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Nomenclature

χ0 Independent-particle polarisability, eq. 3.14
π Polarisability, eq. (3.17)
χ Susceptibility, or density response function, eq. (2.43)
π̄, χ̄ Slab polarisation function / slab susceptibility, eq. (5.31)
π̄CNT, χ̄CNT Cylinder polarisation function / cylinder susceptibility, eq. (6.16)
ε, εM Microscopic / macroscopic dielectric function, eq. (1.9) / (1.15)
ε̄ Two-dimensional dielectric function, eq. (5.33)
ε̄CNT Dielectric function of the cylinder, eq. (6.18)
v, v3D Coulomb potential, eq. (A.27)
v̄, vCNT Coulomb potential for sheet / cylinder, eq. (5.28) / (6.17)
q, qr Momentum transfer / reduced momentum transfer
q⊥, q|| Momentum transfer perpendicular / parallel to the tube axis
G,K,Q Reciprocal lattice vectors
r̄, q̄, k̄ In-plane vectors (position, wave vectors)
% Cylindrical coordinates (%, ϕ, z), eq. (A.49)
ξ Helical momentum (lp), eq. (6.12)
d, d0 Interlayer distance in graphene stacks and graphite (d0 = 3.33 Å)
BZ Brillouin zone
DP Dielectric Properties
DSF Dynamic Structure Factor
FT Fourier Transform
gcd Greatest Common Divisor
KS Kohn-Sham
(A)LDA (Adiabatic) Local-Density Approximation
LRA Local-Response Approximation
MDFF Mixed Dynamic Form Factor
RPA Random Phase Approximation
SWCNT Single-Wall Carbon Nanotube
TB Tight Binding
ZF Zone folding
(TD)DFT (Time-Dependent) Density-Functional Theory

If not stated differently, SI-units are used throughout this thesis.
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Preface
“Was man in einem Mikroskop bei hoher Vergrößerung sieht, was Teleskope,
Spektroskope und die mannigfachen Vergrößerungsapparate der Elektronik
enthüllen, ist nicht ohne Theorie verständlich, es muss gedeutet werden.”

(Max Born: Symbol und Wirklichkeit, 1964 [1])

It is a dream of the materials scientist to understand the properties of matter from its
microscopic structure at the atomic level—to understand, for example, the origin of the
very different characteristics of water, salt, diamond, iron, or any other material. It is
our dream, because this understanding allows us to design new substances and to predict
their properties. Few examples from the long list of man-made materials are plastics,
photonic crystals [2], and nanostructures [3] like quantum-dots, carbon nanotubes [4],
or graphene [5].

The first step in this process is clearly a minute investigation of prototype materials.
Two techniques are most important for the experimental analysis at the microscopic
level, namely spectroscopy and microscopy: In spectroscopy, the system under study is
exposed to an external perturbation and its response is measured. In optical absorption
experiments, for example, the system is illuminated with light and one measures the
probability that a photon of a certain wavelength is absorbed by the material. The
resulting spectra contain direct information about the electronic structure.

Microscopy, on the other hand, allows one to access spatial informations. For example,
far-field optical microscopes have contributed a lot to our present understanding of
biological systems. But due to the diffraction limit, their application is limited to objects
larger than the wave length of light (≈ 0.5 µm). In electron microscopes this restriction
is much less important because electrons with a kinetic energy of more than 20 keV have
a de Broglie wavelength well below 0.1 Å−1 [6]. The resolving power is mainly limited by
the accuracy of the electromagnetic lenses. It has been continuously improved over the
last decades (see fig. 1.1a) and electron microscopes became a standard tool to investigate
nanostructures at the nanometre scale. For instance, the water-repellent surface of the
leaves of the lotus flower and the bright colours of the butterfly have been explained
with the microstructure of the surface [7]. Very recently, important progress was made
and aberration-corrected microscopes with sub-atomic resolution became available [8].

If one is interested in the excitation properties at the nanometre scale, for instance, to
study the excitations of individual nanoparticles, one can combine the principles of spec-
troscopy and microscopy. In a scanning transmission electron microscope (STEM) [9],
the electron beam is focussed to a spot size of the order of 1 Å and the detector analyses
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the energy of the arriving electrons. On their way through the specimen, the electrons
in the beam can be scattered inelastically and transfer energy to the sample, e. g., by
inducing electron-hole transitions or exciting collective charge oscillations, the so-called
plasmons. Measuring the energy distribution of the scattered electrons, one can ob-
tain local informations about the electronic excitations of the system. By virtue of these
spatially-resolved electron-energy loss measurements it is now possible to investigate both
localised and extended excitations on a sub-nanometre scale with high energy resolution
for any type of material [10].

With the new generation of microscopes it is now possible to achieve a spot size
even below one Ångstrom. These important instrumental improvements give rise to new
fundamental questions on the image formation and the spatial distribution of the involved
excitations. At the atomic length scale, one clearly enters the quantum world where the
intuitive classical picture is no longer valid. A detailed theoretical understanding of
both the imaging process and the response of the target in the framework of quantum
mechanics is thus essential for the interpretation of measurements in electron microscopy.
The aim of this thesis is to contribute to this microscopic understanding and to prepare
the theoretical tools to accompany modern microscopy experiments.

Within non-relativistic quantum mechanics, all microscopic properties of the target are
determined by the Schrödinger equation for the constituting particles. But already
for three interacting particles, an exact solution of this equation becomes impossible.
In order to describe the response of the many-body system it is therefore necessary to
decrease the complexity using physically motivated approximations or to reformulate the
problem. In particular, dielectric theory has been successfully applied for macroscopic
systems and even for rather small nanoparticles [10]. The response of the target to an
external perturbation is then described within classical electrodynamics [11], whereas all
quantum-mechanical effects are incorporated into the dielectric function ε that describes
the bulk material. The latter is a priori unknown and has to be determined, e. g.,
from experiment or model calculations. However, this macroscopic approach cannot be
applied to describe the response of individual atoms.

Ab-initio calculations, instead, are especially suited for a reliable quantum-mechanical
description of the material at the atomic level. In the framework of (time-dependent)
density-functional theory [12, 13] it is now possible to calculate the geometry, the elec-
tronic structure, and the excitations of systems with hundreds of electrons starting from
first principles. No empirical parameters have to be included, in principle, in these
numerical simulations and the results can be directly compared with experiment.

Unfortunately, there is a gap between the size of systems that can be described with
dielectric theory and those accessible to ab-initio calculations. Important examples are
atomically thin nanostructures like single-wall carbon nanotubes with diameters of a few
nanometres. Such structures are particularly interesting for spatially-resolved electron
energy-loss measurements. Several fundamental questions can be studied which concern,
e. g., the properties of plasmons in low-dimensional systems, the delocalisation of the
energy-loss signal, and the question which information is actually probed in atomically
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resolved experiments. In this thesis, I develop and implement a method to overcome
this problem by means of a building-block approach: Combining dielectric theory and
ab-initio calculations, I describe the collective excitations in nanostructures (like carbon
nanotubes) starting from the microscopic polarisability of their building blocks (bulk
graphite). On the one hand, this considerably reduces the computational cost and opens
the way to study electronic excitations for systems which are too large for a full ab-initio
treatment, and too small for a reasonable description within the dielectric formalism.
On the other hand, it allows us to analyse the loss spectra of nanostructures in terms
of their normal-mode excitations which considerably simplifies the interpretation of the
energy-loss spectra.

In this thesis I focus on the range of low energy losses E < 40 eV, where only valence
electrons contribute to the response of the system and collective electron oscillations
can be excited. Using ab-initio calculations and the methods that I have developed, I
study the collective electronic excitations in different carbon systems, namely graphite,
graphene sheets, and single-wall carbon nanotubes. They are prototypes for three-, two-,
and one-dimensional systems, respectively. Apart from this very fundamental interest,
these materials have outstanding properties and many potential applications [5, 14].
This is a further motivation to study and understand the properties of carbon materials.

This thesis is organised in three parts:

• In the first part, the theoretical background for angular- and spatially-resolved
electron-energy loss spectroscopy is presented. In the first two chapters, I dis-
cuss the theory of image formation in the electron microscope. The differential
cross section measured in experiment is derived for the case of low energy losses
using a semi-classical approach (chapter 1) and quantum-mechanical scattering
theory (chapter 2). It can be divided into a geometry dependent probe factor
C(q, q′) and the mixed dynamic form factor S(q, q′, ω) which describes the re-
sponse of the target. In this thesis, the form factor is obtained from ab-initio
calculations using a plane-wave pseudopotential code. Therefore, the fundamen-
tals of (time-dependent) density-functional theory and the basic workflow of the
numerical simulations are outlined in chapter 3.

• The main results of this thesis are contained in the second part. It is concerned
with the quantum-mechanical description of the target. To this end, I have studied
the properties of the mixed dynamic form factor S for carbon systems with different
dimensions, as well as bulk silicon.
In chapter 4, the response of three-dimensional crystals, namely graphite and sili-
con, is studied using ab-initio calculations. I predict for the first time an angular
anomaly in the mixed dynamic form factor S(q, q) for momentum transfers q in
the vicinity of certain reciprocal lattice vectors G. Using a two-plasmon-band
model, I can explain this effect in terms of induced microscopic charge oscillations,
namely the crystal local-field effects. The anomaly was confirmed by the inelastic
X-ray scattering experiments of our collaborators for graphite and silicon.
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In chapter 5, I consider the response of a (quasi) two-dimensional system. First,
the collective excitations in graphene and, in particular, the π plasmon is studied
using ab-initio calculations. Second, I develop and implement several methods that
considerably reduce the computational costs of these calculations using an inter-
polation method in reciprocal space (p. 92) or a cutoff method for the Coulomb
potential in real space (p. 102). Third, I study the response of two-dimensional sys-
tems in the limit of ideal localisation on the sheet. The resulting analytic expression
relates the in-plane response in graphite with the two-dimensional response func-
tion in graphene. I study the validity of this local-response approximation—which
is also the basis of local dielectric theory—by comparison with the full ab-initio
results. Finally, a building-block approach is presented which allows us to calcu-
late the full quantum-mechanical response of assembled systems, like multilayer
graphene, starting from the isolated sheet.
In chapter 6, the methods developed for two dimensions are finally applied to
(quasi) one-dimensional single-wall carbon nanotubes. First, I extend the building-
block approach in order to describe the microscopic response of the tube starting
from an ab-initio calculation of graphene. This corresponds to an extension of
the well-known zone-folding model for collective excitations. I implement this
method and compare the results with full ab-initio calculations of the angular-
resolved energy-loss spectra of single-wall carbon nanotubes. Second, the local-
response approximation is applied for the case of cylindrical systems and the range
of validity is discussed. Third, I study the angular-resolved loss spectra in single-
wall carbon nanotubes. In particular, the dependence of the plasmon dispersion
on the orientation of the momentum transfer is considered.

• In the last part, I show how the methods described above can be potentially applied
for an efficient theoretical description of spatially-resolved electron energy-loss ex-
periments starting from ab-initio calculations. As a first model system, I consider
the movement of a classical electron parallel to a single graphene layer. Depending
on the imaging parameters, one can make use of the local-response approximation
in the calculation of the energy-loss probability and eventually also in the descrip-
tion of the target system. I discuss the influence of non-local corrections and the
possibility of atomic resolution for valence-electron energy-loss spectroscopy. Fi-
nally an outlook is given for the simulation of spatially-resolved electron energy-loss
measurements on isolated single-wall carbon nanotubes.
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Background

1





1 Introduction

1.1 Electron Microscopy
In this section, some of the recent experimental achievements in atomically-resolved
electron microscopy are reviewed. According to the subject of this thesis, we will focus on
angular- and spatially-resolved valence-electron energy-loss spectroscopy. For a general
introduction to the broad topic of electron microscopy see, e. g. [9, 17].

1.1.1 Transmission Electron Microscope
In a transmission electron microscope (TEM), the sample is generally illuminated by a
broad beam of electrons which are accelerated to energies of about 200 keV. Behind the
object, the transmitted electrons are focussed to the image plane by a system of electro-
magnetic lenses. Although this basic principle is analogous to optical microscopy, the
images cannot be simply understood as a shadow-cast of the atomic structure. Instead
one has to consider the propagation of the electron wave function through the sample
which leads to interference patterns in the image plane.

Already 50 years ago, images of these interference patterns have been published that
showed intensity modulations at the atomic scale. In the 1980ies, high resolution images
have been obtained by a reconstruction of the exit-plane wave function of the probing
electron from a series of images with varying objective lens focus. Afterwards, the spatial
informations of the object can be extracted from this exit-plane wave function [18].

Approximately ten years ago, aberration-corrected electron microscopes became avail-
able. With this new generation of electron microscopes, local informations about indi-
vidual atoms, like shifts in the atomic positions, can be measured with an unmatched
precision (see fig. 1.1a). It is now possible to study defects, dislocations, stress, and local
physical properties like the dipole moment at the atomic level (see fig. 1.1b). This opens
the way to understand the macroscopic properties of materials from the microscopic
atomic arrangements.

1.1.2 Electron Energy-Loss Spectroscopy
Electron energy-loss spectroscopy (EELS), instead, gives access to the excitation prop-
erties of the system with high energy resolution. To this end, the detector does not
only count the number of transmitted electrons, but also analyses their kinetic energy.
The resulting energy-loss spectrum, i. e., the probability to detect a scattered electron
which has lost a certain energy, contains valuable information about the excitations of
the target. Depending on the imaging mode, we can distinguish between angular- and
spatially-resolved EELS.
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(a) (b)

Fig. 1.1: Spatial resolution in transmission electron microscopy. (a) Advances in the resolving
power of electron microscopes (Reprinted by permission from Macmillan Publishers Ltd: Nature
Materials [15], c© 2009). (b) Experimental observation of a polarisation domain wall in a ferro-
electric material. Arrows give the direction of spontaneous polarisation as inferred from the local
atom displacements (Reprinted by permission from Macmillan Publishers Ltd: Nature Materials
[16], c© 2008).

Angular-Resolved EELS

In angular-resolved EELS, one considers the diffraction of an incoming plane electron
wave. The detector collects only electrons which are scattered into a small solid-angle
element dΩ (see fig. 1.2a). As the scattering angle ϑ is directly related to the momentum
transfer q of the electron to the target, one can measure the momentum dependence
of the excitations by collecting several energy-loss spectra for different angles ϑ. For
instance, the plasmon dispersion in bulk materials and nanostructures can be studied
using AR-EELS measurements. We will see in section 2.4 that the same information can
be obtained from inelastic X-ray scattering experiments.

Spatially-Resolved EELS

The combination of energy-loss spectroscopy and transmission electron microscopes pro-
vides access to the local excitation properties of the system with very high spectral and
spatial resolution [10]. One of the possible experimental realisations is the energy-filtered
transmission electron microscope (EFTEM). Compared to the standard TEM geometry,
an energy filter is introduced behind the object to select electrons with a certain kinetic
energy. As a result, one obtains a spatially-resolved image of the target which is only
formed by electrons that have suffered a certain energy loss.

A complementary approach is used in scanning transmission electron microscopes
(STEM) [20]. In this case, the sample is illuminated with a highly focussed electron
beam that is used to scan over the sample area (see fig. 1.2b). Additionally, the detector
is equipped with an energy analyser in order to measure the electron energy-loss spectrum
originating from a very small region in space.

4
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Fig. 1.2: (a) Geometry of an angular-resolved EELS experiment, (b) a scanning transmission
electron microscope (STEM) and (c) a sketch of its experimental realisation. (Reprinted from
[19] with permission from John Wiley & Sons Inc. c© 2006).

Core Loss

A typical energy-loss spectrum is shown in fig. 1.3a. At large energy transfers, one
observes characteristic edges that are directly related to the discrete energy levels of the
inner-shell electrons of the atom. Because the tightly bound core electrons are rather
unaffected by the chemical environment, these edges are a unique signature of the atom
species. They can be used to construct elemental maps from the spatially-resolved EELS
data. These images show the spatial distribution of a certain element.

Using an aberration-corrected STEM, it has been even possible to measure elemental
maps with atomic resolution (see fig. 1.3b). If one analyses also the near-edge features
(which are related to the final valence states) one can also access information about
chemical bonding [21].

Valence Loss

For low energy loss, the spectrum contains informations about the band structure of the
system and the collective electronic excitations. For example, it has been possible to
measure the band gap of thin dielectric films with an energy resolution of few 100 meV
and a spatial resolution of few nanometre using STEM valence EELS measurements [22].
Another interesting application is the investigation of surface plasmons at interfaces and
small particles [23]. For example, fig. 1.4b shows the valence-loss signal for different
positions across an thin layer of silicon-dioxide of 2 nm thickness. Compared to the core-
loss signal (see fig. 1.4a), the spatial resolution is reduced in valence EELS measurements.

In this thesis we will investigate both the momentum dependence (chapter 4-6) and the
spatial dependence (chapter 7) of the valence loss excitations in different carbon systems.
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(a) (b)

Fig. 1.3: STEM measurements. (a) Electron energy-loss spectrum for graphite in the valence-
and core-loss region (Reprinted from [24], Micron c© 2008, with permission from Elsevier). (b)
An atomic-resolution elemental map of a multilayer system. Colours indicate different edge
signals attributed to La (green), Ti (blue), and Mn (red) atoms (Reprinted by permission from
Macmillan Publishers Ltd: Nature Materials [15], c© 2009).

1.1.3 Some Fundamental Questions
Due to the enormous improvements in instrumentation technology, it is now possible to
probe local excitation properties at the sub-Ångstrom level. This gives rise to several
fundamental questions. Some of them shall be briefly presented in the following.

Delocalisation of the energy-loss signal: One might wonder which spatial resolving
power can be actually obtained in spatially-resolved EELS measurements. Indeed, there
are several reasons for the delocalisation of the EELS signal [10]: First, in a STEM
the incident beam is focussed only to a finite width. This lens delocalisation can be
now reduced to values below 1 Å using aberration-corrected microscopes. Second, the
Coulomb field which is generated by the fast electrons has a finite extent. This Coulomb
delocalisation depends on the experimental parameters like the velocity v of the imping-
ing electrons and the energy loss ~ω. Third, the excitations in the target itself have a
different spatial extent. Core excitations which are excited at large energy transfers are
typically localised at the atomic length scale, while valence-loss excitations like (surface)
plasmons may be very extended.

As a rough estimate for the delocalisation length, one often uses Bohr’s adiabatic
parameter bmax = ω/v which has been derived within classical theory [11]. Using a
quantum mechanical approach, Muller and Silcox [25] show that bmax should be con-
sidered as a ‘dynamic’ screening length which describes the exponential decay of the
inelastic scattering signal. Using a full width at half maximum criterion, the delocali-
sation length for low energy losses (≈ 10 eV) is then found to be of the order of a few
nanometres [25].

6
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(a) (b)

Fig. 1.4: Experimental EEL spectra from a STEM measurement scanning across a Si/SiO2
interface. (a) The background-corrected oxygen K-edge (Reprinted by permission from Macmil-
lan Publishers Ltd: Nature [31], c© 1999) and (b) the valence-loss signal are shown for different
positions across the interface (Reprinted from [32], c© 2008 by The American Physical Society).

Subsequent elastic and inelastic scattering: Generally, the incident electrons in a
focussed electron beam can be scattered several times on their way through the sample.
For example, in a crystal, they can be channeled along the rows of atoms due to elastic
scattering events. Either, one has to use very thin targets in order to avoid such multiple-
scattering effects. Or one has to include the subsequent elastic and inelastic scattering
events in a theoretical description. For example, one can consider the propagation of the
density matrix of the external electron through the system using a multi-slice approach
(see, e. g., [26, 27]).

Excitations in valence EELS: The valence-loss signals involve spatially more extended
informations and are therefore less simple to interpret than core-loss spectra. For in-
stance, Nelayah et al. [23] have recently reported spatially-resolved plasmon maps on
small nanoparticles which have been obtained from STEM measurements.One might
wonder which physical quantity is actually measured in such an experiment. García de
Abajo and Kociak [28] have shown that the signal can be interpreted in terms of the
photonic local-density of states of the system.

Already this short overview shows that there is an important interest in a theoretical
understanding of spatially-resolved electron energy-loss spectra. In the following part of
the introduction, we will briefly review the (non-relativistic) dielectric formalism which
has been successfully applied for energy losses at small spheres, cylinders, and many
other geometries [29, 30].

7
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1.2 Macroscopic Dielectric Theory
The interaction of a swift electron with matter is generally described in the semi-classical
theory. One starts from the Maxwell equations of classical electrodynamics to calculate
the perturbation of the target due to the external electron. The response of the ma-
terial is characterised by the dielectric function ε. It can be either determined from
experiments, approximated by simple models like the Drude model for free electrons, or
obtained from a quantum-mechanical calculation.

Depending on the geometry of the target system and the complexity of the dielectric
function ε, the solution of the Maxwell equations can be rather complicated. In the
following, we will briefly review some of the numerous approaches to this problem. For
a recent overview, see e. g., [10, 33].

1.2.1 Dielectric Theory for Simple Geometries
For simple geometries, the Maxwell equations can be solved analytically. Assuming a
frequency dependent response of the material ε(ω), the energy loss in planar surfaces,
spheres, cylinders, and several assemblies of these objects has been calculated [30].

For instance, consider an interface between two materials A and B with a dielectric
function εA and εB. The energy-loss probability of an electron travelling inside the
medium A parallel to the interface at a distance b is found to be [30]

P ∝ ln
(2πqcv

ω

)
Im
{
− 1
εA

}
−K0

(2bω
v

)
Im
{
− 1
εA

}
+K0

(2bω
v

)
Im
{
− 2
εA + εB

}
, (1.1)

where v denotes the velocity of the electron, qc the plasmon cutoff wave vector, and K0
is the zeroth-order modified Bessel function. The first term can be associated with the
volume loss. Indeed, the other two terms compensate each other when εA = εB, i. e.,
when the system is homogeneous. In this case, the loss spectrum shows characteristic
peaks, whenever εA(ω) ≈ 0. They correspond to the longitudinal normal modes of the
system and can be associated with collective oscillations of the electrons, the so-called
volume plasmons.

The other two terms are due to the interface and vanish exponentially with increasing
distance b (see appendix A.4.3). The second is known as begrenzungsterm and accounts
for the reduction of the bulk losses due to the interface. The third term contributes strong
peaks, when εA(ω) + εB(ω) ≈ 0. They are associated to electromagnetic normal modes
located at the interface, the so-called surface plasmons. Since the discovery of these
surface modes, a new field of physics has emerged which is known as plasmonics [34].

Surface Plasmons

These surface modes have been first described by Ritchie [35], who studied the energy
loss of a fast electron transmitted through thin foils. In such systems, the valence loss
spectra show peaks at energies that differ from the expected bulk plasmon energies.
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In order to understand this point, we consider the model system discussed above for
the case of an electron moving parallel to a metal surface.1 The dielectric function of
the metal can be approximated by the Drude function which is derived from a purely
classical model for the electrons in the metal. Drude considered a homogeneous gas of
free electrons which move ballistically until they loose all their energy in a collision after
an average time τ = η−1. The dielectric function then reads

εD(ω) = 1−
ω2
p

ω2 + iωη
, ω2

p = e2n

mε0
, (1.2)

where n is the average electron density and ωp denotes the plasma frequency. If the
electron moves inside the metal (εA = εD) parallel to the interface to vacuum (εB = 1),
the surface and the volume term in the loss function (1.1) become

Im
{
− 1
εD(ω) + α

}
=

ω2
pωη[

(α+ 1)ω2 − ω2
p

]2 +
[
(α+ 1)ωη

]2 , α =
{

0 volume
1 surface

(1.3)

For small damping η, we find a strong peak at ωp in the case of volume loss and at
ωp/
√

2 for the surface-loss term.
A very similar result is obtained for insulators. In the Lorentz model, the electrons

are no longer free but harmonically bound to the atom cores. The dielectric function
resulting from this model then reads

εL(ω) = 1−
ω2
p

ω2 − ω2
0 + iωη

, (1.4)

where ω0 denotes the resonance frequency of the bound electrons. Consequently, the
bulk-plasmon frequency is given by (ω2

p + ω2
0)1/2, while the surface plasmon is shifted

two lower frequencies (ω2
p/2 + ω2

0)1/2. This general trend is found for many different
geometries and materials.

Near-Field Electron Energy-Loss Spectroscopy

In near-field electron energy-loss spectroscopy, the electron travels in vacuum and does
not even intersect the sample. In this case (εA = 1), only the third term in eq. (1.1) con-
tributes to the loss signal. Contributions from the volume plasmon excitation completely
vanish and only the surface plasmons can be excited. As the Bessel function K0(2bω

v )
vanishes exponentially, low frequency modes ω are favoured in this aloof configuration.

In chapter 7, we will calculate the valence-loss probability of a fast electron travelling
parallel to an isolated graphene sheet. Instead of using a model for the dielectric function
ε, we will determine the response of the material from an ab-initio calculation.

1Ritchie [35] originally calculated the energy-loss for an electron moving perpendicular to the thin film.
In the limit of sufficiently thick films, the formula assumes a form similar to that of eq. (1.1), where
the prefactors K0 of the surface terms have to be replaced by an arctan-function [30].
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(a) (b)

Fig.1.5: (a) Boundary-element method (Reproduced from [41], c© 2002 by The American Phys-
ical Society) and (b) discrete-dipole approximation. The balls indicate a single dipole.

1.2.2 Extensions
Numerous extensions of the previous theory have been given: First, the description of
the material response has been improved. For instance, Gumbs and Horing [36] have
included non-local corrections, i. e., the wave-vector dependence of the dielectric function
ε(q, ω). Stöckli et al. [37] have used an anisotropic dielectric function in order to describe
the response of multi-wall carbon nanotubes.

Second, relativistic effects have been included in the description of the probe elec-
tron [38–40]. Indeed, the probe electrons have typically an energy of more than 100 keV
and retardation effects can become important. For example, Kröger [38] has described
the Čerenkov radiation that can be excited by a fast electron traversing a thin foil.

And third, the theory has been extended for arbitrary geometries. In this case, numer-
ical simulations become necessary. They are based on either the Poisson equation in the
non-retarded case or the full Maxwell equations if relativistic corrections are included.
Two examples are the boundary-element method and the discrete-dipole approximation.
For a more detailed list see, e. g. [10, 33].

Boundary-Element Method

The boundary-element method (BEM) has been introduced by Fuchs [42]. He considered
a system of small particles with arbitrary shape, composed of a homogeneous material
which is described by the local dielectric constant εA(ω). The response of this inho-
mogeneous system to an external perturbation ϕe is associated with an induced surface
charge σ which gives rise to an induced potential ϕi. Taking into account the continuity
of the field components at the boundary of the particles (see fig. 1.5a), one obtains a
self-consistent relation for the induced boundary charge [10]:

2πεA + εB
εA − εB

σ(s, ω) = ns·∇ϕe(s, ω)−
∫
d2s′

s− s′

|s− s′|3
·ns σ(s′, ω), (1.5)

where εB is the dielectric constant of the host material and ns the normal vector of
the interface. The numerical solution of this equation can be very efficient, because the
variable s is restricted to the surface of the particles. The outlined procedure has been
also generalised for the nonretarded case [40, 41].
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Discrete-Dipole Approximation

The basic idea of the discrete-dipole approximation (DDA) is to replace the homogeneous
system of arbitrary shape by a finite array of polarisable dipoles (see fig. 1.5b). These
dipoles will react to an external potential, but also to the fields of the other dipoles that
interact with each other. For a finite set of dipoles, the Maxwell equations can be solved
numerically. The polarisability α of a single dipole is obtained by inverting the Clausius-
Mosotti relation for a given material. Note that in contrast to the boundary-element
method, the entire volume of the particles has to be considered.

The discrete-dipole approximation closely resembles the theory of Lorentz [43], who
derived the dielectric properties of a crystal from the polarisability of the constituting
atoms. It has been successfully applied to describe the dielectric response of nanoparti-
cles [44] and has been also extended for periodic systems [45].

The dielectric approach described above has proven to be very valuable for the descrip-
tion of macroscopic and mesoscopic systems with dimensions down to several 10 nm.
However, this description will fail at the atomic level. We cannot approximate the re-
sponse of a single atom by a dipole, if we are interested in atomic resolution. Or even
identify it with a small sphere of bulk material. Nevertheless, the semi-classical dielectric
approach can be even extended to the atomic level, as we will see in the next section.
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1.3 Microscopic Dielectric Theory
Looking back in history, the concept of the dielectric function ε was continuously ex-
tended in order to describe the response of a material more and more accurately [46]:

In optics, the complex dielectric constant εM = (n + iκ)2 reflects two important
properties of the material: (i) the refraction index n that defines the speed of light c/n
and determines the refraction at the boundary between two different media, and (ii) the
absorption coefficient κ that describes the exponential loss of intensity I(d) = I0e

−κd

inside a material (Beer’s law). It is easily understood that a single constant is generally
not sufficient to describe the optical properties of a material. Already Newton [47] had
found that the light of the sun could be split into the colours of the rainbow when it is
diffracted by a glass prism. The refraction index n and thus the dielectric function must
be a function of the frequency ω of the light, i. e., εM = εM (ω). Later on, also the optical
activity and birefringence in certain crystals could be explained by the dependence of the
refraction index on the polarisation direction. As a consequence, the dielectric function
should be a tensor εαβM (ω), where α and β run over the three vector components x,
y, and z [48]. And finally, one has discovered that the nonlocal contributions to the
response of the material give rise to surprising behaviours like the negative refraction in
certain materials. This nonlocal behaviour, which is also known as spatial dispersion,
corresponds to a wave-vector dependence of the dielectric function εM (q, ω) [46].

All these different cases can in principle be derived from a microscopic description of
the elementary excitations of the medium using the microscopic dielectric tensor εαβ

Eeα(r, t) =
∫
dr′
∫
dt′ εαβ(r, r′, t−t′) Etβ(r′, t′), (1.6)

which relates the external perturbation Ee to the total microscopic field Et, i. e., the
response of the material. It can be determined by a quantum mechanical calculation,
e. g., in the framework of time-dependent perturbation theory (see chapter 3). The
connection between the microscopic response ε and the macroscopic quantity εM can be
rather complicated (see section 1.3.2 and appendix B for details).

In the following, we start from this microscopic description of the material in order to
derive the energy-loss of a fast electron. This corresponds to a semi-classical approach:
The external perturbation due to the electron is considered to be purely classical and will
be derived from the microscopic Maxwell equations. The target, instead, is described
by the microscopic dielectric function which is calculated in the framework of quantum
mechanics. In particular, the nonlocal, frequency- and spatially dependent response is
considered, i. e., no further assumptions are made a priori except for the linearity of the
response and the neglect of relativistic effects.

1.3.1 Microscopic Response
Consider the perturbation of a system by an external potential ϕe(r, t). For example,
this might be the potential induced by a fast electron in a microscope. We neglect any
relativistic effects, such as transverse components of the fields or longitudinal-transverse
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couplings in the material (see appendix B for details). This perturbation will polarise
the material and thus induce a change ρi in the charge density of the system. This
response should be described in the framework of quantum mechanics. In chapter 3, we
will derive an approximation for the density response function or susceptibility which
describes the linear response to the external potential (we use SI units)2

ρi(r, t) =
∫
dr′
∫
dt′ e2χ(r, r′, t− t′)ϕe(r′, t′), or shorter: ρi = e2χϕe. (1.7)

This additional charge will induce a potential ϕi that screens the external perturbation.
It can be calculated from the Poisson equation

4ϕi(r, t) = − 1
ε0
ρi(r, t), ϕi(r, t) =

∫
dr′ 1

e2 v(r − r
′)ρi(r′, t). (1.8)

The inhomogeneous solution is given in terms of the Coulomb potential v [see eq. (A.27)],
while the homogeneous part is assumed to vanish at every point due to the boundary
conditions at infinity. The (inverse) microscopic dielectric function connects the external
potential ϕe and the total potential ϕt=ϕe+ϕi and is defined as (in short-hand notation)

ϕt = ε−1ϕe, ϕe = εϕt. (1.9)

It is a scalar function ε(r, r′, t−t′) and not a tensor εαβ(r, r′, t−t′) as in eq. (1.6), because
ε relates only the longitudinal (rotation-free) part EL = −∇ϕ of the vector fields. The
connection between εαβ and ε is derived in appendix B. Introducing the polarisability as
the response to the total potential, i. e., ρi = e2πϕt, we find from the equations above

ε−1 = 1 + vχ, ε = 1− vπ, χ = π + πvχ. (1.10)

The last equation is known as the Dyson equation and explicitly reads:

χ(r, r′, t− t′) = π(r, r′, t− t′) +
∫∫

dr1dr2

∫
dt1 π(r, r1, t− t1) ·

· v(r1 − r2) χ(r2, r
′, t1 − t′), (1.11)

because the Coulomb potential v(r, r′, t − t′) = v(r − r′)δ(t − t′) acts instantaneously
in time (non-retarded limit). The solution of this equation will be a central part of
chapter 5 and 6. Indeed, the polarisability π, which gives the response to the total
potential ϕt, is found to be very local in space and is therefore a transferable quantity.
The susceptibility χ, instead, has to describe the full self-consistent screening of the
external potential ϕe. Due to the long-range behaviour of the Coulomb potential, it
generally strongly depends on the surface geometry of the system. We will discuss this
important difference more precisely in section 5.4.1.

2The charge e appears in the definition, as we will later use the density n, not the charge density ρ.
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1.3.2 Crystal Local-Field Effects
In a crystal, any single-point function f can be written as the following Fourier expansion

f(r, t) =
∑
G

∫
dqr

∫
dω fG(qr, ω) e−i

[
ωt−(qr+G)r

]
, (1.12)

where the summation runs over all reciprocal lattice vectors G and the reduced momen-
tum qr is restricted to the first Brillouin zone of the crystal. The coefficient f0 can be
understood as the macroscopic component of the field. Indeed, by averaging the function
f over the unit cell of the crystal, all terms with G 6= 0 vanish due to the high-frequency
spatial oscillation of the exponential inside the unit cell.

Similarly, any response function R = RGG′(qr, ω) becomes a matrix in G, and a
function of qr and ω in reciprocal space. For example, the Dyson eq. (1.11) then reads:

χGG′(qr, ω) = πGG′(qr, ω) +
∑
G′′

πGG′′(qr, ω) v(qr +G′′) χG′′G′(qr, ω). (1.13)

Physically, this means that only charge oscillations with the same reduced momentum
qr are coupled inside the crystal. If the system is homogeneous, the response function
becomes completely diagonal RGG′ = RGG δG,G′ (see appendix A.2.2). The off-diagonal
elements are therefore directly related to the inhomogeneity of the system.

Connection with Macroscopic Quantities

We are now able to connect the microscopic dielectric function ε and the macroscopic
one εM mentioned in the introduction of this section. The latter is defined for the
macroscopic Maxwell equations, where all fields are averaged over a mesoscopic volume
which is much larger than the size of the unit cell (see appendix B.1.4). The macroscopic
response function RM connects only the G=0 components of the fields, say f0 and g0.
We can derive such a connection from the corresponding microscopic equation

g0(qr, ω) =
∑
G′

R0G′(qr, ω) fG′(qr, ω) (1.14)

only if the field f itself is macroscopic, i. e., fG = f0δ0,G. In this case, the macroscopic
response function RM is simply given by the diagonal element R00 of the microscopic
response function. Whenever the external potential ϕe is macroscopic, we can therefore
introduce the macroscopic dielectric function from eq. (1.9) as

ε−1
M (qr, ω) = ε−1

00 (qr, ω), εM (qr, ω) = 1
ε−1
M

= 1
ε−1

00 (qr, ω)
. (1.15)

This important connection between microscopic and macroscopic dielectric function has
been first given by Adler [49] and Wiser [50]. Note, that the second equation includes a
matrix inversion mixing all elements of εGG′ . If we assume, that also the total potential
ϕt is macroscopic, we would simply have

εNLF
M (qr, ω) = ε00(qr, ω) (1.16)
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However, this is generally not the case. Due to the coupling of different G modes in
inhomogeneous crystals, the induced potential ϕi has microscopic components G 6= 0
even if the external potential is purely macroscopic. These microscopic induced fields
are the so-called crystal local fields. Using eq. (1.16) instead of eq. (1.15), we neglect any
contributions from these modes, i. e., we neglect the crystal local-field effects (LFE). In
chapter 4, we will extensively discuss the role of LFE for the loss spectra of crystals and
give a more physical picture of LFE in section 4.2.2.

1.3.3 Electron Energy-Loss Probability
The calculation of the electron energy-loss probability consists

v

b

ϕeϕiof three steps (see figure): First, the external electron can
be associated with a time-dependent charge density ρe which
gives rise to an external potential ϕe. Second, this external
potential will perturb the material and induce a response ϕi.
Third, the energy loss is then obtained from the work done by
the external electron against the total potential ϕt = ϕi +ϕe.

We assume that the electron moves on a straight line with a velocity v and impact
parameter b. The charge density is given as (in real and reciprocal space, see eq. (A.23))

ρe(rt) = −eδ(r − vt− b) ←→ ρe(qω) = −2πeδ(qv − ω)e−iqb. (1.17)

The corresponding external potential can be calculated from the Poisson eq. (1.8):

ϕe(qω) = 1
e2 v(q)ρ

e(qω) = − 2πe
ε0q2

δ(qv − ω)e−iqb, v(q) = e2

ε0q2
. (1.18)

By the Fourier transform, the external field is decomposed into several plane-wave modes
with wave vector q and frequency ω. They are all purely longitudinal as we have ne-
glected retardation effects and they obey the dispersion relation qv = ω. The external
perturbation will polarise the target and hence induce another potential ϕi. This re-
sponse is given by the inverse microscopic dielectric function (1.9) which will be deter-
mined from a quantum-mechanical calculation later on (see chapter 3). The total energy
loss P then corresponds to the work of the external particle against the total field Et

(note that the external field Ee will not contribute). With the current density je = vρe

(which is real) we have in real and reciprocal space [51]

P =
∫
dt

∫
dr je(rt)·Et(rt) (A.23)= 1

(2π)4
∫
dω

∫
dq
[
je(qω)

]∗·Et(qω), (1.19)

By means of the continuity equation ∇·j + ∂tρ = 0 and Et = −∇ϕt we finally obtain3

P = 1
(2π)4

∫ ∞
0
dω 2ω Im

∫
dq
[
ρe(qω)

]∗
ϕt(qω) ≡ −

∫ ∞
0
dω ω P (b, ω). (1.20)

3For a real function f(t), we have
∫∞
−∞dω ωf(ω) =

∫∞
0 dω ω

[
f(ω)− f∗(ω)

]
=
∫∞
0 dω 2iω Im f(ω).

15



Collecting all terms, the energy- and position-dependent energy-loss probability reads

P (b, ω) = − 1
2π2

∫
dqdq′ v(q′) Im

{
ε−1(q, q′;ω) ei(q−q′)b

}
δ(qv − ω)δ(q′v − ω).

(1.21)

We have to integrate over the momentum q and q′ as the external potential enters
twice in the last equation. Note, that the direction of q is actually restricted to a plane
perpendicular to the trajectory of the incident electron. The momentum component qv
along the trajectory is fixed by the dispersion relation qv = ω/v.

In AR-EELS, the external potential is a plane wave with momentum q0. An analogous
derivation shows that eq. (1.21) reduces to a single term

P (q0, ω) ∝ v(q0) Im ε−1(q0, q0, ω) (1.22)

This is the well-known energy-loss function which was already derived by Ritchie [35]
and Nozières and Pines [52] for the scattering of electrons by thin foils. Note, however,
that we have only used the electrostatic interaction during the derivation above, i. e., re-
tardation effects from the electron or the target are completely neglected. For a detailed
discussion of relativistic effects, see e. g. [38, 53, 54].

In the microscopic dielectric formalism, only the transfered momentum q = ki − kf of
the external perturbation appears, not the initial and final momentum ki and kf of the
impinging electron itself. The description of a focussed electron beam with finite objec-
tive and collection aperture as needed for the description of a realistic experimental setup
is thus not possible. In particular, the assumption of eq. (1.21) that the probe electron
prescribes a classical trajectory and is infinitesimally localised, must be questioned at
the microscopic level. We can overcome these problems by a full quantum-mechanical
treatment of the scattering process which is presented in the following chapter.
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2 Scattering Theory

In this chapter, we use the quantum-mechanical scattering the- v

s

rj

ory to describe the interaction of a fast electron or photon with a
thin target. Two complementing experimental setups are discussed:
the broad-beam geometry for angular-resolved measurements (sec-
tion 2.2), and a focussed-beam geometry for spatially-resolved mea-
surements (section 2.3). As we have seen, the scattering problem is
often simplified by treating either the scatterer or the target as a classical particle. In
section 2.5, we will therefore discuss in which situations such a treatment is justified.

2.1 General Formalism
Consider the collision of a fast particle with a solid. Within the framework of non-
relativistic quantum theory, the dynamics of the scattering process is governed by the
time-dependent Schrödinger equation

i~∂t |Ψ(t)〉 = Htot |Ψ(t)〉 , |Ψ(t0)〉 =
∣∣∣Ψ0

i

〉
. (2.1)

The wave function |Ψ(t)〉 describes the time evolution of both the scattering particle and
the target from a given initial state

∣∣Ψ0
i

〉
at time t0. The total Hamiltonian can be split

into three parts:

Htot = H0 +H ′ = − ~2

2m
∇2
s + H({rj}; {Rα}) + H ′(s, {rj}; {Rα}). (2.2)

The first term corresponds to the Hamiltonian of a free scattering particle at position s.
Inner degrees of freedom, like its spin, shall be ignored. The second term describes the
target which is an assembly of electrons at position rj and ions at Rα. The last term
denotes the interaction between particle and target.

2.1.1 Perturbation Theory
If the interaction H ′ is sufficiently weak, the scattering problem (2.1) can be solved
using time-dependent perturbation theory (see appendix A.1). Starting point is the
time-independent Schrödinger equation H0 |k, N〉 = E0

kN |k, N〉 for the non-interacting
Hamiltonian. If the scattering particle is distinguishable and not correlated with the
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particles of the target,1 the corresponding eigensolutions can be written as product
state

|k, N〉 = |k〉 |N〉 , 〈s|k〉 = 1
L3/2 e

iks, E0
kN = ~2k2

2m + εN , (2.3)

where |k〉 is the box-normalised wave function of the free scattering particle with mo-
mentum ~k and |N〉 is an eigenstate of the target H |N〉 = εN |N〉.

Long time before the scattering event takes place, the particle is assumed to be far
away from the target. If the interaction is short ranged, H ′ vanishes at t0 → −∞ and
the initial state

∣∣Ψ0
i

〉
must be a solution of the non-interacting problem. In order to

avoid a wave-packet description of the scattering particle we can formally include this
boundary condition by an adiabatic switching H ′η = e−η|t|H ′ of the time-independent
interaction [56]. Within first-order perturbation theory, the transition rate from the
non-interacting initial state |ki, I〉 to a final state |kf , F 〉 is given by Fermi’s Golden
Rule [see appendix, eq. (A.10)] and reads

Γi→f = 2π
~
∣∣〈kf , F |H ′ |ki, I〉∣∣2 δ(E0

kfF
− E0

kiI), (i 6= f). (2.4)

The same result can be derived within time-independent scattering theory using the first
Born approximation [56]. Channelling and multi-scattering effects are only included by
higher-order terms in the expansion of eq. (A.6) and are therefore neglected in eq. (2.4).

2.1.2 Differential Cross Section
In experiment, the final state of the target is generally unknown. One only measures
the differential current dj of particles that are scattered in direction kf within a solid
angle dΩ and which have a kinetic energy Tf = ~2k2

f/2m within an interval dTf . Sum-
ming over all possible final states |F 〉 of the target and multiplying with the number of
final states dnf of the scattering particle, we have [57]

dj =
∑
F

Γi→f dnf , dnf = d3p /
(2π~
L

)3
, d3p = p2dΩdp = m~kf dΩdTf , (2.5)

where (2π~)3/L3 is the phase-space volume of a single momentum state in the nor-
malisation box. We assume that the target is initially in its ground state |0〉 and the
wave function of the incident particle φ(s) is given by a coherent superposition of plane
waves |k〉 with same kinetic energy Ti = ~2k2

i /2m. The initial state
∣∣Ψ0

i

〉
is then an

eigenstate of the free Hamiltonian H0:∣∣∣Ψ0
i

〉
= |φ〉 |0〉 , |φ〉 =

∑
|k|=ki

φ(k) |k〉 , H0
∣∣∣Ψ0

i

〉
=
(
ε0 + Ti

) ∣∣∣Ψ0
i

〉
. (2.6)

The coefficients φ(k) depend on the experimental setup. For a broad-beam geometry,
the wave function of the incident particle can be approximated by a single plane wave

1This approximation is only valid if we consider single scattering events. If multiple (elastic and
inelastic) scattering takes place, the external electron has to be described using the density matrix [55].
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φ(s) = 1
L3/2 e

ikis, i. e., φ(k) = δkki . In the case of a focussed beam, however, it has to be
described by a coherent superposition of infinitely many plane waves.

In the general case, the average current density of the incident particle is given by

j0 = 1
L3

∫
ds
[

~
2mi

(
φ∗∇s φ− φ∇s φ∗

)]
= ~〈k〉
mL3 , 〈k〉 =

∑
|k|=ki

k |φ(k)|2, (2.7)

where ~〈k〉 is the expectation value of the momentum of the incident particle. Collecting
all terms, we finally arrive at the differential cross section which is defined as the ratio
of outgoing and incoming current dσ = dj/j0:

∂2σ

∂Ω∂E
=
[
mL3

2π~2

]2 kf
〈k〉

∑
F

∣∣∣ ∑
|k|=ki

φ(k) 〈kf , F |H ′ |k, 0〉
∣∣∣2δ(ε0 − εF + E). (2.8)

We have introduced the energy loss E = Ti − Tf of the incident particle and used
dE = −dTf . Note that the sum over the final target states is a sum of probabilities, while
the sum over the incident momentum k is a sum of amplitudes (coherent superposition).

In the following, we will refine this general expression for different interaction Hamil-
tonians H ′ describing the scattering of electrons and the scattering of X-ray photons.

2.2 Angular-Resolved Electron Energy-Loss Spectroscopy
First, we consider the case of angular-resolved electron scatter-

ki

kf

ϑ

q

Fig. 2.1: AR-EELS

ing (AR-EELS). In a transmission electron microscope, a thin
sample is irradiated by a broad beam of fast electrons, which are
accelerated to a kinetic energy of about 100 keV. Far away from
the target, a detector analyses the energy of the scattered elec-
trons that have been deviated by certain angle ϑ (see fig. 2.1). In
this thesis, we are mainly interested in the range of low energy
transfers between 1 and 30 eV, where (collective) excitations of
the valence electrons in the target dominate [58].

As the external electron is much faster than the target elec-
trons, we can neglect the corresponding exchange contributions.
On the other hand, we assume that the fast electron can be
still described within a non-relativistic theory. The interaction
Hamiltonian is then given by

H ′ =
Ne∑
j=1

v(ŝ− r̂j) + vion(ŝ; {Rα}), v(r − r′) = e2

4πε0
1

|r − r′|
. (2.9)

where v denotes the (longitudinal) Coulomb interaction. Further, we have assumed
that the motion of ions and electrons in the target can be separated within the Born-
Oppenheimer approximation [59]. In this case, it is sufficient to consider only the elec-
tronic problem for fixed ions which are described by a potential vion(s; {Rα}). Core
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excitations or phonons are neglected. Note that only if the target has no excess charges,
the interaction H ′ is short ranged and the scattering theory of section 2.1 can be applied.

We also assume that the scattering events of consecutive electrons are independent
from each other. This applies, if the beam intensity is low enough to ensure that the
target is not damaged and that it is always relaxed to its ground state. Further, the
target shall be very thin in order to avoid multiple-scattering effects, i. e., the consecutive
elastic or inelastic scattering of the same electron. With these restrictions in mind, we
now return to the calculation of the energy- and momentum-resolved cross section for
the scattering of fast electrons.

2.2.1 Dynamic Structure Factor
In the case of a broad beam, the incident electron can be approximated by a single plane
wave |ki〉 with momentum ~ki. The cross section (2.8) then reads (φ(k) = δkki)

∂2σ

∂Ω∂E
=
[
mL3

2π~2

]2kf
ki

∑
F

∣∣〈kf , F |H ′ |ki, 0〉∣∣2δ(ε0 − εF + E). (2.10)

With eq. (2.3) and (2.9), the transition amplitude a∗fi = 〈ki, 0|H ′+ |kf , F 〉 becomes

a∗fi = 1
L3

∫
ds e−i(ki−kf )s

[
〈0|
∑
j

v∗(s− r̂j) |F 〉+ δ0F v
∗
ion(s)

]
= 1
L3 v

∗(q) 〈0|
∑
j

e−iqr̂j |F 〉+ 1
L3 δ0F v

∗
ion(q),

= 1
L3 v

∗(q) 〈0| n̂(q) |F 〉 (1− δ0F ) + 1
L3
[
v∗(q)n0(q) + v∗ion(q)

]
δ0F ,

(2.11)

where we have introduced the momentum transfer q = ki−kf , the Fourier transforms of
the potentials v and vion [see eq. (A.40)], and the density operator of the target electrons:

n̂(r) =
∑

j
δ(r − r̂j) = n̂+(r), n̂(q) =

∑
j
e−iqr̂j = n̂+(−q). (2.12)

In particular, the ground-state density is given by n0(q) = 〈0| n̂(q) |0〉 and the cor-
responding Hartree potential is vH(q) = v(q)n0(q). The transition amplitude (2.11)
consists of two terms: the first term describes inelastic scattering (|F 〉 6= |0〉), while the
last term constitutes the elastic scattering amplitude (|F 〉 = |0〉). It is given by the
potential of the ions and electrons (vion + vH) of the unperturbed target. Restricting to
inelastic scattering E > 0, the cross section becomes

∂2σinel

∂Ω∂E
= C(q)Si(q, E), C(q) =

[ m

2π~2

]2kf
ki

∣∣v(q)∣∣2, (2.13)

where

Si(q, E) =
∑
F 6=0

∣∣〈0| n̂(q) |F 〉
∣∣2δ(ε0 − εF + E) = S(q, E)− |n0(q)|2δ(E) (2.14)
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denotes the inelastic part of the dynamic structure factor (DSF)2

S(q, E) =
∑
F

∣∣〈0| n̂(q) |F 〉
∣∣2δ(ε0 − εF + E). (2.15)

The latter describes the properties of the target and is completely independent of the
scattering particle or even the interaction potential v. These properties are only taken
into account by the probe factor C(q). With the Fourier transform (A.27) of the Coulomb
potential v, we have for the differential cross section in a AR-EELS experiment3

∂2σinel

∂Ω∂E
= 4
a2

0

1
q4
kf
ki
S(q, E), a0 = 4πε0~2

me2
≈ 0.529 Å. (2.16)

It corresponds to the probability that an incident electron is scattered into direction kf
within the solid angle dΩ and looses a fractional part E±dE/2 of its kinetic energy. For
small energy loss, the momentum of the electron ki ≈ kf does not change considerably
and we have q ≈ 2ki sin(ϑ/2) (see fig. 2.2). The prefactor C ≈ [4a2

0k
4
i sin4(ϑ/2)]−1 then

takes the form of the Rutherford cross section, corresponding to the classical scattering
of an incident electron by a free target electron which is initially at rest. The dynamic
structure factor S can be understood as a quantum-mechanical correction to this classical
result which takes into account all many-body interactions between the target electrons.

2.2.2 Small-Angle Approximation
The momentum transfer q will play a crucial role in the discus-

ki

kf

q

q̄

qmin

ϑ

Fig. 2.2: Small-angle
approximation

sion of AR-EELS experiments. Its direction depends both on the
scattering angle ϑ and the energy transfer E (see fig. 2.2). This
dependence can be simplified in the case of small scattering an-
gles ϑ� 1. Indeed, in inelastic scattering, most of the electrons
are deviated less than a few mrad from the incident direction,
which can be inferred from the prefactor q−4 in the cross section.
Additionally, the energy loss E is much smaller than the kinetic
energy Ti of the incident electron, such that ki − kf � ki. Thus

E = ~2

2m
(
k2
i − k2

f

)
≈ ~2

2m 2ki(ki − kf ),
q2 = |ki − kf |2 ≈ k2

i + k2
f − 2kikf (1− ϑ2/2) ≈ (ki − kf )2 + k2

i ϑ
2,

(2.17)

which means that the parameters E and ϑ can be decoupled by splitting q in two terms

q2 ≈ k2
i

(
ϑ2
E + ϑ2), qmin = kiϑE , ϑE ≡

E

2Ti
. (2.18)

The first term corresponds to the component of the momentum transfer along the z-axis
qmin ≈ kiϑEez which takes into account the shortening of the incident momentum ki
due to the energy loss. The second term depends on the scattering angle ϑ and describes
the momentum transfer q̄ ≈ kiϑ in the xy-plane.

2Sometimes, also the term ‘dynamic form factor’ is used in literature.
3Instead of S(q, E), one often introduces the loss function P such that ∂2σinel

∂Ω∂(~ω) = ~
(πa0)2

1
q4P (q, ω) [60].
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(a) (b)

Fig. 2.3: Probability density |φ(s)| of the incident electron in the two-beam case (2.19) for
ki − k′i = 2π/a and a phase shift (a) ϕ = 0 and (b) ϕ = π. The origin is at the first atom.

The scattering angle ϑ is usually much larger than the characteristic angle ϑE for a
typical AR-EELS experiment in the low-loss region. For example, considering an energy
loss of 10 eV and an incident energy of 100 keV (ki = 170 Å−1), one obtains an angle
ϑE of 0.05 mrad (qmin = 0.01 Å−1). In comparison, the experimental resolution limit in
a TEM is typically in the order of 0.1 mrad (4q̄ ≈ 0.02 Å−1 at 100 keV). Thus, in most
cases ϑE � ϑ. The momentum transfer q is then nearly perpendicular to the incident
beam and independent of the energy loss.

If, in contrast, the scattering angle ϑ is much smaller than the characteristic angle ϑE ,
the momentum transfer becomes parallel to the beam direction and independent of ϑ.
In particular, the momentum transfer q never vanishes, but is always larger than qmin.

2.3 Spatially-Resolved Electron Energy-Loss Spectroscopy
In a plane-wave scattering experiment, we can only measure the

ki
k′

i

kf

q
q′

Fig. 2.4: Scattering of
two coherent waves

modulus of the target electron density n(q), but not its phase
[see elastic term in eq. (2.14)]. As the Fourier transformation
of |n(q)|2 gives only a spatially averaged quantity, namely the
density autocorrelation function, we cannot retrieve direct spatial
information about the target system. The physical reason for
this so-called phase problem is easily understood: in a broad
beam geometry, all points of the target are excited with the same
intensity and the phase of the outgoing electron is not measured.

We will see in the following that spatial informations can be
obtained, if the excitation is spatially modulated. In the simplest
case, the excitation is given by a coherent superposition of only
two plane waves. In a STEM, the electron beam is focussed by
a coherent superposition of infinitely many plane waves.

2.3.1 Two-Beam Scattering
We start with the following gedankenexperiment [61, 62]: Consider a periodic crystal
with lattice constant a and a superposition of two incident plane waves

φ(s) = 1√
2
(
eikis + e−iϕeik

′
is
)
, |φ(s)|2 = 1 + cos

[
(ki − k′i)s+ ϕ

]
. (2.19)

The probability density |φ(s)|2 of the incident electron is no longer constant, but varies
periodically in space. If the period is commensurable with the lattice constant, i. e., if
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ki − k′i = G is a reciprocal lattice vector, the electron will be most likely found at the
atoms or in between depending on the choice of the phase ϕ (see fig. 2.3). Due to this
site-specific excitation, it is possible to obtain spatial informations about the system.

But which physical quantity will be actually measured in such an experiment? In order
to answer this question, we consider the general case of an electron beam of coherent,
mono-energetic electrons (2.6). The differential cross section was given by eq. (2.8):

∂2σ

∂Ω∂E
=
[
mL3

2π~2

]2 kf
〈ki〉

∑
F

∑
|k|=|k′|=ki

φ∗(k)φ(k′) a∗fiafi′ δ(ε0 − εF + E). (2.20)

With the transition amplitudes afi of eq. (2.11), we obtain for inelastic scattering E > 0:

∂2σinel

∂Ω∂E
=

∑
|k|=|k′|=ki

C(q, q′)S(q, q′, E), q(′) = k(′) − kf , (2.21)

where4

C(q, q′) =
[
m

2π~2

]2 kf
〈k〉

φ∗(k)φ(k′)v∗(q)v(q′), (2.22)

S(q, q′, E) =
∑
F

〈0| n̂(q) |F 〉 〈F | n̂+(q′) |0〉 δ(ε0 − εF + E). (2.23)

As above, the cross section can be separated into two parts: first, a probe factor C
which accounts for the geometry of the incident electron and the interaction potential v.
And second, a complicated quantum-mechanical quantity S which describes the target.
The latter is a generalisation of the dynamic structure factor introduced in the previous
section and is called mixed dynamic form factor (MDFF) [61]. Note that S(q, q′, E) is
generally a complex function, which fulfils the relation

S(q, q′, E) = S∗(q′, q, E), S(q, E) = S(q, q, E). (2.24)

Coming back to the two-beam case of eq. (2.19), the cross section simplifies to

∂2σinel

∂Ω∂E
∝ 1
q4
S(q, E) + 1

q′4
S(q′, E) + 2

q2q′2
Re
{
e−iϕS(q, q′, E)

}
. (2.25)

As in a double-slit experiment, we obtain two direct terms plus an interference term.
The former stem from the incoherent scattering of each of the incoming plane waves.
Only the last term accounts for the interference between them and contains spatial
information. The importance of these interference terms has been pointed out rather
early [63]. Typically, one has a large number of coherent plane waves and therefore many
different off-diagonal elements S(q, q′, E) are mixed.

4For E > 0, we can ignore the difference between Si and S. See eq. (2.14) and (2.15).
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Experiments

The two-beam case can be actually realised in experiment. For example, a charged wire
inside the electron beam acts as a biprism that splits an incoming plane wave into two
coherent waves [64]. But also the crystal itself can be used as a beam splitter. Indeed,
an external plane electron wave will be Bragg scattered inside the crystal leading to
a coherent superposition of a discrete set of plane waves. In particular, if one Bragg
reflection is dominant, the two-beam case is recovered.

Schattschneider et al. [27, 65] have used this method to measure the magnetic circular
dichroism in the electron microscope. By properly aligning the crystal to the incident
plane electron wave, the phase ϕ of the Bragg scattered wave is chosen to be π/2. The
inelastic signal is then measured for two positions of the detector: first, kf is chosen
such that q and q′ are perpendicular to each other and have roughly the same modulus
and second, kf is selected such that q and q′ are interchanged. The dichroic signal is
then given by the difference of these two measurements, i. e.,

EMCD ∝ ImS(q, q′, E)− ImS(q′, q, E) (2.26)

For core-loss spectra, this signal is found to be comparable with the dichroic signal in
X-ray absorption [65].

2.3.2 Convergent Electron Beam
The image formation in a scanning transmission electron micro-

Fig. 2.5: STEM setup

scope (STEM) can be understood as a more complicated version
of the two-beam case which has been considered previously. After
the acceleration of the electrons to energies of about 100 keV, the
electron beam is focussed by an objective lens in order to prepare
a narrow beam. The incident wave packet can be then written
as a coherent sum of mono-energetic plane waves [see eq. (2.6)]

φ(s) = 1
L3/2

∑
|k|=ki

φ(k)eik̄s̄eikzsz , k = k̄ + kzez, (2.27)

where we have introduced the on-axis momentum kz and the per-
pendicular momentum k̄. The latter is limited by the objective
aperture α which is typically in the order of a few mrad (α� 1).
Thus, the small-angle approximation holds both for the incoming
and outgoing electrons (see section 2.2.2). With |k̄| � kz ≈ ki,
the incident electron wave function can be written as5

φ(s) ≈ Φ̄(s̄− b̄) 1
L1/2 e

ikisz , Φ̄(s̄) = 1
L

∑
k̄

Φ̄(k̄)eik̄s̄, φ(k) = Φ̄(k̄)e−ik̄b̄. (2.28)

5For convenience, the in-plane wave function Φ̄(s̄) is normalised to one. To this end, definition (2.28)
differs from our convention of the Fourier transform (A.40) and we have Φ̄(k̄) = 1

L

∫
L2ds̄ Φ̄(s̄)e−ik̄s̄.
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The function Φ̄(s̄− b̄) describes the shape of the incoming electron beam in the object
plane at the focus position b̄ (impact parameter). Assuming a plane wave in front of the
objective lens, the coefficients Φ̄(k̄) of the wave packet are given by [61]

Φ̄(k̄) = Aα(k̄) e−iγ0(k̄), Aα = Θ
(
α− |k̄|ki

)
, γ0 = ki

[
C3
4
( |k̄|
ki

)4 − 4f2 ( |k̄|ki )2], (2.29)

where Aα corresponds to the circular aperture of the objective lens. The phase shift
γ0 accounts for the spherical lens aberration C3 and the defocus 4f , respectively. For
simplicity, we neglect this correction in the following. The differential cross section,
which has been given for an arbitrary incident wave packet in eq. (2.21), now reads

∂2σinel

∂Ω∂E
=
[
m

2π~2

]2kf
ki

∑
k̄,k̄
′

A∗α(k̄)Aα(k̄′) ei(k̄−k̄
′)b̄ v∗(q)v(q′)S(q, q′, E) (2.30)

where the momentum transfers q and q′ are given by eq. (2.18) as

q(′) = q̄(′) + qzez, q̄(′) = k̄
(′) − k̄f , qz = kiϑE = Em/(~pi) = ω/v (2.31)

Note that recoil terms are neglected within the small-angle approximation in the ex-
pression for E [66]. Finally, we have to integrate over all the scattered electrons that
enter the detector. With the detector function Dβ(k̄f ) = Θ(β − k̄f/kf ) which describes
a circular on-axis detector with opening angle β, we have for the total cross section

∂σinel

∂E
= 4
a2

0

∑
k̄f

Dβ(k̄f )
∑
q̄,q̄′

A∗α(k̄f + q̄)Aα(k̄f + q̄′) S(q, q′, E) ei(q̄−q̄′)b̄

(q̄2 + q2z)(q̄′2 + q2z)
. (2.32)

This formula is the main conclusion of this chapter [61]. It describes the energy-loss signal
in a scanning transmission electron microscope. We want to add several comments:

• Eq. (2.32) can be considered as a generalisation of the previous AR-EELS result
(2.16) and the two-beam scattering (2.25). Indeed, these two cases can be obtained
by choosing appropriate delta functions for Aα and Dβ.

• Note that the summation only runs over the perpendicular momentum transfer q̄.
The on-axis momentum transfer qz = ω/v is determined by the energy loss E and
the velocity v of the electron by eq. (2.31).

• The contributions from different outgoing electrons are summed incoherently, i. e.,
we sum over probabilities, not the scattering amplitudes as we did for the incident
electrons. Indeed, inelastically scattered electrons from different energy-loss bands
must be (temporally) incoherent [64, 67–69].

• The position b̄ of the focus only enters via the exponential ei(q̄−q̄′)b̄. Therefore,
only the off-diagonal terms S(q, q′, E) of the mixed dynamic form factor contribute
to the spatial information on the target.
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• In crystals, the translational symmetry requires that q−q′ is a reciprocal lattice
vector G. Atomic resolution can be only obtained, if the objective aperture is
large enough. Indeed, both wave vectors k̄f + q̄ and k̄f + q̄+ Ḡ must be included
in the incident wave packet for at least one in-plane vector Ḡ. Additionally, the
crystal has to be properly aligned with respect to the beam (channelling direction)
in order to relate image contrast directly with atomic positions [70].

• The image formation in a STEM and the energy-filtered TEM (EFTEM) are closely
related by the reciprocity theorem [61]. In the EFTEM, the object is illuminated
by a single plane wave and the scattered electrons are imaged by an objective lens
behind the object (see section 1.1.2). The camera is placed in the back-focal plane
of this lens. Such a setup can be understood as reversed STEM with an infinitely
small collection angle. Consequently, one obtains a very similar expression as for
the STEM (2.32), where α becomes the objective aperture of the imaging system
and β → 0. The vector b̄ then denotes the position in the image plane or, more
precisely, the corresponding point of the object. A detailed discussion has been
given by Rose [68] and Findlay et al. [71].

2.4 Inelastic X-Ray Scattering
So far, we have considered the inelastic scattering of a fast electron for different ex-
perimental setups. The properties of the target have been described by the dynamic
scattering factor. As we will see in the following, the same information can be obtained
by the scattering of a high-energy (X-ray) photon. We briefly review the theory of
inelastic X-ray scattering which is discussed in detail by Schülke [72].

Analogous to the previous section, we start from the total Hamiltonian (2.2) that now
has to include the external photon field. Using second quantisation, it can be written as

Htot =
∑
kλ

~ωk
[
ĉ+kλĉkλ + 1

2
]
+H +H ′, ωk = ck, (2.33)

where the operator c+kλ creates a photon of momentum k and polarisation λ. The sum
over photon energies ~ωk corresponds to the energy of the free radiation field, the second
term is the target Hamiltonian H, and the third term describes the interaction between
scattering particle and target electrons. It reads (we neglect spin-dependent terms)

H ′ =
Ne∑
j=1

[
− e

m
pj ·A(rj) + e2

2m
A2(r̂j)

]
. (2.34)

The external vector potential A can be expressed in terms of the photon operators:

A(r) =
∑
kλ

( ~
2ε0ωkL3

)1/2[
εkλĉkλe

ikr + ε∗kλĉ+kλe
−ikr

]
, (2.35)

where we have introduced the polarisation unit vector εkλ (with k · εkλ = 0) and the
length L of the quantisation box.
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2.4.1 Plane-Wave Scattering
First, we consider the scattering of a single photon on a target which is initially in
the ground state |0〉. In second quantisation, this corresponds to a two-photon process
including the incident and outgoing photon. First, we want to calculate the transition
amplitude for the initial and final states

∣∣Ψ0
i

〉
= ĉ+kiλi |0〉 and

∣∣Ψ0
f

〉
= ĉ+kfλf |F 〉. Within

first-order perturbation theory in H ′, we have for inelastic scattering (|F 〉 6= |0〉)

a∗fi = 〈0| ĉkiλiH
′+ĉ+kfλf |F 〉 = e2

2m
~

2ε0
√
ωiωfL3 (ε∗i · εf ) 〈0|

∑
j
2e−iqr̂j |F 〉 . (2.36)

Only the two terms of A2 containing ĉ+i ĉf or ĉf ĉ+i contribute. The p ·A term occurs
only, if the perturbation theory is applied to second order in H ′:

b∗fi = e2

m2

∑
jj′,v

〈0| ĉi p+
j ·A+(rj) |Ψv〉 〈Ψv|p+

j′ ·A
+(rj′) c+i |F 〉

(ε0 + ~ωi)− Ev
+O(A3), (2.37)

where v runs over all virtual states of the target and radiation field. Their energy is
given by Ev = εv or Ev = εv + ~(ωi + ωf ) depending on whether there are zero or two
photons in the radiation field of the virtual state.

Both terms a∗fi and b∗fi are quadratic in the external field A, but their relative contribu-
tion to the total transition amplitude strongly depends on the denominator in eq. (2.37).
If the photon energy ~ωi or ~ωf is close to a resonance ε0− εv of the target (e. g., a core
excitation), the denominator vanishes for the corresponding state |Ψv〉 and b∗fi dominates
the transition amplitude. This is the case of resonant inelastic X-ray scattering (RIXS).

If, instead, the photon energy is very different from the typical resonances of the target
(e. g., for very high photon energies), the denominator becomes large and b∗fi vanishes.
The transition amplitude is then given by a∗fi which differs only in the prefactor from
the transition amplitude (2.11) for electron scattering. In the following, we will focus to
this latter case of nonresonant inelastic X-ray scattering (IXS).

Considering the energy dispersion of the outgoing photon T 2
f = p2

fc
2 = (~kfc)2 in

eq. (2.5) and the incident flux j0 = c/L3 of the incoming photon, one obtains for the
cross section of inelastically scattered, nonresonant photons [see eq. (2.4)]

∂2σinel

∂Ω∂E
=

L6k2
f

(2π)3~c2
2π
~
∑
F

∣∣afi∣∣2δ(ε0 − εF + E) = C S(q, E)

C = r2e |ε∗i · εf |2
kf
ki
, re = 1

4πε0
e2

mc2
≈ 2.82 · 10−15 m,

(2.38)

where re denotes the classical electron radius and E = ~ωi − ~ωf > 0 the energy loss.
The prefactor C corresponds to the cross section of Thomson scattering, i. e., the elastic
scattering of electromagnetic waves by a free electron. The similarity with the cross
section of AR-EELS (2.16) is evident. In both cases, the target properties only enter via
the dynamic structure factor S. However, there are important experimental differences:
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First, the probe factor C is orders of magnitudes smaller for photon scattering
(10−10 Å2) than in the case of electron scattering (1 Å2 for q = 0.5 Å−1). For X-ray
scattering, radiation of very high intensity is necessary to obtain reasonable count rates
for scattered photons. Therefore, synchrotron radiation sources have become very im-
portant for the current advances in IXS. In contrast, the mean-free path of a 100 keV
electron is in the order of 100 nm for common materials [9]. To limit multiple-scattering
effects, i. e., several consecutive inelastic or elastic scattering events, very thin targets
have to be used in transmission electron microscopes.

Second, the probe factor C does not depend on the transfered momentum q in IXS. As
S(q, ω) ∝ q2, the differential cross section increases with scattering angle ϑ in IXS, while
it decreases for EELS. The two techniques are therefore rather complementary methods
for the determination of the dynamic structure factor S(q, ω).

2.4.2 Two-Beam Scattering
The analog to the two-beam case of electron scattering (section 2.3.1) is known as co-
herent inelastic X-ray scattering (CIXS) [72]. In this type of experiment, the incident
photon field is built up from two coherent photons with different momentum k. Con-
sequently, the scattering cross section includes an interference term similar to (2.25).
Again, the crystal itself can be used as a beam splitter, i. e., the second plane wave is
obtained by Bragg reflection of the incident photon inside the crystal. As it is known
from dynamical diffraction theory [73], the amplitude and the mutual phase of the Bragg
reflected photon can be adjusted by aligning the crystal with respect to the incident pho-
ton beam. The off-diagonal elements S(q, q +G, E) of the mixed dynamic form factor
can be then determined as the difference between two measurements with different mu-
tual phase ϕ. However, the analysis for this experiment is very cumbersome and only
few measurements for the off-diagonal elements in silicon have been performed in the
valence-loss region [74].

2.5 Connection with Dielectric Theory
In all of the previously described scattering experiments, the target entered the cross
section only through the (mixed) dynamic form factor. As we will see in the following,
this quantity is intimately related to the density response function used in dielectric
theory (see chapter 1). Further, we will now answer the following questions: What can we
actually learn from scattering experiments about the target system? Which information is
included in the (mixed) dynamic structure factor? And in which cases, the semi-classical
derivation reproduces the quantum-mechanical calculation?

2.5.1 Van-Hove Correlation Function
Following the procedure introduced by van Hove [75], we can transform the dynamic
structure factor (2.23) into a density-density correlation function. Using the integral
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representation of the delta function (A.24), we obtain:

S(q, q′, E) =
∑
F

〈0| n̂(q) |F 〉 〈F | n̂+(q′) |0〉 1
2π~

∫ ∞
−∞

dτ ei(ε0−εF+E)τ/~

= 1
2π~

∫
dτ eiEτ/~

∑
F

〈0| eiHτ n̂(q)e−iHτ |F 〉 〈F | n̂+(q′) |0〉

= 1
2π~

∫
dτ eiEτ/~

〈〈
n̂(q, τ) n̂+(q′, 0)

〉〉
0 =

∫
dτ eiEτ/~S(q, q′, τ)

(2.39)

where we have introduced the Heisenberg operator n̂(q, t) and the ground-state expec-
tation value 〈〈 · 〉〉0 = 〈0| · |0〉. In real space, this equation reads [see eq. (A.31)]

S(r, r′, τ) = (2π)2
~
〈〈
n̂(r, τ)n̂(r′, 0)

〉〉
0 = (2π)2

~ g(r, r′, τ). (2.40)

Thus, the mixed dynamic form factor is the Fourier transform in time and space of
the two-particle density correlation function g(r, r′). It describes the correlation of the
density at one point r′ with the density at another point r after a certain time τ . This
quantity clearly contains spatial information on the target. But if only the dynamic
structure factor S(q, E) is known, the Fourier transform of eq. (2.39) gives [see eq. (A.29)]

S(r, τ) = 1
2π~

∫
dr′

〈〈
n̂(r′ + r, τ)n̂(r′, 0)

〉〉
0 = 1

2π~

∫
dr′ g(r′ + r, r′, τ). (2.41)

Thus, the dynamic structure factor S(q, ω) is the Fourier transform in space and time
of the density autocorrelation function of the target. The latter is also known as the
van-Hove space-time correlation function [75]. Note that r only corresponds to the
distance between two points, not a spatial coordinate itself. Indeed, the integration over
r′ eliminates any information on the inhomogeneity of the system.

2.5.2 Fluctuation-Dissipation Theorem
If we consider only inelastic scattering events (F 6= 0) we have

〈0| n̂ |F 〉 = 〈0|
(
n̂− 〈〈n̂〉〉0

)
|F 〉 = 〈0| ñ |F 〉 (2.42)

and the density operator n̂ can be replaced by the density-fluctuation operator ñ in
the previous equations. The inelastic part Si of the mixed dynamic form factor is then
directly related to the retarded density response function [see appendix A.1.2, eq. (A.20)]

χ(q, q′, τ) = 1
e2
δρi

δϕe
= 1
i~

Θ(τ)
〈〈[
ñ(q, τ), ñ+(q′, 0)

]
−

〉〉
0

= −2πiΘ(τ)
[
Si(q, q′, τ)− Si(−q′,−q,−τ)

]
,

(2.43)

which is equivalent to the microscopic susceptibility defined in eq. (1.7). A Fourier
transformation (A.23) in time leads to [see convolution theorem (A.28)]

χ(q, q′, E) = 1
i~

∫
dE′

[
Θ(E−E′)Si(q, q′, E′)−Θ(E+E′)Si(−q′,−q, E′)

]
. (2.44)
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The two terms correspond to the resonant and antiresonant part. With the Fourier
transformation of the step function 1

~Θ(E) = iP 1
E + πδ(E), we finally have

χ(q, q′, E) = P (q, q′, E)− iπD(q, q′, E), (2.45)

where

P (q, q′, E) = P
∫
dE′

[
Si(q, q′, E′)
E−E′

− Si(−q′,−q, E′)
E+E′

]
(2.24)= P ∗(q′, q, E), (2.46)

D(q, q′, E) = Si(q, q′, E)− Si(−q′,−q,−E) (2.24)= D∗(q′, q, E). (2.47)

The second term in eq. (2.47) vanishes for positive energies E because Si(E<0) = 0 if
the system is initially in its ground state [see eq. (2.23)]. Note that D(q, q′) and P (q, q′)
are generally complex valued. Only their diagonal elements q=q′ must be real, because
D and P become complex conjugated by interchanging q and q′, and we find [76]

Imχ(q, q, E) = −πS(q, E) for E > 0. (2.48)

This is the well-known fluctuation-dissipation theorem [52, 77]. It relates the dynamic
structure factor S with the imaginary part of the susceptibility χ. As we have seen
above, the former describes the density fluctuations in space and time, while the latter
is connected to the dissipation in the system. For off-diagonal elements q 6= q′, this
connection is less clear. Restricting to E > 0, we find from the equations above

Im
Re
[
χ(q, q′)± χ(q′, q)

]
= Im

Re (−iπ)
[
D(q, q′)±D∗(q, q′)

]
= ∓2π Re

ImS(q, q′), (2.49)

and we have as generalisation of the fluctuation-dissipation theorem [61]:

S(q, q′, E) = i

2π
[
χ(q, q′, E)− χ∗(q′, q, E)

]
for E > 0. (2.50)

This equation connects the mixed dynamic form factor S with the microscopic density
response function χ. It constitutes a link between the results of the scattering formalism
derived in this chapter and the results obtained previously from the microscopic dielectric
theory in section 1.3.

2.5.3 Dielectric Theory
Using the fluctuation-dissipation theorem, it is now possible to rederive the SR-EELS
formula (1.21) that has been obtained in the semi-classical approach. Ritchie and Howie
[66] have demonstrated that this is only possible if all scattered electrons are collected.
To show this, we proceed in three steps: starting from eq. (2.30) we (i) link the MDFF
to the microscopic dielectric function ε−1 defined in eq. (1.10), (ii) express the incident
electron wave packet in real space, and (iii) integrate over all outgoing directions kf .
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Microscopic Dielectric Function

With the definition (1.10) of the microscopic dielectric function ε−1(q, q′, ω), the
fluctuation-dissipation theorem reads (with E = ~ω > 0 and v = v∗)

S(q, q′, E) = i

2π

[ 1
v(q)

ε−1(q, q′, E/~)− 1
v(q′)

ε−1∗(q′, q, E/~)
]
, (2.51)

In particular, for AR-EELS we immediately obtain from eq. (2.16)

∂2σinel

∂Ω∂ω
= −2m2

h3 v(q) Im ε−1(q, q, ω) (2.52)

which is exactly the result (1.22) that we have obtained in the semi-classical approach.

Real-Space Expression

Concerning the SR-EELS expression (2.32), this connection is less obvious. We start
from the general expression for the differential cross section (2.21) and switch to a real-
space formulation. This can be achieved by expressing the coefficients φ(k) in terms
of the incident electron wave function Φ̄(s̄ − b̄) [see eq. (2.28)] and by introducing the
cross-spectral object transparency [68] as the inverse Fourier transform (A.42)

w(s̄, s̄′, E) ≡ 1
L2

∑
q̄,q̄′

v∗(q)v(q′) S(q, q′, E) eiq̄s̄e−iq̄′s̄′ . (2.53)

The differential cross section (2.21) then reads in real-space coordinates [25, 61]

∂2σinel

∂Ω∂E
=
[
m

2π~2

]2kf
ki

∫∫
L2
ds̄ds̄′ Φ̄∗(s̄− b̄)Φ̄(s̄′ − b̄) eik̄f (s̄−s̄′) w(s̄, s̄′, E), (2.54)

i. e., the cross section is given as a convolution of the wave function Φ̄(s̄ − b̄) of the
focussed electron beam in the object plane and the cross-spectral object transparency.
The final momentum k̄f of the scattered electrons appears only in the exponential.

Infinite Detector

If we sum over all k̄f , i. e., we assume that the detector collects all scattered electrons,
this exponential leads to a delta function in s− s′ [see eq. (A.41)] and we obtain6

∂σinel

∂E
=
[
m

2π~2

]2 ∫
L2
ds̄
∣∣∣Φ̄(s̄− b̄)

∣∣∣2 L2w(s̄, s̄, E) (2.55)

6As the double-differential cross section rapidly vanishes with increasing q̄, only small momentum
transfers contribute and the small-angle approximation still holds. In particular, we have ki ≈ kf .
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In the case of infinite resolution |Φ̄(s̄)|2 = δ(s̄), we simply have w(b̄, b̄, E). Using
eq. (2.51), we can directly relate this quantity to the semi-classical result from eq. (1.21):

L2w(b̄, b̄, E) = i

2π
∑
q̄,q̄′

[
v(q′) ε−1(q, q′, ω)− v(q) ε−1∗(q′, q, ω)

]
ei(q̄−q̄

′)b̄

= − 1
π

∑
q̄,q̄′

v(q′) Im
[
ε−1(q, q′, ω) ei(q̄−q̄′)b̄

]
∝ P (b, ω)

(2.56)

In the last step, we have interchanged the variables q and q′ for the second term.
Thus, we have shown that the semi-classical loss probability P (b, ω) corresponds ex-

actly to the diagonal part of the cross-spectral object transparency w(b̄, b̄, E). In par-
ticular, if all electrons are collected, eq. (2.55) holds. Then, the quantum-mechanical
inelastic-scattering cross section for a focussed electron beam can be understood as an
incoherent weighted sum of classical trajectories with an impact parameter s̄ [66]. The
weights are given by the intensity profile |Φ̄(s̄ − b̄)|2 of the focussed beam centred at
position b̄ in the object plane.

If, in contrast, the detector collects only a part of the scattered electrons, the full
quantum-mechanical formula (2.32) has to be used. The influence of the detector geom-
etry has been investigated, for example, by Kohl and Rose [61] and Cosgriff et al. [78]
who studied the delocalisation of the EELS signal for a single, isolated atom.

Conclusions
In this chapter, the scattering of a fast electron has been studied in the framework of
quantum-mechanical scattering theory. Only the electrostatic interaction between the
scattering particle and the target has been taken into account and relativistic effects have
been completely neglected. Additionally, we have restricted or discussion to first-order
perturbation theory (first Born approximation).

Within these approximations, we have derived the energy-loss probability for different
experimental setups, namely the broad-beam geometry used in angular-resolved EELS,
the two-beam geometry which is related to EMCD, and the focussed electron beam
used in the STEM. In all cases, the corresponding differential cross section can be split
into two contributions: first, a probe factor C which describes the properties of the
incident electron and second, the mixed dynamic form factor S(q, q′, E) which describes
the target. This separation also holds, when photons instead of electrons are used as
scattering particles. The energy-loss probability in inelastic X-ray scattering is found to
be very similar to the cross section for electron scattering. Indeed, in both scattering
experiments only the probe factor differs.

Further, we have analysed which informations on the target can be obtained from
scattering experiments. In AR-EELS, one measures only the diagonal part of the mixed
dynamic form factor S(q, q, E) which is the Fourier transform of the density autocorre-
lation function in space and time. Spatial informations on the target can be accessed
only if the off-diagonal elements S(q, q′, E) contribute to the scattering cross section.
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For instance, this is the case in the STEM, where the incident electron is prepared as
a coherent superposition of several plane waves. We have seen that the mixed dynamic
form factor S(q, q′, E) is related to the microscopic density response function χ(q, q′, ω)
by a generalised fluctuation-dissipation theorem.

Finally, we have discussed the relation between the quantum-mechanical scattering
approach from this chapter and the semi-classical dielectric theory used in section 1.3.
In the quantum-mechanical approach, both the external electron and the particles of
the target have been described by the time-dependent Schrödinger equation. In dielec-
tric theory, instead, the external particle is described in a purely classical framework.
One assumes that the electron moves on a definite trajectory and the associated time-
dependent potential acts as a perturbation to the target. We have compared the two
approaches for the case of angular- and spatially-resolved EELS: For AR-EELS, the
dynamic structure factor and the inverse dielectric function are directly related by the
fluctuation-dissipation theorem and the two approaches lead to the same results. For SR-
EELS, the semi-classical theory gives the same results as the full quantum-mechanical
calculation only when all scattered electrons are collected.

The most difficult part of the scattering problem still remains to be solved: The
quantum-mechanical description of the target which usually consists of a very large num-
ber of particles. In the next chapter, we use (time-dependent) density-functional theory
to calculate the density response function χ numerically. By means of the fluctuation-
dissipation theorem, we are then capable of determining the mixed dynamic form factor
and the scattering cross section starting from first principles.
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3 The Many-Body Problem

In the framework of quantum-mechanics, the movement of the particles in the target
is governed by the Schrödinger equation. The solution of this many-body problem is
a formidable task that has occupied generations of physicists since the early days of
quantum mechanics. Nevertheless, an ab-initio description of real materials could be
envisaged only during the last decades making use of numerical simulations on high-
performance computers.

Many approaches exist to find an approximate solution for the many-body problem.
Examples are (i) the configuration interaction and the quantum Monte-Carlo approach
from quantum chemistry that try to find the full many-body wave function [79, 80], (ii)
dynamical mean-field theory, where the many-body problem is replaced by a single-site
quantum impurity problem for an effective medium [81], (iii) many-body perturbation
theory that is based on the Green’s-function formalism [82], and (iv) density-functional
theory (DFT) which uses the ground-state density as a basic variable [12].

The method of choice strongly depends on the material, the quantity of interest, and
the required accuracy. In this thesis, we use time-dependent density-functional theory
(TDDFT) to describe the excitation properties of the target. It has been found that
valence-loss EELS and IXS experiments are generally well described within TDDFT
using standard approximations both for extended systems and nanostructures [83]. In
principle, these calculations are parameter-free and systems with several hundred elec-
trons1 can be handled.

In the following, we briefly review the basics of static and time-dependent density-
functional theory. We explain, how the linear response of the system subject to an
external perturbation, namely the density response function χ, can be calculated within
this formalism. Finally, some numerical details of the used plane-wave pseudopotential
code are discussed.

3.1 Density-Functional Theory (DFT)
Traditional approaches for the solution of the many-particle Schrödinger equation rely
on the many-body wave function. For a system of N particles, the wave function depends
on 3N space variables which are all interconnected. This leads to an exponential increase
of the complexity of the problem with the system size. Already small systems that only
consist of several tens of atoms become unfeasible.

Density-functional theory, instead, is a formally exact and numerically very efficient
method for the determination of geometric and electronic properties of solids and nano-

1This includes infinite crystals, where the translational symmetry reduces the problem to its unit cell.
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structures with hundreds of atoms. Its enormous success is based on two central ideas:
First, a much simpler quantity than the multi-particle wave function, namely the elec-
tron density distribution n(r), is used to describe the quantum system. Second, the
many-body problem is mapped to a fictitious single-particle problem of independent
Kohn-Sham particles in an effective, local potential vS(r). The one-particle Schrödinger
equation can be easily solved with standard techniques. As the potential vS implicitly
depends on the resulting single-particle wave functions, the solution must be determined
in a self-consistent way. In the following, we will briefly present these two concepts. A
detailed introduction can be found in [12, 84, 85].

3.1.1 Hohenberg-Kohn Theorem
Starting point is the time-independent Schrödinger equation for a system of N electrons
in an external potential vext (compare with section 2.1)2

H |0〉 = ε0 |0〉 , H = T + U + Vext, Vext =
∫
dr vext(r)n(r). (3.1)

Within the Born-Oppenheimer approximation [59], the motion of electrons and ions can
be separated and the Hamiltonian consists of three parts: the kinetic energy T of the
electrons, the electron-electron interaction U , and the potential vext of the ions which
shall be considered as an external single-particle potential.

As T and U are the same for all physical systems, the external potential vext uniquely
determines the Hamiltonian H and thus all properties of the many-body system like the
ground state |0〉 and the density n(r). Interestingly, also the inverse statement holds:

Theorem 3.1 (Hohenberg and Kohn I, 1964, [86]).
The ground-state density n(r) of a system of interacting electrons subject to an external
potential vext(r) uniquely determines this potential and hence the entire physical system.

In non-degenerate systems, the ground state |0〉, and thus any observable, becomes a
functional of the density. In particular, the energy Ev0 [n] = 〈0, [n]|Hv0 |0, [n]〉 is a
functional of the density, where Hv0 = T + U + V0 denotes the Hamiltonian for a fixed
external potential v0. The Ritz principle immediately leads us to the second important

Theorem 3.2 (Hohenberg und Kohn II, 1964, [86]).
The energy functional Ev0 [n] is minimised by the ground-state density n0 that corresponds
to the external potential v0: Ev0 [n] ≥ Ev0 [n0].

If the energy functional were explicitly known, the ground-state density n0 could have
been determined by a seemingly trivial minimisation of Ev0 [n] with respect to the three-
dimensional trial function n(r). The main problem is to find reasonable approximations
for the energy functional.

2In the following, V denotes the energy of a charge density n inside the single-particle potential v.
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Already in 1927, Thomas and Fermi proposed to approximate the electron-electron
interaction U by the classical Hartree term VH and the kinetic energy T within a local-
density approximation using the kinetic energy of a homogeneous electron gas:

UTF = VH = e2

8πε0

∫
drdr′

n(r)n(r′)
|r − r′|

, TTF = 3
5
(3π2)2/3 ~2

2m

∫
dr n5/3(r). (3.2)

But this approximation failed to describe, for instance, the shell structure of atoms or
chemical bonding.

3.1.2 Kohn-Sham Equations
Kohn and Sham (KS), instead, expressed T [n] in terms of the kinetic energy of an
auxiliary system of independent particles. This system is introduced by the following

Definition 3.3 (Kohn-Sham system, 1965, [87]).
Each system of interacting particles in the external potential v0 can be mapped to a system
of fictitious, non-interacting Kohn-Sham particles in the effective, local potential vS such
that both have the same ground-state density n0: H = T+U+V0

n0←→ HS = TS+VS.

If the KS-potential vS is known, we can easily solve the single-particle SEQ for the KS-
system and calculate the corresponding wave functions

∣∣∣ϕKS
λ

〉
and energies εKS

λ . The
ground-state density n0 and the kinetic energy TS of the KS-particles are then given by

n0(r) =
N∑
λ=1

∣∣∣ϕKS
λ (r)

∣∣∣2 , TS [n] =
N∑
λ=1

〈
ϕKS
λ

∣∣∣ (−~2∇2

2m

) ∣∣∣ϕKS
λ

〉
. (3.3)

In contrast to the Thomas-Fermi approximation, we rewrite the energy functional as

Ev0 [n] = TS [n] + VH[n] + V0[n] + VXC[n], (3.4)

where VXC is the exchange-correlation energy. It corresponds to that part of the exact
energy functional, that we essentially do not know and which has been therefore called
stupidity energy by Feynman [88]. But as long as TS + VH is rather close to T + U of
the real system, the remainder VXC is small and can be approximated in a rough way.

As the energy functional of the interacting system Ev0 [n] and that of the KS-system
EKS[n] = TS [n] + VS [n] have to take their minimum at the same density n0, we have

vS(r, [n0]) = v0(r) + vH(r, [n0]) + vXC(r, [n0]), vXC(r, [n0]) = δVXC
δn(r)

∣∣∣
n0

(3.5)

The ground-state density can be now determined in a self-consistent iteration: Starting
with a test density ñ, we solve the single-particle Schrödinger equation for the Kohn-
Sham potential vS(r, [ñ]). If the density calculated by eq. (3.3) differs from ñ, the process
is iterated until they become equal.
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Exchange and Correlation Potential

All equations have been formally exact so far. But we still have to find an explicit
functional for VXC. If this term is completely neglected, one obtains the Hartree ap-
proximation. Many of the standard DFT calculations today use the local-density ap-
proximation (LDA) that was introduced by Kohn and Sham in 1965 [87]. Similar to the
Thomas-Fermi approximation, the system is locally considered as interacting homoge-
neous electron gas:

VXC =
∫
dr n(r)vXC(r, [n]) −→ V LDA

XC =
∫
dr n(r)εXC

(
n(r)

)
, (3.6)

where εXC(n) is a function (not a functional) of the density n(r) at point r. For the
homogeneous interacting electron gas, reliable parametrisations of εXC(n) are available
from quantum Monte-Carlo simulations [89, 90]. The LDA has been successfully applied
for the calculation of ground-state properties in a large variety of systems like solids,
nanostructures, and even molecules. Typically, the lattice parameters, ground-state
energies, and the bulk modulus are in agreement with experimental results within few
percent.

Kohn-Sham Bandstructure

The Kohn-Sham energies εKS
λ should not be confused

Fig. 3.1: LDA-KS (solid) and
GW bandstructure (red dashed)
of graphene (Reproduced from
[91], c© 2008 by The American
Physical Society).

with the quasiparticle bandstructure of the system
which is measured, e. g., in photo-emission experiments.
Indeed, static density-functional theory is not meant to
describe the excited states of the system. The eigenfunc-
tions and -energies of the fictitious Kohn-Sham system
have no direct physical meaning. Only the energy of the
highest occupied Kohn-Sham state corresponds to the
exact ionisation energy of the system [92].

Instead, one can use Green’s function techniques to
calculate the correct quasiparticle energies and life-
times [82]. In practice, one often uses the so-called GW-
approximation for the self-energy [93] and the quasipar-
ticle bandstructure is calculated in a perturbative treat-

ment starting from the LDA Kohn-Sham orbitals. In strongly correlated systems, the
quasiparticle corrections can lead to important qualitative changes.

Nevertheless, there are also many systems where the corrections are quite small and
the Kohn-Sham energies can be understood as a first approximation to the quasiparti-
cle bandstructure. For example, fig. 3.1 shows the difference for the bandstructure of
graphene. The LDA-KS bandstructure (solid) is corrected by less then 1 eV within the
GW-approximation (red dashed) [91]. In this thesis, we will only consider Kohn-Sham
energies for a qualitative discussion of the bandstructure of carbon materials.
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3.2 Time-Dependent Density-Functional Theory (TDDFT)
In order to describe the interaction of the target with an external scattering particle,
we are interested in the neutral excitations of the system and not only the ground-state
properties described in DFT. In 1984/85, the basic ideas of static density-functional
theory have been formally extended to the more general situation of systems subject to
a time-dependent external perturbation by Runge, Gross, and Kohn [13, 94]. Indeed,
first calculations have been already performed by Zangwill and Soven [95] in 1980. A
recent overview of the current developments in TDDFT can be found in [83, 96].

3.2.1 Runge-Gross Theorem
Starting point is now the time-dependent Schrödinger equation [compare with eq. (3.1)]

i~∂t |Ψ(t)〉=Ht |Ψ(t)〉 , |Ψ(t0)〉 = |Ψ0〉 , Ht = T + U + Vext(t). (3.7)

The external potential vext(t) is given by the potential of the ions plus a time-dependent
scalar field ϕe(t) that acts as a perturbation to the system. Analogous to the static
DFT, the time-dependent density n(t) can be introduced as basic variable by means of
a one-to-one correspondence between the density n(t) and the external potential Vext(t):

Theorem 3.4 (Runge and Gross I, 1984, [13]).
The densities n(r, t) and n′(r, t) evolving from a common initial state |Ψ0〉 at t0 under
the influence of the two Taylor expandable potentials vext(r, t) and v′ext(r, t) differ, if and
only if the potentials differ by more than a time-dependent constant vext − v′ext 6= c(t).

The constant c(t) only results in a time-dependent phase factor in the corresponding
wave function |Ψ(t)〉. Because this phase is irrelevant for the calculation of expectation
values O[n](t) = 〈Ψ(t), [n]|O |Ψ(t), [n]〉, any physical observable is a functional of the
time-dependent density. Of course, the total energy is no longer a conserved quantity and
there is hence no minimisation principle for E. Alternatively, we can use the quantum-
mechanical action,3 which becomes stationary for the solution |Ψ(t)〉 of the SEQ (3.7)

A[n] =
∫ t1

t0
dt 〈Ψ(t)| i~∂t −Ht |Ψ(t)〉 . (3.8)

Due to theorem 3.4, the action must be a functional of the density which leads us to the

Theorem 3.5 (Runge and Gross II, 1984, [13]).
For a given initial state |Ψ0〉 at t0, the action Av0 [n] becomes stationary at the density
n0(r, t) that corresponds to the external potential v0(r, t):

[
δAv0 [n]/δn(r, t)

]
n0

= 0.

3Actually, this definition has several problems. For example, the exchange-correlation potential deduced
from the action is not causal, and the endpoints at t0 and t1 are not independent. These problems
could be solved as proposed by van Leeuwen [97] by using the time-contour formalism of Keldysh.
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3.2.2 Kohn-Sham Equations
In order to approximate the unknown action functional A[n], Gross and Kohn [94] have
introduced a fictitious system of non-interacting Kohn-Sham particles that satisfy the
time-dependent Kohn-Sham equations for the effective single-particle potential vS(r, t)

i~∂t
∣∣∣φKS
λ (t)

〉
=
(
−~2∇2

2m
+ vS

) ∣∣∣φKS
λ (t)

〉
, n(r, t) =

N∑
λ=1

∣∣∣φKS
λ (r, t)

∣∣∣2 , (3.9)

and whose density n(r, t) is identical to the one of the interacting system. The exis-
tence of the potential vS for any density n(r, t) can be inferred from the Runge-Gross
theorem 3.4 and has been rigorously proven in [98]. By decomposing the action func-
tional (3.8) analogously to eq. (3.4) of static DFT as A[n] = TS [n] + AH [n] + A0[n] +
AXC[n], we finally obtain from the variational principle stated in theorem 3.5

vS(r, t, [n0]) = v0(r, t) + vH(r, t, [n0]) + vXC(r, t, [n0]), vXC ≡
δAXC
δn(r, t)

∣∣∣
n0

(3.10)

where vXC(r, t, [n]) is the time-dependent exchange-correlation potential. The two equa-
tions (3.9) and (3.10) form a system of self-consistent equations. For a given approxi-
mation of the exchange-correlation potential vXC, it can be solved by iteration.

Adiabatic Local-Density Approximation (ALDA)

Most calculations simply use one of the established functionals of static density-
functional theory. The most popular choice is the adiabatic local-density approximation
which is local both in time and space:

vALDA
XC (r, t, [n]) = vLDA

XC
(
n(r, t)

) (3.6)= d

dn

[
n εXC(n)

]
n=n(r,t)

(3.11)

The function εXC(n) denotes again the exchange-correlation energy of the homogeneous
electron gas with a density given by n(r, t) at point r and time t. For a discussion of its
deficiencies and recent approaches towards better kernels see reference [96].

3.2.3 Linear Density-Response Theory
Consider a system that is initially in its ground state |0〉 for t < t0. The corresponding
density n0 and the KS wave functions

∣∣∣ϕKS
λ

〉
can be uniquely determined by a DFT cal-

culation. Switching on an external perturbation vext(t) = −eϕ̂e(t) at time t0, the density
n will deviate from the initial state n0. The evolution of the KS orbitals

∣∣∣φKS
λ (t)

〉
and

the corresponding density n(t) is described by the time-dependent Kohn-Sham eq. (3.9)
with the initial states

∣∣∣φKS
λ (t0)

〉
=
∣∣∣ϕKS
λ

〉
. As far as we are only interested in the linear

response of the system, it is even not necessary to solve the full Kohn-Sham equations.
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For instance, the density-response function χ can be directly calculated from the ground-
state wave function |0〉 using time-dependent perturbation theory. Indeed, we have seen
in section 2.5.2 that the susceptibility

χ(r, r′, t− t′) = δn(rt)
δvext(r′, t′)

∣∣∣
vext=vext(t0)

= 1
e2

δρ

δϕe

∣∣∣
ϕe=0

, (3.12)

is directly related to the ground-state expectation value of the density-density commu-
tator (2.43) by means of the fluctuation-dissipation theorem. For the system of inde-
pendent Kohn-Sham particles this commutator can be easily evaluated leading to an
efficient formulation of linear response in the framework of TDDFT.

Independent-Particle Polarisability χ0

Due to the time-dependence of the external potential vext, also the effective Kohn-Sham
potential vS will change and thus the density n. The corresponding response function χ0

of the Kohn-Sham particles with respect to the potential vS is defined as [see eq. (3.12)]

χ0 = δn

δvS
= 1
i~
θ(t− t′)

〈
ϕKS

1 · · ·ϕKS
N

∣∣∣ [n̂(r, t), n̂(r′, t′)
]
−

∣∣∣ϕKS
1 · · ·ϕKS

N

〉
(3.13)

where |. . .〉 denotes the Slater determinant of the single-particle orbitals
∣∣∣ϕKS
λ

〉
. In

crystals, they are given by Bloch functions
∣∣ϕKS
n,k

〉
, where n denotes the band index and k

the wave vector. In Fourier space, the polarisability then reads [83] (see appendix A.2.2)

χ0
GG′(qr, ω) = 1

V

∑
knn′

(
fn′k−qr − fnk

)
ρ̃nn

′
k (qr +G)

[
ρ̃nn

′
k (qr +G′)

]∗
~ω + (εKS

n′k−qr
− εKS

nk ) + iη
, (3.14)

with the transition-matrix elements

ρ̃nn
′

k (qr +G) =
〈
ϕKS
n′,k−qr

∣∣e−i(qr+G)·r∣∣ϕKS
n,k

〉
. (3.15)

The wave vectors k and qr are restricted to the first Brillouin zone, whileG(′) corresponds
to a reciprocal lattice vector of the crystal. Further, εKS and f denote the energy
and the occupation number of the corresponding Kohn-Sham orbital. Neglecting spin-
polarisation effects, we assume that each state is occupied by the same number of spin-
up and spin-down electrons (f ∈ [0, 2]). The sum is normalised by the volume V of the
crystal (see appendix A.3.1) and the broadening η should be infinitesimal small. For
diagonal elements G=G′, eq. (3.14) reduces to the Ehrenreich-Cohen formula [99].

TDDFT Dyson-Equation

Making use of the fact that the densities of the real system and the non-interacting Kohn-
Sham system are identical, one can now establish a direct link between the corresponding
correlation functions χ and χ0. With eq. (3.10), we find

χ = δn

δvext
= δn

δvS

δvS
δvext

= χ0 δ(vext + vH + vXC)
δvext

= χ0
[
1̂ +

(δvH
δn

+ δvXC
δn

) δn

δvext

]
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and thus we obtain a Dyson–like screening equation4 that connects χ and χ0:

χ = χ0 + χ0(v + fXC
)
χ, v = e2

4πε0 |r − r′|
, fXC(r, t; r′, t′) ≡ δvXC(r, t)

δn(r′, t′)
. (3.16)

The functional derivative of the Hartree potential vH corresponds to the Coulomb poten-
tial v and the one of vXC is the so-called exchange-correlation kernel fXC. Additionally,
we can derive a direct relation between the polarisability π and the independent-particle
polarisability χ0 from the Dyson equation (1.11) of section 1.3

π = χ0 + χ0fXCπ. (3.17)

In order to understand the physical meaning of eq. (3.16), consider the system of inde-
pendent Kohn-Sham particles. If the external potential vext is changed, also the induced
Hartree potential vH and the exchange-correlation potential vXC will change. This cor-
responds to the screening of the external potential due to the Coulomb interaction of the
classical electrons and the quantum nature of the interacting particles, respectively. The
total response of the non-interacting particles is therefore a sum of three contributions
δn = χ0 [δvext +δvH +δvXC]. By means of the Dyson equation (3.16), this self consistent
screening is incorporated into the susceptibility χ, such that δn = χ δvext holds. There-
fore, the susceptibility χ is a much more complicated quantity than χ0. For example, χ
can be strongly dependent on the shape of the crystal due to the long-range Coulomb
interaction, while χ0 is generally not. We will come back to this important difference in
section 5.4.1.

Exchange-Correlation Kernel

As we have discussed earlier, we have to find useful approximations for the exchange-
correlation potential vXC and hence also for fXC. In this thesis, we have mainly used
the Random Phase Approximation (RPA)5

RPA: fXC = 0 −→ π = χ0, ε
(1.10)= 1̂− vχ0. (3.18)

Exchange and correlation effects are completely neglected in the response of the system.
Using instead the adiabatic local-density approximation (ALDA) for vXC, we have

ALDA: fXC(r, t; r′, t′) = δ(r − r′)δ(t− t′) d
2

dn2
[
n εXC(n)

]
n=n(r,t). (3.19)

By construction, the ALDA kernel is local both in time and space. Memory effects
or the influence of the charge distribution at a distant point (e. g., for the Van-der-
Waals interaction) are not included. Nevertheless, ALDA and even RPA calculations
are generally in good agreement with electron energy-loss experiments for solids and
nanostructures (except for strongly correlated materials). For absorption spectra in
extended systems, like bulk silicon, both RPA and ALDA fail and improved kernels have
to be used [83].

4It can be also understood as a Bethe-Salpeter equation for two-point functions [83].
5The change of the Hartree potential, and in particular crystal local-field effects, are still included. We

will refer to the Independent-Particle Approximation (IPA), if we also neglect the local-field effects.
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3.2.4 Summary
For a crystal, the microscopic density-response function χGG′(qr, ω) and thus the mixed
dynamic form factor S(qr+G, qr+G′;ω) can be calculated in the following four steps:

1. Ground-state calculation in the framework of static DFT. For a given exchange-
correlation potential vXC, the Kohn-Sham eigenstates

∣∣ϕKS
n,k

〉
and -energies εKS

n,k are
calculated for sufficiently many bands n and wave vectors k (see section 3.1.2).

2. The independent-particle polarisability χ0 can be determined by eq. (3.14)
for a sufficient number of matrix elements χ0

GG′ .

3. The susceptibility χ of the interacting system is calculated by a solution of the
Dyson eq. (3.16): χ =

[
1̂−χ0(v+fXC)

]−1
χ0 for a reasonable approximation of the

exchange-correlation kernel fXC. As all quantities are matrices in the reciprocal
lattice vectors G, the matrix elements χ0

GG′ will be mixed during the inversion.

4. The electron energy-loss spectrum can be obtained from the equations of the
previous chapter. In particular, for AR-EELS we have ∂2σ

∂Ω∂E ∝
1

|q+G|4χGG(qr, ω),
where qr +G corresponds to the momentum transfer [see eq. (2.16)].

Of course, also the microscopic dielectric functions ε and ε−1 as well as the macroscopic
equivalent εM can be directly calculated from χ using eq. (1.10) and eq. (1.15).

3.3 Numerical Details
The numerical calculations have been performed using a plane-wave basis set and norm-
conserving pseudopotentials for the description of the ions. We have used the AbInit-
code [100, 101] in order to determine the ground-state within DFT-LDA and further
the DP-code [102, 103] to calculate the response of the material. In the following, we
will shortly discuss some of the numerical details and the necessary convergence tests.
A general introduction to the practical implementation of the DFT formalism is given,
e. g., by Payne et al. [104].

3.3.1 Pseudopotentials
The chemical properties and the low-energy-loss spectra of a material mainly depend on
the valence electrons which must be described very accurately. In contrast, the tightly-
bound core electrons will be hardly influenced by the environment and they can be
considered to form, together with the nucleus, an immutable ion. The pseudopotential
method [105] is based on this observation. It can be divided into two steps:

Separation of Valence and Core Electrons

Within the frozen-core approximation, one assumes that the core electrons and the cor-
responding density nc are independent of the external perturbation and the chemical
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environment of the atom. They can be determined from an all-electron calculation for
a single atom. In the full (TD)DFT calculation, only the valence electrons have then to
be taken into account explicitly, while the core states are included in the ion potential.
Any linear functional of the density, like the Hartree potential, can be easily separated
into a contribution from the cores nc and a functional that depends only on the valence
electron density nv. For nonlinear functionals, like the exchange-correlation energy, this
is only possible when the densities are spatially separated. This is roughly fulfilled when
the core states form a closed shell like in the materials studied in this thesis. In general,
this is of course an approximation and may lead to errors in the total energy [106].

Introduction of a Pseudo-Ion

Although the core electrons partially screen the nuclear charges,

Fig. 3.2: From [104],
c© 1992 by The Amer-
ican Physical Society.

the ion potential still has a Coulomb singularity at the nucleus.
Due to this steep potential and their orthogonality to the core
wave functions, the single-particle valence wave functions strongly
oscillate in the core region. Consequently, it becomes very difficult
to describe them numerically in this region. However, the binding
properties are largely independent on the exact form of the wave
functions close to the nucleus. The main idea is to introduce
a ‘pseudo’ ion which has the same chemical properties as the
real one, but whose ‘pseudo’ wave functions are smooth inside a
small sphere with radius rc around the ion. Therefore, one starts
from an all-electron calculation of a single atom and replaces the
real ion potential by a pseudopotential such that the following
quantities remain unchanged

1. the Kohn-Sham energies,

2. the Kohn-Sham wave functions outside of the cutoff radius rc,

3. the total charge density inside the sphere, and

4. the scattering properties or phase shifts

The third criterion actually corresponds to the norm conservation of the wave function.6
With the remaining degrees of freedom one can optimise the pseudopotential such that
the resulting pseudo wave functions become smooth inside the small sphere. The result-
ing pseudopotential is generally nonlocal as the phase shift produced by the ion core is
different for each angular momentum component of the valence wave function [104].

Several methods have been proposed to construct transferable pseudopotentials from
an all-electron calculation of the isolated atom. In this thesis, we use norm-conserving
potentials of Troullier-Martins [108] and Hamann type [109].

6Following Vanderbilt [107], one can drop the norm conservation to construct ultrasoft pseudopotentials.
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3.3.2 Plane-Wave Basis Set
Although DFT in principle uses the density as a ground-state variable, one still has to
solve a single-particle Schrödinger equation for the Kohn-Sham particles. The corre-
sponding smooth pseudo wave functions

∣∣∣ϕKS
λ

〉
can be represented quite efficiently by a

plane-wave basis set. This basis has several advantages: First, it is very simple to use.
Because the plane waves form a complete set of orthogonalised functions, the quality
of the sampling can be systematically improved. No special knowledge about the con-
tributing atomic orbitals is necessary. Second, the evaluation of the kinetic energy and
the Hartree potential becomes particularly simple in Fourier space. Switching between
real-space and plane-wave representation is numerically very efficient by means of the
Fast Fourier Transform. Third, plane waves are very efficient for periodic systems.

Of course, for a numerical treatment, one has to restrict the basis to a finite set of
plane waves. This is achieved by a discrete k-point grid and a certain cutoff energy Ecut.

k-point Grid:
In periodic systems, the Bloch theorem holds, i. e., any wave function can be written as
a sum of plane waves with the same reduced momentum k

ϕλ = ϕn,k(r) =
∑

G
Cn,k(G) ei(k+G) · r. (3.20)

The summation runs over all reciprocal lattice vectors G. Each wave function |ϕλ〉 can
be uniquely identified by the band index n and the wave vector k which is a continuous
parameter restricted to the first Brillouin zone.7

Moreover, the wave functions are almost identical for two k points

Fig. 3.3: Supercell

which are close together. It is therefore sufficient to sample the
Brillouin zone by a discrete set of k points. Any integration over
the Brillouin zone, like in the calculation of the density (3.3), is then
approximated by a finite sum. The resulting error can be always
reduced by increasing the density of the k-point mesh. It has been
shown [110] that Monkhorst-Pack grids are particularly efficient.
It corresponds to a grid of equidistant k points which is invariant
under the point symmetries of the system. The calculation can be
restricted to symmetrically inequivalent k points in the irreducible
Brillouin zone and the number of k points is considerably decreased.

In order to deal with non-periodic systems in a plane-wave basis,
one has to use a supercell which is periodically repeated in each direction. This cell has
to be sufficiently large in order to avoid interactions between the artificial replicas. This
point will be of particular interest in chapter 5, where the loss function for an isolated
graphene sheet and the influence of the supercell size will be studied in detail.

7The spin quantum number σ shall be included in the band index.
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Cutoff Energy:
Additionally, one has to restrict the number of G vectors used for the expansion of
the wave function at a given k point. As the coefficients Cn,k(G) with small kinetic
energy (~2/2m) |k +G|2 are typically more important, one truncates the summation
at a certain cutoff energy Ecut and neglects contributions with high spatial frequency.
Again, the error can be systematically decreased by increasing Ecut.

Of course, the value of Ecut that is necessary for a converged result strongly depends
on the quantity of interest. For example, the ground-state energy converges very slowly,
as every improvement in the description of the ground state lowers the total energy.
Nevertheless, the optimal lattice parameters converge rather quickly with Ecut because
the systematic error in the total energy due to the restricted basis set has only little
influence if we compare two different geometries.

3.3.3 Response Functions
Accordingly, also the convergence properties of the independent-particle polarisability
χ0 have to be considered separately. The matrix elements (3.15) are found to converge
typically with a cutoff well below Ecut. The corresponding number of plane waves is
specified by npwwfn. The dimension of the matrix χ0

GG′ is given by npwmat. If only one G
vector is taken into account in this matrix, one neglects crystal LFE (see section 1.3.2).

Additionally, also the empty states are now needed in the evaluation of the sum (3.14)
and a large number of bands nbands is necessary. Also the k-point sampling of the
Brillouin zone needs to be much denser than in the case of a ground-state calculation.
This can be understood by the fact that the spectrum contains much more information
than an integrated quantity like the total energy.

Shifted k-point Grids

For finite momentum transfer q = qr+G, both the wave function at k and k+qr have to
be known in order to calculate the matrix elements (3.15). This has two consequences:
First, the choice of qr is restricted to a discrete set of vectors that can be represented as
a difference of two k points in the chosen grid. Second, the summation in eq. (3.14) can
be only simplified using symmetry operations that leave q unchanged. Therefore, one
generally has to perform a sum over the full Brillouin zone, not just the irreducible one.

This summation converges much faster, if we use a set of symmetrically inequivalent k
points instead of the original Monkhorst-Pack grid. Indeed, we then have more inequiva-
lent transitions for a given number of k points. The asymmetry can be easily introduced
by a small shift s of the equidistant Monkhorst-Pack grid along an arbitrary direction.
The optimal length of the shift s can be estimated by the following consideration:

If we apply all point-group symmetries to the shifted grid, one obtains a non-regular
set of points which are distributed on small spheres of radius s around the k points of
the unshifted grid. In fig. 3.4a, a section of a shifted k-point grid for a hexagonal system
is shown (dots) together with all these symmetrically equivalent points (crosses). For
an optimal shift s, the latter should be homogeneously distributed. Requiring, that the
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Fig. 3.4: (a) Section of a shifted k-point grid in Cartesian coordinates (red dots) and the
symmetrically equivalent points (crosses). (b) Hybrid mesh in reciprocal Coordinates. The
regions around the K and K ′ point in the Brillouin zone of Graphite are sampled with a dense
grid. (c) Comparison of Im ε in Graphite (NLF) for a small momentum transfer q → 0 along the
Cartesian x and y direction. At small energies, the shifted grid is not sufficiently dense (lines).
The hybrid-grid calculation, instead, correctly reproduces the isotropic in-plane behaviour (dots)

distance between two circles is about three times the radius, we obtain as a possible shift

shex ≈ (1/8, 2/8, 1/4), sffc ≈ (1/8, 2/8, 3/8). (3.21)

The coordinates are given with respect to the primitive vectors of the k-point lattice, i. e.,
any vector (n,m, l) with integer coordinates corresponds to a k point of the unshifted
grid. The second shift was determined analogously for a fcc structure like bulk silicon.

Although the results using shifted grids normally converge very rapidly, in certain
situations the shift s may introduce an artifact which only vanishes for very high sam-
pling densities. Figure 3.4c shows such an example for Graphite. The in-plane direc-
tions of this hexagonal system are equivalent in the limit of small momentum transfers
q → 0. However, the calculation using an equidistant 16×16×4 mesh which is shifted by
s = (0.1, 0.3, 0.3) shows an artificial anisotropy at low energies for the dielectric constant
ε (lines). It is due to the asymmetry of the shifted k-point grid and the artefact will
vanish only for very dense grids.

Other k-point Grids

One can avoid this problem by several approaches: First, one can use a symmetric
k-point grid. The resulting spectra do not show this artifact, but converge very slowly.

Second, one can use random k-point sets. As a further advantage, the convergence tests
become very simple—one can iteratively refine the summation in eq. (3.14) by restarting
the calculation with a new set of random k points adding them to the previous results.

Third, one can use an inhomogeneous hybrid mesh [111]. In graphite, the low-energy
contributions originate only from transitions at the KH and K ′H ′ lines in the Brillouin
zone (compare with graphene, section 5.3.3). Accordingly, a dense sampling is only
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necessary for a small part of the Brillouin zone and few bands. Figure 3.4b shows such a
sampling with 2000 k points that corresponds to a homogeneous grid of 60×60×4 points
(14000 points).

I have extended the DP-code in order to use such non-equidistant k point meshes. To
this end, one has to take into account the k-space volume associated with each k point
in the evaluation of the integrals. Indeed, the artificial anisotropy shown in fig. 3.4c for
the shifted grid is much less pronounced if we add a dense sampling along the KH and
K ′H ′ lines (see dots).

Doubled k-point Grid

All these methods can not be directly used for finite momentum transfers because both
k and k+qr must be present in the k-point grid. This limitation can be easily overcome
by using two different k-points sets which are shifted against each other by the vector qr.
Of course, one has to re-calculate the k-point set for each different momentum transfer.

I have implemented this method in the DP-code in order to (i) use inhomogeneous
k-point grids also at finite momentum transfer, (ii) calculate the loss spectra of silicon
exactly at the experimental momentum transfer q, and (iii) to study the influence of
quadrupole effects in the optical limit q → 0. In this case, the second k point is obtained
within first-order k·p perturbation theory and higher order terms, like the quadrupole
contributions, are neglected in the standard implementation.

3.3.4 Example: Graphite
As example, we briefly consider the calculation of the AR-EELS loss function for bulk
Graphite. The unit cell of the hexagonal lattice is spanned by the primitive vectors

a1 = a ex, a2 = a
(
−1

2 ex +
√

3
2 ey

)
, a3 = c ez, (3.22)

with the lattice constants a and c. It contains 4 carbon atoms at the positions

τ 1 = 0, τ 2 = 1
3a1 + 2

3a2, τ 3 = 1
2a3, τ 4 = 2

3a1 + 1
3a2 + 1

2a3. (3.23)

We use norm-conserving pseudopotentials of Troullier-Martins type [108] and include
only the four valence electrons of the 2s2 and the 2p2 orbitals explicitly in our calculation.
Thus, the unit cell contains 16 electrons in total.

DFT
First, the ground state is calculated self-consistently in DFT-LDA using the AbInit-
code. The total energy of the system is converged with respect to the cutoff energy and
the k-point grid. Then, we determine the optimal lattice constants a and c such that the
calculated total energy is minimal and the stress on the cell vanishes (see fig. 3.5a for
the parameters). The Kohn-Sham eigenfunctions and -energies for the following TDDFT
calculation (KSS) are evaluated in a non-self-consistent calculation.
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Fig. 3.5: (a) Unit cell (blue) and converged parameters for graphite (Bernal stacking). (b)
Calculated loss function for graphite at small in-plane momentum q = 0.2 Å−1 . Two k-point
samplings, calculations with and without LFE, and different TDDFT kernels fXC are compared.

TDDFT
Starting from this Kohn-Sham structure, the loss function is calculated with the DP-code
(see section 3.2.4). We converge first the number of plane waves npwwfn, then the number
of bands nbands, and finally the dimension of the response matrix npwmat (see fig. 3.5a).
Additionally, the k-point grid has to be tested by increasing the sampling density. In
fig. 3.5b, we show the loss function of graphite for in-plane momentum transfer q =
0.2 Å−1 . It clearly shows the π plasmon peak which is observed at low energy losses.
If the k-point grid is not dense enough, small additional oscillations appear (dotted
line). LFE are found to shift the plasmon to higher energies (dash-dotted line) and the
inclusion of exchange-correlation effects within the ALDA have the opposite effect. For
increasing in-plane momentum transfer q up to 1 Å−1 , we find that LFE become more
and more important, while exchange-correlation effects are generally small and shift the
plasmon energy by less than 0.2 eV towards lower energies within ALDA [112]. In this
thesis, we will therefore mainly restrict to the random phase approximation including
crystal local-field effects. In principle, this protocol has to be repeated for each material,
quantity of interest, and parameter range (energy ω, momentum transfer q).

Conclusions
In this chapter, the many-body problem has been addressed in the framework of (time-
dependent) density-functional theory. Instead of solving the many-body Schrödinger
equation, the ground-state properties can be obtained from a minimisation of a density
functional for the total energy. Using the density as basic variable results in an enormous
computational simplification compared to approaches working directly with the high-
dimensional many-body wave function. The unknown density functional is constructed
by mapping the interacting system to a fictitious system of independent particles, the
so-called Kohn-Sham system. The latter constitutes an effective single-particle problem
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which is much easier to solve than the many-body problem of interdependent particles.
This mapping is exact and results in a set of self-consistent equations—the Kohn-Sham
equations—which can be solved numerically by iteration.

Excitation properties, like the linear response to an external perturbation, can be ac-
cessed in the framework of time-dependent density-functional theory. It is based on the
same ideas as static density-functional theory, but the time evolution of the density is
formally given by the stationary solution of a quantum-mechanical action functional and
can be calculated from the time-dependent Kohn-Sham equations. Within this formal-
ism, the microscopic density-response function χ(q, q′, ω), and thus the mixed-dynamic
form factor S(q, q′, ω), can be obtained in a very efficient way: First, the independent-
particle polarisability χ0 of the Kohn-Sham particles is calculated and second, one solves
the Dyson equation for the response χ of the interacting system.

In principle, no parameters are involved in the theory. In practice, however, one has
to select an approximation for the exchange-correlation potential and often pseudopo-
tentials are used to reduce the size of the problem. In this thesis, the plane-wave codes
AbInit and DP are used for the determination of the ground-state and the excited-state
properties, respectively. We have briefly discussed the basic workflow of the numerical
calculations including the necessary convergence tests.

Experience shows that the loss function of solids and molecules is usually very ac-
curately described within the TDLDA or even the RPA approximation. Especially in
graphite and other carbon systems, exchange-correlation effects are often negligible for
the loss spectrum because quasiparticle corrections and electron-hole effects tend to
cancel each other. We will see in the following chapters that crystal local-field effects
are very important, though. They play an important role in low-dimensional systems,
where the electrons are confined in one or more directions (see chapter 5 and 6). And
even in solids, they can give rise to important changes of the loss function with varying
momentum transfer (see chapter 4).

Together with the results from the previous chapter 2, we are now able to calculate
the energy-loss probability for inelastic electron scattering on solids, molecules, and
nanostructures starting from first principles. This allows us to make a direct comparison
with experimental results and even the prediction of new effects. We will see in the
following chapters that ab-initio calculations are of great use for the detailed analysis
and the explanation of experimental results.
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Part II

Developments and Applications
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4 Anisotropy of the Mixed Dynamic Form
Factor

As we have seen in chapter 2, the momentum-resolved and frequency-dependent mixed
dynamic form factor S(q, q′, ω) (MDFF) is a fundamental quantity in the description of
scattering experiments. The diagonal part S(q, q, ω) is proportional to the loss function
− Im ε−1(q, q, ω) of the material and can be directly accessed by AR-EELS measure-
ments. These are particularly efficient for moderate momentum transfer, i.e., when q is
shorter than a reciprocal-lattice vector, and as long as multiple scattering effects remain
secondary. Off-diagonal elements are only included in the case of a focussed electron
beam and correspond to interference terms between two incoming plane-waves. Even
in the simplest case of a two-beam scattering experiment (see section 2.3.1), it is diffi-
cult to extract them from the measurements. Therefore, only little is known about the
behaviour of the MDFF at large momentum transfers and its off-diagonal part.

Only recently, modern synchrotron radiation sources have opened the way to study
electronic excitations at large momentum transfer using inelastic X-ray scattering (IXS).
New phenomena can be observed in this range, such as a periodic plasmon dispersion in
magnesium diboride MgB2 [113], plasmon-band effects in silicon [114], or zone-boundary
collective states in aluminium [115, 116] and natrium [115–119]. Off-diagonal elements
of the MDFF have been measured using coherent IXS [74].

In this chapter, we will perform ab-initio calculations to study the MDFF of crystals
for large momentum transfers. We predict an angular anomaly in the momentum depen-
dence of the dynamic structure factor S(q, q, ω) which should also be important for the
theory of spatially resolved EELS. In section 4.2 the effect is explained by a discussion
of the crystal local-field effects (LFE) which become increasingly important for large q
and are closely connected to the off-diagonal elements of the mixed dynamic form fac-
tor. Finally, we consider both anisotropic (graphite) and isotropic systems (silicon) and
verify our findings by means of IXS experiments.

4.1 Discontinuity in the MDFF: an Overview of our Results
What do we mean by ‘angular anomaly’ or ‘discontinuity’ of the dynamic form factor?
For a momentum transfer close to certain reciprocal-lattice vectors Q of the crystal, we
observe drastic changes in the loss spectrum S(q, ω) upon small variations in q = Q+η
(see fig. 4.1). For small η → 0, the loss function is found to depend exclusively on
the direction of the deviation η, not its modulus. This is similar to the well-known
behaviour of S(q, ω) in the optical limit q → 0 for anisotropic systems, but occurs at
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Fig. 4.1: Prediction of anisotropic behaviour of the dynamic structure factor S(q, ω) in the
vicinity of a Bragg reflection (a) Q = (0, 0, 2) for graphite and (b) Q = (1, 1, 1) for silicon (see
text). Spectra in (a) are shifted along the ordinate for better visibility.

large momentum transfers. Additionally, the effect has been predicted by our TDDFT
calculations both in graphite which is anisotropic, but also in silicon which is an isotropic
material.

Graphite

In Figure 4.1a, the loss function of graphite is shown for different momentum transfers
q = Q + η close to the Q = (0, 0, 2) Bragg reflection. The direction of the deviation η
is changed, but not its modulus η = 0.001Å−1 . In experimental practice one usually
assumes that such a tiny variation in the momentum transfer q does not influence the
corresponding loss spectrum at all.1 Contrarily, our calculations show a strong effect
(solid lines). Depending on the angle α between the Bragg momentum Q and the
deviation η, the loss function changes considerably. The actual modulus of the deviation
η is not very important as long as η < 0.1 Å−1 . Neglecting crystal local-field effects in
our calculations, this discontinuous behaviour disappears (dotted lines, same for all α).

Silicon

The question arises if the angular anomaly can also appear in isotropic materials like
bulk silicon. Interestingly, our ab-initio calculations predict a similar effect also for
this system (see fig 4.1b). In the vicinity of the Q = (1, 1, 1) reflection, the loss function
depends strongly on the direction of the tiny deviation η: it shows a Fano resonance [114]
at α = 0◦, but not at α = 90◦ (solid lines). Neglecting crystal local-field effects in our
calculations, both the Fano resonance and the anomaly disappears (dotted line, same
for all α).

1To measure a loss spectrum close to a Bragg reflection one often adds a small deviation in q in order
to avoid the high intensity contributions from elastic scattering.
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Spatially-Resolved EELS

We can find a similar behaviour for the off-diagonal elements SGG′(qr, ω) of the mixed
dynamic form factor. This is of particular importance for the calculation of SR-EEL
spectra using eq. (2.32). Under channelling conditions, one has to integrate over a plane
in reciprocal space that is close to several Bragg-reflections. An understanding of the
angular dependence of the MDFF is then relevant for the theory of SR-EELS in crystals.

By our predictions, several questions arise which shall be answered during the course of
this chapter: What is the origin of the angular anomaly? Why does it also appear in
isotropic materials? Can we find a simple model for the angular dependence? Which
Bragg reflections show this behaviour? Which excitation can be attributed to the strong
peak in graphite? Can we understand the origin of the Fano resonance? What is the
difference to multiple scattering? Can the effect be observed in experiment? In order
to answer these questions a detailed theoretical discussion of the dielectric properties of
crystals is necessary and will be given in the following section.

4.2 Dielectric Properties of Crystals
In this section, the predicted anomaly will be explained in terms of an interplay between
anisotropy and crystal local-field effects (LFE). The latter originate from the periodic
modulation of the electron density in the crystal. The influence of this density modu-
lation on the electronic excitation spectrum is best understood in a nearly-free-electron
picture by comparing excitations in a homogeneous electron gas (HEG) and in a crystal.

4.2.1 Excitations in Crystals
Figure 4.2a (left panel) shows the well known electron-hole excitations in the homoge-
neous electron gas (shaded region) and the corresponding plasmon excitation (red line).
In a homogeneous system, a plasmon is a longitudinal charge oscillation in the form of a
plane wave with momentum q and energy ω(q) that depends quadratically on q. It has
an infinite lifetime at small momentum transfers below the critical momentum qc. For
large momenta q > qc, the plasmon decays rapidly by exciting electron-hole pairs.

In a crystal, this image is complicated by Umklapp processes and the crystal local-field
effects: Adding a weak periodic crystal potential will couple excitations of momentum q
and q +G via Umklapp processes and Bragg scattering (G denotes a reciprocal lattice
vector of the crystal). Both electrons and plasmons become Bloch waves and, in a first
approximation, the excitation spectrum of the crystal can be obtained by folding the
free-electron excitations back into the first Brillouin zone (fig. 4.2a, right panel). This
has three important consequences: First, interband transitions to bands from higher
Brillouin zones become possible via Umklapp effects and contribute to the damping of
the plasmon at low momentum q < qc (1). They are responsible for the finite lifetime
of the plasmon in solids even at small momentum q. Second, crystal local-field effects
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Fig. 4.2: (a) Excitation spectrum of free electrons (left) and electrons in a weak periodic crystal
potential (right). Shaded regions indicate electron-hole excitations, thick, red lines the plasmon
dispersion (adapted from [120]). (b) Visualisation of crystal local-field effects as induced dipoles
(left) or Bragg reflected waves (right). See text.

become more and more important with increasing strength of the crystal potential. They
couple excitations with momentum q and q+G from different Brillouin zones. When this
coupling is strong, the plasmon dispersion can develop several plasmon bands [120]. In
analogy to the electron bandstructure, an energy splitting at the Brillouin zone boundary
at q = G/2 can occur (2). Finally, the plasmon with small momentum q < qc may
reappear in higher Brillouin zones (3) at momentum q +G [113, 114]. This will be the
key for understanding the discontinuity of the loss spectra presented in Fig. 4.1.

4.2.2 Crystal Local-Field Effects
For a better understanding of the plasmon bands in crystals, we recall two physical
pictures for LFE [121] and discuss the relation with the dielectric matrix εGG′ :

LFE in real space: Using a purely classical picture, a crystal may be approximated as
a periodic system of dipoles [43]. A given external perturbation will polarise each dipole
(see fig. 4.2b) and therefore induce additional Hartree potentials—these are the crystal
local fields. They itself act as a perturbation to the other dipoles and hence contribute
to the total response of the solid in a self-consistent manner. Formally, this process is
described by the Dyson equation (1.11) which can be expanded as

χ(r, r′) = π(r, r′) +
∫
dr1dr2 π(r, r1) v(r1, r2) π(r2, r

′) + . . . . (4.1)

The polarisability π(r2, r
′) specifies the induced charge at the point r2 due to the per-

turbing field at point r′. This charge will induce an additional field that propagates
in free space and is given by the Coulomb potential v(r1, r2). This local field, in turn,
will contribute to the polarisation of the medium and so on. The total response of the
system to an external field is given by the susceptibility χ which contains the infinite
sum of all possible sequences of polarisation and propagation up to infinite order.
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LFE in reciprocal space: Alternatively, one can understand LFE in a plane-wave pic-
ture [122]. In reciprocal space, eq. (4.1) reads (we omit the dependence on the reduced
momentum qr and the energy ~ω)

χGG′ = πGG′ +
∑
G1

πGG1 vG1 πG1G′ + . . . , vG = e2

ε0

1
(qr +G)2

. (4.2)

Note that the Coulomb potential becomes diagonal and the response function is a matrix
in the reciprocal lattice vectors G and G′ due to the translational symmetry of the
crystal (see appendix A.2.2). Physically, LFE can now be understood as internal Bragg
scattering which couples all modes with the same reduced momentum transfer qr (see
fig. 4.2b): As π is a matrix, an external potential with momentum qr +G′ can induce
spatial charge fluctuations, whose momentum qr +G1 differs by any reciprocal-lattice
vector, and to which the system will also respond. The corresponding induced fields
vG1πG1G′ can be understood as Bragg-reflected modes that constitute the LFE. Usually
they have a very short wavelength and can not leave the crystal as long as the dispersion
relation in vacuum ω = cq is not fulfilled. Nevertheless, they can be again Bragg
scattered and thus contribute to the total response of the crystal with momentum qr+G.

Dielectric Matrix

In a homogeneous medium, Bragg scattering does not take place and all response func-
tions are diagonal, i. e., πGG′ = π(qr +G)δGG′ . The Dyson eq. (4.2) reduces to a simple
scalar equation which can be solved analytically. In particular, the plasmon will be
given by the zeros of the dielectric function ε(q, ω) = 1 − v(q)π(q, ω). Off-diagonal
elements πGG′ are only present in crystals and are responsible for the LFE. Plasmon
modes are then defined by det εGG′(qr, ω) = 0 leading to several plasmon bands for the
same reduced momentum transfer qr. As a consequence, a plasmon is no longer a single
plane-wave oscillation inside a crystal, but should be considered as a Bloch wave.

4.2.3 Effective Dielectric Function
As we have seen in section 2.5.2, the mixed dynamic form factor S(q, q′;ω) is directly
related to the inverse dielectric matrix ε−1

GG′
(qr, ω). In particular, the loss function for

plane-wave scattering is given by the diagonal element G = G′ [see eq. (2.16)]. One
usually introduces an effective scalar dielectric function εM corresponding to an effective
homogeneous material with the same loss function − Im 1/εM by2 [49, 50]

εM (qr +G, ω) ≡ 1
ε−1
GG(qr, ω)

= εGG −
∑

K,K′ 6=G
εGKM−1

KK′
ε
K′G

. (4.3)

It is given by the diagonal element εGG of the dielectric matrix plus a correction term
that constitutes the LFE. It depends on the off-diagonal elements εGK and the submatrix
MKK′ of the dielectric matrix εGG′ which does not contain the Gth row and column.

2For G = 0, we obtain the definition of the spatially averaged macroscopic dielectric constant εM .
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Nearly-Free-Electron Model

For weak crystal potential U , one can expand the elements of dielectric matrix εGG′ in
terms of the Fourier coefficients UG using second-order perturbation theory [50, 123]. To
lowest order, all diagonal elements are independent of UG, and all off-diagonal elements
are linear in UG. If we keep only terms to second order in UG, eq. (4.3) becomes:3

εM (qr +G, ω) ≈ εGG −
∑
K 6=G

εGKεKG
εKK

. (4.4)

It should be noted that this expansion is only applicable for energies ~ω that are large
compared to the gap in semiconductors [123]. If one of the coupling elements εGK is
dominant, the summation in eq. (4.4) reduces to a single term. If the same coupling
element is also dominant for εM (qr +K), the loss function can be rewritten as

1
εM (qr +G)

≈ 1
εGG

+ f
1

εM (qr +K)
, f = εGKεKG

ε2GG
(4.5)

This equation is fundamental for the explanation of the angular anomaly. The first term
corresponds to the zero-order approximation in the crystal potential U where LFE are
completely ignored and we have εNLF

M = εGG [see eq. (1.16)]. The last term is a second-
order correction and leads to the reappearance of the loss function 1/εM (qr +K) from
a different Brillouin zone. The weighting factor f is determined by the off-diagonal
elements εGK . For example, the periodic plasmon dispersion in magnesium diboride
MgB2 has been explained by the reappearance of the spectrum from the first Brillouin
zone K = 0 for momentum transfers qr +G at higher Brillouin zones [113].

Two-Plasmon-Band Model

A very similar equation can be obtained within the two-plasmon-band model [120, 124,
125]. But in contrast to eq. (4.5), the resulting expression is in principle exact. Start-
ing point is the bandstructure picture of the electronic excitations in crystals (see sec-
tion 4.2.1). In principle, the evaluation of det εGG′(qr, ω) = 0 leads to infinitely many
plasmon bands. However, as in any other bandstructure calculation, one is usually in-
terested in a limited number of interacting modes. For instance, one only needs two
bands in order to describe band-splitting effects at the boundary of the Brillouin zone.
As in the derivation of eq. (4.5), we assume that the excitation spectrum at a given
momentum q = qr + G is mainly coupled to excitations at qr + K, where K 6= G.
These two modes can be described by an effective 2×2 matrix ε̃ which corresponds to
a fictitious material with two plasmon bands. Formally, ε̃ is obtained by a downfolding
of the dielectric matrix εGG′ . For a given G and K, we divide ε and ε−1 into block

3In zeroth order, ε becomes diagonal. Thus, the two off-diagonal elements must be evaluated to first
order and the submatrix M has to be evaluated to zeroth order which gives M−1

KK′ ≈ 1/εKK δKK′ .
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matrices such that

ε =
(
P Q
R S

)
, ε−1 =

(
A B
C D

)
, P =

( εGG εGK

εKG εKK

)
, A =

(
ε−1
GG ε−1

GK

ε−1
KG ε−1

KK

)
. (4.6)

The remaining blocks are defined accordingly. The effective dielectric matrix

ε̃ =
( ε̃GG ε̃GK

ε̃KG ε̃KK

)
≡ A−1 (A.81)= P −QS−1R, (4.7)

can be understood as a generalisation of the scalar effective dielectric function εM defined
by eq. (4.3). The first term on the right-hand side is simply the corresponding 2×2 block
of the dielectric matrix ε. The second term corresponds to the local-field corrections due
to modes different from K and G. We can hence think of a separation of LFE in modes
taken into account explicitly and implicitly. This is particular useful when the corrections
due to the second term are small and can be thus approximated using perturbation
theory. Such a model dielectric function has been successfully applied to study, e. g., the
zone-boundary collective states [116] and the plasmon-band splitting [126].

By construction, the loss function− Im ε−1
GG is now given by the corresponding diagonal

element of ε̃−1. Inverting the effective 2×2 matrix ε̃, we finally obtain the exact result:

ε̃−1
GG(qr, ω) = 1

ε̃GG
+ f̃ ε̃−1

KK , f̃ = ε̃GK ε̃KG
ε̃2GG

. (4.8)

In particular, we formally recover our previous result from eq. (4.5) if we neglect the
second term in eq. (4.7), i. e., by replacing ε̃ with ε̃NLF = P . The formalism can be easily
extended for an arbitrary number of plasmon bands. In particular, the macroscopic
dielectric function (4.3) is recovered if we consider a single plasmon band, i. e., a 1×1
matrix.

4.2.4 Model for the Anisotropy
Let us now come back to the discontinuous behaviour of the loss function for momentum
transfers close to certain Bragg reflections. In fig. 4.1 we have noticed that the effect
only appears, when LFE are taken into account. In principle, all G modes are then
coupled by internal Bragg reflection and contribute to the total response of the system.

But which of these modes are the most important ones for the anisotropy? In RPA, the
dielectric matrix ε = 1̂−vχ0 is directly related to the independent-particle polarisability
χ0 that is given by eq. (3.14). For vanishing reduced momentum transfers qr = η → 0,
the matrix element χ0

GG′ for non-zero reciprocal lattice vectors is clearly independent
of η because the exponential ei(η+G)r ≈ eiGr is unchanged. Only the head χ0

00 and the
wing elements χ0

0G or χ0
G0 vary with η. The anisotropic behaviour of the loss function

at large momentum transfers must be due to the long-wavelength mode.
It is therefore reasonable to separate the LFE into contributions from the anisotropic

K = 0 mode and contributions from the remaining microscopic modes. Within the two-
plasmon-band model, the former are explicitly taken into account by the effective 2×2
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matrix ε̃ which contains both the 0 and the Q mode if we are interested in momentum
transfers close to the Bragg reflection Q. The loss function is then given by eq. (4.8) as

− Im ε̃−1
QQ(η, ω) = − Im 1

ε̃QQ
− Im f̃ ε̃−1

00 , f̃ = ε̃Q0ε̃0Q
ε̃2QQ

. (4.9)

The different terms can be interpreted as follows (see also fig. 4.3):

ε̃−1
QQ: Its imaginary part gives the loss function at q = η +Q including all LFE.
1

ε̃QQ
: Its imaginary part corresponds to the loss function at the same q taking into

account all LFE except the 0 mode. This can be seen from eq. (4.7), which reads

ε̃QQ = εQQ −
∑

L,L′ 6∈{0,Q}
εQL S

−1
LL′

ε
L′Q

and shows that ε̃QQ does not include any of the wing elements ε0G. Consequently,
it must be also independent of the direction of η.

ε̃−1
00 : Its imaginary part gives the loss function for q = η inside the first Brillouin zone

including all LFE. It is anisotropic in non-cubic systems and generally depends on
the direction of η. Note that also its real part may contribute when f̃ is complex.

ε̃Q0: The two off-diagonal terms strongly depend on η and will therefore determine the
anisotropy of the coupling factor f̃ in eq. (4.9).

In conclusion, we have shown that the origin of the anisotropy in the loss function at
large momentum transfers is twofold: First, the spectrum from the first Brillouin zone
may reappear. It depends on the direction of η if the material is anisotropic. Second, the
coupling factor f̃ determines the intensity of this reappearing spectrum. It depends on
the off-diagonal elements ε̃Q0 which are themselves anisotropic. Although eq. (4.9) seems
to be very simple, it gives rise to a rather complicated behaviour of the loss function at
large momentum transfers. In the following, we will discuss several examples in graphite
and silicon focussing on two effects that were, to our knowledge, never predicted before.

4.3 Graphite
In order to confirm our explanation of the anisotropy, we have performed RPA calcula-
tions of the full microscopic dielectric function εGG′(η, ω) for graphite. The numerical
details have been described earlier in section 3.3.4. We considered 6 different directions
for the reduced momentum transfer η: starting from the z-direction (along the c-axis),
the vector η is turned by an angle4 β = 0, 20, 40, 60, 80, and 90◦ towards b1 (ΓM di-
rection). Its modulus is kept constant at η = 0.001 Å−1 . For a given Q, we construct
the block matrices of eq. (4.6) and calculate the effective dielectric function ε̃ and ε̃NLF.
The latter is simply given by the 2×2 submatrix of ε, i. e., ε̃NLF = P =

(
εQQ εQ0
ε0Q ε00

)
, thus

neglecting local-field contributions from any mode different from Q and 0. We will see
in the following that it often behaves very similarly to the exact response ε̃.

4 Instead of β, we usually use the angle α between η and Q to indicate the direction of η (see fig. 4.1).
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Fig. 4.3: Analysis of the discontinuity in graphite close to the Bragg reflection Q = (0, 0, 2).
We have calculated (a) the loss function − Im ε−1

QQ as in fig. 4.1a and (b-d) the different terms
in eq. (4.9) in dependence of the direction α of the small deviation η. Both the results including
only the 0 and Q mode (dots, ε̃NLF) and those including all LFE are shown (solid lines, ε̃). The
spectra in (a) and (c) are shifted along the ordinate.

4.3.1 (002)-Reflection
We start with the Q = (0, 0, 2) reflection that was already considered in the introduction
and which will now be analysed using the two-plasmon-band model. In fig. 4.3, we show
all terms of eq. (4.9) for the different directions of η separately. We use both, the exact
effective dielectric matrix ε̃ (solid lines), and the approximation ε̃NLF (dots).

The loss function − Im ε̃−1
QQ at large momentum q = Q + η is shown in fig. 4.3a. It

shows a strong dependence on η. The plasmon peak shifts in energy and vanishes for
α = 90◦, i. e., when η is perpendicular to the Q vector. In this case, the spectrum
becomes identical to the isotropic term − Im 1/ε̃QQ which is shown in fig. 4.3b. It is
essentially flat and indeed does not depend on η. The full loss function is therefore
governed by the second term in eq. (4.9). As we have discussed in section 4.2.4, the
anisotropy enters in two ways:
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(i) The loss function − Im ε̃−1
00 at small momentum transfers η is anisotropic in graphite

(see fig. 4.3c). For α = 90◦, we find the in-plane π plasmon of graphite at 7 eV. The
peak shifts to lower energies as the momentum transfer is turned towards the c axis [127].
A comparison between panel (a) and (c) clearly shows that the loss spectrum from the
first Brillouin zone reappears in the loss spectrum at large momentum transfers.

(ii) Additionally, the reappearing spectrum is weighted by the coupling factor f̃ which
also depends on η. In the present case, it is real valued and nearly constant below 8 eV
(see fig. 4.3d). The coupling |f̃ | decreases with increasing α. In particular, it vanishes
exactly when η is perpendicular to Q. This explains the absence of the plasmon peak
in the loss function at large momentum transfers for α = 90◦.

Coupling Factor f̃

Still, it remains to be understood why the coupling factor f̃ disappears for in-plane
directions of η. To this end, we can make use of the general properties of the dielectric
function in semiconductors. In the limit of very high frequencies and assuming a local
effective crystal potential, the independent-particle polarisability becomes [124, 128, 129]

χ0
GG′(η, ω) ≈ 1

emω2 (η +G)·(η +G′) ρ(G−G′), (4.10)

where ρ(G−G′) denotes the Fourier coefficient of the ground-state elec-

α
α′

η

Q q

tron density. A very similar expression can be derived in the framework
of a quasifree electron gas by expanding the single-particle Bloch func-
tions and energies to second order in the crystal potential UG [123]. We
can, therefore, assume that the following conclusions are still valid even
at lower frequencies ω:

First, we see that the coupling between density fluctuations with mo-
mentum η +G and η +G′ is proportional to the cosine of the enclosed
angle α′. Hence, the prefactor for the dielectric function ε̃NLF becomes

f̃ ≈ f̃NLF = εQ0ε0Q
ε2QQ

∝ cos2 α′. (4.11)

In particular, it vanishes for in-plane directions of η as α = 90◦ ≈ α′.
Second, the coupling element vanishes when the Fourier coefficient |ρ(G−G′)|2 is zero.

In this case, also the Bragg reflection itself disappears. Note that ρ(G) is closely related
to the crystal structure factor. For graphite in Bernal stacking, one finds that any Bragg
reflection (0, 0, 2m + 1) where m is an integer is forbidden, i. e., the crystal structure
factor is zero. Thus, also the off-diagonal element εQ0 vanishes and no anisotropy is
found for the (0, 0, 1) reflection [130, 131]. Following eq. (4.10), we expect a strong
anisotropy effect close to a strong Bragg reflection.
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Fig. 4.4: Angular anomaly in graphite at the (0, 2, 0) reflection. Same as fig. 4.3a and d.

Which LFE Contribute?

The results using ε̃NLF (dotted lines) are very close to the full calculations. This might
be rather astonishing, because the calculations neglecting all LFE have not been able
to describe the anisotropy (see fig. 4.1a). The inclusion of a single mode, namely the
long-wavelength mode K = 0, is now sufficient to reproduce the discontinuity.

Why are the other local-field corrections mainly small and isotropic? We have seen
in eq. (4.9) that the anisotropy can be only due to ε̃−1

00 and ε̃Q0. For the first term,
it is already known that LFE are of minor importance for the loss function at small
momentum transfers. The second term is given by eq. (4.7) and explicitly reads (the
prime indicates that the 0 and Q modes are excluded from the summation)

ε̃Q0 = εQ0 +
∑′

L,L′
εQL S

−1
LL′

ε
L′0 ≈ εQ0 +

∑′
L′

εQL′εL′0
εL′L′

. (4.12)

In the last step, we have used the same approximation S−1
LL′
≈ 1/εLLδLL′ as in eq. (4.4).

As discussed before, only εQ0 and εL′0 depend on η. The former is explicitly taken into
account in the 2×2 matrix ε̃NLF of the two-plasmon-band model. The latter is weighted
by further matrix elements. In particular, it contributes only to second order in the
crystal potential U and is generally small. Off-diagonal elements different from εQ0 and
ε0Q can therefore often be neglected and despite its simplicity, the 2×2 matrix model
ε̃NLF is sufficient to describe the anisotropy effect.

4.3.2 Other Bragg Reflections
We will repeat our analysis for two other Bragg reflections by choosing always the same
small momentum deviations η as above, but changing the vector Q. Note that we
only have to repeat the downfolding procedure for the new Q vector, not the ab-initio
calculation of the microscopic dielectric function εGG′(η, ω).
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Fig. 4.5: Angular anomaly in Graphite at the (1̄, 1̄, 2) reflection. Same as fig. 4.3a and d.

(020)-Reflection

In fig. 4.4a, the loss function is shown for momentum transfers close to the Q = (0, 2, 0)
Bragg reflection. Again, the spectra strongly depend on the deviation η. But in contrast
to fig. 4.3a, the in-plane π plasmon at 7 eV reappears, not the peak for small on-axis
momentum transfer. This is simply due to the different direction of Q: If the deviation
η is chosen along the c-axis (blue line at the top) it is now perpendicular to Q (α = 90◦)
and the coupling vanishes. The spectrum is then identical to the isotropic contribution
− Im 1/ε̃QQ. Indeed, the coupling factor f shown in fig. 4.4b is again real and scales as
cos2 α. Note that the contribution of the LFE neglected in ε̃NLF are now more important
than for the (0, 0, 2) reflection. However, they do not contribute to the anisotropy.

(1̄1̄2)-Reflection

In fig. 4.5a, we consider a Bragg reflection for a diagonal direction Q = (1̄, 1̄, 2). The
corresponding loss function shows again a strong dependence on the direction of η which
is very similar to the behaviour at the in-plane (0, 2, 0) reflection. However, we find that
the approximation (4.10) for the off-diagonal element εQ0 seems to fail in this case.
Indeed, the coupling factor f (and the wing element) does not show a scaling with
cos2 α (see fig. 4.5b): while f vanishes for the on-axis deviation η (α = 70◦), it is much
larger for a comparable angle α = −75◦ (for comparison, also the angle β towards the
c-axis is given). The same behaviour is found for the simplified model using ε̃NLF, i. e.,
the coupling to other local-field modes different from 0 cannot be the origin of this
behaviour. It is only due to the angular dependence of the wing element εQ0.
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Fig. 4.6: Angular anomaly in graphite at the (0, 0, 2) reflection. Same as fig. 4.3 for higher
energies up to 20 eV. The inset in (d) shows the phase of the coupling factor f in radians.

4.3.3 Higher Energies
Finally, we extend our studies to the range of higher energies up to 20 eV, where also
σ electrons contribute to the excitation. The loss function becomes much more compli-
cated, but the general explanation for the anisotropy remains valid.

We will only consider the Q = (0, 0, 2) reflection. The loss function for q = η + Q
is shown in fig. 4.6a. The energy-loss probability strongly increases at high energies
such that the low-energy excitations shown in fig. 4.3 are hardly visible. For increasing
angle α, a strong peak appears at about 16 eV. At first glance, this appears very puzzling
because (i) the loss function in the first Brillouin zone does not show any peak at this
energy (see fig 4.6c) and (ii) the coupling factor should vanish for α = 90◦.

Nonetheless, the behaviour of the loss function can be again understood using the
two-plasmon-band model. First, we see from fig. 4.6b that the peak at 16 eV is actually
due to the isotropic contribution − Im 1/εQQ. Second, the coupling indeed vanishes for
α = 90◦ as we expect from eq. (4.10) (see fig. 4.6d). But at energies beyond 10 eV, the
coupling factor f becomes complex. Its phase does not depend on the direction of η (see
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inset). At 16 eV, arg f is close to ±π, i. e., f is negative and the peak in the isotropic
contribution is actually cancelled by the anisotropic second term.

As a consequence, the interpretation of the angular anomaly becomes slightly different
compared to the previous cases: For a deviation η perpendicular to Q, the loss function
at q = η + Q is equivalent to the isotropic contribution which has a strong peak at
16 eV. For small α, the anisotropic second factor in eq. (4.9) contributes and suppresses
the peak at 16 eV. As the off-diagonal element ε̃Q0 strongly varies with ω, the spectrum
from the first Brillouin zone is not recognised in the loss function. For instance, the
perpendicular plasmon peak at 18 eV does not reappear (compare upper blue lines in
fig. 4.6a and c).

4.3.4 Experimental Verification
In order to validate our predictions we have proposed inelastic X-ray scattering experi-
ments [130]. The measurements were carried out at the Taiwan inelastic-scattering beam
line in SPring-8 using a graphite single crystal. The results of our joint theoretical and
experimental study have been recently published [131].

To verify the angular anisotropy, we did not consider momentum transfers exactly
along the c-axis of graphite, but added a small in-plane component q1 = 0.37 Å−1 that
was kept constant, while the momentum along the c-axis q3 was varied from 0.94 Å−1 to
2.84 Å−1 . By this choice of q vectors, the elastic contributions at the Bragg reflections
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are avoided. Approaching the Bragg reflection at Q = (002), the peak in the spectra
is strongly shifted in energy and, most importantly, it abruptly disappears next to Q
(q3 = 2 · 2π/c = 1.88 Å−1). Both effects are a clear signature of the anisotropy.

Figure 4.7 shows the measured spectra (dots) together with the corresponding ab-
initio calculations (lines). The agreement is very good; in particular, the predicted peak
shift is clearly seen in the measurements, as well as the abrupt change from a peaked
spectrum for q = (1

8 , 0,
13
6 ) to a completely flat one at q = (1

8 , 0, 2), when α ≈ 90◦. The
IXS measurements give unambiguous support to the presented theoretical predictions.

Measuring Off-Diagonal Elements

It is interesting to note that our experiments, in principle, give access to the off-diagonal
element ε̃Q0. Within the limits of the two-plasmon-band model (4.8), the coupling factor
f and thus ε̃Q0 can be determined from the difference of the spectra at α = 0◦ and 90◦,
whenever the anisotropy effect is strong.

Indeed, such an experiment is very similar to the coherent inelastic X-ray measure-
ments proposed by Schülke and Kaprolat [74] or the EMCD experiments in the electron
microscope proposed by Schattschneider et al. [65]. In both cases, the system is per-
turbed by a superposition of two plane waves with wave vectors that differ by a reciprocal
lattice vector Q. As we have seen in section 2.3.1, the off-diagonal element of the mixed-
dynamic form factor S(q, q′, ω) then enters as an interference term. It can be extracted
from the difference of two measured loss functions.

Nevertheless, the connection between the angular anomaly and these two-beam experi-
ments is still an open question. First, the form factor S is related to the inverse dielectric
function ε−1 via the fluctuation-dissipation theorem (2.50), while the anisotropy is de-
termined by the off-diagonal elements of the dielectric function ε itself. Second, the two
external plane waves in the experiments of Schülke and Kaprolat [74] and Schattschnei-
der et al. [65] are directly generated inside the crystal by internal Bragg reflection of an
external broad beam. This can be interpreted as a coherent elastic and inelastic scatter-
ing event [27]. Our calculations, however, only include a single inelastic scattering event
for a single external plane wave.

4.4 Silicon
Finally, we consider the angular anomaly in silicon which becomes interesting for two rea-
sons: First, silicon has cubic symmetry and is an isotropic material for long-wavelength
excitations. At first glance, the presence of the angular anomaly shown in fig 4.1b
might, therefore, be astonishing. Indeed, the loss function for small momentum transfers
− Im ε−1

00 (η, ω) does not depend on the direction of η. But at large momentum trans-
fers, also the microscopic structure of the system is probed and we will find anisotropic
contributions from the coupling factor f . Second, the loss function in silicon shows a
prominent Fano resonance close to the Q = (1, 1, 1) reflection [114]. We investigate this
structure by means of TDDFT calculations. Previous ab-initio studies [132] on silicon
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have shown that exchange and correlation effects have to be taken into account for an
accurate description of experimental measurements. We closely follow their approach
using the adiabatic local-density approximation plus lifetime corrections (see below).

Numerical Details

The electronic ground state is calculated in DFT-LDA (local-# ground state
a : 10.263 Bohr
ecut: 30 Ha
# kss
kptrlatt 8 -8 8

-8 8 8
-8 -8 8

shiftk
0.62 0.74 0.86

# tddft ALDA+LT
npwwfn 181
nbands 100
npwmat 89

density approximation) with AbInit [100]. Nonlocal, norm-con-
serving pseudopotentials of Hamann-type [109] and a plane-wave
basis set (with an energy cutoff radius of 30 Ha and a regular grid
of 2048 shifted k-points) are used. The microscopic dielectric
matrix εGG′ is calculated in the framework of TDDFT using the
DP code [102]. For a better convergence, we have used shifted
k-point grids (see section 3.3.3) and it was carefully checked that
the shift does not introduce any artificial anisotropy. Exchange
and correlation effects are taken into account within the adia-
batic local-density approximation (see chapter 3). Additionally,
lifetime effects are included in the calculation of the independent-
particle polarisability (3.14) by an energy-dependent broadening
iη = i|Σ′′(Ev)|+ i|Σ′′(Ec)|. Fleszar and Hanke [133] have calcu-

lated the self-energy matrix elements | Im Σ(E)| for silicon in dependence of the LDA
Kohn-Sham energies. We use the following rough parametrisation of their results [132]:

Σ′′(E) =


0.01(E + 1.5)2 E < −1.5
0 −1.5 < E < 1.5
0.004333(E − 1.5)2 1.5 < E < 28
0.02857(E − 28) + 3.0428 28 < E,

(4.13)

where all energies are given in eV. The inclusion of the lifetime effects has been shown to
be important for the momentum-dependent loss function of silicon at high energies [132].

As in the case of graphite, we will analyse the resulting loss function in terms of
the two-plasmon-band model. Therefore, the microscopic dielectric matrix εGG′(η, ω) is
calculated for six different deviations η. The modulus is again constant η = 10−3 Å−1 ,
while the direction is changed by turning η from the [111]cc direction5 towards the [112̄]cc
direction by an angle of β = 0, 20, 40, 60, 80, and 90◦. Finally, the dielectric matrix is
separated into the different blocks (4.6) and we calculate ε̃ and ε̃NLF.

In our calculations, the momentum transfer is usually restricted by the set of k-
points, because k and k′ = k + q have to be included in the mesh of equidistant k-
points. To circumvent this restriction, we have used two k-point grids which are shifted
against each other by the momentum transfer q. Using this doublegrid method, we can
calculate the loss function for arbitrary momentum transfers that correspond exactly to
the experimental conditions.

5We use the conventional unit cell. Directions are then given in Cartesian coordinates in units of 2π/a.
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Fig. 4.8: (a) Anisotropic behaviour of the loss function − Im ε−1
QQ close to the Bragg reflection

Q = (1, 1, 1) in silicon. (b-d) Analysis of the contributions to the loss function following eq. (4.8).
Both, results including only the 0 and Q mode (dotted lines, ε̃NLF) and those including all LFE
are shown (solid lines, ε̃). The NLF spectra in (a) and (b) are shifted along the ordinate.

4.4.1 (111)-Reflection
Let us now reconsider the Fano resonance for momentum transfers close to the Q =
(1, 1, 1) reflection. In fig. 4.8a, the calculated loss functions for the different deviations
η are shown. We clearly find a strong dependence of the Fano resonance at about 17 eV
on the angle α between the deviation η and the reciprocal lattice vector Q. Using the
two-plasmon-band model, we again find that the loss function for α = 90◦ is given by
the isotropic first term of eq. (4.9) (see fig. 4.8b). The Fano resonance, instead, is a
consequence of the second term. As we can see in fig. 4.8c, the loss function from the
first Brillouin zone is now isotropic. It shows a strong plasmon peak at 17 eV which
does not depend on α. Nevertheless, the coupling factor f shows the cos2 α scaling as
predicted by eq. (4.10) (see fig. 4.8d). Its modulus is nearly constant for the energies
of interest but its phase rapidly changes between −π at 15 eV and −π/2 at 20 eV (see
inset). This is the reason for the negative contribution of the anisotropic term in the
first case and the positive contributions in the latter.
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Fig. 4.9: Analysis of the Fano line shape. (a) Lorentz fit for the plasmon resonance at low
momentum transfer. (b) Fano fit for the loss function at large momentum transfer close to the
(1, 1, 1) reflection (see text). We used the 2×2 model dielectric function ε̃NLF calculated in RPA.

The structure at 17 eV has been already investigated by Sturm et al. [114]: It was
interpreted as a plasmon-Fano resonance, because it is due to the coupling between the
discrete plasmon excitation at small momentum η and the electron-hole continuum at
large momentum transfers η + Q. The effect was studied by comparison of the loss
spectra at large momentum transfers |q| = 2.36 Å−1 for two different directions: the
[111]cc direction, where the Fano resonance is present, and the [100]cc direction, where
it is completely absent. This difference could be explained in terms of the two-plasmon-
band model. As the coupling factor f depends on the Fourier coefficient UQ of the
effective crystal potential,6 it strongly differs for the two directions of q. Indeed, the
coefficient U(100) and thus the coupling to the 0 mode vanishes in silicon, while U(111) is
rather large. We extend these investigations by several aspects:

1. We studied momentum transfers very close to Bragg reflections. The anisotropy
effect is not directly visible at momentum transfers studied by Sturm et al. [114].

2. Instead of changing the direction of the momentum transfer q, we only change the
direction of the reduced momentum η. Indeed, q is nearly constant in our case.

3. The coupling factor f therefore changes strongly with the angle α, while the Fourier
coefficient UQ is always the same.

As in the case of graphite, the contribution of the long-wavelength charge oscillation
K = 0 is by far the most important one. Neglecting all the other local fields (dotted
lines in fig. 4.8) does not considerably change the behaviour of the loss function. Only
the plasmon excitation in the first Brillouin zone is broadened if we include all LFE.

6Or, equivalently, on the Fourier coefficient ρQ of the electron charge density; see eq. (4.10).
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Fig. 4.10: Angular anomaly in silicon at the (2, 2, 2) reflection. Same as fig. 4.8a and d.

Fano Line Shape

We might wonder if the line shape can be really described by the Fano model. As-
suming that a discrete state is coupled to an overlapping continuum, Fano obtained a
characteristic line shape for the cross section of scattering experiments [134]:

F (ω) = A2 (q̃ + ε)2

(1 + ε)2
+ (1−A), ε = ~ω − E0

Γ/2
, (4.14)

where q̃ denotes the Fano parameter, ε the reduced energy, E0 and Γ correspond to the
energy and the broadening of the isolated resonance, and A is the coupling strength.

For simplicity, we will only consider the 2×2 model function ε̃NLF and neglect exchange
and correlation effects in the following. In this case, the discrete resonance corresponds
to the plasmon at low momentum transfers neglecting all LFE. By fitting a Lorentzian
function to the NLF spectrum at vanishing momentum transfer η, we determine the
parameters E0 = 17 eV and Γ = 2.7 eV (see fig. 4.9a). For α = 90◦ the coupling vanishes
and the loss function at large momentum transfers does not contain any contributions
from the discrete resonance. For any other angle α, the change in the spectrum due to
the coupling to this resonance is described by the ratio (we omit the index NLF)

R(α, ω) = 1
cos2 α

Im ε̃−1
QQ(α)

Im ε̃−1
QQ(α = 90◦)

(4.15)

between the loss functions at α and α = 90◦ (see fig. 4.9b, solid lines). The factor cos2 α
accounts for the scaling of the coupling factor f and we find a universal line shape for
all angles α. The Fano fit of eq. (4.14) for the parameters q̃ = 0.64 and A = 0.6 is in
rather good agreement with the RPA results which validates the interpretation of the
structure at 17 eV as a plasmon-Fano resonance.
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qcc [2π/a] qrc |q| Å α

Q+ (111)cc/16 Q+ (111)rc/16 0.12 0 doublegrid
Q+ (011)cc/8 Q+ (211)rc/16 0.20 35
Q+ (100)cc/8 Q+ (011)rc/16 0.14 54
Q+ (21̄1)cc/16 Q+ (031)rc/32 0.18 90 doublegrid

(a) (b)

Tab. 4.1: Momentum transfers q for the loss functions in fig. 4.11 at the Q = (111) and (222)
reflection: (a) given in Cartesian and reciprocal coordinates and (b) shown in reciprocal space.

4.4.2 (222)-Reflection
Another interesting case is found at the (222) reflection in silicon. Neglecting the form
factor of the atoms, the crystal structure factor S(Q) =

∑
n e
−iQτn vanishes for this

reflection. However, it is well known that the charge distribution in the covalently bonded
crystal actually leads to a very small but nonzero structure factor (factor 100 compared to
the (111) reflection, see [135]). Following eq. (4.10), we would expect a very weak angular
anomaly. Figure 4.10a shows that the change of the loss function with the deviation η
is nevertheless visible for the (2, 2, 2) reflection. We find again a Fano-like line shape at
17 eV which originates from the coupling to the plasmon excitation at low momentum
transfers. Additionally, the anisotropic correction becomes important at lower energies.
This is mainly due to the much lower intensity of the isotropic contribution at larger
momentum transfers (compare scales of fig. 4.10a and fig. 4.8a). As the phase of the
coupling factor is approximately ±π, the intensity is reduced at 5 eV for α = 0◦.

4.4.3 Experimental Verification
To verify our theoretical prediction of an angular anomaly in the loss function of silicon,
high-quality measurements of dynamic structure factor S(q, ω) have been performed for
large momentum transfers close to the (1, 1, 1) and (2, 2, 2) reflection. The IXS exper-
iments on a single crystal of silicon have been carried out at the beamline ID16 of the
ESRF synchrotron radiation source in Grenoble. I have participated in the measure-
ments in collaboration with Simo Huotari and Giulio Monaco.

Details of the Measurements

The (111) surface of a single crystal of silicon has been chosen as sample. In Bragg ge-
ometry (reflection), we could use a massive sample that is stable against vibrations. The
incident photon beam was monochromatised with a double-crystal Si(111) monochro-
mator and a Si(440) channel-cut to an energy bandwidth of 220 meV. The spectra have
been analysed using a backscattering crystal spectrometer equipped with a Si(660) anal-
yser crystal. A total energy resolution of 4E < 0.5 eV has been estimated from the
width of the elastic line.
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Fig. 4.11: Experimental verification of the angular anomaly in silicon. We compare IXS
measurement (dots) and ALDA+LT calculations (solid lines) for loss functions close to the (a)
(111) and (b) (222) reflections. The exact momentum transfers are given in fig. 4.1. The
experimental curves have been scaled by a factor of 5 and 7 in (a) and (b), respectively. All
curves are shifted for better visibility.

The count rate of the collected photons and the resulting signal-to-noise ratio is deter-
mined by several experimental parameters: the polarisation angle, the size of the beam
spot on the illuminated sample (footprint), the energy resolution 4E, and the resolu-
tion in the angular momentum q. In order to measure the loss spectra close to a Bragg
reflection, a very high momentum resolution is necessary: First, contributions from the
elastic scattering at the Bragg reflection should be avoided. Second, the deviation in the
angle α should be small. As a compromise, an analyser slit of 10 mm width and height
at a distance of 1 m has been chosen. For an incident beam energy of 7.91 keV, i. e.,
a photon momentum of 4 Å−1 , we have a momentum resolution of 4qϑ = ±0.005 Å−1

inside and 4qz = ±0.02 Å−1 perpendicular to the scattering plane.
Additionally, we have used rather large deviations |η| ≈ ±0.15 Å−1 from the Bragg

reflection, as the angular anomaly mainly depends on the direction and not the size of
the deviation. The momentum transfers used in the experiment are shown in table 4.1a.
The average uncertainty of the direction of η is about 4α ≈ ±10◦.

Results

The results are shown in fig. 4.11 (dots) together with our ALDA+LT calculations (solid
lines). The experiments clearly confirm the validity of our calculations and the presence
of a strong angular anomaly in silicon.

Note that there are two slight deviations: First, the calculated spectrum for α = 0◦ in
fig. 4.11a is slightly different from the measured loss function at low energies. Second,
the agreement becomes worse for high energies E > 30 eV. This might be due to the bad
description of the lifetime effects by the rough parametrisation (4.13) at high energies and
should be corrected by including the quasi-particle corrections for each single-particle
state as it was already proposed in reference [132].
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4.5 Conclusions
In this chapter, we have investigated the response of a crystal to an external plane-wave
perturbation both theoretically and experimentally. We have predicted that the dynamic
structure factor S(q, ω)—or equivalently the inverse dielectric function Im ε−1

M (q, ω)—
can show an angular discontinuity at large momentum transfers qr +Q close to Bragg
allowed reciprocal-lattice vectors Q: infinitesimal changes in the momentum transfer
then induce strong changes in the resulting energy-loss spectra. This general effect
has been explained in terms of of crystal local-field effects which cause a strong coupling
between excitations at small and large momentum transfers via internal Bragg scattering.
It has been verified by ab-initio calculations and inelastic X-ray scattering experiments
for two materials, namely graphite and silicon.

In graphite, we found that the discontinuity at large momentum transfers q = qr +Q
is due to the reappearance of the spectrum from the first Brillouin zone. This has been
explained in terms of a two-plasmon-band model which describes the coupling between
the microscopic perturbing plane wave ei(qr+Q) · r and the induced macroscopic mode
eiqr · r via crystal local-field effects. We find that the discontinuity of the loss spectrum at
large momentum transfers is the result of three superposing effects: (i) The reappearing
spectrum from the first Brillouin zone strongly depends on the direction of the reduced
momentum transfer qr due to the anisotropy of graphite. (ii) The coupling between
excitations from different Brillouin zones depends on the angle between q and qr which
enforces the angular anisotropy. (iii) The coupling strength also depends on the Fourier
coefficient ρQ of the ground-state charge density and no discontinuity is observed when
the crystal structure factor vanishes. It is hence a consequence of the Bernal stacking of
the graphene layers that no changes occur at Q = (0, 0, 1).

We have also investigated the response of silicon which is a macroscopically isotropic
system. In this material, the angular anomaly has different consequences than in
graphite: Our ab-initio calculations show that the coupling factor is complex valued
which leads to a Fano-resonance in the energy-loss function at the (1, 1, 1) reflection.
Again, the coupling strongly depends on the direction of the reduced momentum trans-
fer qr and the Fano-coupling between the plasmon and electron-hole excitations can be
‘switched-off’ by a very small change in q.

Our predictions in graphite and silicon have been clearly confirmed by inelastic X-
ray scattering (IXS) measurements of the dynamic structure factor. We expect similar
observations in all crystals that show strong crystal local-field effects, especially for
layered or quasi one-dimensional structures. As a consequence, (i) anisotropic excitations
from the first Brillouin zone might reappear at large momentum transfers leading to an
anomalous angular dependence of the spectra, (ii) these recurring excitations belong to
a direction qr that is different from q, and (iii) measurements of the loss function close
to an allowed Bragg reflection may be extremely sensitive on the chosen momentum
transfer. Additionally, the angular anisotropy might be important for the understanding
of spatially-resolved EELS.

We will see in the following chapters that crystal local-field effects become also very
important for isolated nanostructures like graphene and single-wall carbon nanotubes.
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5 Polarisability of Two-Dimensional Systems

A system is generally called dynamically two-dimensional, if the electrons and holes are
free to move in two dimensions, but have their motion constrained along the third di-
rection [136]. The wave vector is then a good quantum number for the two dimensions,
but not for the third. A typical example are carriers which are trapped at interfaces be-
tween an insulator and a semiconductor. But also surfaces, heterostructures, intercalated
systems, and thin films can be understood as dynamically two-dimensional systems.

Only recently, real two-dimensional crystals have been re-

a1

a2

Fig. 5.1: graphene

alised experimentally. Although being studied extensively as
a theoretical model, such systems have been considered to be
thermodynamically unstable. In 2004, however, Novoselov and
Geim were able to produce flat monolayers of carbon atoms, the
so called graphene, by exfoliation of the weakly bound layers of
graphite [137]. Single layers of boron nitride, several dichalco-
genides, and complex oxides have been produced similarly [138].

Due to their outstanding mechanical and electronic proper-
ties, graphene layers have attracted much attention in the last
few years [5]. It is a building block for graphitic materials of all other dimensionalities:
it can be wrapped up into 0D fullerenes, rolled into 1D nanotubes, or stacked into 3D
graphite. In the following, we focus on the properties of single graphene layers and
especially the description of collective excitations in this system.

5.1 Graphene
The graphene sheet is a flat monolayer of carbon atoms forming a two-dimensional hon-
eycomb lattice (see fig. 5.1). The primitive unit cell of the hexagonal lattice is spanned
by the two basis vectors a1 and a2 and contains two carbon atoms at positions τα,

a1,2 =
√

3a
2

ex ±
a

2
ey, τA = 0, τB = 1

3
(a1 + a2). (5.1)

The experimental lattice constant of a ≈ 2.4 Å corresponds to a nearest-neighbour dis-
tance of about 1.4 Å [139]. It has been found that the graphene sheet is stabilised by a
weak buckling at finite temperatures [140] which solves the contradiction with the pre-
dicted instability of real 2D crystals. The amplitude of the ripples of about 1 Å is very
small compared to their wavelength of 80 Å. Therefore, we can neglect these deviations
from the perfectly flat graphene for our purposes. The flat graphene crystal has a six-fold
rotational axis, six perpendicular mirror planes and one mirror plane which coincides
with the sheet. The resulting 24 symmetry operations form the point group D6h.
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Fig. 5.2: (a) Brillouin zone of graphene in reciprocal space. (b) Electronic band structure of
graphene. The π bands (blue) are also shown for the full Brillouin zone in (c). Partial-charge
densities of a state at the Γ point for the π band (d), and the σ band (e).

The reciprocal lattice is again hexagonal (see fig. 5.2a) but rotated by 90 degrees with
respect to the real space lattice. The reciprocal unit vectors are given by

b1,2 = b

2
ex ±

√
3b
2

ey, b = 4π√
3

1
a

(5.2)

and the shaded hexagon corresponds to the Brillouin zone. We define the high symmetry
points Γ, K, and M as the centre, the corner, and the centre of the edge, respectively.

Single-Particle Bandstructure

The electronic band structure1 along the high symmetry line M–K–Γ–M is shown in
fig. 5.2b. Below the Fermi energy at 0 eV, we distinguish four valence bands. At zero
temperature, each of them is occupied with two of the eight valence electrons in the
primitive unit cell. The 1s core states of carbon are at much lower energies (≈ −300 eV)
and will be considered to be chemically inert in the following discussion.

In a tight-binding description, the three lowest bands are formed by the three sp2

hybridised atomic orbitals which point in direction of the three neighbouring atoms.
These so-called σ states are mainly localised inside the plane, close to the atoms and
have thus a rather low energy (see fig. 5.2e). The corresponding anti-binding σ∗ states
are found more than 5 eV above the Fermi level. The remaining pz orbitals which are
perpendicular to the plane, form the bonding π band (highest occupied valence state) and
anti-bonding π∗ band (lowest unoccupied conduction state). These states are delocalised,
have a node at the graphene plane, and therefore small binding energies (see fig. 5.2d).

1Here, only the Kohn-Sham eigenvalues are shown. Compare with discussion in section 3.1.2.
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(a) (b)

Fig.5.3: (a) Annular dark field STEM image of a free-standing graphene sheet. (b) Experimental
electron energy-loss spectra of one, two, five and many layers of graphene. Main features are
the π- and π+σ-plasmon excitations at about 6 eV and 15–25 eV, respectively. Both figures are
reproduced from [141], c© 2008 by The American Physical Society.

The π and π∗ bands are degenerate at the K point where they cross the Fermi level. As
a consequence, undoped graphene is a zero-gap semiconductor, with a Fermi surface that
only consists of six points at the edges of the Brillouin zone (see fig. 5.2c). At these points,
the bands are linear in a good approximation. Thus, the electrons at the Fermi level
have a constant group velocity vF ≈ 106 m/s and a vanishing effective mass like photons!
This peculiar behaviour gives rise to new phenomena, such as a fractional quantum
hall effect or phenomena known from quantum electrodynamics [5]. These effects are
restricted to very small excitation energies of the order of few 100 meV. Beyond this
limit, bandstructure effects and the dispersion of the bands become dominant.

Collective Excitations

The collective excitations of graphene have been recently studied by Eberlein et al.
[141], Gass et al. [142]. Using a scanning transmission electron microscope, they where
able to measure the electron energy-loss spectrum of single- and few-layer graphene in
vacuum (fig. 5.3). The two main features are due to a charge oscillation of the π electrons
at low energies and of both π and σ electrons at high energies [see fig. 5.2(d) and (e),
respectively]. For isolated graphene, the π and π + σ surface-plasmon excitations are
found at 4.7 eV and 14.6 eV, respectively. In systems with more and more layers, their
energy increases until it reaches the value of bulk graphite (>10 layers). Thus, the
inelastic-scattering signal can be used to determine the number of layers in a graphene
sample and to distinguish single-layer and few-layer graphene.

But, how can we describe the excitations in a single layer of graphene theoretically?
The effective-medium approach, i. e., to model the system by a thin slab of homogeneous
bulk material, is of course questionable in the case of a monoatomic layer. In the
following, we will therefore use ab-initio calculations to derive the momentum- and
energy-dependent EEL spectra of single- and few-layer graphene. However, for the
physical understanding it is useful to review the simplest approaches first.
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5.2 Models for the Dielectric Properties
We consider two models for the dielectric properties of an isolated two-dimensional
system: First, one can apply effective-medium theory considering a thin slab of homo-
geneous material in the limit of vanishing thickness. Second, the tight-binding (TB)
approach can be used to calculate the dielectric response of a graphene layer in random
phase approximation.

5.2.1 Dielectric Theory
Using classical electromagnetic theory, Ritchie [35] has cal-

Fig. 5.4: Surface modes [30].

culated the energy loss of fast electrons traversing a thin
foil of thickness d.2 In the limit of a thick slab, the two
planar interfaces do not interact with each other and the
energy-loss probability becomes very similar to eq. (1.1).
It only differs in the prefactor K0 for the contributions from the two surfaces. Using the
Lorentz model (1.4) for the dielectric function of the slab, one finds a volume plasmon at
(ω2
p +ω2

0)1/2 and two degenerate surface-plasmon excitations at (ω2
p/2+ω2

0)1/2. For thin
slabs, the bulk contribution vanishes with d and the surface modes start to interact with
each other (see fig. 5.4). On obtains two different surface-plasmon frequencies depending
on whether the electrons on the two sides oscillate in phase (+) or out-of phase (−) [30]

ω2
±(q) = 1

2
(
1± e−qd

)
ω2
p + ω2

0, q = 2π/λ. (5.3)
The frequency of these modes now depends on the momentum transfer q parallel to the
slab, i. e., the wavelength λ of the charge oscillation. For large qd� 1, one recovers the
limit of the thick film. For small qd� 1, instead, tangential oscillations at frequency

ω− = (ω2
pqd/2 + ω2

0)1/2 (5.4)
become dominant and normal oscillations at frequency ω2

+ = ω2
p + ω2

0 can be associated
with the depolarisation effect. Clearly, it depends on the in-plane momentum transfer
q if the slab can be considered to be thin or not. Concerning the plasmon dispersion
in graphene, we might expect to find the square-root behaviour of the tangential mode
(5.4) for momentum transfers q < 1 Å−1 . However, the application of effective-medium
theory for the description of atomically thin sheets is very questionable.

5.2.2 Tight-Binding
During this thesis, I have implemented a minimal tight-binding approach for graphene
in order to complement our ab-initio results and to facilitate their interpretation. For
simplicity, we consider only π orbitals and limit ourselves to nearest-neighbour inter-
actions. Despite this crude approximation, the results are sufficient for a qualitative
description of the excitation properties of graphene. Indeed, we should consider even
third-nearest-neighbour interactions for an accurate description of the π bands [144], as
well as contributions from σ orbitals at higher energies [145]. We follow [4, 146].

2The plasmon dispersion of multi-layer systems has been discussed by Fetter [143].
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Schrödinger Equation

For the ground-state problem, we have to calculate the energies and the wave functions
of the π bands, i. e., we have to solve the effective single-particle Schödinger equation

Hψnk(r) = Enkψnk(r), ψnk(r +R) = eikR ψnk(r). (5.5)

Due to crystal symmetry, a translation of the wave function ψ by an arbitrary lattice
vector R introduces only a phase shift. Thus, the wave function can be written as a
Bloch function ψnk with band index n and the (two-dimensional) wave vector k. With
Born-van-Kármán boundary conditions ψ(r+Niai) = ψ(r) along the two directions a1
and a2, the wave vector becomes discrete (see appendix A.3.1).

Starting point for the tight-binding approach is the construction of two families of
Bloch functions φAk and φBk which form a complete set of orthonormal wave functions,

φαk(r) = 1√
N

∑
R

eik(R+τα)ϕα(r −R), ϕα(r) = ϕz(r − τα), α ∈ {A,B}. (5.6)

They are given as linear combination of the normalised atomic orbitals ϕz of the sub-
lattice of A or B atoms at positions τA+R and τB+R (white or black dots in fig. 5.1,
respectively). The sum runs over the totality of N = N1N2 unit cells in the normalisation
box with the corresponding lattice vectors R. Expanding ψnk in the basis (5.6),

ψnk(r) = CAnkφ
A
k (r) + CBnkφ

B
k (r), Cnk ≡

(
CAnk, C

B
nk

)T
, (5.7)

we can rewrite the Schrödinger equation (5.5) in matrix notation (α, β ∈ {A,B}) [4]

HkCnk = EnkSkCnk, Hαβk =
〈
φαk
∣∣H∣∣φβk〉, Sαβk =

〈
φαk |φ

β
k

〉
. (5.8)

For each wave vector k, this equation corresponds to a generalised eigenvalue problem.
Assuming, that we know the 2×2 transfer-integral matrix Hk and the overlap-integral
matrix Sk, we can easily calculate the eigenvalues Enk and eigenvector coefficients Cnk.

Transfer and Integral Matrix Elements

Of course, we do not know neither H nor S. But we can simplify the problem within the
tight-binding approximation using the localisation of the atomic orbitals ϕz(r) and the
geometry of the crystal. Unknown quantities are considered as fitting parameters that
can be determined by a comparison with experiments or ab-initio calculations.

First, we consider the on-site matrix element HAA. With eq. (5.6) we find

HAAk = 1
N

∑
R,R′

e−ik(R−R
′)
〈
ϕA(r−R)

∣∣∣H ∣∣∣ϕA(r−R′)
〉 NN≈

〈
ϕz
∣∣H∣∣ϕz〉 ≡ E0. (5.9)

In nearest-neighbour (NN) approximation, we keep only the on-site termR = R′, assum-
ing that the matrix elements vanish for R 6= R′ due to the small overlap between atomic
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orbitals localised at A atoms of different unit cells (they are at least second-nearest neigh-
bours). Due to the equivalence of the two carbon atoms, we have HAA = HBB ≡ E0.

The evaluation of the hopping term HAB follows the same idea:

HABk = 1
N

∑
R,R′

e−ik(R+τA−R′−τB)
〈
ϕA(r−R)

∣∣∣H ∣∣∣ϕB(r−R′)
〉

NN≈
3∑
j=1

eiktj 〈ϕz(r)|H |ϕz(r−tj)〉 ≡ g(k)γ0.
(5.10)

We have kept only contributions from the three nearest neighbours at position tj (see
fig. 5.5c). Due to the 3-fold symmetry, the interaction energy γ0 = 〈ϕz(r)|H |ϕz(r − tj)〉
is identical for all three neighbours j. The geometry factor g(k) can be evaluated as3

g(k) =
3∑
j=1

eiktj = eik(a1+a2)/3
(
1 + e−ika1 + e−ika2

)
. (5.11)

Analogously, the overlap-integral matrix elements are given by

SAA = SBB = 1, SAB =
(
SBA

)∗ = s0 g(k), (5.12)

where we have introduced the overlap integral s0 =
〈
ϕz(r)|ϕz(r − tj)

〉
with 0 ≤ s0 ≤ 1.

Bandstructure and Wave Functions

With these nearest-neighbour matrix elements, the Schrödinger equation (5.8) now reads(
E0 γ0 g(k)

γ0 g
∗(k) E0

)(
CA

CB

)
= Enk

(
1 s0 g(k)

s0 g
∗(k) 1

)(
CA

CB

)
. (5.13)

where E0, γ0, and s0 are empirical fitting parameters. The two solutions of this equation
correspond to a bonding (εv = +1) and anti-bonding state (εc = −1) which are given by

Enk = E0 + εnγ0 |g(k)|
1 + εns0 |g(k)|

, ψnk = An
(
φAk +Bnφ

B
k

)
, (5.14)

An(k) =
(
1 + |Bn|2 + 2s0 Re

{
g(k)Bn

})− 1
2
, Bn(k) = Enk − E0

g(k)(γ0 − s0Enk)
.

The three unknown parameters have to be determined by comparison with experiments
or ab-initio calculations. Considering the expression for the bandstructure in eq. (5.14),
we can already restrict the parameter range. At the K point (2b1 + b2)/3, the geometry
factor g(k) vanishes and the valence and conduction bands become degenerate with an
energy E0. In undoped graphene, this energy corresponds to the Fermi level and thus
E0 = 0 eV. Additionally, γ0 has to be negative in order to have Evk ≤ Eck.4 Typically,
values of γ0 between −2.5 eV and −3 eV and overlap integrals s0 < 0.1 are used.

3Our notation differs from Reich et al. [146] as they use −tj for the nearest-neighbour positions instead.
4In some references [e.g. 147, 148], γ0 is defined to be positive, i. e., −γ0 has to be used in all equations.
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Fig. 5.5: Tight-binding bandstructure of graphene in nearest-neighbour approximation. (a)
The π bands (lines) are calculated from eq. (5.14) for different parameters γ0 and s0 taken from
literature (b). For comparison, an ab-initio bandstructure (dots) of LDA Kohn-Sham energies is
shown. (c) Nearest and second-nearest neighbours of the A atom.

In figure 5.5, we compare the ab-initio bandstructure of graphene with the π bands
calculated using the tight-binding approximation for different parameters γ0 and s0. The
overall shape of the π bands is quite satisfactory, if the overlap s0 is taken into account.
Without overlap, the valence and conduction band are symmetric with respect to the
Fermi level.

Most importantly, the simple tight-binding model describes the linear dispersion of
the π bands in the vicinity of the K point [149], the so-called Dirac cone. An expansion
of eq. (5.14) in k around the K point gives a Fermi-velocity of vF = −γ0a

√
3/2. However,

for an accurate description of the full π-band dispersion, a tight-binding model including
interactions even with the third-nearest neighbours has to be used [144].

Independent-Particle Polarisability χ̄0

So far, we have only considered ground-state properties. Now, we will turn to the
collective excitations of graphene by calculating the dielectric response in RPA [147, 148].
Following section 3.2.3, we start with the independent-particle polarisability χ̄0

GG′(q, ω)
which is given by eq. (3.14). We neglect crystal local-field effects and calculate only the
macroscopic component χ̄0

00. Having already an analytic expression for the tight-binding
energies, the remaining problem is the calculation of the q-dependent matrix elements
ρ̃nn

′
k (q) =

〈
ψn′k−q

∣∣e−iqr∣∣ψnk〉 or, equivalently, ρ̃αβk (q) =
〈
φαk−q

∣∣e−iqr∣∣φβk〉. Similar to the
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evaluation of Hαβ in eq. (5.9) and (5.10), one finds in nearest-neighbour approximation

ρ̃AAk (q) =
〈
ϕz
∣∣e−iqr∣∣ϕz〉, ρ̃ABk (q) =

3∑
j=1

eiktj
〈
ϕz(r)

∣∣e−iqr∣∣ϕz(r − tj)〉. (5.15)

Due to the q dependence, we cannot proceed as before and simply introduce two new
fitting parameters. Instead, we will use a model function for the atomic orbital ϕz(r)
in order to calculate the remaining matrix elements. For the sake of simplicity, we will
ignore the overlap between neighbouring atoms in the following, i. e., we let s0 = 0 and
neglect the matrix elements ρ̃ABk (q) which actually correspond to the Fourier transform
of the overlap. The tight-binding energies and wave functions (5.14) then read

Enk = E0 + εnγ0 |g(k)|, ψnk = 1√
2

(
φAk + εn

g∗(k)
|g(k)|

φBk

)
(5.16)

and one finally obtains with ρ̃ABk = ρ̃BAk = 0 and ρ̃AAk = ρ̃BBk

ρ̃nn
′

k (q) =I(q)
2

[
1 + εnεn′

g(k − q)g∗(k)
|g(k − q)||g(k)|

]
, I(q) = 〈ϕz| e−iqr |ϕz〉 . (5.17)

The matrix elements for intraband (c→c and v→v) and interband (c→v and v→c)
transitions differ only in the sign εnεn′ . Note, that k is a two-dimensional wave vector
and q is understood to be parallel to the plane, i. e., qz = 0.

Momentum Distribution of ϕz

Following Zener [150], the 2pz orbital of the Carbon atom has the same functional form
as the Hydrogen 1pz orbital and is approximately given by

ϕz(r) = Ar cosϑ exp
[
− Zr

2a0

]
, z = r cosϑ, (5.18)

where Z=3.18 is a fitting parameter corresponding to an effective core charge. The nor-
malisation constant A is determined by 〈ϕz|ϕz〉 = 1 and a0 denotes the Bohr radius. For
an in-plane momentum q = (q̄, qz=0), we obtain for the momentum distribution [147]

I(q̄, qz=0) =
∫
dr |ϕz(r)|2e−iq̄r =

[
1 +

(a0q̄

Z

)2]−3
. (5.19)

Collecting all terms, we have now an analytic approximation for the contribution of the
π bands to the polarisability of graphene.

Dielectric Function in RPA

In RPA, the dielectric function of a two-dimensional layer is given by [147]

ε̄(q̄, ω) = εσ − v2Dχ̄
0, v2D = e2

2ε0
1
q̄
, (5.20)
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Fig. 5.6: (a) Dielectric function ε̄ and EEL spectrum − Im 1/ε̄ for undoped graphene calculated
within the tight-binding approximation. The momentum transfer |q| = 0.135 Å−1 is chosen along
the ΓM direction. (b) Plasmon dispersion for doped graphene (EF = 1.9 eV) with increasing
momentum transfer |q| along the ΓK direction. Additionally to the π plasmon at 7 eV, an
intraband plasmon with square-root dispersion (dashed line) appears at small energies.

The two-dimensional Coulomb potential v2D accounts for the modified screening prop-
erties of the charges localised on a two-dimensional sheet as compared to the three-
dimensional case. This important point will be discussed in detail in section 5.4. The
background dielectric constant εσ = 2.4 accounts for the contributions of the σ elec-
trons to the screening of the system [151]. This is necessary because only the π bands
were explicitly taken into account in our tight-binding approach. Finally, the electron
energy-loss spectrum is given by − Im 1/ε̄ as we have seen before.

Discussion

First, we consider the case of undoped graphene where only interband transitions con-
tribute. Figure 5.6a shows the calculated dielectric function and the EEL spectrum
(solid line) for a small in-plane momentum transfer q = 0.135 Å−1 using the tight-
binding parameters γ0 = −2.5 eV, s0 = 0, and ε0 = 2.4 of reference [148, 152]. We
find a π-plasmon excitation at about 5.2 eV, but also a strong shoulder at low energies
(compare with fig. 5.3b). Similar calculations have been performed recently by Stauber
et al. [153].

Second, we calculate the plasmon dispersion for n-doped graphene. The additional
electrons form a 2D electron gas that can support a new plasma oscillation at low
energies. The properties of this collective excitation can be tuned by changing the
doping level and hence the 2D carrier density n. In our calculation we model n-doped
graphene by simply increasing the Fermi level EF . The conduction band then becomes
partially occupied and intraband transitions contribute to the spectra. Figure 5.6b
shows the calculated plasmon dispersion for a Fermi level EF of 1.9 eV, i. e., a density
of n ≈ 2 · 1014cm−2. In agreement with previous tight-binding calculations [154, fig.
2a], we find a square-root behaviour for small momentum transfer q → 0. Hwang and

83



Das Sarma [155] derived an analytical expression for the dispersion (see dashed line)

ω ≈ ω̄p
√
q, ω̄2

p = 2e2/EF , EF = γ
√
πn, γ =

√
3

2 aγ0, (5.21)

where γ = 5.34 eVÅ corresponds to the slope of the π bands near the K point. Note
that the plasma frequency ω̄p is proportional to n1/4 in contrast to the normal two-
dimensional electron gas, where ωp ∝ n1/2 [see eq. (1.2)].

Clearly, the tight-binding calculations can give important physical insight. Most of
the quantities are given analytically and numerical simulations become very fast (the
presented results have been calculated in a few seconds). However, their use for a detailed
analysis of experiments is often limited: First, the results strongly depend on the fitting
parameters. Their number increases rapidly, especially when more refined tight-binding
models beyond the nearest-neighbour approximation are used. Second, the range of
application is rather limited. Due to our approximations, we are restricted (i) to small
energies (~ω < 10 eV), where only transitions between the π bands contribute and (ii)
to small momentum transfers (q̄ < 1/a ≈ 0.5 Å−1), so that the exact form of the orbitals
is not very important and crystal local-field effects can be neglected.

5.3 Ab-Initio Calculations
To overcome the limitations of the models described above, we have performed ab-initio
calculations for isolated graphene. In particular, all contributing valence and conduction
states (π, σ and empty states) are included, as well as crystal local-field effects (LFE).

5.3.1 Calculation Parameters
We will concentrate on the π-plasmon excitation in single

Fig. 5.7: Supercell

graphene layers and stacked systems. Electron energy-loss spec-
tra in the range of low energies (0–15eV) and for in-plane
momentum transfers q (0.1–1Å−1) have been calculated us-
ing (time-dependent) density-functional theory. As described
in section 3.3, first the electronic ground state of the system
was calculated in DFT-LDA (local density approximation) with
AbInit [100]. A plane-wave basis set and norm-conserving pseu-
dopotentials [108] have been used. Second, the Kohn-Sham band-
structure and wave functions are taken as input for the DP-
code [102] to compute the independent-particle polarisability χ0

and the microscopic dielectric function εGG′(q, ω) of the system.

Supercell Approach

Due to the plane-wave basis set, the finite system has to be included in a supercell which
is periodically continued in every direction. One actually calculates the response of an
infinite stack of identical graphene layers (AA stacking5) with an interlayer distance d

5In bulk graphite, the stacking was found to have no influence on the loss function for in-plane momen-
tum transfer q. In the following, we will not distinguish between graphite in AA and AB stacking.
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d/d0 d [Å] k-point grid npwwfn nbands npwmat

1 3.33 44× 44× 4 317 40 41
2 6.66 44× 44× 2 409 60 65
4 13.3 44× 44× 1 817 80 83
8 26.6 44× 44× 1 1555 80 199
16 53.3 44× 44× 1 1999 150 299
32 107 44× 44× 1 4983 200 609

# Geometry
a : 4.631 Bohr
d0: 6.294 Bohr
# ground state
ecut: 30 Ha
toldfe : 1.0d -10
# kss
tolwfr : 1.0d -16
shiftk : 0 0 0
symmorphi : 0

Tab. 5.1: Calculation parameters of DP (left) and AbInit (right) for graphene stacks with
different interlayer distances d. The convergence of εM and EELS has been tested for in-plane
momentum transfers q̄ < 2 Å−1 and excitation energies up to 15 eV using a broadening of 0.2 eV.

that is given by the height of the cell. In order to check that the interaction between the
artificial replicas can be neglected, we consider increasing interlayer distances ranging
from the graphite value d0 = 3.33 Å up to huge distances of 32d0 = 11 nm. In the limit
of non-interacting sheets, the polarisability π(r, r′) and the susceptibility χ(r, r′) have
to be independent of the supercell size. The Fourier transformed quantities (A.42) are
then inversely proportional to the volume Ω of the supercell

χ(q, q′) ∝ Ω−1, π(q, q′) ∝ Ω−1, Ω ∝ d/d0 (5.22)

and we have to scale the EEL spectra accordingly. For comparability, also the con-
vergence parameters have to be adapted for each distance (see table 5.1). Increasing
the supercell, the reciprocal lattice vector b3 becomes smaller and we have to enhance
npwwfn and npwmat. Additionally, free-electron states enter the energy-range of interest
so that the number of bands nbands has to be increased (see also fig. 5.19).

5.3.2 From Graphite to Graphene
Extending our previous work [130], we investigated the influence of the interlayer distance
d on the macroscopic dielectric function εM and the loss spectrum − Im 1/εM .

Loss Function and Im εM

First, we consider the dielectric response of the graphene stack for large in-plane momen-
tum transfer q = 0.27 Å−1 along the ΓM direction (see top of fig. 5.8). The loss spectrum
(left panel) shows a π-plasmon peak which shifts to lower energies going from graphite to
graphene. This is consistent with the experimental observations for few-layer graphene
(see fig. 5.3b) and with the prediction of dielectric theory that surface excitations are
lower in energy compared to the bulk excitations (see sec. 5.2.1).

In contrast, the imaginary part of the dielectric function Im εM (centre panel) shows
the opposite behaviour. In the limit of isolated graphene, Im εM becomes equivalent to
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Fig. 5.8: Influence of the interlayer distance d on the dielectric properties of stacked graphene
layers. We show (a) the EEL spectrum and (b) the macroscopic dielectric function Im εM for
three different in-plane momentum transfers q along the ΓM direction. (c) Neglecting LFE, the
dielectric function Im εNLF

M ∝ Imχ0 does not vary with d. All spectra are scaled by the factor
d/d0, where d0 = 3.33 Å corresponds to the interlayer distance of graphite.
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the EELS signal as the screening εM−1 ∝ Ω−1 vanishes in finite systems [see eq. (5.22)]:

− Im ε−1
M = Im εM

(Re εM )2 + (Im εM )2
Ω→∞−−−−→ Im εM , (5.23)

Note, that the loss spectra converge faster towards the graphene limit than Im εM .

Crystal Local-Field Effects

The strong change of the spectra with the distance d is actually due to crystal local-
field effects (LFE). It is well known, that they have only little influence on the in-plane
excitations in bulk graphite [112]. Indeed, Im εM (centre panel) and Im εNLF

M (right
panel) do not differ for d = d0. Increasing the interlayer distance d, the results without
LFE do not change at all, while Im εM converges towards the graphene loss function.
Clearly, crystal local-field effects are of major importance for isolated sheets.

This is mainly due to the inhomogeneity of the system along the z-direction, while in-
plane contributions are generally small. Indeed, for increasing interlayer distance d, the
reciprocal lattice vector b3 shortens and more and more perpendicular G-vectors have
to be included in the calculation in order to describe the localisation in real space with
the same accuracy. The importance of crystal local-field effects in a supercell calculation
is directly related to the depolarisation effects in the isolated system.

Influence of the Momentum Transfer

In the second row of figure 5.8 we repeat our analysis for a small in-plane momentum
transfer q = 0.07 Å−1 . In principle, the conclusions above change only quantitatively:
First, LFE become less important for graphene (compare fig. 5.8b and c), as we would
generally expect for smaller momentum transfers q [83]. Second, we need larger distances
d in order to avoid interlayer interactions and to reach the limit of an isolated sheet.
The latter can be explained with a simple dielectric analogue (see also [156]): Assuming
a homogeneous 2D electron gas for each layer, the perturbation with in-plane momen-
tum transfer q will induce charge oscillations of wavelength 2π/q in each plane. The
electrostatic interaction between the sheets does not change if both the wavelength and
the distance are scaled by the same factor. Its strength is determined by the parameter6

qd and vanishes if qd� 1. Thus, larger distances d become necessary when q decreases.
This trend continues when q → 0 reaches the optical range (see bottom of figure 5.8).

In this limit, LFE become even unimportant for the graphene spectra, but very large
distances d > 50 nm are necessary to converge the loss function.

Convergence to the Loss Function of Graphene

In the optical limit, Im εM converges already for very small d, i. e., much faster than
the loss spectrum. The opposite has been found for large momentum transfers. This
behaviour can be understood by the fact that the difference between Im εM and the loss

6Note that the same factor qd already appeared in the discussion of a thin slab (see section 5.2.1).

87



(a) with LFE (b) without LFE
q [1/Å] EELS Im ε EELS Im ε

0.001 d > 500 Å d > 7 Å – d > 7 Å
0.07 d > 30 Å d > 150 Å – d > 7 Å
0.3 d > 10 Å d > 50 Å d > 200 Å d > 4 Å
1.3 d > 7 Å d > 30 Å d > 60 Å d > 4 Å

Tab. 5.2: Minimal interlayer distance d for isolated graphene sheets.

spectrum is given by the macroscopic component v0 ∝ 1/q2 of the Coulomb potential,
which only contributes to the loss spectrum [83]. As the two spectra have to coincide
for graphene, it is v0 which determines the convergence: For small q, this component
diverges and large distances are necessary to converge the loss spectrum (bottom). For
large q, instead, microscopic components vG 6=0 (i. e., LFE) become more important and
screen v0. In this case, the loss spectrum converges faster than Im εM (top). We use this
behaviour in our calculations for the loss function of graphene and use either Im εM or
− Im 1/εM—whatever converges faster with the distance d (see table 5.2).

It is remarkable that in the optical limit q → 0 the loss function of graphene becomes
identical to Im εNLF

M , i. e., the absorption spectrum of graphite neglecting LFE. This
statement still holds when exchange-correlation effects are taken into account in the
calculation of the polarisability π. A rigorous justification will be given in section 5.4.2.

5.3.3 Linear Plasmon Dispersion in Graphene
Having studied the convergence of the loss function with the interlayer distance d, we are
now able to investigate the plasmon dispersion for isolated graphene. To this end, the
loss function −Im ε−1(q, ω) of graphene was calculated for different in-plane momentum
transfers q along the ΓM and ΓK directions with increasing modulus up to 0.8 Å−1 . The
results of our RPA calculation are shown in fig. 5.9b (thick line). In the range of 0.1 to
0.8 eV, we find an almost linear plasmon dispersion which is in very good agreement with
EELS measurements on isolated single-wall carbon nanotubes with large radius (see [157]
for details of the comparison). A very similar result can be found using the tight-binding
calculations described in section 5.2.2 (see [152]). Also the dielectric model (5.4) might
be fitted to our results obtaining ~ω0 ≈ 4.4 eV and ~2ω2

pd ≈ 140 eV2Å. For a detailed
analysis, it is useful to investigate the loss spectra at different levels of approximation,
namely (i) the independent-particle approximation (IPA) where exchange-correlation
and local-field effects are completely neglected (εNLF

M = 1 − vχ0) and (ii) the random
phase approximation (RPA) which takes into account LFE via eq. (1.15).

Neglecting Local-Field Effects

Starting with the IPA, the loss function of isolated systems − Im 1/εNLF
M ∝ Imχ0 is

directly given by the independent-particle response [see eq. (5.22)]. Thus, it can be
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Fig. 5.9: (a) Loss function of graphene at q = 0.41 Å−1 along ΓM calculated from the JDOS
(dots), within the bare RPA (blue) and in RPA including LFE (red, thick). The latter changes
significantly, when transitions next to the K point (shaded area, see inset) are excluded (red,
dot-dashed). (b) Dispersion of the peaks in the loss function for different momenta along ΓM
(solid lines) and ΓK (dashed lines).

interpreted as a sum of independent transitions (3.14) which are directly related to the
bandstructure. Figure 5.9a shows a typical spectrum for q = 0.41 Å−1 . In the low
energy region (~ω < 10 eV), only transitions between the π and π∗ bands contribute to
the spectrum which consists of three peaks in ΓM direction (blue solid line) but only
two peaks for ΓK (not shown). In fig. 5.9b the corresponding dispersion curves are
depicted (blue solid & green dashed lines). The first peak arises from transitions that
are localised around the K point in reciprocal space (see inset7). According to the linear
π bands in this region, the peak disperses linearly from 0.5 eV to 4.0 eV with a slope
of γ = 5.4 eVÅ. This is in good agreement with the slope of the π bands used in the
tight-binding calculations before [see eq. (5.21)]. The second peak, only visible for ΓM, is
a weaker structure around 4 eV and shows almost no dispersion. The last peak starting
at 4.0 eV shows a quadratic dispersion at small q. It is attributed to transitions near
the edge of the Brillouin zone close to M. This peak is almost undetectable when matrix
elements are ignored (dotted line in fig. 5.9a) like in the joint density-of-states (JDOS).

Including Local-Field Effects

We have seen before, that crystal local-field effects have a strong influence on the loss-
functions of graphene for q > 0. They almost completely suppress the linearly dispersing
low-energy structure as well as the very weakly dispersing second peak. Instead, the peak
starting at 4 eV is blue shifted by about 0.8 eV and becomes the dominant structure in
the spectrum. Its dispersion is strongly modified: LFE transform the formerly quadratic

7The inset shows all k points in the Brillouin zone which contribute to Imχ0 at 2.4 eV (η = 0.2 eV,
final k points). The 6-fold symmetry is broken due to the finite momentum transfer q. Calculating
Imχ0 including only these few k points, we obtain the dark shaded peak shown in fig. 5.9a.
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dispersion into an almost linear one (red line in fig. 5.9b). One can understand the LFE as
a mixing of transitions by the Dyson eq. (3.16).8 The resulting spectra should therefore
consist of a mixture of the formally distinct peaks. This can involve a significant energy
range and it is interesting to see, whether the linearly dispersing low-energy peak has a
considerable influence on the spectra including LFE.

Which Transitions Contribute?

By excluding selected transitions from the summation in χ0, we can estimate their
influence on the linear plasmon dispersion including LFE. First, we consider low energy
contributions from the linear region of the π bands around the K point. Despite the very
different energy ranges, the final loss is indeed significantly affected by the inclusion (red
solid line) or exclusion (red dot-dashed line) of these transitions: in the latter case the
dominant structure is reduced (the integrated intensity decreases by more than 30%)
and red shifted by about 0.4 eV. There are, hence, considerable contributions from low
energy transitions in the LFE corrected plasmon response.

Second, the same analysis can be repeated for high-energy transitions. We find that
energies beyond 15 eV contribute to the plasmon, i. e., transitions between the σ bands
are important, too. They basically screen the charge oscillation of the π electrons and
shift the plasmon to lower energies. Indeed, the plasmon peak is found at much larger
energies, if we exclude all transitions with energies larger than 10 eV (fig. 5.9a, dashed
line). In the tight-binding calculations, these high-energy contributions have been taken
into account empirically by the background dielectric constant εσ in eq. (5.20). Generally,
if the transitions are clearly separated in energy, one can split the macroscopic dielectric
function εM = 1 + vχπ + vχσ according to the contributing electrons and use, e. g., a
simple plasmon-pole model for the high-energy contributions εσ = 1+vχσ ≈ const [151].

We conclude that the mixing of transitions of different energies also mixes the different
dispersion relations. The resulting almost linear dispersion is indeed a superposition of
the dispersion of the main structures in the IPA loss functions, including the low-energy
peak originating from the ‘Dirac cone’ as well as the screening from the σ electrons.

Excitonic Effects in the Optical Limit

In the optical limit q → 0, our RPA calculations predict a plasmon peak at 3.95 eV
and thus a square-root dispersion for very small q � 0.1 eV (see bottom of fig. 5.8 and
dispersion in fig. 5.9b). The tight-binding results of Huang et al. [152] show a parabolic
dispersion, instead. In both calculations, exchange and correlation effects are neglected.

It is well-known that excitonic effects can become important in the limit q → 0 [158].
Their effect on the optical response of graphene is currently under debate [159, 160].
Yang et al. [159] have performed Bethe-Salpeter calculations on graphite and graphene
and predict a main absorption peak at 4.5 eV and 4.55 eV, respectively. Unfortunately,
only few experiments on graphene exist in this range, but the predictions are in good

8As the Dyson equation is nonlinear in χ0, its real and imaginary part will be mixed. The former
contains contributions from all energies via the Kramers-Kronig transform Reχ0 = P

π

∫
dω′ Imχ0(ω′)

ω′−ω .
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Fig. 5.10: Independent-particle quantities ρ̃ and χ0 for graphene stacks with different interlayer
distances d = 2.5d0 (red), d = 5d0 (green), and d = 10d0 (blue) for a momentum transfer
q = 0.27 Å−1 along ΓM and an energy ω of 4 eV: (a) Matrix elements ρ̃ππ∗k (q+G) in dependence
of the z-component Gz for fixed in-plane components Ḡ = (Gx, Gy) = (0, 1). We consider a
transition between the π and π∗ band at the k point k = (4/11, 0, 0) (symbols) or k points with
non-zero kz component (lines). The region of interest is shaded in gray. (b) Independent-particle
polarisability χ0

GG′ (scaled by d/d0) depending on both Gz and G′z for fixed Ḡ = Ḡ
′ = (0, 0).

agreement with X-ray absorption measurements on isolated single-wall carbon nanotubes
with large diameters (see fig. 6.15a, [161]). As the loss spectrum at q → 0 and the
absorption spectrum become identical in finite systems [see eq. (5.22)], we can also expect
a peak at 4.55 eV in the loss function of graphene. The energy shift with respect to the
RPA results is due to a quasiparticle correction of +1.1 eV that is partially compensated
by −0.6 eV when electron-hole interactions are taken into account [159]. It is remarkable
that we obtain the same energy of 4.5 eV if we extrapolate the linear plasmon dispersion
that was calculated in RPA to q = 0 (see fig. 5.9b). Also note, that ab-initio calculations
of Trevisanutto et al. [160] have predicted a strong excitonic resonance at about 8.3 eV
in graphene. High-resolution EELS measurements could help to verify their findings.

At finite momentum transfer q > 0, instead, we expect small corrections of the plasmon
energy of the order of few 100 meV compared to the RPA results. However, the question
of the importance of exchange-correlation effects for finite momentum transfers q is still
an open problem and only few calculations are available in literature, e. g., [162, 163].

5.3.4 Numerical Extrapolation for Isolated Systems
In section 5.3.2 we found that the independent-particle polarisability χ0 converges much
faster with the interlayer distance d than the full susceptibility χ. This is due to the
long-range part v0 of the Coulomb interaction which couples neighbouring layers. It is
tempting to separate the calculation of χ0 and the solution of the Dyson equation (3.16)
χ = χ0 + χ0vχ. The independent-particle polarisability χ0, which is computationally
the most demanding part, can be then calculated for a much smaller system.
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Microscopic Polarisability Matrix

So far we have only considered the convergence of the head element χ0
00 of the microscopic

polarisability matrix χ0
GG′ (see fig. 5.8c). We might wonder, if even the full matrix is

independent of the interlayer distance d. Therefore, we first consider the transition-
matrix elements ρ̃ which are the main ingredients of χ0

GG′ [see eq. 3.14]. Figure 5.10a
shows the typical example for the dependence of ρ̃vck (qr+G) on the z-component Gz for
the AA stacked graphene layers. With increasing supercell size d, the lattice vector b3
shrinks and the reciprocal lattice vectors G become denser along the z-direction. For
in-plane k points (symbols), we generally find that the matrix elements ρ̃ of systems with
large distances d (blue +) can be easily obtained from the ones of the bulk system (red I)
by means of a simple interpolation. For non-zero kz (lines), the corresponding wave
function describes an electron that is moving in z-direction which is clearly irrelevant for
the isolated case. Note, that ρ̃ is approximately linear for the G vectors that contribute
significantly9 to the LFE in graphene (indicated by the gray region).

Exactly the same behaviour is found for the independent-particle polarisability χ0

itself. Figure 5.10b shows the dependence of χ0
GG′ on Gz and G′z which is found to be a

smooth function. As in the case of ρ̃, we can obtain χ0 for large interlayer separations
from a calculation of χ0 of a bulk-like system using a simple interpolation.

Extrapolation to Isolated Systems

It is numerically more efficient to interpolate directly the summed quantity χ0 instead
of first interpolating all the transition-matrix elements ρ̃ and summing afterwards. The
interpolation method consists of the following three steps:

Procedure I: Interpolation Method

1. Starting point is an ab-initio calculation of the microscopic bulk polarisability
χ0
d for a stack of graphene layers with doubled interlayer distance d = 2d0 ≈

7 Å. This assures that the Kohn-Sham orbitals of neighbouring layers do not
overlap.10 We restrict the k-point grid to the xy-plane (kz = 0 for all points).

2. The bulk polarisability χ0
d is read by a post-processing program and extrap-

olated to large distances D = N · 2d0. I have implemented two interpola-
tion methods: a cubic-spline interpolation for the real and imaginary part of
χ0
d(Gz, G′z), and a Fourier-interpolation method. As a result, we obtain a new

polarisability χ̃0
D with more G vectors (factor of ≈ N2).

3. Finally, we continue with the usual procedure of solving the Dyson eq. (3.16)
and calculating the macroscopic dielectric response (see section 3.2.4).

9Increasing the dimension npwmat of the polarisability matrix χ0 in the calculation for d = 10d0, we find
that already the first 6 G vectors give roughly converged loss spectra. In particular, these vectors
are all pointing along the z-direction, i. e., in-plane LFE are not very important in graphene.
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Fig. 5.11: Localisation of the susceptibility χ = π+πvπ+ . . . in a two-dimensional system. (a)
Inside the plane the response can be very delocalised, (b) but not in perpendicular direction.

This method reproduces exactly the corresponding ab-initio calculations for the iso-
lated system, while we gain a factor of 100 in computation time (see fig. C.4a). Indeed,
all dashed lines in fig. 5.8 have been calculated using the Fourier-interpolation method.
Otherwise, ab-initio calculations with a supercell size of 50 nm would not have been fea-
sible. A more detailed description of our implementation can be found in appendix C.4.

5.4 Local-Response Approximation
The discussion so far might have raised several questions, like: What do we actually
mean by strong local-field effects in graphene? Why do they vanish in the optical limit
q → 0? At which point, these local-field effects enter in the tight-binding calculation?
What can we learn from a comparison between the tight-binding and the full ab-initio
results? Why do we use a different Coulomb potential v2D in tight-binding, but not in
our ab-initio calculations? And what is the connection between a 2D and a 3D response
function? We will answer these question by reconsidering the response of a two-
dimensional system from a theoretical point of view. The formalism is close to the
dielectric theory of surfaces [33, 164] or the models developed for thin slabs including
spatial dispersion [36].

5.4.1 Polarisability vs. Susceptibility
The polarisability π = δρi/δϕt is known to have a very small non-locality radius rc of
the order of a few Ångstrom [e.g. 121]. In RPA (π = χ0), this can be understood if
we rewrite the expression (3.14) for the independent-particle polarisability χ0 in terms
of Wannier functions [50] and assume that they have a finite spatial extent µ. Indeed,
Wannier functions are exponentially localised in insulators if time-reversal symmetry is
satisfied [165, 166]. Similar to the tight-binding approximation, we can then neglect
interactions between distant orbitals and we have

π(r̄, r̄′) ≈ 0, for |r̄ − r̄′| � µ. (in-plane) (5.24)

10Note that even for d = d0, the hybridisation of the wave functions from neighbouring layers are barely
visible in the polarisability (see fig. 5.8c). Therefore we will not strictly distinguish between bulk
systems with graphite interlayer distance d0 and artificial graphene stacks with d = 2d0 in the text.
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In a slab, the orbitals are all localised at the z = 0 plane. We can expect, that they
vanish exponentially with a decay length λ of a few Ångstrom. Thus we have

π(z, z′) ≈ 0, for |z| � λ, or |z′| � λ. (out-of-plane) (5.25)

In contrast, the susceptibility χ = δρi/δϕe can have a macroscopic nonlocality radius.
Expanding the Dyson equation χ = π+πvπ+ . . . , we can interpret each term as a series
of local polarisations π(r, r′ ≈ r) and nonlocal propagations of the induced secondary
fields described by the long-range Coulomb interaction v(r, r′) (see fig. 5.11a). Therefore,
χ(r̄, r̄′) may be nonzero even for large distances |r̄ − r̄′|.

The situation is completely different in finite systems (see fig. 5.11b). As polarisable
charges are bound to the sheet, χ becomes localised in perpendicular direction

χ(z, z′) ≈ 0, for |z| � λ, or |z′| � λ. (out-of-plane) (5.26)

This important difference between extended and finite systems will allow us to introduce
two-dimensional response functions and to solve the Dyson eq. (1.11) analytically.

5.4.2 Dyson Equation for Two-Dimensional Systems
Note that our system is not two-dimensional in a strict sense: first, because its wave
functions have a finite spatial extent in z-direction and second, because electromagnetic
fields are not confined to a plane but spill out into the third dimension [136]. To switch
from three- to two-dimensional quantities, we use a 2D Fourier transform according to
the in-plane periodicity of the system [164, 167]. The Dyson eq. (1.11) then becomes
(for a compact notation, we will sometimes omit the comma between arguments)

χ(q̄q̄′; zz′) = π(q̄q̄′; zz′) +
∑
q̄′′

∫
dz1dz2 π(q̄q̄′′; zz1)v(q̄′′; z1z2)χ(q̄′′q̄′; z2z′), (5.27)

where q̄ denotes the in-plane momentum transfer. The Coulomb potential then reads

v(q̄′′; z1z2) = v2D(q̄′′) e−|q̄′′||z1−z2|, v2D(q̄′′) = e2

2ε0
1
q̄′′

. (5.28)

Physically, it corresponds to the potential of a charged plane which is located at position
z2 and whose charge oscillates with a wavelength 2π/q̄′′ inside the plane. For finite
wavelength, the potential decays exponentially with increasing distance |z1 − z2|.

Local-Response Approximation

Using the locality of both χ and π (see section 5.4.1), we can now restrict the z-
integration in eq. (5.27) to a very small range around zero, namely |z1|, |z2| . λ. The
exponential in the Coulomb interaction is then nearly a constant for small momentum q̄′′

e−|q̄
′′||z1−z2| ≈ 1, for |q̄′′| � 2π/λ, |z1|, |z2| . λ. (5.29)
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For a decay length of λ = 1 Å, we obtain an upper limit q̄′′ � 5 Å−1 which is fairly large.
Let us assume for the following that we are interested in sufficiently small momentum
transfers q̄ and that in-plane local-field effects are negligible. In this case, both χ and π

become diagonal χ(q̄q̄′) ≈ χ(q̄)δ(q̄ − q̄′) and we finally find for eq. (5.27)

χ(q̄; zz′) ≈ π(q̄; zz′) +
∫
dz1dz2 π(q̄; zz1) v2D(q̄) χ(q̄; z2z′). (5.30)

The Coulomb interaction becomes independent of z and the Dyson equation decouples.
We will call this approximation local-response approximation (LRA) in the following.

Two-Dimensional Response Functions

It is useful to introduce the slab polarisation function

π̄(q̄) ≡
∫
dzdz′ π(q̄; zz′) = Lz π(q̄q̄, qz=0=q′z), (5.31)

and analogously the slab susceptibility χ̄(q̄). It is simply the in-plane component of the
three-dimensional Fourier transform (A.42), scaled by the size Lz of the normalisation
box along the z-direction.11 The Dyson eq. (5.30) then reads (we integrate over z and z′)

χ̄(q̄) LRA≈ π̄(q̄) + π̄(q̄) v2D(q̄) χ̄(q̄), χ̄(q̄) LRA≈ π̄(q̄)
1− v2D(q̄)π̄(q̄)

, (5.32)

which formally resembles the Dyson eq. (1.10) of a three-dimensional system except for
the modified Coulomb potential and the important difference that the Dyson equation is
now scalar. For convenience, we define the (inverse) two-dimensional dielectric function

ε̄(q̄) ≡ 1− v2D(q̄)π̄(q̄), ε̄−1(q̄) ≡ 1 + v2D(q̄)χ̄(q̄), (5.33)

which are inverse to each other by virtue of eq. (5.32).
Physically, the slab response functions π̄ and χ̄ relate the induced surface charge σi

with the total or external potential ϕe, respectively. To see this connection, we start
from the general definition of the susceptibility ρi(r) =

∫
dr′ χ(r, r′)ϕe(r′). In the limit

of an ideal localisation perpendicular to the sheet, the induced charge can be written as
ρi(r) = σi(r̄)δ(z) and the susceptibility becomes χ(r, r′) = χ̄(r̄, r̄′)δ(z)δ(z′). We obtain

σi(r̄) ≡
∫
dz ρi(r) =

∫
dr̄′ χ̄(r̄, r̄′)ϕe(r̄, z = 0) ⇒ χ̄ = δσi

δϕe

∣∣∣
z=0

(5.34)

Note that the slab response function χ̄ defined here differs from the response function
that connects the (longitudinal) field Ee = −∇ϕe with the induced surface charge. The
limit of ideal localisation can be extended, whenever the delocalisation length λ is small
and the potential ϕe is approximately constant in the range ±λ. The two-dimensional

11The spatial average of a function is given by the zero-frequency component of its Fourier transform.
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dielectric functions ε̄ and ε̄−1 then connect the external and the total potential at the
surface, i. e., ϕe(z=0) and ϕt(z=0). Indeed, the definition (5.33) implies

ε̄(q̄) =
∫
dz′ ε(q̄; z=0, z′) =

∑
qz
ε(q̄; qz, q′z=0) (5.35)

and not simply ε(q̄; qz= 0= q′z) as one might guess from eq. (5.31). The same holds for
the inverse dielectric function ε̄−1.

From Bulk to Isolated Sheets

Within the local-response approximation, we can now understand the importance of
crystal local-field effects for graphene. To this end, we compare two limits in the supercell
calculations of section 5.3.2: First, we consider the bulk system of interacting sheets at
distance d0 (corresponding to graphite in AA stacking). As crystal local-field effects are
very small in this case, the loss function for the bulk material is given by [see eq. (1.16)]

− Im ε−1
b (qq) NLF≈ − Im {1/εb} = −v3D Im {πb(qq)/εb(qq)} . (5.36)

Second, we consider a stack of graphene sheets with an interlayer distance d that is
sufficiently large to prohibit any interaction between neighbouring sheets. It corre-
sponds to an isolated slab with three-dimensional periodic boundary conditions (three-
dimensional quantity). Its energy-loss function − Im ε−1

s can be expressed in terms of the
two-dimensional response function ε̄−1 of a single sheet using eq. (5.31) for χ (v3D = e2

ε0q̄2
)

− Im ε−1
s (q̄q̄; qz=0=q′z) = −v3D

d
Im χ̄(q̄) = − 2

|q̄|d
Im ε̄−1(q̄). (5.37)

Within the local-response approximation, we have with eq. (5.32)

− Im ε−1
s (q̄q̄) LRA≈ −v3D

d
Im {π̄(q̄)/ε̄(q̄)} , π̄(q̄) = dπs(q̄q̄), (5.38)

where πs is the polarisability of the graphene stack. As we have discussed in section 5.4.1,
the polarisability is a transferable quantity. Besides a scaling with the interlayer distance,
it is essentially the same for the bulk material and the isolated sheet (πbd0 ≈ πsd) when
hybridisation effects between neighbouring layers can be neglected (see fig. 5.8c).

In contrast, the electron energy-loss function of the bulk system and isolated sheets is
very different (see fig. 5.8a). Comparing eq. (5.36) and (5.38), this can be understood
from the different screening functions εb and ε̄ in the bulk and the sheet. Actually, it
can be traced back to the different Coulomb interaction v2D or v3D in the two- or three-
dimensional system, respectively. Switching back to reciprocal space, this very intuitive
explanation can be finally related to our previous finding that crystal local-field effects
are very important in graphene (see section 5.3.2). Indeed, a strong localisation of π(z, z′)
in real space corresponds to a nearly constant function πGzG′z in Fourier space. Thus, in
the Dyson eq. (1.13), contributions for |Gz| > 0 will become most important, i. e., the
strong difference of the loss spectra of graphite and graphene must be associated to the
perpendicular local-field modes in graphene which arise from the strong inhomogeneity
of the system in z-direction.
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Optical Limit

Equation (5.38) is particularly interesting for the discussion of the optical limit q̄ → 0
where LFE become negligible (see section 5.3.2). In RPA we have πs = χ0

s ∝ q̄2 [see
eq. (3.14)], while v2D∝ q̄−1. The screening ε̄→1 then vanishes for small q̄ as we can see
from eq. (5.33). Thus, the loss-function of the sheet becomes identical to − Im v3D

d χ
0
s (q̄q̄)

and differs from the NLF absorption spectrum Im v3Dχ
0
b(q̄q̄) of the bulk system only by

a scaling factor d0. This is finally the explanation for the convergence behaviour shown
in the lower panel of fig. 5.8.

Note that we can arrive at the same conclusion if we start from the effective Dyson
eq. (5.32) which can be expanded as χ̄ = π̄ + π̄v2Dπ̄ + · · · = π̄ + O(q̄3). Thus, we find
again χ̄ ≈ π̄ for q̄ → 0, i. e., the influence of the Coulomb potential vanishes for isolated
systems in the optical limit.

Conclusions

The equations derived so far allow us to answer several of the questions stated above:

• We have seen that the local-field components perpendicular to the sheet are the
most important ones for the difference between graphite and graphene spectra.
They arise from the confinement of the electrons on the sheet and account for the
different screening in three- and two-dimensional systems.

• The behaviour at the optical limit q → 0 has been explained. The Coulomb
potential has no effect, i. e., the loss function of graphene becomes equivalent to
the absorption spectrum in the corresponding bulk material (if in-plane local-field
effects and the hybridisation of the wavefunctions of neighbouring layers can be
neglected in the bulk material).

• A connection between the three- and two-dimensional response functions is given.

• Within the local-response approximation (LRA), i. e., assuming a perfect localisa-
tion perpendicular to the sheet, the two-dimensional response functions obey an
effective scalar Dyson eq. (5.32) which includes the modified Coulomb potential v2D.

• This Dyson equation can be solved analytically obtaining a simple expression for
the influence of the Coulomb interaction in finite systems within the limits of the
LRA. This has been already used in our tight-binding calculations [see eq. (5.20)].

5.4.3 LRA for Ab-initio Calculations
Within the local-response approximation, the calculation of the loss function of graphene
becomes very simple. Instead of solving the Dyson eq. (1.13) for large matrices πGG′ in
order to include LFE that arise from the localisation of the electrons on the sheet, one
just has to solve an effective Dyson eq. (5.32) for scalar quantities. The two-dimensional
geometry of the system is taken into account by the modified Coulomb potential v2D.
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This effective Dyson equation has been already used in our tight-binding calculations
in section 5.2.2, but the evaluation of the polarisability π involves a number of restric-
tive approximations and we had to use several fitting parameters. To overcome these
problems, we will now use ab-initio calculations to determine the polarisability π, and
compute the loss function within the local-response approximation:

Procedure II: LRA method

1. Starting point is an RPA ab-initio calculation of the polarisability πd = χ0
d for

a graphene stack with doubled interlayer distance d = 2d0 in order to avoid
interlayer hybridisation. In contrast to the interpolation method I, we just
need to calculate the macroscopic component χ0

d(q̄, q̄, qz = 0 = q′z) which is
found in the DP output file outnlf.mdf.

2. The slab polarisability π̄(q̄) = d ·χ0
d(q̄, q̄, qz=0=q′z) is a transferable quantity.

It is the same for any distance D > d, and the isolated system (see fig. 5.8c).

3. Using the scalar Dyson eq. (5.32), we calculate the slab susceptibility χ̄ and
the corresponding inverse dielectric function ε̄−1. Its imaginary part is pro-
portional to the energy-loss function of the slab [see eq. (5.37)].

In figure 5.12a, we compare the results of the LRA method (dashed lines) to our full
ab-initio calculations of graphene (solid lines). For small momentum transfer q, the
agreement is perfect. Note, that in this region rather large interlayer distances were
necessary to converge the spectra of the isolated sheet (see table 5.2). Using the LRA
method, we avoid this long calculation by taking into account the modified Coulomb
potential v2D in our equations. As all quantities are scalar functions, the computation
time reduces to the calculation of the polarisability in the first step which takes only a
few minutes. For larger momentum transfers q > 0.2 Å−1 , the LRA method fails.

Comparison with Tight-Binding

In principle, the LRA method should be better than the tight-binding results for the
following reasons: First, both approaches rely on the local-response and random phase
approximation. But the LRA method improves the calculation of the polarisability π̄.
Second, the σ electrons are correctly taken into account instead of using a background
dielectric constant εσ. Third, the matrix elements are calculated from first-principles
instead of using the nearest-neighbour approximation and parametrised model orbitals.

The failure in the polarisability due to the nearest-neighbour approximation is shown
in fig. 5.12b. We compare a tight-binding calculation with an ab-initio calculation that
includes only the π → π∗ transitions. Although the overall agreement—even in the
intensities—is very astonishing, the peak at 5 eV is not correctly described in the nearest-
neighbour tight-binding approximation.

Comparing with the full ab-initio calculations for the loss function of graphene (see
fig. 5.12a), the overall shape and the intensity of the π plasmon is clearly much better
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Fig. 5.12: (a) The loss function of isolated graphene for different in-plane momentum trans-
fers. We compare the results of a tight-binding calculation (dotted), ab-initio calculations using
the local-response approximation (dashed), and full ab-initio calculations (solid). (b) The two-
dimensional dielectric function ε̄ of graphene calculated from a tight-binding calculation (dotted)
and an ab-initio calculation including only π → π∗ transitions is compared. The spectra are
scaled by q1/2 and shifted along the y-axis for better visibility.

for the LRA method than in the TB calculation (dotted lines). In particular, the tight-
binding fails in the optical limit q → 0. Indeed, π̄TB 6= χ̄TB in contrast to our general
findings above. The reason is the use of the empirical screening constant εσ which
does not vanish in the limit q → 0. This problem can be circumvented by including
also the σ electrons in the TB calculation. It is rather surprising that the π-plasmon
position seems to be correct in TB even at momentum transfers up to 1 Å−1 . We will
see in the next section that the empirical screening constant εσ does not only take into
account the screening from the σ electrons, but implicitly also corrects the local-response
approximation at large q.

5.5 Beyond the Local-Response Approximation
The LRA fails for large momentum transfer q, i. e., when the exponential in eq. (5.29) is
no longer constant. If we include the z-dependence of the Coulomb potential, we can no
longer introduce the integrated quantities π̄ and χ̄ and we have to solve the full Dyson
eq. (5.27) instead. In the first part of this section, we will try to avoid this complication
by introducing an empirical correction to the LRA. It can be justified by assuming an
exponential decay of the atomic wave functions with increasing distance from the sheet.
In a second part, we will numerically solve the full Dyson equation and discuss the
relation with the interpolation method described earlier.
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Fig. 5.13: (a) Comparison of graphite and graphene spectra for q=0.269 Å with the generalised
spectra Sβ for different parameters β (see text). (b) Best fit of the generalised spectrum Sβ (dash-
dotted line) to the ab-initio graphene loss function (solid lines) for large momentum transfers.
The LRA result, i. e., S1 is shown for comparison (dashed lines).

5.5.1 Scaling of the Coulomb Potential
Discussing the local-response approximation, we have seen that the loss function of the
graphene sheet is closely related to the spectrum of graphite. Comparing eq. (5.38) and
(5.36), the difference between the two is essentially due to the different screening in the
sheet ε̄(q̄) = 1−v2Dπ̄(q̄) and the bulk system ε(q̄) = 1−v3Dπb(q̄q̄). The loss function of
both systems can be then described by the following unified expression (π̄ = πsd = πbd0)

Sβ · d0 ≡ −v3D Im {π̄(q̄)/ε̄β(q̄)} , ε̄β(q̄) = 1− β v2Dπ̄(q̄), (5.39)

if we choose the parameter β appropriately. In order to illustrate this point, we consider
the loss function of graphene and graphite for q̄ = 0.27 Å−1 (see fig. 5.13a):

• For β = 0, the screening vanishes and Sβ = Im εb corresponds to the dielectric
function of graphite neglecting LFE (dotted line). The full LFE spectra of graphite
is very similar (blue dashed line) and starts to differ only for very large q [112].

• For β = 2/(q̄d0) ≈ 2.2, the screening function ε̄β is identical to the bulk screening εb
and the generalised spectrum Sβ = − Im 1/εb corresponds to the loss function of
graphite neglecting LFE (cross symbols). Again, it is very close to the loss function
of graphite including LFE (blue solid line).

• For β = 1, we reproduce the LRA result. By construction, Sβ = −(d/d0) Im ε−1
s

becomes the (scaled) loss function of the graphene sheet calculated within the
local-response approximation (dash-dotted line). Compared to the ab-initio result
for graphene (red solid line), it slightly deviates due to the problems discussed
above.
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By tuning the parameter β, the generalised spectrum Sβ continuously changes between
the dielectric function of graphite and its loss function. The graphene loss function can
be found somewhere in between these two limits. Most interestingly, it can be exactly
reproduced by Sβ if we choose β = 0.76 (see dots in fig. 5.13a). Of course, this empirical
parameter β depends on the size of the momentum transfer: (i) In the optical limit,
the graphene loss function is perfectly described within the LRA as we have seen before
(β = 1). (ii) For large momentum transfers q̄ � 1/d0 ≈ 0.3 Å−1 , the loss function of
graphene and graphite become identical [β = 2/(q̄d0)] because the Coulomb potential is
then sufficiently localised and neighbouring sheets do no longer interact.

LRA-β Method

We fit the generalised spectrum Sβ to our ab-initio

0 0.5 1 1.5
momentum transfer q

1

2

3

1/
β 

 [Å
]

Fig. 5.14: Parameters from fitting
Sβ to the loss function of graphene.

results for graphene shown in fig. 5.12a and determine
the empirical parameter β for each q̄. We find that
Sβ indeed reproduces exactly the ab-initio results for
a suitable choice of β even for rather large q̄ (see
fig. 5.13b, dash-dotted lines). Only for q̄ > 1 Å−1

the shape differs due to the increasing importance of
in-plane crystal LFE which are neglected in the LRA.

The dependence of the inverse fit parameter 1/β
on the momentum transfer q̄ is shown in figure 5.14
(dots). It starts at β = 1 (LRA spectrum) and increases linearly compensating the
failure of the LRA at large momentum q̄. The range of validity of the LRA can be
therefore easily extended by introducing a screened Coulomb potential v2D → βv2D in
eq. (5.33) with a q̄-dependent parameter β (LRA-β method).

Model for the z-Dependence

What is the origin of this additional screening of the Coulomb potential? And can we find
a simple model for the linear dependence of β on the momentum transfer q̄? To answer
these questions, we have to consider the z-dependence of the Coulomb potential and
the polarisability in eq. (5.27). For simplicity, we neglect in-plane local-field effects and
consider an effective homogeneous electron gas of quasi two-dimensional electrons. The
single-particle wave functions then become plane waves ψnk̄(r) =

√
C ψnk̄(z) eik̄r̄ that

decay along the z-direction. Assuming an exponential decay e−|z|/λ with an averaged
decay length λ independent on k̄ or n, the independent-particle polarisability reads12

χ0(q̄; zz′) = C2 e−2(|z|+|z′|)/λ χ0(q̄), (5.40)

where C is the normalisation constant of the wave function ψnk̄(r). Rewriting eq. (5.27)
as a series expansion χ = 1̂ +χ0vχ0 + . . . , we can perform the z integration analytically

12A more realistic, but also more complicated model has been introduced by Dahl and Sham [167].
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and introduce an effective Dyson equation as in the case of the LRA. We find∫
dz1dz2 χ

0(q̄; zz1)v(q̄; z1z2)χ0(q̄; z2z′) = χ0(q̄) β̃(q̄) v2D(q̄)χ0(q̄),

β̃(q̄) = C2
∫
dz1dz2 e

−|z1−z2||q̄|e−2(|z1|+|z2|)/λ = 4 + q̄λ

(2 + q̄λ)2
,

(5.41)

where β̃ is the additional screening of the Coulomb potential v2D due to the exponential
z-dependence of the polarisability. Expanding 1/β̃ ≈ 1 + 3

4 q̄λ + 1
16(q̄λ)2 + . . . we find

a nearly linear behaviour similar to the case of graphene. Indeed, for an average decay
length of λπ = 1.5 Å, eq. (5.39) reproduces the empirical dependence of the fitting
parameter β in the previous section (solid line in fig. 5.14).

Thus, the set of fitting parameters β(q̄) is reduced to a single parameter λ which
can be interpreted as the average decay length of the contributing states along the z-
direction. The screening of the effective Coulomb potential v2D in the LRA-β method is
due to the exponential decay of the full Coulomb interaction given in eq. (5.28). In the
tight-binding approach it is implicitly included in the screening parameter εσ when we
fit the plasmon positions at large momentum transfers to the experimental values.

5.5.2 Solution of the Full Dyson Equation
We finally consider the numerical solution of the full z-dependent Dyson eq. (5.27) in
real space. This approach is actually closely related to the use of a Coulomb cutoff.13

Procedure III: Coulomb-cutoff method

1. Similar to the interpolation method I, we start from an ab-initio calculation
of the microscopic bulk polarisability πd = χ0

d of a graphene stack with small
interlayer distance d = 2d0 for a given in-plane momentum transfer q̄ (RPA)

2. Using a 2D Fourier transformation, we calculate πd(q̄ + Ḡ, q̄ + Ḡ
′; zz′) (see

fig. 5.15a). The real-space grid extends from z = −d0 to z = d0 and is sampled
by Nz points which is exactly the number of G vectors along the z-direction.

3. The Dyson equation is solved by inverting the dielectric matrix (see fig. 5.15b)

ε(q̄+Ḡ, q̄+Ḡ′; zz′) = δ
Ḡ,Ḡ

′−
∫
dz1 v(q̄+Ḡ; zz1)πd(q̄+Ḡ, q̄+Ḡ′; z1z′). (5.42)

By the inversion, ε(zz′) is intrinsically set to zero for all z-points outside the
real-space grid, i. e., the Coulomb potential is cut-off at the borders of the grid.

4. We calculate the susceptibility χd(q̄ + Ḡ, q̄ + Ḡ′, zz′) which is very localised
(vanishes at the border of the grid) and can be transformed back to reciprocal
space. The loss function of an isolated graphene sheet in a 3D normalisation
box of height d is then given by − Im ε−1(qq) = −v(q) Imχd(qq).

13The use of a Coulomb cutoff for finite systems has been studied before, see e. g. [168–170].
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(a) (b)

Fig. 5.15: (a) Polarisability πd(q̄q̄′, zz′) for a graphene sheet in real-space. The response is
clearly localised on the sheet at z = 0 within less than 1 Å. (b) The dielectric function ε(q̄q̄′, zz′)
is delocalised in z due to the folding with the Coulomb potential. In both cases, the imaginary
part is shown for RPA calculations with wave vector q̄ = q̄′ = 0.54 Å−1 and energy ~ω = 4 eV.

The results are found to be identical to the full ab-initio calculations of graphene as we
should certainly expect (see appendix, fig. C.4) while the computational cost is as low as
for the interpolation method I. Beyond this simple test for the validity of our equations,
the Coulomb-cutoff method is interesting for three reasons which will be discussed in
the following: First, looking at the polarisability πd(q̄ + Ḡ, q̄ + Ḡ′; zz′), we can directly
verify our assumptions in section 5.4.2. Second, the Coulomb-cutoff method is closely
related to the interpolation method I and we can finally understand why the latter has
been so successful. Third, a very similar approach will be used for the calculation of loss
spectra in isolated carbon nanotubes in the following chapter.

Localisation of the Polarisability

In fig. 5.15a, the polarisability πd(zz′) for fixed in-plane wave vector q̄ = 0.54 Å−1 and
energy ~ω = 4 eV is shown. The colour indicates the amplitude of the charge oscillation
at distance z′ from the graphene sheet that is induced by a plane-wave perturbation
eiq̄r̄ δ(r·ez − z) at distance z. The response is clearly localised within ±1 Å around the
graphene sheet in agreement with our assumptions in section 5.4.2.

What is the origin of the four maxima? To answer this question, we first consider the
two spots on the main diagonal z = z′ (1). In this case, the response and the perturbation
are located at the same point we probe the local response. It is zero at z = 0 = z′ and
has a maximum at z = ±0.5 Å−1 . This is clearly a signature of the π orbitals which are
excited at ~ω = 4 eV (compare with fig. 5.2d). The two spots on the second diagonal
z = −z′ (2) are related to the nonlocal response of the system. Perturbing the lower
lobe of a π orbital will also induce a response in the upper lobe, and vice versa.

The discussion can be repeated for the susceptibility χd which indeed looks very similar
(not shown). Note that Imχd(zz′) is directly related to the mixed dynamic form factor
S(zz′) in real space by means of eq. (2.50). The latter has been extensively discussed
by Schattschneider et al. [55].
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Comparison with the Interpolation Method

The dielectric function ε(zz′) is much less localised along the z coordinate (see fig. 5.15b).
Indeed, the Coulomb potential ‘smears out’ most of the microscopic details. Note that
the images only show one unit cell which is periodically repeated along z and z′. For
small q, the Coulomb potential (5.28) shows a long-range behaviour. The sheet at z = 0
then starts to interact with the replicas at z = ±d and is no longer isolated. In the
method described above, the replicas are not taken into account in the inversion on the
real-space grid. This corresponds to an artificial cutoff in the Coulomb potential.

Alternatively, we could simply enlarge the unit cell for the polarisability in order to
avoid spurious interlayer interactions. If the polarisability vanishes at the border, we
just have to add zeros at larger z and z′ coordinates. This is exactly the interpolation
method (see p. 92) when we use the Fourier interpolation (see appendix C.4). Implicitly,
the interpolation method increases the interlayer distance under the assumption that the
polarisability π(zz′) does not change and is zero at the border of the unit cell.

5.6 Building-Block Approach
In the following, we will extend our discussion to multilayer systems, i. e., stackings of
several identical graphene layers with an interlayer distance of graphite d0. One possi-
bility to calculate the loss spectrum of such a system would be to increase the number
of graphene layers in the supercell and eventually apply the interpolation method I in
order to avoid interactions between the artificial replicas.

Alternatively, we can construct the response of the multilayer system from the response
of its building block—the single layer graphene. Due to the strong localisation of the
sheet polarisability πs, the multilayer polarisability is given by [e.g. 147]

πstack(z, z′) ≈
∑
l

πs(z − ld0, z
′ − ld0), (5.43)

where l runs over the number of layers and d0 denotes the interlayer distance. Any
change of the wave functions due to the presence of the other sheets is neglected in this
model. The different layers will only interact via the Coulomb potential (see fig. 5.16a).

5.6.1 Bilayer Graphene
First, we consider full ab-initio calculations for the bilayer graphene system inside a large
unit cell (d = 10d0). Fig. 5.16b clearly shows a difference between the loss function of
the single- (dashed) and the double-layer system (solid lines) at moderate momentum
transfers (see [130] for details). On the other hand, we have used the building-block
approach (BBA) from eq. (5.43) to calculate the loss function for bilayer graphene. The
translation of πs by the vector τ = d0ez in real space becomes a phase shift in reciprocal
space and we have [see eq. (A.39)]

πstack(qz, q′z) = πs(qz, q′z)
(
1 + e−i(qz−q

′
z)d0

)
. (5.44)
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Fig. 5.16: (a) Coulomb interaction between sheets. (b) Loss spectrum of single- (dashed line)
and double-layer graphene (solid line) for in-plane momentum transfer q = 0.41 Å−1 . The dots
correspond to the result from the building-block approach (see text).

Starting from the interpolation method for graphene (see page 92, step 1+2), we only
have to take this phase factor into account before we solve the Dyson equation in step 3.
This approach exactly reproduces the ab-initio results for the bilayer graphene system
(see blue dots in fig. 5.16b). Thus, the change of the loss function for multi-layer systems
is only due to the Coulomb interaction, while the difference in the wave functions or
energies is too small to have a major influence [171].

This allows us, in principle, to build arbitrary stacks of shifted and eventually also
rotated layers from a single calculation of the polarisability of graphene. In particular,
the loss function of complex systems like mixed graphene and h-BN stacks for different
stacking sequences can be easily understood in terms of the corresponding phase factors.

5.6.2 Back to Graphite
As an example, we consider graphite in Bernal stacking, i. e., an infinite stack of graphene
layers of A and B type. The polarisability πAB shows an interesting behaviour in recip-
rocal space: The dots in fig. 5.17a show πAB in dependence of Gz and G′z from a full
ab-initio calculation in RPA. The polarisability seems to consist of two distinct parts
which are distributed on a checkerboard pattern in reciprocal space: ‘white fields’ are
zero, while ‘black fields’ are non-zero. One might wonder, if the interpolation method I
would still work for such a system (compare with AA stacked graphite which does not
this behaviour, see fig. 5.10b).

We can explain this behaviour within the building-block approach by describing the
graphite system as a sum of shifted graphene sheets. Indeed, the B layer can be obtained
by translation τ = 2

3a1 + 1
3a2 + c

2ez of the A layer. The infinite stack of A and B layers
is then given by [see eq. (5.43) and (A.39)]

πAB(q, q′) =
∑
l∈Z

πs(q, q′) e−i(qz−q
′
z)ld
(
1 + e−i(q−q

′)τ
)
, (5.45)

105



(a) (b)

Fig. 5.17: The polarisability πAB of graphite AB consists of two parts. The dots in panel (a)
show Im πAB in dependence of Gz and G′z, while the in-plane momenta Ḡ=(1, 0) and Ḡ′=(1̄, 1)
are fixed. The two surfaces correspond to πs(q, q′) and πs(q, q′)e−i(q−q

′)τ , respectively. (b)
Same for Re πAB with Ḡ = (1, 0) and Ḡ′ = (0, 1). From a RPA calculation for q = 0.4 Å−1 ,
ω=8 eV.

where d = 2d0 denotes the size of the unit cell along z. The sum is only non-zero, if
qz− q′z = 4Gz 2π/d is an integer multiple of 2π/d. In contrast to AA stacked graphene,
the sum of the phase factors

F = 1 + e−i(q−q
′)τ = 1 + (−1)4Gz Φ, Φ

ḠḠ
′ = e−2πi

[
2
3 (G1−G′1)+

1
3 (G2−G′2)

]
(5.46)

now depends on 4Gz and the in-plane reciprocal lattice vectors Ḡ = (G1, G2). This is
the reason for the appearance of the two different contributions in πAB. Indeed, we have
Φ
ḠḠ
′ = 1 for the case shown in fig. 5.17a and the factor F becomes 2 or 0 when 4Gz is

even (blue surface) or odd (red plane). In the case shown in fig. 5.17b, Φ
ḠḠ
′ = −1

2 +
√

3
2 i

is complex and we obtain two non-zero contributions to πAB. This clearly explains the
origin of the checkerboard structure of the polarisability of graphite AB.

Note that the difference between the full ab-initio calculations (dots) and the results
from the BBA (surface) is very small in fig. 5.17. This validates the use of the building-
block approach even in bulk systems like graphite. We will make use of this fact in the
next chapter by calculating the response of a carbon nanotube from the polarisability of
its building block—which is also a single graphene layer.

5.7 Further Studies
Additionally to the studies for the in-plane excitations at low energies, we have also
considered the range of π + σ excitations at energies up to 40 eV both for in-plane and
out-of-plane momentum transfers.
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5.7.1 Higher Energies
The extension of our ab-initio calculations to higher energies is, # ground state

d=4d0 , 22 x22x1
npwwfn 817
nbands 80
npwmat 359
broad 0.5

in principle, straightforward. Repeating the convergence tests
described in section 3.3.4, we find that the dimension of the di-
electric matrix εGG′ has to be considerably increased at high en-
ergies (see table). Indeed, in-plane LFE become more important
for the localised σ electrons than for the rather homogeneously
distributed π electrons [112]. As the numerical effort increases
quadratically with npwmat, the calculations for isolated graphene become only feasible by
means of the interpolation method I. Starting from a calculation with a small supercell
of d = 4d0,14 we extrapolate the spectra for distances up to d = 32d0. The convergence
with the interlayer distance d is found to be comparable to our low-energy results given
in section 5.3.2. The loss spectra for isolated graphene at different in-plane momentum
transfers along the ΓM direction are shown in fig. 5.18a (solid lines). We find a strong
π + σ-plasmon peak which disperses to higher energies for increasing q̄.

Comparison with Experiment

The spectra at low momentum transfers are in very good agreement with the EELS
measurements on single-layer graphene shown in fig. 5.3b [141]. The π and π+σ plasmons
are found at 4.2 eV and 14.5 eV, respectively and also the characteristic shape of the
π+σ-plasmon peak is reproduced. Note that a direct comparison is eventually hampered
by (i) the zero-loss peak which masks contributions at low energies below 5 eV and (ii)
the fact that the experimental spectrum is actually a weighted sum of loss spectra for
different in-plane momentum transfers q̄.

Local-Response Approximation

As in the case of low energies, the local-response approximation reproduces exactly our
ab-initio results when the momentum transfer q̄ is sufficiently small (see dashed lines
in fig. 5.18a). At larger momentum transfers q̄ > 0.2 Å−1 , we can partially correct
the failure of the LRA by adding an empirical screening of the Coulomb potential as
described in section 5.5.1. The results of this LRA-β method are shown as dash-dotted
lines. The q̄ dependent screening factor β has been calculated from eq. (5.41) using
the empirical parameter λσ = 0.8 Å for the average decay length of the σ orbitals
perpendicular to the sheet (compare with λπ = 1.5 Å used at low energies for the π
orbitals). Although the position of the plasmon peak can be corrected quite satisfactorily,
its shape is still different. This should be attributed to the in-plane LFE which become
more important for the localised σ states and which are completely neglected in the
LRA-β method.

14We increased the starting distance to be sure that also for the high-energy states the orbitals from
different layers are not hybridised.
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Fig. 5.18: Calculated excitation spectrum of graphene for energies including the π + σ plas-
mon. (a) Loss function of graphene for different in-plane momentum transfers q̄. We compare
full ab-initio calculations (solid lines) with the LRA (dashed) and LRA-β results (dash-dotted,
λ = 0.8 Å). (b) Ab-initio calculations of the polarisability (top) and susceptibility (bottom)
in graphene stacks with different interlayer distances d for perpendicular momentum transfer
|q| = 0.47 Å−1. Analogous to fig. 5.8a and c.

5.7.2 Perpendicular Momentum Transfer
Finally, we have also considered momentum transfers which are perpendicular to the
sheet. Several problems have been encountered in this case.

Convergence with Interlayer Distance

First, we have tried to converge the independent-particle polarisability χ0 and the loss
function − Im 1/εM with respect to the interlayer distance d (see fig. 5.18b top and
bottom, respectively). Both spectra are completely flat up to 10 eV as the π − π∗

transitions are dipole-forbidden. The small peak at very low energies is only due to
the overlap of the wave functions of different layers in AA stacked graphite [112]. At
energies beyond 10 eV, we find a strong peak in χ0 at about 15 eV. Its intensity is
strongly reduced, when LFE are included (see scale in top and bottom panel). This is
the well known depolarisation effect which is of particular importance in finite systems.

However, neither the loss spectrum − Im 1/εM nor the polarisability χ0 converge with
the interlayer distance d. Especially for χ0 this behaviour is in stark contrast to our
in-plane results (see fig. 5.8c). Additionally, one has to include k-points in z-direction
to converge the spectra and the interpolation method I seems to fail.
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Fig. 5.19: (a) The Kohn-Sham bandstructure at kz = 0, (b) the corresponding DOS and (c)
JDOS for perpendicular polarisation qz are compared for graphene stacks with different interlayer
distances d. The contribution of free-electron states clearly vanishes for small supercell size d.

Free-Electron States

One possible explanation for these problems is the bad description of free-electron states
within the supercell approach. Indeed, in a (quasi) two-dimensional system only the
in-plane momentum k̄ is a good quantum number. The eigenspectrum of the 2D Hamil-
tonian contains both (i) electron states which are localised at the sheet and therefore
have a low energy and (ii) free-electron states which have a non-zero average momentum
component 〈kz〉 perpendicular to the sheet. The latter can be associated to electrons that
move in perpendicular direction and are weakly scattered when they cross the graphene
layer. These scattering states form a continuum and have a parabolic dispersion with
energies well beyond the Fermi level.

If we consider in-plane momentum transfers, transitions between a bound electron
with 〈kz〉 = 0 and these scattering states are generally forbidden. For perpendicular
momentum transfers, instead, this is no longer the case. Transitions to free-electron
states will contribute to the polarisability of the system. Although the corresponding
excitation energies are rather high, LFE mix transitions of very different energies and the
free-electron states can easily contribute to the screening of the system (see section 5.3.3).

In the supercell approach, however, the system is artificially repeated along the perpen-
dicular direction and the momentum component kz becomes a good quantum number.
For a given momentum transfer qz, the bound state at wave vector kz can be only ex-
cited to a free-electron state with k′z = kz + qz +Gz, where Gz is an integer multiple of
2π/d. Thus, the continuum of free-electron states is replaced by a set of discrete bands
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with parabolic dispersion and the number of possible transitions decreases with smaller
interlayer distance d.

This general argument can be easily verified by considering the Kohn-Sham band-
structure of graphene stacks for decreasing interlayer distance d (see fig. 5.19a). The
valence states of the system, which are located at the layer, hardly depend on the in-
terlayer distance d. Only in graphite (d = d0), the orbitals of neighbouring graphene
layers start to overlap and we observe a small band splitting (gray lines). In contrast,
the number of free-electron states above 5 eV clearly decreases with decreasing supercell
size d (only states with kz = Gz are shown) [112]. The same behaviour can be observed
in the density-of-states and joint density-of-states (see fig. 5.19b and c).

As a consequence, the contribution of the free-electron states to the polarisability
slowly converges with the interlayer distance d. One might try to add these transitions to
the scattering states analytically, e. g., using a nearly-free electron model. In particular
the matrix elements have to be evaluated properly. Nevertheless, we find that only
in-plane excitations contribute to the dielectric response of graphene at low energies
E < 10 eV (see fig. 5.18b)
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Conclusions
In this chapter, I studied the dielectric response of a two-dimensional system. In par-
ticular, I performed ab-initio and tight-binding calculations for the loss function of an
isolated graphene sheet within the random phase approximation. In these calculations,
a plane-wave basis set is used and large supercells are required in order to avoid spurious
Coulomb interactions between the artificial replicas, i. e., the calculations become nu-
merically very demanding. Based on the observation that the induced charge is strongly
localised in direction perpendicular to the sheet, I developed and implemented several
methods to overcome this problem:

• First, I have considered the limit of a perfectly localised response. Starting from
a microscopic formalism, one can introduce scalar, two-dimensional response func-
tions and derive an effective Dyson equation (5.32) which is known from local
dielectric theory. In particular, on obtains an analytic relation between the in-
plane dielectric function of graphite and the two-dimensional response function of
graphene [see eq. (5.38)]. For momentum transfers up to 0.1 Å−1 , this analytic
expression reproduces exactly our full ab-initio results for the dielectric response
of graphene.

• Second, I have included nonlocal effects by introducing an empirical parameter λ
that is related to the average decay length of the orbitals perpendicular to the sheet.
Fitting this parameter, the full ab-initio results for graphene can be reproduced
for momentum transfers up to 1 Å−1 .

• Third, I have substantially reduced the computational effort that is needed to solve
the microscopic Dyson equation in our ab-initio calculations (speed-up of ≈ 100).
To this end, I developed and implemented an interpolation method in reciprocal
space (p. 92) and alternatively a cutoff method for the Coulomb potential in real
space (p. 102). With this method, it is possible to compute the nonlocal, micro-
scopic dielectric response of a two-dimensional system starting from a calculation
of the independent-particle polarisability using a relatively small supercell.

These methods have been applied to study collective excitations in single and multi-layer
graphene. The following main results have been obtained in this chapter:

• The in-plane dispersion of the π plasmon in isolated graphene has been studied.
Crystal local-field effects are found to strongly mix electronic transitions over a
large range of energies which results in a nearly linear plasmon dispersion.

• These local-field effects are mainly due to the inhomogeneity of the system perpen-
dicular to the sheet. In-plane local-field effects become only noticeable for large
momentum transfers q & 1 Å−1 .

• In the limit of vanishing momentum transfers q → 0, the loss function of graphene
is found to be nearly identical to the absorption spectrum of graphite. This can be
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understood by the following two facts: first, hybridisation effects between wave
functions from different sheets and crystal local-field effects are very small in
graphite. And second, the influence of the long-range component of the Coulomb
interaction vanishes in two-dimensional systems for q → 0.

• The accuracy of the nearest-neighbour tight-binding approach and the local-
response approximation have been discussed by comparison with our full ab-initio
results for graphene.

• Finally, a building-block approach for the microscopic dielectric response of as-
sembled systems (like multi-layer graphene) has been presented. We will make
use of this concept in the next chapter, where the response of a single-wall carbon
nanotube will be described starting form the response of its building block, namely
graphene.

112



6 Polarisability of Carbon Nanotubes
Single-wall carbon nanotubes are prototypes of (quasi) one-dimensional systems. They
correspond to atomically thin hollow cylinders of rolled graphene. Within the zone-
folding model, one can directly derive the ground-state properties of a tube from the
graphene band structure. In this chapter, we extend this idea and apply the zone-folding
model to the microscopic dielectric function ε(q, q′, ω) which describes the excitation
properties of the tube. This allows us to describe collective excitations in single-wall
carbon nanotubes starting from the polarisability of graphene. We will use this method
to analyse the anisotropic behaviour of the plasmon dispersion in SWCNTs and to explain
corresponding AR-EELS experiments.

To this end, we proceed in close analogy to the previous chapter: First, we review
the basic theory of SWCNTs (see also [4, 14, 146]). The geometry and the ground-state
properties are discussed within the zone-folding model. Second, we establish a connection
between the microscopic polarisability π(q, q′, ω) of graphene and the isolated nanotube.
Within the local-response approximation, we can introduce cylinder response functions
and derive an effective Dyson equation as in the case of two-dimensional systems. Third,
we relate the cylinder response functions with the energy-loss probability measured in
AR-EELS experiments. The anisotropic plasmon dispersion in isolated tubes is studied
and explained. Finally, the full Dyson equation will be solved by extending the Coulomb-
cutoff method III (see p. 102) for cylindrical geometries.

6.1 Single-Wall Carbon Nanotubes
A single-wall carbon nanotube (SWCNT) is basically a sheet of graphene that is rolled
up into a hollow cylinder (see fig. 6.1). Each tube can be identified by the chiral vector
C = na1 + ma2 which corresponds to a graphene lattice vector and indicates which
atoms are identified by rolling up the sheet. Its modulus and direction correspond to
the circumference of the tube and the curling direction, respectively. The pair of integer
numbers n ≥ m ≥ 0 uniquely characterises the nanotube geometry. Tubes of the type
(n, 0) and (n, n) are called zig-zag and armchair tubes according to the characteristic
atom pattern along their circumference. Any other (n,m) tube is called chiral SWCNT.

The chiral vector C can be identified with a pure rotation of the tube by 2π. The
translational vector T , instead, corresponds to the primitive translation along the tube
axis. It is defined as the shortest lattice vector of the unrolled graphene sheet that is
perpendicular to C (see fig. 6.1a). On has [4]:

T = 2m+ n

dR
a1 −

m+ 2n
dR

a2, dR = gcd (2m+n,m+2n) . (6.1)
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Fig. 6.1: Geometry of the chiral (4,1) nanotube. (a) Unit cell of the corresponding graphene-
ribbon which is (b) rolled up into the nanotube. (c) Alternative choices for the unit cell of the
tube: (la) linear-angular, (lh) linear-helical, and (hh) helical-helical unit cell.

The rectangle spanned by T and C corresponds to the primitive unit cell of the tube. It
contains N = 2(n2 +m2 + nm)/dR graphene unit cells and thus 2N carbon atoms. The
positions of these atoms can be easily expressed in terms of the symmetry vector S.1 It
is defined as the graphene lattice vector inside the rectangular unit cell with minimal
projection along C, or equivalently, by the unique solution of the equations [4]

S = p̃a1 + q̃a2, S·C = C2/N, 0 ≤ S·T < T 2, (6.2)

for integer numbers p̃ and q̃. Each of the 2N atomic sites inside the rectangle can be
successively reached by the vector iS + τα, going first to the graphene unit cell with
index i = 1, . . . , N and then to one of the two atoms given by the basis vector τA or τB
in eq. (5.1). Whenever iS crosses the border of the rectangular unit cell, it is wrapped
back by a translation with T . Thus, the geometry of the tube is entirely defined.

It should be noted that this ideal geometry is slightly distorted for the smallest tubes
with diameters d < 1 nm: First, the diameter is found to be larger than C/π in order
to compensate the shortening of the nearest-neighbour distance on the curved surface.
Second, the strong curvature leads to a rehybridisation, mixing the formerly orthogonal
π and σ orbitals. For larger tubes, however, these corrections can be safely ignored.

Symmetry and the Reduced Unit Cell

The symmetry group of the SWCNT is extensively discussed by Barros et al. [172] or
in [4, 146]. Most of the symmetry operations of the nanotube can be derived from
the unrolled graphene sheet (see table 6.1): First, each lattice vector R in graphene
corresponds to a screw operation in the tube with a rotation of 2πR·C

C2 and a translation
by R·T /T along the axis. Second, some of these operations are actually pure rotations if

1It corresponds to the vector R in [4].
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CNT Graphene

{CN , t} screw axis operation with a rotation
by 2π

N and a shift t = (mp̃−nq̃)T
N

translation by R

{1̂, T} translation along axis translation by T
Cd rotation around axis by 2π/d translation by C/d
C2 rotation perpendicular to axis by π rotation of the sheet by π
σh horizontal mirror plane (achiral tube) mirror plane perp. to T
σv vertical mirror plane (achiral tube) —

Tab.6.1: Symmetry operations of a SWCNT and their correspondence in the unrolled graphene
sheet. The last two mirror planes are only present in achiral tubes.

the chiral vector C is a multiple of a graphene lattice vector. The tube then has a d-fold
rotation axis Cd, where d = gcd (n,m). Third, the translation vector T corresponds to
a primitive translation of the tube along its axis. And finally, a two-fold rotation axis
perpendicular to the tube can be derived from the six-fold rotation symmetry of the
hexagons. It interchanges the A and B atoms. Achiral tubes (zig-zag and armchair)
have additional horizontal and vertical mirror planes. The latter has no correspondence
in graphene.

Taking into account all screw symmetries, the nanotube structure can be obtained
from a reduced unit cell using two non-collinear screw vectors (arrows in fig. 6.1c). In the
unrolled graphene sheet, they become two lattice vectors spanning a unit cell which can
be smaller than the rectangular cell of the tube. Two choices are of particular interest:

1. helical-helical construction: The unit cell is spanned by the screw vectors that
correspond to the primitive translations a1 and a2 in graphene (denoted by hh,
fig. 6.1c). This choice makes a direct mapping between graphene and tube coordi-
nates possible.

2. linear-helical construction: The unit cell is spanned by the translation vector T and
the screw operation that corresponds to the symmetry vector S (denoted by lh).

We will see in the following that this alternative description of the tube geometry has
many advantages over the 1D description which uses only the primitive translation T
along the tube axis. For example, the reduced unit cell contains only two carbon atoms
and implicitly accounts for all screw symmetries of the system.

Reciprocal Space

The symmetries of a system are closely related to conservation laws. One example is the
Bloch theorem in crystals which uses the fact that any eigenstate of the Hamiltonian
must be also an eigenstate of the translation operator e∇R. The corresponding eigenvalue
eikR is then conserved during time-evolution and the wave vector k can only change by
a reciprocal lattice vector G. The reduced momentum ~kr is a good quantum number.
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In a SWCNT, the translational period T leads to the conservation of the on-axis
momentum k, while the screw symmetries are connected with the helical momentum h̃.
Again, these quantum numbers can be understood by unfolding the tube. The screw
symmetries then become translations in graphene leading to a direct mapping between
the quantum numbers of the tube and the in-plane momentum k in graphene:

k = k·T /T, h̃ = k·S/S, k = kT

2π
bT + h̃S

2π
bS . (6.3)

Here we have introduced the reciprocal lattice vectors bT and bS . They are defined by
T ·bT = S·bS = 2π and S·bT = T ·bS = 0, and span the reciprocal unit cell for the linear-
helical construction of the tube [172]. As the reduced unit cell only contains two atoms,
there exists a unique mapping from the eigenstates of the nanotube to the eigenstates
of the graphene layer. Equivalently, the reciprocal-space structure of the tube can be
superimposed on that of the graphene layer (see fig. 6.2a).

Additionally to the symmetry properties, the periodicity of the wave function along
the circumference has to be taken into account. Any state of the tube must be invariant
under a rotation of 2π, i. e., the corresponding phase shift C·k = 2πj must be an integer
multiple of 2π.2 Thus, the momentum k is restricted to a set of parallel lines with
equal distance 2π/C and the Brillouin zone of the nanotube can be understood as the
sum of N line segments3 of length 2π/T (see fig. 6.2a). The line index j = C·k/(2π)
corresponds to the projection of k along the direction of the pure rotations and can be
interpreted as quasi-angular momentum (see [172] for details).

For the sake of simplicity, one often uses j = 0, . . . , N−1 and the on-axis momentum
k ∈ [0, 2π/T ) to label the eigenstates of the tube instead of working with the helical
coordinates h̃ ∈ [0, 2π/S) and k. However, it is important to note that j is not conserved
when k crosses the Brillouin zone boundary. In this case, one has to use the vectors bT
and bS to translate it back into the first Brillouin zone. This does not affect the helical
quantum number h̃, but changes the projection j (e. g., see dashed lines in fig. 6.2a
for a crossing at the Γ point). This fact complicates the evaluation of selection rules
involving Umklapp processes, i. e., transitions between different Brillouin zones [146]. In
these cases, one has to use helical coordinates or, equivalently, the associated quasi-two-
dimensional wave vector k given in eq. (6.3).

Ground State and Single-Particle Bandstructure

We have seen that the electronic states of the SWCNT and the graphene sheet can be
mapped onto each other. This is a consequence of the equivalent symmetry properties.
No assumption on the actual form of the wave function has been made so far.

It has been found that many properties of the nanotube can be directly derived from
graphene within the following zone-folding model: Neglecting any curvature effects, one
assumes that the eigenstates and -energies do not change when the sheet is rolled up

2We consider only the spin-independent part of the wave function.
3It is convenient to use lines of the same length. The rectangle between two line segments corresponds

to the Brillouin zone of the rectangular unit cell of the tube which contains N graphene unit cells.
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Fig. 6.2: Zone-folding for the chiral (4,1) nanotube. (a) Superposition of the reciprocal space
of graphene (plane) and the nanotube (cutting lines). The Brillouin zone of the tube is spanned
by bT and bS and contains N parallel lines segments (blue) of length 2π/T . (b) Tight-binding
bandstructure of the (4,1) tube within the zone-folding model (γ0 = −2.84 eV, s0 = 0.07).

into a cylinder. Thus, the electronic structure of the SWCNT can be directly obtained
from that of graphene using the mapping (6.3) in reciprocal space.

For example, figure 6.2b shows the bandstructure of a chiral (4, 1) nanotube that has
been derived from the tight-binding bandstructure of graphene (see section 5.2.2). The
cutting lines in the nanotube Brillouin zone give rise to N valence π bands (blue) and
N conduction π∗ bands (red). Due to the perpendicular rotation axis C2 of the tube,
the bandstructure is symmetric En,j,k = En,j,−k. One can restrict to quantum numbers
k along the ΓX line, where X denotes the zone boundary at π/T .

Within the zone-folding model, the (4, 1) tube is metallic due to the degeneracy of the
π bands at the K point. In general, any (n,m) tube whose Brillouin-zone line segments
intersect the K point of graphene, is predicted to be metallic. This is the case, if

2πj != C ·K = (na1 +ma2) ·
(

1
3b1 − 1

3b2
)

= 2π
3 (n−m), (6.4)

for any line index j. The tube is metallic if and only if (n−m)/3 is an integer number.
The predictions of the zone-folding model are found to be reliable for tubes with

diameters larger than 1 nm. Only for the smallest tubes, the strong curvature leads to a
rehybridisation of the π and σ states which modifies the band structure [e. g. 130, 146].
For example, the (5, 0) nanotube is actually metallic contrary to the rule of thumb (6.4).

Excitations in SWCNTs

Experimentally, it is very complicated to investigate the characteristic excitation spec-
trum of a single nanotube. It has been possible to measure the energy-loss spectrum
for an isolated tube using a scanning transmission electron microscope (see fig. 7.4b,
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(a) (b)

Fig. 6.3: Measurements of the anisotropic excitations in isolated SWCNTs (diameter of 2 nm).
(a) Absorption spectra for different polarisation directions. The orientation is varied from ϑ = 45◦
(top) to ϑ = 90◦ (bottom), where the polarisation becomes perpendicular to axis (Reproduced
from [161], c© 2005 by The American Physical Society). (b) AR-EELS measurements for increas-
ing momentum transfer q (Reproduced from [157], c© 2008 by The American Physical Society).

[173, 174]). But absorption experiments can be only performed on bulk samples. Much
effort has been dedicated to the synthesis of samples with nanotubes of similar size and
thickness. Recently, Murakami et al. [175] were able to grow forests of single-wall carbon
nanotubes on top of a substrate (see fig. 6.3). These tubes have an average diameter of
2 nm, are sufficiently isolated from each other, and are aligned within 30◦. This allows
us to study the anisotropic behaviour of excitations in SWCNT.

Figure 6.3a shows absorption measurements on these samples for different directions
of the linear polarisation [161]. Two excitation peaks at 4.5 eV and 5.25 eV can be
identified which become visible for a polarisation parallel and perpendicular to the tube
axis, respectively. They have been compared with the excitations of graphite, namely the
in-plane excitation peak Im ε⊥ ≈ 4.5 eV and the out-of-plane plasmon Im ε−1

|| ≈ 5.2 eV.4

The same samples have been also investigated using AR-EELS measurements [157].
Figure 6.3b shows the energy-loss spectra for increasing momentum transfer q. Again,
two excitations are distinguished: (i) a peak at 5.2 eV which does not disperse and is
therefore attributed to a perpendicular excitation, and (ii) a dispersing peak which is
identified with an on-axis plasmon in the nanotube. In the limit of large tubes, the
latter should be similar to an in-plane excitation in graphene. Comparing the plasmon
dispersion between the nanotube samples and graphene (fig. 6.3b vs. fig. 5.9b), we found
indeed a very good agreement (see [157] for details). The origin of the perpendicular
peak is still under debate. Recent inelastic X-ray scattering experiments on similar
samples did not show this peak at all [176].

4The notation ε|| and ε⊥ used in literature refers to the normal axis of the sheet, not the layer itself.
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Fig. 6.4: (a) Model dielectric function of a multi-wall CNT. The dielectric tensor of graphite
has been projected onto a cylinder. From [37]. (b) Tight-binding calculation for the loss function
− Im ε̄−1

CNT of a (23, 0) SWCNT for p = 0.2 Å−1 and different angular momenta l.

These results lead us to several questions that have motivated our following discussion:
Can we decompose the spectra into a perpendicular and parallel contribution? Should we
also decompose the momentum transfer q into the corresponding components? Why do
we observe excitation energies at the same energies as in graphite? How can we calculate
the loss function of a tube for perpendicular momentum transfer? Can we derive a formal
relation between excitations in carbon nanotubes and excitations in graphene?

6.2 Model Calculations
In this section, we briefly review the effective-medium approach and the tight-binding
method for the calculation of the electronic response of a nanotube.

6.2.1 Dielectric Theory
Dielectric response theory (see section 1.2.1) has been successfully applied for a large
variety of systems, such as slabs, spheres, composite systems, and cylindrical inter-
faces [30, 33, 177]. In order to describe excitations in multi-wall CNTs, the formalism
has been extended to account for the local anisotropy [37]. The basic idea is sketched in
fig. 6.4a: The dielectric response of the system is locally approximated by the dielectric
tensor of graphite. Due to the anisotropy of graphite, the in-plane component ε⊥ and
out-of-plane component ε|| differ. Using cylindrical coordinates, one has for the tube

ε̂CNT(ω) = ε||(ω)ê%% + ε⊥(ω)êϕϕ + ε⊥(ω)êzz, (6.5)

where êαβ corresponds to the local tensor basis. The dielectric function of graphite can
be obtained from absorption experiments or ab-initio calculations of the bulk material.
Taking into account the appropriate boundary conditions at the inner and outer radius
r and R of the cylinder, the Maxwell equations can now be solved analytically [178].
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One obtains an expression for the response function ε−1
CNT(lp;ω) of the nanotube which

depends on the on-axis momentum p and the angular momentum l of the external
perturbation. The energy loss of a fast electron can be written in the form (for a
compact notation we sometimes omit the comma between the arguments)

dP

dE
(ω) = −

∑
l

∫
dp C2

lp(ω) Im ε−1
CNT(lp;ω), (6.6)

where Clp is a kinematical factor that depends only on the experimental conditions for the
probing electron. The resulting energy-loss spectrum can be understood as a weighted
sum of nanotube loss functions − Im ε−1

CNT(lp;ω). Thus, the main excitation peaks can
be related to the normal modes (plasmons) of the nanotube (zeros of Re εCNT).

The dielectric model was found to be in good agreement with EELS experiments for
different r/R ratios and, surprisingly, even for ideally thin tubes r/R → 1 [174]. In
this limit, the dielectric model predicts two excitation peaks which are given by the
maxima of Im ε⊥(ω) and − Im ε−1

|| (ω) and correspond to a symmetric (tangential) and
antisymmetric (radial) mode, respectively [179, 180]. The latter is found to vanish
with decreasing wall thickness [174]. Interestingly, the two modes in the absorption
measurements on SWCNTs are found at the same energies (see fig. 6.3a) [161].

6.2.2 Tight Binding
The response function ε−1

CNT(lp;ω) of a SWCNT can be also calculated within a tight-
binding approach [181–185]. This becomes particularly simple in the zone-folding ap-
proximation, because all eigenstates and -energies are readily obtained from graphene

En,j,k = Enk, |n, j, k〉 = ψnk, k
(6.3)= 2πjC/C2 + k T /T, (6.7)

where Enk and ψnk are given by eq. (5.14) and j and k denote the quasi-angular and
on-axis momentum of the corresponding eigenstate in the tube, respectively.

Polarisability χ̄0
CNT

Analogous to section 5.2.2, I have calculated the independent-particle polarisability χ̄0
CNT

of the nanotube from eq. (3.14). The Brillouin-zone integration is now restricted to the
N discrete lines that constitute the Brillouin zone of the nanotube. If the tube is large,
the cutting lines become sufficiently dense and the expression converges towards the
polarisability of the graphene sheet.

The momentum transfer q = 2πlC/C2+pT /T is given in terms of an angular and on-
axis part l and p, respectively. The angular momentum transfer l is restricted to integer
values as the quasi-angular momentum j. By construction, the matrix elements ρ̃nn′(lp)
of the nanotube are equivalent to ρ̃nn′k (q) of graphene which are given by eq. (5.17):

ρ̃nn
′

jk (lp) =
〈
n′, j−l, k−p

∣∣e−ilϕe−ipz∣∣n, j, k〉 =
〈
ψn′k−q

∣∣e−iqr∣∣ψnk〉 = ρ̃nn
′

k (q). (6.8)

In particular, Umklapp effects are correctly taken into account because the mapping of
eq. (6.7) implicitly employs helical coordinates, namely the reduced coordinates of k.
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Dielectric Function in RPA

In RPA, the dielectric function of the nanotube is now given by [181]

ε̄CNT(lp;ω) = εσ − vCNTχ̄
0
CNT, vCNT = e2

ε0
Il
(
|p|R

)
Kl

(
|p|R

)
(6.9)

where εσ = 2.4 is the background dielectric constant [151] and vCNT denotes the Coulomb
potential of a charged cylinder with radius R = 1

2πC. The functions Il and Kl are the
modified Bessel functions (see appendix A.4.3).

Figure 6.4b shows the resulting loss function − Im ε̄−1
CNT of a (23, 0) nanotube for differ-

ent angular momentum transfers l (compare with [181, fig. 2(a)]). The dispersion of the
π-plasmon peak with increasing l can be easily understood from the in-plane plasmon
dispersion in graphene. The details of the implementation of the tight-binding method
are described in appendix C.1.

6.3 Zone-folding for Excitations
Tight-binding calculations are of great use for a qualitative description of the dielectric
properties of nanotubes (see section 6.4). But they cannot provide qualitative predic-
tions. The failures have been discussed in the previous chapter (see section 5.4.3). On
the other hand, ab-initio calculations for the excitation spectra of the full nanotube are
restricted to very small tubes with diameters below 1 nm. In this section, we overcome
these problems by combining the effective-medium approach with ab-initio calculations
for graphene:

First, we apply the zone-folding approach to the microscopic dielectric function
ε(qq′;ω). The dielectric properties of an arbitrary single-wall carbon nanotube are then
derived from the excitations in a stripe of graphene. The latter can be efficiently calcu-
lated from first principles using the methods developed in chapter 5 and the tight-binding
results presented above can be considerably improved.

Second, we derive an effective Dyson equation for the response function of a cylinder
within the local-response approximation. As in the two-dimensional case, we can give a
rigorous definition of the cylinder response function that was already used in eq. (6.9).

And finally, we calculate the probe factor C of eq. (6.6) for a broad-beam geometry.
Thus, the loss-function measured in AR-EELS experiments can be expressed in terms
of the cylinder response functions.

6.3.1 Zone-folding for the Polarisability
In chapter 5 we have seen that the polarisability π of graphene and graphite are closely
related. In general, the polarisation of the system at point r is only influenced by its
neighbourhood |r′ − r| < rc, where the non-locality radius rc is in the order of a few
Ångstrom. Thus, the polarisability π can be transfered to systems of very different
geometry as long as the nearest neighbourhood of each point is unchanged. This fact
is used in dielectric theory, where the material of a nanoparticle is described by the
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Fig. 6.5: Zone-folding for the microscopic polarisability. (a) Geometry of the cylinder and the
unrolled graphene sheet. (b) Surface mode in a (4, 1) nanotube for a helical momentum ξ=(l, p)
with angular projection l=10 and on-axis part p=10 Å−1 . (c) Non-locality of the susceptibility.

bulk dielectric constant ε [e.g. 33]. In particular, rolling up a graphene sheet should not
change the local polarisability. By introducing cylindrical coordinates % ≡ (%, ϕ, z), we
can easily map each point on the cylinder % to a point on the sheet r(%) (see fig. 6.5a).
The microscopic polarisability πCNT and πs of a nanotube and a sheet are then related by

πCNT(%%′) %′ ZF= πs
(
r(%), r(%′)

)
R, r(%) = ϕ

2π
C + z

T
T + (%−R)ez, (6.10)

where R = 1
2πC corresponds to the tube radius. This equation can be obtained starting

from the definition of the response function in cylindrical and Cartesian coordinates,
and using the mapping r(%) between the two (see appendix A.4.2).

Similar to our approach in graphene, we will use a Fourier expansion along the trans-
lationally invariant directions (angle ϕ, tube axis z). The Fourier transformed polaris-
abilities of graphene and the nanotube are related by [see eq. (A.60)]

πCNT(ll′pp′; %%′) %′ ZF= πs
(
q̄q̄′; zz′

)
, q̄ = q̄(lp) = l

2πC
C2 + p

T

T
, z = %−R. (6.11)

This equation is the basis for all following calculations in this chapter. It can be under-
stood as an extension of eq. (6.5) for the microscopic dielectric function or, equivalently,
as an application of the zone-folding model to the polarisability of the system. The
great advantage of the zone-folding model is that we do not have to calculate the po-
larisability of the full tube with several 10–100 atoms in the unit cell directly. Instead,
an ab-initio calculation for an isolated graphene sheet with a 2 atom basis is sufficient,
which corresponds to the use of a reduced unit cell of the tube. Note, however, that

1. the response function πs is actually not the response function of graphene, but of
an artificial graphene ribbon of width C = 2πR with periodic boundary conditions.
Any integral over the Brillouin zone of graphene, like for the independent-particle
polarisability χ0, becomes a sum over the discrete set of lines shown in fig. 6.2a.
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2. this approach is limited to sufficiently large tubes (d & 1 nm). Indeed, the non-
locality range zc of the response function perpendicular to the sheet must be much
smaller than the tube radius R, i. e., πs(rr′) 6= 0 only for |z|+ |z′| < zc � R.

If, instead, the tube is very small (d < 1 nm), one has to go beyond the zone-folding
model and full ab-initio calculations become necessary. For achiral tubes, the linear-
angular unit cell is sufficiently small to perform a standard supercell calculation. For
chiral tubes, like the (6, 4) tube, on has to switch to the reduced unit cell and a special
ab-initio code that is adapted for helical systems has to be used [186].

In this thesis, we consider large tubes for which the zone-folding model is sufficiently
accurate. We show that the microscopic dielectric properties of a SWCNT can be obtained
from a very simple ab-initio calculation for bulk graphite by a post-processing procedure.

6.3.2 Dyson Equation for Nanotubes
In the next step, we calculate the susceptibility χCNT. Expressing the Dyson eq. (1.11)
in cylindrical coordinates and performing a Fourier transform (A.50) in ϕ and z, we get

χCNT(ξξ′; %%′) = πCNT(ξξ′; %%′)+

+
∑
ξ′′

∫
d%1d%2 %1%2 πCNT(ξξ′′; %%1) v(ξ′′; %1%2) χCNT(ξ′′ξ′; %2%

′). (6.12)

Here, we have introduced the helical momentum transfer ξ ≡ (l, p) to label the normal
mode excitations of the cylinder. Its angular part l is an integer corresponding to
the number of oscillation periods along the circumference, while p denotes the on-axis
momentum. A charge oscillation with helical momentum ξ can be always associated with
a plane-wave oscillation on the curved surface with in-plane momentum q̄ [see eq. (6.11)
and fig. 6.5b]. For the microscopic dielectric function (1.10), we obtain

εCNT(ξξ′; %%′) = 1
%
δ(%− %′)δll′δpp′ −

∫
d%1 %1 v(ξ; %%1) πCNT(ξξ′; %1%

′) (6.13)

and a similar expression for the inverse microscopic dielectric function ε−1 = 1̂ + vχ.

Coulomb Potential

Using cylindrical coordinates, the Coulomb potential reads [11]

v(ξ′′; %1%2) = e2

ε0
Il(|p′′|ρ<)Kl(|p′′|ρ>), ρ≷ = max

min (%1, %2). (6.14)

This expression can be derived by expanding 1/|r − r′| in terms of the modified Bessel
functions Kl and Il [see eq. (A.71)] and performing the Fourier transform in ϕ and z.
Physically, v corresponds to the potential of a charged cylinder surface, where %2 denotes
the radius of the cylinder and ξ′′ = (l′′, p′′) is the helical momentum of the charge oscilla-
tion on the surface. The dependence of the induced potential on the radial coordinate %1
is shown in fig. 6.6 for different helical momenta ξ′′.
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Fig.6.6: Behaviour of the Coulomb potential ε0
e2 v(lp; %%′) for fixed radius %′ = R and increasing

on-axis momentum transfers from left to right: (a) p = 0.2/R, (b) p = 1/R, and (c) p = 5/R.

Two limiting cases can be distinguished: For small helical momentum (pR � 1,
l small) the Coulomb potential is long ranged and has a broad maximum at the tube
radius % ≈ R. In contrast, it shows a short range behaviour for large helical momentum
(pR � 1). This corresponds to the fact that the electrostatic interaction between a test
electron and the charge oscillation on the cylinder vanishes, when the distance to the
tube surface becomes larger than the wavelength of the helical charge oscillation. Note
that the exponential decay of the 2D Coulomb potential (5.28) is recovered in the limit
of large tubes (see appendix A.4.5).

6.3.3 Local-Response Approximation
In continuation of the discussion in section 5.4.1, we find that both the polarisability
πCNT and the susceptibility χCNT of the tube are localised along the radial direction

χCNT(%, %′) ≈ 0, for |%−R| � λ, or |%′ −R| � λ. (6.15)

Note, however, that only the polarisability πCNT is local along the circumference and the
zone-folding model (6.10) cannot be applied for the susceptibility. Indeed, χCNT includes
the long-range Coulomb interaction and opposite walls of the cylinder can interact with
each other. This leads to a non-local behaviour of χCNT in ϕ and z (see fig. 6.5c).

Using eq. (6.15), we can now proceed in complete analogy to section 5.4.2 and simplify
the Dyson equation within the local-response approximation. Due to the locality of πCNT

and χCNT along %, we restrict the integration in eq. (6.12) to a small range |%1,2−R| . λ.
For small momentum transfers ξ′′ and sufficiently large tubes λ � R, the Coulomb
interaction v(ξ′′; %1%2) ≈ v(ξ′′;RR) is nearly constant in this range. If we further neglect
the coupling between different helical excitations χCNT(ξξ′) ≈ χCNT(ξ)δξξ′ , the Dyson
equation decouples as in eq. (5.30). Compared to graphene, this corresponds to the
neglect of in-plane crystal local-field effects inside the rolled sheet.
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Introducing the cylinder polarisation function

π̄CNT(ξ) ≡
∫
d% d%′ %%′ πCNT(ξξ; %%′) (6.16)

and analogously the cylinder susceptibility χ̄CNT, we finally obtain the Dyson equation

χ̄CNT
LRA≈ π̄CNT + π̄CNT vCNT χ̄CNT, vCNT(lp) = e2

ε0
Il(|p|R)Kl(|p|R). (6.17)

Again, this equation can be solved by introducing two scalar effective dielectric functions

ε̄CNT(ξ) ≡ 1− vCNT(ξ)π̄CNT(ξ), ε̄−1
CNT(ξ) ≡ 1 + vCNT(ξ)χ̄CNT(ξ), (6.18)

which are inverse to each other by virtue of eq. (6.17). Thus, we have rederived expres-
sion (6.9) that was used in our tight-binding calculation.

Ab-Initio Calculations in ZF+LRA

With the definitions (5.31) and (6.16) of the sheet and cylinder polarisation functions,
we can now rewrite the zone-folding model (6.11) for the effective response functions:

π̄CNT(ξ) ZF= R π̄s
(
q̄(ξ)

)
, (6.19)

where we assumed that the tube is large enough R � zc, so that % = R + z ≈ R. In
random phase approximation (π = χ0), this equation is equivalent to the zone-folding
approximation for the wave functions and corresponding matrix elements eq. (6.8) which
was already used in the tight-binding calculation. In analogy to the LRA method II
for graphene (see p. 98), we can now calculate the dielectric function ε̄CNT(lp) of the
nanotube from first-principles within the local-response approximation and the zone-
folding model:

Procedure IV: ZF+LRA method

1. Starting point is the ab-initio calculation (in RPA) of the macroscopic po-
larisability πd = χ0

d(q̄q̄; qz=0=q′z) for a graphene stack with small interlayer
distance d = 2d0 (see file outnlf.mdf). The in-plane momentum q̄ = q̄(lp) is
given by eq. (6.11). Due to the quantisation along the circumference, a special
k-point mesh has to be used in this calculation. It consists of the N parallel
line segments shown in fig. 6.2a which are sampled with Nz k-points each.

2. Within the local-response approximation and the zone-folding model, we ob-
tain the cylinder polarisability as π̄CNT(lp) = R dπd

(
q̄(lp)

)
[eq. (5.31),(6.19)].

3. We solve the scalar Dyson eq. (6.17) for the cylinder susceptibility χ̄CNT(lp)
and calculate the corresponding dielectric function ε̄−1

CNT(lp) from eq. (6.18).

In figure 6.7, we show the resulting spectra of a (9, 9) nanotube for increasing angu-
lar momentum l and fixed on-axis momentum transfer p (solid lines). The dielectric
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Fig. 6.7: Dielectric response of a (9, 9) nanotube for on-axis momentum p = 0.23 Å−1 and
different angular momenta l. (a) The loss function − Im ε̄−1

CNT(lp) and (b) the dielectric function
Im ε̄CNT(lp) of the cylinder was calculated using the tight-binding (dashed lines) or the ZF+LRA
method (solid lines). The latter uses an ab-initio calculation for graphene with momentum q̄.
Black dots show a full ab-initio calculation of the SWCNT for comparison (see also fig. 6.8).

function Im ε̄CNT(lp) ∝ Imχ0
d (right panel) has several distinct peaks which correspond

to van-Hove singularities in the one-dimensional density of states for the nanotube. They
are a direct consequence of the quantisation in k-space and vanish in the limit of large
nanotubes (dense cutting lines in the Brillouin zone of graphene). The loss function
− Im ε̄−1

CNT(lp) (left panel) shows a dominant peak that corresponds to the π-plasmon
excitation in graphene. With increasing angular momentum l, the peak shifts to higher
energies. This fact is easily understood from the plasmon dispersion in graphene with
increasing in-plane momentum q̄(lp) (see fig. 5.12 for comparison). Of course, the local-
response approximation is limited to small momentum transfers as we have discussed in
section 5.4.3 for two-dimensional systems.

How does the ZF+LRA method compare to other calculations? First, the tight-binding
calculations for the SWCNT (dashed lines), that have been described in section 5.2.2,
lead to qualitatively very similar results. Both the shape of the spectra and the dispersion
of the peaks are in good agreement. In our ab-initio ZF+LRA calculations, however, we
correctly calculate the matrix elements and no fitting parameters are included.

Second, for the l = 0 mode, we can compare our results with an ab-initio calculation
of the full (9, 9) nanotube (black dots) [187]. The good agreement, including the position
and intensity of the van-Hove peaks, validates the use of the zone-folding model even for
rather small tubes (R=6.1 Å). We extend this comparison in the following section.

Third, this approach is much faster than a full ab-initio calculation. The computa-
tional cost is reduced to few ab-initio calculations (see first step) for the polarisability
of a dense graphene stack which takes only few minutes each.
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6.3.4 Angular-Resolved EELS
So far, we have only considered the loss function of the tube in dependence of the helical
momentum ξ which corresponds to a normal mode excitation. In a real experiment,
the external perturbation is generally a superposition of several normal modes ξ with
different weights Clp. For example, a plane wave eiqr perturbation can be expanded in
Bessel functions using the Jacobi-Anger relation (A.70),

eiqr =
∞∑

l=−∞
Clp e

i(lϕ+pz), Clp = ilJl(q⊥%) δp,q||, (6.20)

where q⊥ and q|| denote the perpendicular and on-axis part of the momentum transfer q
with respect to the tube, respectively. The exponential exp

[
i(lϕ+ pz)

]
corresponds to

a normal mode excitation of the tube with helical momentum ξ = (l, p). An example
is shown in fig. 6.5b. Each of these modes will induce a (surface) charge oscillation on
the cylinder, eventually with a different helical momentum ξ′. Its amplitude is given by
the tube response function ε−1

CNT(ξ′ξ; %′%). The total energy-loss is then calculated from
the work done by the induced charges in the external field which finally leads us to an
expression that formally resembles eq. (6.6).

Loss Function in Cartesian Coordinates

In the following, a more formal and rigorous derivation will be given. In eq (1.22), we
have seen that the energy-loss probability for the scattering of electrons in the broad-
beam geometry is described by the loss function − Im ε−1

CNT(qq), where q = q⊥ + q||ez

is given in Cartesian coordinates. The relation with the microscopic response func-
tion ε−1

CNT(ξξ′; %%′) of the nanotube is derived in appendix A.4.1. For a nanotube in a
normalisation box of volume V = L1L2Lz ≡ πR2

maxLz we have with eq. (A.53)

ε−1
CNT(qq)= 2

R2
max

∑
l,l′

Rmax∫
0

d% d%′ %%′(−ieiφ)l−l′Jl(q⊥%)Jl′(q⊥%
′) ε−1

CNT(ll′q||q||; %%
′) (6.21)

We have assumed that the box is sufficiently large such that ε−1
CNT vanishes for % ≈ Rmax.

Using the symmetry of the nanotube, one can show that l− l′ must be a multiple of N ,
where N gives the number of hexagons in the unit cell of the tube [see eq. (A.62)].

Because ε−1
CNT = 1̂ + v3DχCNT contains the long-range Coulomb potential, it is much

more convenient to consider the analogous equation for the susceptibility χCNT which
is localised along the radial direction. Thus, we can simplify this expression within the
LRA: First, we assume that the Bessel function is nearly constant Jl(q⊥%) ≈ Jl(q⊥R)
in the range where χCNT is non-zero [see eq. (6.15)]. Second, we neglect all off-diagonal
terms l 6= l′ which is exact only for a homogeneous cylinder. Then, we find with eq. (6.16)

χCNT(qq) LRA≈ 2π
A

∑
l

J2
l (q⊥R) χ̄CNT(lq||), (6.22)
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where A = L1L2 = πR2
max is the normalisation area for the supercell of the nanotube.

An equivalent equation holds for πCNT. The energy-loss function for AR-EELS reads

− Im ε−1
CNT(q) = −v3D(q) ImχCNT(qq) LRA≈ −

∞∑
l=−∞

C2
l (q) Im ε̄−1

CNT(lq||),

C2
l (q) = 2π

A

v3D(q)
vCNT(lq||)

J2
l (q⊥R),

(6.23)

where Cl denotes the probe factor of the external electron [compare with eq. (6.6)]. For
achiral nanotubes, we can restrict the summation to non-negative l values: Due to the
additional mirror symmetry and the perpendicular rotation axis, the dielectric function
ε̄−1

CNT(l, q||) = ε̄−1
CNT(−l, q||) is symmetric in l and C2

l = C2
−l by means of eq. (A.65).

Equivalently, we find for the dielectric function in independent-particle approximation:

εNLF
CNT(q) = 1− v3D(q) πCNT(qq) LRA≈ 1−

∞∑
l=−∞

C2
l (q)

[
1− ε̄CNT(lq||)

]
, (6.24)

which corresponds to the dielectric response calculated in random phase approxima-
tion and neglecting crystal local-field effects [see eq. (1.16)]. This quantity is much
more simple to calculate than the loss spectrum Im ε−1

CNT(q) as it does not include the
long-range Coulomb interaction. Nevertheless, we can check the validity of the zone-
folding approximation and the decomposition of the external plane-wave perturbation
in cylindrical waves by comparing εNLF

CNT(q) with the full ab-initio results for the tubes
(outnlf.mdf file).

6.3.5 Ab-initio Calculations for the CNT(9,9)
Putting everything together, we can calculate AR-EEL spectra of a nanotube for arbi-
trary directions of the momentum transfer starting from a tight-binding or an ab-initio
calculation for graphene. In particular, we can now compare directly with ab-initio
calculations for the full SWCNT [188, 189].

These reference calculations have been performed in our group # CNT(9 ,9) ref
# geometry
a’ : 38.17 Bohr
c’ : 4.622 Bohr
# ground state
ngkpt: 4 4 22
ecut : 25 Ha
# dp (rpa calc )
npwwfn : 4997
nbands : 252
npwmat : 97

by X. Lopez-Lozano and C. Giorgetti [187]. The largest tube
that has been considered is a (9, 9) nanotube in a hexagonal
unit cell with an intertube distance of 8 Å. The interaction
between the replicas should be negligible for the loss spectra
when the momentum transfer q is large enough. A lower limit
of q > 0.3 Å−1 can be estimated from the minimal interlayer
distance for isolated graphene (see table 5.2). The corresponding
calculation parameters are shown in the panel above.

Instead of these computationally very demanding simulations,
in this thesis we use eq. (6.24) and (6.23) to calculate the re-
sponse function εNLF

CNT(q) and the AR-EEL spectrum − Im ε−1
CNT(q) of the tube. The
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Fig. 6.8: AR-EEL spectra (left) and dielectric function εNLF
CNT(q) = εCNT(qq) (middle+right) of

the (9, 9) nanotube for two momentum transfers along the tube axis. We compare full ab-initio
calculations (solid, [187]) with the ZF+LRA method IV (dashed, see text) and the tight-binding
results (dotted). The weights C2

l (q) for the contributing modes are indicated at the right.

cylinder response function ε̄−1
CNT(lq||) is obtained using either the tight-binding method5

or the ZF+LRA approach IV. Both methods work with the two-atom unit cell and are
therefore much faster. For a direct comparison with the reference calculations, we use
the same number of k-points Nz = 22 along the tube axis (adding more points will
slightly smoothen the spectra, see section 3.3.3). The results of the three methods are
compared for (a) a momentum transfer q along the tube axis, (b) perpendicular to the
axis, and (c) in a diagonal direction (see fig. 6.8–6.10).

(a) Excitation along the axis: We start with the simple case of on-axis momentum
transfer. The link with the in-plane excitations in graphene seems to be rather obvious.
It has been already discussed in section 6.1, where we found a good agreement between
the plasmon dispersion in graphene and AR-EELS experiments on large SWCNTs.

However, we are now able to go beyond this phenomenological description. Formally,
the weights C2

l (q⊥ = 0) vanish for all l 6= 0 [see eq. (A.66)]. The loss function is
exclusively given by the contribution − Im v3Dχ̄CNT(0, q||) of the l = 0 mode, i. e., an
oscillation along the tube axis. It differs from the loss function in graphene − Im v3Dχ̄s
in two important points: First, the quantisation effects in the tube lead to additional
peaks in the polarisability π̄CNT and second, the effective Coulomb potential in the Dyson
equation is not the same for the tube (6.17) and the sheet (5.32).

Although these differences vanish for large tubes, they become clearly visible for the
(9, 9) nanotube. Figure 6.8 shows the AR-EEL spectra (left) and the dielectric function

5Nearest-neighbour tight-binding calculation using the parameters γ0 = −2.5 eV, s0 = 0, ε0 = 2.4.
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Fig. 6.9: Same as fig. 6.8 for momentum transfers perpendicular to the tube axis.

εNLF
CNT(q) (middle+right) for small (top) and large (bottom) on-axis momentum transfers.

Regarding the latter, the reference calculations (solid line) and the ZF+LRA results
(dashed) are in perfect agreement. No further scaling has to be applied, when the
unit-cell size of the tube calculation6 is correctly taken into account in eq. (6.24) by
the corresponding normalisation area A =

√
3

2 (a′)2 = 353 Å. In contrast, the AR-EEL
spectra start to differ at high momentum transfers. The reason is the failure of the local-
response approximation which has been used in the scalar Dyson equation (6.17). This
problem was extensively discussed in section 5.5 for the two-dimensional case (compare
with fig. 5.12). For large momentum transfers, one has to go beyond the LRA and
include the radial dependence of the polarisability πCNT. The tight-binding calculations
(dotted lines) are in qualitative agreement with the ab-initio calculations, except for the
intensities of the loss function.

(b) Excitation perpendicular to the axis: Now we consider the case of perpendicular
momentum transfers shown in figure 6.9. Depending on the size of q⊥, several l modes will
be excited by the external perturbation and the total spectrum is a sum of several tube
response functions with different weights C2

l (see table at the right). The l = 0 mode
cannot be excited for q|| = 0. It corresponds to an oscillation with infinite wavelength
and would therefore violate the charge conservation in the tube. Again, we find a very
good agreement for the dielectric function εNLF

CNT(q), and slight deviations for the AR-
EEL spectrum for large momentum transfers due to the failure of the LRA. Also the
tight-binding calculations give reasonable results.

6The nanotubes where arranged in a triangular lattice with inter-tube distance a′.
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Fig. 6.10: Same as fig. 6.8 for momentum transfers in arbitrary direction.

(c) Excitation in arbitrary direction: Finally, we use a momentum transfer that is
neither on-axis, nor perpendicular (see fig. 6.10). Concerning εNLF

CNT(q), the reference
calculation is again well reproduced by the ZF+LRA method, while the deviations in
the loss spectrum become more important (note that q is also larger than in the previous
cases). The results in the top panel are actually a sum of the l = 0 and ±1 cylinder
response functions shown in fig. 6.7. As a result, the van-Hove singularities in ε̄CNT(ξ)
are more and more masked for increasing q⊥ component by the superposition of several
excited l modes. The same behaviour can be observed in the tight-binding results.

Conclusions
• The polarisability of a SWCNT can be reproduced from the polarisability of a

graphene-ribbon with periodic boundary conditions. This validates the use of the
zone-folding model even for the dielectric properties of single-wall nanotubes with
diameters larger than 1 nm.

• Within the local-response approximation we can efficiently calculate the loss func-
tion of an isolated nanotube with diameters larger than 1 Å. For small momentum
transfers |q| . 0.2 Å−1 , the results reproduce full ab-initio calculations of the tube.

• For larger momentum transfers q|| or q⊥, however, the local-response approximation
fails. The variation of the polarisability along the radial direction has to be taken
into account to overcome this problem.

• Our tight-binding calculations give reasonable results for the dielectric function
εNLF

CNT(q). The resulting AR-EEL spectra of a tube reproduce the full ab-initio
calculations qualitatively and can be used to study trends. The peak positions and
intensities, however, are generally not reliable in nearest-neighbour tight-binding.
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6.4 Anisotropic Excitations in SWCNTs
The presented ZF+LRA method does not only constitute a great improvement in terms
of computation time—it can be also very useful for the physical interpretation of AR-EEL
spectra of single-wall carbon nanotubes. In particular for very small tubes, these spec-
tra often consist of several peaks which show a complicated dispersion with increasing
momentum transfer and strongly depend on the orientation of the tube. Many aspects
of this complex behaviour can be understood in terms of the normal modes of the tube
[see eq. (6.23)] and their relation with in-plane excitations in graphene [see eq. (6.19)].

In this section, we consider AR-EEL spectra of carbon nanotubes and investigate sev-
eral trends using our tight-binding calculations. The code, which has been implemented
for this purpose, is briefly described in appendix C.1 and C.3. Comparative ab-initio
calculations for the (9, 9) tube have confirmed our findings [187]. Note, however, that
only π electrons are explicitly taken into account and the energy scale depends on γ0. In
the following, we use the tight-binding parameters γ0 = −2.5 eV, s0 = 0, and ε0 = 2.4.

6.4.1 Plasmon Dispersion
We are interested in the following questions: Which information about the nanotubes
are accessible via AR-EELS measurements? How does the dispersion of the π-plasmon
excitation depend on the direction of the momentum transfer q? What is the influence
of the tube radius? Do AR-EELS spectra contain signatures of the tube chirality?

Directional Dependence

First, we consider the plasmon dispersion in a (9, 9) nanotube for a momentum transfer
q = q||ez along the tube axis (see fig. 6.11a). Only l = 0 modes will be excited in this
case. Following eq. (6.11), this mode can be associated to a plane-wave excitation in
the unrolled graphene ribbon with an in-plane momentum q̄ = q||T /T . The dispersion
of the plasmon peak to higher energies can be directly related to the in-plane plasmon
dispersion in graphene. Indeed, this is the formal derivation of the model used in the
motivation of this chapter (see section 6.1).

How do the loss spectra change for increasing perpendicular momentum transfer? One
might argue that the tube acts essentially as a quantum dot in perpendicular direction.
In this case, the excitations are considered to be localised and should not disperse in
energy with increasing momentum. However, this is not the case for the (9, 9) nanotube.

In figure 6.11b, we clearly see a dispersion of the peak structure to higher energies
with increasing perpendicular momentum. In order to understand this behaviour, we
have to consider the evolution of the weights C2

l (q⊥). Due to the properties of the Bessel
function Jl(q⊥R) (see appendix A.4.3), modes with higher angular momentum l will be
excited for increasing perpendicular momentum. For fixed q⊥, the maximum of Jl is
roughly found at l0 = bq⊥Rc. The contribution of the ±l0 modes to the total spectrum
is indicated by the shaded area. Larger l modes are associated with a larger in-plane
momentum q̄ = 2πlC/C2 in the unrolled graphene sheet. The peaks in the loss function
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(9, 9), R = 6.1 Å, q||↗, q⊥ = 0 (9, 9), R = 6.1 Å, q|| = 0, q⊥↗
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Fig. 6.11: Tight-binding calculations for the plasmon dispersion in the (9, 9) nanotube. The
loss function for several momentum transfers (a) parallel and (b) perpendicular to the tube axis
are shown. The shaded area corresponds to the contribution of the l0 = bq⊥Rc mode in eq. (6.23).

will therefore depend on q⊥ and shift to higher energies with increasing perpendicular
momentum transfer.

Why are the modes close to l0 most important for the spectrum? This formal finding
can be also understood physically. The wavelength of the excitation with angular mo-
mentum l0 is given by λ = 2πR/l0 ≈ 2π/q⊥, i. e., exactly the wavelength of the external
plane wave. We can depict this excitation as a cylindrical wave which is excited in the
nanotube walls parallel to q. Thus, the SWCNT must be considered as a quasi-two-
dimensional system for large perpendicular momentum transfers q > 1/R, i. e., when
the wavelength of the perturbation is smaller then the diameter of the tube. In the
optical limit q⊥R � 1, instead, the tube appears as one-dimensional system and the
argumentation above for non-dispersing modes in perpendicular direction holds.

How do the loss spectra change with the orientation of the momentum transfer? Com-
paring the tight-binding results for parallel and perpendicular direction, we find that the
dispersion is actually very similar (see fig. 6.11a and b). Indeed, the plasmon position
is nearly unaffected by the orientation of q because the response of graphene is probed
for large momentum transfers (see discussion above). This finding is in agreement with
recent IXS measurements on aligned SWCNTs [176].

A more detailed inspection (see also fig. 6.13) shows that the plasmon peak is gener-
ally broader for perpendicular momentum transfers because several l modes contribute.
Additionally, one finds differences in the peaks at lower energies that are only visible for
small tubes. However, for a reliable description of these features we have to go beyond
the tight-binding approximation and ab-initio calculations are indispensable. Compar-
ing fig. 6.8 and fig. 6.9, we can already estimate that the intensity is reduced by a factor
of 2 for perpendicular momentum transfers in (9, 9) SWCNTs (note the different scale).
The direction of q mainly influences the intensity of the loss function which is reduced
by the depolarisation effect for perpendicular momentum transfers.
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(6, 6), R = 4.1 Å, q||↗, q⊥ = 0.2 Å−1 (23, 23), R = 15 Å, q||↗, q⊥ = 0.2 Å−1
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Fig. 6.12: Plasmon dispersion for a (a) small (6, 6) and (b) large (23, 23) nanotube.

Diameter Dependence

Figure 6.12 compares the loss functions for a nanotube with (a) small and (b) large
radius. In both cases, the dispersion with increasing on-axis momentum q|| and fixed
perpendicular component q⊥ = 0.18 Å−1 is shown. Note that q changes from a perpen-
dicular to an on-axis direction (see angle ϑ with respect to the tube axis).

The loss function for the (6, 6) nanotube in fig. 6.12a shows several dispersing peaks.
The first three peaks can be attributed to the l = 0 mode. They are due to the quantisa-
tion along the circumference which is especially important in small tubes. For diameters
beyond 3 nm these quantisation effects completely vanish (see fig. 6.12b) and the spec-
tra resemble very much our graphene results (see fig. 5.12a). Note that several modes
contribute to the spectra which leads to a broadening of the π plasmon. The presence of
the peaks at low energies is thus a signature of very small tubes (the relative intensities
of these peaks is much smaller in full ab-initio calculations, see upper panel in fig. 6.10).

Chirality Dependence

Finally, we consider the influence of the chirality of the tube. In figure 6.13, we compare
the armchair (6, 6) tube with a chiral (9, 2) tube of comparable diameter. The direction
ϑ of the momentum transfer is changed for fixed modulus q. Comparing the two different
chiralities, we find only very subtle differences both in perpendicular (top) and on-axis
direction (bottom). It should be difficult to distinguish the two tubes using AR-EELS.

Where does the chirality come into play? Of course, the chirality can only influence the
cylinder response function ε̄CNT(ξ), not the probe factor C2

l . It enters in two ways: First,
the direction of the associated momentum transfer q̄(ξ) in the unrolled graphene ribbon
depends on the vectors T and C [see eq. (6.11)]. The chirality is therefore connected to
the in-plane anisotropy of graphene which influences the π-plasmon dispersion only for
very large momentum transfers q̄ > 0.6 Å−1 (see fig. 5.9b). Second, the line segments
that constitute the Brillouin zone of the nanotube are parallel to the vector T (see
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(6, 6), R = 4.1 Å, |q| = 0.4 Å−1 , ϑ↗ (9, 2), R = 4.0 Å, |q| = 0.4 Å−1 , ϑ↗
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Fig. 6.13: Dependence of the loss function on the direction of the momentum transfer q =
0.4 Å−1 . We compare an (a) armchair and (b) chiral nanotube with similar radius R ≈ 4 Å.

fig. 6.2). As the band structure of graphene is anisotropic, the exact position of the
van-Hove peaks can change with the chirality of the tube.

6.4.2 Decomposition of Spectra
Finally, we come back to the discussion of the absorption and AR-EELS experiments
on aligned nanotubes (see fig. 6.3, [157, 161]). The questions arise, if the spectra can be
decomposed into on-axis and perpendicular contributions and if the energy of the ‘on-
axis’ π plasmon is determined by the total momentum transfer q or just the component
q|| along the tube axis. To investigate the decomposition, let us consider again eq. (6.22)

χCNT(qq) LRA≈ 2π
A

(
J2

0 (q⊥R)χ̄CNT(0, q||) +
∑
l 6=0

J2
l (q⊥R)χ̄CNT(l, q||)

)
, (6.25)

For a momentum transfer exactly parallel q||ez or perpendicular q⊥ to the axis, we have:

χCNT(q||q||)
LRA≈ 2π

A χ̄CNT(0, q||), χCNT(q⊥q⊥)
LRA≈ 2π

A

∑
l 6=0

J2
l (q⊥R)χ̄CNT(l, 0), (6.26)

because J0(0) = 1 and the l=0 mode can not be excited in the latter case due to charge
conservation. Comparing the two terms in eq. (6.25) with the expressions in eq. (6.26),
we see that the spectra can be only decomposed if χ̄CNT(l, q||) ≈ χ̄CNT(l, 0), i. e., when
q|| is small. In this case, the loss function for arbitrary momentum transfer q can be
written as a linear combination of the loss functions for the projections of q parallel and
perpendicular to the axis:

Im ε−1
CNT(qq) ≈ J2

0 (q⊥R) (q2
||
/q2) Im ε−1

CNT(q||q||) + (q2
⊥
/q2) Im ε−1

CNT(q⊥q⊥). (6.27)

A similar equation can be derived for the dielectric function Im εCNT(qq).
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(9, 9), R = 6.1 Å, |q| = 0.1 Å−1 , ϑ↗ (9, 9), R = 6.1 Å, |q| = 0.6 Å−1 , ϑ↗
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Fig.6.14: Loss function of a (9, 9) tube (solid) and the sum of perpendicular and parallel contri-
bution (dashed) for (a) small q = 0.1 Å−1 and (b) large q = 0.6 Å−1 and different orientations ϑ.

Electron Energy-Loss Spectroscopy

In fig. 6.14, we now consider the decomposition of AR-EEL spectra for two different
momentum transfers q = 0.1 Å−1 (left) and q = 0.6 Å−1 (right). Solid lines show the
loss function for several momentum transfers q with different orientation ϑ and constant
modulus. The contribution of the l = 0 mode (shaded area) corresponds to the first term
in eq. (6.27). Dashed lines show the loss function calculated from eq. (6.27) assuming
that χ̄CNT(l, q||) ≈ χ̄CNT(l, 0). For small momentum transfers q = 0.1 Å−1 (fig. 6.14a)
the loss function for q is perfectly reproduced. As expected, the decomposition fails for
larger momentum transfers q = 0.6 Å−1 (fig. 6.14b). Additionally, the π plasmon for the
total momentum q = q|| + q⊥ is found at higher energy than in the loss functions for
the projected moments q|| (black arrows) and q⊥ (grey arrows). Indeed, we have already
seen that the peak position is determined by the modulus of the momentum transfer,
not its projection along the axis (see fig. 6.13). In conclusion, the decomposition of
the loss function in parallel and perpendicular contributions is only meaningful for small
momentum transfers. For large q, instead, one can use the decomposition (6.22) in terms
of different angular momenta l.

Optical Absorption

In absorption experiments, on measures Im ε(qq) for very small qR � 1. Because the
decomposition of ε−1 in eq. (6.27) also holds for the dielectric function ε, we obtain

Im εCNT(q → 0) ≈ cos2(ϑ) Im ε
||
CNT + sin2(ϑ) Im ε⊥CNT, (6.28)

where ϑ denotes the angle between the polarisation vector q and the tube axis, and
we have used the limit J0(x)

x→0−−−→ 1 for the Bessel function. For instance, we can
apply this simple formula to the absorption measurements of Murakami et al. [161].
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Fig.6.15: Decomposition for the X-ray absorption measurements on isolated nanotubes of Mu-
rakami et al. [161]. We compare (a) the on-axis contribution A|| to the absorbance of the tubes
which is calculated from the experimental data shown in fig. 6.3a with (b) the absorbance of
graphene obtained from a Bethe-Salpeter calculation by Yang et al. [159] (Reproduced from
[159], c© 2009 by The American Physical Society).

Figure 6.15a shows the on-axis contribution ε||
CNT that we have calculated from the data

shown in fig. 6.3a (ε⊥CNT is the lowest spectrum) by inverting eq. (6.28). From the zone-
folding argument (6.19), we expect that this on-axis component (l = 0) corresponds to
the in-plane absorption in graphene. Indeed, the resemblance with the Bethe-Salpeter
calculations for isolated graphene sheets [159] is striking (see fig. 6.15b). This is another
example of the close connection between excitations in single-wall carbon nanotubes and
graphene.

Independent-Particle Polarisability

For a qualitative understanding of the excitation spectra, it is often useful to work in the
independent-particle picture. The polarisability χ0

CNT(qq) is then given as a sum over all
transitions between the valence and conduction bands in the one-dimensional Brillouin
zone of the nanotube (see fig. 6.2b). Depending on the particular momentum transfer q
many of these transitions are very weak or even forbidden due to the symmetry properties
of the tube. These selection rules can be naturally derived from the expansion (6.22) of
χ0

CNT(qq) in terms of the normal-mode contributions χ̄0
CNT(lp).

To this end, let us first consider the sum-over-states expression for χ̄0
CNT(lp). The

formalism is greatly simplified if we use the mapping from the nanotube to graphene in
eq. (6.11) and work with the momentum q̄(l, p) in the quasi two-dimensional Brillouin
zone of the tube (see fig. 6.2a). This corresponds to the use of helical coordinates instead
of the linear-angular coordinates l and p (see section 6.1). The cylinder polarisability
χ̄0

CNT(lp) is then given by eq. (3.14) for G = G′ = 0, where the wave vectors k and qr
are replaced by the helical wave vectors k̄(j, k) and q̄(l, p), respectively. The summation
runs over the N discrete lines of the Brillouin zone of the tube and only transitions
between the helical wave vectors k̄ − q̄ and k̄ are allowed.
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If we neglect Umklapp effects, this corresponds to transitions between the bands la-
belled by j − l and j and on-axis moments k − p and k. In other words, χ̄0

CNT(lp)
includes only transitions with 4j = l and 4k = p. Following eq. (6.22), the contribu-
tion of χ̄0

CNT(lp) to the full polarisability χ0
CNT(qq) is determined by the weighting factors

J2
l (q⊥R). For on-axis momentum transfers q = q||ez, all weighting factors vanish, except

for the l = 0 mode. As a consequence, only transitions between valence and conduction
bands with the same label j will contribute, i. e.,

q = q||ez : 4j = 0 (without Umklapp) (6.29)

For perpendicular momentum transfers q = q⊥, the l = 0 mode is forbidden by charge
conservation. If q is sufficiently small, only the l = ±1 modes contribute in eq. (6.22)
and we find for perpendicular polarisation

q = q⊥ : 4j = ±1 (without Umklapp) (6.30)

These are exactly the well-known selection rules for SWCNTs [146]. For larger mo-
mentum transfers, these rules become more complicated. First, several l modes will
contribute to the polarisation and second, we have to take into account Umklapp effects.
The use of helical coordinates, i. e., the momentum q̄(l, p) in the quasi two-dimensional
Brillouin zone of the tube, greatly simplifies the analysis of transitions in SWCNTs [172].

6.5 Zone-Folding for the Microscopic Dielectric Function
As we have seen in the discussion of section 6.3.5, the LRA-method is limited to small
momentum transfers q. In order to calculate the dielectric response for large q, we have
to account for the nonlocal corrections (spatial dispersion) and the inhomogeneity of the
system (in-plane LFE). To this end, the full microscopic polarisability π(qq′, ω) will be
used in the following calculations. The necessary formalism has been already derived in
section 6.3.1 and 6.3.2: First, we apply the zone-folding for the polarisability of graphene
using eq. (6.11). Second, the full Dyson eq. (6.12) is solved in real space. And finally,
the AR-EEL spectrum for a given momentum transfer q0 = q0

⊥
+ q0

||
ez is calculated by

the summation over all angular momentum contributions in eq. (6.21).

Symmetry Considerations

It is important to note that ε−1
CNT(ll′, q0

||
q0
||
; %%′) vanishes for many combinations of l and

l′ due to the screw symmetries of the tube. These symmetries have not been taken
into account in the derivation of eq. (6.21) as we have used the angular and on-axis
momentum l and p, i. e., the linear-angular unit cell of the tube. If we switch to helical
coordinates q̄(l, p) as described above, we implicitly use a reduced unit cell of the tube
which contains only two atoms. The screw symmetries of the tube give rise to the
‘Bragg’ condition q̄− q̄′ = Ḡ, where Ḡ denotes a reciprocal lattice vector in the unrolled
graphene sheet. Only modes with the same reduced momentum q̄r can interact.7

7 This simple rule becomes formally much more complicated if we use l and p coordinates [see eq. (A.62)].
Indeed, we find that ε−1

CNT(ll′, q0||q
0
||; %%

′) vanishes if l− l′ is not a multiple of N = 2(n2+m2+nm)/dR.
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Implementation

During this thesis, I have developed and implemented this zone-folding method as a post-
processing tool for the DP-code (see zf_method.py, tab. C.2). The AR-EEL spectrum of a
SWCNT for a momentum transfer q0 = q0

⊥
+ q0

||
ez is calculated from a previous ab-initio

calculation of the polarisability of a periodic graphene ribbon in six steps:

Procedure V: Zone-folding method

1. We start from an ab-initio calculation (in RPA) of the microscopic polarisabil-
ity πd = χ0

d(q +G, q +G′) of a graphene stack with small interlayer distance
d = 2d0 (see file chi0.dat) for N different in-plane momentum transfers q̄(lq0

||
)

with l = 0, . . . , N−1. A special k-point grid of N equidistant lines is used.

2. Using a Fourier transform in Gz and G′z, we calculate πd(q̄ + Ḡ, q̄ + Ḡ′; zz′)
(see fig. 5.15a). The real-space grid extends from z = −d0 to z = d0 and
is sampled by Nz points which is exactly the number of G vectors along the
z-direction. Eventually, the real-space sampling 4z = 2d0/Nz is increased by
a Fourier interpolation (we just have to add zeros in reciprocal space).

3. We apply the zone-folding (6.11) in order to obtain πCNT(ξξ′; %%′). The result-
ing real-space grid extends from % = 0 to Rmax and has the same sampling
interval 4% = 4z. The z = 0 component is centred at the radius R.

4. The microscopic dielectric function εCNT(ξξ′; %%′) is obtained by a convolution
of πCNT(ξξ′; %%′) with the Coulomb potential v(ξ; %%′) [see eq. (6.13)].

5. By inversion8 of εCNT(ξξ′; %%′), we implicitly solve the Dyson eq. (6.12). As in
the Coulomb-cutoff method III, the Coulomb potential is intrinsically cut-off
at the borders of the real-space grid (correct or converge the parameter Rmax).

6. The AR-EEL spectrum − Im ε−1
CNT(q0q0) is calculated from eq. (6.21). Also off-

diagonal terms ε−1
CNT(ξξ′; %%′) contribute as the external plane wave is decom-

posed in several coherent cylinder waves (see two-beam case in section 2.3.1).

Step 1 and 6 are the same as in the ZF+LRA method IV (see p. 125 and appendix C.2)
except that we now have to consider the full microscopic response matrix χ0

GG′ of the
graphene ribbon instead of just the macroscopic component χ0

00. Steps 2,4, and 5 are
analogous to the Coulomb-cutoff method III for graphene (see p. 102) where the Dyson
equation for the susceptibility was solved in real space.

Obviously, this procedure is much more involved than the ZF+LRA-method IV, but
it is also much faster than a full ab-initio calculation of the tube in a large supercell. In
principle, we can study arbitrary chiralities and rather large tubes. Due to the cutoff,
we obtain results for an ideally isolated tube.

8 Due to the screw symmetries of the system, the N polarisabilities from step 1 with different (reduced)
in-plane momentum q̄(lq0||) cannot mix and the inversion can be performed independently.
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Fig. 6.16: Dielectric response of a (9, 9) tube for (a) on-axis momentum transfer and (b) arbi-
trary direction of q0 with small (top) and large magnitude (bottom). We compare full ab-initio
calculations (solid, [187]) with the ZF results including (dashed lines) or excluding contributions
of in-plane LFE (dotted lines). Compare with ZF+LRA results shown in fig. 6.8 and 6.10.

Comparison with Ab-Initio Results

We have applied the zone-folding method V to calculate the AR-EEL spectra of a (9, 9)
nanotube for different momentum transfers q0 (see fig. 6.16). For small momentum
transfer (top), the zone-folding method (red dashed line) reproduces the full ab-initio
reference calculations of C. Giorgetti and X. Lopez-Lozano [187] (solid blue line). Note
that the intensity is correctly predicted, if the difference in the normalisation volume for
the two calculations is properly taken into account. Also for large momentum transfer
(bottom), the spectra are clearly improved with respect to our ZF+LRA results shown
in fig. 6.8a and fig. 6.10a. Note that the zone-folding method includes both the nonlocal
corrections of the polarisability and the in-plane local-field effects in the cylinder.

The deviation of the spectrum for large on-axis momentum (see fig. 6.16a, bottom)
needs further investigation. In this case, only the l = 0 mode contributes which should
be close to the in-plane spectrum of graphene. A test calculation for on-axis momentum
transfers and a very large (90, 90) tube exactly reproduces the expected graphene limit.
Indeed, the Coulomb potential of the tube converges towards the Coulomb potential of
the sheet for R →∞ (see appendix A.4.5). In this limit, the zone-folding method V for
tubes becomes equivalent to the Cutoff-method III for graphene.
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LRA for the Susceptibility

We expect that the graphene limit of the tube is also reached for large momentum trans-
fers q0 � 1/R, i. e., when modes with large angular momentum l or on-axis momentum p
become dominant in the AR-EEL spectra of the tube. In this case, the Coulomb poten-
tial (6.14) in the Dyson eq. (6.12) of the tube becomes very local in radial direction (see
fig. 6.6c) and decays exponentially like the Coulomb term for the sheet (5.28). We might
expect that the effects of the Coulomb potential in the nanotube and the sheet are com-
parable and that the susceptibility of the tube χCNT can be related to the susceptibility
of the sheet χ̄(q̄) within the zone-folding approximation [compare with eq. (6.11)].

In order to verify this statement, we have applied the LRA+ZF method IV (see p. 125)
directly for the susceptibility χ̄(q̄) of the sheet.

Procedure VI: ZF+LRA method for χ

1. Starting point is the macroscopic component χd(q̄q̄, qz = 0 = q′z) of the sus-
ceptibility for a stack of graphene ribbons with sufficiently large interlayer
distance d such that the sheets do not interact. It can be obtained from a
stack with small interlayer distance, e. g., by using the interpolation method I.
A special k-point mesh according to the tube has to be used (see fig. 6.2a).

2. Within the local-response approximation and the zone-folding model, the tube
susceptibility is obtained from χ̄CNT(lp) = R dχd

(
q̄(lp)

)
[see eq. (5.31), (6.19)].

3. The loss spectrum is calculated from eq. (6.23) as sum over several l modes.

On the one hand, this method is computationally very efficient. Using the methods
developed in the previous chapter 5, the first step becomes quite fast. The following two
steps only involve scalar response functions and can be performed in a few seconds. On
the other hand, the method implies the following strong assumptions: (i) The influence
of the Coulomb potential in the Dyson equation is comparable for the tube and the
sheet, i. e., we can compare the decay perpendicular to the wall/sheet and the in-plane
local-field effects in the two systems. (ii) The contribution of non-diagonal terms l 6= l′

in the expression for the AR-EEL spectrum is negligible [see eq. (6.21)].
It is therefore most astonishing that the ZF+LRA method VI for χ (see dotted lines

in fig. 6.16) gives nearly identical results as the zone-folding method V for π (red dashed
lines) for the AR-EEL spectra of the (9, 9) tube. This has two important consequences:
First, it shows that the zone-folding model can be also applied for the sheet susceptibility
χ̄ as long as the external plane-wave perturbation has a sufficiently short wavelength
(Rq0 � 1). And second, we might conclude that the discrepancy between the zone-
folding calculations and full ab-initio calculations (blue solid lines) for large on-axis
momentum is due to curvature effects which are neglected both in method V and VI.

The stunning agreement between the full ab-initio calculations and our zone-folding
method clearly validates the formalism developed in this chapter and the use of graphene
to understand excitations in SWCNTs.
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Conclusion
In this chapter, I studied the collective excitations of single-wall carbon nanotubes. In
particular, the dynamic structure factor S(q, ω) of an isolated tube has been calculated
from first principles for different directions of the momentum transfer ~q.

Usually, full ab-initio calculations for the excited properties of an isolated tube are
numerically very demanding and become even unfeasible for large tubes with hundreds
of electrons per unit cell. I have developed and implemented a building-block approach
to overcome these limitations: Combining effective-medium theory and ab-initio calcu-
lations, we describe the collective excitations in nanostructures (like carbon nanotubes)
starting from the microscopic polarisability of their building blocks (graphene). To this
end, Maxwell’s equations are solved using the full frequency- and momentum-dependent
microscopic dielectric function ε(q, q′, ω) of graphene. The latter can be efficiently cal-
culated from first principles using the methods discussed in the previous chapter 5.

Very good agreement with full ab-initio calculations is then obtained for the energy-
loss spectra of graphene and single-wall carbon nanotubes while the computational effort
is reduced by at least one order of magnitude. This opens the way to study electronic
excitations for systems which are too large for a full ab-initio treatment, and too small
for a reasonable description within the dielectric formalism.

I applied the building-block approach to study the directional dependence of angular-
resolved electron energy-loss spectra of single-wall carbon nanotubes. The dispersion of
the plasmon peaks in the valence-loss region is understood in terms of the normal mode
excitations of the tube. Two regimes can be distinguished:

In the limit of a large wave length 2π/q � R of the external plane-wave perturbation,
the nanotube reacts like a one-dimensional system and the response can be decomposed
into an on-axis and perpendicular contribution. The latter is generally strongly reduced
due to the depolarisation effect. Within the zone-folding model, we found that the loss
function of the tube is closely related to the in-plane response in graphene.

For small wave length 2π/q � R, however, the tube behaves like a quasi-two dimen-
sional system. The external perturbation excites several helical charge oscillations on
the cylinder surface which are characterised by the helical momentum ξ. The orientation
of the momentum transfer q influences the intensity of the different induced ξ modes.
Typically, charge oscillations with a wave length of the order of 2π/q are dominant.
Within the zone-folding model, each helical mode on the tube can be associated with an
in-plane excitation of the unrolled sheet. This allows us to understand the loss spectra of
single-wall carbon nanotubes in terms of the collective excitations in periodic graphene
ribbons.
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7 Towards Spatially-Resolved EELS

In this last chapter, we give an outlook on the calculation of spatially-resolved electron
energy-loss spectra for atomically thin nanostructures, namely graphene and single-wall
carbon nanotubes. We assume that all scattered electrons are collected by the detector
such that the semi-classical approach can be applied (see section 2.5.3). Consequently,
we can directly use the methods that have been developed in the previous chapters for
the calculation of the angular-resolved loss spectra—we only have to replace the external
plane-wave perturbation by a delta function in space.

Within this approach, we first consider the influence of nonlocal corrections, i. e., the
q-dependence of the dielectric function ε(q, ω) of the target. Second, we briefly discuss
the possibility to describe atomically-resolved electron energy-loss spectra using the full
microscopic dielectric response function ε(q, q′, ω) of the target. And finally, we present
some open questions that might be investigated in continuation of this thesis.

7.1 Near-Field EELS for a Graphene Layer
In this section, we consider the energy-loss for an electron beam passing parallel to an
isolated graphene sheet. This model system allows us to study the delocalisation of the
loss signal and the importance of spatial dispersion in the target response.

Already 30 years ago, local dielectric theory has been used to calculate the energy-loss
of a swift electron for thin slabs and interfaces [30, 190], and in particular for thin slabs
of graphite [179]. Nonlocal effects have been discussed, e. g., in the context of a metal
surface, using a model dielectric function [191, 192]. In this section, we consider the
local and nonlocal response of an atomically thin graphene layer, where the dielectric
response is calculated from first principles. First, we rederive the energy-loss probability
for this geometry in close analogy to section 1.3.3. And second, we discuss our numerical
results.

7.1.1 Electron Energy-Loss Probability
We consider an electron that moves with constant velocity v on a straight line parallel
to an isolated graphene sheet (see fig. 7.1a). The sheet shall be located in the xy-plane
while the electron moves parallel to the y-axis at a distance b. The charge density reads

ρe(r, t) = −e δ(x− a) δ(y − vt) δ(z − b),
ρe(q̄; z, ω) = −2πe δ(ω − qyv) δ(z − b) e−iqxa, q̄ = (qx, qy),

(7.1)
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where the in-plane coordinates have been Fourier transformed like in chapter 5. With
the corresponding Coulomb potential (5.28) we obtain for the external potential

ϕe(q̄; z, ω) =
∫
dz′ 1

e2 v(q̄; z, z
′)ρe(q̄; z′) = −2π

ev v2D(q̄) e−|q̄||z−b|−iqxa δ(ωv − qy). (7.2)

Note that the on-axis momentum ~qy = ~ω/v is fixed by the energy loss ~ω and the
velocity v of the external electron, while ϕe decays exponentially with increasing qx.

In a second step, we calculate the total energy that is lost by the electron. It corre-
sponds to the work that is needed to bring the induced charge ρi from infinity in the
external potential ϕe. As in the derivation for eq. (1.20), we find for the loss probability

P (b, ω) = 2
(2π)3

Im
∫
dq̄

∫
dz

[
ϕe(q̄; z, ω)

]∗
ρi(q̄; z, ω). (7.3)

The induced charge is given via the susceptibility (1.7). Due to the translation symmetry
of the graphene crystal, the susceptibility is a function of the reduced momentum transfer
q̄r and a matrix in the in-plane reciprocal lattice vectors Ḡ. We have

P (b, ω) = e2

4π3 Im
∑
Ḡ,Ḡ

′

∫
BZ
dq̄r

∫
dzdz′

[
ϕe(q̄r+Ḡ; z, ω)

]∗
χ
ḠḠ
′(q̄r; z, z′, ω)ϕe(q̄r+Ḡ

′; z′, ω). (7.4)

Local-Response Approximation

We have seen in section 5.4.2 that the susceptibility χ(z, z′) is very localised in direction
perpendicular to the sheet. Consequently, the integration in eq. (7.4) can be restricted
to a very small range |z(′)| . λ. For large impact parameters b � λ, the exponential
e−|q̄||z−b| and thus the external potential ϕe(z) is nearly constant in this region [see
eq. (7.2)]. Additionally, the same exponential acts as a cutoff for large wave vectors
q̄ & 1/b. Restricting to momentum transfers inside the first Brillouin zone, only diagonal
terms in the response χ00(q̄r) contribute in eq. (7.4). With these two assumptions, the
energy-loss probability then simplifies to

P (b, ω) LRA≈ e2

4π3

∫
BZ
dq̄r

∣∣ϕe(q̄r; z = 0, ω)
∣∣2 ∫∫ dzdz′ Imχ00(q̄r; z, z′, ω), (7.5)

where the second integral actually corresponds to the slab susceptibility χ̄(q̄r) [see
eq. (5.31)]. So far we have only assumed that the external potential is slowly varying
along z, i. e., we have used the local-response approximation for the Coulomb interac-
tion between the external electron and the graphene layer. The induced potential instead
has microscopic components which might contribute to the macroscopic response χ00
of the graphene sheet. Indeed, we have seen in section 5.4 that the local-response ap-
proximation for the Dyson eq. (5.27) can be only applied for small momentum transfers
q̄r < 0.1 Å−1 . For large q̄r, the response of the graphene sheet has to be calculated from
a full ab-initio calculation.
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With the external potential ϕe from eq. (7.2) we finally find (we drop the index in q̄r)

P (b, ω) LRA≈ e4

4πε20v2

∫
dqx

e−2q̄b

q̄2
Im χ̄(q̄, ω) = − e4Lz

4ε20v2

∫
dqxC(b, ω; qx)S(q̄, ω). (7.6)

which has been rewritten in terms of the dynamic structure factor S(q̄, ω) using the def-
inition (5.31) of χ̄ and the fluctuation-dissipation theorem (2.48). Thus, the expression
for the energy-loss at impact parameter b is decomposed into a material specific part
S(q̄, ω) which corresponds to the quantity measured in AR-EELS and a probe factor C
that describes the experimental conditions for the incident electron:

C(b, ω; qx) = (1/q̄2) e−2q̄b, q̄b =
√

(qxb)2 + ζ2, ζ = bω

v
. (7.7)

It basically acts as a low-pass filter for the integration over the in-plane momentum
component qx. For a better understanding of eq. (7.6), it is useful to study the behaviour
of S and C for some limiting cases.

Dynamic Structure Factor

In order to integrate over qx, the q̄-dependent response S(q̄) ∝ Im χ̄(q̄) of the graphene
sheet has to be known. Following chapter 5, we can distinguish three ranges:

• In the optical limit q̄ → 0, the influence of the Coulomb potential vanishes and
we have χ̄ = π̄ (see section 5.4.2). In RPA, this corresponds to the independent-
particle polarisability and the spectra can be understood by the sum-over-states
expression (3.14). As π̄ ∝ q̄2, the divergence of the probe factor C is compensated.

• For wave vectors q̄ . 0.1 Å−1 , two observations are important: First, the local-
response approximation can be applied for the Dyson eq. (5.27) and we obtain
a scalar equation (5.32) that connects the slab susceptibility χ̄(q̄) with the slab
polarisability π̄(q̄). Second, the susceptibility changes rapidly with q̄ (compare
the graphene spectra in the lower and middle panel of fig. 5.8b), while the scaled
polarisability vπ is nearly unchanged (see fig. 5.8c). Together, we obtain an analytic
expression for the q̄-dependence of the dynamic structure factor

S(q̄, ω) ≈ − 1
πLz

Im q̄2Π̄(ω)
1− v2D(q̄) q̄2Π̄(ω)

, Π̄(ω) = lim
q̄→0

q̄−2 π̄(q̄, ω). (7.8)

This approach is also used in dielectric theory when non-local effects (spatial dis-
persion) are neglected. The material is then described by a q̄-independent bulk
dielectric function ε(ω) (which is directly related to Π̄), but the response of the
target (described by S) becomes q̄-dependent due to the Coulomb interaction.

• For larger momentum transfers q̄ & 0.1 Å−1 , both π̄ and χ̄ depend on q̄, i. e.,
spatial dispersion becomes important. The dynamic structure factor S(q̄) can be
calculated from a full ab-initio calculation, using the interpolation method I (p. 92),
or the empirical LRA-β method (see section 5.5.1).
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Fig.7.1: (a) Geometry for the SR-EELS calculation in a planar sheet. (b) Probe factor C(qx) for
three different parameters ζ = bω

v [see eq. (7.7)]. (c) Exponential e−2q̄b for the same parameters.

Probe Factor

The probe factor C(b, ω; qx) given in eq. (7.7) rapidly decays for large momentum trans-
fers qx (see fig. 7.1b). As the factor q̄−2 is compensated by the dynamic structure factor
S(q̄) ∝ q2, we only have to investigate the exponential e−2q̄b (see fig. 7.1c). Its behaviour
strongly depends on the impact parameter b and the on-axis wave vector qy =ω/v. In-
troducing the adiabatic parameter1 ζ=bω/v, one can distinguish two cases:

• For small ζ < 0.1, the exponential e−2q̄b ≈ e−2qxb becomes independent of ω and v
and the integration (7.6) will be limited to small qx . 2/b.

• For larger ζ > 0.1, the exponential e−2q̄b ≈ e−2ζ is rather small and approximately
constant for qx � ζ/b. It decays exponentially only for larger qx values.

For instance, in an electron microscope, the acceleration voltage is typically of the order
of 100 keV. In this case, one has β = v/c = 0.55 and 1/v ≈ 0.001 Å−1/eV, i. e., an
energy loss of 10 eV is associated with an on-axis momentum transfer ω/v of 0.01 Å−1 .
For impact parameters b . 10 Å we are clearly in the first case, i. e., the exact velocity
v and energy transfer ω does not influence the resulting loss spectrum. The second case
will be important for large energy loss (in particular for core-loss spectroscopy) or low
velocities v.

7.1.2 Numerical Simulations
In this section, we present the numerical results obtained from the semi-classical ap-
proach described above. We proceed in three steps: First, the response of the graphene
sheet is calculated from the dielectric response in the q → 0 limit using eq. (7.8). Second,
nonlocal effects (spatial dispersion) are included in the description of the target. Third,
we briefly discuss the microscopic dielectric approach which becomes necessary for the
description of atomically-resolved spectra.

1If relativistic effects are included, the velocity v is replaced by γv, where γ =
[
1− (v/c)2

]−1/2 [11].
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Fig.7.2: Electron energy-loss spectra for a graphene sheet with and without nonlocal effects. (a)
Angular-resolved EELS − Im ε̄−1(q̄) ∝ πLzv(q̄)S(q̄) for different in-plane momentum transfers q̄.
The spectra have been shifted along the ordinate. (b) Spatially-resolved EELS for several impact
parameters b [see eq. (7.6)]. In (a) and (b), the dynamic structure factor S(q̄) of graphene is
calculated in a local approximation [eq. (7.8), dashed] or by full ab-initio calculations (solid).

Local Dielectric Response

We start from an ab-initio calculation of the polarisability π(q̄→ 0, ω) of a graphene
stack with doubled interlayer distance for small momentum transfer q̄ = 0.067 Å−1 . The
momentum-dependent dynamic structure factor S(q̄, ω) of the graphene sheet is then
calculated from eq. (7.8), i. e., we assume that the local-response approximation is valid
and we neglect the q̄-dependence of the polarisability. In fig. 7.2a, we compare the
results of this local approximation (dashed lines) with our full ab-initio calculations for
the response of graphene in a sufficiently large supercell (solid lines). Interestingly, non-
local effects start to become important for these angular-resolved energy-loss spectra
only for large momentum transfers q̄ > 0.1 Å−1 .

In order to calculate the spatially-resolved electron energy-loss probability P (b, ω),
the integration over qx in eq. (7.6) is performed numerically by calculating the sum

P (b, ω) = − e4Lz
4ε20v2

∑
n

S
(
4q · (n+ 1

2)ex + ω
vey, ω

) ∫ 4q · (n+1)

4q ·n
dqxC(b, ω; qx), (7.9)

which is found to be converged for a step size of 4q = 0.005 Å−1 . The resulting spectra
for different impact parameters b ranging from 0.5 Å up to 100 Å are shown in the upper
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panel of fig. 7.2b. At very large distances from the sheet, the exponential e−2q̄b in eq. (7.7)
rapidly decays and thus only the smallest qx values contribute to the integration. Indeed,
the spectrum at b = 100 Å is nearly identical to the AR-EELS spectrum for vanishing
momentum transfer in fig. 7.2a. Because the latter is closely related to the in-plane
dielectric function Im ε⊥(ω) of graphite (see section 5.4.2), the loss probability at large
distances from the graphene sheet corresponds to the absorption spectrum in graphite.
Dielectric theory for an electron moving parallel to an infinitesimally thin slab of graphite
predicts an energy loss P (ω) ∝ Im ε⊥(ω) − Im ε−1

|| (ω) [179, p. 3]. This differs from our
result in the second term which corresponds to out-of-plane excitations.

With decreasing distance b between the electron trajectory and the graphene sheet, the
probe factor C increases and larger |qx| contribute to the integration. As a consequence,
both the shape and the intensity of the loss spectrum change considerably with b (see
fig. 7.2b, top). In particular, the π-plasmon peak is broadened and shifts to higher
energies.

Nonlocal Effects in the Target Response

For very small distances b = 0.5 Å, momentum transfers up to |qx| = 0.7 Å−1 contribute.
Therefore, we have to include nonlocal effects (spatial dispersion) in the response of
the graphene sheet by taking into account the full q̄-dependence of the polarisability
π(q̄, ω). To this end, we start from our ab-initio calculations of the dynamic structure
factor S(q̄, ω) = − 1

π Imχ(q̄, ω) for graphene which have been presented in section 5.3.2.
The results for momentum transfers q̄ up to 0.8 Å−1 along the ΓM direction are shown
in fig. 7.2a (solid lines). As we need a dense grid of qx values, we have used a new
interpolation method for spectra that has been developed by Weissker et al. [193] and
which I have implemented in Python during my thesis. It allows us to calculate S(q̄, ω) at
arbitrary momentum transfers q̄ up to 1 Å−1 and we can repeat the numerical integration
in eq. (7.9) including the full nonlocal response of the target.

The results of these calculations are shown in the lower
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Fig. 7.3: delocalisation of
the loss signal in graphene

panel of fig. 7.2b. For distances larger than b > 5 Å the influ-
ence of nonlocal corrections is found to be negligible. This is
in good agreement with previous model calculations for metal
interfaces [191, 192]. Only at very small distances, sufficiently
large |qx| values contribute in the integration of eq. (7.9) and
nonlocal effects become noticeable. They increase the loss
probability especially for larger energies ~ω > 5 eV. Finally,
fig. 7.3 shows the decay of the loss probability P (b, ω) with in-
creasing impact parameter b. The EELS signal decays within
2–10 Å depending on the energy ~ω of the excitation.

Towards Atomic Resolution

Remembering the phase problem of electron microscopy (see section 2.3.1), we know
that only the off-diagonal elements of the mixed dynamic form factor S(q, q′, ω) con-
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tain spatially-resolved information about the target. But so far, only the diago-
nal part S(q, q, ω) has been included in our calculations. Off-diagonal contributions
have been completely neglected in eq. (7.6). Within the local-response approximation,
S(q̄, q̄; qz, q′z) becomes constant for all qz and q′z, i. e., the sheet is described as an effec-
tive homogeneous, infinitely thin slab. Any in-plane modulation of the electron charge
or the extension of the orbitals perpendicular to the sheet are certainly not included in
this description, even if we take spatial dispersion into account, i. e., the q̄-dependence
of the response function.

In order to include the atomic modulation, we should start from the general expres-
sion (7.4) which contains the full microscopic response function χ(q̄, q̄′; z, z′, ω). This
quantity can be calculated efficiently with the Coulomb-cutoff method III that has been
developed in chapter 5 for the isolated graphene sheet (see p. 102). Note that this step
has to be performed for all q̄r values in the first Brillouin zone of the sheet with q̄y = ω/v.
The lateral position a of the electron beam only enters via the phase factor ei(Gx−G′x)a,
i. e., only off-diagonal elements χ

ḠḠ
′ contribute to the spatially-resolved signal and we

expect that the wing elements χ0̄Ḡ′ and χḠ0̄ are most important because e−|q̄||z−b| in
eq. (7.2) rapidly vanishes for large momentum |q̄|. Deviations from the results obtained
within the local-response approximation can be only expected for very small distances
b < 1 Å from the sheet. Unfortunately, these calculations have not yet been performed.
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(a) (b)

Fig. 7.4: (a) Geometry of the STEM measurements scanning across an isolated nanotube. (b)
Experimental valence EEL spectra for an isolated multi-wall carbon nanotube (Reprinted from
[173], Journal of Electron Spectroscopy c© 2001, with permission from Elsevier).

7.2 Near-Field EELS for Carbon Nanotubes
For isolated nanotubes it has been actually possible to perform near-field electron energy-
loss experiments. Using a scanning transmission electron microscope (STEM), Stéphan
et al. [173] have been able to record a series of energy-loss spectra for different positions
b scanning across a multi-wall carbon nanotube (see fig. 7.4). Similar experiments have
been performed even for isolated single-wall carbon nanotubes with a radius of 6 and
11 Å [174].

The authors have used local dielectric theory to explain the STEM experiments on
single- and multi-wall carbon nanotubes starting from the anisotropic polarisability of
bulk graphite [178]. However, if we want to study the fine structures in the valence-loss
spectra of single-wall carbon nanotubes, like the van-Hove singularities, we have to go
beyond the description of the material with a bulk polarisability. In this section, we will
briefly outline how the building-block approach (see chapter 6) can be used to calculate
spatially-resolved energy-loss spectra starting from ab-initio calculations.

7.2.1 Dielectric Theory for Single-Wall Carbon Nanotubes
In analogy to the case of the graphene sheet considered above, we use a semi-classical
approach to calculate the electron energy-loss probability for a fast electron passing by
an isolated single-wall carbon nanotube. We closely follow the calculations of Bertsch
et al. [194] and Taverna et al. [178] who have used a local, anisotropic dielectric function
(derived from graphite) in order to describe the response of the tube.

The energy-loss probability for the nanotube is obtained in three steps, calculating
(i) the external potential ϕe, (ii) the induced charge density of the system due to this
external perturbation, and (iii) the associated energy loss. In contrast to the derivation
of section 7.1.1, we will work in cylindrical coordinates in order to use the symmetry of
the system.
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External Field

Consider an electron moving with constant velocity v on a straight line perpendicular
to a single-wall nanotube (see fig. 7.4a). We assume that the impact parameter b is
larger than the tube radius R, i. e., the electron does not intersect the cylinder. The
coordinate system is chosen such that the electron moves parallel to the y-axis and
the tube is located at the z-axis. The charge density and the potential of the external
electron reads

ρe(r, t) = −eδ(r − bex − vtey), ϕe(r, t) = 1
e2 vρ

e = −e
4πε0

1
|r − bex − vtey|

. (7.10)

As in the previous chapter 6, we switch to cylindrical coordinates % = (%, ϕ, z) and
perform a Fourier transform along the translationally invariant directions ϕ and z (see
appendix A.4.1). Following Bertsch et al. [194], one obtains

ϕe(ξ; %, ω) = − e

ε0

π

v
Il(|p|%) C̃(ξ, ω), ξ = (p, l), (7.11)

where Il is the modified Bessel function (see appendix A.4.3) and C̃ is given by

C̃(ξ;ω) = 1
qeff

(
qeff + (ω/v)

p

)l
e−bqeff , q2eff = p2 + (ω/v)2. (7.12)

The momentum qeff comprises the momentum component p along the tube axis and the
one along the trajectory of the electron ω/v.

Energy Loss

In a second step, we rewrite the expression in eq. (1.21) for the energy-loss function
P (b, ω) in cylindrical coordinates. The energy loss is given by the energy of the induced
charge ρi inside the external potential ϕe. In analogy to the derivation above, we find

P (b, ω) = 2
(2π)2Lz

Im
∑
ξ

∫
d% %

[
ϕe(ξ; %, ω)

]∗
ρi(ξ; %, ω). (7.13)

With the susceptibility (1.7), we finally have

P (b, ω)= e2

2π2Lz
Im
∑
ξξ′

∫
d%d%′ %%′

[
ϕe(ξ; %, ω)

]∗
χ(ξ, ξ′; %, %′, ω)ϕe(ξ′; %′, ω). (7.14)

Local-Response Approximation

As we have discussed in section 6.3.3, the response of the tube χCNT(%, %′) is very localised
along the radius and the integration in eq. (7.14) can be restricted to a very small range
|%(′)−R| . λ. Assuming that the external potential ϕe(%) is constant in this region and
neglecting in-plane local-field effects, we have
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P (b, ω) LRA≈ e2

2π2Lz

∑
ξ

∣∣ϕe(ξ;R, ω)
∣∣2 Im χ̄CNT(ξ, ω)

LRA≈ e4

2Lzε20v2

∑
ξ

I2
l (|p|R)C̃2(ξ, ω) Im χ̄CNT(ξ, ω).

(7.15)

Due to the rather complicated behaviour of the modified Bessel function I2
l , it is much

more difficult to estimate the most important contributions to this sum. Nevertheless,
the prefactor decays again exponentially for large p. Using Il(x) −−−→

x→∞
ex√
2πx , we have

Il(|p|R) · C̃(lp, ω) p→∞−−−→ epR√
2πpR

· e
−pb

p
∝ p−3/2e−p(b−R). (7.16)

Additionally, Il(x) decreases with increasing angular momentum l and the summation
in eq. (7.15) is essentially restricted to small helical momentum ξ.

7.2.2 Outlook
Although the corresponding numerical simulations have not yet been performed, we can
already give an estimation for the results using our experience with the graphene sheet:

Influence of Nonlocal Corrections

On the one hand, we could include nonlocal corrections (spatial dispersion) by using
the ξ-dependent polarisability π̄CNT(ξ, ω) to describe the nanotube. From the graphene
results, we can estimate that these corrections become only important for very small
impact parameters b−R . 5 Å. Similar results have been obtained by Aizpurua [195],
who studied the influence of nonlocal corrections for cylindrical cavities in metals using
a model dielectric function.

Graphite Response

On the other hand, we could try to use the local-response approximation to explain
why the dielectric model of Taverna et al. [178] also gives quite reasonable results for
single-wall carbon nanotubes. In dielectric theory, the nanotube is approximated as a
hollow cylinder of bulk graphite with a thickness of about 1 Å (see fig. 6.4a). Like in
the case of the graphene sheet (see previous section), the loss function for an infinitely
thin cylinder approaches P ∝ Im ε⊥ − Im ε−1

|| , where the in-plane absorption spectrum
of graphite Im ε⊥ is thought to be dominant [174, 178].

In our calculations using the local-response approximation we arrive at the same
conclusion in two steps: First, with the exponential decay of the probe factor C [see
eq. (7.16)] only small helical momenta contribute to the energy-loss spectrum for large
impact parameters b. And second, for a graphene sheet we have found that the influence
of the long-rang part of the Coulomb potential vanishes in the optical limit q → 0 and
consequently the loss function of graphene nearly coincides with the in-plane absorption
Im ε⊥ of graphite (see section 5.4.2). We can expect a similar behaviour for the tubes.
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7.3 Microscopic Charge Oscillations
So far, we considered the simulation of experimental energy-loss spectra in a transmission
electron microscope. As we have seen in chapter 2, these spectra include information
about the mixed dynamic form factor S(q, q′, ω), or equivalently, the microscopic dielec-
tric response χ(q, q′, ω) of the target. However, it is difficult to extract these information
directly from experiment where generally only integrated quantities are measured.

Much more details on the physical properties of the target can be obtained by combin-
ing electron energy-loss spectroscopy and corresponding ab-initio calculations. On the
one hand, the calculations can be used to study the origin of the features observed in
experiment. Several examples can be found in the previous chapters, like the explana-
tion of the angular anomaly of the dynamic structure factor in crystals (see chapter 4),
or the linear plasmon dispersion in single-wall carbon nanotubes (see section 5.3.3).

On the other hand, ab-initio calculations allow us to study physical properties that
are not directly accessible to experimental observation. For instance, we can visualise
the microscopic charge oscillations inside the material that are induced by an external
perturbation. This will be the subject of this section.

Response to a Perturbing Plane Wave

We consider the perturbation of the target by the scattering of an external plane electron
wave (broad-beam geometry). An electron that transfers a momentum ~q̃ and an energy
~ω̃ to the target can be associated with a plane wave perturbation

ϕe(r, t) = ϕe0 e
−i(ω̃t−q̃r), ϕe(q′, ω′) = 2πV ϕe0 δ(q′ − q̃) δ(ω′ − ω̃). (7.17)

In a crystal, the corresponding induced charge density is then given by [see eq. (A.36)]

ρiG(qr, ω) =
∑
G′

e2χGG′(qr, ω)ϕeG′(qr, ω), (7.18)

and we obtain for the microscopic charge oscillation in real space [see eq. (A.40)]

ρi(r, t) = e2ϕe0e
−iω̃t∑

G

ei(q̃r+G)rχGG̃(q̃r, ω), q̃ = q̃r + G̃. (7.19)

Note that only the real part Re ρi(r, t) has a physical meaning. It oscillates with the
frequency ω̃ of the external perturbation and can be calculated from the G̃th column of
the susceptibility matrix χGG′ by a simple Fourier transform.

Charge Oscillations in Graphite

As an example, we considered bulk graphite which is perturbed by a plane wave with
in-plane wave vector q̃ = 0.74 Å−1 along the ΓM direction. Figure 7.5 shows a snapshot
of the induced charge oscillation at time t = 0 for two different frequencies ω̃ which
correspond to the excitation energies of the π and π + σ plasmon, respectively. The
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(a) (b)

Fig. 7.5: Induced density in graphite due to a plane-wave perturbation ϕe(rt) ∝ e−i(ω̃t−q̃r)

with wave vector |q̃| = 0.74 Å−1 and (a) energy ~ω = 9eV (π plasmon) or (b) energy ~ω = 30eV
(π+σ plasmon). The direction and wave length λ = 8.5Å of the external plane wave is indicated
by the black line. The blue and red colour of the isosurface corresponds to a positive and negative
charge density variation, respectively. The resolution is 0.8Å.

induced charge density is clearly periodic with the wave length λ = 2π/q̃ of the external
perturbation (black line) Moreover, one clearly recognises the two lobes of the π orbitals
for ω̃ = 9 eV (see fig. 7.5a). At larger energies ω̃ = 30 eV (see fig. 7.5b) the charges
between two carbon atoms oscillate. Comparing with the partial ground-state density
shown in fig. 5.2e, this can be associated to an oscillation of the σ electrons. Conse-
quently, we can identify the electrons that contribute to the response by looking at the
spatial distribution of the microscopic induced charge density.

Time-Dependent Charge Oscillations

In the framework of the master thesis of Giulia Pegolotti [196], we have considered the
time-dependence of the microscopic charge oscillation. For the plane-wave perturbation
(7.17), the induced charge follows the external plane-wave potential with an energy-
dependent phase shift that can be understood from a classical spring model.

Additionally to this periodic perturbation, a delta-pulse in time has been investigated
(see [196] for details). In principle, one can also calculate the density oscillations for
arbitrary external perturbations like that of an electron flying on a straight line through
the crystal. Similar calculations have been considered recently in literature [197–199],
but often include only the diagonal part of the mixed dynamic form factor.

7.4 Open Questions and Outlook
In this chapter, we have investigated spatially-resolved electron energy-loss experiments
starting from first principles. So far, an isolated graphene sheet and the influence of
spatial-dispersion effects have been studied. The extension to experimentally accessible
systems, like single-wall carbon nanotubes, has been discussed.
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Building upon this work, many interesting physical questions can be studied. As an
outlook, several possible directions for further investigations are outlined in the following:

Spatially-Resolved EELS from Ab-Initio

In continuation of our work, it could be interesting to systematically improve the local
dielectric approach [10] using the methods developed in the previous chapters: First,
the influence of nonlocal corrections (spatial dispersion) might be studied for different
geometries and experimental situations. Second, the full microscopic dielectric function
ε(q, q′, ω) could be used for the description of the system. It includes all information
of the microscopic response at the atomic level and allows us, in principle, to describe
atomically resolved experiments. Finally, one might go beyond the semi-classical di-
electric approach that was used in this chapter. For instance, the influence of different
collection apertures on the spatial resolution could be studied also for valence EELS ex-
periments. Therefore, the full quantum-mechanical scattering approach has to be used
(see chapter 2).

Complex Systems

Clearly the methods developed in this thesis can be also applied for other materials
than carbon systems. For example, one could easily repeat our studies for monolayer
systems with different elemental composition (like boron-nitride sheets and nanotubes).
Moreover, one might consider doped systems (shift in the Fermi level) or even sheets
and nanotubes with defects. In the latter case, larger unit cells become necessary and,
e. g., the Coulomb cutoff method III or the building-block approach for the nanotubes
can be of great use to keep the numerical calculations affordable.

Connection with Local Dielectric Theory

In the limits of the local-response approximation, we should be able to connect the
macroscopic dielectric theory (see section 1.2.1) with the microscopic approach that is
used in this thesis. However, a direct connection between the corresponding response
functions is not immediately clear. For instance, the slab response functions introduced
in eq. (5.31) always respond to the potential ϕ(q̄, z) instead of the corresponding field
E(q̄, z) = −(iqx, iqy, ∂z)Tϕ(q̄, z).

This should be also considered in the discussion of bulk and surface plasmons. These
two excitations can be clearly defined in the macroscopic dielectric approach (see sec-
tion 1.2.1). In the microscopic formalism, instead, we cannot define a sharp boundary
at the microscopic level and a distinction between these two excitations is less obvious.

Plasmons in Crystals

Already the definition of a volume plasmon becomes more complicated in the microscopic
dielectric formalism. Following our discussion in section 4.2, collective excitations in
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Fig. 7.6: (a) Eigenvalues (dots) of the dielectric matrix εGG′(qr, ω) of graphite for an in-plane
momentum transfer qr = 0.4 Å−1 . For comparison, the head element ε00(qr, ω) is shown (solid
line). (b) Electron energy-loss spectrum for silicon with (red) and without (green) Čerenkov losses
(for 200 keV electrons). Momentum transfers |q| < 0.013 Å−1 are integrated (4ϑ = 0.05 mrad).

crystals form a set of plasmon bands which are defined by det |εGG′(qr, ω)| = 0.2 Starting
from our ab-initio calculations, we can directly study the plasmon-band structure and
the contribution of the microscopic modes. For example, fig. 7.6a shows the eigenvalues
of the matrix εGG′(qr, ω) compared to the head element ε00 for bulk graphite. One
of the eigenvalues becomes approximately 0 at 7.8 eV (also the imaginary part is then
small). The corresponding eigenvector characterises the plasmon mode. Indeed, the
charge oscillation that is associated with the plasmon resonance could be also visualised
in real space (compare with fig. 7.5).

Relativistic Effects in EELS

In this thesis, relativistic effects have been completely neglected in the description of
electron scattering. Nevertheless, electrons that are accelerated to kinetic energies of
about 100 eV have a velocity close to the speed of light (0.55c) and retardation effects
can become noticeable. For instance, Čerenkov losses can be observed if the velocity
becomes superior to the speed of light in the material. In silicon, they can considerably
increase the loss probability at low energies ~ω < 5 eV for small momentum transfers
q → 0 [201]. Within the dielectric formalism, Čerenkov losses for electrons passing
through thin slabs can be described by the Kröger formula [38]. The resulting loss spectra
for silicon are shown in fig. 7.6b for an on-axis detector with an opening angle of ϑ =
0.05 mrad. Jouffrey et al. [202] and Sorini et al. [54] have considered relativistic effects
in the quantum-mechanical scattering approach. And finally, we might also wonder if
transverse local-field effects might play a role in electron energy-loss experiments [130].

2Moreover, the characterisation of a plasmon as a longitudinal normal mode of the system becomes
problematic in crystals. Transverse and longitudinal fields are generally coupled and the normal
modes should be classified by their symmetry properties [200].
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Summary

In this thesis, I have tried to answer the following questions:

Why can the loss spectrum become strongly anisotropic at large momentum transfers ?

The mixed dynamic form factor S(q, q′, ω), or equivalently the microscopic dielectric
function, is a key quantity for the understanding of spatially-resolved electron energy-
loss spectroscopy (EELS). In particular, large momentum transfers beyond the first
Brillouin zone should play an important role for atomic-resolution experiments. I found
that near certain Bragg reflections, the energy-loss function can be changed drastically
by a very small variation in q. A detailed analysis reveals that this discontinuity is
caused by crystal local-field effects and can be explained in terms of a two-plasmon-
band model. To verify our prediction, I have proposed inelastic X-ray scattering (IXS)
measurements on graphite and silicon. These experiments have clearly confirmed the
predicted anomalous angular dependence.

How does the dimensionality of a system affect its electronic response ?

In order to answer this question, I have studied collective excitations of carbon sys-
tems with different dimensionality both numerically and analytically. The momentum-
dependent electron energy-loss function of graphite, graphene, and single-wall carbon
nanotubes (SWCNT) were calculated from first principles within the random phase ap-
proximation using (time-dependent) density-functional theory. I have shown that the
microscopic components of the induced Hartree potential strongly influence the electronic
response in low-dimensional systems. This is due to the confinement of the electrons as
we can understand from a simple dielectric model.

What can we learn from graphene about excitations in SWCNTs ?

A comparison of EELS measurements on isolated SWCNTs and our graphene calcula-
tions revealed that the linear π plasmon dispersion along the axis can be explained by the
excitation spectrum of graphene. This connection is less obvious for arbitrary directions
of the momentum transfer. To this end, I have combined the ideas of effective medium
theory with ab-initio calculations to describe the dielectric response of SWCNTs starting
from the microscopic polarisability ε(q, q′, ω) of graphene (zone-folding method). The
results are shown to be very similar to a full ab-initio calculation. Besides an impor-
tant gain in calculation time (only a few hours instead of several days are needed), this
method allows us to give a clear interpretation of the energy-loss spectra of SWCNTs in
terms of the excitations in graphene.

Which electrons take part in a collective excitation ?

Ab-initio calculations yield a detailed analysis of microscopic quantities. We visualise
the time-dependent microscopic charge oscillations induced by an external plane-wave
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perturbation that correspond to a plasmon excitation in an EELS experiment. We
can identify the electrons that take part in the oscillation by looking at the spatial
distribution of the induced charge density. For graphite, contributions from π and σ
electrons have been distinguished, depending on the energy of the perturbation.

How can we use ab-initio calculations for the prediction of spatially-resolved EELS in
the valence-loss region ?

Finally, I apply the methods that I have developed during the course of this thesis for an
ab-initio simulation of spatially-resolved electron energy-loss spectra of atomically thin
nanostructures. First, I consider the loss spectrum of an electron moving parallel to a
graphene sheet including non-local effects in the response of the system. Second, I give
an outlook how to use the zone-folding method to calculate spatially-resolved energy-
loss spectra of single-wall carbon nanotubes starting from the polarisability of graphene
within a microscopic dielectric formalism.

The main original results of my work can be summarised in five points:

• A discontinuous behaviour of the dynamic form factor at certain Bragg reflections
has been predicted, explained in terms of crystal local-field effects, and verified by
inelastic X-ray scattering experiments.

• Combining effective-medium theory and ab-initio calculations, a new method has
been developed to describe collective excitations of nanostructures (like carbon
nanotubes) starting from the polarisability of their building blocks (graphene).

• The linear dispersion of the on-axis π plasmon in isolated SWCNTs has been
explained with the excitation spectrum of graphene. In general, electron energy-
loss spectra of SWCNTs for arbitrary momentum transfers are understood by a
summation of normal-mode excitations.

• By visualising microscopic charge oscillations in real space, it is possible to deter-
mine which electrons contribute to the excitation.

• First studies for ab-initio calculations of spatially-resolved EELS are presented.

The following methods have been used:

• First-principles RPA calculations of the momentum-resolved and frequency-
dependent dynamic structure factor S(q, q′, ω) are performed using the DP-
code [102]. The electronic ground state is calculated in DFT-LDA (local-density
approximation) with AbInit [100], using a plane-wave basis set and norm-
conserving pseudopotentials.

• New codes have been developed, in particular, a nearest-neighbour tight-binding
method for graphene and SWCNTs and a zone-folding method for the calculation
of SWCNT spectra starting from the polarisability of graphene. These codes are
briefly described and will be made available.
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Part III

Appendices
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A Theoretical Supplements

A.1 Time-Dependent Perturbation Theory
We recall the fundamentals of time-dependent perturbation theory [203]. Starting from
the solution of the Schrödinger equation for a time-independent Hamiltonian H0

H0
∣∣∣Ψ0

n

〉
= En

∣∣∣Ψ0
n

〉
,

∣∣∣Ψ0
n(t)

〉
= e−

i
~E

0
n(t−t0)

∣∣∣Ψ0
n

〉
, (A.1)

we would like to find an (approximate) solution of a slightly perturbed system

i~∂t |Ψ(t)〉 = (H0 +H ′) |Ψ(t)〉 , |Ψ(t0)〉 =
∣∣∣Ψ0

i

〉
. (A.2)

We assume that the system is initially found in the unperturbed eigenstate
∣∣Ψ0

i

〉
at time

t0 and the time-dependent perturbation H ′ is small. For the following, it is convenient
to switch to the interaction picture (Dirac picture). The unitary transformation

U0 = e−
i
~H0(t−t0), |ΨD(t)〉 = U+

0 |Ψ(t)〉 , H ′D(t) = U+
0 H

′U0, (A.3)

removes the trivial time-dependence associated with H0 from eq. (A.2) and we obtain:

i~∂t |ΨD(t)〉 = H ′D |ΨD(t)〉 , |ΨD(t0)〉 =
∣∣∣Ψ0

i

〉
. (A.4)

This differential equation can be recast into an integral equation by introducing the
time-evolution operator U ′D. It connects the solution at time t with the initial state at t0

i~∂tU ′D(t, t0) = H ′DU
′
D(t, t0), |ΨD(t)〉 = U ′D(t, t0)

∣∣∣Ψ0
i

〉
. (A.5)

The boundary condition requires that U ′D(t0, t0) = 1̂. By formal integration we obtain

U ′D(t, t0) = 1̂ + 1
i~

∫ t

t0
dt1H

′
D(t1)U ′D(t1, t0). (A.6)

This implicit integral equation can be expanded into a series of H ′D:

U ′D(t, t0) = 1̂ + 1
i~

∫ t

t0
dt1H

′
D(t1) + 1

(i~)2
∫ t

t0

∫ t1

t0
dt1dt2H

′
D(t1)H ′D(t2) + . . . (A.7)

This Dyson series is central to perturbation theory. If the interaction is sufficiently small,
i. e. (t − t0)〈H ′D〉t � 1, we can restrict the series to few elements. Within first-order
perturbation theory we keep only the linear term in H ′D.
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A.1.1 Adiabatically-Switched Periodic Perturbation
One important application of time-dependent perturbation theory is the calculation of
transition probabilities in a system that is subject to a periodic perturbation. To avoid
effects from a sudden turn-on, we use an adiabatic switching with vanishing η

H ′(t) = e+ηte−iωtV, lim
t0→−∞

H ′(t0) = 0. (A.8)

Note that the order of the limiting process is crucial: for fixed t we let t0 → −∞ first,
and take the limit η → 0 afterwards. Using eq. (A.7) to first-order, we can approximate
the transition probability between unperturbed states

∣∣Ψ0
i

〉
at t0 and U0(t)

∣∣Ψ0
f

〉
at t as

w
(1)
i→f (t) =

∣∣∣〈Ψ0
f

∣∣∣U (1)
D (t, t0)

∣∣∣Ψ0
i

〉∣∣∣2 =
∣∣∣1~
∫ t

t0
dt1e

iω0(t1−t0)
〈
Ψ0
f

∣∣∣H ′(t1) ∣∣∣Ψ0
i

〉∣∣∣2
t0→−∞−−−−−→ 1

~2
e2ηt

η2 + (ω0 − ω)2
∣∣〈Ψ0

f

∣∣∣V ∣∣∣Ψ0
i

〉∣∣2, ~ω0 = E0
f − E0

i .
(A.9)

We have used eq. (A.3) and assumed that the final state differs from the initial one. With
the known limit of the Lorentzian function limη→0

η
η2+x2 = πδ(x), we finally obtain in

the limit η → 0 the transition rate in first-order perturbation theory

Γ(1)
i→f = ∂tw

(1)
i→f = 2π

~
∣∣〈Ψ0

f

∣∣∣V ∣∣∣Ψ0
i

〉∣∣2δ(E0
f − E0

i − ~ω). (A.10)

This equation is the well known Fermi Golden Rule.

A.1.2 Linear Response Theory
Often, one is interested in the evolution of the observable f(t) = 〈Ψ(t)|F |Ψ(t)〉 due to
a perturbation H ′. Applying the Dyson series (A.7) for U ′D, we have up to first order

f(t) = 〈ΨD(t)|FD(t) |ΨD(t)〉 =
〈
Ψ0
i

∣∣∣U ′+D (t, t0)FD(t)U ′D(t, t0)
∣∣∣Ψ0

i

〉
=
〈
Ψ0
i

∣∣∣FD(t)
∣∣∣Ψ0

i

〉
− 1
i~

∫ t

t0
dt′

〈
Ψ0
i

∣∣∣ [H ′D(t′), FD(t)
]
−

∣∣∣Ψ0
i

〉
+ . . .

(A.11)

The perturbation is generally given by a time-dependent function g(t) which couples to
the system via an operator G (e. g. the potential ϕ and density operator n, respectively)

H ′(t) = g(t)G, H ′D(t) = g(t)GD(t), (A.12)

where g(t < t0) = 0. The first-order fluctuation f̃ of the observable is then given by

f̃(t) = f(t)−
〈
Ψ0
i

∣∣∣FD(t)
∣∣∣Ψ0

i

〉
≈
∫ ∞
−∞

dt′R(t, t′)g(t′),

R(t, t′) = δf(t)
δg(t′)

= 1
i~

Θ(t− t′)
〈
Ψ0
i

∣∣∣ [FD(t), GD(t′)
]
−

∣∣∣Ψ0
i

〉
.

(A.13)
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The function R(t, t′) is the (retarded) linear response function [77]. It describes the
response at time t of a system, that has been perturbed by an impulse g(t) = δ(t − t′)
at time t′. The step function Θ ensures causality, i. e., the fact that the answer always
follows the perturbation in time. By using the cyclic properties of the expectation value
〈〈 · 〉〉0 ≡

〈
Ψ0
i

∣∣ · ∣∣Ψ0
i

〉
, we find that the response does only depend on the time difference〈〈

FD(t)GD(t′)
〉〉

0 =
〈〈
U+

0 (t, t0)FU0(t, t0) U+
0 (t′, t0)GU0(t′, t0)

〉〉
0

=
〈〈
U0(t′, t0)U0(t0, t)FU0(t− t′ + t0, t0) G

〉〉
0

=
〈〈
FD(t− t′ + t0)GD(t0)

〉〉
0

(A.14)

With the fluctuation operators F̃ and G̃,

F̃ ≡ F − 〈〈F 〉〉0 , 〈〈F̃ G̃〉〉0 = 〈〈FG〉〉0 − 〈〈F 〉〉0 〈〈G〉〉0 , (A.15)

we can finally rewrite the response function (A.13) as

R(t, t′) = 1
i~

Θ(t− t′)
〈〈[
F̃ (t), G̃(t′)

]
−

〉〉
0 = 1

~
Gret(t, t′). (A.16)

A Fourier transform in t− t′ leads to the spectral representation [204]

R(E) =
∑
n6=i

{〈Ψ0
i

∣∣ F̃ ∣∣Ψ0
n

〉 〈
Ψ0
n

∣∣ G̃ ∣∣Ψ0
i

〉
E − (En − Ei) + iη

−
〈
Ψ0
i

∣∣ G̃ ∣∣Ψ0
n

〉 〈
Ψ0
n

∣∣ F̃ ∣∣Ψ0
i

〉
E + (En − Ei) + iη

}
, (A.17)

where we have inserted a complete set of states
∑
n

∣∣Ψ0
n

〉 〈
Ψ0
n

∣∣ and used the following
representation of the step function Θ(t− t′) = limη→0

i
2π
∫∞
−∞dE e

−iE(t−t′)/~[E + iη]−1.

Density Response Function

An important example is the change in the charge density ρ of the system due to an
external scalar perturbation ϕe. The observable F corresponds to the charge density op-
erator ρ̂(r) = −en̂(r). The interaction Hamiltonian reads H ′(t) =

∫
dr ρ̂(r)ϕe(rt), i. e.,

G is an integral operator that acts on g(t) = ϕe(t). Consequently, eq. (A.13) becomes

ρ̃(rt) ≡ ρi(rt) ≈
∫
dt′
∫
dr′ e2χ(rt, r′t′)ϕe(r′t′), (A.18)

where we have introduced the (retarded) density response function or susceptibility

e2χ(rr′, τ) = δρi(rt)
δϕe(r′t′)

= 1
i~

Θ(t− t′)
〈〈[
ρ̃(rt), ρ̃+(r′t′)

]
−

〉〉
0. (A.19)

Analogously, we have in Fourier space

χ(qq′, τ) = 1
e2

δρi(qt)
δϕe(q′t′)

= 1
i~

Θ(t− t′)
〈〈[
ñ(qt), ñ+(q′t′)

]
−

〉〉
0. (A.20)
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A.1.3 Relation to Scattering Theory
The formalism of time-dependent perturbation theory is closely related to the time-
dependent approach to scattering theory (see, e. g., [203, 205]). We therefore consider
that H0 denotes the free Hamiltonian of target and scattering particle, and H ′ the
interaction between the two. The latter should vanish at t0 → ±∞, i. e., when the
scattering particle is far away. We can include this boundary condition by using an
adiabatic switching of a constant interaction potential V similar to eq. (A.8).

The scattering operator S and the corresponding scattering matrix Sfi is then con-
nected to the evolution operator in the limit of infinite times

S = lim
t0→−∞

lim
t→∞

U ′D(t, t0), Sfi =
〈
Ψ0
f

∣∣∣U ′D(∞,−∞)
∣∣∣Ψ0

i

〉
. (A.21)

Together with the integral equation (A.6), one eventually arrives at the Lippmann-
Schwinger-Equation for the scattering state

∣∣∣Ψ+
i

〉
[205]:∣∣∣Ψ+

i

〉
=
∣∣∣Ψ0

i

〉
+ 1
Ei −H0 + iη

V
∣∣∣Ψ+

i

〉
(A.22)

Within the first Born approximation, one approximates
∣∣∣Ψ+

i

〉
by
∣∣Ψ0

i

〉
on the right-hand

side of the previous equation which leads us to the same transition probability as found
in eq. (A.10) previously (for ω = 0).

A.2 Continuous Fourier Transformation
A.2.1 One-Particle Functions
We use the following notation for the Fourier transform (FT) of a one-particle function f :

f(t) = (2π)−1
∫
dω f̃(ω)e−iωt ←→ Fωf = f̃(ω) =

∫
dt f(t)e+iωt

f(t) = (2π~)−1
∫
dE f̃(E)e−iEt/~ ←→ FEf = f̃(E) =

∫
dt f(t)e+iEt/~

f(r) = (2π)−3
∫
dq f̃(q)e+iqr ←→ Fqf = f̃(q) =

∫
dr f(r)e−iqr

(A.23)

Examples are the Fourier transform of a constant, the delta-distribution, the Heaviside
step function, and the Coulomb potential:

δ(t) = (2π)−1
∫
dω e−iωt, ←→ δ(ω) = (2π)−1

∫
dt eiωt, (A.24)

δ(r) = (2π)−3
∫
dq e+iqr, ←→ δ(q) = (2π)−3

∫
dr e−iqr, (A.25)

Θ(t) =
{

1 for t > 0
0 for t < 0

←→ Θ̃(ω) = i

ω + i0+ = πδ(ω) + iP 1
ω
, (A.26)

v(r) = e2

4πε0
1
|r|

←→ ṽ(q) = e2

ε0

1
q2

. (A.27)
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For the FT of a product of one-particle functions, the convolution theorem holds:

F [f · g](q) = (2π)−3[Ff ∗ Fg](q) ≡ (2π)−3
∫
dq′ f̃(q − q′)g̃(q′), (A.28)

F−1[Ff · Fg](r) = [f ∗ g](r) ≡
∫
dr′ f(r − r′)g(r′), (A.29)

which can be verified using the definitions above. Note the asymmetry in the prefactor.

A.2.2 Response Functions
The most general linear mapping between two one-particle functions f(r) and g(r′) is
given by an integral operator containing the linear response function R(r, r′):

f(r) =
∫
dr′R(r, r′)g(r′) ←→ f̃(q) =

∫
dq′ R̃(q, q′)g̃(q′). (A.30)

In Fourier space, R̃ is the corresponding mapping between f̃ and g̃. Using eq. (A.23),
we find the connection between R and R̃ (Fourier transform of a response function)

R̃(qω, q′ω′) = (2π)−4
∫
drdt

∫
dr′dt′ e+i(ωt−qr) R(rt, r′t′) e−i(ω′t′−q′r′) (A.31)

and analogously the back-transformation with the same prefactor. Physically a response
function R gives the response f of a linear system to an external perturbation g, e. g.,
the induced polarisation due to an external electric field. The complexity of the general
case in eq. (A.30) can be often reduced by the symmetry of the system or due to locality.

local, inhomogeneous:
If the response f(r) depends only on the perturbation g(r′) at the same position r = r′,
the response function R is local in space and we have with eq. (A.28)

f(r) = R(r) · g(r) ←→ f̃(q) = [R̃∗g̃ ](q) =
∫
dq′ R̃(q − q′)g̃(q′), (A.32)

where R̃(q) is the Fourier transform (A.23) of the one-particle function R(r). Comparing
with (A.30), the relation with the general response function is given by

R(r, r′) = R(r)δ(r − r′) ←→ R̃(q, q′) = R̃(q − q′). (A.33)

non-local, homogeneous: R(r, r′) = R(r + r′′, r′ + r′′)
The response f(r) depends on the perturbation g(r′) at all positions r′, but the system
is invariant under any translation r′′. The response only depends on the distance r−r′:

f(r) =
∫
dr′R(r − r′)g(r′) = [R∗g](r) ←→ f̃(q) = R̃(q) · g̃(q). (A.34)

The different q-modes do not mix in Fourier space. Analogous to eq. (A.33), we have

R(r, r′) = R(r − r′) ←→ R̃(q, q′) = R̃(q)δ(q − q′). (A.35)
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crystal symmetry: R(r, r′)=R(r+R′′, r′+R′′)
A crystal is invariant under translations by any lattice vector R′′. By dividing the space
into unit cells ΩR at position R and correspondingly the momentum q = qr +G in a
reduced vector qr in the first Brillouin zone and a reciprocal lattice vector G, one has

f(r +R) =
∑
R′

∫
Ω0
dr′R(r +R, r′ +R′)g(r′ +R′) ←→

f̃(qr +G) =
∑
G′

R̃(qr +G, qr +G′)g̃(qr +G′), (A.36)

which can be also written in matrix notation as(
f̃G

)
=
(

R̃GG′

)(̃
gG′

)
, R̃GG′(qr) ≡ R̃(qr +G, qr +G′). (A.37)

The reduced momentum qr is the same for f̃ and g̃. In a system with crystal symmetry,
only modes that differ by a reciprocal lattice vector G are mixed which is taken into
account by the matrix notation. The homogeneous system of eq. (A.34) is recovered if
the matrix R̃(q) = R̃GG′(qr)δGG′ is diagonal.

A.2.3 Symmetries of the Response Function
In general, any geometric transformation {D; τ} of the response function in real space
with the rotation D and translation τ

{D; τ}R(r, r′) ≡ R({D; τ}−1r, {D; τ}−1r′). (A.38)

is related with the following transformation in reciprocal space

{D; τ}R(q, q′) ≡ R(D−1q, D−1q′) e−i(q−q′)τ . (A.39)

A.3 Discrete Fourier Series
A.3.1 Born-van-Kármán Periodicity
In order to avoid mathematical problems with infinite systems and to allow a numerical
treatment, one often introduces periodic boundary conditions within a large box V .
These Born-van-Kármán boundary conditions apply to all (wave)functions of the system.
The Fourier transform of a periodic one-particle function f(r) is given by the Fourier
series:

f(r) = 1
V

∑
q

f̃(q) e+iqr ←→ f̃(q) =
∫
V
dr f(r)e−iqr, (A.40)

166



where the q vectors are now restricted to discrete values. Each component α = 1, 2, 3 is
given by qα = (2π/Lα)pα, where pα is a number and Lα is the length of the box along
direction eα, leading to a volume V = L1L2L3. In analogy to eq. (A.25), one has

δ(r) = 1
V

∑
q

e+iqr, δqq′ =
1
V

∫
V
dr e−i(q−q

′)r, (A.41)

and we find for the response function f̃(q) =
∑
q R̃(q, q′)g(q′):

R̃(qω, q′ω′) = 1
2πV

∫
V
drdt

∫
V
dr′dt′ e+i(ωt−qr) R(rt, r′t′) e−i(ω′t′−q′r′). (A.42)

A.3.2 Real-Space Sampling
For a numerical treatment, we also have to discretise the real-space variable r [e. g. 206].
Without loss of generality, we consider only the one-dimensional case. The periodic
complex function f : [0, L) → C is numerically represented by N complex numbers
fi = f(zi) at the sampling points zi = i ·4z for i = 0, 1, . . . , N−1. In the limit 4z → 0
we can approximate the integration in eq. (A.40) by the summation

f̃(qp) ≈ 4z
∑
i

fie
−iqpzi , qp = p · 2πL , p = 0,±1, . . . ,±bN2 c. (A.43)

Note, that f̃(qp) becomes periodic f̃(qp) = f̃(qp + 2π/4z) in frequency q within this
approximation. One can introduce the discrete Fourier transformation FT : CN → CN

fi = 1
N

∑
p

f̃p e
+iqpzi ←→ f̃p = FTfi =

∑
i

fie
−iqpzi , (A.44)

which is related to the continuous Fourier transform (A.40) by

f(zi) = f(i ·4z) = fi, f̃(qp) = f̃(p · 2πL ) ≈ 4zf̃p. (A.45)

Analogous to the continuous case, we find for the two-particle function fi =
∑
i′ Rii′gi′ :

Rii′ =
1
N

∑
qq′

e+iqpziR̃qq′ e
−iq′pz′i ←→ R̃pp′ =

1
N

∑
ii′

e−iqpziRii′ e
+iq′pz′i , (A.46)

R(zi, z′i) ≈ Rii′/4z, R̃(qp, q′p) ≈ R̃pp′ . (A.47)

In a formally similar way, we obtain the discretisation for the delta distributions

δ(z − z′)→ δii′/4z, δ(q − q′)→ δpp′ (A.48)
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(a) (b) (c)

Fig. A.1: The geometry of the (a) cylinder and (b) the unrolled sheet (see also section 6.1). (c)
Normalisation volume for the Fourier transform.

A.4 Response in Cylindrical Systems
A.4.1 Cylindrical Coordinates
Let r = (x, y, z) be the position vector in the tube coordinate system (see fig. A.1a). In
cylindrical coordinates % ≡ (%, ϕ, z), the volume element d3r and the delta function read

d3r = dx dy dz = % d% dϕ dz ≡ % d%, δ(r) = 1
%
δ(%) δ(ϕ) δ(z). (A.49)

Fourier Transform in Cylindrical Coordinates

We use the following definition of the discrete Fourier transform of f(%, ϕ, z) in ϕ and z:

f(%) = f(%, ϕ, z) = 1
2πLz

∑
lp

f̃(lp; %) e+ilϕ e+ipz,

f̃(ξ; %) = f̃(lp; %) =
∫ 2π

0
dϕ

∫ Lz

0
dz f(%, ϕ, z) e−ilϕ e−ipz, ξ = (l, p)

(A.50)

in accordance with eq. (A.40). Analogously to eq. (A.31) we find for the response function

f̃(ξ; %) =
∑
ξ′

∫
d%′ %′ R̃(ξξ′; %%′)g̃(ξ′; %′) (A.51)

R̃(ξξ′; %%′) = 1
2πLz

∫ 2π

0
dϕ dϕ′

∫ Lz

0
dz dz′ e−i(lϕ+pz) R(%%′) e+i(l′ϕ′+p′z′) (A.52)

Relation with Cartesian Fourier Transform

In order to calculate the AR-EELS spectrum for a cylindrical system, we investigate the
connection of R(ξξ′; %%′) with the Fourier transform R(qq′) in Cartesian coordinates.
Starting from the definition (A.42) of the Fourier transform in a normalisation box of
volume VCNT = L1L2Lz (see fig. A.1c), we decompose the momentum q = q⊥+ q||ez in a
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perpendicular and on-axis component and express all quantities in cylindrical coordinates

R̃(qq′) = 1
VCNT

∫∫
VCNT

d% d%′ %%′ e
−iq
⊥

r⊥−iq||z R(%%′) e+iq
′
⊥

r′
⊥
+iq′
||
z′

If the normalisation box is large such that R(%,%′) vanishes at the border of the supercell
(no interaction between periodic replicas), we can replace the rectangular by a cylindrical
normalisation box of the same volume πR2

maxLz = L1L2Lz. Expanding

eiq⊥r⊥ = eiq⊥% cos(ϕ−φ) (A.70)=
∑
l

ilJl(q⊥%) e
il(ϕ−φ)

we finally obtain with the Fourier transform in cylindrical coordinates (A.52)

R̃(qq′) = 2
R2

max

∑
l,l′

Rmax∫∫
0

d% d%′ %%′(−i)l(i)l′e+ilφe−il′φ′Jl(q⊥%)Jl′(q
′
⊥
%′) R̃(ll′, q||q

′
||
; %%′).

(A.53)

A.4.2 Zone-Folding
Within the zone-folding approximation (ZF), we transfer the properties of an isolated
graphene sheet to a cylinder. Formally, this can be expressed by a mapping % → r(%)
between cylinder and graphene coordinates (see fig. A.1a and b). For a scalar function,
we have [note that r(%) and r(%) denote the position in the tube and sheet, respectively]

fCNT(%) ZF= fs
(
r(%)

)
, r(%) = (x, y, z) = ϕ

2π
C + z

T
T + (%−R)ez, (A.54)

where fs(r) is a scalar function for the sheet in Cartesian coordinates and fCNT(%) the
corresponding scalar function of the tube in cylindrical coordinates. Of course, the sheet
function has to be periodic fs(r) = fs(r + C) along the circumference and sufficiently
localised perpendicular to the sheet, i. e., fs(r) 6= 0 only for |z| < zc � R. In contrast
to eq. (A.49), the volume element in the coordinate system of the sheet is given by

d3r = dx dy dz = R d% dϕdz = R d%. (A.55)

This follows directly from the transformation in eq. (A.54) if we choose the x-axis of the
sheet along C. Then we have ∂x

∂ϕ = C
2π = R, ∂y

∂z = 1, and ∂z
∂% = 1.

Zone-Folding in Reciprocal Space

As in section 5.4, we perform a 2D-Fourier transform only for the in-plane quantities
r̄ = r̄(ϕ, z) = ϕ

2πC + z
T T . With the area As = 2πLzR of the unrolled sheet, we find

f̃s(q̄; z) =
∫
As
dr̄ fs(r̄, z)e−iq̄r̄

(A.55)=
∫ 2π

0
dϕ

∫ Lz

0
dzR fs

(
r̄(ϕ, z), z

)
e−iq̄r̄(ϕ,z) (A.56)
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With the definitions (see section 6.1)

l ≡ C·q̄/(2π), p ≡ q̄·T /T, q̄ = 2πlC/C2 + pT /T, % = z +R, (A.57)

we have e−iq̄r̄(ϕ,z) = e−i(lϕ+pz). A comparison of eq. (A.50) and (A.56) leads us to

Rf̃CNT(ξ; %) ZF= f̃s(q̄; z), ξ = (l, p). (A.58)

Zone-Folding for the Response Function

What does this mean for the response function RCNT(%%′)? In real space, we have

fCNT(%) ZF= fs(r) =
∫
V
dr′Rs(r, r′) gs(r′)

(A.55)=
∫
V
d%′R Rs

(
r(%), r(%′)

)
gCNT(%′)

and thus by comparison with the definition of the response function of the tube

%′RCNT(%%′) ZF= RRs
(
r(%), r(%′)

)
. (A.59)

Analogously, we obtain from eq (A.58) in reciprocal space

Rf̃CNT(ξ; %) = f̃s(q̄; z) =
∑
q̄′

∫ zc

−zc
dz′ R̃s(q̄q̄′; zz′) g̃s(q̄′; z′)

=
∑
ξ′

∫ R+zc

R−zc
d%′R R̃s

(
q̄(ξ)q̄(ξ′); z(%)z(%′)

)
g̃CNT(ξ′; %′)

and thus by comparison with eq. (A.51)

%′R̃CNT(ξξ′; %%′) ZF= R̃s
(
q̄q̄′; zz′

)
. (A.60)

Equivalently, we can arrive at this equation by a Fourier transform of eq. (A.59). The
factor R on the right-hand side is then compensated by the different normalisation areas
As = 2πLzR and ACNT = 2πLz in the Fourier transformations of the sheet and the tube.

As in the case of scalar functions, the zone-folding approach is limited to response
functions that are periodic Rs(rr′) = Rs(r + C, r′ + C) and local in perpendicular
direction, i. e., Rs(rr′) = 0 if |z| > zc or |z′| > zc. The model is applicable for the
polarisability πCNT of large tubes R � zc.

Symmetry Considerations

Due to the crystal symmetry in the graphene sheet, the Fourier transform R̃s(q̄q̄′; zz′)
is only non-zero if the Bragg condition q̄− q̄′ = Ḡ is fulfilled [see eq. (A.36)]. By virtue
of eq. (A.60) and (A.57) this must also hold for the cylinder response function:

R̃CNT(ll′, pp′; %%′) 6= 0 ⇐⇒ ∃ Ḡ : 2π
C2 (l − l′)C + 2π

T 2 (p− p′)T = Ḡ, (A.61)
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Fig. A.2: Behaviour of the (modified) Bessel functions (a) Jn(x), (b) In(x), and (c) Kn(x).

Multiplying the reciprocal lattice vector Ḡ of graphene with NS = C −MT , we find

(l − l′)−M(p− p′) = NSḠ/(2π) = Nj, j ∈ N, (A.62)

where S denotes the symmetry vector (6.2), N = 2(n2 + m2 + nm)/dR is the number
of graphene unit cells in the tube cell, and M = mp̃ − nq̃ is the number of primitive
translations T in NS [4]. Two important conclusions follow from this equation:

• The difference l− l′ must be a multiple of d = gcd (N,M) which corresponds to the
number of pure rotations Cd present in the tube (see table 6.1). For chiral tubes,
we find d = gcd (n,m) and for achiral tubes (m = n or m = 0) we have d = n.

• For p = p′, the difference l − l′ must be a multiple of N . Thus, expression (6.21)
is largely simplified and i(l−l

′) = ±1 must be always real (N is an even number).

Additionally to the pure rotations, we can make use of the two-fold rotation axis perpen-
dicular to the tube. If we choose the x-axis along this rotation axis, the system remains
unchanged under the transformation (%, ϕ, z)→ (%,−ϕ,−z). In reciprocal space we thus
have [see eq. (A.39)]

R̃CNT(ll′, pp′; %%′, ω) = R̃CNT(−l−l′,−p−p′; %%′, ω). (A.63)

A.4.3 Bessel Functions
Rewriting the Laplace equation 4Φ(r) = 0 in cylindrical coordinates, the radial part
takes the form of a Bessel differential equation which reads in standard form as [e. g. 11]

z2∂2
zw + z∂zw + (z2 − ν2)w = 0, w = w(z), z ∈ C, ν ∈ R. (A.64)

The solutions are called Bessel functions of the first kind Jν(z). Due to the symmetry

Jν(−z) = (−1)νJν(z), J−n(z) = (−1)nJn(z), n ∈ Z, (A.65)
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the two solutions Jν and J−ν are independent only for non-integer ν1. The Bessel
functions show a damped oscillatory behaviour for |z| � 1 (see figure A.2a). Their exact
asymptotic behaviour is given by [207]:

Jν(z)
|z|→0−−−→ 1

Γ(ν + 1)

(z
2

)ν
+O

(
zν+2

)
(A.66)

Jν(z)
|z|→∞−−−−→

√
2/(πz) cos

(
z − 1

4π −
1
2νπ

)
+O

(
|z|−1

)
, if | arg z| < π. (A.67)

For real arguments Jν(x), the crossover between these two behaviours is approximately
found at x ≈ ν. For smaller x < ν − 1, the Bessel function Jν(x) is essentially zero.
It takes its global maximum at x̄ν which is found at values slightly larger than ν, e. g.,
x̄0 = 0, x̄1 = 1.8, x̄2 = 3.1, x̄3 = 4.2, x̄4 = 5.3, x̄5 = 6.4, x̄10 = 11.8. And finally, the
Bessel function Jν(x) starts to oscillate with a period of 2π for x� ν.

The modified Bessel functions Iν(z) and Kν(z) are linear independent solutions of

z2∂2
zw + z∂zw − (z2 + ν2)w = 0, w = w(z), z ∈ C, ν ∈ R. (A.68)

Both are symmetric in the index ν

K−ν(z) = Kν(z), I−n(z) = In(z), n ∈ Z, (A.69)

and have an opposite asymptotic behaviour. For small |z| � 1, Iν>0(z)→ 0 vanishes and
I0(z)→ 1, while the function Kν diverges. At large |z| � 1, Iν(z) diverges exponentially,
and Kν(z) vanishes exponentially (see fig. A.2b and c).

A.4.4 Expansions in terms of Bessel Functions
Using Bessel functions, any plane wave can be expressed in cylindrical coordinates [207]

eik·r = eik% cosϕ =
∞∑

m=−∞
imJm(k%) eimϕ. (A.70)

This equation is known as the Jacobi-Anger expansion. The modified Bessel functions
appear in the expansion of the Green function (Coulomb potential) [11, p. 118]

1
|r − r′|

= 1
π

∞∑
m=−∞

∫ ∞
−∞

dk eim(ϕ−ϕ′)eik(z−z
′)Im

(
|k|%<

)
Km

(
|k|%>

)
(A.71)

= 1
2

∞∑
m=−∞

∫ ∞
−∞

dk eim(ϕ−ϕ′)e−|k||z−z
′|Jm

(
|k|%

)
Jm
(
|k|%′

)
, (A.72)

where %< = min{%, %′} and %> = max{%, %′} denote the smaller and larger radius.

1Another linear independent solution is given by the Neumann function.

172



A.4.5 Coulomb Potential of the CNT
The Coulomb potential in cylindrical coordinates can be derived by expanding e2

4πε0
1

|r−r′|
in terms of the modified Bessel functions Kl and Il [see eq. (A.71)] and performing the
Fourier transform in ϕ and z [see eq. (A.50)]

v(lp, l′p′; %1%2) = v(lp; %1%2) δll′δpp′ , v(lp; %1%2) = e2

ε0
Il(|p|%<)Kl(|p|%>). (A.73)

The Graphene limit is obtained, if we let the radius R → ∞ while %1 = R + d1 and
%2 = R+ d2 with fixed d1 < 0 and d2 > 0. For l = 0, one has

I0
(
|p′′|%1

)
K0
(
|p′′|%2

) R→∞−−−−→ 1
2|p′′|R

e−|p
′′||d1−d2|, (A.74)

which becomes the same as v2D/R.
To check the consistency of our equations, we formally rederive the Fourier represen-

tation of the Coulomb potential v(q) = e2

ε0q2
by applying eq. (A.53). Switching to a

continuous Fourier transform, i. e., letting Rmax → ∞ and πR2
max = V → (2π)2, we

have

v(qq′) = e2

ε0

δpp′

2π
∑
l

∫∫ ∞
0
d% d%′ %%′ e+il(φ−φ

′) Jl(q̄%)Jl(q̄′%′) v(lp; %%′). (A.75)

Considering only the integration in %, the integrand is known do decay exponentially if
the on-axis momentum p does not vanish. One finds for q̄ > 0 and |p| > 0

Rmax∫
0

d% % Jl(q̄%)Il(|p|%<)Kl(|p|%>) Rmax→∞−−−−−−→
%′ fixed

1
q̄2 + p2 Jl(q̄%′) (A.76)

and thus

v(qq′) = e2

ε0

δpp′

q̄2 + p2
1
2π
∑
l

e+il(φ−φ
′)
∫ ∞
0

d%′ %′ Jl(q̄%′)Jl(q̄′%′) (A.77)

= e2

ε0

1
q2

δpp′δ(φ− φ′)
1
q̄
δ(q̄ − q̄′) = e2

ε0q2
δpp′δ

(2)(q̄ − q̄′), (A.78)

where we have used eq. (A.41) and the orthogonality relation for the Bessel functions [11]

δ(k − k′)
k

=
∫ ∞
0
d% % Jn(k%)Jn(k′%). (A.79)
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A.5 Algebra of the Dielectric Matrix
A.5.1 Block inversion
The n×n–matrix M and its inverse M−1 shall be both divided into four block matrices

M =
(
P Q
R S

)
, M−1 =

(
A B
C D

)
(A.80)

The separated blocks are then related with each other as

A =
(
P −QS−1R

)−1
, (A.81)

B = −A
(
QS−1), C = −

(
S−1R

)
A, (A.82)

D = S−1 +
(
S−1R

)
A
(
QS−1), (A.83)

which follows form the definition MM−1 = 1̂. For block diagonal matrices (Q = R = 0),
we have A = P−1.
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B Microscopic Dielectric Theory

In the following, we consider the excitation of a crystal by external fields within the
framework of a semi-classical dielectric theory. The external perturbation is treated in
a purely classical way, while the material is described by a response function that has
to be determined from a quantum-mechanical calculation. We will discuss (1) the role
of longitudinal and transverse components (2) the ambiguity of the definition of the
microscopic dielectric function for large momentum transfers q > 0. (3) the relation
between microscopic and macroscopic quantities.

B.1 Dielectric Theory
B.1.1 Microscopic Maxwell Equations
The microscopic Maxwell equations (MW) read in SI–notation1 [208]:

(i) ∇·B = 0 (ii) ∇×B − 1
c2∂tE = µ0j

(iii) ∇×E + ∂tB = 0 (iv) ∇·E = ρ/ε0
(B.1)

The microscopic electric field E and magnetic field B are generated by the charge and
current densities ρ and j, respectively. They are intimately connected by the continuity
equation (in real and reciprocal space, see appendix A.2):

∇·j + ∂tρ = 0, ←→ q·j = ωρ. (B.2)

Note that all quantities are to be understood as being statistical averages of the corre-
sponding quantum mechanical operators, i. e., E = Sp{ρ̂Ê} [121].

Potentials

The homogeneous equations (i) and (iii) are automatically fulfilled by introducing the
potentials B = ∇×A and E = −∇ϕ− ∂tA. Using the Coulomb–gauge (∇·A = 0), the
inhomogeneous Maxwell equations (ii) and (iv) can be written as

�A = µ0jT, ∆ϕ = − 1
ε0
ρ, � ≡ ( 1

c2∂
2
t −∆). (B.3)

Here, the current density j has been separated into a transverse part q·jT = 0 and a
longitudinal part q×jL = 0 that is related to the density q·jL = ωρ by eq. (B.2).

1Using CGS–notation, one has to replace ε0 = 1
4π and µ0 = 4π

c2 in any of the following equations.
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Wave Equation

EliminatingB in the Maxwell eq. (B.1,ii), one arrives at the wave equation which directly
links the electric field E to its sources j

∇×
(
∇×E

)
+
(1
c∂t
)2
E = −µ0∂tj. (B.4)

The inversion of this equation by means of the Greens function operator O−1 gives

E = −µ0O−1∂tj, O ≡ ∇×
(
∇× ·

)
+
(1
c∂t
)2. (B.5)

Separation of Charges

In order to to describe the interaction of charged particles or electromagnetic radiation
with a solid, one should start from Maxwell equations that include all internal and
external sources. The static charge density ρ0 accounts for all electrons and nuclei of
the unperturbed solid in the ground state. When external sources ρe are added to the
system, the (internal) total charge density ρt = ρ− ρe will differ from ρ0 by the induced
charges ρi, i.e., ρ = ρ0 + ρe + ρi. The current density j and the fields E and B are split
up analogously. Because of linearity, the Maxwell equations (B.1) and the continuity
equation (B.2) will hold for each of the subsystems. Therefore, one can separate the
static charge density ρ0 from the problem and consider Maxwell equations that contain
only the changes ρt due to the perturbation [51]. Further, ρt = ρe + ρi is divided into
external and internal charges by assuming that a clear distinction is possible at any time.
This excludes, e.g., exchange and correlation effects between the external electrons and
the electrons inside the solid (test-particle case).

B.1.2 Response Functions
To close the set of equations (B.1), one still needs a so called material equation relating
the induced current ji with the external one je. In most cases, the perturbation is
small and we can restrict ourselves to a linear relation. The most general linear relation
between two fields is given by:

F iα(rt) =
∫
dr′

∫
dt′Rαβ(r, r′; t− t′)F eβ(r′t′), or shorter: F i = RF e. (B.6)

Of course, the linear operator R has to be homogeneous in time (see appendix A.2.2).
Several relations are used in literature [209]

(a) internal conductivity σ : ji = σEt

(b) external conductivity σe: ji = σeEe

(c) polarisability π : ∂tj
i = πEt

(d) susceptibility χ : ∂tj
i = χEe

(e) micr. dielectric function ε : Ee = εEt

(B.7)
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and only one of these is necessary to close the Maxwell eq. (B.1). Of course the different
functions are intimately related with each other. But there are several differences [121]:

First, only (b) and (d) should be called response function, because they are the only
quantities that describe the response to an external field which can be varied arbitrarily.
Only in this case, Kramers-Kronig relations and sum rules strictly hold. The other
quantities, which will be called generalised response functions for clarity, may obey such
relations only in certain limits (e. g., for long wavelength q → 0).

Second, several definitions for the microscopic dielectric function are used in literature,
which are the same in the optical limit q → 0 but differ for non-zero momentum transfers.
We will consider this point in detail in section B.2.

B.1.3 Longitudinal and Transverse Fields
Due to the structure of the Maxwell equations, it is useful to separate all fields into a
irrotational (curl-free) and solenoidal (divergence-free) component. For plane waves, this
corresponds to a polarisation parallel (e.g., plasmons) or perpendicular (e.g., photons) to
the direction of propagation, respectively. By introducing the following projectors [51]

PL = q)(q
q2

=
qαqβ
q2

, PT = −q×(q× · )
q2

= δαβ −
qαqβ
q2

, (B.8)

P 2
L = PL, P 2

T = PT, PLPT = 0 = PTPL, PL + PT = 1̂,

any vector field can be divided into its longitudinal (curl-free) and transverse (divergence-
free) components. For example, one has in Fourier space,

E(q) = (PL + PT)E = EL +ET = 1
q2q(E·q)−

1
q2q×(q×E).

Using the Coulomb gauge, the Maxwell equations (B.1) can be separated, too. Indeed,
the vector potential A determines exactly the transverse components, and the scalar
potential ϕ the longitudinal components of the E and B fields.

Longitudinal and Transverse Green–Function

Accordingly, the operators O and O−1 can be Fourier transformed

O(rt) = ∇×
(
∇× ·

)
+
(1
c∂t
)2 ←→ O(qω) = q2PT − ω2

c2 1̂,

and divided into their longitudinal and transverse components (see [209, 210]):

O(qω) = −ω
2

c2
PL−

ω2−c2q2

c2
PT, O−1(qω) = − c

2

ω2

[
PL+ 1

1−(q/q0)2
PT

]
. (B.9)

Here, q0 ≡ ω/c is the wave vector of light with frequency ω in vacuum. One can now
distinguish three cases:

• q � q0 : O−1 ≈ O−1
L . The transverse component is negligible. In particular, this

holds for all microscopic fields in crystals with wave vectors q = k+G outside the
first Brillouin zone (like crystal local fields).
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• q � q0 : Both, the longitudinal, and the transverse part are important.

• q ≈ q0 : O−1 ≈ O−1
T . The transverse component diverges for q = q0. In this

case, modes with wave vector q obey the dispersion law of light in vacuum and
can escape from the solid (Čerenkov radiation).

B.1.4 Macroscopic Maxwell Equations
In the optical limit, i. e., when the wavelength λ of the perturbation is much larger
then the size of the unit cell a, one usually introduces the phenomenological macro-
scopic Maxwell equations. Microscopic effects like the crystal local-field effects are then
incorporated into the macroscopic dielectric function and need careful consideration.

Spatial Averages

The macroscopic Maxwell equations are usually derived from the microscopic Maxwell
equations (B.1) by averaging all microscopic quantities within a mesoscopic volume λ3 �
V � a3 using a convolution with any function φ that vanishes outside of V [11, 211]:

〈F 〉(r, t) ≡ φ(r) ∗ F (r, t) =
∫
dr′φ(r − r′)F (r′, t). (B.10)

Bound charges ρb, that stay within a microscopic volume a3 in spite of the external
perturbation, do not contribute to the averaged total charge density 〈ρt〉. However, as
they can act as microscopic electric and magnetic dipoles, they give rise to a macroscopic
polarisation 〈P 〉 and magnetisation 〈M〉2,

−∇·〈P 〉 = 〈ρb〉, ∇×〈M〉 + ∂t〈P 〉 = 〈jb〉. (B.11)

An example for bound charges might be the core electrons of the atoms. Free charges
ρf instead which can move inside the crystal, like the conduction electrons of a metal,
are retained in the macroscopic Maxwell equations which finally read [208]

(i) ∇·〈B〉 = 0 (ii) ∇×〈H〉 − ∂t〈D〉 = 〈je〉 + 〈jf 〉
(iii) ∇×〈E〉 + ∂t〈B〉 = 0 (iv) ∇·〈D〉 = 〈ρe〉 + 〈ρf 〉

〈H〉 = 1
µ0
〈B〉 − 〈M〉, 〈D〉 = ε0〈E〉 + 〈P 〉.

(B.12)

Macroscopic Dielectric Function

The macroscopic dielectric function εM is then defined as 〈D〉 = ε0εM 〈E〉, i. e.,

〈Dα〉(r, t) =
∫
dr′
∫
dt′ ε0 ε

αβ
M (r−r′, t−t′) 〈Eβ〉(r′, t′). (B.13)

2P and M are introduced as the sum over all microscopic dipoles pn and mn, i. e. P =
∑

n
pnδ(r−rn).
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As the averaged crystal is homogeneous in space, the dielectric function only depends
on the distance r− r′ [see eq. (A.35)]. In most cases, the response is very localised, i. e.,
a perturbation at r′ will only affect points r at a distance that is very small compared
to the wavelength λ of the excitation. The Fourier transform εM (q, ω) is then a very
smooth function of q = 2π/λ and can be therefore expanded as [46]

εαβM (q, ω) = ε̂αβM (ω) + γ̂αβη(ω)qη + α̂αβην(ω)qηqν + . . . , (B.14)

where γ̂ = [∇qεM (q, ω)]q=0 is a rank-three, α̂ a rank-four tensor, and so on. These terms
constitute the non-local corrections to the local, macroscopic dielectric matrix ε̂M (ω).
They account for the spatial-dispersion in the material and are responsible for effects
like the intrinsic birefringence in cubic crystals.

Note, however, that the derivation of the macroscopic Maxwell eq. (B.12) and the
definition of εM is justified only in case of a long wavelength λ � a compared to
the lattice constant a. Otherwise, the separation of bound and free charges becomes
ambiguous, and thus the definition of 〈P 〉 and 〈M〉 (see next section). Additionally, the
equations are not Lorentz-invariant and thus only valid in the rest frame of the crystal.

B.2 Ambiguity of the Microscopic Dielectric Function
With the advance in solid state physics and the possibility to actually calculate mi-
croscopic charge-density fluctuations for real materials (e. g., using density functional
theory), one is interested in generalising the macroscopic dielectric function, which was
introduced above, for the microscopic Maxwell equations.

B.2.1 Generalisation of the Dielectric Function
Of course, the distinction between bound and free charges becomes obsolete on micro-
scopic distances and one has to choose a different method [209]. The starting point
is to split the induced current ji into a microscopic polarisation P and a microscopic
magnetisation M in formal analogy to eq. (B.11)

ρi = ∇·P , ji = ∂tP +∇×M . (B.15)

The microscopic Maxwell equations (B.1) then assume a form, that is very similar to the
macroscopic Maxwell equations (B.12), except that all quantities are now microscopic:

(i) ∇·Bt = 0 (ii) ∇×H − ∂tD = je

(iii) ∇×Et + ∂tB
t = 0 (iv) ∇·D = ρe

H = 1
µ0
Bt −M D = ε0E

t + P .

(B.16)

Analogously to eq. (B.13) we might now define a microscopic ε as D = ε0εE
t, i. e.,

Dα(r, t) =
∫
dr′
∫
dt′ ε0 ε

αβ(r, r′, t−t′) Etβ(r′, t′). (B.17)
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Of course, the crystal is not homogeneous and we have to retain the full dependence on r
and r′. The problem with this definition is, that the splitting and hence the microscopic
fields P and M are not uniquely defined. Indeed, one can always perform the following
transformation without changing the induced current ji and the physics of the system

P̃ = P −∇×L, M̃ = M + ∂tL, for arb. L(r, t). (B.18)

Also D and H will transform accordingly and are not unique (H̃ = H +M − M̃),

D̃ = D −∇×L, H̃ = H − ∂tL. (B.19)

The microscopic dielectric function is therefore only defined up to an arbitrary field L:

(D − iq×L) = ε0ε̃E
t. (B.20)

This ambiguity vanishes in the optical limit q → 0, where the microscopic and macro-
scopic definitions coincide. Note that only the transverse part of D is affected by the
choice of L. Hence the longitudinal contractions ε̃LL and ε̃LT of the dielectric function
are uniquely defined. Contrarily, the inverse dielectric function ε̃−1

LL at large q is only
uniquely defined in homogeneous media. For the proof, we rewrite equation (B.20) as

ε−1
0

(
ε−1

LL ε−1
LT

ε−1
TL ε−1

TT

)(
DL

DT

)
=
(
EtL
EtT

)
!= ε−1

0

(
ε̃−1

LL ε̃−1
LT

ε̃−1
TL ε̃−1

TT

)(
DL

DT − L′T

)
, L′ ≡ iq×L,

Assuming that ε−1
LL =ε̃−1

LL does not depend on L, one has ε−1
LTDT = ε̃−1

LT [DT − L′T], which
contradicts the requirement of ε̃−1

LT to be linear (e. g., let DT be λDT). In homogeneous
systems, this contradiction vanishes because ε−1

LT = 0.

But in general, one has to specify the choice of L used in the definition of the microscopic
dielectric function. Two different definitions are commonly used in literature:

(a) Separation of Charges: D = ε0E
e

A natural choice is to separate all quantities in the microscopic Maxwell eq. (B.1) in
external and induced contributions. In consistency with eq. (B.15) one defines

P = −ε0Ei, M = Bi/µ0, (B.21)

as the fields generated by the subsystem of induced charges. It follows that

D = ε0E
t + P = ε0E

e, H = Bt/µ0 −M = Be/µ0, (B.22)

are the fields originating from the external charges. The microscopic dielectric function,
according to eq. (B.20), relates the two subsystems

Ee = εEt, Et = ε−1Ee. (B.23)

This choice will be particularly useful, if we want to determine the macroscopic response
Et to a macroscopic external perturbation Ee. In this thesis, we will mainly refer to this
definition of ε. It is also used, e. g., by the references [49, 121, 209], and [51, p. 181, Θ].

180



(b) Vanishing Magnetisation: M̃ = 0
Another common choice is to remove the magnetisation from all equations by setting
∂tL = −M . The magnetic response is then incorporated into the D̃ and H̃-field, and
hence into the dielectric function ε̃, while µ̃ = 1̂. It follows from eq. (B.15) and (B.16)

∂tP̃ = ji, M̃ = 0, ∂tD̃ = ji + ε0∂tE
t, H̃ = Bt/µ0; (B.24)

and one has, according to eq. (B.20),

D̃ = ε0ε̃E
t, ε0E

t = ε̃−1D̃. (B.25)

Examples for references that use this definition include [212],[51, p. 177, pseudo dielectric
tensor ε], [213], [28]. The main advantage is clearly the formal equivalence with the
macroscopic definition (B.13). Nevertheless, the averaging is indeed more complicated
than for definition (a), because both, D̃ and Et are microscopic fields.

B.2.2 Relation to Other Response Functions
The susceptibility χ and polarisability π are directly connected with the induced current
ji and are thus uniquely defined. In order to derive their relation with ε−1, we use

ε−1Ee (B.23)= Et = Ee +Ei (B.5)= Ee − µ0O−1∂tj
i (B.7)= (1̂− µ0O−1χ)Ee, (B.26)

A similar equation holds for ε and we find

ε = 1̂ + µ0O−1π, ε−1 = 1̂− µ0O−1χ. (B.27)

To obtain the corresponding relation to the dielectric function ε̃, we consider

ε0∂
2
t ε̃E

t (B.25)= ∂2
t D̃

(B.24)= ∂tj
i + ε0∂

2
tE

t (B.7)=
(
π + ε0∂

2
t

)
Et. (B.28)

Thus, we find (using a Fourier transform)

ε0∂
2
t ε̃ = ε0∂

2
t + π ←→ ε̃ = 1̂− µ0

c2

ω2 π. (B.29)

B.2.3 Difference between ε and ε̃
From eq. (B.27) and (B.29) we immediately find in Fourier space (q0 = ω/c)

− c2

ω2O(ε− 1̂) = (ε̃− 1̂),
[
− c2

ω2O = 1̂− (q/q0)2PT

]
. (B.30)

and a projection to the subspace of longitudinal waves gives a relation between ε and ε̃:

εLL = ε̃LL, εLT = ε̃LT, (B.31)[
1̂T − ( qq0 )2PT

]
(εTT − 1̂T) = (ε̃TT − 1̂T),

[
1̂T − ( qq0 )2PT

]
εTL = ε̃TL. (B.32)
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As we have already seen earlier in eq. (B.20), we find that ε and ε̃ coincide for their
longitudinal projections εLL and εLT, or in the limit q → 0.

One can derive similar equations for the field D and D̃. With

D̃
(B.19)= D − iq× 1

iω
M

(B.21)= ε0E
e − q× 1

µ0ω
Bi = ε0E

e − 1
µ0ω2q×(q×Ei),

where the Maxwell eq. (B.1(iii)) has been used in the last step, on has

D̃L = DL = ε0E
e
L, D̃T = DT + 1

µ0

q2

ω2E
i
T. (B.33)

B.3 Connecting Microscopic and Macroscopic Quantities
B.3.1 Full Hamiltonian
First, the connection between the microscopic and macroscopic dielectric function is
recalled. One starts from the relation between the microscopic fields Ee and Et

Et = Ee +Ei = (1̂− µ0O−1χ)Ee = ε−1Ee, (B.34)

where O−1 is the Greens function of the vacuum. Assuming a macroscopic external field
Ee = 〈Ee〉, one can define a macroscopic dielectric function 〈〈ε〉〉 relating 〈Ee〉 and 〈Et〉:

〈Ee〉 = 〈〈ε〉〉〈Et〉, 〈〈ε〉〉 =
[
1̂− µ0〈〈O−1χ〉〉

]−1 =
[
〈〈ε−1〉〉

]−1. (B.35)

Similarly, with

〈∂tji〉 = 〈〈χ〉〉〈Ee〉 = 〈〈χ〉〉〈〈ε〉〉〈Et〉 (B.36)

one introduces the macroscopic dielectric function 〈〈ε̃〉〉 relating 〈ji〉 and 〈Et〉

〈∂tji〉 = ε0
[
〈〈ε̃〉〉 − 1̂

]
〈∂2
tE

t〉, 〈〈ε̃〉〉 = 1̂− 1
ε0ω2 〈〈χ〉〉

[
1̂− µ0〈〈O−1χ〉〉

]−1. (B.37)

B.3.2 Coulomb Hamiltonian
Del Sole and Fiorino [212] argued, that in the formalism of TDDFT the transverse part
of the induced field Ei

T has to be treated like an additional external perturbation. They
introduced the perturbing field Ep = Ee +Ei

T = Et −Ei
L and defined a new response

function, the quasi-susceptibility

∂tj
i = χpEp (B.38)

which is supposed to be calculated in TDDFT instead of the full susceptibility χ. Com-
pared with the argumentation above, the perturbing field is considered to be purely
classical (i.e. determined by the Maxwell equations), while the exchange-correlation part
is neglected AXC = 0.

182



Analogously to eq. (B.34) one starts from the relations connecting the microscopic
perturbing field Ep with the fields Et and Ee:

Et = Ep +Ei
L = (1̂− µ0O−1

L χp)Ep, (B.39)
Ee = Ep −Ei

T = (1̂ + µ0O−1
T χp)Ep. (B.40)

For a purely macroscopic perturbing potential Ep = 〈Ep〉 one can again introduce the
macroscopic dielectric function 〈〈ε〉〉 which relates 〈Ee〉 and 〈Et〉 as

〈Ee〉 = 〈〈ε〉〉〈Et〉, 〈〈ε〉〉 =
[
1̂ + µ0〈〈O−1

T χp〉〉
][

1̂− µ0〈〈O−1
L χp〉〉

]−1. (B.41)

Analogously to eq. (B.36) one finds

〈∂tji〉 = 〈〈χp〉〉〈Ep〉 = 〈〈χp〉〉
[
1̂− µ0〈〈O−1

L χp〉〉
]−1〈Et〉 (B.42)

for introducing the macroscopic dielectric function 〈〈ε̃〉〉 as

〈∂tji〉 = ε0
[
〈〈ε̃〉〉 − 1̂

]
〈∂2
tE

t〉, 〈〈ε̃〉〉 = 1̂− 1
ε0ω2 〈〈χ

p〉〉
[
1̂− µ0〈〈O−1

L χp〉〉
]−1. (B.43)

We can directly compare our results with the findings of [212]. Instead of the suscepti-
bility χp, they use the quasi-polarisability αp, which is defined by P̃ = αpEp. With

∂2
t P̃ = ∂2

t α
pEp = ∂tj

i = χpEp, ⇐⇒ −ω2αp = χp, (B.44)

one finds that eq. (B.43) and Del Sole and Fiorino [212], eq. (22) differ only by a change
in notation:

χp → −ω2α̃, O−1
L χp → c2 qq α̃L→, 〈〈α̃〉〉 = [α̃]0,0 〈〈ε̃〉〉 → ↔

εM , (B.45)

and a switch to the CGI-system by letting ε0 = 1/4π, and µ0 = 4π/c2.

B.3.3 Normal Modes
In medium described by the dielectric function ε (or equivalently ε̃), one usually rewrites
the wave equation (B.4) in the following way (in Fourier space and real space):

iωµ0j
e = OEe = OεEt ⇐⇒ ∇×[∇×(εEt)] + 1

c2∂
2
t (εEt) = −µ0∂tj

e, (B.46)

or, using eq. (B.30), one obtains for ε̃:

iωµ0j
e = q2PTE

t− ω2

c2 ε̃E
t ⇐⇒ ∇×[∇×Et] + 1

c2∂
2
t (ε̃Et) = −µ0∂tj

e. (B.47)

The solutions of the homogeneous equations, i. e. without any external perturbation
je = 0, are the normal modes or resonances of the medium. Their dispersion is given
by the zeros of the determinant

det
[
O(qω)ε(qω)

] != 0, det
[
q2PT − ω2

c2 ε̃
] != 0. (B.48)

183



184



C Code Development

Our aim is the numerical calculation of AR-EEL spectra for graphene, graphite, and
single-wall carbon nanotubes. In this section, I give a brief overview of the Python-codes
that I have developed for this purpose (see table C.2, p. 193). References to the names
of the relevant files and routines are indicated at the outer margin in the online version.
The source code can be found at http://etsf.polytechnique.fr/People/Ralf/Codes and a
more technical documentation can be extracted from each file using pydoc. If not stated
differently, atomic units will be used in the following.

C.1 Tight-Binding for Carbon Materials
tight_binding.py

The tight-binding approximation for graphene has been described in section 5.2.2 for
nearest-neighbour interaction. In file tight_binding.py, I have implemented the cor-
responding equations to calculate the dielectric function ε̄(q̄, ω) and ε̄CNT(lp, ω) of a
graphene sheet and a single-wall carbon nanotube, respectively.

C.1.1 Graphene and Graphite
class
TB_GrapheneThe tight-binding calculation for graphene is implemented in the class TB_Graphene and

closely follows the work of Lin et al. [148] and Shung [147]. We use the parameters

a = 4.632 Bohr, E0 = 0 eV, γ0 = −2.84 eV, s0 = 0.07, εσ = 2.4. (C.1)

First, the geometry factor (5.11) is calculated. With the nearest neighbours (see fig. 5.5c) __g()

t1 = a
3
(√

3, 0
)T
, t2 = a

3
(
−
√

3/2, 3/2
)T
, t3 = a

3
(
−
√

3/2,−3/2
)T
, (C.2)

and using Cartesian coordinates for k = (kx, ky), one finds

g(kx, ky) = eikxa/
√

3 + 2 e−ikxa/(2
√

3) cos(kya/2). (C.3)

The tight-binding energy Enk is calculated from eq. (5.14), and the q-dependent matrix energy()

elements ρ̃nn′k are readily given by eq. (5.17) and (5.19). Note that even if the overlap rhotw()
s0 is included in the energies Enk, it is always neglected in the calculation of ρ̃nn′k .

Second, the graphene polarisability χ̄0 is computed by a summation over all k-points of
the grid kgrid_cc. By default, a Monkhorst-Pack grid of Nk×Nk equally spaced k-points
is used. In the case of undoped graphene at zero temperature, only interband transitions
between valence and conduction states contribute. Equation (3.14) and (5.31) then give chi0()
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χ̄0(q, ω) = 2
A

∑
k

ρ̃vck (q)
[
ρ̃vck (q)

]∗ Ecvk − Evck
(~ω + Evck + iη)(~ω + Ecvk + iη)

, (C.4)

where Evck = Evk−q−Eck denotes the energy of the resonant, and Ecvk = Eck−q−Evk the
energy of the corresponding anti-resonant transition. The normalisation volume Lz/V
is given by the area A of the graphene sheet in the normalisation box, i. e. A = N2

kAcell
given in Bohr2. All energies have to be converted to atomic units (Ha). For doped
graphene with a Fermi level EF 6= 0, expression (3.14) is calculated for interband andchi0_doped()

intraband contributions separately. The occupation numbers at T = 0 K are given by
the step function fnk = Θ(EF − Enk).

Finally, the two-dimensional macroscopic dielectric function ε̄ is calculated (seeeps()

eq. 5.20). Compared to DP, ε̄ corresponds to the macroscopic dielectric function for
in-plane momentum transfer q̄ which is calculated in RPA neglecting all LFE. In con-
trast, − Im {1/ε̄} corresponds to the EELS spectrum which is calculated within the
local-response approximation, i. e., taking into account crystal LFE along the direction
perpendicular to the plane.

Comparison with Lin et al. [148]

To test the implementation, we reproduce the results of Lin et al. [148], who calculatedex_graphite()

the dielectric function εM of graphite for different in-plane momenta q̄. In contrast to
isolated graphene, the interaction between the different layers of graphite has to be taken
into account which leads to a modified Coulomb potential [148, eq. (7b)]

vGraphite(q̄, qz = 0) = v2D(q̄)S(q̄), S(q̄) = sinh(q̄d0)/[cosh(q̄d0)− 1], (C.5)

where d0 denotes the graphite interlayer distance. Additionally, a correction of χ0, which
was proposed by Mermin for finite broadening η, has been used [148, eq. (4)]

χ0
corr(q, ω) = ω + iη

ω + iη
[
χ0(q, ω)/χ0(q, 0)

] χ0(q, ω). (C.6)

Using the same parameters as Lin et al., i. e., a = 4.6478 Bohr, γ0 = −2.5 eV, s0 = 0,
εσ = 2.4, and η = 0.1 eV, we exactly reproduce their results. Figure C.1 shows, for
instance, Im ε̄M of graphite for different in-plane momenta q̄ along the ΓK direction,
and Im ε̄ of intercalated graphite for q̄ along ΓM.

C.1.2 Single-Wall Carbon Nanotubes
As we have seen in section 6.2.2, the wave functions and energies of the tube can be
directly obtained from graphene within the zone-folding model [see eq. (6.7)]. To thiscnt.py
end, general tube parameters (like C, T , and R) are implemented in the class CNT()

following the notation of Saito et al. [4]. The zone_folding module provides functions forzone_folding.py
the mapping between graphene and tube coordinates in real and reciprocal space [see
eq. (6.10) and (6.11)] as well as the construction of the corresponding unit cells.
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Fig. C.1: (a) The dielectric function ε̄ of undoped graphite (d0 = 3.35 Å, EF = 0 eV) for
different in-plane momenta q̄ along the ΓK direction. Compare with [148, fig. 3(d)]. (b) The
dielectric function ε̄ of an stage-1 intercalated graphite compound (d0 = 9.42 Å, EF = 0.75 eV)
for an in-plane momentum q̄ along ΓM. Compare with [148, fig. 7(b)].

The independent-particle polarisability of the tube can be obtained from the corre-
sponding tight-binding expression (C.4) for graphene if the wave vectors k and q are
substituted by κ = (j, k) and ξ = (l, p), respectively: tight_binding.py

class TB_CNT

χ̄0
CNT(lp, ω) = 2

Ã

N−1∑
j=0

∑
k

(
Ecvjk − Evcjk

)
ρ̃vcjk(lp)

[
ρ̃vcjk(lp)

]∗
(~ω + Evcjk + iη)(~ω + Ecvjk + iη)

, (C.7)

where Enn′jk = En,j−l,k−p − En′, j,k denotes the energy of the transition n′ → n and

ρ̃nn
′

jk (lp) =
〈
n′, j−l, k−p

∣∣e−ilϕe−ipz∣∣n, j, k〉. (C.8)

The summation in eq. (C.7) runs over the quasi two-dimensional Brillouin zone of the
tube (see fig. 6.2a). Umklapp processes are correctly taken into account as we work
directly with the helical wave vector q̄(l, p) and k̄(j, k) [see eq. (6.11)]. This corresponds
to the use of helical coordinates instead of the linear-angular coordinates (see section 6.1).

All energies have to be converted to atomic units (Ha) and the normalisation volume
Ã = 1/(2πNkT ) is directly related to the area of the unrolled graphene ribbon RÃ =
2πRLz = CTNz = AcellNNk. The expression becomes equivalent to the polarisability
of the graphene sheet in the limit of very large tubes, i. e., when the cutting lines in the
Brillouin zone of the tube become sufficiently dense.

Comparison with Lin et al. [181]

Figure 6.4b shows the results of the tight-binding calculation for the loss function ex_cnt()

− Im ε̄−1
CNT of a (23, 0) SWCNT. The on-axis momentum is chosen as p = 0.2 Å−1 and dif-

ferent angular momenta l are shown. We reproduce exactly the results shown in Fig. 2a
of Lin et al. [181].
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C.2 Local-Response Approximation
The presented tight-binding method is fast but not very accurate and relies on several
fit parameters. To avoid these drawbacks, I have used the DP code to calculate the
two-dimensional polarisability χ̄0 of graphene from first-principles. The response χ̄ of
graphene and carbon nanotubes can be then calculated by the following post-processing:

C.2.1 Graphene
lra_graphene.py

Within the local-response approximation (see section 5.4), the susceptibility χ̄ of the
graphene sheet is obtained from χ̄0 by solving the Dyson equation for an effective ho-
mogeneous, infinitely thin slab [see eq. (5.32)]. The corresponding LRA method II (see
page 98) has been implemented in class LRA_Graphene (see file lra_graphene.py). Duringclass

LRA_Graphene initialisation, the polarisability χ0
d(q̄) for different in-plane momentum transfers q̄ is read

from the given list of outnlf.mdf files using the dp_mdf module. The member functions
chi0, chi, eps, and epsi return the corresponding sheet polarisability, sheet susceptibility,
and two-dimensional (inverse) dielectric function [see eq. (5.31)ff] for a given momentum
q̄ in Cartesian coordinates. If the parameter lambd is specified at the initialisation of
the object, the LRA-β method is used (see section 5.5.1). Typical values for the decay
length are λ = 1.5 Å for the π plasmon and λ = 0.8 Å for the π+σ plasmon which have
been obtained from a best fit to full RPA ab-initio calculations (see fig. 5.13b and 5.18a).class

LRA_Graphene
_nondispersive For very small momentum transfers |q̄| < 0.1 Å−1 the two-dimensional dielectric func-

tion ε̄(q̄, ω) ≈ ε̄(q̄ → 0̄, ω) is found to be independent of the momentum transfer q̄. It
has to be calculated only once and we can obtain the susceptibility at any other small
momentum transfer q̄ from eq. (7.8). This corresponds to the neglect of spatial dispersion
effects (see fig. 7.2a) and has been implemented in class LRA_Graphene_nondispersive.

C.2.2 Single-Wall Carbon Nanotubes
The response of a single-wall carbon nanotube is calculated analogously by solving the
Dyson equation for an effective homogeneous, infinitely thin cylinder [see eq. (6.17)].
The corresponding LRA+ZF method IV (see page 125), is very similar to the LRA
method II for graphene described above. However, there are two important differences:

1. We have to take into account the periodicity of the Kohn-Sham wave functions
along the circumference of the tube. Within the zone-folding model, we haveprepare_AbInitio.py

to calculate the polarisability of a periodic graphene ribbon instead of an infinite
graphene layer. Thus, for each (n,m) tube one has to create a new kss-file with
AbInit, where the k-point set is given by N parallel line segments that constitute
the two-dimensional Brillouin zone of the unrolled tube (see fig. 6.2a). The listBZ_to_abinit()

of k points is created by the function BZ_to_abinit(CNT,Nk,shiftk), where CNT is an
instance of the CNT-class (see cnt.py) describing the geometry of the tube, Nk denotes
the number of k points per line segment, and shiftk their shift along the tube axis.
Second, the macroscopic component of the polarisability χ0

d(q̄) has to be calculated
with the DP-code, where q̄(l, p) is related to the angular and on-axis momentum
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transfer l and p in the tube via eq. (6.11). Function to_DP() creates a list of q̄ to_DP()

vectors for the DP input file for different l and p values (see prepare_AbInitio.py).

2. The effective Dyson equation (6.17) for a tube has to be solved. This has been lra_cnt.py

class LRA_CNTimplemented in the class LRA_CNT (see lra_cnt.py) which has the same member
functions as LRA_Graphene. The cylinder polarisability, susceptibility, and (inverse)
dielectric function is calculated for a given l and p using the LRA or LRA-β method.

As example, we compare the results of the ZF+LRA and tight-binding method for the
cylinder response functions − Im ε̄−1

CNT(lp) and Im ε̄CNT(l, p) of a (9, 9) tube in fig. 6.7.

C.3 AR-EELS for SWCNT
So far, we have calculated the response ε̄CNT(l, p) of the tube to a helical-wave pertur-
bation. Now want to go a step further and determine the AR-EEL spectrum of the
tube, i. e., the response to a plane-wave perturbation with wave vector q0 = q0

⊥
+ q0

||
ez.

To this end, we have to perform a weighted sum over several spectra − Im ε̄−1
CNT(l, p)

for different angular moments l and fixed on-axis momentum p = q0
||

[see eq. (6.23)].
The summation is performed by the function tube_2_plane_wave(CNT,q_cc,chiCNT) which ar_eels.py

tube2planewave()expects a CNT-object defining the geometry of the tube, a 3D vector q_cc specifying q0,
and a pointer to a function chiCNT(p,l) which returns χ̄CNT(l, p) for any l and p. For
chiral tubes, the summation runs from −lmax to lmax. For achiral tubes, we can restrict lmax

the summation to non-negative l because of the additional mirror symmetry along z and
the symmetry relation (A.63). Note, that the mode with l = 0 and p = 0 can not be
excited—it corresponds to a uniform increase or decrease of the charge density and thus
violates charge conservation. The l = 0 mode must be therefore skipped if q0 is oriented
exactly perpendicular to the tube axis. In order to compare directly with supercell cal-
culations for the full tube, one has to specify the in-plane area A of the cell. In our case
A =

√
3

2 a
2, as the tubes are arranged in a triangular lattice with lattice constant a.

The cylinder susceptibility χ̄CNT(l, p) can be calculated either within the tight-binding
or local-response approximation (see section C.1 and C.2). Examples for the calculation
of the AR-EELS spectra like in fig. 6.13 and 6.10 are included at the end of the files
ar_eels.py and lra_cnt.py, respectively (execute these files with Python).

1. prepare_AbInitio.py: create input files for AbInit and DP
2. AbInit: create KSS-file for graphene ribbon corresponding to CNT(n,m)
3. DP: create outnlf.mdf files for several p and l momenta, |l| ≤ lmax
4. lra_cnt.py + ar_eels.py:

• construct LRA_CNT-object for list of outnlf.mdf files
• calculate AR-EELS spectrum for the tube

Tab. C.1: Workflow for an AR-EEL spectrum of a (n,m) tube using the LRA+ZF method.
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C.4 From Graphite to Graphene
C.4.1 Interpolation Method
The different steps of the interpolation method I have been outlined on page 92. Dueinterpolate_chi0.py

to the strong localisation of the independent-particle polarisability χ0(z, z′) (see sec-
tion 5.4.1), the Fourier transformed quantity χ0(Gz, G′z) is nearly constant and can be
easily interpolated. Two methods have been implemented in file interpolate_chi0.py:class

Interpolate_Chi0
• First, we have implemented a cubic-spline interpolation. As χ0 is complex in

reciprocal space, the real and imaginary part of χ0 are interpolated independently.

• Second, we used two Fourier transforms in order to increase the interlayer distance
in real space. To this end, we first calculate χ0(zz′) from χ0(GzG′z) by applying a
two-dimensional, inverse Fourier transform (see fig. C.2). Second, we increase the
size of the super cell in real space by a given factor N (see fig. C.3b) and fill the
unknown values with 0 (no response). Third, the Fourier transformation back to
reciprocal space yields an interpolated χ̃0(GzG′z) where the interlayer distance is
increased by the factor N (see fig. C.3a).

Working in real space, the Fourier interpolation has a clear physical meaning: assuming
that the polarisability is localised (see section 5.4.1), we just have to add an additional
region with zeros (no response) for larger systems. This padding technique has been
already proposed to calculate the Hartree energy of finite systems [214] and, more gen-
erally, is related to the interpolation in image processing. Indeed, a discrete set of data
points can be interpolated by Fourier transforming the sample, adding high frequency
coefficients which are assumed to be zero, and applying the back transform.

Note that the Fourier interpolation has some advantages compared to the cubic-spline
interpolation: First, it is numerically more stable and slightly faster. Second, it does
not depend on the phase of χ0. Indeed, in order to interpolate real and imaginary part
independently, we have to assume that both are smooth functions. But already a simple
translation of the layers with respect to the origin will introduce phase oscillations in
reciprocal space and the cubic-spline method will break down.

Figure C.4a shows the in-plane loss spectrum of a graphene stack with interlayer
distance d = 16d0. We compare a full ab-initio calculation with the result from the
interpolation method starting from the polarisability of a graphene stack with d = 2d0.
If we use the Fourier-interpolation method, we exactly reproduce the ab-initio results,
while the cubic-spline interpolation fails in this case. Indeed, the origin was shifted along
z-direction and both, the real and imaginary part of χ0 strongly oscillate.

C.4.2 Coulomb-cutoff method
The Coulomb-cutoff method III has been described on page 102 and implemented in file
realspace_chi0.py. Figure C.4b shows the loss function of a graphene stack with d = 4d0,realspace_chi0.py
i. e., the sheets are still interacting at a momentum transfer q̄ = 0.27 Å−1 . Comparing
full ab-initio calculations (black solid) and the results of the Coulomb-cutoff method
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(a) (b)

Fig. C.2: Independent-particle polarisability for a graphene stack with doubled interlayer dis-
tance d = 2d0. (a) First, in reciprocal space Imχ0(q̄q̄′;GzG′z) and (b) second, in real space
Imχ0(q̄q̄′; zz′). The other parameters are fixed as q̄ = q̄′ = 0.27Å−1

, ω = 4eV.

(a) (b)

Fig. C.3: (b) We increase the size of the supercell in real space and add zero’s at the border.
(a) The Fourier transform of this modified quantity is than an interpolated version of fig C.2a.
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Fig. C.4: (a) Energy-loss function of a graphene stack with interlayer distance d = 16d0 and
in-plane momentum q̄ = 0.07 Å−1 . (b) Loss function for a graphene stack with d = 4d0 and
in-plane momentum q̄ = 0.27 Å−1 . See text for further details.

(red dots) starting from a graphene stack with d = 2d0 shows a slight difference in the
spectra. This difference completely vanishes, if we take into account the interaction
between neighbouring sheets in the Coulomb-cutoff method by using eq. (5.44).

Alternatively to the solution of the Dyson equation in real space, one can also work
in reciprocal space using a modified Coulomb potential vcut which is either cut-off
at a distance R (see, e. g., [168–170]) or modified to simulate a larger interlayer dis-
tance D using a step-like Coulomb potential (see file modified_coulomb_cutoff.py and
modified_coulomb_varyd.py, respectively). As there is no Fourier transform and zero-
padding involved, this approach is even faster and simpler to implement than the pro-
posed Coulomb-cutoff method III. For thick slabs, like in the case of surface calculations,
one should use a combined approach of zero-padding and Coulomb cutoff in reciprocal
space [214].

Conclusions
We have seen that both the Fourier-interpolation method and the Coulomb-cutoff
method reproduce exactly the full ab-initio calculations for the in-plane loss spectra
of graphene stacks. The interpolation method actually calculates the susceptibility of an
infinite stack of graphene layers with increased distance. The Coulomb-cutoff method,
instead, calculates the susceptibility of an isolated layer of graphene. Interactions can
be re-introduced using the building-block approach.

The following table summarises all codes that I have implemented during my thesis.
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package module description

CNT cnt Basic parameters for graphene and SWCNTs.
zone_folding Connection between graphene and the SWCNT

within the zone-folding model.
tight_binding Electronic structure and response of graphene and

SWCNTs using nearest-neighbour tight-binding.
ar_eels Calculate AR-EELS of a tube by expanding the ex-

ternal plane-wave perturbation into Bessel functions.

3Dto2D lra_graphene Calculate slab response function of graphene from
graphite within the local-response approximation.
−→ Implements LRA method II (see p. 98).

interpolate_chi0 Increase interlayer distance of graphite via a fft /
cspline interpolation of the microscopic pol. χ0

GG′ .
−→ Implements Interpolation method I (see p. 92).

modified_coulomb Increase interlayer distance with a modified Coulomb
potential (varyd) or by applying a cutoff (cutoff).

realspace_chi0 Calculate the response of a 2D system from the bulk
polarisability by solving the Dyson eq. in real space.
−→ Implements Coulomb-cutoff method III (p. 102).

3DtoCNT prepare_AbInitio Create input-files for the ab-initio calculations of the
unrolled SWCNT (AbInit and DP).

lra_cnt Calculation of the cylinder response function of a
SWCNT within the local-response approximation.
−→ Implements ZF+LRA method IV (see p. 125).

zf_method Calculate the response of a tube from the polarisabil-
ity of graphite by solving the Dyson eq. in real space.
−→ Implements Zone-folding method V (see p. 139).

DPio SRcommon General definitions like index grids (RegularVGrid).
SRplot Plotting for 2D-arrays depending on two parameters.
dp_chi0 Read full χ0 from DP-output file chi0.dat.
dp_mdf Read DP-output file out(n)lf.mdf (header+data).
dp_log Read DP-logfile (k-points and energies).

Tab.C.2: Overview of the Python modules. See http://etsf.polytechnique.fr/People/Ralf/Codes
or the local SVN repository for the latest version of the source code.
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