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Introduction

Theoretical Spectroscopy Group (ETSF)

Results on Nanotubes and Graphene:

Coordinator: Christine Giorgetti
Ralf Hambach
Xochitl Lopéz
Federico Iori
V.Olevano, A. Marinopoulos, L. Reining, F. Sottile
Experiments: Thomas Pichler group (Dresden)
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Spectroscopy: Electron Scattering

Energy Loss Function

d2σ

dΩdE
∝ Im

{
ε−1}
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Linear Response Approach

System submitted to an external perturbation

Vtot = ε−1Vext

Vtot = Vext + Vind

E = ε−1D
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Linear Response Approach

Polarizability

interacting system δn = χδVext

non-interacting system δnn−i = χ0δVtot

Single-particle polarizability

χ0 =
∑
ij

φi (r)φ
∗
j (r)φ

∗
i (r

′)φj(r
′)

ω − (εi − εj)

hartree, hartree-fock, dft, etc.

G.D. Mahan Many Particle Physics (Plenum, New York, 1990)
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Linear Response Approach

Polarizability

interacting system δn = χδVext

non-interacting system δnn−i = χ0δVtot

χ0 =
∑
ij

φi (r)φ
∗
j (r)φ

∗
i (r

′)φj(r
′)

ω − (εi − εj)

i

unoccupied states

occupied states

j
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Linear Response Approach

Polarizability

interacting system δn = χδVext

non-interacting system δnn−i = χ0δVtot

m

Density Functional Formalism

δn = δnn−i

δVtot = δVext + δVH + δVxc
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Linear Response Approach

Polarizability

χδVext = χ0 (δVext + δVH + δVxc)

χ = χ0

(
1 +

δVH

δVext
+

δVxc

δVext

)
δVH

δVext
=

δVH

δn

δn

δVext
= vχ

δVxc

δVext
=

δVxc

δn

δn

δVext
= fxcχ

with fxc = exchange-correlation kernel
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Linear Response Approach

Polarizability χ in TDDFT

1 DFT ground-state calc. → φi , εi [Vxc ]

2 φi , εi → χ0 =
∑

ij

φi (r)φ
∗
j (r)φ∗

i (r′)φj (r
′)

ω−(εi−εj )

3

δVH

δn
= v

δVxc

δn
= fxc

}
variation of the potentials

4 χ = χ0 + χ0 (v + fxc) χ
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Linear Response Approach

RPA and other approximations

fxc =

{
δVxc

δn
“any” other function fxc = 0 7→ RPA

Local field effects

χ =
(
1− χ0v

)−1
χ0 ; χ0

GG
′
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Actual work at the Theoretical Spectroscopy Group

EELS of semiconductors

IXS and CIXS of semiconductors and metals

EELS of nanotubes and graphene layers

EELS and IXS of strongly correlated systems (Hf, V oxydes)

RIXS spectroscopy

User projects
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EELS of nanotubes: plasmon dispersion

Questions

theoretical understanding of electronic excitations of SWNT
plasmon dispersion

SWNT and graphene. Strong connection and analysis
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EELS of nanotubes: plasmon dispersion

VA-SWCNT

diameter: 2nm

nearly isolated

Kramberger, Hambach, Giorgetti, Rümmeli, Knupfer, Fink, Büchner,

Reining, Einsarsson, Maruyama, Sottile, Hannewald, Olevano, Marinopoulos,

Pichler, Phys. Rev. Lett. 100, 196803 (2008)
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EELS of nanotubes: plasmon dispersion

2nm is big!!

linear dispersion
reminds us the Dirac

cone
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Numerical simulations

ab-initio calculations

DFT ground-state calculations (LDA)

Independant Particles polarizability: χ0

RPA Full polarisability: χ =
[
1− χ0υ

]−1
χ0

Dielectric function ε−1 = 1 + vχ

energy loss function −Im{ε−1(q, ω)}
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Independent particle picture

energy loss in graphene
(in-plane, q = 0.41Å)

0 2 4 6 8 10
energy loss (eV)

- 
Im

 ε
-1

   
(a

rb
. u

.)

IPA =⇒ given by χ0:
interpretation in terms of
band-transitions
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Independent particle picture

energy loss in graphene
(in-plane, q = 0.41Å)
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RPA: random phase approx.

energy loss in graphene
(in-plane, q = 0.41Å)

0 2 4 6 8 10
energy loss (eV)
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Im

 ε
-1
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rb
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IPA
π−π∗ at K
RPA given by χ:

no interpretation by
band-transitions

contributions from K

mixing of transitions
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RPA: random phase approx.

energy loss in graphene
(in-plane, q = 0.41Å)
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given by χ:
no interpretation by
band-transitions

contributions from K

mixing of transitions
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Plasmon dispersion

01
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SWCNT vs. Graphene
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SWCNT vs. Graphene: Conclusions

Graphene can be studied to get quantitative information about
VA-SWNT

Vice-versa is also true!

Bulk (bundled) nanotubes can be studied using double layer graphene

High q measurements are applicable to probe intrinsic properties of
individual objects within bulk arrays.
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Ab initio simulation of electronic excitations

Advantages and limits
√

reliable
√

predictive

× cumbersome

Actual developments in the group

multiwall nanotubes - stacking of graphene layers (1 postdoc)

towards more complex systems - strongly correlated (2 postdocs)

different spectroscopies (X-ray ?) (1 postdoc)

spatial resolution EELS (PhD thesis)
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Discontinuity of the loss function
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