

Jaakko, Matteo, Lucia

TDDFT and BSE in the HEG: some analytic considerations

Motivation:

- \rightarrow Understand more about TDDFT versus BSE
- \rightarrow Understand more about electron-hole correlation functions
- \rightarrow Insert analytical results into ab initio calculations

TDDFT and BSE in the HEG: some analytic considerations

- \rightarrow TDDFT and BSE
- \rightarrow TDDFT and BSE in the HEG
- \rightarrow Analyical solutions and approximations
- \rightarrow Some results

→ TDDFT and BSE

$$
\epsilon^{-1}(\mathbf{r}_1, \mathbf{r}_2; \omega) = \delta(\mathbf{r}_1 - \mathbf{r}_2) + \int d\mathbf{r}_3 v_c(|\mathbf{r}_1 - \mathbf{r}_3|) \chi(\mathbf{r}_3, \mathbf{r}_2; \omega)
$$

$$
\frac{\delta n(\mathbf{r}, t; [n])}{\delta v_{\text{ext}}(\mathbf{r}', t')} = \chi(\mathbf{r}, \mathbf{r}', t, t')
$$

$$
n(\mathbf{r}) = -iG(\mathbf{r}, t, \mathbf{r}t^+) \qquad \delta G/\delta v = -G[\delta G^{-1}/\delta v] G
$$

$$
\chi(1, 2) = -iG(1, \bar{3}) \frac{\delta G^{-1}(\bar{3}, \bar{4})}{\delta v_{\text{ext}}(2)} G(\bar{4}, 1^+)
$$

Note: by definition, G can be either the exact G or the KS one! $G^{-1} = G_0^{-1} - v_{\text{ext}} - v_H - v_{xc}^{\text{eff}}$

 $v_{rc}^{\rm eff}$ is either the KS xc potential or the xc self-energy

$$
\chi = -iG \frac{\delta G^{-1}}{\delta v_{\text{ext}}} G
$$
\n
$$
G^{-1} = G_0^{-1} - v_{\text{ext}} - v_H - v_{xc}^{\text{eff}}
$$
\n
$$
\chi = \chi_0 + \chi_0 v_c \chi - iG \frac{\delta v_{xc}^{\text{eff}}}{\delta v_{\text{ext}}} G
$$
\n
$$
v_{xc}^{\text{eff}} = v_{xc}^{\text{eff}} [n]
$$
\n
$$
\chi = \chi_0 + \chi_0 v_c \chi - iG \frac{\delta v_{xc}^{\text{eff}}}{\delta n} \frac{\delta n}{\delta v_{\text{ext}}} G
$$
\n
$$
\chi = \chi_0 + \chi_0 v_c \chi + \chi_0 \frac{\delta v_{xc}^{\text{eff}}}{\delta n} \chi
$$
\n
$$
v_{xc}^{\text{eff}} = v_{xc}^{KS}[n]
$$
\n: linear response in TDDFT\n
$$
v_{xc}^{\text{eff}} = \Sigma_{xc}[n]
$$
\n: linear response in GF framework\n
$$
v_{xc}^{\text{eff}} = \Sigma_{xc}[n]
$$

$$
-i\frac{\delta G}{\delta v_{\text{ext}}} = {}^{3}\chi_{0} + {}^{3}\chi_{0}v_{c}\chi + {}^{4}\chi_{0}\frac{\delta v_{xc}^{\text{eff}}}{\delta G} \frac{\delta G}{\delta v_{\text{ext}}}
$$

BSE yields variation of *G* wrt non-local potential

LR-TDDFT yields variation of *n* wrt local potential

But could we get more also out of LR-TDDFT, at least approx?

Usual strategy: 1. open the bubble

- 2. insert a few delta-functions
- 3. postulate that the results *L*

Is this shaky or the thing to do?

$$
\chi = \chi_0 + \chi_0 v_c \chi + \chi_0 \frac{\delta v_{xc}^{\text{eff}}}{\delta n} \frac{\delta n}{\delta v_{\text{ext}}}
$$

\n
$$
-i \frac{\delta G^{\text{KS}}}{\delta v_{\text{ext}}} = {}^3 \chi_0 + {}^3 \chi_0 v_c \chi + {}^3 \chi_0 \frac{\delta v_{xc}^{\text{KS}}}{\delta n} \frac{\delta n}{\delta v_{\text{ext}}}
$$

\n
$$
-i \frac{\delta G^{\text{KS}}}{\delta v_{\text{ext}}} = {}^3 \chi_0 + {}^3 \chi_0 v_c \chi + {}^3 \chi_0 \frac{\delta v_{xc}^{\text{KS}}}{\delta G^{\text{KS}} \frac{\delta G^{\text{KS}}}{\delta v_{\text{ext}}}}
$$

\n
$$
-i \frac{\delta G^{\text{KS}}}{\delta v_{\text{ext}}} = {}^4 \chi_0 + {}^4 \chi_0 v_c \chi + {}^4 \chi_0 \delta \frac{\delta v_{xc}^{\text{KS}}}{\delta G^{\text{KS}} \frac{\delta G^{\text{KS}}}{\delta v_{\text{ext}}}}
$$

\nHere, we have postulated a non-local external potential,
\ni.e. an extended domain for the KS Green's function.
\nHave to define the KS Green's function.

$$
-i\frac{\delta G^{KS}}{\delta v_{\text{ext}}} = {}^{4}\chi_{0} + {}^{4}\chi_{0}v_{c}\chi + {}^{4}\chi_{0}\delta \frac{\delta v_{xc}^{KS}}{\delta G^{KS}}\frac{\delta G^{KS}}{\delta v_{\text{ext}}}
$$

$$
L^{KS} = {}^{4}\chi_{0} + {}^{4}\chi_{0}\delta v_{c}\delta L^{KS} + {}^{4}\chi_{0}\delta \frac{\delta v_{xc}^{KS}}{\delta G^{KS}}L^{KS}
$$

$$
L^{ks} = {}^{4}\chi_{0} + {}^{4}\chi_{0}\delta v_{c}\delta L^{ks} + {}^{4}\chi_{0}\delta \frac{\delta v_{xc}^{KS}}{\delta n}\delta L^{ks}
$$

Still another one possible with $f_{\text{xc}}^{\text{mb}}$

$$
L^{-1}=L_0^{-1}-\delta \delta v_c-\Xi
$$

Some elements of kernel not important in inversion, Or exact BSE kernel has delta-functions?

$$
L \approx \sum_{\lambda} \sum_{s} A_{\lambda}^{s} \Phi_s(r_1, r_2) \sum_{s'} A_{\lambda}^{s' *} \Phi_{s'}^{*}(r_3, r_4) e^{-iE_{\lambda}(t-t')}
$$

HEG, L^{ks} ("Casida"): $(\varepsilon_{\mathbf{k}+\mathbf{q}}-\varepsilon_{\mathbf{k}})A_{\lambda}^{\mathbf{k}\mathbf{k}+\mathbf{q}}+f_{Hxc}(\mathbf{q})\left(\sum A_{\lambda}^{\mathbf{k}'\mathbf{k}'+\mathbf{q}}+\sum A_{\lambda}^{\mathbf{k}'-\mathbf{q}\mathbf{k}'}\right)$ $E_{\lambda}A_{\lambda}^{\mathbf{kk}+\mathbf{q}}$ $\big(\varepsilon_{\bf k}-\varepsilon_{{\bf k}-{\bf q}}\big)A_{\lambda}^{{\bf k}-{\bf q}{\bf k}}-f_{H{\rm xc}}({\bf q})\Big(\sum_{\lambda'}A_{\lambda}^{{\bf k'}+{\bf q}}+\sum_{\lambda'}A_{\lambda}^{{\bf k'}-{\bf q}{\bf k'}}\Big)$ $E_{\lambda}A_{\lambda}^{\mathbf{k}-\mathbf{q}\mathbf{k}}$,

"Simple", because f does not depend on kk' $(\varepsilon_{\mathbf{k}+\mathbf{q}}-\varepsilon_{\mathbf{k}})=q^2/2+\mathbf{kq}$ $(\varepsilon_{\mathbf{k}} - \varepsilon_{\mathbf{k} - \mathbf{q}}) = -q^2/2 + \mathbf{k}\mathbf{q}$ $\varepsilon_{-\mathbf{k}} - \varepsilon_{-\mathbf{k}-\mathbf{q}} = -q^2 - \mathbf{k}\mathbf{q}$

 $a_{\mathbf{k}} \equiv A_{\lambda}^{\mathbf{k}\mathbf{k}+\mathbf{q}}$ $b_{\mathbf{k}} \equiv A_{\lambda}^{-\mathbf{k}-\mathbf{q}-\mathbf{k}}$ $s \equiv \sum a_{\bf k}$ $z \equiv \sum b_{\bf k}$.

$$
(q^{2}/2 + kq) a_{k} + f_{Hxc}(q) (s + z) = Ea_{k}
$$

\n
$$
-(q^{2}/2 + kq) b_{k} - f_{Hxc}(q) (s + z) = Eb_{k}
$$

\n
$$
(a_{k} + b_{k}) = -\frac{2f_{Hxc}(q) (s + z)}{(q^{2}/2 + kq) - E^{2}/(q^{2}/2 + kq)}
$$

\n
$$
(s + z) = -\sum_{k} \frac{2(q^{2}/2 + kq) f_{Hxc}(q) (s + z)}{(q^{2}/2 + kq)^{2} - E^{2}}
$$

\n
$$
1 = -\sum_{k} \frac{2(q^{2}/2 + kq) f_{Hxc}(q)}{(q^{2}/2 + kq)^{2} - E^{2}}
$$
 Max:
\n
$$
Q_{k} = q^{2}/2 + kq
$$

\n
$$
a_{k} = -\frac{f_{Hxc}(q) (s + z)}{Q_{k} - E} \qquad b_{k} = -\frac{f_{Hxc}(q) (s + z)}{Q_{k} + E}
$$

 $Q_{\bf k} - E$

$$
(\varepsilon_{\mathbf{k}+\mathbf{q}} - \varepsilon_{\mathbf{k}})A_{\lambda}^{\mathbf{k}\mathbf{k}+\mathbf{q}} - \left(\sum_{\mathbf{k}'} W(k-k')A_{\lambda}^{\mathbf{k}'\mathbf{k}'+\mathbf{q}}\right)
$$

+
$$
\sum_{\mathbf{k}'} W(k-k'+q)(A_{\lambda}^{\mathbf{k}'-\mathbf{q}\mathbf{k}'}) = E_{\lambda}A_{\lambda}^{\mathbf{k}\mathbf{k}+\mathbf{q}}
$$

$$
(\varepsilon_{\mathbf{k}} - \varepsilon_{\mathbf{k}-\mathbf{q}})A_{\lambda}^{\mathbf{k}-\mathbf{q}\mathbf{k}} + \left(\sum_{\mathbf{k}'} W(k-k'-q)A_{\lambda}^{\mathbf{k}'\mathbf{k}'+\mathbf{q}}\right)
$$

+
$$
\sum_{\mathbf{k}'} W(k-k')A_{\lambda}^{\mathbf{k}'-\mathbf{q}\mathbf{k}'}\right) = E_{\lambda}A_{\lambda}^{\mathbf{k}-\mathbf{q}\mathbf{k}}.
$$

$$
Q_{\mathbf{k}a_{\mathbf{k}}} - \sum_{\mathbf{k}'} \left(W(\mathbf{k}-\mathbf{k}')a_{\mathbf{k}'} + W(\mathbf{k}+\mathbf{k}'+\mathbf{q})b_{\mathbf{k}'}\right)
$$

=
$$
E_{\lambda}a_{\mathbf{k}}
$$

$$
-Q_{\mathbf{k}}b_{\mathbf{k}} + \sum_{\mathbf{k}'} \left(W(\mathbf{k}+\mathbf{k}'+\mathbf{q})a_{\mathbf{k}'} + W(\mathbf{k}-\mathbf{k}')b_{\mathbf{k}'}\right)
$$

=
$$
E_{\lambda}b_{\mathbf{k}},
$$

Solution on the way (for certain *W*)

BSE seems to priviledge similar k as TDDFT HEG can be (partially) solved analytically Write real material as HEG+ corrections?

$$
1 = -\sum_{\mathbf{k}} \frac{2(q^2/2 + \mathbf{kq})f_{Hxc}(\mathbf{q})}{(q^2/2 + \mathbf{kq})^2 - E^2}
$$

$$
a_{\mathbf{k}} = -\frac{f_{Hxc}(\mathbf{q})(s+z)}{Q_{\mathbf{k}} - E} \qquad b_{\mathbf{k}} = -\frac{f_{Hxc}(\mathbf{q})(s+z)}{Q_{\mathbf{k}} + E}
$$

 \rightarrow Work with true gap and corrections to diagonal kernel?

 \rightarrow Compare TDDFT and BSE in case both are exact

We encounter the 2-body correlation function in the BSE

$$
L(1,2,3,4) = L^{0}(1,2,3,4)
$$

+ $L^{0}(1,2,\overline{5},\overline{6}) [v(\overline{5},\overline{7})\delta(\overline{5},\overline{6})\delta(\overline{7},\overline{8})$
- $W(\overline{5},\overline{6})\delta(\overline{5},\overline{7})\delta(\overline{6},\overline{8})] L(\overline{7},\overline{8},3,4).$

 $\chi({\bf r}_1,{\bf r}_2;t_1-t_2)=-iL({\bf r}_1,t_1,{\bf r}_1,t_1,{\bf r}_2,t_2,{\bf r}_2,t_2)$

Travelling electron and hole Analysis:

 $L({\bf r}_1,t_1,{\bf r}_2,t_2,{\bf r}_3,t_3,{\bf r}_4,t_4)$

 $L({\bf r}_1,t_1,{\bf r}_2,t_2,{\bf r}_3,t_3,{\bf r}_4,t_4)$

Here, two particles (an electron and a hole) are travelling

Analysis \rightarrow physical consequences:

Travelling electron and hole

 $L({\bf r}_1,t_1,{\bf r}_2,t_2,{\bf r}_3,t_3,{\bf r}_4,t_4)$

Electron and hole travelling together

$$
\chi({\bf r}_1,{\bf r}_2;t_1-t_2)=-iL({\bf r}_1,t_1,{\bf r}_1,t_1,{\bf r}_2,t_2,{\bf r}_2,t_2)
$$

Analysis \rightarrow physical consequences:

Travelling electron and hole

$$
L(\mathbf{r}_1,t_1,\mathbf{r}_2,t_2,\mathbf{r}_3,t_3,\mathbf{r}_4,t_4)
$$

Density (probability) of electron in presence of hole

$$
L({\bf r}_1,t_1,{\bf r}_2,t_2,{\bf r}_2,t_2^-,{\bf r}_1,t_1^+)
$$

Electron and hole travelling together

$$
\chi(\mathbf{r}_1,\mathbf{r}_2;t_1-t_2)=-iL(\mathbf{r}_1,t_1,\mathbf{r}_1,t_1,\mathbf{r}_2,t_2,\mathbf{r}_2,t_2)
$$

Travelling electron and hole Analysis:

 $L({\bf r}_1,t_1,{\bf r}_2,t_2,{\bf r}_3,t_3,{\bf r}_4,t_4)$

Density (probability) of electron in presence of hole

 $L({\bf r}_1,t_1,{\bf r}_2,t_2,{\bf r}_2,t_2^-,{\bf r}_1,t_1^+)$

Note: have to check +/-)

Non-interacting: $G(11⁺)G(22⁻)$

Travelling electron and hole Analysis:

$$
L(\mathbf{r}_1,t_1,\mathbf{r}_2,t_2,\mathbf{r}_3,t_3,\mathbf{r}_4,t_4)
$$

Density (probability) of electron in presence of hole

$$
L({\bf r}_1,t_1,{\bf r}_2,t_2,{\bf r}_2,t_2^-,{\bf r}_1,t_1^+)
$$

This tells us about e-h correlation

$$
\frac{q^2}{2}a_{\lambda} + N_{\mathbf{k}}f_{Hxc}(\mathbf{q})(a_{\lambda} + b_{\lambda}) = E_{\lambda}a_{\lambda}
$$

$$
-\frac{q^2}{2}b_{\lambda} - N_{\mathbf{k}}f_{Hxc}(\mathbf{q})(a_{\lambda} + b_{\lambda}) = E_{\lambda}b_{\lambda}
$$

$$
\rightarrow \qquad E_{\lambda}^2 = \frac{q^4}{4} + 2\frac{q^2}{2} N_{\mathbf{k}} f_{H \text{xc}}(\mathbf{q})
$$

Note: * plasmon energy determined by $1/q^2$ in f (Hartree- RPA!!!!) * without resonant-antiresonant coupling, divergent P.E.

$$
A_{\lambda}^{\mathbf{k}\mathbf{k}+\mathbf{q}} = \frac{f_{H\mathbf{xc}}(\mathbf{q})(a+b)}{E_{\lambda} - (\varepsilon_{\mathbf{k}+\mathbf{q}} - \varepsilon_{\mathbf{k}})}
$$

$$
A_{\lambda}^{\mathbf{k}-\mathbf{q}\mathbf{k}} = \frac{-f_{H\mathbf{xc}}(\mathbf{q})(a+b)}{E_{\lambda} - (\varepsilon_{\mathbf{k}} - \varepsilon_{\mathbf{k}-\mathbf{q}})}
$$

approximately indep. of k

$$
|\Psi_{\lambda}(\mathbf{r}_e, \mathbf{r}_h)|^2 = |\sum_{\mathbf{k}=occ} A_{\lambda}^{\mathbf{k}\mathbf{k}+\mathbf{q}} e^{-i(\mathbf{k}\mathbf{r}_h-(\mathbf{k}+\mathbf{q})\mathbf{r}_e)} + A_{\lambda}^{\mathbf{k}-\mathbf{q}\mathbf{k}} e^{-i(\mathbf{k}\mathbf{r}_h-(\mathbf{k}-\mathbf{q})\mathbf{r}_e)}|^2
$$

$$
|\Psi_{\lambda}(\mathbf{r}_e, 0)|^2 = |\frac{a_{\lambda}}{N_{\mathbf{k}}} \sum_{\mathbf{k} = occ} e^{i(\mathbf{k} + \mathbf{q})\mathbf{r}_e} + \frac{b_{\lambda}}{N_{\mathbf{k}}} \sum_{\mathbf{k} = occ} e^{i(\mathbf{k} - \mathbf{q})\mathbf{r}_e})|^2
$$

= $|\frac{a_{\lambda}}{N_{\mathbf{k}}} s_+|^2 + |\frac{b_{\lambda}}{N_{\mathbf{k}}} s_-|^2 + 2 \text{Re} \frac{a_{\lambda}}{N_{\mathbf{k}}} \frac{b_{\lambda}^*}{N_{\mathbf{k}}} s_+ s_- e^{2i \mathbf{q} \mathbf{r}_e}$

The (restricted, therefore s+,s- q-dep.) sums over k lead to localization. Note: we did not use the sign of f

Question: Details (e.g., is coupling crucial), and Interpretation!

Use this to study charge dynamics in silver chloride, AgCl

Arnaud Lorin, Matteo Gatti, Lucia Reining, Francesco Sottile, arXiv:2009.08699

$$
n(\mathbf{r},t) = \int d\mathbf{r}' dt' \, \chi(\mathbf{r},\mathbf{r}',t-t') v_{\text{ext}}(\mathbf{r}',t')
$$

In a periodic system:

$$
n(\mathbf{q}+\mathbf{G},\omega)=\sum_{\mathbf{G}'}\chi_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega)v_{\text{ext}}(\mathbf{q}+\mathbf{G}',\omega)
$$

Coupling of Fourier components

 \rightarrow the induced density looks different from the potential

The information is contained in the full response matrix

Frequency in gap:

Frequency in gap:

 $t = 0.000$ fs

Frequency on exciton:

Electronic excitations: describing couplings in space and time

- \rightarrow What do I mean by coupling
- \rightarrow Coupling of spatial modes: what happens in an excitation?
- \rightarrow Coupling in time:

Coupling of elementary excitations in photoemission

…………………………...and in excitation spectra

- \rightarrow Excursion to TDDFT
- \rightarrow Conclusions

Example excitons: $H = H^{el} + H^h + H^{el-h}$ \longrightarrow mixing of transitions

Absorption coefficient silver chloride

Electronic excitations: describing couplings in space and time

 \rightarrow What do I mean by coupling

 \rightarrow Coupling of spatial modes: what happens in an excitation?

 \rightarrow Coupling in time:

Coupling of elementary excitations in photoemission

…………………………...and in excitation spectra

- \rightarrow Excursion to TDDFT
- \rightarrow Conclusions

$$
n(\mathbf{r},t) = \int d\mathbf{r}' dt' \, \chi(\mathbf{r},\mathbf{r}',t-t') v_{\text{ext}}(\mathbf{r}',t')
$$

$$
n(\mathbf{r},t) = \int d\mathbf{r}' dt' \, \chi(\mathbf{r},\mathbf{r}',t-t') v_{\text{ext}}(\mathbf{r}',t')
$$

In a periodic system:

$$
n(\mathbf{q} + \mathbf{G}, \omega) = \sum_{\mathbf{G}'} \chi_{\mathbf{G}\mathbf{G}'}(\mathbf{q}, \omega) v_{\text{ext}}(\mathbf{q} + \mathbf{G}', \omega)
$$

Coupling of Fourier components

$$
n(\mathbf{r},t) = \int d\mathbf{r}' dt' \, \chi(\mathbf{r},\mathbf{r}',t-t') v_{\text{ext}}(\mathbf{r}',t')
$$

In a periodic system:

$$
n(\mathbf{q} + \mathbf{G}, \omega) = \sum_{\mathbf{G}'} \chi_{\mathbf{G}\mathbf{G}'}(\mathbf{q}, \omega) v_{\text{ext}}(\mathbf{q} + \mathbf{G}', \omega)
$$

Coupling of Fourier components

 \rightarrow the induced density looks different from the potential

The information is contained in the full response matrix

Theo: A. Lorin et al., PhD thesis 2020 https://arxiv.org/abs/2009.08699

Exp: M. Yanagihara, Y. Kondo, H. Kanzaki, J. Phys. Soc. Jpn. 52, 4397 (1983)

Excitonic spectra are calculated most often for $q \rightarrow 0$, Up to recently only for $G = G' = 0$ (macroscopic experiments)

Excitonic spectra are calculated most often for $q \rightarrow 0$, Up to recently only for G=G'=0 (macroscopic experiments) How to get off-diagonal elements? What do they look like?

Igor Reshetnyak, Matteo Gatti, Francesco Sottile, and Lucia Reining, Phys. Rev. Research 1, 032010(R) (2019)

 $H = H^{el} + H^h + H^{el-h}$

$$
\chi_{GG'}(\mathbf{q}, \omega) = \sum_{\lambda, \lambda'} \left[\sum_{t} A_{\lambda}^{*t}(\mathbf{q}) \tilde{\rho}_t^*(\mathbf{q} + \mathbf{G}) \right. \\
\times \frac{O_{\lambda, \lambda'}^{-1}}{\omega - E_{\lambda}(\mathbf{q}) + i\eta} \sum_{t'} A_{\lambda'}^{t'}(\mathbf{q}) \tilde{\rho}_{t'}(\mathbf{q} + \mathbf{G'}) \right]
$$

in terms of eigenvectors *A* and eigenvalues *E* of e-h hamiltonian building on M. Gatti and F. Sottile, Phys. Rev. B 88, 155113 (2013)

Martin, Reining, Ceperley Cambridge 2016

IXS and CIXS Silicon

Igor Reshetnyak, Matteo Gatti, Francesco Sottile, and Lucia Reining, Phys. Rev. Research 1, 032010(R) (2019)

 ω (eV)

IXS and CIXS LiF

Exp diago: Fields, Gibbons, Schnatterly, Phys. Rev. Lett. 38, 430 (1977)

 \rightarrow Bound excitons with electron localized close to hole

 \rightarrow These resonances give a very strong and long-ranged density response

 \rightarrow More than beautiful pictures: Charge dynamics for photovoltaics, photocatalysis & more

How important is this? Look simply at the HEG….. *Jaakko Koskelo, Matteo Gatti*

1. A matter of consistency: Plasmon frequency

2. Intriguing effects: Negative screening and more cf J. Perdew

COPD: M. Corradini, et al., PRB 57, 14569 (1998) S. Moroni, D. M. Ceperley, and G. Senatore, PRL 75, 6 (1995)

- \rightarrow Lousy "BSE" results in low density HEG
- \rightarrow Simple ALDA much better some NL folded in
- \rightarrow Better: 2p2h Panholzer, Gatti, Reining, PRL 120, 166402 (2018)

