

Using a tabulated f_{xc} to calculate ϵ^{-1}

Georg S. Michelitsch Oct 20, 2021 | connector discussion 2021

Using ϵ^{-1} to connect theories

Coming from TDDFT: $\tilde{\chi} = \chi_0 + \chi_0 [v + f_{xc}] \tilde{\chi}$ with $f_{xc}(q, \omega)$ from the tabulated data ^[1,2]

 $f_{xc}(q, \omega, r_s) \Rightarrow$ HEG-kernel for the mean density of the real system.

Panholzer M. et al., *Phys. Rev. Lett.* 120 (2018), 166402
 https://etsf.polytechnique.fr/research/connector/2p2h-kernel

Using ϵ^{-1} to connect theories

Coming from TDDFT: $\tilde{\chi} = \chi_0 + \chi_0 [v + f_{xc}] \tilde{\chi}$ with $f_{xc}(q, \omega)$ from the tabulated data ^[1,2]

 $f_{xc}(q, \omega, r_s) \Rightarrow$ HEG-kernel for the mean density of the real system.

"testparticle" ϵ^{-1} [1] $\epsilon^{-1}_{TC}(q, \omega) = 1 + v(q)\tilde{\chi}(q, \omega)$

- dynamic structure factor (DSF)
- corrected ω_p
- introduced (small) $2\omega_p$

Panholzer M. et al., *Phys. Rev. Lett.* 120 (2018), 166402
 https://etsf.polytechnique.fr/research/connector/2p2h-kernel

Using ϵ^{-1} to connect theories

Coming from TDDFT: $\tilde{\chi} = \chi_0 + \chi_0 [v + f_{xc}] \tilde{\chi}$ with $f_{xc}(q, \omega)$ from the tabulated data ^[1,2]

 $f_{xc}(q, \omega, r_s) \Rightarrow$ HEG-kernel for the mean density of the real system.

"testparticle" ϵ^{-1} [1] "testelectron" ϵ^{-1} $\epsilon_{TC}^{-1}(q, \omega) = 1 + v(q)\tilde{\chi}(q, \omega) \qquad \epsilon_{TE}^{-1}(q, \omega) = 1 + [v(q) + f_{xc}(q, \omega)]\tilde{\chi}(q, \omega)$

- dynamic structure factor (DSF)
- corrected ω_p
- introduced (small) $2\omega_p$

- ▶ go beyond GW: $\tilde{W} = \epsilon_{TE}^{-1} v = [1 + [v + f_{xc}]]\tilde{\chi}v$
- ▶ photoemission spectra with $G\tilde{W}$
- corrected plasmon satellite?
- second satellite?

Panholzer M. et al., *Phys. Rev. Lett.* 120 (2018), 166402
 https://etsf.polytechnique.fr/research/connector/2p2h-kernel

- Analytic model demonstrated general feasability
- ▶ Parametrized model suggests the effect of the actual f_{xc} will be weak
- Cumulant expansion is the state-of-the-art^[1]

 \Rightarrow Implementation of ϵ_{TE}^{-1} with 2p2h- f_{xc} in dp-code

^[1] Zhou J. et al., Phys. Rev. B 97 (2018), 035137

Results of the ab-initio implementation Si, G0W0

- small changes to spectral function
- ▶ inner and outer vertex (ϵ_{TP}^{-1} vs. ϵ_{TE}^{-1}) compensate (!)
- sharper or stronger f_{xc} features required?
- $\bar{\rho}$ good connector? \Rightarrow Na very HEG-like

What has gone wrong?

Results of the ab-initio implementation Si, evGW0

- small changes to spectral function
- ▶ inner and outer vertex (ϵ_{TP}^{-1} vs. ϵ_{TE}^{-1}) compensate (!)
- sharper or stronger f_{xc} features required?
- $\bar{\rho}$ good connector? \Rightarrow Na very HEG-like

What has gone wrong?

Thank you for your attention!

Parkplatz für Slides ohne Plätzchen

Flowchart of workflow

A fully parametrized GW-model including vertex corrections

Tabulated kernel usage - final approach

- Most "physical" version:
 4) Hilbert-Transform
 - calculation of spectra in dp
- Required for GW:
 5) Multipole-Fit & AC
 - calculation of outer vertex in ϵ^{-1}
- Pitfalls: 2) and 3)
 - look at limits in both Re/Im parts

Comparison of different approaches

- closest closest tabulated values are chosen
- inter+repeat interpolation of values inside table, repetition outside
- extra+hilbert interpolation of values inside table, extrapolation of Im outside + Hilbert transform to Re
- multipole(hilbert)
 multipole-expansion of the Im-part from extra+hilbert

Example: DSF of Na and K at different q-points

Oct 20, 2021

Using a tabulated f_{xc} to calculate ϵ^{-1}

Oct 20, 2021

Using a tabulated f_{xc} to calculate ϵ^{-1}

Analytic continuation of f_{xc}

A single anti-resonant pole function ϕ_1 along the real axis :

$$\phi_1(\omega,\eta,\omega_p) = \frac{1}{\omega - \omega_p + i\eta} - \frac{1}{\omega + \omega_p - i\eta} = \frac{2\omega_p - 2i\eta}{\omega^2 - (\omega_p - i\eta)^2}$$
(1)

Analytic continuation of f_{xc}

A single anti-resonant pole function ϕ_1 along the real axis :

$$\phi_1(\omega,\eta,\omega_p) = \frac{1}{\omega - \omega_p + i\eta} - \frac{1}{\omega + \omega_p - i\eta} = \frac{2\omega_p - 2i\eta}{\omega^2 - (\omega_p - i\eta)^2}$$
(1)

The function is defined for a variable $z = \omega + i\eta \text{sgn}(\omega)$ and parameter ω_p . Writing down $\phi_1(z, \omega_p)$, the *analytic continuation* becomes apparent:

along real axis
$$(\eta \neq 0)$$
: $\phi_1(z, \omega_p) = \frac{1}{\omega + i\eta \operatorname{sgn}(\omega) - \omega_p} - \frac{1}{\omega + i\eta \operatorname{sgn}(\omega) + \omega_p}$
 $= \frac{1}{z - \omega_p} - \frac{1}{z + \omega_p} = \frac{2\omega_p}{z^2 - \omega_p^2}$ (2)
on imag. axis $(z = 0 + i\omega)$: $\phi_1(0 + i\omega, \omega_p) = \frac{2\omega_p}{(i\omega)^2 - \omega_p^2} = \left[\frac{2\omega_p}{\omega^2 - \omega_p^2}\right]$ (3)

Single anti-resonant pole

Using a tabulated f_{xc} to calculate ϵ^{-1}

Using a tabulated f_{xc} to calculate ϵ^{-1}

Conclusions

- Interpolation+Extrapolation+Hilbert-Transform for spectra
- Multipole-expansion of $Im[f_{xc}]$ is stable
- Analytic continuation on $i\omega$ implemented
- testelectron screening file implemented & validated for ALDA
- Write screening file with 2p2h
- TODO: Validate implementation of 2p2h_SCR

Interpolation in ω , q (Na TC spectra)

Using a tabulated f_{xc} to calculate ϵ^{-1}

Using a tabulated f_{xc} to calculate ϵ^{-1}

18 / 3

$$\begin{split} & \mathsf{Im}[f_{xc}](\omega) \mid \omega \in \mathbb{C} \setminus \{ \mp \omega_i \pm i\eta \} = \\ & \mathsf{1.} \sum_i \frac{\alpha_i [4\omega_i - 4i\eta]}{\omega^2 - (2\omega_i - i\eta)^2} \end{split}$$

• needs many poles for $\lim_{\omega \to \pm \infty}$

$$\begin{split} & \mathsf{Im}[f_{xc}](\omega) \mid \omega \in \mathbb{C} \setminus \{\mp \omega_i \pm i\eta\} = \\ & \mathbf{1.} \ \sum_i \frac{\alpha_i [4\omega_i - 4i\eta]}{\omega^2 - (2\omega_i - i\eta)^2} \\ & \mathbf{2.} \ \sum_i \frac{\alpha_i [4\omega_i - 4i\eta]}{\omega^2 - (2\omega_i - i\eta)^2} - \frac{\beta}{\omega^{3/2}} \end{split}$$

- needs many poles for $\lim_{\omega \to \pm \infty}$
- singularity at $\omega = 0$

$$\begin{split} & \operatorname{Im}[f_{xc}](\omega) \mid \omega \in \mathbb{C} \setminus \{ \mp \omega_i \pm i\eta \} = \\ & \operatorname{1.} \sum_i \frac{\alpha_i [4\omega_i - 4i\eta]}{\omega^2 - (2\omega_i - i\eta)^2} \\ & \operatorname{2.} \sum_i \frac{\alpha_i [4\omega_i - 4i\eta]}{\omega^2 - (2\omega_i - i\eta)^2} - \frac{\beta}{\omega^{3/2}} \\ & \operatorname{3.} \sum_i \frac{\alpha_i [4\omega_i - 4i\eta]}{\omega^2 - (2\omega_i - i\eta)^2} - \frac{1}{1 + e^{-k(\omega^2 - \omega_{end}^2)}} \cdot \frac{\beta}{\omega^{3/2}} \end{split}$$

- needs many poles for $\lim_{\omega \to \pm \infty}$
- singularity at $\omega = 0$
- damped asymptotics adversly affect the real part

$$\begin{split} & \operatorname{Im}[f_{xc}](\omega) \mid \omega \in \mathbb{C} \setminus \{\mp \omega_i \pm i\eta\} = \\ & \operatorname{1.} \sum_i \frac{\alpha_i [4\omega_i - 4i\eta]}{\omega^2 - (2\omega_i - i\eta)^2} \\ & \operatorname{2.} \sum_i \frac{\alpha_i [4\omega_i - 4i\eta]}{\omega^2 - (2\omega_i - i\eta)^2} - \frac{\beta}{\omega^{3/2}} \\ & \operatorname{3.} \sum_i \frac{\alpha_i [4\omega_i - 4i\eta]}{\omega^2 - (2\omega_i - i\eta)^2} - \frac{1}{1 + e^{-k(\omega^2 - \omega_{end}^2)}} \cdot \frac{\beta}{\omega^{3/2}} \end{split}$$

- ▶ needs many poles for $\lim_{\omega \to \pm \infty}$
- singularity at $\omega = 0$
- damped asymptotics adversly affect the real part

Current prodecure: (adv: analytic continuation ?)

- **1.** Fitting $Im[f_{xc}](Re[\omega])$ to tabulated $Im[f_{xc}]$ using equations above
- **2.** Evaluating (analytically) $\text{Re}[f_{xc}](\text{Re}[\omega])$

$$\begin{split} & \operatorname{Im}[f_{xc}](\omega) \mid \omega \in \mathbb{C} \setminus \{\mp \omega_i \pm i\eta\} = \\ & \operatorname{1.} \sum_i \frac{\alpha_i [4\omega_i - 4i\eta]}{\omega^2 - (2\omega_i - i\eta)^2} \\ & \operatorname{2.} \sum_i \frac{\alpha_i [4\omega_i - 4i\eta]}{\omega^2 - (2\omega_i - i\eta)^2} - \frac{\beta}{\omega^{3/2}} \\ & \operatorname{3.} \sum_i \frac{\alpha_i [4\omega_i - 4i\eta]}{\omega^2 - (2\omega_i - i\eta)^2} - \frac{1}{1 + e^{-k(\omega^2 - \omega_{end}^2)}} \cdot \frac{\beta}{\omega^{3/2}} \end{split}$$

- ▶ needs many poles for $\lim_{\omega \to \pm \infty}$
- singularity at $\omega = 0$
- damped asymptotics adversly affect the real part

Current prodecure: (adv: analytic continuation ?)

- **1.** Fitting $Im[f_{xc}](Re[\omega])$ to tabulated $Im[f_{xc}]$ using equations above
- **2.** Evaluating (analytically) $\text{Re}[f_{xc}](\text{Re}[\omega])$

Alternative procedure: (adv: faster, less poles)

- 1. Represent $Im[f_{xc}]$ piece-wise on tight & large auxiliary ω -grid
- 2. Use $\text{Re}[f_{xc}] = -\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\text{Im}[f_{xc}(\omega')]}{\omega'-\omega} d\omega'$ via numerical convolution

"Analytic continuation" to $Im[\omega]$

$$\sum_{i} \frac{\alpha_{i}[4\omega_{i}-4i\eta]}{\omega^{2}-(2\omega_{i}-i\eta)^{2}} \quad \hat{\mathbb{D}} = \mathbb{C} \setminus \{\mp\omega_{i} \pm i\eta\}$$
$$\{\omega_{i},\eta,\alpha\} \in \mathbb{R}$$

- $\blacktriangleright\,$ I only have data along the real axis $\mathbb{D}=\mathbb{R},$ $\mathbb{Z}=\mathbb{C}$
- ▶ The above equation holds also on $\hat{\mathbb{D}} = \mathbb{C} \setminus \{\mp \omega_i \pm i\eta\}$
- In the limit of ω being real, the equation gives the original data
- The imaginary axis (Im[ω]) is part of $\hat{\mathbb{D}}$
- Only possible for pure multipole-representation, not a piecewise function

