides the
low- and high-energy peaks, the spectrum in-between is different for every polymorph.
Moreover, we identified the appearance of transitionless windows due to specific transi-
tions t(p‖ → pz) being killed by the symmetry of the wave functions in the density-density
response. Thus, these windows have a well-defined nature. We proved theoretically the
these windows can be modulated to induce transparency in borophene under charge-
doping conditions. Together with our fundamental studies of the dielectric properties,
we also presented calculated quantities like EELS and absorbance that can be used for
comparison to experimental results, and that may be important for applications.

With our calculations of the static response we illustrated the link between the elec-
tronic system and structural instabilities: we showed that we can find signatures of anoma-
lies in the static polarizability at the points of Kohn anomalies reported in the literature.
The static response is a computationally expensive quantity and it is rarely reported al-
though it can be of use for the discussion of Kohn anomalies and charge density waves.
Thus, we reported the static response of borophene δ6, δ3, β12 and the model system BT .

Following the last point, we developed an approximation to compute the static re-
sponse in a more efficient manner without the need of conduction states, hence reducing
significantly the computational cost for the evaluation of this quantity. Our approxima-
tion is parameter-free and it can be written in terms of the independent-particle one-body
reduced density matrix. Moreover, upon the addition of few conduction states the result
is significantly improved. The numerical implementation allows us to calculate the static
response also for metallic systems and to include explicitly the polymorph-specific infor-
mation of the Fermi surface.

Outlook

This project can continue in different directions: First, in borophene with the investi-
gation of more complex structures, such as, the borophene α1 with a large hole. This
structure is essentially a single polymorph with variable vacancy ratio, and therefore, a
single polymorph with tunable properties.

Another interesting aspect worth investigating is the link between the static response
and the phonon frequencies, and in particular how the elements of the static dielectric
function sum up to yield the phonon spectra. This can be done, for example, in combina-
tion with the method developed in this work for evaluating efficiently the static response.

Moreover, regarding the efficient calculation of the static response, the implementation
of the full expression of the static response as a functional of the single-particle one-body
reduced density matrix in the ab-initio code remains to be completed and made freely
available. Moreover, the approximation has to be improved in linear regime of small q’s.

Lastly, the charge density dynamics are still an open question. A first take on this
subject, from the developments in this work, could be to focus on the static response.
Already at this level we could gain some understanding about the role of the atomic and
electronic structure in the response of the density, or in other words, how the general
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and the defect-like states of the borophene polymorphs change the picture of the density
response. Our formulation of the static response in terms of the single-particle one-body
reduced density matrix may open the way to interpret the density response by establishing
a direct link to the structure of the material.
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Appendix A

Borophene electronic structures

BT

We have built this structure based on the bond distances of δ6 (1.68 and 1.80 Å). We
noticed that although the choice has a strong impact on the band width of the electronic
structure of BT (Fig. 9.4), the overall shape of the individual bands is maintained, as
well as their crossings of the Fermi energy. For its comparison with other polymorphs, we
chose the BT structure with 1.68 Å bond distance.

Figure 9.4: Electronic band structure of the model system BT with two different bond distances. Besides
a slight change of band width, the electronic bands mantain their shape and crossing of the Fermi energy.

α′

In terms of formation energy and electronic stability one of the most investigated struc-
tures is the planar α polymorph [14, 15, 45, 57]. This was, however, found to be unstable
and it was predicted to show a slight distortion out-of-plane. The resulting polymorph
was called α′ [16]. The unit cell of this polymorph has symmetry P-3m1, with 8 atoms at
the positions 6g and 2d. In this case, the atomic positions and lattice parameters were
optimized in the present work, and the lattice parameters were found to be: a = b = 5.058
Å, with the off-plane displacement of the two atoms by ±0.085 Å. The optimized struc-
ture is in contrast with Refs. [16,59]. In Ref. [16], a = 5.046 and b = 5.044 Å (DFT-PBE)
with buckling distance of ±0.17 Å (atomic positions optimized with PBE0 on top of the
PBE-optimized lattice parameter structure), while in Ref. [59] a = b = 5.10 Å with the
off-plane displacement of ±0.14 Å (DFT-PBE).
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Figure 9.5: (Left) Cutoff energy convergence of α′ (∧ = 0.085 Å) with LDA and PBE: with Ecut = 75 Ha
the total energy per atom is converged within 15 µeV/atom within the LDA, while for PBE only under
0.5 meV/atom. With Ecut = 170 Ha the convergence with PBE is achieved under 10 µeV/atom. (Right)
Potential energy surface of α′ with buckling: within the LDA the lowest energy configuration is the flat
α structure. Using PBE the lowest energy configuration was α′ (∧ = 0.085 Å), only 13 µeV/atom lower
than its flat counterpart.

In view of the difference between our calculated atomic structure and those of Refs.
[16, 59], we explored the potential energy surface (PES) at difference buckling heights
(∧). We maintained the optimized lattice parameters fixed (a = b = 5.058 Å) as well
as the atomic positions, except for the two “buckling” atoms (at positions 2d) which we
displaced off-plane by the same distance in opposite directions (the coordinates in-plane
for these atoms are also maintained). We observed that, within the LDA, the lowest energy
configuration belongs to the flat α structure, and from ∧ = 0.00 Å to ∧ = 0.20 Å the
PES evolves smoothly increasing its total energy (ET) as the buckling height is increased
(Fig. 9.5). Using PBE, the lowest-energy configuration was found to be ∧ = 0.085 Å, as
expected from the structural optimization.

In the exploration of the PES (Fig. 9.5) we included the computed energies obtained
from approximated structures to those of Wu et. al., (a = 5.046, b = 5.044, ∧ = 0.17 Å)
[16], and Tsafack and Yakobson (a = b = 5.10, ∧ = 0.14 Å) [59]4. The structure from
Tsafack and Yakobson (Ref. [59]) lead to the highest energies in both, DFT-LDA and PBE,
presumably do to the longer lattice parameters (a = b = 5.10). The structure from Wu et.
al., [16], follows the same trend with respect to buckling as our calculations using PBE.
Surprisingly, within the LDA, the change of lattice parameters from a = b = 5.058 Å to
a = 5.046, b = 5.044 lowers the energy by ≈ 2.8 meV/atom with respect to our structure
with ∧ = 0.17 Å.

Using the PBE exchange-correlation functional the differences in energies with respect
to the flat configuration are, in general, smaller than within the LDA. However, we must
bring attention to the numerical difficulties using this functional (Fig. 9.5): while Ecut =
75 Ha converges the LDA-calculated total energy within 15 µeV/atom, for PBE the
convergence is in the order of 1 meV/atom. This is a very important difference concerning
the PES, as the structures with ∧ = 0.00, 0.085 and 0.14, as well as the one from Wu et.
al. (Ref. [16]) lie within this window. Increasing the cutoff energy for the PBE calculation
gives a very slow evolution of ET , which prevents us (in terms of CPU time and memory)

4To approximate the structures from Refs. [16,59] we used the same reduced coordinates (relative to
the lattice parameters) as found through our structural relaxation, changing ∧ to their reported values.
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Figure 9.6: Electronic band structure of α′ calculated at different buckling heights with the LDA and PBE.
Overall, the characteristics of the band spectra for the different buckling configurations are maintained
by using both functionals. The major changes occur upon buckling at Γ and near the Fermi energy.

from a more stringent calculation during the structural relaxation. In view of this, we
delimited the problem to only the buckling height, we computed the total energy of
α (∧ = 0.000 Å), and α′ with ∧ = 0.085 Å and 0.200 with Ecut = 170 Ha (converging ET
within 10 µeV/atom). We found minimal differences among the computed energies with
Ecut = 70 Ha, and, in particular, we highlight that the lowest energy configuration was
α′ (∧ = 0.085 Å), ∼ 13 µeV/atom lower than α (∧ = 0.000 Å).

The flatness of the PES imposes a challenge in the search for the “true” ground
state of this polymorph. And we must remark that, among the computed configurations,
different minima were found using different functionals: α (∧ = 0.000 Å) within the LDA,
α′ (∧ = 0.085 Å) using PBE, and not to forget the structure from Wu et. al., (a = 5.046,
b = 5.044, ∧ = 0.170 Å) using PBE + PBE0. In order to circumvent this problem we
computed the KS band structure for different buckling heights using the LDA and PBE,
and we observed that regardless of the difference in the evolution of the total energy using
these functionals, the computed electronic bands showed minimal differences. So as the
difficulty of finding the true minimum in the PES do not influence the discussion of our
results based primarily on the electronic structure, we continue it using our own optimized
atomic structure (buckling height = 0.085 Å).



Appendix B

Building ρ̃ via Fourier transform.

A basic Equation along this work is the one-particle polarizability, χ0, in reciprocal space
(Eq. 2.20) with ingredients ρ̃n′n(q + G) ≡ 〈n′,k′| ei(q+G)·r |n,k〉. It is worth showing how
these quantities are built, in particular for the relation between k and k′. In real space,
expanded in plane waves, the wave functions φnk(r) and φn

′∗
k′ (r) read:

ψnk(r) = unk(r)eik·r =
∑
G̃

Cn
k(G̃)eik·reiG̃·r (9.3)

φn
′∗

k′ (r) = un
′∗

k′ (r)e−ik′·r =
∑

˜̃G

Cn′∗
k′ ( ˜̃G)e−ik′·re−i ˜̃G·r (9.4)

And from the product of the wave functions we can obtain ρ̃n′n(r) in real space:

ρ̃n′n(r) = φn
′∗

k′ (r)φnk(r) =
∑

˜̃G

Cn′∗
k′ ( ˜̃G)e−ik′·re−i ˜̃G·r

∑
G̃

Cn
k(G̃)eik·reiG̃·r

=
∑

˜̃G

Cn′∗
k′ ( ˜̃G)

∑
G̃

Cn
k(G̃)e−ik′·re−i ˜̃G·reik·reiG̃·r

=
∑

˜̃G

Cn′∗
k′ ( ˜̃G)

∑
G̃

Cn
k(G̃)ei(k−k′)·rei(G̃− ˜̃G)·r

(9.5)

And perform the Fourier transform to obtain ρ̃n′n(q + G), i. e., in reciprocal space:

ρ̃n′n(q + G) =
∑

˜̃G

Cn′∗
k′ ( ˜̃G)

∑
G̃

Cn
k(G̃)

∫
dr ei(k−k′)·rei(G̃− ˜̃G)·re−i(q+G)

=
∑

˜̃G

Cn′∗
k′ ( ˜̃G)

∑
G̃

Cn
k(G̃)δ(k− k′ − q)δ(G̃− ˜̃G−G)

(9.6)

The latter yields a relation between k and k′ such that the product of the wave function
does not need to be done over all k and k′, but only over k and k′ = k − q. Thus, Eq.
9.5 simplifies to:

ρ̃n′n(r) =
∑

˜̃G

Cn′∗
k−q( ˜̃G)

∑
G̃

Cn
k(G̃)eiq·rei(G̃− ˜̃G)·r = un

′∗
k−q(r)unk(r)eiq·r

(9.7)
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Eq. 9.7 is convenient for illustrative purposes because, for example, the DP code [135]
used in this work, is the “ingredient” that builds prior to the Fourier transform5:

ρ̃n′n(q + G) =

∫
dr un

′∗
k−q(r)unk(r)e−iG·r (9.8)

It is important to notice that even though the construction of Eq. 9.8 is a very optimized
process, the Fourier transform needs to be performed at every single transition. Therefore,
the computational time for evaluating Eq. 2.20 easily increases with the number of bands
and k-points. The effect of the latter is evident on metallic systems which require from
dense k-meshes, and the effect of the number of bands in calculations that necessarily
require from a large number of conduction states, for example in the computation of the
static response.

5To be precise it only builds the product between the coefficients as the exponential vanishes upon
the Fourier transform (Eq. 9.8).



Appendix C

Evaluation of the commutator in r′

In Section 8 we evaluated Eq. 8.42 with w = 1 using the commutator centered in r:

ΩR =
∑
vc

〈v|
[
ei(q+G)·r, Ĥ

]
|c〉 〈c| e−i(q+G′)·r′ |v〉 (9.9)

equivalently we could have evaluated it in r′ yielding Eq. 8.46 (here repeated):

ΩR =
∑
vc

〈v| ei(q+G)·r |c〉 〈c|
[
Ĥ, e−i(q+G′)·r′

]
|v〉 (9.10)

Upon the evaluation of the kinetic part of the Hamiltonian
(
−∇2

2

)
Eq. 9.10 yields a term

with (q + G′), analogously to Eq. 8.50 with (q + G):

ΩR
∇ = −1

2

∑
vc

ρ̃vc 〈c|
[
∇2, e−i(q+G′)·r′

]
|v〉

= −1

2

∑
vc

ρ̃vc

[
〈c| ∇2e−i(q+G′)·r′ |v〉 − 〈c| e−i(q+G′)·r′∇2 |v〉

]
= −1

2

∑
vc

ρ̃vc

[
〈c| ∇e−i(q+G′)·r′∇ |v〉 − i(q + G′) 〈c| ∇e−i(q+G′)·r′ |v〉 − 〈c| e−i(q+G′)·r′∇2 |v〉

]
= −1

2

∑
vc

ρ̃vc

[
〈c| e−i(q+G′)·r′∇2 |v〉 − i(q + G′) 〈c| e−i(q+G′)·r′∇ |v〉 − 〈c| e−i(q+G′)·r′∇2 |v〉

]
+

i

2
(q + G′)

∑
vc

ρ̃vc 〈c| ∇e−i(q+G′)·r′ |v〉

= −1

2

∑
vc

ρ̃vc

[
〈c| e−i(q+G′)·r′∇2 |v〉 − i(q + G′) 〈c| e−i(q+G′)·r′∇ |v〉 − 〈c| e−i(q+G′)·r′∇2 |v〉

]
+

i

2
(q + G′)

∑
vc

ρ̃vc

[
〈c| e−i(q+G′)·r′∇ |v〉 − i(q + G′) 〈c| e−i(q+G′)r′ |v〉

]
ΩR
∇ =

(q + G′)2

2

∑
vc

ρ̃vc 〈c| e−i(q+G′)·r′ |v〉+ i(q + G′)
∑
vc

ρ̃vc 〈c| e−i(q+G′)·r′∇ |v〉

(9.11)
And also, analogously to Eq. 8.53, apply the closure relation (Eq. 8.2) and obtain an
expression which only depends on the valence states:
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ΩR
∇ =

(q + G′)2

2

∑
vc

〈v| ei(q+G)·r |c〉 〈c| e−i(q+G′)·r′ |v〉

+i(q + G′)
∑
vc

〈v| ei(q+G)·r |c〉 〈c| e−i(q+G′)·r′∇ |v〉

=
(q + G′)2

2

[∑
v

〈v| ei(G−G′)·r |v〉 −
∑
vv′

〈v| ei(q+G)·r |v′〉 〈v′| e−i(q+G′)·r′ |v〉
]

+i(q + G′)

[∑
v

〈v| ei(G−G′)·r∇ |v〉 −
∑
vv′

〈v| ei(q+G)·r |v′〉 〈v′| e−i(q+G′)·r′∇ |v〉
]

(9.12)

Upon the evaluation of the derivative:

ΩR
∇ =

(q + G′)2

2

[∑
v

〈v| ei(G−G′)·r |v〉 −
∑
vv′

〈v| ei(q+G)·r |v′〉 〈v′| e−i(q+G′)·r′ |v〉
]

−k(q + G′)
∑
v

〈v| ei(G−G′)·r |v〉 − (q + G′)
∑
v

〈v| ei(G−G′)·r |vG̃〉

+k(q + G′)
∑
vv′

〈v| ei(q+G)·r |v′〉 〈v′| e−i(q+G′)·r′ |v〉

+(q + G′)
∑
vv′

〈v| ei(q+G)·r |v′〉 〈v′| e−i(q+G′)·r′ |vG̃〉

(9.13)

and lastly from time-reversal symmetry:

ΩR
∇ =

(q + G′)2

2

[∑
v

〈v| ei(G−G′)·r |v〉 −
∑
vv′

〈v| ei(q+G)·r |v′〉 〈v′| e−i(q+G′)·r′ |v〉
]

−(q + G′)
∑
v

〈v| ei(G−G′)·r |vG̃〉+ (q + G′)
∑
vv′

〈v| ei(q+G)·r |v′〉 〈v′| e−i(q+G′)·r′ |vG̃〉

(9.14)
It is worth pointing out that in Ref. [129] it was the commutator in r′ that Berger et

al., evaluated. Thus, Eq. 9.14 is similar to Eq. 14 and 16 of Ref. [129] for local potentials,
and without the symmetrization with the Hermitian conjugate.



Appendix D

Explicit evaluation of ∆R,(1)

In Section 8 we showed the
At this point it is convenient to focus only on the terms with the derivatives. Thus,

assuming a plane waves basis set, the wave function of a state |n,k〉 reads:

ψnk(r) =
∑
G̃

Cn
k(G̃)ei(k+G̃)·r (9.15)

and its derivative:

∇ψnk(r) = ik
∑
G̃

Cn
k(G̃)ei(k+G̃)·r + i

∑
G̃

Cn
k(G̃) · G̃ei(k+G̃)·r (9.16)

notice that, because of the derivative, the imaginary number comes down as a multiplying
factor. Moreover, in the derivatives of Eq. 8.53 there is also an i multiplying, thus it is
convenient to group these terms. In order to simplify the notation we write:

i∇ |n,k〉 = −k |n,k〉 − |nG̃,k〉 (9.17)

where |nG̃,k〉 ≡
∑

G̃C
n
k(G̃)·G̃ei(k+G̃)·r. We now rewrite Eq. 8.53 evaluating the derivative

as in Eq. 9.17:

ΩR
∇ = −(q + G)2

2

[∑
v

〈v| ei(G−G′)·r |v〉 −
∑
vv′

〈v| ei(q+G)·r |v′〉 〈v′| e−i(q+G′)·r′ |v〉
]

−k′(q + G)
∑
v

〈v| ei(G−G′)·r |v〉 − (q + G)
∑
v

〈v| ei(G−G′)·r |vG̃〉

+(q + G)(q + G′)
∑
v

〈v| ei(G−G′)·r |v〉

+k(q + G)
∑
vv′

〈v| ei(q+G)·r |v′〉 〈v′| e−i(q+G′)·r′ |v〉

+(q + G)
∑
vv′

〈v| ei(q+G)·r |v′
G̃
〉 〈v′| e−i(q+G′)·r′ |v〉

(9.18)

and we can make a further simplification assuming time-reversal symmetry, meaning that
ψnk(r) = ψn∗−k(r). Thus, if for every (+k) there is a (−k), the term mutiplied by k (or k′)
does not contribute to the final sum. Thus, Eq. 9.18 simplifies to:
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ΩR
∇ = −(q + G)2

2

[∑
v

〈v| ei(G−G′)·r |v〉 −
∑
vv′

〈v| ei(q+G)·r |v′〉 〈v′| e−i(q+G′)·r′ |v〉
]

−(q + G)
∑
v

〈v| ei(G−G′)·r |vG̃〉+ (q + G)(q + G′)
∑
v

〈v| ei(G−G′)·r |v〉

+(q + G)
∑
vv′

〈v| ei(q+G)·r |v′
G̃
〉 〈v′| e−i(q+G′)·r′ |v〉

(9.19)

Eq. 9.19 is the final expression for ΩR
∇ as it cannot be further simplified, now we must

add it to Eq. 8.48: ΩR = ΩR
∇+ ΩR

V̂
, from where we need to evaluate the commutator with

the potential V̂. For this we assume a separable potential of the form V̂= V̂l+ V̂nl (local
and non-local):

ΩR
V̂

=
∑
vc

〈v|
[
ei(q+G)·r, V̂

]
|c〉 ρ̃∗vc

=
∑
vc

〈v|
[
ei(q+G)·r, V̂l

]
|c〉 ρ̃∗vc +

∑
vc

〈v|
[
ei(q+G)·r, V̂nl

]
|c〉 ρ̃∗vc

(9.20)

Notice that the dipole operator
[
ei(q+G)·r] is a local potential, i. e., is a diagonal matrix,

and therefore commutes with V̂l:
[
ei(q+G)·r, V̂l

]
= 0. On the other hand the non-local

part necessarily needs to be evaluated:

ΩR
V̂

= ΩR
V̂nl

=
∑
vc

〈v|
[
ei(q+G)·r, V̂

]
|c〉 ρ̃∗vc =

∑
vc

〈v|
[
ei(q+G)·r, V̂nl

]
|c〉 〈c| e−i(q+G′)·r′ |v〉

(9.21)
and upon the application of the closure relation (Eq. 8.2) becomes:

=
∑
v

〈v|
[
ei(q+G)·r, V̂nl

]
e−i(q+G′)·r |v〉 −

∑
vv′

〈v|
[
ei(q+G)·r, V̂nl

]
|v′〉 〈v′| e−i(q+G′)·r′ |v〉

(9.22)
Moreover, simply to give a consistent (explicit) expression with Eq. 9.19, we can expand
the commutator of Eq. 9.22 in its different terms:

=
∑
v

〈v| ei(q+G)·r V̂nl e
−i(q+G′)·r |v〉 −

∑
v

〈v| V̂nl ei(G−G
′)·r |v〉

−
∑
vv′

〈v| ei(q+G)·r V̂nl |v′〉 〈v′| e−i(q+G′)·r′ |v〉+
∑
vv′

〈v| V̂nl ei(q+G)·r |v′〉 〈v′| e−i(q+G′)·r′ |v〉

(9.23)
and finally give an explicit expression for ΩR, as an explicit functional of the one-body
density matrix with ΩR = ΩR

∇ + ΩR
V̂

= ΩR
∇ + ΩR

V̂nl
:



9.2. Outlook 118

ΩR = −(q + G)2

2

[∑
v

〈v| ei(G−G′)·r |v〉 −
∑
vv′

〈v| ei(q+G)·r |v′〉 〈v′| e−i(q+G′)·r′ |v〉
]

−(q + G)
∑
v

〈v| ei(G−G′)·r |vG̃〉+ (q + G)(q + G′)
∑
v

〈v| ei(G−G′)·r |v〉

+(q + G)
∑
vv′

〈v| ei(q+G)·r |v′
G̃
〉 〈v′| e−i(q+G′)·r′ |v〉

+
∑
v

〈v| ei(q+G)·r V̂nl e
−i(q+G′)·r |v〉 −

∑
v

〈v| V̂nl ei(G−G
′)·r |v〉

−
∑
vv′

〈v| ei(q+G)·r V̂nl |v′〉 〈v′| e−i(q+G′)·r′ |v〉+
∑
vv′

〈v| V̂nl ei(q+G)·r |v′〉 〈v′| e−i(q+G′)·r′ |v〉

(9.24)
After the long derivation it is necessary to remind the reader that ΩR ≡∑vc ρ̃vc(q +

G)ρ̃∗vc(q + G′)(εc − εv), and that with the application of the closure relation it accounts
for all conduction states. Thus, Eq. 9.24 let us write Eq. 8.24

(
∆R,(1)

)
explicitly, we must

simply divide Eq. 9.24 over Eq. 8.44:

∆R,(1) = −(q + G)2

2

+
(q + G)(q + G′)

∑
v 〈v| ei(G−G′)·r |v〉∑

v 〈v| ei(G−G′)·r |v〉 −∑vv′ 〈v| ei(q+G)·r |v′〉 〈v′| e−i(q+G′)·r′ |v〉

−(q + G)

∑
v 〈v| ei(G−G′)·r |vG̃〉 −

∑
vv′ 〈v| ei(q+G)·r |v′

G̃
〉 〈v′| e−i(q+G′)·r′ |v〉∑

v 〈v| ei(G−G′)·r |v〉 −∑vv′ 〈v| ei(q+G)·r |v′〉 〈v′| e−i(q+G′)·r′ |v〉

+

∑
v 〈v| ei(q+G)·r V̂nl e

−i(q+G′)·r |v〉 −∑v 〈v| V̂nl ei(G−G
′)·r |v〉∑

v 〈v| ei(G−G′)·r |v〉 −∑vv′ 〈v| ei(q+G)·r |v′〉 〈v′| e−i(q+G′)·r′ |v〉

−
∑

vv′ 〈v| ei(q+G)·r V̂nl |v′〉 〈v′| e−i(q+G′)·r′ |v〉 −∑vv′ 〈v| V̂nl ei(q+G)·r |v′〉 〈v′| e−i(q+G′)·r′ |v〉∑
v 〈v| ei(G−G′)·r |v〉 −∑vv′ 〈v| ei(q+G)·r |v′〉 〈v′| e−i(q+G′)·r′ |v〉

(9.25)
and to complete the approximation, plug it in Eq. 8.20, where the closure relation must
be also applied:

χ̃0,R
GG′(q, 0) =

∑
v 〈v| ei(G−G′)·r |v〉 −∑vv′ 〈v| ei(q+G)·r |v′〉 〈v′| e−i(q+G′)·r′ |v〉

−∆R
(9.26)

We must conclude this section by commenting on the fact that, although the im-
plementation of Eqs. 9.25 and 9.26 is not trivial, the operations to build the different
pieces are the same as for the polarizability (Eq. 8.7): mostly the Fourier transforms
to build ρ̃vv′(q + G) and ρ̃vv(G − G′), plus the integrals with the non-local potential,
nonetheless these two terms can be evaluated efficiently using fast Fourier transforms,
and pseudopotentials of the type Kleinman-Bylander [92, 128,140].



Appendix F

The SRden code is a tool written in Python (2.7) to compute the evolution of the induced
density in space and time, which uses the polarizability files from DP [98] and Exc [141].
This code has been part of a continuous development by Igor Reshetnyak, Ralf Hambach,
Giulia Pegolotti, Arnaud Lorin, Vitaly Gorelov and Muhammed Gunes. The main details
on how to use the code, definitions of the input variables and a typical input file can be
found in Ref. [136]. Along this work some changes were done in the code which are worth
mentioning: the inclusion of the variable

write tden = <True/False> # (boolean)

and the deprecation of t plot and r ind to plot immediately after the calculation.

Now, with write tden = True , SRden generates a NetCDF4 file with the induced den-
sity and the potential. A typical output file <root> TDEN.nc4 has the structure:

netcdf My file TDEN {
dimensions:

space dim = 3 ;

one dim = 1 ;

perturbation type len = 14 ;

list of energies len = 61 ;

list of qvectors input file len = 24 ;

total list of qvectors len = 193 ;

total list of gvectors len = 99 ;

atoms in unit cell = 2 ;

atoms in box = 144 ;

time = 601 ;

mesh points = 1000000 ;

variables:

char perturbation type(perturbation type len) ;

float perturbation position(one dim, space dim) ;

perturbation position:units = "Reduced coordinates" ;

float perturbation time(one dim) ;

perturbation time:units = "fs" ;

float list of energies(one dim, list of energies len) ;

list of energies:units = "eV" ;

float list of qvectors input file(list of qvectors input file len, space dim) ;

list of qvectors input file:units = "Reduced coordinates" ;
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float total list of qvectors(total list of qvectors len, space dim) ;

total list of qvectors:units = "Reduced coordinates" ;

int npwmat(one dim) ;

int total list of gvectors(total list of gvectors len, space dim) ;

float lattice parameters rprimd(space dim, space dim) ;

lattice parameters rprimd:units = "Angstroms" ;

float box size orthogonal(one dim, space dim) ;

box size orthogonal:units = "Angstroms" ;

int number of atoms in cell(one dim) ;

number of atoms in cell:units = "natom" ;

int atoms in cell type(atoms in unit cell) ;

atoms in cell type:units = "znucl" ;

float atoms in cell positions(atoms in unit cell, space dim) ;

atoms in cell positions:units = "Angstroms" ;

int number of atoms in box(one dim) ;

number of atoms in box:units = "natom" ;

int atoms in box type(atoms in box) ;

atoms in box type:units = "znucl" ;

float atoms in box positions(atoms in box, space dim) ;

atoms in box positions:units = "Angstroms" ;

float time(time) ;

time:units = "fs" ;

float mesh points(mesh points, space dim) ;

mesh points:units = "Angstroms" ;

int number of mesh points XYZ(one dim, space dim) ;

float induced density(time, mesh points) ;

induced density:units = "units" ;

float external potential(time, mesh points) ;

external potential:units = "units" ;

// global attributes:

:file creation date = "11-03-2022 09:28:22" ;

:SRden version date = "15-12-2021" ;

:chi elements in SRden = "full" ;

:chi type from dp = "chi0" ;

}

where the names of the variables are self-explanatory. The NetCDF format allows for easy
manipulation of the data. Moreover, the capabilities of SRden to produce the density
plots, snapshots, and .xsf files with the density were migrated (and more analysis were
implemented) to an external tool called SRden output.py which requires the output file

from SRden <root> TDEN.nc4 . This tool runs with the following instruction:

SRden output.py -i <input for graphical tool>.py -d <root> TDEN.nc4

And a typical input file for the graphical tool is shown below:
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# Input file for visualization

save figures = False # Save figure in pdf/png

plot figures = True # Show figure after running

write pOd 0D = False # Write <.dat> with potential and density

# at a point r in space.

write pOd 1D = False # Write <.dat> ’’ ’’ ’’

# along a line in space.

write pOd norm = False # Write <.dat> with the norm of potential

# and density

plot tot 2D = False # Plot a 2D cut with the total potential

plot pot 2D = False # ’’ ’’ ’’ external potential

plot den 2D = False # ’’ ’’ ’’ induced density

plot tot 1D = False # Plot along a line the total potential

plot pot 1D = False # ’’ ’’ ’’ external potential

plot den 1D = False # ’’ ’’ ’’ induced density

plot tot 0D = False # Plot at a point r in space he total potential

plot pot 0D = False # ’’ ’’ ’’ external potential

plot den 0D = False # ’’ ’’ ’’ induced density

plot norm tot = False # Plot the norm of the total potential

plot norm pot = True # ’’ ’’ ’’ external potential

plot norm den = True # ’’ ’’ ’’ induced density

integration rad = False # Integrate the norm of the total/external potential

# and density within a radius

# [in Angstrom]. If False =

# integrate over all space.

plot atoms = False # Plot atoms 2D figures and videos.

xsf file = False # Generate .xsf with the density at a given time

make movie 1 tot = False # Make animation in space and time of the total potential

make movie 1 pot = False # ’’ ’’ ’’ external potential

make movie 1 den = False # ’’ ’’ ’’ induced density

make movie 2 = False # Make movie with external potential and induced

# density side-to-side

impose normalization = True # Normalize potential/density to the maximum

# value in file

print header = True # Print the information in <root> TDEN.nc4

# (formatted)

# Output root name ------------------

save image as = ’png’ # Format to save the images of the plots.

# Time ------------------------------

plot at time = 3.40 # Time to plot 0D/1D/2D [in fs]

xsf at time = [0] # Array in fs
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# For movie -------------------------

interpolation = ’spline16’ # Interpolation type

time range = False # False (all times in TDEN file),

# Or [min fs,max fs] for a time period

# Or [fs 1, fs 2, ...]: more than two elements

# in the array select specific points in time.

fps movie = 10 # fps for the density animation

scale colorbar tot = 1 # Scale colorbar (Does not work on single frames)

scale colorbar pot = 1 #

scale colorbar den = 1

force cbmax tot = False # Force colorbar values (overwrites the value

# set for scale colorbar * to 1)

force cbmax pot = False # For a first run it is recommended to

# set these variables to False.

force cbmax den = False

# For cut 1D ------------------------

plot line type = ’X’ # Cut type: X, Y, Z

plot at distance line = [0.00,0.00] # In AA. [Y,Z] if X. [X,Z] if Y. [X,Y] if Z

# For cut 2D ------------------------

plot at distance from origin = 0 # Needs to be in AA

plot cut type = ’XY’ # Cut type: XY, XZ, YZ

# For pOd at r ----------------------

plot at r = [[10.24, 10.40, 0.00]]



Résumé

Comprendre les propriétés des matériaux par la théorie et les calculs implique deux as-
pects qui nécessitent des efforts théoriques : la description générale d’une propriété donnée
d’une part, et les considérations spécifiques aux matériaux d’autre part. Bien entendu,
en fonction de la propriété et du matériau que l’on souhaite examiner, différentes descrip-
tions pour le même objet peuvent être pertinentes. Dans la présente thèse, nous nous
intéressons à la description d’une classe de matériaux qui est atomiquement mince. Cela
suggère que la description la plus pertinente se situe au niveau atomique. Ici, nous nous
concentrons sur le borophène : cela se réfère à une famille de matériaux bidimensionnels
(2D) expérimentaux et théoriques constitués d’une seule espèce atomique : le bore. Le
borophène est particulièrement fascinant en raison de sa capacité à former plusieurs struc-
tures polymorphes, chacune ayant des propriétés électroniques uniques. Ainsi, parmi les
multiples polymorphes qui ont été prédits et synthétisés, la seule différence réside dans
l’arrangement atomique des atomes. Cependant, différents polymorphes présentent des
propriétés différentes.

La question la plus évidente est alors : comment la structure atomique affecte-t-elle
les propriétés du borophène? C’est la question fondamentale de notre travail. Nous y
répondons en distinguant les propriétés communes à tous les matériaux de celles spécifiques
aux polymorphes. Nous réalisons cette étude en deux étapes : d’abord, déterminer com-
ment la structure atomique affecte la structure électronique, puis déterminer comment
la structure électronique affecte les propriétés. En particulier, nous nous concentrons
sur les propriétés diélectriques : celles-ci ont un lien clair avec le système électronique
et peuvent également être reliées aux mesures expérimentales. En explorant ces pro-
priétés, nous espérons offrir des perspectives nouvelles pour le développement de disposi-
tifs électroniques avancés.

Dans ce travail, nous traitons principalement de deux concepts : la structure électronique
des différents polymorphes de borophène et la polarisabilité électronique. Cette dernière
est construite à partir de la structure électronique. Avec la structure électronique, nous
explorons et répondons à différentes questions 1) qu’est-ce qui est commun dans la struc-
ture électronique des différents polymorphes de borophène?, 2) qu’est-ce qui est différent?,
et 3) comment peut-on ajuster la structure électronique de certains polymorphes? Ces
questions sont essentielles pour comprendre les mécanismes sous-jacents qui dictent les
propriétés de ces matériaux fascinants.

De plus, avec la polarisabilité (et la structure électronique), nous caractérisons prin-
cipalement l’absorption optique. Dans notre discussion, un sujet central est le borophène
en tant que conducteur transparent. Ainsi, les principales questions à cet égard sont :
1) comment le borophène devient-il transparent?, et 2) comment pouvons-nous ajuster
la transparence de ce matériau? Nous discutons de règles théoriques simples qui peuvent

123



9.2. Outlook 124

être utiles pour concevoir le borophène en tant que conducteur transparent. En outre,
nous explorons les applications potentielles de ce matériau dans des domaines tels que
l’électronique flexible et les dispositifs optoélectroniques.

Enfin, nous abordons un dernier point concernant la réponse statique. Nous la dis-
cutons dans le contexte du repliement de la surface de Fermi, ce qui est, par exem-
ple, intéressant pour les applications de supraconductivité, ainsi que pour compren-
dre les instabilités structurelles. Nous soulignons ici la possibilité d’utiliser la polaris-
abilité électronique pour discuter des instabilités structurelles, allant au-delà d’une sim-
ple recherche de repliement de la surface de Fermi. La réponse statique, bien qu’elle soit
largement utilisée dans différents contextes, par exemple comme ingrédient dans la théorie
de la perturbation à plusieurs corps, est une quantité computationnellement exigeante.
Dans ce travail, nous développons une méthode qui nous permet d’approximer la réponse
statique de manière efficace : en tant que fonctionnelle explicite de la matrice de densité
réduite à une particule. Cette approche innovante ouvre de nouvelles voies pour l’étude
des propriétés des matériaux à l’échelle atomique, rendant les simulations plus accessibles
et plus précises.
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tladungen,” Physikalische Zeitschrift, vol. 19, pp. 524–533, 1919.

[69] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., vol. 136,
pp. B864–B871, Nov 1964. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRev.136.B864

[70] D. M. Ceperley, R. M. Martin, and L. Reining, Interacting Electrons:
Theory and Computational Approaches. Cambridge: Cambridge University
Press, 2016. [Online]. Available: https://www.cambridge.org/core/product/
4317C43D0531C900920E83DD4632CFE9

[71] D. R. Hartree, “The wave mechanics of an atom with a non-coulomb central
field. part i. theory and methods,” Mathematical Proceedings of the Cambridge
Philosophical Society, vol. 24, no. 1, pp. 89–110, 1928. [Online]. Available: https:
//www.cambridge.org/core/product/C9417AC1CEC84B934C1EA4C4B8401FEF
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Titre : Réponse de la densité de charge des polymorphes 2D : le borophène comme cas prototypique.

Mots clés : borophène, plasmonique, polarisabilité

Résumé : L’objectif de cette thèse est d’élucider la dy-
namique de charge dans les matériaux bidimensionnels
présentant des structures atomiques complexes. À cette
fin, le borophène a été choisi comme matériau prototy-
pique présentant de nombreux allotropes, permettant ainsi
d’étudier directement l’influence de la structure atomique
sur les propriétés électroniques. Parmi les multiples allo-
tropes, j’ai identifié huit structures d’importance théorique
et expérimentale, et j’ai calculé leur structure de bande
électronique. Ensuite, j’ai utilisé les caractéristiques com-
munes de la structure électronique des différents poly-
morphes pour les relier à une structure parente com-
mune, et j’ai construit un modèle théorique basé sur
un gaz d’électrons tridimensionnel confiné et homogène.
Ce modèle explique plusieurs résultats pour la structure
électronique des différents polymorphes étudiés dans ce
travail.
La structure électronique des différents polymorphes a
montré des caractéristiques communes entre différents al-
lotropes, mais elle a également révélé des différences sous
la forme de bandes faiblement dispersives. Ces bandes
plates se manifestent comme une signature de la struc-
ture atomique spécifique. Nous les appelons des états de
type défaut qui apparaissent suite à la création de défauts
ponctuels dans une structure atomique commune du bo-
rophène. De plus, j’ai étudié l’effet du bombement sur la
structure électronique et montré que nous pouvons utiliser
ce paramètre pour ajuster les propriétés électroniques du

matériau, influençant potentiellement la semi-métallicité et
même la supraconductivité.
L’étude de la structure électronique a également révélé le
potentiel de cette classe de matériaux à être utilisée comme
conducteur transparent. J’ai décrit le mécanisme selon le-
quel certaines transitions électroniques n’apparaissent pas
dans les spectres d’absorption en raison de la symétrie : la
position de l’énergie de Fermi dans la structure de bande
est un paramètre important pour déterminer les propriétés
optiques du borophène, et les positions relatives des états
p dans le plan et hors du plan jouent également un rôle
important autour du niveau de Fermi. J’ai donc décrit le re-
pliement de la surface de Fermi en me basant sur les infor-
mations des transitions électroniques. L’étude du repliement
de la surface de Fermi a été complétée par le calcul de la
réponse linéaire statique, ce qui m’a permis de dévoiler la
nature de deux anomalies de Kohn apparaissant dans le
borophène δ6.
Le calcul des fonctions de réponse est très coûteux en
termes de calculs. J’ai abordé ce problème en développant
une méthode approximative qui nous permet d’exprimer la
réponse statique en tant que fonction explicite de la matrice
de densité. Cela présente un intérêt à la fois fondamental et
pratique, car c’est l’un des rares exemples de fonctionnelles
explicites de la matrice de densité pour les observables, et
cela conduit à un gain d’ordre de grandeur en temps de cal-
cul.

Title : Charge density response of 2D polymorphs : borophene as a prototypical case.
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Abstract : The aim of this thesis is to elucidate the charge
dynamics in 2D materials with complex atomic structures.
To this end, borophene was chosen as a prototypical ma-
terial that exhibits numerous allotropes, such that the in-
fluence of the atomic structure on the electronic properties
can be investigated directly. Among the multiple allotropes I
identified eight structures of theoretical and experimental re-
levance and computed their electronic band structure. I then
used the shared characteristics of the electronic structure of
the different polymorphs to relate them to a common parent
structure, and I built a theoretical model based on a confined
three-dimensional homogeneous electron gas. This model
explain several findings for the electronic structure of the dif-
ferent polymorphs studied in this work. The electronic struc-
ture of the different polymorphs showed common features
among different allotropes, but it also showed differences in
the form of weakly-dispersive bands. These flat bands show
up as a signature of the specific atomic structure. We refer
to them as defect-like states that appear from the creation
of point defects in a common borophene atomic structure.
Moreover, I investigated the effect of buckling on the elec-
tronic structure and showed that we can use this parameter
to tune electronic properties of the material such that semi-

metallicity and eventually even superconductivity might be
impacted. The study of the electronic structure also sho-
wed the potential of this class of materials to be used as a
transparent conductor. I described the mechanism for which
certain electronic transitions do not appear in the absorp-
tion spectra by symmetry : the position of the Fermi energy
in the band structure is an important parameter to deter-
mine the optical properties of borophene, and the relative
positions of p-states in-plane and out-of-plane plays also an
important role around the Fermi level. I therefore described
nesting of the Fermi surface based on the information of
the electronic transitions. The study of the nesting of the
Fermi surface was complemented with the computation of
the static linear response, which allowed me to we unravel
the nature of two Kohn anomalies appearing in borophene
δ6 . The calculation of the response functions is computa-
tionally very expensive. I addressed this problem by deve-
loping an approximated method that allows us to write the
static response as an explicit functional of the density ma-
trix. This is of both fundamental and practical interest since
it is one of the few examples of explicit density matrix func-
tionals for observables, and since it leads to an order of ma-
gnitude gain in computer time.
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